xref: /openbmc/linux/sound/pci/cmipci.c (revision 77933d7276ee8fa0e2947641941a6f7a100a327b)
1 /*
2  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22 
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/gameport.h>
31 #include <linux/moduleparam.h>
32 #include <sound/core.h>
33 #include <sound/info.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/rawmidi.h>
37 #include <sound/mpu401.h>
38 #include <sound/opl3.h>
39 #include <sound/sb.h>
40 #include <sound/asoundef.h>
41 #include <sound/initval.h>
42 
43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47 		"{C-Media,CMI8738B},"
48 		"{C-Media,CMI8338A},"
49 		"{C-Media,CMI8338B}}");
50 
51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52 #define SUPPORT_JOYSTICK 1
53 #endif
54 
55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
57 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
58 static long mpu_port[SNDRV_CARDS];
59 static long fm_port[SNDRV_CARDS];
60 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 #ifdef SUPPORT_JOYSTICK
62 static int joystick_port[SNDRV_CARDS];
63 #endif
64 
65 module_param_array(index, int, NULL, 0444);
66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67 module_param_array(id, charp, NULL, 0444);
68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69 module_param_array(enable, bool, NULL, 0444);
70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71 module_param_array(mpu_port, long, NULL, 0444);
72 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73 module_param_array(fm_port, long, NULL, 0444);
74 MODULE_PARM_DESC(fm_port, "FM port.");
75 module_param_array(soft_ac3, bool, NULL, 0444);
76 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
77 #ifdef SUPPORT_JOYSTICK
78 module_param_array(joystick_port, int, NULL, 0444);
79 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80 #endif
81 
82 #ifndef PCI_DEVICE_ID_CMEDIA_CM8738
83 #define PCI_DEVICE_ID_CMEDIA_CM8738	0x0111
84 #endif
85 #ifndef PCI_DEVICE_ID_CMEDIA_CM8738B
86 #define PCI_DEVICE_ID_CMEDIA_CM8738B	0x0112
87 #endif
88 
89 /*
90  * CM8x38 registers definition
91  */
92 
93 #define CM_REG_FUNCTRL0		0x00
94 #define CM_RST_CH1		0x00080000
95 #define CM_RST_CH0		0x00040000
96 #define CM_CHEN1		0x00020000	/* ch1: enable */
97 #define CM_CHEN0		0x00010000	/* ch0: enable */
98 #define CM_PAUSE1		0x00000008	/* ch1: pause */
99 #define CM_PAUSE0		0x00000004	/* ch0: pause */
100 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
101 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
102 
103 #define CM_REG_FUNCTRL1		0x04
104 #define CM_ASFC_MASK		0x0000E000	/* ADC sampling frequency */
105 #define CM_ASFC_SHIFT		13
106 #define CM_DSFC_MASK		0x00001C00	/* DAC sampling frequency */
107 #define CM_DSFC_SHIFT		10
108 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
109 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
110 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/OUT -> IN loopback */
111 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
112 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
113 #define CM_BREQ			0x00000010	/* bus master enabled */
114 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
115 #define CM_UART_EN		0x00000004	/* UART */
116 #define CM_JYSTK_EN		0x00000002	/* joy stick */
117 
118 #define CM_REG_CHFORMAT		0x08
119 
120 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
121 #define CM_CHB3D		0x20000000	/* 4 channels */
122 
123 #define CM_CHIP_MASK1		0x1f000000
124 #define CM_CHIP_037		0x01000000
125 
126 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
127 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
128 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
129 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
130 
131 #define CM_ADCBITLEN_MASK	0x0000C000
132 #define CM_ADCBITLEN_16		0x00000000
133 #define CM_ADCBITLEN_15		0x00004000
134 #define CM_ADCBITLEN_14		0x00008000
135 #define CM_ADCBITLEN_13		0x0000C000
136 
137 #define CM_ADCDACLEN_MASK	0x00003000
138 #define CM_ADCDACLEN_060	0x00000000
139 #define CM_ADCDACLEN_066	0x00001000
140 #define CM_ADCDACLEN_130	0x00002000
141 #define CM_ADCDACLEN_280	0x00003000
142 
143 #define CM_CH1_SRATE_176K	0x00000800
144 #define CM_CH1_SRATE_88K	0x00000400
145 #define CM_CH0_SRATE_176K	0x00000200
146 #define CM_CH0_SRATE_88K	0x00000100
147 
148 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
149 
150 #define CM_CH1FMT_MASK		0x0000000C
151 #define CM_CH1FMT_SHIFT		2
152 #define CM_CH0FMT_MASK		0x00000003
153 #define CM_CH0FMT_SHIFT		0
154 
155 #define CM_REG_INT_HLDCLR	0x0C
156 #define CM_CHIP_MASK2		0xff000000
157 #define CM_CHIP_039		0x04000000
158 #define CM_CHIP_039_6CH		0x01000000
159 #define CM_CHIP_055		0x08000000
160 #define CM_CHIP_8768		0x20000000
161 #define CM_TDMA_INT_EN		0x00040000
162 #define CM_CH1_INT_EN		0x00020000
163 #define CM_CH0_INT_EN		0x00010000
164 #define CM_INT_HOLD		0x00000002
165 #define CM_INT_CLEAR		0x00000001
166 
167 #define CM_REG_INT_STATUS	0x10
168 #define CM_INTR			0x80000000
169 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
170 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
171 #define CM_UARTINT		0x00010000
172 #define CM_LTDMAINT		0x00008000
173 #define CM_HTDMAINT		0x00004000
174 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
175 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
176 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
177 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
178 #define CM_CH1BUSY		0x00000008
179 #define CM_CH0BUSY		0x00000004
180 #define CM_CHINT1		0x00000002
181 #define CM_CHINT0		0x00000001
182 
183 #define CM_REG_LEGACY_CTRL	0x14
184 #define CM_NXCHG		0x80000000	/* h/w multi channels? */
185 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
186 #define CM_VMPU_330		0x00000000
187 #define CM_VMPU_320		0x20000000
188 #define CM_VMPU_310		0x40000000
189 #define CM_VMPU_300		0x60000000
190 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
191 #define CM_VSBSEL_220		0x00000000
192 #define CM_VSBSEL_240		0x04000000
193 #define CM_VSBSEL_260		0x08000000
194 #define CM_VSBSEL_280		0x0C000000
195 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
196 #define CM_FMSEL_388		0x00000000
197 #define CM_FMSEL_3C8		0x01000000
198 #define CM_FMSEL_3E0		0x02000000
199 #define CM_FMSEL_3E8		0x03000000
200 #define CM_ENSPDOUT		0x00800000	/* enable XPDIF/OUT to I/O interface */
201 #define CM_SPDCOPYRHT		0x00400000	/* set copyright spdif in/out */
202 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
203 #define CM_SETRETRY		0x00010000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
204 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
205 #define CM_LINE_AS_BASS		0x00006000	/* use line-in as bass */
206 
207 #define CM_REG_MISC_CTRL	0x18
208 #define CM_PWD			0x80000000
209 #define CM_RESET		0x40000000
210 #define CM_SFIL_MASK		0x30000000
211 #define CM_TXVX			0x08000000
212 #define CM_N4SPK3D		0x04000000	/* 4ch output */
213 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
214 #define CM_SPDIF48K		0x01000000	/* write */
215 #define CM_SPATUS48K		0x01000000	/* read */
216 #define CM_ENDBDAC		0x00800000	/* enable dual dac */
217 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
218 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
219 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-IN -> int. OUT */
220 #define CM_FM_EN		0x00080000	/* enalbe FM */
221 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
222 #define CM_VIDWPDSB		0x00010000
223 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
224 #define CM_MASK_EN		0x00004000
225 #define CM_VIDWPPRT		0x00002000
226 #define CM_SFILENB		0x00001000
227 #define CM_MMODE_MASK		0x00000E00
228 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
229 #define CM_ENCENTER		0x00000080
230 #define CM_FLINKON		0x00000040
231 #define CM_FLINKOFF		0x00000020
232 #define CM_MIDSMP		0x00000010
233 #define CM_UPDDMA_MASK		0x0000000C
234 #define CM_TWAIT_MASK		0x00000003
235 
236 	/* byte */
237 #define CM_REG_MIXER0		0x20
238 
239 #define CM_REG_SB16_DATA	0x22
240 #define CM_REG_SB16_ADDR	0x23
241 
242 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
243 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
244 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
245 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
246 
247 #define CM_REG_MIXER1		0x24
248 #define CM_FMMUTE		0x80	/* mute FM */
249 #define CM_FMMUTE_SHIFT		7
250 #define CM_WSMUTE		0x40	/* mute PCM */
251 #define CM_WSMUTE_SHIFT		6
252 #define CM_SPK4			0x20	/* lin-in -> rear line out */
253 #define CM_SPK4_SHIFT		5
254 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
255 #define CM_REAR2FRONT_SHIFT	4
256 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
257 #define CM_WAVEINL_SHIFT	3
258 #define CM_WAVEINR		0x04	/* digical wave rec. right */
259 #define CM_WAVEINR_SHIFT	2
260 #define CM_X3DEN		0x02	/* 3D surround enable */
261 #define CM_X3DEN_SHIFT		1
262 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
263 #define CM_CDPLAY_SHIFT		0
264 
265 #define CM_REG_MIXER2		0x25
266 #define CM_RAUXREN		0x80	/* AUX right capture */
267 #define CM_RAUXREN_SHIFT	7
268 #define CM_RAUXLEN		0x40	/* AUX left capture */
269 #define CM_RAUXLEN_SHIFT	6
270 #define CM_VAUXRM		0x20	/* AUX right mute */
271 #define CM_VAUXRM_SHIFT		5
272 #define CM_VAUXLM		0x10	/* AUX left mute */
273 #define CM_VAUXLM_SHIFT		4
274 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
275 #define CM_VADMIC_SHIFT		1
276 #define CM_MICGAINZ		0x01	/* mic boost */
277 #define CM_MICGAINZ_SHIFT	0
278 
279 #define CM_REG_AUX_VOL		0x26
280 #define CM_VAUXL_MASK		0xf0
281 #define CM_VAUXR_MASK		0x0f
282 
283 #define CM_REG_MISC		0x27
284 #define CM_XGPO1		0x20
285 // #define CM_XGPBIO		0x04
286 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
287 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
288 #define CM_SPDVALID		0x02	/* spdif input valid check */
289 #define CM_DMAUTO		0x01
290 
291 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
292 /*
293  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
294  * or identical with AC97 codec?
295  */
296 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
297 
298 /*
299  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
300  */
301 #define CM_REG_MPU_PCI		0x40
302 
303 /*
304  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
305  */
306 #define CM_REG_FM_PCI		0x50
307 
308 /*
309  * for CMI-8338 .. this is not valid for CMI-8738.
310  */
311 #define CM_REG_EXTENT_IND	0xf0
312 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
313 #define CM_VPHONE_SHIFT		5
314 #define CM_VPHOM		0x10	/* Phone mute control */
315 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
316 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
317 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
318 
319 /*
320  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
321  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
322  * unit (readonly?).
