xref: /openbmc/linux/sound/pci/cmipci.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22 
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/gameport.h>
31 #include <linux/moduleparam.h>
32 #include <sound/core.h>
33 #include <sound/info.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/rawmidi.h>
37 #include <sound/mpu401.h>
38 #include <sound/opl3.h>
39 #include <sound/sb.h>
40 #include <sound/asoundef.h>
41 #include <sound/initval.h>
42 
43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47 		"{C-Media,CMI8738B},"
48 		"{C-Media,CMI8338A},"
49 		"{C-Media,CMI8338B}}");
50 
51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52 #define SUPPORT_JOYSTICK 1
53 #endif
54 
55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
57 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
58 static long mpu_port[SNDRV_CARDS];
59 static long fm_port[SNDRV_CARDS];
60 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 #ifdef SUPPORT_JOYSTICK
62 static int joystick_port[SNDRV_CARDS];
63 #endif
64 
65 module_param_array(index, int, NULL, 0444);
66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67 module_param_array(id, charp, NULL, 0444);
68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69 module_param_array(enable, bool, NULL, 0444);
70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71 module_param_array(mpu_port, long, NULL, 0444);
72 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73 module_param_array(fm_port, long, NULL, 0444);
74 MODULE_PARM_DESC(fm_port, "FM port.");
75 module_param_array(soft_ac3, bool, NULL, 0444);
76 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
77 #ifdef SUPPORT_JOYSTICK
78 module_param_array(joystick_port, int, NULL, 0444);
79 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80 #endif
81 
82 #ifndef PCI_DEVICE_ID_CMEDIA_CM8738
83 #define PCI_DEVICE_ID_CMEDIA_CM8738	0x0111
84 #endif
85 #ifndef PCI_DEVICE_ID_CMEDIA_CM8738B
86 #define PCI_DEVICE_ID_CMEDIA_CM8738B	0x0112
87 #endif
88 
89 /*
90  * CM8x38 registers definition
91  */
92 
93 #define CM_REG_FUNCTRL0		0x00
94 #define CM_RST_CH1		0x00080000
95 #define CM_RST_CH0		0x00040000
96 #define CM_CHEN1		0x00020000	/* ch1: enable */
97 #define CM_CHEN0		0x00010000	/* ch0: enable */
98 #define CM_PAUSE1		0x00000008	/* ch1: pause */
99 #define CM_PAUSE0		0x00000004	/* ch0: pause */
100 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
101 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
102 
103 #define CM_REG_FUNCTRL1		0x04
104 #define CM_ASFC_MASK		0x0000E000	/* ADC sampling frequency */
105 #define CM_ASFC_SHIFT		13
106 #define CM_DSFC_MASK		0x00001C00	/* DAC sampling frequency */
107 #define CM_DSFC_SHIFT		10
108 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
109 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
110 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/OUT -> IN loopback */
111 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
112 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
113 #define CM_BREQ			0x00000010	/* bus master enabled */
114 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
115 #define CM_UART_EN		0x00000004	/* UART */
116 #define CM_JYSTK_EN		0x00000002	/* joy stick */
117 
118 #define CM_REG_CHFORMAT		0x08
119 
120 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
121 #define CM_CHB3D		0x20000000	/* 4 channels */
122 
123 #define CM_CHIP_MASK1		0x1f000000
124 #define CM_CHIP_037		0x01000000
125 
126 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
127 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
128 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
129 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
130 
131 #define CM_ADCBITLEN_MASK	0x0000C000
132 #define CM_ADCBITLEN_16		0x00000000
133 #define CM_ADCBITLEN_15		0x00004000
134 #define CM_ADCBITLEN_14		0x00008000
135 #define CM_ADCBITLEN_13		0x0000C000
136 
137 #define CM_ADCDACLEN_MASK	0x00003000
138 #define CM_ADCDACLEN_060	0x00000000
139 #define CM_ADCDACLEN_066	0x00001000
140 #define CM_ADCDACLEN_130	0x00002000
141 #define CM_ADCDACLEN_280	0x00003000
142 
143 #define CM_CH1_SRATE_176K	0x00000800
144 #define CM_CH1_SRATE_88K	0x00000400
145 #define CM_CH0_SRATE_176K	0x00000200
146 #define CM_CH0_SRATE_88K	0x00000100
147 
148 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
149 
150 #define CM_CH1FMT_MASK		0x0000000C
151 #define CM_CH1FMT_SHIFT		2
152 #define CM_CH0FMT_MASK		0x00000003
153 #define CM_CH0FMT_SHIFT		0
154 
155 #define CM_REG_INT_HLDCLR	0x0C
156 #define CM_CHIP_MASK2		0xff000000
157 #define CM_CHIP_039		0x04000000
158 #define CM_CHIP_039_6CH		0x01000000
159 #define CM_CHIP_055		0x08000000
160 #define CM_CHIP_8768		0x20000000
161 #define CM_TDMA_INT_EN		0x00040000
162 #define CM_CH1_INT_EN		0x00020000
163 #define CM_CH0_INT_EN		0x00010000
164 #define CM_INT_HOLD		0x00000002
165 #define CM_INT_CLEAR		0x00000001
166 
167 #define CM_REG_INT_STATUS	0x10
168 #define CM_INTR			0x80000000
169 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
170 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
171 #define CM_UARTINT		0x00010000
172 #define CM_LTDMAINT		0x00008000
173 #define CM_HTDMAINT		0x00004000
174 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
175 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
176 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
177 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
178 #define CM_CH1BUSY		0x00000008
179 #define CM_CH0BUSY		0x00000004
180 #define CM_CHINT1		0x00000002
181 #define CM_CHINT0		0x00000001
182 
183 #define CM_REG_LEGACY_CTRL	0x14
184 #define CM_NXCHG		0x80000000	/* h/w multi channels? */
185 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
186 #define CM_VMPU_330		0x00000000
187 #define CM_VMPU_320		0x20000000
188 #define CM_VMPU_310		0x40000000
189 #define CM_VMPU_300		0x60000000
190 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
191 #define CM_VSBSEL_220		0x00000000
192 #define CM_VSBSEL_240		0x04000000
193 #define CM_VSBSEL_260		0x08000000
194 #define CM_VSBSEL_280		0x0C000000
195 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
196 #define CM_FMSEL_388		0x00000000
197 #define CM_FMSEL_3C8		0x01000000
198 #define CM_FMSEL_3E0		0x02000000
199 #define CM_FMSEL_3E8		0x03000000
200 #define CM_ENSPDOUT		0x00800000	/* enable XPDIF/OUT to I/O interface */
201 #define CM_SPDCOPYRHT		0x00400000	/* set copyright spdif in/out */
202 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
203 #define CM_SETRETRY		0x00010000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
204 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
205 #define CM_LINE_AS_BASS		0x00006000	/* use line-in as bass */
206 
207 #define CM_REG_MISC_CTRL	0x18
208 #define CM_PWD			0x80000000
209 #define CM_RESET		0x40000000
210 #define CM_SFIL_MASK		0x30000000
211 #define CM_TXVX			0x08000000
212 #define CM_N4SPK3D		0x04000000	/* 4ch output */
213 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
214 #define CM_SPDIF48K		0x01000000	/* write */
215 #define CM_SPATUS48K		0x01000000	/* read */
216 #define CM_ENDBDAC		0x00800000	/* enable dual dac */
217 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
218 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
219 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-IN -> int. OUT */
220 #define CM_FM_EN		0x00080000	/* enalbe FM */
221 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
222 #define CM_VIDWPDSB		0x00010000
223 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
224 #define CM_MASK_EN		0x00004000
225 #define CM_VIDWPPRT		0x00002000
226 #define CM_SFILENB		0x00001000
227 #define CM_MMODE_MASK		0x00000E00
228 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
229 #define CM_ENCENTER		0x00000080
230 #define CM_FLINKON		0x00000040
231 #define CM_FLINKOFF		0x00000020
232 #define CM_MIDSMP		0x00000010
233 #define CM_UPDDMA_MASK		0x0000000C
234 #define CM_TWAIT_MASK		0x00000003
235 
236 	/* byte */
237 #define CM_REG_MIXER0		0x20
238 
239 #define CM_REG_SB16_DATA	0x22
240 #define CM_REG_SB16_ADDR	0x23
241 
242 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
243 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
244 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
245 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
246 
247 #define CM_REG_MIXER1		0x24
248 #define CM_FMMUTE		0x80	/* mute FM */
249 #define CM_FMMUTE_SHIFT		7
250 #define CM_WSMUTE		0x40	/* mute PCM */
251 #define CM_WSMUTE_SHIFT		6
252 #define CM_SPK4			0x20	/* lin-in -> rear line out */
253 #define CM_SPK4_SHIFT		5
254 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
255 #define CM_REAR2FRONT_SHIFT	4
256 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
257 #define CM_WAVEINL_SHIFT	3
258 #define CM_WAVEINR		0x04	/* digical wave rec. right */
259 #define CM_WAVEINR_SHIFT	2
260 #define CM_X3DEN		0x02	/* 3D surround enable */
261 #define CM_X3DEN_SHIFT		1
262 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
263 #define CM_CDPLAY_SHIFT		0
264 
265 #define CM_REG_MIXER2		0x25
266 #define CM_RAUXREN		0x80	/* AUX right capture */
267 #define CM_RAUXREN_SHIFT	7
268 #define CM_RAUXLEN		0x40	/* AUX left capture */
269 #define CM_RAUXLEN_SHIFT	6
270 #define CM_VAUXRM		0x20	/* AUX right mute */
271 #define CM_VAUXRM_SHIFT		5
272 #define CM_VAUXLM		0x10	/* AUX left mute */
273 #define CM_VAUXLM_SHIFT		4
274 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
275 #define CM_VADMIC_SHIFT		1
276 #define CM_MICGAINZ		0x01	/* mic boost */
277 #define CM_MICGAINZ_SHIFT	0
278 
279 #define CM_REG_AUX_VOL		0x26
280 #define CM_VAUXL_MASK		0xf0
281 #define CM_VAUXR_MASK		0x0f
282 
283 #define CM_REG_MISC		0x27
284 #define CM_XGPO1		0x20
285 // #define CM_XGPBIO		0x04
286 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
287 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
288 #define CM_SPDVALID		0x02	/* spdif input valid check */
289 #define CM_DMAUTO		0x01
290 
291 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
292 /*
293  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
294  * or identical with AC97 codec?
295  */
296 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
297 
298 /*
299  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
300  */
301 #define CM_REG_MPU_PCI		0x40
302 
303 /*
304  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
305  */
306 #define CM_REG_FM_PCI		0x50
307 
308 /*
309  * for CMI-8338 .. this is not valid for CMI-8738.
310  */
311 #define CM_REG_EXTENT_IND	0xf0
312 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
313 #define CM_VPHONE_SHIFT		5
314 #define CM_VPHOM		0x10	/* Phone mute control */
315 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
316 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
317 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
318 
319 /*
320  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
321  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
322  * unit (readonly?).
323  */
324 #define CM_REG_PLL		0xf8
325 
326 /*
327  * extended registers
328  */
329 #define CM_REG_CH0_FRAME1	0x80	/* base address */
330 #define CM_REG_CH0_FRAME2	0x84
331 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
332 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
333 #define CM_REG_MISC_CTRL_8768	0x92	/* reg. name the same as 0x18 */
334 #define CM_CHB3D8C		0x20	/* 7.1 channels support */
335 #define CM_SPD32FMT		0x10	/* SPDIF/IN 32k */
336 #define CM_ADC2SPDIF		0x08	/* ADC output to SPDIF/OUT */
337 #define CM_SHAREADC		0x04	/* DAC in ADC as Center/LFE */
338 #define CM_REALTCMP		0x02	/* monitor the CMPL/CMPR of ADC */
339 #define CM_INVLRCK		0x01	/* invert ZVPORT's LRCK */
340 
341 /*
342  * size of i/o region
343  */
344 #define CM_EXTENT_CODEC	  0x100
345 #define CM_EXTENT_MIDI	  0x2
346 #define CM_EXTENT_SYNTH	  0x4
347 
348 
349 /*
350  * pci ids
351  */
352 #ifndef PCI_VENDOR_ID_CMEDIA
353 #define PCI_VENDOR_ID_CMEDIA         0x13F6
354 #endif
355 #ifndef PCI_DEVICE_ID_CMEDIA_CM8338A
356 #define PCI_DEVICE_ID_CMEDIA_CM8338A 0x0100
357 #endif
358 #ifndef PCI_DEVICE_ID_CMEDIA_CM8338B
359 #define PCI_DEVICE_ID_CMEDIA_CM8338B 0x0101
360 #endif
361 #ifndef PCI_DEVICE_ID_CMEDIA_CM8738
362 #define PCI_DEVICE_ID_CMEDIA_CM8738  0x0111
363 #endif
364 #ifndef PCI_DEVICE_ID_CMEDIA_CM8738B
365 #define PCI_DEVICE_ID_CMEDIA_CM8738B 0x0112
366 #endif
367 
368 /*
369  * channels for playback / capture
370  */
371 #define CM_CH_PLAY	0
372 #define CM_CH_CAPT	1
373 
374 /*
375  * flags to check device open/close
376  */
377 #define CM_OPEN_NONE	0
378 #define CM_OPEN_CH_MASK	0x01
379 #define CM_OPEN_DAC	0x10
380 #define CM_OPEN_ADC	0x20
381 #define CM_OPEN_SPDIF	0x40
382 #define CM_OPEN_MCHAN	0x80
383 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
384 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
385 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
386 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
387 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
388 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
389 
390 
391 #if CM_CH_PLAY == 1
392 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
393 #define CM_PLAYBACK_SPDF	CM_SPDF_1
394 #define CM_CAPTURE_SPDF		CM_SPDF_0
395 #else
396 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
397 #define CM_PLAYBACK_SPDF	CM_SPDF_0
398 #define CM_CAPTURE_SPDF		CM_SPDF_1
399 #endif
400 
401 
402 /*
403  * driver data
404  */
405 
406 typedef struct snd_stru_cmipci cmipci_t;
407 typedef struct snd_stru_cmipci_pcm cmipci_pcm_t;
408 
409 struct snd_stru_cmipci_pcm {
410 	snd_pcm_substream_t *substream;
411 	int running;		/* dac/adc running? */
412 	unsigned int dma_size;	/* in frames */
413 	unsigned int period_size;	/* in frames */
414 	unsigned int offset;	/* physical address of the buffer */
415 	unsigned int fmt;	/* format bits */
416 	int ch;			/* channel (0/1) */
417 	unsigned int is_dac;		/* is dac? */
418 	int bytes_per_frame;
419 	int shift;
420 };
421 
422 /* mixer elements toggled/resumed during ac3 playback */
423 struct cmipci_mixer_auto_switches {
424 	const char *name;	/* switch to toggle */
425 	int toggle_on;		/* value to change when ac3 mode */
426 };
427 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
428 	{"PCM Playback Switch", 0},
429 	{"IEC958 Output Switch", 1},
430 	{"IEC958 Mix Analog", 0},
431 	// {"IEC958 Out To DAC", 1}, // no longer used
432 	{"IEC958 Loop", 0},
433 };
434 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
435 
436 struct snd_stru_cmipci {
437 	snd_card_t *card;
438 
439 	struct pci_dev *pci;
440 	unsigned int device;	/* device ID */
441 	int irq;
442 
443 	unsigned long iobase;
444 	unsigned int ctrl;	/* FUNCTRL0 current value */
445 
446 	snd_pcm_t *pcm;		/* DAC/ADC PCM */
447 	snd_pcm_t *pcm2;	/* 2nd DAC */
448 	snd_pcm_t *pcm_spdif;	/* SPDIF */
449 
450 	int chip_version;
451 	int max_channels;
452 	unsigned int has_dual_dac: 1;
453 	unsigned int can_ac3_sw: 1;
454 	unsigned int can_ac3_hw: 1;
455 	unsigned int can_multi_ch: 1;
456 	unsigned int do_soft_ac3: 1;
457 
458 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
459 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
460 	int spdif_counter;	/* for software AC3 */
461 
462 	unsigned int dig_status;
463 	unsigned int dig_pcm_status;
464 
465 	snd_pcm_hardware_t *hw_info[3]; /* for playbacks */
466 
467 	int opened[2];	/* open mode */
468 	struct semaphore open_mutex;
469 
470 	unsigned int mixer_insensitive: 1;
471 	snd_kcontrol_t *mixer_res_ctl[CM_SAVED_MIXERS];
472 	int mixer_res_status[CM_SAVED_MIXERS];
473 
474 	opl3_t *opl3;
475 	snd_hwdep_t *opl3hwdep;
476 
477 	cmipci_pcm_t channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
478 
479 	/* external MIDI */
480 	snd_rawmidi_t *rmidi;
481 
482 #ifdef SUPPORT_JOYSTICK
483 	struct gameport *gameport;
484 #endif
485 
486 	spinlock_t reg_lock;
487 };
488 
489 
490 /* read/write operations for dword register */
491 inline static void snd_cmipci_write(cmipci_t *cm, unsigned int cmd, unsigned int data)
492 {
493 	outl(data, cm->iobase + cmd);
494 }
495 inline static unsigned int snd_cmipci_read(cmipci_t *cm, unsigned int cmd)
496 {
497 	return inl(cm->iobase + cmd);
498 }
499 
500 /* read/write operations for word register */
501 inline static void snd_cmipci_write_w(cmipci_t *cm, unsigned int cmd, unsigned short data)
502 {
503 	outw(data, cm->iobase + cmd);
504 }
505 inline static unsigned short snd_cmipci_read_w(cmipci_t *cm, unsigned int cmd)
506 {
507 	return inw(cm->iobase + cmd);
508 }
509 
510 /* read/write operations for byte register */
511 inline static void snd_cmipci_write_b(cmipci_t *cm, unsigned int cmd, unsigned char data)
512 {
513 	outb(data, cm->iobase + cmd);
514 }
515 
516 inline static unsigned char snd_cmipci_read_b(cmipci_t *cm, unsigned int cmd)
517 {
518 	return inb(cm->iobase + cmd);