323  */
324 #define CM_REG_PLL		0xf8
325 
326 /*
327  * extended registers
328  */
329 #define CM_REG_CH0_FRAME1	0x80	/* base address */
330 #define CM_REG_CH0_FRAME2	0x84
331 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
332 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
333 #define CM_REG_MISC_CTRL_8768	0x92	/* reg. name the same as 0x18 */
334 #define CM_CHB3D8C		0x20	/* 7.1 channels support */
335 #define CM_SPD32FMT		0x10	/* SPDIF/IN 32k */
336 #define CM_ADC2SPDIF		0x08	/* ADC output to SPDIF/OUT */
337 #define CM_SHAREADC		0x04	/* DAC in ADC as Center/LFE */
338 #define CM_REALTCMP		0x02	/* monitor the CMPL/CMPR of ADC */
339 #define CM_INVLRCK		0x01	/* invert ZVPORT's LRCK */
340 
341 /*
342  * size of i/o region
343  */
344 #define CM_EXTENT_CODEC	  0x100
345 #define CM_EXTENT_MIDI	  0x2
346 #define CM_EXTENT_SYNTH	  0x4
347 
348 
349 /*
350  * pci ids
351  */
352 #ifndef PCI_VENDOR_ID_CMEDIA
353 #define PCI_VENDOR_ID_CMEDIA         0x13F6
354 #endif
355 #ifndef PCI_DEVICE_ID_CMEDIA_CM8338A
356 #define PCI_DEVICE_ID_CMEDIA_CM8338A 0x0100
357 #endif
358 #ifndef PCI_DEVICE_ID_CMEDIA_CM8338B
359 #define PCI_DEVICE_ID_CMEDIA_CM8338B 0x0101
360 #endif
361 #ifndef PCI_DEVICE_ID_CMEDIA_CM8738
362 #define PCI_DEVICE_ID_CMEDIA_CM8738  0x0111
363 #endif
364 #ifndef PCI_DEVICE_ID_CMEDIA_CM8738B
365 #define PCI_DEVICE_ID_CMEDIA_CM8738B 0x0112
366 #endif
367 
368 /*
369  * channels for playback / capture
370  */
371 #define CM_CH_PLAY	0
372 #define CM_CH_CAPT	1
373 
374 /*
375  * flags to check device open/close
376  */
377 #define CM_OPEN_NONE	0
378 #define CM_OPEN_CH_MASK	0x01
379 #define CM_OPEN_DAC	0x10
380 #define CM_OPEN_ADC	0x20
381 #define CM_OPEN_SPDIF	0x40
382 #define CM_OPEN_MCHAN	0x80
383 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
384 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
385 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
386 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
387 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
388 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
389 
390 
391 #if CM_CH_PLAY == 1
392 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
393 #define CM_PLAYBACK_SPDF	CM_SPDF_1
394 #define CM_CAPTURE_SPDF		CM_SPDF_0
395 #else
396 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
397 #define CM_PLAYBACK_SPDF	CM_SPDF_0
398 #define CM_CAPTURE_SPDF		CM_SPDF_1
399 #endif
400 
401 
402 /*
403  * driver data
404  */
405 
406 typedef struct snd_stru_cmipci cmipci_t;
407 typedef struct snd_stru_cmipci_pcm cmipci_pcm_t;
408 
409 struct snd_stru_cmipci_pcm {
410 	snd_pcm_substream_t *substream;
411 	int running;		/* dac/adc running? */
412 	unsigned int dma_size;	/* in frames */
413 	unsigned int period_size;	/* in frames */
414 	unsigned int offset;	/* physical address of the buffer */
415 	unsigned int fmt;	/* format bits */
416 	int ch;			/* channel (0/1) */
417 	unsigned int is_dac;		/* is dac? */
418 	int bytes_per_frame;
419 	int shift;
420 };
421 
422 /* mixer elements toggled/resumed during ac3 playback */
423 struct cmipci_mixer_auto_switches {
424 	const char *name;	/* switch to toggle */
425 	int toggle_on;		/* value to change when ac3 mode */
426 };
427 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
428 	{"PCM Playback Switch", 0},
429 	{"IEC958 Output Switch", 1},
430 	{"IEC958 Mix Analog", 0},
431 	// {"IEC958 Out To DAC", 1}, // no longer used
432 	{"IEC958 Loop", 0},
433 };
434 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
435 
436 struct snd_stru_cmipci {
437 	snd_card_t *card;
438 
439 	struct pci_dev *pci;
440 	unsigned int device;	/* device ID */
441 	int irq;
442 
443 	unsigned long iobase;
444 	unsigned int ctrl;	/* FUNCTRL0 current value */
445 
446 	snd_pcm_t *pcm;		/* DAC/ADC PCM */
447 	snd_pcm_t *pcm2;	/* 2nd DAC */
448 	snd_pcm_t *pcm_spdif;	/* SPDIF */
449 
450 	int chip_version;
451 	int max_channels;
452 	unsigned int has_dual_dac: 1;
453 	unsigned int can_ac3_sw: 1;
454 	unsigned int can_ac3_hw: 1;
455 	unsigned int can_multi_ch: 1;
456 	unsigned int do_soft_ac3: 1;
457 
458 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
459 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
460 	int spdif_counter;	/* for software AC3 */
461 
462 	unsigned int dig_status;
463 	unsigned int dig_pcm_status;
464 
465 	snd_pcm_hardware_t *hw_info[3]; /* for playbacks */
466 
467 	int opened[2];	/* open mode */
468 	struct semaphore open_mutex;
469 
470 	unsigned int mixer_insensitive: 1;
471 	snd_kcontrol_t *mixer_res_ctl[CM_SAVED_MIXERS];
472 	int mixer_res_status[CM_SAVED_MIXERS];
473 
474 	opl3_t *opl3;
475 	snd_hwdep_t *opl3hwdep;
476 
477 	cmipci_pcm_t channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
478 
479 	/* external MIDI */
480 	snd_rawmidi_t *rmidi;
481 
482 #ifdef SUPPORT_JOYSTICK
483 	struct gameport *gameport;
484 #endif
485 
486 	spinlock_t reg_lock;
487 };
488 
489 
490 /* read/write operations for dword register */
491 static inline void snd_cmipci_write(cmipci_t *cm, unsigned int cmd, unsigned int data)
492 {
493 	outl(data, cm->iobase + cmd);
494 }
495 
496 static inline unsigned int snd_cmipci_read(cmipci_t *cm, unsigned int cmd)
497 {
498 	return inl(cm->iobase + cmd);
499 }
500 
501 /* read/write operations for word register */
502 static inline void snd_cmipci_write_w(cmipci_t *cm, unsigned int cmd, unsigned short data)
503 {
504 	outw(data, cm->iobase + cmd);
505 }
506 
507 static inline unsigned short snd_cmipci_read_w(cmipci_t *cm, unsigned int cmd)
508 {
509 	return inw(cm->iobase + cmd);
510 }
511 
512 /* read/write operations for byte register */
513 static inline void snd_cmipci_write_b(cmipci_t *cm, unsigned int cmd, unsigned char data)
514 {
515 	outb(data, cm->iobase + cmd);
516 }
517 
518 static inline unsigned char snd_cmipci_read_b(cmipci_t *cm, unsigned int cmd)
519 {
520 	return inb(cm->iobase + cmd);
521 }
522 
523 /* bit operations for dword register */
524 static int snd_cmipci_set_bit(cmipci_t *cm, unsigned int cmd, unsigned int flag)
525 {
526 	unsigned int val, oval;
527 	val = oval = inl(cm->iobase + cmd);
528 	val |= flag;
529 	if (val == oval)
530 		return 0;
531 	outl(val, cm->iobase + cmd);
532 	return 1;
533 }
534 
535 static int snd_cmipci_clear_bit(cmipci_t *cm, unsigned int cmd, unsigned int flag)
536 {
537 	unsigned int val, oval;
538 	val = oval = inl(cm->iobase + cmd);
539 	val &= ~flag;
540 	if (val == oval)
541 		return 0;
542 	outl(val, cm->iobase + cmd);
543 	return 1;
544 }
545 
546 /* bit operations for byte register */
547 static int snd_cmipci_set_bit_b(cmipci_t *cm, unsigned int cmd, unsigned char flag)
548 {
549 	unsigned char val, oval;
550 	val = oval = inb(cm->iobase + cmd);
551 	val |= flag;
552 	if (val == oval)
553 		return 0;
554 	outb(val, cm->iobase + cmd);
555 	return 1;
556 }
557 
558 static int snd_cmipci_clear_bit_b(cmipci_t *cm, unsigned int cmd, unsigned char flag)
559 {
560 	unsigned char val, oval;
561 	val = oval = inb(cm->iobase + cmd);
562 	val &= ~flag;
563 	if (val == oval)
564 		return 0;
565 	outb(val, cm->iobase + cmd);
566 	return 1;
567 }
568 
569 
570 /*
571  * PCM interface
572  */
573 
574 /*
575  * calculate frequency
576  */
577 
578 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
579 
580 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
581 {
582 	unsigned int i;
583 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
584 		if (rates[i] == rate)
585 			return i;
586 	}
587 	snd_BUG();
588 	return 0;
589 }
590 
591 #ifdef USE_VAR48KRATE
592 /*
593  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
594  * does it this way .. maybe not.  Never get any information from C-Media about
595  * that <werner@suse.de>.
596  */
597 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
598 {
599 	unsigned int delta, tolerance;
600 	int xm, xn, xr;
601 
602 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
603 		rate <<= 1;
604 	*n = -1;
605 	if (*r > 0xff)
606 		goto out;
607 	tolerance = rate*CM_TOLERANCE_RATE;
608 
609 	for (xn = (1+2); xn < (0x1f+2); xn++) {
610 		for (xm = (1+2); xm < (0xff+2); xm++) {
611 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
612 
613 			if (xr < rate)
614 				delta = rate - xr;
615 			else
616 				delta = xr - rate;
617 
618 			/*
619 			 * If we found one, remember this,
620 			 * and try to find a closer one
621 			 */
622 			if (delta < tolerance) {
623 				tolerance = delta;
624 				*m = xm - 2;
625 				*n = xn - 2;
626 			}
627 		}
628 	}
629 out:
630 	return (*n > -1);
631 }
632 
633 /*
634  * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
635  * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
636  * at the register CM_REG_FUNCTRL1 (0x04).
637  * Problem: other ways are also possible (any information about that?)
638  */
639 static void snd_cmipci_set_pll(cmipci_t *cm, unsigned int rate, unsigned int slot)
640 {
641 	unsigned int reg = CM_REG_PLL + slot;
642 	/*
643 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
644 	 * for DSFC/ASFC (000 upto 111).
645 	 */
646 
647 	/* FIXME: Init (Do we've to set an other register first before programming?) */
648 
649 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
650 	snd_cmipci_write_b(cm, reg, rate>>8);
651 	snd_cmipci_write_b(cm, reg, rate&0xff);
652 
653 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
654 }
655 #endif /* USE_VAR48KRATE */
656 
657 static int snd_cmipci_hw_params(snd_pcm_substream_t * substream,
658 				snd_pcm_hw_params_t * hw_params)
659 {
660 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
661 }
662 
663 static int snd_cmipci_playback2_hw_params(snd_pcm_substream_t * substream,
664 					  snd_pcm_hw_params_t * hw_params)
665 {
666 	cmipci_t *cm = snd_pcm_substream_chip(substream);
667 	if (params_channels(hw_params) > 2) {
668 		down(&cm->open_mutex);
669 		if (cm->opened[CM_CH_PLAY]) {
670 			up(&cm->open_mutex);
671 			return -EBUSY;
672 		}
673 		/* reserve the channel A */
674 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
675 		up(&cm->open_mutex);
676 	}
677 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
678 }
679 
680 static void snd_cmipci_ch_reset(cmipci_t *cm, int ch)
681 {
682 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
683 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
684 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
685 	udelay(10);
686 }
687 
688 static int snd_cmipci_hw_free(snd_pcm_substream_t * substream)
689 {
690 	return snd_pcm_lib_free_pages(substream);
691 }
692 
693 
694 /*
695  */
696 
697 static unsigned int hw_channels[] = {1, 2, 4, 5, 6, 8};
698 static snd_pcm_hw_constraint_list_t hw_constraints_channels_4 = {
699 	.count = 3,
700 	.list = hw_channels,
701 	.mask = 0,
702 };
703 static snd_pcm_hw_constraint_list_t hw_constraints_channels_6 = {
704 	.count = 5,
705 	.list = hw_channels,
706 	.mask = 0,
707 };
708 static snd_pcm_hw_constraint_list_t hw_constraints_channels_8 = {
709 	.count = 6,
710 	.list = hw_channels,
711 	.mask = 0,
712 };
713 
714 static int set_dac_channels(cmipci_t *cm, cmipci_pcm_t *rec, int channels)
715 {
716 	if (channels > 2) {
717 		if (! cm->can_multi_ch)
718 			return -EINVAL;
719 		if (rec->fmt != 0x03) /* stereo 16bit only */
720 			return -EINVAL;
721 
722 		spin_lock_irq(&cm->reg_lock);
723 		snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
724 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
725 		if (channels > 4) {
726 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
727 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
728 		} else {
729 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
730 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
731 		}
732 		if (channels >= 6) {
733 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
734 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
735 		} else {
736 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
737 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
738 		}
739 		if (cm->chip_version == 68) {
740 			if (channels == 8) {
741 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
742 			} else {
743 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
744 			}
745 		}
746 		spin_unlock_irq(&cm->reg_lock);
747 
748 	} else {
749 		if (cm->can_multi_ch) {
750 			spin_lock_irq(&cm->reg_lock);
751 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
753 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
754 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
755 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
756 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
757 			spin_unlock_irq(&cm->reg_lock);
758 		}
759 	}
760 	return 0;
761 }
762 
763 
764 /*
765  * prepare playback/capture channel
766  * channel to be used must have been set in rec->ch.