519 }
520 
521 /* bit operations for dword register */
522 static void snd_cmipci_set_bit(cmipci_t *cm, unsigned int cmd, unsigned int flag)
523 {
524 	unsigned int val;
525 	val = inl(cm->iobase + cmd);
526 	val |= flag;
527 	outl(val, cm->iobase + cmd);
528 }
529 
530 static void snd_cmipci_clear_bit(cmipci_t *cm, unsigned int cmd, unsigned int flag)
531 {
532 	unsigned int val;
533 	val = inl(cm->iobase + cmd);
534 	val &= ~flag;
535 	outl(val, cm->iobase + cmd);
536 }
537 
538 #if 0 // not used
539 /* bit operations for byte register */
540 static void snd_cmipci_set_bit_b(cmipci_t *cm, unsigned int cmd, unsigned char flag)
541 {
542 	unsigned char val;
543 	val = inb(cm->iobase + cmd);
544 	val |= flag;
545 	outb(val, cm->iobase + cmd);
546 }
547 
548 static void snd_cmipci_clear_bit_b(cmipci_t *cm, unsigned int cmd, unsigned char flag)
549 {
550 	unsigned char val;
551 	val = inb(cm->iobase + cmd);
552 	val &= ~flag;
553 	outb(val, cm->iobase + cmd);
554 }
555 #endif
556 
557 
558 /*
559  * PCM interface
560  */
561 
562 /*
563  * calculate frequency
564  */
565 
566 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
567 
568 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
569 {
570 	unsigned int i;
571 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
572 		if (rates[i] == rate)
573 			return i;
574 	}
575 	snd_BUG();
576 	return 0;
577 }
578 
579 #ifdef USE_VAR48KRATE
580 /*
581  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
582  * does it this way .. maybe not.  Never get any information from C-Media about
583  * that <werner@suse.de>.
584  */
585 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
586 {
587 	unsigned int delta, tolerance;
588 	int xm, xn, xr;
589 
590 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
591 		rate <<= 1;
592 	*n = -1;
593 	if (*r > 0xff)
594 		goto out;
595 	tolerance = rate*CM_TOLERANCE_RATE;
596 
597 	for (xn = (1+2); xn < (0x1f+2); xn++) {
598 		for (xm = (1+2); xm < (0xff+2); xm++) {
599 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
600 
601 			if (xr < rate)
602 				delta = rate - xr;
603 			else
604 				delta = xr - rate;
605 
606 			/*
607 			 * If we found one, remember this,
608 			 * and try to find a closer one
609 			 */
610 			if (delta < tolerance) {
611 				tolerance = delta;
612 				*m = xm - 2;
613 				*n = xn - 2;
614 			}
615 		}
616 	}
617 out:
618 	return (*n > -1);
619 }
620 
621 /*
622  * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
623  * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
624  * at the register CM_REG_FUNCTRL1 (0x04).
625  * Problem: other ways are also possible (any information about that?)
626  */
627 static void snd_cmipci_set_pll(cmipci_t *cm, unsigned int rate, unsigned int slot)
628 {
629 	unsigned int reg = CM_REG_PLL + slot;
630 	/*
631 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
632 	 * for DSFC/ASFC (000 upto 111).
633 	 */
634 
635 	/* FIXME: Init (Do we've to set an other register first before programming?) */
636 
637 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
638 	snd_cmipci_write_b(cm, reg, rate>>8);
639 	snd_cmipci_write_b(cm, reg, rate&0xff);
640 
641 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
642 }
643 #endif /* USE_VAR48KRATE */
644 
645 static int snd_cmipci_hw_params(snd_pcm_substream_t * substream,
646 				snd_pcm_hw_params_t * hw_params)
647 {
648 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
649 }
650 
651 static int snd_cmipci_playback2_hw_params(snd_pcm_substream_t * substream,
652 					  snd_pcm_hw_params_t * hw_params)
653 {
654 	cmipci_t *cm = snd_pcm_substream_chip(substream);
655 	if (params_channels(hw_params) > 2) {
656 		down(&cm->open_mutex);
657 		if (cm->opened[CM_CH_PLAY]) {
658 			up(&cm->open_mutex);
659 			return -EBUSY;
660 		}
661 		/* reserve the channel A */
662 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
663 		up(&cm->open_mutex);
664 	}
665 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
666 }
667 
668 static void snd_cmipci_ch_reset(cmipci_t *cm, int ch)
669 {
670 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
671 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
672 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
673 	udelay(10);
674 }
675 
676 static int snd_cmipci_hw_free(snd_pcm_substream_t * substream)
677 {
678 	return snd_pcm_lib_free_pages(substream);
679 }
680 
681 
682 /*
683  */
684 
685 static unsigned int hw_channels[] = {1, 2, 4, 5, 6, 8};
686 static snd_pcm_hw_constraint_list_t hw_constraints_channels_4 = {
687 	.count = 3,
688 	.list = hw_channels,
689 	.mask = 0,
690 };
691 static snd_pcm_hw_constraint_list_t hw_constraints_channels_6 = {
692 	.count = 5,
693 	.list = hw_channels,
694 	.mask = 0,
695 };
696 static snd_pcm_hw_constraint_list_t hw_constraints_channels_8 = {
697 	.count = 6,
698 	.list = hw_channels,
699 	.mask = 0,
700 };
701 
702 static int set_dac_channels(cmipci_t *cm, cmipci_pcm_t *rec, int channels)
703 {
704 	if (channels > 2) {
705 		if (! cm->can_multi_ch)
706 			return -EINVAL;
707 		if (rec->fmt != 0x03) /* stereo 16bit only */
708 			return -EINVAL;
709 
710 		spin_lock_irq(&cm->reg_lock);
711 		snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
712 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
713 		if (channels > 4) {
714 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
715 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
716 		} else {
717 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
718 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
719 		}
720 		if (channels >= 6) {
721 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
722 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
723 		} else {
724 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
725 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
726 		}
727 		if (cm->chip_version == 68) {
728 			if (channels == 8) {
729 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
730 			} else {
731 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
732 			}
733 		}
734 		spin_unlock_irq(&cm->reg_lock);
735 
736 	} else {
737 		if (cm->can_multi_ch) {
738 			spin_lock_irq(&cm->reg_lock);
739 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
740 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
741 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
742 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
743 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
744 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
745 			spin_unlock_irq(&cm->reg_lock);
746 		}
747 	}
748 	return 0;
749 }
750 
751 
752 /*
753  * prepare playback/capture channel
754  * channel to be used must have been set in rec->ch.