767  */
768 static int snd_cmipci_pcm_prepare(cmipci_t *cm, cmipci_pcm_t *rec,
769 				 snd_pcm_substream_t *substream)
770 {
771 	unsigned int reg, freq, val;
772 	snd_pcm_runtime_t *runtime = substream->runtime;
773 
774 	rec->fmt = 0;
775 	rec->shift = 0;
776 	if (snd_pcm_format_width(runtime->format) >= 16) {
777 		rec->fmt |= 0x02;
778 		if (snd_pcm_format_width(runtime->format) > 16)
779 			rec->shift++; /* 24/32bit */
780 	}
781 	if (runtime->channels > 1)
782 		rec->fmt |= 0x01;
783 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
784 		snd_printd("cannot set dac channels\n");
785 		return -EINVAL;
786 	}
787 
788 	rec->offset = runtime->dma_addr;
789 	/* buffer and period sizes in frame */
790 	rec->dma_size = runtime->buffer_size << rec->shift;
791 	rec->period_size = runtime->period_size << rec->shift;
792 	if (runtime->channels > 2) {
793 		/* multi-channels */
794 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
795 		rec->period_size = (rec->period_size * runtime->channels) / 2;
796 	}
797 
798 	spin_lock_irq(&cm->reg_lock);
799 
800 	/* set buffer address */
801 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
802 	snd_cmipci_write(cm, reg, rec->offset);
803 	/* program sample counts */
804 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
805 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
806 	snd_cmipci_write_w(cm, reg + 2, rec->period_size - 1);
807 
808 	/* set adc/dac flag */
809 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
810 	if (rec->is_dac)
811 		cm->ctrl &= ~val;
812 	else
813 		cm->ctrl |= val;
814 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
815 	//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
816 
817 	/* set sample rate */
818 	freq = snd_cmipci_rate_freq(runtime->rate);
819 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
820 	if (rec->ch) {
821 		val &= ~CM_ASFC_MASK;
822 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
823 	} else {
824 		val &= ~CM_DSFC_MASK;
825 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
826 	}
827 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
828 	//snd_printd("cmipci: functrl1 = %08x\n", val);
829 
830 	/* set format */
831 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
832 	if (rec->ch) {
833 		val &= ~CM_CH1FMT_MASK;
834 		val |= rec->fmt << CM_CH1FMT_SHIFT;
835 	} else {
836 		val &= ~CM_CH0FMT_MASK;
837 		val |= rec->fmt << CM_CH0FMT_SHIFT;
838 	}
839 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
840 	//snd_printd("cmipci: chformat = %08x\n", val);
841 
842 	rec->running = 0;
843 	spin_unlock_irq(&cm->reg_lock);
844 
845 	return 0;
846 }
847 
848 /*
849  * PCM trigger/stop
850  */
851 static int snd_cmipci_pcm_trigger(cmipci_t *cm, cmipci_pcm_t *rec,
852 				 snd_pcm_substream_t *substream, int cmd)
853 {
854 	unsigned int inthld, chen, reset, pause;
855 	int result = 0;
856 
857 	inthld = CM_CH0_INT_EN << rec->ch;
858 	chen = CM_CHEN0 << rec->ch;
859 	reset = CM_RST_CH0 << rec->ch;
860 	pause = CM_PAUSE0 << rec->ch;
861 
862 	spin_lock(&cm->reg_lock);
863 	switch (cmd) {
864 	case SNDRV_PCM_TRIGGER_START:
865 		rec->running = 1;
866 		/* set interrupt */
867 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
868 		cm->ctrl |= chen;
869 		/* enable channel */
870 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
871 		//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
872 		break;
873 	case SNDRV_PCM_TRIGGER_STOP:
874 		rec->running = 0;
875 		/* disable interrupt */
876 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
877 		/* reset */
878 		cm->ctrl &= ~chen;
879 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
880 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
881 		break;
882 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
883 		cm->ctrl |= pause;
884 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
885 		break;
886 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
887 		cm->ctrl &= ~pause;
888 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
889 		break;
890 	default:
891 		result = -EINVAL;
892 		break;
893 	}
894 	spin_unlock(&cm->reg_lock);
895 	return result;
896 }
897 
898 /*
899  * return the current pointer
900  */
901 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(cmipci_t *cm, cmipci_pcm_t *rec,
902 					  snd_pcm_substream_t *substream)
903 {
904 	size_t ptr;
905 	unsigned int reg;
906 	if (!rec->running)
907 		return 0;
908 #if 1 // this seems better..
909 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
910 	ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
911 	ptr >>= rec->shift;
912 #else
913 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
914 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
915 	ptr = bytes_to_frames(substream->runtime, ptr);
916 #endif
917 	if (substream->runtime->channels > 2)
918 		ptr = (ptr * 2) / substream->runtime->channels;
919 	return ptr;
920 }
921 
922 /*
923  * playback
924  */
925 
926 static int snd_cmipci_playback_trigger(snd_pcm_substream_t *substream,
927 				       int cmd)
928 {
929 	cmipci_t *cm = snd_pcm_substream_chip(substream);
930 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], substream, cmd);
931 }
932 
933 static snd_pcm_uframes_t snd_cmipci_playback_pointer(snd_pcm_substream_t *substream)
934 {
935 	cmipci_t *cm = snd_pcm_substream_chip(substream);
936 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
937 }
938 
939 
940 
941 /*
942  * capture
943  */
944 
945 static int snd_cmipci_capture_trigger(snd_pcm_substream_t *substream,
946 				     int cmd)
947 {
948 	cmipci_t *cm = snd_pcm_substream_chip(substream);
949 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], substream, cmd);
950 }
951 
952 static snd_pcm_uframes_t snd_cmipci_capture_pointer(snd_pcm_substream_t *substream)
953 {
954 	cmipci_t *cm = snd_pcm_substream_chip(substream);
955 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
956 }
957 
958 
959 /*
960  * hw preparation for spdif
961  */
962 
963 static int snd_cmipci_spdif_default_info(snd_kcontrol_t *kcontrol,
964 					 snd_ctl_elem_info_t *uinfo)
965 {
966 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
967 	uinfo->count = 1;
968 	return 0;
969 }
970 
971 static int snd_cmipci_spdif_default_get(snd_kcontrol_t *kcontrol,
972 					snd_ctl_elem_value_t *ucontrol)
973 {
974 	cmipci_t *chip = snd_kcontrol_chip(kcontrol);
975 	int i;
976 
977 	spin_lock_irq(&chip->reg_lock);
978 	for (i = 0; i < 4; i++)
979 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
980 	spin_unlock_irq(&chip->reg_lock);
981 	return 0;
982 }
983 
984 static int snd_cmipci_spdif_default_put(snd_kcontrol_t * kcontrol,
985 					 snd_ctl_elem_value_t * ucontrol)
986 {
987 	cmipci_t *chip = snd_kcontrol_chip(kcontrol);
988 	int i, change;
989 	unsigned int val;
990 
991 	val = 0;
992 	spin_lock_irq(&chip->reg_lock);
993 	for (i = 0; i < 4; i++)
994 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
995 	change = val != chip->dig_status;
996 	chip->dig_status = val;
997 	spin_unlock_irq(&chip->reg_lock);
998 	return change;
999 }
1000 
1001 static snd_kcontrol_new_t snd_cmipci_spdif_default __devinitdata =
1002 {
1003 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1004 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1005 	.info =		snd_cmipci_spdif_default_info,
1006 	.get =		snd_cmipci_spdif_default_get,
1007 	.put =		snd_cmipci_spdif_default_put
1008 };
1009 
1010 static int snd_cmipci_spdif_mask_info(snd_kcontrol_t *kcontrol,
1011 				      snd_ctl_elem_info_t *uinfo)
1012 {
1013 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1014 	uinfo->count = 1;
1015 	return 0;
1016 }
1017 
1018 static int snd_cmipci_spdif_mask_get(snd_kcontrol_t * kcontrol,
1019 				     snd_ctl_elem_value_t *ucontrol)
1020 {
1021 	ucontrol->value.iec958.status[0] = 0xff;
1022 	ucontrol->value.iec958.status[1] = 0xff;
1023 	ucontrol->value.iec958.status[2] = 0xff;
1024 	ucontrol->value.iec958.status[3] = 0xff;
1025 	return 0;
1026 }
1027 
1028 static snd_kcontrol_new_t snd_cmipci_spdif_mask __devinitdata =
1029 {
1030 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1031 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1032 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1033 	.info =		snd_cmipci_spdif_mask_info,
1034 	.get =		snd_cmipci_spdif_mask_get,
1035 };
1036 
1037 static int snd_cmipci_spdif_stream_info(snd_kcontrol_t *kcontrol,
1038 					snd_ctl_elem_info_t *uinfo)
1039 {
1040 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1041 	uinfo->count = 1;
1042 	return 0;
1043 }
1044 
1045 static int snd_cmipci_spdif_stream_get(snd_kcontrol_t *kcontrol,
1046 				       snd_ctl_elem_value_t *ucontrol)
1047 {
1048 	cmipci_t *chip = snd_kcontrol_chip(kcontrol);
1049 	int i;
1050 
1051 	spin_lock_irq(&chip->reg_lock);
1052 	for (i = 0; i < 4; i++)
1053 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1054 	spin_unlock_irq(&chip->reg_lock);
1055 	return 0;
1056 }
1057 
1058 static int snd_cmipci_spdif_stream_put(snd_kcontrol_t *kcontrol,
1059 				       snd_ctl_elem_value_t *ucontrol)
1060 {
1061 	cmipci_t *chip = snd_kcontrol_chip(kcontrol);
1062 	int i, change;
1063 	unsigned int val;
1064 
1065 	val = 0;
1066 	spin_lock_irq(&chip->reg_lock);
1067 	for (i = 0; i < 4; i++)
1068 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1069 	change = val != chip->dig_pcm_status;
1070 	chip->dig_pcm_status = val;
1071 	spin_unlock_irq(&chip->reg_lock);
1072 	return change;
1073 }
1074 
1075 static snd_kcontrol_new_t snd_cmipci_spdif_stream __devinitdata =
1076 {
1077 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1078 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1079 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1080 	.info =		snd_cmipci_spdif_stream_info,
1081 	.get =		snd_cmipci_spdif_stream_get,
1082 	.put =		snd_cmipci_spdif_stream_put
1083 };
1084 
1085 /*
1086  */
1087 
1088 /* save mixer setting and mute for AC3 playback */
1089 static int save_mixer_state(cmipci_t *cm)
1090 {
1091 	if (! cm->mixer_insensitive) {
1092 		snd_ctl_elem_value_t *val;
1093 		unsigned int i;
1094 
1095 		val = kmalloc(sizeof(*val), GFP_ATOMIC);
1096 		if (!val)
1097 			return -ENOMEM;
1098 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1099 			snd_kcontrol_t *ctl = cm->mixer_res_ctl[i];
1100 			if (ctl) {
1101 				int event;
1102 				memset(val, 0, sizeof(*val));
1103 				ctl->get(ctl, val);
1104 				cm->mixer_res_status[i] = val->value.integer.value[0];
1105 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1106 				event = SNDRV_CTL_EVENT_MASK_INFO;
1107 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1108 					ctl->put(ctl, val); /* toggle */
1109 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1110 				}
1111 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1112 				snd_ctl_notify(cm->card, event, &ctl->id);
1113 			}
1114 		}
1115 		kfree(val);
1116 		cm->mixer_insensitive = 1;
1117 	}
1118 	return 0;
1119 }
1120 
1121 
1122 /* restore the previously saved mixer status */
1123 static void restore_mixer_state(cmipci_t *cm)
1124 {
1125 	if (cm->mixer_insensitive) {
1126 		snd_ctl_elem_value_t *val;
1127 		unsigned int i;
1128 
1129 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1130 		if (!val)
1131 			return;
1132 		cm->mixer_insensitive = 0; /* at first clear this;
1133 					      otherwise the changes will be ignored */
1134 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1135 			snd_kcontrol_t *ctl = cm->mixer_res_ctl[i];
1136 			if (ctl) {
1137 				int event;
1138 
1139 				memset(val, 0, sizeof(*val));
1140 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1141 				ctl->get(ctl, val);
1142 				event = SNDRV_CTL_EVENT_MASK_INFO;
1143 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1144 					val->value.integer.value[0] = cm->mixer_res_status[i];
1145 					ctl->put(ctl, val);
1146 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1147 				}
1148 				snd_ctl_notify(cm->card, event, &ctl->id);
1149 			}
1150 		}
1151 		kfree(val);
1152 	}
1153 }
1154 
1155 /* spinlock held! */
1156 static void setup_ac3(cmipci_t *cm, snd_pcm_substream_t *subs, int do_ac3, int rate)
1157 {
1158 	if (do_ac3) {
1159 		/* AC3EN for 037 */
1160 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1161 		/* AC3EN for 039 */
1162 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1163 
1164 		if (cm->can_ac3_hw) {
1165 			/* SPD24SEL for 037, 0x02 */
1166 			/* SPD24SEL for 039, 0x20, but cannot be set */
1167 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1168 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1169 		} else { /* can_ac3_sw */
1170 			/* SPD32SEL for 037 & 039, 0x20 */
1171 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1172 			/* set 176K sample rate to fix 033 HW bug */
1173 			if (cm->chip_version == 33) {
1174 				if (rate >= 48000) {
1175 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1176 				} else {
1177 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1178 				}
1179 			}
1180 		}
1181 
1182 	} else {
1183 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1184 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1185 
1186 		if (cm->can_ac3_hw) {
1187 			/* chip model >= 37 */
1188 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1189 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1190 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1191 			} else {
1192 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1193 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1194 			}
1195 		} else {
1196 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1197 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1198 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1199 		}
1200 	}
1201 }
1202 
1203 static int setup_spdif_playback(cmipci_t *cm, snd_pcm_substream_t *subs, int up, int do_ac3)
1204 {
1205 	int rate, err;
1206 
1207 	rate = subs->runtime->rate;
1208 
1209 	if (up && do_ac3)
1210 		if ((err = save_mixer_state(cm)) < 0)
1211 			return err;
1212 
1213 	spin_lock_irq(&cm->reg_lock);
1214 	cm->spdif_playback_avail = up;
1215 	if (up) {
1216 		/* they are controlled via "IEC958 Output Switch" */
1217 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1218 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1219 		if (cm->spdif_playback_enabled)
1220 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1221 		setup_ac3(cm, subs, do_ac3, rate);
1222 
1223 		if (rate == 48000)
1224 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1225 		else
1226 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1227 
1228 	} else {
1229 		/* they are controlled via "IEC958 Output Switch" */
1230 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1231 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1232 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1233 		setup_ac3(cm, subs, 0, 0);
1234 	}
1235 	spin_unlock_irq(&cm->reg_lock);
1236 	return 0;
1237 }
1238 
1239 
1240 /*
1241  * preparation
1242  */
1243 
1244 /* playback - enable spdif only on the certain condition */
1245 static int snd_cmipci_playback_prepare(snd_pcm_substream_t *substream)
1246 {
1247 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1248 	int rate = substream->runtime->rate;
1249 	int err, do_spdif, do_ac3 = 0;
1250 
1251 	do_spdif = ((rate == 44100 || rate == 48000) &&
1252 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1253 		    substream->runtime->channels == 2);
1254 	if (do_spdif && cm->can_ac3_hw)
1255 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1256 	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1257 		return err;
1258 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1259 }
1260 
1261 /* playback  (via device #2) - enable spdif always */
1262 static int snd_cmipci_playback_spdif_prepare(snd_pcm_substream_t *substream)
1263 {
1264 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1265 	int err, do_ac3;
1266 
1267 	if (cm->can_ac3_hw)
1268 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1269 	else
1270 		do_ac3 = 1; /* doesn't matter */
1271 	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1272 		return err;
1273 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1274 }
1275 
1276 static int snd_cmipci_playback_hw_free(snd_pcm_substream_t *substream)
1277 {
1278 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1279 	setup_spdif_playback(cm, substream, 0, 0);
1280 	restore_mixer_state(cm);
1281 	return snd_cmipci_hw_free(substream);
1282 }
1283 
1284 /* capture */
1285 static int snd_cmipci_capture_prepare(snd_pcm_substream_t *substream)
1286 {
1287 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1288 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1289 }
1290 
1291 /* capture with spdif (via device #2) */
1292 static int snd_cmipci_capture_spdif_prepare(snd_pcm_substream_t *substream)
1293 {
1294 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1295 
1296 	spin_lock_irq(&cm->reg_lock);
1297 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1298 	spin_unlock_irq(&cm->reg_lock);
1299 
1300 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1301 }
1302 
1303 static int snd_cmipci_capture_spdif_hw_free(snd_pcm_substream_t *subs)
1304 {
1305 	cmipci_t *cm = snd_pcm_substream_chip(subs);
1306 
1307 	spin_lock_irq(&cm->reg_lock);
1308 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1309 	spin_unlock_irq(&cm->reg_lock);
1310 
1311 	return snd_cmipci_hw_free(subs);
1312 }
1313 
1314 
1315 /*
1316  * interrupt handler
1317  */
1318 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1319 {
1320 	cmipci_t *cm = dev_id;
1321 	unsigned int status, mask = 0;
1322 
1323 	/* fastpath out, to ease interrupt sharing */
1324 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1325 	if (!(status & CM_INTR))
1326 		return IRQ_NONE;
1327 
1328 	/* acknowledge interrupt */
1329 	spin_lock(&cm->reg_lock);
1330 	if (status & CM_CHINT0)
1331 		mask |= CM_CH0_INT_EN;
1332 	if (status & CM_CHINT1)
1333 		mask |= CM_CH1_INT_EN;
1334 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1335 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1336 	spin_unlock(&cm->reg_lock);
1337 
1338 	if (cm->rmidi && (status & CM_UARTINT))
1339 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data, regs);
1340 
1341 	if (cm->pcm) {
1342 		if ((status & CM_CHINT0) && cm->channel[0].running)
1343 			snd_pcm_period_elapsed(cm->channel[0].substream);
1344 		if ((status & CM_CHINT1) && cm->channel[1].running)
1345 			snd_pcm_period_elapsed(cm->channel[1].substream);
1346 	}
1347 	return IRQ_HANDLED;
1348 }
1349 
1350 /*
1351  * h/w infos
1352  */
1353 
1354 /* playback on channel A */
1355 static snd_pcm_hardware_t snd_cmipci_playback =
1356 {
1357 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1358 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1359 				 SNDRV_PCM_INFO_MMAP_VALID),
1360 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1361 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1362 	.rate_min =		5512,
1363 	.rate_max =		48000,
1364 	.channels_min =		1,
1365 	.channels_max =		2,
1366 	.buffer_bytes_max =	(128*1024),
1367 	.period_bytes_min =	64,
1368 	.period_bytes_max =	(128*1024),
1369 	.periods_min =		2,
1370 	.periods_max =		1024,
1371 	.fifo_size =		0,
1372 };
1373 
1374 /* capture on channel B */
1375 static snd_pcm_hardware_t snd_cmipci_capture =
1376 {
1377 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1378 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1379 				 SNDRV_PCM_INFO_MMAP_VALID),
1380 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1381 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1382 	.rate_min =		5512,
1383 	.rate_max =		48000,
1384 	.channels_min =		1,
1385 	.channels_max =		2,
1386 	.buffer_bytes_max =	(128*1024),
1387 	.period_bytes_min =	64,
1388 	.period_bytes_max =	(128*1024),
1389 	.periods_min =		2,
1390 	.periods_max =		1024,
1391 	.fifo_size =		0,
1392 };
1393 
1394 /* playback on channel B - stereo 16bit only? */
1395 static snd_pcm_hardware_t snd_cmipci_playback2 =
1396 {
1397 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1398 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1399 				 SNDRV_PCM_INFO_MMAP_VALID),
1400 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1401 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1402 	.rate_min =		5512,
1403 	.rate_max =		48000,
1404 	.channels_min =		2,
1405 	.channels_max =		2,
1406 	.buffer_bytes_max =	(128*1024),
1407 	.period_bytes_min =	64,
1408 	.period_bytes_max =	(128*1024),
1409 	.periods_min =		2,
1410 	.periods_max =		1024,
1411 	.fifo_size =		0,
1412 };
1413 
1414 /* spdif playback on channel A */
1415 static snd_pcm_hardware_t snd_cmipci_playback_spdif =
1416 {
1417 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1418 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1419 				 SNDRV_PCM_INFO_MMAP_VALID),
1420 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1421 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1422 	.rate_min =		44100,
1423 	.rate_max =		48000,
1424 	.channels_min =		2,
1425 	.channels_max =		2,
1426 	.buffer_bytes_max =	(128*1024),
1427 	.period_bytes_min =	64,
1428 	.period_bytes_max =	(128*1024),
1429 	.periods_min =		2,
1430 	.periods_max =		1024,
1431 	.fifo_size =		0,
1432 };
1433 
1434 /* spdif playback on channel A (32bit, IEC958 subframes) */
1435 static snd_pcm_hardware_t snd_cmipci_playback_iec958_subframe =
1436 {
1437 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1438 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1439 				 SNDRV_PCM_INFO_MMAP_VALID),
1440 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1441 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1442 	.rate_min =		44100,
1443 	.rate_max =		48000,
1444 	.channels_min =		2,
1445 	.channels_max =		2,
1446 	.buffer_bytes_max =	(128*1024),
1447 	.period_bytes_min =	64,
1448 	.period_bytes_max =	(128*1024),
1449 	.periods_min =		2,
1450 	.periods_max =		1024,
1451 	.fifo_size =		0,
1452 };
1453 
1454 /* spdif capture on channel B */
1455 static snd_pcm_hardware_t snd_cmipci_capture_spdif =
1456 {
1457 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1458 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1459 				 SNDRV_PCM_INFO_MMAP_VALID),
1460 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE,
1461 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1462 	.rate_min =		44100,
1463 	.rate_max =		48000,
1464 	.channels_min =		2,
1465 	.channels_max =		2,
1466 	.buffer_bytes_max =	(128*1024),
1467 	.period_bytes_min =	64,
1468 	.period_bytes_max =	(128*1024),
1469 	.periods_min =		2,
1470 	.periods_max =		1024,
1471 	.fifo_size =		0,
1472 };
1473 
1474 /*
1475  * check device open/close
1476  */
1477 static int open_device_check(cmipci_t *cm, int mode, snd_pcm_substream_t *subs)
1478 {
1479 	int ch = mode & CM_OPEN_CH_MASK;
1480 
1481 	/* FIXME: a file should wait until the device becomes free
1482 	 * when it's opened on blocking mode.  however, since the current
1483 	 * pcm framework doesn't pass file pointer before actually opened,
1484 	 * we can't know whether blocking mode or not in open callback..