755  */
756 static int snd_cmipci_pcm_prepare(cmipci_t *cm, cmipci_pcm_t *rec,
757 				 snd_pcm_substream_t *substream)
758 {
759 	unsigned int reg, freq, val;
760 	snd_pcm_runtime_t *runtime = substream->runtime;
761 
762 	rec->fmt = 0;
763 	rec->shift = 0;
764 	if (snd_pcm_format_width(runtime->format) >= 16) {
765 		rec->fmt |= 0x02;
766 		if (snd_pcm_format_width(runtime->format) > 16)
767 			rec->shift++; /* 24/32bit */
768 	}
769 	if (runtime->channels > 1)
770 		rec->fmt |= 0x01;
771 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
772 		snd_printd("cannot set dac channels\n");
773 		return -EINVAL;
774 	}
775 
776 	rec->offset = runtime->dma_addr;
777 	/* buffer and period sizes in frame */
778 	rec->dma_size = runtime->buffer_size << rec->shift;
779 	rec->period_size = runtime->period_size << rec->shift;
780 	if (runtime->channels > 2) {
781 		/* multi-channels */
782 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
783 		rec->period_size = (rec->period_size * runtime->channels) / 2;
784 	}
785 
786 	spin_lock_irq(&cm->reg_lock);
787 
788 	/* set buffer address */
789 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
790 	snd_cmipci_write(cm, reg, rec->offset);
791 	/* program sample counts */
792 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
793 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
794 	snd_cmipci_write_w(cm, reg + 2, rec->period_size - 1);
795 
796 	/* set adc/dac flag */
797 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
798 	if (rec->is_dac)
799 		cm->ctrl &= ~val;
800 	else
801 		cm->ctrl |= val;
802 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
803 	//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
804 
805 	/* set sample rate */
806 	freq = snd_cmipci_rate_freq(runtime->rate);
807 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
808 	if (rec->ch) {
809 		val &= ~CM_ASFC_MASK;
810 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
811 	} else {
812 		val &= ~CM_DSFC_MASK;
813 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
814 	}
815 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
816 	//snd_printd("cmipci: functrl1 = %08x\n", val);
817 
818 	/* set format */
819 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
820 	if (rec->ch) {
821 		val &= ~CM_CH1FMT_MASK;
822 		val |= rec->fmt << CM_CH1FMT_SHIFT;
823 	} else {
824 		val &= ~CM_CH0FMT_MASK;
825 		val |= rec->fmt << CM_CH0FMT_SHIFT;
826 	}
827 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
828 	//snd_printd("cmipci: chformat = %08x\n", val);
829 
830 	rec->running = 0;
831 	spin_unlock_irq(&cm->reg_lock);
832 
833 	return 0;
834 }
835 
836 /*
837  * PCM trigger/stop
838  */
839 static int snd_cmipci_pcm_trigger(cmipci_t *cm, cmipci_pcm_t *rec,
840 				 snd_pcm_substream_t *substream, int cmd)
841 {
842 	unsigned int inthld, chen, reset, pause;
843 	int result = 0;
844 
845 	inthld = CM_CH0_INT_EN << rec->ch;
846 	chen = CM_CHEN0 << rec->ch;
847 	reset = CM_RST_CH0 << rec->ch;
848 	pause = CM_PAUSE0 << rec->ch;
849 
850 	spin_lock(&cm->reg_lock);
851 	switch (cmd) {
852 	case SNDRV_PCM_TRIGGER_START:
853 		rec->running = 1;
854 		/* set interrupt */
855 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
856 		cm->ctrl |= chen;
857 		/* enable channel */
858 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
859 		//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
860 		break;
861 	case SNDRV_PCM_TRIGGER_STOP:
862 		rec->running = 0;
863 		/* disable interrupt */
864 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
865 		/* reset */
866 		cm->ctrl &= ~chen;
867 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
868 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
869 		break;
870 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
871 		cm->ctrl |= pause;
872 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
873 		break;
874 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
875 		cm->ctrl &= ~pause;
876 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
877 		break;
878 	default:
879 		result = -EINVAL;
880 		break;
881 	}
882 	spin_unlock(&cm->reg_lock);
883 	return result;
884 }
885 
886 /*
887  * return the current pointer
888  */
889 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(cmipci_t *cm, cmipci_pcm_t *rec,
890 					  snd_pcm_substream_t *substream)
891 {
892 	size_t ptr;
893 	unsigned int reg;
894 	if (!rec->running)
895 		return 0;
896 #if 1 // this seems better..
897 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
898 	ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
899 	ptr >>= rec->shift;
900 #else
901 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
902 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
903 	ptr = bytes_to_frames(substream->runtime, ptr);
904 #endif
905 	if (substream->runtime->channels > 2)
906 		ptr = (ptr * 2) / substream->runtime->channels;
907 	return ptr;
908 }
909 
910 /*
911  * playback
912  */
913 
914 static int snd_cmipci_playback_trigger(snd_pcm_substream_t *substream,
915 				       int cmd)
916 {
917 	cmipci_t *cm = snd_pcm_substream_chip(substream);
918 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], substream, cmd);
919 }
920 
921 static snd_pcm_uframes_t snd_cmipci_playback_pointer(snd_pcm_substream_t *substream)
922 {
923 	cmipci_t *cm = snd_pcm_substream_chip(substream);
924 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
925 }
926 
927 
928 
929 /*
930  * capture
931  */
932 
933 static int snd_cmipci_capture_trigger(snd_pcm_substream_t *substream,
934 				     int cmd)
935 {
936 	cmipci_t *cm = snd_pcm_substream_chip(substream);
937 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], substream, cmd);
938 }
939 
940 static snd_pcm_uframes_t snd_cmipci_capture_pointer(snd_pcm_substream_t *substream)
941 {
942 	cmipci_t *cm = snd_pcm_substream_chip(substream);
943 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
944 }
945 
946 
947 /*
948  * hw preparation for spdif
949  */
950 
951 static int snd_cmipci_spdif_default_info(snd_kcontrol_t *kcontrol,
952 					 snd_ctl_elem_info_t *uinfo)
953 {
954 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
955 	uinfo->count = 1;
956 	return 0;
957 }
958 
959 static int snd_cmipci_spdif_default_get(snd_kcontrol_t *kcontrol,
960 					snd_ctl_elem_value_t *ucontrol)
961 {
962 	cmipci_t *chip = snd_kcontrol_chip(kcontrol);
963 	int i;
964 
965 	spin_lock_irq(&chip->reg_lock);
966 	for (i = 0; i < 4; i++)
967 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
968 	spin_unlock_irq(&chip->reg_lock);
969 	return 0;
970 }
971 
972 static int snd_cmipci_spdif_default_put(snd_kcontrol_t * kcontrol,
973 					 snd_ctl_elem_value_t * ucontrol)
974 {
975 	cmipci_t *chip = snd_kcontrol_chip(kcontrol);
976 	int i, change;
977 	unsigned int val;
978 
979 	val = 0;
980 	spin_lock_irq(&chip->reg_lock);
981 	for (i = 0; i < 4; i++)
982 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
983 	change = val != chip->dig_status;
984 	chip->dig_status = val;
985 	spin_unlock_irq(&chip->reg_lock);
986 	return change;
987 }
988 
989 static snd_kcontrol_new_t snd_cmipci_spdif_default __devinitdata =
990 {
991 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
992 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
993 	.info =		snd_cmipci_spdif_default_info,
994 	.get =		snd_cmipci_spdif_default_get,
995 	.put =		snd_cmipci_spdif_default_put
996 };
997 
998 static int snd_cmipci_spdif_mask_info(snd_kcontrol_t *kcontrol,
999 				      snd_ctl_elem_info_t *uinfo)
1000 {
1001 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1002 	uinfo->count = 1;
1003 	return 0;
1004 }
1005 
1006 static int snd_cmipci_spdif_mask_get(snd_kcontrol_t * kcontrol,