1485 	 */
1486 	down(&cm->open_mutex);
1487 	if (cm->opened[ch]) {
1488 		up(&cm->open_mutex);
1489 		return -EBUSY;
1490 	}
1491 	cm->opened[ch] = mode;
1492 	cm->channel[ch].substream = subs;
1493 	if (! (mode & CM_OPEN_DAC)) {
1494 		/* disable dual DAC mode */
1495 		cm->channel[ch].is_dac = 0;
1496 		spin_lock_irq(&cm->reg_lock);
1497 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1498 		spin_unlock_irq(&cm->reg_lock);
1499 	}
1500 	up(&cm->open_mutex);
1501 	return 0;
1502 }
1503 
1504 static void close_device_check(cmipci_t *cm, int mode)
1505 {
1506 	int ch = mode & CM_OPEN_CH_MASK;
1507 
1508 	down(&cm->open_mutex);
1509 	if (cm->opened[ch] == mode) {
1510 		if (cm->channel[ch].substream) {
1511 			snd_cmipci_ch_reset(cm, ch);
1512 			cm->channel[ch].running = 0;
1513 			cm->channel[ch].substream = NULL;
1514 		}
1515 		cm->opened[ch] = 0;
1516 		if (! cm->channel[ch].is_dac) {
1517 			/* enable dual DAC mode again */
1518 			cm->channel[ch].is_dac = 1;
1519 			spin_lock_irq(&cm->reg_lock);
1520 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1521 			spin_unlock_irq(&cm->reg_lock);
1522 		}
1523 	}
1524 	up(&cm->open_mutex);
1525 }
1526 
1527 /*
1528  */
1529 
1530 static int snd_cmipci_playback_open(snd_pcm_substream_t *substream)
1531 {
1532 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1533 	snd_pcm_runtime_t *runtime = substream->runtime;
1534 	int err;
1535 
1536 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1537 		return err;
1538 	runtime->hw = snd_cmipci_playback;
1539 	runtime->hw.channels_max = cm->max_channels;
1540 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1541 	cm->dig_pcm_status = cm->dig_status;
1542 	return 0;
1543 }
1544 
1545 static int snd_cmipci_capture_open(snd_pcm_substream_t *substream)
1546 {
1547 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1548 	snd_pcm_runtime_t *runtime = substream->runtime;
1549 	int err;
1550 
1551 	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1552 		return err;
1553 	runtime->hw = snd_cmipci_capture;
1554 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1555 		runtime->hw.rate_min = 41000;
1556 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1557 	}
1558 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1559 	return 0;
1560 }
1561 
1562 static int snd_cmipci_playback2_open(snd_pcm_substream_t *substream)
1563 {
1564 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1565 	snd_pcm_runtime_t *runtime = substream->runtime;
1566 	int err;
1567 
1568 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1569 		return err;
1570 	runtime->hw = snd_cmipci_playback2;
1571 	down(&cm->open_mutex);
1572 	if (! cm->opened[CM_CH_PLAY]) {
1573 		if (cm->can_multi_ch) {
1574 			runtime->hw.channels_max = cm->max_channels;
1575 			if (cm->max_channels == 4)
1576 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1577 			else if (cm->max_channels == 6)
1578 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1579 			else if (cm->max_channels == 8)
1580 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1581 		}
1582 		snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1583 	}
1584 	up(&cm->open_mutex);
1585 	return 0;
1586 }
1587 
1588 static int snd_cmipci_playback_spdif_open(snd_pcm_substream_t *substream)
1589 {
1590 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1591 	snd_pcm_runtime_t *runtime = substream->runtime;
1592 	int err;
1593 
1594 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1595 		return err;
1596 	if (cm->can_ac3_hw) {
1597 		runtime->hw = snd_cmipci_playback_spdif;
1598 		if (cm->chip_version >= 37)
1599 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1600 	} else {
1601 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1602 	}
1603 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1604 	cm->dig_pcm_status = cm->dig_status;
1605 	return 0;
1606 }
1607 
1608 static int snd_cmipci_capture_spdif_open(snd_pcm_substream_t * substream)
1609 {
1610 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1611 	snd_pcm_runtime_t *runtime = substream->runtime;
1612 	int err;
1613 
1614 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1615 		return err;
1616 	runtime->hw = snd_cmipci_capture_spdif;
1617 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1618 	return 0;
1619 }
1620 
1621 
1622 /*
1623  */
1624 
1625 static int snd_cmipci_playback_close(snd_pcm_substream_t * substream)
1626 {
1627 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1628 	close_device_check(cm, CM_OPEN_PLAYBACK);
1629 	return 0;
1630 }
1631 
1632 static int snd_cmipci_capture_close(snd_pcm_substream_t * substream)
1633 {
1634 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1635 	close_device_check(cm, CM_OPEN_CAPTURE);
1636 	return 0;
1637 }
1638 
1639 static int snd_cmipci_playback2_close(snd_pcm_substream_t * substream)
1640 {
1641 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1642 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1643 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1644 	return 0;
1645 }
1646 
1647 static int snd_cmipci_playback_spdif_close(snd_pcm_substream_t * substream)
1648 {
1649 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1650 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1651 	return 0;
1652 }
1653 
1654 static int snd_cmipci_capture_spdif_close(snd_pcm_substream_t * substream)
1655 {
1656 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1657 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1658 	return 0;
1659 }
1660 
1661 
1662 /*
1663  */
1664 
1665 static snd_pcm_ops_t snd_cmipci_playback_ops = {
1666 	.open =		snd_cmipci_playback_open,
1667 	.close =	snd_cmipci_playback_close,
1668 	.ioctl =	snd_pcm_lib_ioctl,
1669 	.hw_params =	snd_cmipci_hw_params,
1670 	.hw_free =	snd_cmipci_playback_hw_free,
1671 	.prepare =	snd_cmipci_playback_prepare,
1672 	.trigger =	snd_cmipci_playback_trigger,
1673 	.pointer =	snd_cmipci_playback_pointer,
1674 };
1675 
1676 static snd_pcm_ops_t snd_cmipci_capture_ops = {
1677 	.open =		snd_cmipci_capture_open,
1678 	.close =	snd_cmipci_capture_close,
1679 	.ioctl =	snd_pcm_lib_ioctl,
1680 	.hw_params =	snd_cmipci_hw_params,
1681 	.hw_free =	snd_cmipci_hw_free,
1682 	.prepare =	snd_cmipci_capture_prepare,
1683 	.trigger =	snd_cmipci_capture_trigger,
1684 	.pointer =	snd_cmipci_capture_pointer,
1685 };
1686 
1687 static snd_pcm_ops_t snd_cmipci_playback2_ops = {
1688 	.open =		snd_cmipci_playback2_open,
1689 	.close =	snd_cmipci_playback2_close,
1690 	.ioctl =	snd_pcm_lib_ioctl,
1691 	.hw_params =	snd_cmipci_playback2_hw_params,
1692 	.hw_free =	snd_cmipci_hw_free,
1693 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1694 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1695 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1696 };
1697 
1698 static snd_pcm_ops_t snd_cmipci_playback_spdif_ops = {
1699 	.open =		snd_cmipci_playback_spdif_open,
1700 	.close =	snd_cmipci_playback_spdif_close,
1701 	.ioctl =	snd_pcm_lib_ioctl,
1702 	.hw_params =	snd_cmipci_hw_params,
1703 	.hw_free =	snd_cmipci_playback_hw_free,
1704 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1705 	.trigger =	snd_cmipci_playback_trigger,
1706 	.pointer =	snd_cmipci_playback_pointer,
1707 };
1708 
1709 static snd_pcm_ops_t snd_cmipci_capture_spdif_ops = {
1710 	.open =		snd_cmipci_capture_spdif_open,
1711 	.close =	snd_cmipci_capture_spdif_close,
1712 	.ioctl =	snd_pcm_lib_ioctl,
1713 	.hw_params =	snd_cmipci_hw_params,
1714 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1715 	.prepare =	snd_cmipci_capture_spdif_prepare,
1716 	.trigger =	snd_cmipci_capture_trigger,
1717 	.pointer =	snd_cmipci_capture_pointer,
1718 };
1719 
1720 
1721 /*
1722  */
1723 
1724 static void snd_cmipci_pcm_free(snd_pcm_t *pcm)
1725 {
1726 	snd_pcm_lib_preallocate_free_for_all(pcm);
1727 }
1728 
1729 static int __devinit snd_cmipci_pcm_new(cmipci_t *cm, int device)
1730 {
1731 	snd_pcm_t *pcm;
1732 	int err;
1733 
1734 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1735 	if (err < 0)
1736 		return err;
1737 
1738 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1739 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1740 
1741 	pcm->private_data = cm;
1742 	pcm->private_free = snd_cmipci_pcm_free;
1743 	pcm->info_flags = 0;
1744 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1745 	cm->pcm = pcm;
1746 
1747 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1748 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1749 
1750 	return 0;
1751 }
1752 
1753 static int __devinit snd_cmipci_pcm2_new(cmipci_t *cm, int device)
1754 {
1755 	snd_pcm_t *pcm;
1756 	int err;
1757 
1758 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1759 	if (err < 0)
1760 		return err;
1761 
1762 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1763 
1764 	pcm->private_data = cm;
1765 	pcm->private_free = snd_cmipci_pcm_free;
1766 	pcm->info_flags = 0;
1767 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1768 	cm->pcm2 = pcm;
1769 
1770 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1771 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1772 
1773 	return 0;
1774 }
1775 
1776 static int __devinit snd_cmipci_pcm_spdif_new(cmipci_t *cm, int device)
1777 {
1778 	snd_pcm_t *pcm;
1779 	int err;
1780 
1781 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1782 	if (err < 0)
1783 		return err;
1784 
1785 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1786 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1787 
1788 	pcm->private_data = cm;
1789 	pcm->private_free = snd_cmipci_pcm_free;
1790 	pcm->info_flags = 0;
1791 	strcpy(pcm->name, "C-Media PCI IEC958");
1792 	cm->pcm_spdif = pcm;
1793 
1794 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1795 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1796 
1797 	return 0;
1798 }
1799 
1800 /*
1801  * mixer interface:
1802  * - CM8338/8738 has a compatible mixer interface with SB16, but
1803  *   lack of some elements like tone control, i/o gain and AGC.
1804  * - Access to native registers:
1805  *   - A 3D switch
1806  *   - Output mute switches
1807  */
1808 
1809 static void snd_cmipci_mixer_write(cmipci_t *s, unsigned char idx, unsigned char data)
1810 {
1811 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1812 	outb(data, s->iobase + CM_REG_SB16_DATA);
1813 }
1814 
1815 static unsigned char snd_cmipci_mixer_read(cmipci_t *s, unsigned char idx)
1816 {
1817 	unsigned char v;
1818 
1819 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1820 	v = inb(s->iobase + CM_REG_SB16_DATA);
1821 	return v;
1822 }
1823 
1824 /*
1825  * general mixer element
1826  */
1827 typedef struct cmipci_sb_reg {
1828 	unsigned int left_reg, right_reg;
1829 	unsigned int left_shift, right_shift;
1830 	unsigned int mask;
1831 	unsigned int invert: 1;
1832 	unsigned int stereo: 1;
1833 } cmipci_sb_reg_t;
1834 
1835 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1836  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1837 
1838 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1839 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1840   .info = snd_cmipci_info_volume, \
1841   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1842   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1843 }
1844 
1845 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1846 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1847 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1848 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1849 
1850 static void cmipci_sb_reg_decode(cmipci_sb_reg_t *r, unsigned long val)
1851 {
1852 	r->left_reg = val & 0xff;
1853 	r->right_reg = (val >> 8) & 0xff;
1854 	r->left_shift = (val >> 16) & 0x07;
1855 	r->right_shift = (val >> 19) & 0x07;
1856 	r->invert = (val >> 22) & 1;
1857 	r->stereo = (val >> 23) & 1;
1858 	r->mask = (val >> 24) & 0xff;
1859 }
1860 
1861 static int snd_cmipci_info_volume(snd_kcontrol_t * kcontrol, snd_ctl_elem_info_t * uinfo)
1862 {
1863 	cmipci_sb_reg_t reg;
1864 
1865 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1866 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1867 	uinfo->count = reg.stereo + 1;
1868 	uinfo->value.integer.min = 0;
1869 	uinfo->value.integer.max = reg.mask;
1870 	return 0;
1871 }
1872 
1873 static int snd_cmipci_get_volume(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
1874 {
1875 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
1876 	cmipci_sb_reg_t reg;
1877 	int val;
1878 
1879 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1880 	spin_lock_irq(&cm->reg_lock);
1881 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
1882 	if (reg.invert)
1883 		val = reg.mask - val;
1884 	ucontrol->value.integer.value[0] = val;
1885 	if (reg.stereo) {
1886 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
1887 		if (reg.invert)
1888 			val = reg.mask - val;
1889 		 ucontrol->value.integer.value[1] = val;
1890 	}
1891 	spin_unlock_irq(&cm->reg_lock);
1892 	return 0;
1893 }
1894 
1895 static int snd_cmipci_put_volume(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
1896 {
1897 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
1898 	cmipci_sb_reg_t reg;
1899 	int change;
1900 	int left, right, oleft, oright;
1901 
1902 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1903 	left = ucontrol->value.integer.value[0] & reg.mask;
1904 	if (reg.invert)
1905 		left = reg.mask - left;
1906 	left <<= reg.left_shift;
1907 	if (reg.stereo) {
1908 		right = ucontrol->value.integer.value[1] & reg.mask;
1909 		if (reg.invert)
1910 			right = reg.mask - right;
1911 		right <<= reg.right_shift;
1912 	} else
1913 		right = 0;
1914 	spin_lock_irq(&cm->reg_lock);
1915 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
1916 	left |= oleft & ~(reg.mask << reg.left_shift);
1917 	change = left != oleft;
1918 	if (reg.stereo) {
1919 		if (reg.left_reg != reg.right_reg) {
1920 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
1921 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
1922 		} else
1923 			oright = left;
1924 		right |= oright & ~(reg.mask << reg.right_shift);
1925 		change |= right != oright;
1926 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
1927 	} else
1928 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
1929 	spin_unlock_irq(&cm->reg_lock);
1930 	return change;
1931 }
1932 
1933 /*
1934  * input route (left,right) -> (left,right)
1935  */
1936 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
1937 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1938   .info = snd_cmipci_info_input_sw, \
1939   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
1940   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
1941 }
1942 
1943 static int snd_cmipci_info_input_sw(snd_kcontrol_t * kcontrol, snd_ctl_elem_info_t * uinfo)
1944 {
1945 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1946 	uinfo->count = 4;
1947 	uinfo->value.integer.min = 0;
1948 	uinfo->value.integer.max = 1;
1949 	return 0;
1950 }
1951 
1952 static int snd_cmipci_get_input_sw(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
1953 {
1954 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
1955 	cmipci_sb_reg_t reg;
1956 	int val1, val2;
1957 
1958 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1959 	spin_lock_irq(&cm->reg_lock);
1960 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1961 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1962 	spin_unlock_irq(&cm->reg_lock);
1963 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
1964 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
1965 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
1966 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
1967 	return 0;
1968 }
1969 
1970 static int snd_cmipci_put_input_sw(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
1971 {
1972 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
1973 	cmipci_sb_reg_t reg;
1974 	int change;
1975 	int val1, val2, oval1, oval2;
1976 
1977 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1978 	spin_lock_irq(&cm->reg_lock);
1979 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1980 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1981 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1982 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1983 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
1984 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
1985 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
1986 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
1987 	change = val1 != oval1 || val2 != oval2;
1988 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
1989 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
1990 	spin_unlock_irq(&cm->reg_lock);
1991 	return change;
1992 }
1993 
1994 /*
1995  * native mixer switches/volumes
1996  */
1997 
1998 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
1999 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2000   .info = snd_cmipci_info_native_mixer, \
2001   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2002   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2003 }
2004 
2005 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2006 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2007   .info = snd_cmipci_info_native_mixer, \
2008   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2009   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2010 }
2011 
2012 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2013 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2014   .info = snd_cmipci_info_native_mixer, \
2015   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2016   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2017 }
2018 
2019 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2020 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2021   .info = snd_cmipci_info_native_mixer, \
2022   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2023   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2024 }
2025 
2026 static int snd_cmipci_info_native_mixer(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
2027 {
2028 	cmipci_sb_reg_t reg;
2029 
2030 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2031 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2032 	uinfo->count = reg.stereo + 1;
2033 	uinfo->value.integer.min = 0;
2034 	uinfo->value.integer.max = reg.mask;
2035 	return 0;
2036 
2037 }
2038 
2039 static int snd_cmipci_get_native_mixer(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
2040 {
2041 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2042 	cmipci_sb_reg_t reg;
2043 	unsigned char oreg, val;
2044 
2045 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2046 	spin_lock_irq(&cm->reg_lock);
2047 	oreg = inb(cm->iobase + reg.left_reg);
2048 	val = (oreg >> reg.left_shift) & reg.mask;
2049 	if (reg.invert)
2050 		val = reg.mask - val;
2051 	ucontrol->value.integer.value[0] = val;
2052 	if (reg.stereo) {
2053 		val = (oreg >> reg.right_shift) & reg.mask;
2054 		if (reg.invert)
2055 			val = reg.mask - val;
2056 		ucontrol->value.integer.value[1] = val;
2057 	}
2058 	spin_unlock_irq(&cm->reg_lock);
2059 	return 0;
2060 }
2061 
2062 static int snd_cmipci_put_native_mixer(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
2063 {
2064 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2065 	cmipci_sb_reg_t reg;
2066 	unsigned char oreg, nreg, val;
2067 
2068 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2069 	spin_lock_irq(&cm->reg_lock);
2070 	oreg = inb(cm->iobase + reg.left_reg);
2071 	val = ucontrol->value.integer.value[0] & reg.mask;
2072 	if (reg.invert)
2073 		val = reg.mask - val;
2074 	nreg = oreg & ~(reg.mask << reg.left_shift);
2075 	nreg |= (val << reg.left_shift);
2076 	if (reg.stereo) {
2077 		val = ucontrol->value.integer.value[1] & reg.mask;
2078 		if (reg.invert)
2079 			val = reg.mask - val;
2080 		nreg &= ~(reg.mask << reg.right_shift);
2081 		nreg |= (val << reg.right_shift);
2082 	}
2083 	outb(nreg, cm->iobase + reg.left_reg);
2084 	spin_unlock_irq(&cm->reg_lock);
2085 	return (nreg != oreg);
2086 }
2087 
2088 /*
2089  * special case - check mixer sensitivity
2090  */
2091 static int snd_cmipci_get_native_mixer_sensitive(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2092 {
2093 	//cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2094 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2095 }
2096 
2097 static int snd_cmipci_put_native_mixer_sensitive(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2098 {
2099 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2100 	if (cm->mixer_insensitive) {
2101 		/* ignored */
2102 		return 0;
2103 	}
2104 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2105 }
2106 
2107 
2108 static snd_kcontrol_new_t snd_cmipci_mixers[] __devinitdata = {
2109 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2110 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2111 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2112 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2113 	{ /* switch with sensitivity */
2114 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2115 		.name = "PCM Playback Switch",
2116 		.info = snd_cmipci_info_native_mixer,
2117 		.get = snd_cmipci_get_native_mixer_sensitive,
2118 		.put = snd_cmipci_put_native_mixer_sensitive,
2119 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2120 	},
2121 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2122 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2123 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2124 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2125 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2126 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2127 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2128 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2129 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2130 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2131 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2132 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2133 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2134 	CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2135 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2136 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2137 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2138 	CMIPCI_MIXER_SW_MONO("Mic Boost", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2139 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2140 };
2141 
2142 /*
2143  * other switches
2144  */
2145 
2146 typedef struct snd_cmipci_switch_args {
2147 	int reg;		/* register index */
2148 	unsigned int mask;	/* mask bits */
2149 	unsigned int mask_on;	/* mask bits to turn on */
2150 	unsigned int is_byte: 1;		/* byte access? */
2151 	unsigned int ac3_sensitive: 1;	/* access forbidden during non-audio operation? */
2152 } snd_cmipci_switch_args_t;
2153 
2154 static int snd_cmipci_uswitch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
2155 {
2156 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2157 	uinfo->count = 1;
2158 	uinfo->value.integer.min = 0;
2159 	uinfo->value.integer.max = 1;
2160 	return 0;
2161 }
2162 
2163 static int _snd_cmipci_uswitch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol, snd_cmipci_switch_args_t *args)
2164 {
2165 	unsigned int val;
2166 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2167 
2168 	spin_lock_irq(&cm->reg_lock);
2169 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2170 		ucontrol->value.integer.value[0] = 0;
2171 		spin_unlock_irq(&cm->reg_lock);
2172 		return 0;
2173 	}
2174 	if (args->is_byte)
2175 		val = inb(cm->iobase + args->reg);
2176 	else
2177 		val = snd_cmipci_read(cm, args->reg);
2178 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2179 	spin_unlock_irq(&cm->reg_lock);
2180 	return 0;
2181 }
2182 
2183 static int snd_cmipci_uswitch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2184 {
2185 	snd_cmipci_switch_args_t *args = (snd_cmipci_switch_args_t*)kcontrol->private_value;
2186 	snd_assert(args != NULL, return -EINVAL);
2187 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2188 }
2189 
2190 static int _snd_cmipci_uswitch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol, snd_cmipci_switch_args_t *args)
2191 {
2192 	unsigned int val;
2193 	int change;
2194 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2195 
2196 	spin_lock_irq(&cm->reg_lock);
2197 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2198 		/* ignored */
2199 		spin_unlock_irq(&cm->reg_lock);
2200 		return 0;
2201 	}
2202 	if (args->is_byte)
2203 		val = inb(cm->iobase + args->reg);
2204 	else
2205 		val = snd_cmipci_read(cm, args->reg);
2206 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ? args->mask : 0);
2207 	if (change) {
2208 		val &= ~args->mask;
2209 		if (ucontrol->value.integer.value[0])
2210 			val |= args->mask_on;
2211 		else
2212 			val |= (args->mask & ~args->mask_on);
2213 		if (args->is_byte)
2214 			outb((unsigned char)val, cm->iobase + args->reg);
2215 		else
2216 			snd_cmipci_write(cm, args->reg, val);
2217 	}
2218 	spin_unlock_irq(&cm->reg_lock);
2219 	return change;
2220 }
2221 
2222 static int snd_cmipci_uswitch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2223 {
2224 	snd_cmipci_switch_args_t *args = (snd_cmipci_switch_args_t*)kcontrol->private_value;
2225 	snd_assert(args != NULL, return -EINVAL);
2226 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2227 }
2228 
2229 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2230 static snd_cmipci_switch_args_t cmipci_switch_arg_##sname = { \
2231   .reg = xreg, \
2232   .mask = xmask, \
2233   .mask_on = xmask_on, \
2234   .is_byte = xis_byte, \
2235   .ac3_sensitive = xac3, \
2236 }
2237 
2238 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2239 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2240 
2241 #if 0 /* these will be controlled in pcm device */
2242 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2243 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2244 #endif
2245 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2246 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2247 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2248 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2249 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2250 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2251 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2252 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2253 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2254 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2255 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2256 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2257 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2258 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2259 #if CM_CH_PLAY == 1
2260 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2261 #else
2262 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2263 #endif
2264 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2265 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_SPK4, 1, 0);
2266 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS, 0, 0);
2267 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2268 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2269 
2270 #define DEFINE_SWITCH(sname, stype, sarg) \
2271 { .name = sname, \
2272   .iface = stype, \
2273   .info = snd_cmipci_uswitch_info, \
2274   .get = snd_cmipci_uswitch_get, \
2275   .put = snd_cmipci_uswitch_put, \
2276   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2277 }
2278 
2279 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2280 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2281 
2282 
2283 /*
2284  * callbacks for spdif output switch
2285  * needs toggle two registers..