1007 				     snd_ctl_elem_value_t *ucontrol)
1008 {
1009 	ucontrol->value.iec958.status[0] = 0xff;
1010 	ucontrol->value.iec958.status[1] = 0xff;
1011 	ucontrol->value.iec958.status[2] = 0xff;
1012 	ucontrol->value.iec958.status[3] = 0xff;
1013 	return 0;
1014 }
1015 
1016 static snd_kcontrol_new_t snd_cmipci_spdif_mask __devinitdata =
1017 {
1018 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1019 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1020 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1021 	.info =		snd_cmipci_spdif_mask_info,
1022 	.get =		snd_cmipci_spdif_mask_get,
1023 };
1024 
1025 static int snd_cmipci_spdif_stream_info(snd_kcontrol_t *kcontrol,
1026 					snd_ctl_elem_info_t *uinfo)
1027 {
1028 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1029 	uinfo->count = 1;
1030 	return 0;
1031 }
1032 
1033 static int snd_cmipci_spdif_stream_get(snd_kcontrol_t *kcontrol,
1034 				       snd_ctl_elem_value_t *ucontrol)
1035 {
1036 	cmipci_t *chip = snd_kcontrol_chip(kcontrol);
1037 	int i;
1038 
1039 	spin_lock_irq(&chip->reg_lock);
1040 	for (i = 0; i < 4; i++)
1041 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1042 	spin_unlock_irq(&chip->reg_lock);
1043 	return 0;
1044 }
1045 
1046 static int snd_cmipci_spdif_stream_put(snd_kcontrol_t *kcontrol,
1047 				       snd_ctl_elem_value_t *ucontrol)
1048 {
1049 	cmipci_t *chip = snd_kcontrol_chip(kcontrol);
1050 	int i, change;
1051 	unsigned int val;
1052 
1053 	val = 0;
1054 	spin_lock_irq(&chip->reg_lock);
1055 	for (i = 0; i < 4; i++)
1056 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1057 	change = val != chip->dig_pcm_status;
1058 	chip->dig_pcm_status = val;
1059 	spin_unlock_irq(&chip->reg_lock);
1060 	return change;
1061 }
1062 
1063 static snd_kcontrol_new_t snd_cmipci_spdif_stream __devinitdata =
1064 {
1065 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1066 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1067 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1068 	.info =		snd_cmipci_spdif_stream_info,
1069 	.get =		snd_cmipci_spdif_stream_get,
1070 	.put =		snd_cmipci_spdif_stream_put
1071 };
1072 
1073 /*
1074  */
1075 
1076 /* save mixer setting and mute for AC3 playback */
1077 static int save_mixer_state(cmipci_t *cm)
1078 {
1079 	if (! cm->mixer_insensitive) {
1080 		snd_ctl_elem_value_t *val;
1081 		unsigned int i;
1082 
1083 		val = kmalloc(sizeof(*val), GFP_ATOMIC);
1084 		if (!val)
1085 			return -ENOMEM;
1086 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1087 			snd_kcontrol_t *ctl = cm->mixer_res_ctl[i];
1088 			if (ctl) {
1089 				int event;
1090 				memset(val, 0, sizeof(*val));
1091 				ctl->get(ctl, val);
1092 				cm->mixer_res_status[i] = val->value.integer.value[0];
1093 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1094 				event = SNDRV_CTL_EVENT_MASK_INFO;
1095 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1096 					ctl->put(ctl, val); /* toggle */
1097 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1098 				}
1099 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1100 				snd_ctl_notify(cm->card, event, &ctl->id);
1101 			}
1102 		}
1103 		kfree(val);
1104 		cm->mixer_insensitive = 1;
1105 	}
1106 	return 0;
1107 }
1108 
1109 
1110 /* restore the previously saved mixer status */
1111 static void restore_mixer_state(cmipci_t *cm)
1112 {
1113 	if (cm->mixer_insensitive) {
1114 		snd_ctl_elem_value_t *val;
1115 		unsigned int i;
1116 
1117 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1118 		if (!val)
1119 			return;
1120 		cm->mixer_insensitive = 0; /* at first clear this;
1121 					      otherwise the changes will be ignored */
1122 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1123 			snd_kcontrol_t *ctl = cm->mixer_res_ctl[i];
1124 			if (ctl) {
1125 				int event;
1126 
1127 				memset(val, 0, sizeof(*val));
1128 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1129 				ctl->get(ctl, val);
1130 				event = SNDRV_CTL_EVENT_MASK_INFO;
1131 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1132 					val->value.integer.value[0] = cm->mixer_res_status[i];
1133 					ctl->put(ctl, val);
1134 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1135 				}
1136 				snd_ctl_notify(cm->card, event, &ctl->id);
1137 			}
1138 		}
1139 		kfree(val);
1140 	}
1141 }
1142 
1143 /* spinlock held! */
1144 static void setup_ac3(cmipci_t *cm, snd_pcm_substream_t *subs, int do_ac3, int rate)
1145 {
1146 	if (do_ac3) {
1147 		/* AC3EN for 037 */
1148 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1149 		/* AC3EN for 039 */
1150 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1151 
1152 		if (cm->can_ac3_hw) {
1153 			/* SPD24SEL for 037, 0x02 */
1154 			/* SPD24SEL for 039, 0x20, but cannot be set */
1155 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1156 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1157 		} else { /* can_ac3_sw */
1158 			/* SPD32SEL for 037 & 039, 0x20 */
1159 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1160 			/* set 176K sample rate to fix 033 HW bug */
1161 			if (cm->chip_version == 33) {
1162 				if (rate >= 48000) {
1163 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1164 				} else {
1165 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1166 				}
1167 			}
1168 		}
1169 
1170 	} else {
1171 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1172 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1173 
1174 		if (cm->can_ac3_hw) {
1175 			/* chip model >= 37 */
1176 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1177 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1178 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1179 			} else {
1180 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1181 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1182 			}
1183 		} else {
1184 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1185 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1186 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1187 		}
1188 	}
1189 }
1190 
1191 static int setup_spdif_playback(cmipci_t *cm, snd_pcm_substream_t *subs, int up, int do_ac3)
1192 {
1193 	int rate, err;
1194 
1195 	rate = subs->runtime->rate;
1196 
1197 	if (up && do_ac3)
1198 		if ((err = save_mixer_state(cm)) < 0)
1199 			return err;
1200 
1201 	spin_lock_irq(&cm->reg_lock);
1202 	cm->spdif_playback_avail = up;
1203 	if (up) {
1204 		/* they are controlled via "IEC958 Output Switch" */
1205 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1206 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1207 		if (cm->spdif_playback_enabled)
1208 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1209 		setup_ac3(cm, subs, do_ac3, rate);
1210 
1211 		if (rate == 48000)
1212 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1213 		else
1214 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1215 
1216 	} else {
1217 		/* they are controlled via "IEC958 Output Switch" */
1218 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1219 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1220 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1221 		setup_ac3(cm, subs, 0, 0);
1222 	}
1223 	spin_unlock_irq(&cm->reg_lock);
1224 	return 0;
1225 }
1226 
1227 
1228 /*
1229  * preparation
1230  */
1231 
1232 /* playback - enable spdif only on the certain condition */
1233 static int snd_cmipci_playback_prepare(snd_pcm_substream_t *substream)
1234 {
1235 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1236 	int rate = substream->runtime->rate;
1237 	int err, do_spdif, do_ac3 = 0;
1238 
1239 	do_spdif = ((rate == 44100 || rate == 48000) &&
1240 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1241 		    substream->runtime->channels == 2);