2286  */
2287 static int snd_cmipci_spdout_enable_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2288 {
2289 	int changed;
2290 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2291 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2292 	return changed;
2293 }
2294 
2295 static int snd_cmipci_spdout_enable_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2296 {
2297 	cmipci_t *chip = snd_kcontrol_chip(kcontrol);
2298 	int changed;
2299 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2300 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2301 	if (changed) {
2302 		if (ucontrol->value.integer.value[0]) {
2303 			if (chip->spdif_playback_avail)
2304 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2305 		} else {
2306 			if (chip->spdif_playback_avail)
2307 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2308 		}
2309 	}
2310 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2311 	return changed;
2312 }
2313 
2314 
2315 static int snd_cmipci_line_in_mode_info(snd_kcontrol_t *kcontrol,
2316 					snd_ctl_elem_info_t *uinfo)
2317 {
2318 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2319 	static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2320 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2321 	uinfo->count = 1;
2322 	uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2323 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2324 		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2325 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2326 	return 0;
2327 }
2328 
2329 static inline unsigned int get_line_in_mode(cmipci_t *cm)
2330 {
2331 	unsigned int val;
2332 	if (cm->chip_version >= 39) {
2333 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2334 		if (val & CM_LINE_AS_BASS)
2335 			return 2;
2336 	}
2337 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2338 	if (val & CM_SPK4)
2339 		return 1;
2340 	return 0;
2341 }
2342 
2343 static int snd_cmipci_line_in_mode_get(snd_kcontrol_t *kcontrol,
2344 				       snd_ctl_elem_value_t *ucontrol)
2345 {
2346 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2347 
2348 	spin_lock_irq(&cm->reg_lock);
2349 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2350 	spin_unlock_irq(&cm->reg_lock);
2351 	return 0;
2352 }
2353 
2354 static int snd_cmipci_line_in_mode_put(snd_kcontrol_t *kcontrol,
2355 				       snd_ctl_elem_value_t *ucontrol)
2356 {
2357 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2358 	int change;
2359 
2360 	spin_lock_irq(&cm->reg_lock);
2361 	if (ucontrol->value.enumerated.item[0] == 2)
2362 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS);
2363 	else
2364 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS);
2365 	if (ucontrol->value.enumerated.item[0] == 1)
2366 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_SPK4);
2367 	else
2368 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_SPK4);
2369 	spin_unlock_irq(&cm->reg_lock);
2370 	return change;
2371 }
2372 
2373 static int snd_cmipci_mic_in_mode_info(snd_kcontrol_t *kcontrol,
2374 				       snd_ctl_elem_info_t *uinfo)
2375 {
2376 	static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2377 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2378 	uinfo->count = 1;
2379 	uinfo->value.enumerated.items = 2;
2380 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2381 		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2382 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2383 	return 0;
2384 }
2385 
2386 static int snd_cmipci_mic_in_mode_get(snd_kcontrol_t *kcontrol,
2387 				      snd_ctl_elem_value_t *ucontrol)
2388 {
2389 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2390 	/* same bit as spdi_phase */
2391 	spin_lock_irq(&cm->reg_lock);
2392 	ucontrol->value.enumerated.item[0] =
2393 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2394 	spin_unlock_irq(&cm->reg_lock);
2395 	return 0;
2396 }
2397 
2398 static int snd_cmipci_mic_in_mode_put(snd_kcontrol_t *kcontrol,
2399 				      snd_ctl_elem_value_t *ucontrol)
2400 {
2401 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2402 	int change;
2403 
2404 	spin_lock_irq(&cm->reg_lock);
2405 	if (ucontrol->value.enumerated.item[0])
2406 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2407 	else
2408 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2409 	spin_unlock_irq(&cm->reg_lock);
2410 	return change;
2411 }
2412 
2413 /* both for CM8338/8738 */
2414 static snd_kcontrol_new_t snd_cmipci_mixer_switches[] __devinitdata = {
2415 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2416 	{
2417 		.name = "Line-In Mode",
2418 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2419 		.info = snd_cmipci_line_in_mode_info,
2420 		.get = snd_cmipci_line_in_mode_get,
2421 		.put = snd_cmipci_line_in_mode_put,
2422 	},
2423 };
2424 
2425 /* for non-multichannel chips */
2426 static snd_kcontrol_new_t snd_cmipci_nomulti_switch __devinitdata =
2427 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2428 
2429 /* only for CM8738 */
2430 static snd_kcontrol_new_t snd_cmipci_8738_mixer_switches[] __devinitdata = {
2431 #if 0 /* controlled in pcm device */
2432 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2433 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2434 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2435 #endif
2436 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2437 	{ .name = "IEC958 Output Switch",
2438 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2439 	  .info = snd_cmipci_uswitch_info,
2440 	  .get = snd_cmipci_spdout_enable_get,
2441 	  .put = snd_cmipci_spdout_enable_put,
2442 	},
2443 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2444 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2445 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2446 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2447 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2448 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2449 };
2450 
2451 /* only for model 033/037 */
2452 static snd_kcontrol_new_t snd_cmipci_old_mixer_switches[] __devinitdata = {
2453 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2454 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2455 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2456 };
2457 
2458 /* only for model 039 or later */
2459 static snd_kcontrol_new_t snd_cmipci_extra_mixer_switches[] __devinitdata = {
2460 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2461 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2462 	{
2463 		.name = "Mic-In Mode",
2464 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2465 		.info = snd_cmipci_mic_in_mode_info,
2466 		.get = snd_cmipci_mic_in_mode_get,
2467 		.put = snd_cmipci_mic_in_mode_put,
2468 	}
2469 };
2470 
2471 /* card control switches */
2472 static snd_kcontrol_new_t snd_cmipci_control_switches[] __devinitdata = {
2473 	// DEFINE_CARD_SWITCH("Joystick", joystick), /* now module option */
2474 	DEFINE_CARD_SWITCH("Modem", modem),
2475 };
2476 
2477 
2478 static int __devinit snd_cmipci_mixer_new(cmipci_t *cm, int pcm_spdif_device)
2479 {
2480 	snd_card_t *card;
2481 	snd_kcontrol_new_t *sw;
2482 	snd_kcontrol_t *kctl;
2483 	unsigned int idx;
2484 	int err;
2485 
2486 	snd_assert(cm != NULL && cm->card != NULL, return -EINVAL);
2487 
2488 	card = cm->card;
2489 
2490 	strcpy(card->mixername, "CMedia PCI");
2491 
2492 	spin_lock_irq(&cm->reg_lock);
2493 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2494 	spin_unlock_irq(&cm->reg_lock);
2495 
2496 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2497 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2498 			if (!strcmp(snd_cmipci_mixers[idx].name,
2499 				"PCM Playback Volume"))
2500 				continue;
2501 		}
2502 		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2503 			return err;
2504 	}
2505 
2506 	/* mixer switches */
2507 	sw = snd_cmipci_mixer_switches;
2508 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2509 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2510 		if (err < 0)
2511 			return err;
2512 	}
2513 	if (! cm->can_multi_ch) {
2514 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2515 		if (err < 0)
2516 			return err;
2517 	}
2518 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2519 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2520 		sw = snd_cmipci_8738_mixer_switches;
2521 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2522 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2523 			if (err < 0)
2524 				return err;
2525 		}
2526 		if (cm->can_ac3_hw) {
2527 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2528 				return err;
2529 			kctl->id.device = pcm_spdif_device;
2530 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2531 				return err;
2532 			kctl->id.device = pcm_spdif_device;
2533 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2534 				return err;
2535 			kctl->id.device = pcm_spdif_device;
2536 		}
2537 		if (cm->chip_version <= 37) {
2538 			sw = snd_cmipci_old_mixer_switches;
2539 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2540 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2541 				if (err < 0)
2542 					return err;
2543 			}
2544 		}
2545 	}
2546 	if (cm->chip_version >= 39) {
2547 		sw = snd_cmipci_extra_mixer_switches;
2548 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2549 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2550 			if (err < 0)
2551 				return err;
2552 		}
2553 	}
2554 
2555 	/* card switches */
2556 	sw = snd_cmipci_control_switches;
2557 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_control_switches); idx++, sw++) {
2558 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2559 		if (err < 0)
2560 			return err;
2561 	}
2562 
2563 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2564 		snd_ctl_elem_id_t id;
2565 		snd_kcontrol_t *ctl;
2566 		memset(&id, 0, sizeof(id));
2567 		id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2568 		strcpy(id.name, cm_saved_mixer[idx].name);
2569 		if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL)
2570 			cm->mixer_res_ctl[idx] = ctl;
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 
2577 /*
2578  * proc interface
2579  */
2580 
2581 #ifdef CONFIG_PROC_FS
2582 static void snd_cmipci_proc_read(snd_info_entry_t *entry,
2583 				 snd_info_buffer_t *buffer)
2584 {
2585 	cmipci_t *cm = entry->private_data;
2586 	int i;
2587 
2588 	snd_iprintf(buffer, "%s\n\n", cm->card->longname);
2589 	for (i = 0; i < 0x40; i++) {
2590 		int v = inb(cm->iobase + i);
2591 		if (i % 4 == 0)
2592 			snd_iprintf(buffer, "%02x: ", i);
2593 		snd_iprintf(buffer, "%02x", v);
2594 		if (i % 4 == 3)
2595 			snd_iprintf(buffer, "\n");
2596 		else
2597 			snd_iprintf(buffer, " ");
2598 	}
2599 }
2600 
2601 static void __devinit snd_cmipci_proc_init(cmipci_t *cm)
2602 {
2603 	snd_info_entry_t *entry;
2604 
2605 	if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2606 		snd_info_set_text_ops(entry, cm, 1024, snd_cmipci_proc_read);
2607 }
2608 #else /* !CONFIG_PROC_FS */
2609 static inline void snd_cmipci_proc_init(cmipci_t *cm) {}
2610 #endif
2611 
2612 
2613 static struct pci_device_id snd_cmipci_ids[] = {
2614 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2615 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2616 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2617 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2618 	{PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2619 	{0,},
2620 };
2621 
2622 
2623 /*
2624  * check chip version and capabilities
2625  * driver name is modified according to the chip model
2626  */
2627 static void __devinit query_chip(cmipci_t *cm)
2628 {
2629 	unsigned int detect;
2630 
2631 	/* check reg 0Ch, bit 24-31 */
2632 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2633 	if (! detect) {
2634 		/* check reg 08h, bit 24-28 */
2635 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2636 		if (! detect) {
2637 			cm->chip_version = 33;
2638 			cm->max_channels = 2;
2639 			if (cm->do_soft_ac3)
2640 				cm->can_ac3_sw = 1;
2641 			else
2642 				cm->can_ac3_hw = 1;
2643 			cm->has_dual_dac = 1;
2644 		} else {
2645 			cm->chip_version = 37;
2646 			cm->max_channels = 2;
2647 			cm->can_ac3_hw = 1;
2648 			cm->has_dual_dac = 1;
2649 		}
2650 	} else {
2651 		/* check reg 0Ch, bit 26 */
2652 		if (detect & CM_CHIP_8768) {
2653 			cm->chip_version = 68;
2654 			cm->max_channels = 8;
2655 			cm->can_ac3_hw = 1;
2656 			cm->has_dual_dac = 1;