1242 	if (do_spdif && cm->can_ac3_hw)
1243 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1244 	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1245 		return err;
1246 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1247 }
1248 
1249 /* playback  (via device #2) - enable spdif always */
1250 static int snd_cmipci_playback_spdif_prepare(snd_pcm_substream_t *substream)
1251 {
1252 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1253 	int err, do_ac3;
1254 
1255 	if (cm->can_ac3_hw)
1256 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1257 	else
1258 		do_ac3 = 1; /* doesn't matter */
1259 	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1260 		return err;
1261 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1262 }
1263 
1264 static int snd_cmipci_playback_hw_free(snd_pcm_substream_t *substream)
1265 {
1266 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1267 	setup_spdif_playback(cm, substream, 0, 0);
1268 	restore_mixer_state(cm);
1269 	return snd_cmipci_hw_free(substream);
1270 }
1271 
1272 /* capture */
1273 static int snd_cmipci_capture_prepare(snd_pcm_substream_t *substream)
1274 {
1275 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1276 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1277 }
1278 
1279 /* capture with spdif (via device #2) */
1280 static int snd_cmipci_capture_spdif_prepare(snd_pcm_substream_t *substream)
1281 {
1282 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1283 
1284 	spin_lock_irq(&cm->reg_lock);
1285 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1286 	spin_unlock_irq(&cm->reg_lock);
1287 
1288 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1289 }
1290 
1291 static int snd_cmipci_capture_spdif_hw_free(snd_pcm_substream_t *subs)
1292 {
1293 	cmipci_t *cm = snd_pcm_substream_chip(subs);
1294 
1295 	spin_lock_irq(&cm->reg_lock);
1296 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1297 	spin_unlock_irq(&cm->reg_lock);
1298 
1299 	return snd_cmipci_hw_free(subs);
1300 }
1301 
1302 
1303 /*
1304  * interrupt handler
1305  */
1306 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1307 {
1308 	cmipci_t *cm = dev_id;
1309 	unsigned int status, mask = 0;
1310 
1311 	/* fastpath out, to ease interrupt sharing */
1312 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1313 	if (!(status & CM_INTR))
1314 		return IRQ_NONE;
1315 
1316 	/* acknowledge interrupt */
1317 	spin_lock(&cm->reg_lock);
1318 	if (status & CM_CHINT0)
1319 		mask |= CM_CH0_INT_EN;
1320 	if (status & CM_CHINT1)
1321 		mask |= CM_CH1_INT_EN;
1322 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1323 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1324 	spin_unlock(&cm->reg_lock);
1325 
1326 	if (cm->rmidi && (status & CM_UARTINT))
1327 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data, regs);
1328 
1329 	if (cm->pcm) {
1330 		if ((status & CM_CHINT0) && cm->channel[0].running)
1331 			snd_pcm_period_elapsed(cm->channel[0].substream);
1332 		if ((status & CM_CHINT1) && cm->channel[1].running)
1333 			snd_pcm_period_elapsed(cm->channel[1].substream);
1334 	}
1335 	return IRQ_HANDLED;
1336 }
1337 
1338 /*
1339  * h/w infos
1340  */
1341 
1342 /* playback on channel A */
1343 static snd_pcm_hardware_t snd_cmipci_playback =
1344 {
1345 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1346 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1347 				 SNDRV_PCM_INFO_MMAP_VALID),
1348 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1349 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1350 	.rate_min =		5512,
1351 	.rate_max =		48000,
1352 	.channels_min =		1,
1353 	.channels_max =		2,
1354 	.buffer_bytes_max =	(128*1024),
1355 	.period_bytes_min =	64,
1356 	.period_bytes_max =	(128*1024),
1357 	.periods_min =		2,
1358 	.periods_max =		1024,
1359 	.fifo_size =		0,
1360 };
1361 
1362 /* capture on channel B */
1363 static snd_pcm_hardware_t snd_cmipci_capture =
1364 {
1365 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1366 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1367 				 SNDRV_PCM_INFO_MMAP_VALID),
1368 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1369 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1370 	.rate_min =		5512,
1371 	.rate_max =		48000,
1372 	.channels_min =		1,
1373 	.channels_max =		2,
1374 	.buffer_bytes_max =	(128*1024),
1375 	.period_bytes_min =	64,
1376 	.period_bytes_max =	(128*1024),
1377 	.periods_min =		2,
1378 	.periods_max =		1024,
1379 	.fifo_size =		0,
1380 };
1381 
1382 /* playback on channel B - stereo 16bit only? */
1383 static snd_pcm_hardware_t snd_cmipci_playback2 =
1384 {
1385 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1386 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1387 				 SNDRV_PCM_INFO_MMAP_VALID),
1388 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1389 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1390 	.rate_min =		5512,
1391 	.rate_max =		48000,
1392 	.channels_min =		2,
1393 	.channels_max =		2,
1394 	.buffer_bytes_max =	(128*1024),
1395 	.period_bytes_min =	64,
1396 	.period_bytes_max =	(128*1024),
1397 	.periods_min =		2,
1398 	.periods_max =		1024,
1399 	.fifo_size =		0,
1400 };
1401 
1402 /* spdif playback on channel A */
1403 static snd_pcm_hardware_t snd_cmipci_playback_spdif =
1404 {
1405 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1406 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1407 				 SNDRV_PCM_INFO_MMAP_VALID),
1408 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1409 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1410 	.rate_min =		44100,
1411 	.rate_max =		48000,
1412 	.channels_min =		2,
1413 	.channels_max =		2,
1414 	.buffer_bytes_max =	(128*1024),
1415 	.period_bytes_min =	64,
1416 	.period_bytes_max =	(128*1024),
1417 	.periods_min =		2,
1418 	.periods_max =		1024,
1419 	.fifo_size =		0,
1420 };
1421 
1422 /* spdif playback on channel A (32bit, IEC958 subframes) */
1423 static snd_pcm_hardware_t snd_cmipci_playback_iec958_subframe =
1424 {
1425 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1426 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1427 				 SNDRV_PCM_INFO_MMAP_VALID),
1428 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1429 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1430 	.rate_min =		44100,
1431 	.rate_max =		48000,
1432 	.channels_min =		2,
1433 	.channels_max =		2,
1434 	.buffer_bytes_max =	(128*1024),
1435 	.period_bytes_min =	64,
1436 	.period_bytes_max =	(128*1024),
1437 	.periods_min =		2,
1438 	.periods_max =		1024,
1439 	.fifo_size =		0,
1440 };
1441 
1442 /* spdif capture on channel B */
1443 static snd_pcm_hardware_t snd_cmipci_capture_spdif =
1444 {
1445 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1446 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1447 				 SNDRV_PCM_INFO_MMAP_VALID),
1448 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE,
1449 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1450 	.rate_min =		44100,
1451 	.rate_max =		48000,
1452 	.channels_min =		2,
1453 	.channels_max =		2,
1454 	.buffer_bytes_max =	(128*1024),
1455 	.period_bytes_min =	64,
1456 	.period_bytes_max =	(128*1024),
1457 	.periods_min =		2,
1458 	.periods_max =		1024,
1459 	.fifo_size =		0,
1460 };
1461 
1462 /*
1463  * check device open/close
1464  */
1465 static int open_device_check(cmipci_t *cm, int mode, snd_pcm_substream_t *subs)
1466 {
1467 	int ch = mode & CM_OPEN_CH_MASK;
1468 
1469 	/* FIXME: a file should wait until the device becomes free
1470 	 * when it's opened on blocking mode.  however, since the current
1471 	 * pcm framework doesn't pass file pointer before actually opened,
1472 	 * we can't know whether blocking mode or not in open callback..
1473 	 */
1474 	down(&cm->open_mutex);
1475 	if (cm->opened[ch]) {
1476 		up(&cm->open_mutex);
1477 		return -EBUSY;
1478 	}
1479 	cm->opened[ch] = mode;
1480 	cm->channel[ch].substream = subs;
1481 	if (! (mode & CM_OPEN_DAC)) {
1482 		/* disable dual DAC mode */
1483 		cm->channel[ch].is_dac = 0;
1484 		spin_lock_irq(&cm->reg_lock);
1485 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1486 		spin_unlock_irq(&cm->reg_lock);
1487 	}
1488 	up(&cm->open_mutex);
1489 	return 0;
1490 }
1491 
1492 static void close_device_check(cmipci_t *cm, int mode)
1493 {
1494 	int ch = mode & CM_OPEN_CH_MASK;
1495 
1496 	down(&cm->open_mutex);
1497 	if (cm->opened[ch] == mode) {
1498 		if (cm->channel[ch].substream) {
1499 			snd_cmipci_ch_reset(cm, ch);
1500 			cm->channel[ch].running = 0;
1501 			cm->channel[ch].substream = NULL;
1502 		}
1503 		cm->opened[ch] = 0;
1504 		if (! cm->channel[ch].is_dac) {
1505 			/* enable dual DAC mode again */
1506 			cm->channel[ch].is_dac = 1;
1507 			spin_lock_irq(&cm->reg_lock);
1508 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1509 			spin_unlock_irq(&cm->reg_lock);
1510 		}
1511 	}
1512 	up(&cm->open_mutex);
1513 }
1514 
1515 /*
1516  */
1517 
1518 static int snd_cmipci_playback_open(snd_pcm_substream_t *substream)
1519 {
1520 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1521 	snd_pcm_runtime_t *runtime = substream->runtime;
1522 	int err;
1523 
1524 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1525 		return err;
1526 	runtime->hw = snd_cmipci_playback;
1527 	runtime->hw.channels_max = cm->max_channels;
1528 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1529 	cm->dig_pcm_status = cm->dig_status;
1530 	return 0;
1531 }
1532 
1533 static int snd_cmipci_capture_open(snd_pcm_substream_t *substream)
1534 {
1535 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1536 	snd_pcm_runtime_t *runtime = substream->runtime;
1537 	int err;
1538 
1539 	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1540 		return err;
1541 	runtime->hw = snd_cmipci_capture;
1542 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1543 		runtime->hw.rate_min = 41000;
1544 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1545 	}
1546 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1547 	return 0;
1548 }
1549 
1550 static int snd_cmipci_playback2_open(snd_pcm_substream_t *substream)
1551 {
1552 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1553 	snd_pcm_runtime_t *runtime = substream->runtime;
1554 	int err;
1555 
1556 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1557 		return err;
1558 	runtime->hw = snd_cmipci_playback2;
1559 	down(&cm->open_mutex);
1560 	if (! cm->opened[CM_CH_PLAY]) {
1561 		if (cm->can_multi_ch) {
1562 			runtime->hw.channels_max = cm->max_channels;
1563 			if (cm->max_channels == 4)
1564 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1565 			else if (cm->max_channels == 6)
1566 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1567 			else if (cm->max_channels == 8)
1568 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1569 		}
1570 		snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1571 	}
1572 	up(&cm->open_mutex);
1573 	return 0;
1574 }
1575 
1576 static int snd_cmipci_playback_spdif_open(snd_pcm_substream_t *substream)
1577 {
1578 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1579 	snd_pcm_runtime_t *runtime = substream->runtime;
1580 	int err;
1581 
1582 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1583 		return err;
1584 	if (cm->can_ac3_hw) {
1585 		runtime->hw = snd_cmipci_playback_spdif;
1586 		if (cm->chip_version >= 37)
1587 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1588 	} else {
1589 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1590 	}
1591 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1592 	cm->dig_pcm_status = cm->dig_status;
1593 	return 0;
1594 }
1595 
1596 static int snd_cmipci_capture_spdif_open(snd_pcm_substream_t * substream)
1597 {
1598 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1599 	snd_pcm_runtime_t *runtime = substream->runtime;
1600 	int err;
1601 
1602 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1603 		return err;
1604 	runtime->hw = snd_cmipci_capture_spdif;
1605 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1606 	return 0;
1607 }
1608 
1609 
1610 /*
1611  */
1612 
1613 static int snd_cmipci_playback_close(snd_pcm_substream_t * substream)
1614 {
1615 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1616 	close_device_check(cm, CM_OPEN_PLAYBACK);
1617 	return 0;
1618 }
1619 
1620 static int snd_cmipci_capture_close(snd_pcm_substream_t * substream)
1621 {
1622 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1623 	close_device_check(cm, CM_OPEN_CAPTURE);
1624 	return 0;
1625 }
1626 
1627 static int snd_cmipci_playback2_close(snd_pcm_substream_t * substream)
1628 {
1629 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1630 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1631 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1632 	return 0;
1633 }
1634 
1635 static int snd_cmipci_playback_spdif_close(snd_pcm_substream_t * substream)
1636 {
1637 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1638 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1639 	return 0;
1640 }
1641 
1642 static int snd_cmipci_capture_spdif_close(snd_pcm_substream_t * substream)
1643 {
1644 	cmipci_t *cm = snd_pcm_substream_chip(substream);
1645 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1646 	return 0;
1647 }
1648 
1649 
1650 /*
1651  */
1652 
1653 static snd_pcm_ops_t snd_cmipci_playback_ops = {
1654 	.open =		snd_cmipci_playback_open,
1655 	.close =	snd_cmipci_playback_close,
1656 	.ioctl =	snd_pcm_lib_ioctl,
1657 	.hw_params =	snd_cmipci_hw_params,
1658 	.hw_free =	snd_cmipci_playback_hw_free,
1659 	.prepare =	snd_cmipci_playback_prepare,
1660 	.trigger =	snd_cmipci_playback_trigger,
1661 	.pointer =	snd_cmipci_playback_pointer,
1662 };
1663 
1664 static snd_pcm_ops_t snd_cmipci_capture_ops = {
1665 	.open =		snd_cmipci_capture_open,
1666 	.close =	snd_cmipci_capture_close,
1667 	.ioctl =	snd_pcm_lib_ioctl,
1668 	.hw_params =	snd_cmipci_hw_params,
1669 	.hw_free =	snd_cmipci_hw_free,
1670 	.prepare =	snd_cmipci_capture_prepare,
1671 	.trigger =	snd_cmipci_capture_trigger,
1672 	.pointer =	snd_cmipci_capture_pointer,
1673 };
1674 
1675 static snd_pcm_ops_t snd_cmipci_playback2_ops = {
1676 	.open =		snd_cmipci_playback2_open,
1677 	.close =	snd_cmipci_playback2_close,
1678 	.ioctl =	snd_pcm_lib_ioctl,
1679 	.hw_params =	snd_cmipci_playback2_hw_params,
1680 	.hw_free =	snd_cmipci_hw_free,
1681 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1682 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1683 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1684 };
1685 
1686 static snd_pcm_ops_t snd_cmipci_playback_spdif_ops = {
1687 	.open =		snd_cmipci_playback_spdif_open,
1688 	.close =	snd_cmipci_playback_spdif_close,
1689 	.ioctl =	snd_pcm_lib_ioctl,
1690 	.hw_params =	snd_cmipci_hw_params,
1691 	.hw_free =	snd_cmipci_playback_hw_free,
1692 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1693 	.trigger =	snd_cmipci_playback_trigger,
1694 	.pointer =	snd_cmipci_playback_pointer,
1695 };
1696 
1697 static snd_pcm_ops_t snd_cmipci_capture_spdif_ops = {
1698 	.open =		snd_cmipci_capture_spdif_open,
1699 	.close =	snd_cmipci_capture_spdif_close,
1700 	.ioctl =	snd_pcm_lib_ioctl,
1701 	.hw_params =	snd_cmipci_hw_params,
1702 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1703 	.prepare =	snd_cmipci_capture_spdif_prepare,
1704 	.trigger =	snd_cmipci_capture_trigger,
1705 	.pointer =	snd_cmipci_capture_pointer,
1706 };
1707 
1708 
1709 /*
1710  */
1711 
1712 static void snd_cmipci_pcm_free(snd_pcm_t *pcm)
1713 {
1714 	snd_pcm_lib_preallocate_free_for_all(pcm);
1715 }
1716 
1717 static int __devinit snd_cmipci_pcm_new(cmipci_t *cm, int device)
1718 {
1719 	snd_pcm_t *pcm;
1720 	int err;
1721 
1722 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1723 	if (err < 0)
1724 		return err;
1725 
1726 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1727 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1728 
1729 	pcm->private_data = cm;
1730 	pcm->private_free = snd_cmipci_pcm_free;
1731 	pcm->info_flags = 0;
1732 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1733 	cm->pcm = pcm;
1734 
1735 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1736 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1737 
1738 	return 0;
1739 }
1740 
1741 static int __devinit snd_cmipci_pcm2_new(cmipci_t *cm, int device)
1742 {
1743 	snd_pcm_t *pcm;
1744 	int err;
1745 
1746 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1747 	if (err < 0)
1748 		return err;
1749 
1750 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1751 
1752 	pcm->private_data = cm;
1753 	pcm->private_free = snd_cmipci_pcm_free;
1754 	pcm->info_flags = 0;
1755 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1756 	cm->pcm2 = pcm;
1757 
1758 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1759 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1760 
1761 	return 0;
1762 }
1763 
1764 static int __devinit snd_cmipci_pcm_spdif_new(cmipci_t *cm, int device)
1765 {
1766 	snd_pcm_t *pcm;
1767 	int err;
1768 
1769 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1770 	if (err < 0)
1771 		return err;
1772 
1773 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1774 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1775 
1776 	pcm->private_data = cm;
1777 	pcm->private_free = snd_cmipci_pcm_free;
1778 	pcm->info_flags = 0;
1779 	strcpy(pcm->name, "C-Media PCI IEC958");
1780 	cm->pcm_spdif = pcm;
1781 
1782 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1783 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1784 
1785 	return 0;
1786 }
1787 
1788 /*
1789  * mixer interface:
1790  * - CM8338/8738 has a compatible mixer interface with SB16, but
1791  *   lack of some elements like tone control, i/o gain and AGC.