2657 			cm->can_multi_ch = 1;
2658 		} else if (detect & CM_CHIP_055) {
2659 			cm->chip_version = 55;
2660 			cm->max_channels = 6;
2661 			cm->can_ac3_hw = 1;
2662 			cm->has_dual_dac = 1;
2663 			cm->can_multi_ch = 1;
2664 		} else if (detect & CM_CHIP_039) {
2665 			cm->chip_version = 39;
2666 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2667 				cm->max_channels = 6;
2668 			else
2669 				cm->max_channels = 4;
2670 			cm->can_ac3_hw = 1;
2671 			cm->has_dual_dac = 1;
2672 			cm->can_multi_ch = 1;
2673 		} else {
2674 			printk(KERN_ERR "chip %x version not supported\n", detect);
2675 		}
2676 	}
2677 }
2678 
2679 #ifdef SUPPORT_JOYSTICK
2680 static int __devinit snd_cmipci_create_gameport(cmipci_t *cm, int dev)
2681 {
2682 	static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2683 	struct gameport *gp;
2684 	struct resource *r = NULL;
2685 	int i, io_port = 0;
2686 
2687 	if (joystick_port[dev] == 0)
2688 		return -ENODEV;
2689 
2690 	if (joystick_port[dev] == 1) { /* auto-detect */
2691 		for (i = 0; ports[i]; i++) {
2692 			io_port = ports[i];
2693 			r = request_region(io_port, 1, "CMIPCI gameport");
2694 			if (r)
2695 				break;
2696 		}
2697 	} else {
2698 		io_port = joystick_port[dev];
2699 		r = request_region(io_port, 1, "CMIPCI gameport");
2700 	}
2701 
2702 	if (!r) {
2703 		printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2704 		return -EBUSY;
2705 	}
2706 
2707 	cm->gameport = gp = gameport_allocate_port();
2708 	if (!gp) {
2709 		printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2710 		release_resource(r);
2711 		kfree_nocheck(r);
2712 		return -ENOMEM;
2713 	}
2714 	gameport_set_name(gp, "C-Media Gameport");
2715 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2716 	gameport_set_dev_parent(gp, &cm->pci->dev);
2717 	gp->io = io_port;
2718 	gameport_set_port_data(gp, r);
2719 
2720 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2721 
2722 	gameport_register_port(cm->gameport);
2723 
2724 	return 0;
2725 }
2726 
2727 static void snd_cmipci_free_gameport(cmipci_t *cm)
2728 {
2729 	if (cm->gameport) {
2730 		struct resource *r = gameport_get_port_data(cm->gameport);
2731 
2732 		gameport_unregister_port(cm->gameport);
2733 		cm->gameport = NULL;
2734 
2735 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2736 		release_resource(r);
2737 		kfree_nocheck(r);
2738 	}
2739 }
2740 #else
2741 static inline int snd_cmipci_create_gameport(cmipci_t *cm, int dev) { return -ENOSYS; }
2742 static inline void snd_cmipci_free_gameport(cmipci_t *cm) { }
2743 #endif
2744 
2745 static int snd_cmipci_free(cmipci_t *cm)
2746 {
2747 	if (cm->irq >= 0) {
2748 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2749 		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2750 		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2751 		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2752 		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2753 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2754 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2755 
2756 		/* reset mixer */
2757 		snd_cmipci_mixer_write(cm, 0, 0);
2758 
2759 		synchronize_irq(cm->irq);
2760 
2761 		free_irq(cm->irq, (void *)cm);
2762 	}
2763 
2764 	snd_cmipci_free_gameport(cm);
2765 	pci_release_regions(cm->pci);
2766 	pci_disable_device(cm->pci);
2767 	kfree(cm);
2768 	return 0;
2769 }
2770 
2771 static int snd_cmipci_dev_free(snd_device_t *device)
2772 {
2773 	cmipci_t *cm = device->device_data;
2774 	return snd_cmipci_free(cm);
2775 }
2776 
2777 static int __devinit snd_cmipci_create(snd_card_t *card, struct pci_dev *pci,
2778 				       int dev, cmipci_t **rcmipci)
2779 {
2780 	cmipci_t *cm;
2781 	int err;
2782 	static snd_device_ops_t ops = {
2783 		.dev_free =	snd_cmipci_dev_free,
2784 	};
2785 	unsigned int val = 0;
2786 	long iomidi = mpu_port[dev];
2787 	long iosynth = fm_port[dev];
2788 	int pcm_index, pcm_spdif_index;
2789 	static struct pci_device_id intel_82437vx[] = {
2790 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2791 		{ },
2792 	};
2793 
2794 	*rcmipci = NULL;
2795 
2796 	if ((err = pci_enable_device(pci)) < 0)
2797 		return err;
2798 
2799 	cm = kcalloc(1, sizeof(*cm), GFP_KERNEL);
2800 	if (cm == NULL) {
2801 		pci_disable_device(pci);
2802 		return -ENOMEM;
2803 	}
2804 
2805 	spin_lock_init(&cm->reg_lock);
2806 	init_MUTEX(&cm->open_mutex);
2807 	cm->device = pci->device;
2808 	cm->card = card;
2809 	cm->pci = pci;
2810 	cm->irq = -1;
2811 	cm->channel[0].ch = 0;
2812 	cm->channel[1].ch = 1;
2813 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2814 
2815 	if ((err = pci_request_regions(pci, card->driver)) < 0) {
2816 		kfree(cm);
2817 		pci_disable_device(pci);
2818 		return err;
2819 	}
2820 	cm->iobase = pci_resource_start(pci, 0);
2821 
2822 	if (request_irq(pci->irq, snd_cmipci_interrupt, SA_INTERRUPT|SA_SHIRQ, card->driver, (void *)cm)) {
2823 		snd_printk("unable to grab IRQ %d\n", pci->irq);
2824 		snd_cmipci_free(cm);
2825 		return -EBUSY;
2826 	}
2827 	cm->irq = pci->irq;
2828 
2829 	pci_set_master(cm->pci);
2830 
2831 	/*
2832 	 * check chip version, max channels and capabilities
2833 	 */
2834 
2835 	cm->chip_version = 0;
2836 	cm->max_channels = 2;
2837 	cm->do_soft_ac3 = soft_ac3[dev];
2838 
2839 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
2840 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
2841 		query_chip(cm);
2842 	/* added -MCx suffix for chip supporting multi-channels */
2843 	if (cm->can_multi_ch)
2844 		sprintf(cm->card->driver + strlen(cm->card->driver),
2845 			"-MC%d", cm->max_channels);
2846 	else if (cm->can_ac3_sw)
2847 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
2848 
2849 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2850 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2851 
2852 #if CM_CH_PLAY == 1
2853 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
2854 #else
2855 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
2856 #endif
2857 
2858 	/* initialize codec registers */
2859 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
2860 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2861 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2862 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
2863 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2864 
2865 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
2866 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
2867 #if CM_CH_PLAY == 1
2868 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2869 #else
2870 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2871 #endif
2872 	/* Set Bus Master Request */
2873 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
2874 
2875 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
2876 	switch (pci->device) {
2877 	case PCI_DEVICE_ID_CMEDIA_CM8738:
2878 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
2879 		if (!pci_dev_present(intel_82437vx))
2880 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
2881 		break;
2882 	default:
2883 		break;
2884 	}
2885 
2886 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
2887 		snd_cmipci_free(cm);
2888 		return err;
2889 	}
2890 
2891 	/* set MPU address */
2892 	switch (iomidi) {
2893 	case 0x320: val = CM_VMPU_320; break;
2894 	case 0x310: val = CM_VMPU_310; break;
2895 	case 0x300: val = CM_VMPU_300; break;
2896 	case 0x330: val = CM_VMPU_330; break;
2897 	default:
2898 		iomidi = 0; break;
2899 	}
2900 	if (iomidi > 0) {
2901 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2902 		/* enable UART */
2903 		snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
2904 	}
2905 
2906 	/* set FM address */
2907 	val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2908 	switch (iosynth) {
2909 	case 0x3E8: val |= CM_FMSEL_3E8; break;
2910 	case 0x3E0: val |= CM_FMSEL_3E0; break;
2911 	case 0x3C8: val |= CM_FMSEL_3C8; break;
2912 	case 0x388: val |= CM_FMSEL_388; break;
2913 	default:
2914 		iosynth = 0; break;
2915 	}
2916 	if (iosynth > 0) {
2917 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2918 		/* enable FM */
2919 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2920 
2921 		if (snd_opl3_create(card, iosynth, iosynth + 2,
2922 				    OPL3_HW_OPL3, 0, &cm->opl3) < 0) {
2923 			printk(KERN_ERR "cmipci: no OPL device at 0x%lx, skipping...\n", iosynth);
2924 			iosynth = 0;
2925 		} else {
2926 			if ((err = snd_opl3_hwdep_new(cm->opl3, 0, 1, &cm->opl3hwdep)) < 0) {
2927 				printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2928 				return err;
2929 			}
2930 		}
2931 	}
2932 	if (! iosynth) {
2933 		/* disable FM */
2934 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val & ~CM_FMSEL_MASK);
2935 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2936 	}
2937 
2938 	/* reset mixer */
2939 	snd_cmipci_mixer_write(cm, 0, 0);
2940 
2941 	snd_cmipci_proc_init(cm);
2942 
2943 	/* create pcm devices */
2944 	pcm_index = pcm_spdif_index = 0;
2945 	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
2946 		return err;
2947 	pcm_index++;
2948 	if (cm->has_dual_dac) {
2949 		if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
2950 			return err;
2951 		pcm_index++;
2952 	}
2953 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
2954 		pcm_spdif_index = pcm_index;
2955 		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
2956 			return err;
2957 	}
2958 
2959 	/* create mixer interface & switches */
2960 	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
2961 		return err;
2962 
2963 	if (iomidi > 0) {
2964 		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
2965 					       iomidi, 0,
2966 					       cm->irq, 0, &cm->rmidi)) < 0) {
2967 			printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
2968 		}
2969 	}
2970 
2971 #ifdef USE_VAR48KRATE
2972 	for (val = 0; val < ARRAY_SIZE(rates); val++)
2973 		snd_cmipci_set_pll(cm, rates[val], val);
2974 
2975 	/*
2976 	 * (Re-)Enable external switch spdo_48k
2977 	 */
2978 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
2979 #endif /* USE_VAR48KRATE */
2980 
2981 	if (snd_cmipci_create_gameport(cm, dev) < 0)
2982 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2983 
2984 	snd_card_set_dev(card, &pci->dev);
2985 
2986 	*rcmipci = cm;
2987 	return 0;
2988 }
2989 
2990 /*
2991  */
2992 
2993 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
2994 
2995 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
2996 				      const struct pci_device_id *pci_id)
2997 {
2998 	static int dev;
2999 	snd_card_t *card;
3000 	cmipci_t *cm;
3001 	int err;
3002 
3003 	if (dev >= SNDRV_CARDS)
3004 		return -ENODEV;
3005 	if (! enable[dev]) {
3006 		dev++;
3007 		return -ENOENT;
3008 	}
3009 
3010 	card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
3011 	if (card == NULL)
3012 		return -ENOMEM;
3013 
3014 	switch (pci->device) {
3015 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3016 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3017 		strcpy(card->driver, "CMI8738");
3018 		break;
3019 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3020 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3021 		strcpy(card->driver, "CMI8338");
3022 		break;
3023 	default:
3024 		strcpy(card->driver, "CMIPCI");
3025 		break;
3026 	}
3027 
3028 	if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3029 		snd_card_free(card);
3030 		return err;
3031 	}
3032 
3033 	sprintf(card->shortname, "C-Media PCI %s", card->driver);
3034 	sprintf(card->longname, "%s (model %d) at 0x%lx, irq %i",
3035 		card->shortname,
3036 		cm->chip_version,
3037 		cm->iobase,
3038 		cm->irq);
3039 
3040 	//snd_printd("%s is detected\n", card->longname);
3041 
3042 	if ((err = snd_card_register(card)) < 0) {
3043 		snd_card_free(card);
3044 		return err;
3045 	}
3046 	pci_set_drvdata(pci, card);
3047 	dev++;
3048 	return 0;
3049 
3050 }
3051 
3052 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3053 {
3054 	snd_card_free(pci_get_drvdata(pci));
3055 	pci_set_drvdata(pci, NULL);
3056 }
3057 
3058 
3059 static struct pci_driver driver = {
3060 	.name = "C-Media PCI",
3061 	.id_table = snd_cmipci_ids,
3062 	.probe = snd_cmipci_probe,
3063 	.remove = __devexit_p(snd_cmipci_remove),
3064 };
3065 
3066 static int __init alsa_card_cmipci_init(void)
3067 {
3068 	return pci_register_driver(&driver);
3069 }
3070 
3071 static void __exit alsa_card_cmipci_exit(void)
3072 {
3073 	pci_unregister_driver(&driver);
3074 }
3075 
3076 module_init(alsa_card_cmipci_init)
3077 module_exit(alsa_card_cmipci_exit)
3078