1792  * - Access to native registers:
1793  *   - A 3D switch
1794  *   - Output mute switches
1795  */
1796 
1797 static void snd_cmipci_mixer_write(cmipci_t *s, unsigned char idx, unsigned char data)
1798 {
1799 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1800 	outb(data, s->iobase + CM_REG_SB16_DATA);
1801 }
1802 
1803 static unsigned char snd_cmipci_mixer_read(cmipci_t *s, unsigned char idx)
1804 {
1805 	unsigned char v;
1806 
1807 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1808 	v = inb(s->iobase + CM_REG_SB16_DATA);
1809 	return v;
1810 }
1811 
1812 /*
1813  * general mixer element
1814  */
1815 typedef struct cmipci_sb_reg {
1816 	unsigned int left_reg, right_reg;
1817 	unsigned int left_shift, right_shift;
1818 	unsigned int mask;
1819 	unsigned int invert: 1;
1820 	unsigned int stereo: 1;
1821 } cmipci_sb_reg_t;
1822 
1823 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1824  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1825 
1826 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1827 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1828   .info = snd_cmipci_info_volume, \
1829   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1830   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1831 }
1832 
1833 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1834 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1835 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1836 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1837 
1838 static void cmipci_sb_reg_decode(cmipci_sb_reg_t *r, unsigned long val)
1839 {
1840 	r->left_reg = val & 0xff;
1841 	r->right_reg = (val >> 8) & 0xff;
1842 	r->left_shift = (val >> 16) & 0x07;
1843 	r->right_shift = (val >> 19) & 0x07;
1844 	r->invert = (val >> 22) & 1;
1845 	r->stereo = (val >> 23) & 1;
1846 	r->mask = (val >> 24) & 0xff;
1847 }
1848 
1849 static int snd_cmipci_info_volume(snd_kcontrol_t * kcontrol, snd_ctl_elem_info_t * uinfo)
1850 {
1851 	cmipci_sb_reg_t reg;
1852 
1853 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1854 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1855 	uinfo->count = reg.stereo + 1;
1856 	uinfo->value.integer.min = 0;
1857 	uinfo->value.integer.max = reg.mask;
1858 	return 0;
1859 }
1860 
1861 static int snd_cmipci_get_volume(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
1862 {
1863 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
1864 	cmipci_sb_reg_t reg;
1865 	int val;
1866 
1867 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1868 	spin_lock_irq(&cm->reg_lock);
1869 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
1870 	if (reg.invert)
1871 		val = reg.mask - val;
1872 	ucontrol->value.integer.value[0] = val;
1873 	if (reg.stereo) {
1874 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
1875 		if (reg.invert)
1876 			val = reg.mask - val;
1877 		 ucontrol->value.integer.value[1] = val;
1878 	}
1879 	spin_unlock_irq(&cm->reg_lock);
1880 	return 0;
1881 }
1882 
1883 static int snd_cmipci_put_volume(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
1884 {
1885 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
1886 	cmipci_sb_reg_t reg;
1887 	int change;
1888 	int left, right, oleft, oright;
1889 
1890 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1891 	left = ucontrol->value.integer.value[0] & reg.mask;
1892 	if (reg.invert)
1893 		left = reg.mask - left;
1894 	left <<= reg.left_shift;
1895 	if (reg.stereo) {
1896 		right = ucontrol->value.integer.value[1] & reg.mask;
1897 		if (reg.invert)
1898 			right = reg.mask - right;
1899 		right <<= reg.right_shift;
1900 	} else
1901 		right = 0;
1902 	spin_lock_irq(&cm->reg_lock);
1903 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
1904 	left |= oleft & ~(reg.mask << reg.left_shift);
1905 	change = left != oleft;
1906 	if (reg.stereo) {
1907 		if (reg.left_reg != reg.right_reg) {
1908 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
1909 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
1910 		} else
1911 			oright = left;
1912 		right |= oright & ~(reg.mask << reg.right_shift);
1913 		change |= right != oright;
1914 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
1915 	} else
1916 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
1917 	spin_unlock_irq(&cm->reg_lock);
1918 	return change;
1919 }
1920 
1921 /*
1922  * input route (left,right) -> (left,right)
1923  */
1924 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
1925 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1926   .info = snd_cmipci_info_input_sw, \
1927   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
1928   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
1929 }
1930 
1931 static int snd_cmipci_info_input_sw(snd_kcontrol_t * kcontrol, snd_ctl_elem_info_t * uinfo)
1932 {
1933 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1934 	uinfo->count = 4;
1935 	uinfo->value.integer.min = 0;
1936 	uinfo->value.integer.max = 1;
1937 	return 0;
1938 }
1939 
1940 static int snd_cmipci_get_input_sw(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
1941 {
1942 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
1943 	cmipci_sb_reg_t reg;
1944 	int val1, val2;
1945 
1946 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1947 	spin_lock_irq(&cm->reg_lock);
1948 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1949 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1950 	spin_unlock_irq(&cm->reg_lock);
1951 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
1952 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
1953 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
1954 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
1955 	return 0;
1956 }
1957 
1958 static int snd_cmipci_put_input_sw(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
1959 {
1960 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
1961 	cmipci_sb_reg_t reg;
1962 	int change;
1963 	int val1, val2, oval1, oval2;
1964 
1965 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1966 	spin_lock_irq(&cm->reg_lock);
1967 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1968 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1969 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1970 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1971 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
1972 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
1973 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
1974 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
1975 	change = val1 != oval1 || val2 != oval2;
1976 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
1977 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
1978 	spin_unlock_irq(&cm->reg_lock);
1979 	return change;
1980 }
1981 
1982 /*
1983  * native mixer switches/volumes
1984  */
1985 
1986 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
1987 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1988   .info = snd_cmipci_info_native_mixer, \
1989   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1990   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
1991 }
1992 
1993 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
1994 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1995   .info = snd_cmipci_info_native_mixer, \
1996   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1997   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
1998 }
1999 
2000 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2001 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2002   .info = snd_cmipci_info_native_mixer, \
2003   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2004   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2005 }
2006 
2007 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2008 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2009   .info = snd_cmipci_info_native_mixer, \
2010   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2011   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2012 }
2013 
2014 static int snd_cmipci_info_native_mixer(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
2015 {
2016 	cmipci_sb_reg_t reg;
2017 
2018 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2019 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2020 	uinfo->count = reg.stereo + 1;
2021 	uinfo->value.integer.min = 0;
2022 	uinfo->value.integer.max = reg.mask;
2023 	return 0;
2024 
2025 }
2026 
2027 static int snd_cmipci_get_native_mixer(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
2028 {
2029 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2030 	cmipci_sb_reg_t reg;
2031 	unsigned char oreg, val;
2032 
2033 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2034 	spin_lock_irq(&cm->reg_lock);
2035 	oreg = inb(cm->iobase + reg.left_reg);
2036 	val = (oreg >> reg.left_shift) & reg.mask;
2037 	if (reg.invert)
2038 		val = reg.mask - val;
2039 	ucontrol->value.integer.value[0] = val;
2040 	if (reg.stereo) {
2041 		val = (oreg >> reg.right_shift) & reg.mask;
2042 		if (reg.invert)
2043 			val = reg.mask - val;
2044 		ucontrol->value.integer.value[1] = val;
2045 	}
2046 	spin_unlock_irq(&cm->reg_lock);
2047 	return 0;
2048 }
2049 
2050 static int snd_cmipci_put_native_mixer(snd_kcontrol_t * kcontrol, snd_ctl_elem_value_t * ucontrol)
2051 {
2052 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2053 	cmipci_sb_reg_t reg;
2054 	unsigned char oreg, nreg, val;
2055 
2056 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2057 	spin_lock_irq(&cm->reg_lock);
2058 	oreg = inb(cm->iobase + reg.left_reg);
2059 	val = ucontrol->value.integer.value[0] & reg.mask;
2060 	if (reg.invert)
2061 		val = reg.mask - val;
2062 	nreg = oreg & ~(reg.mask << reg.left_shift);
2063 	nreg |= (val << reg.left_shift);
2064 	if (reg.stereo) {
2065 		val = ucontrol->value.integer.value[1] & reg.mask;
2066 		if (reg.invert)
2067 			val = reg.mask - val;
2068 		nreg &= ~(reg.mask << reg.right_shift);
2069 		nreg |= (val << reg.right_shift);
2070 	}
2071 	outb(nreg, cm->iobase + reg.left_reg);
2072 	spin_unlock_irq(&cm->reg_lock);
2073 	return (nreg != oreg);
2074 }
2075 
2076 /*
2077  * special case - check mixer sensitivity
2078  */
2079 static int snd_cmipci_get_native_mixer_sensitive(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2080 {
2081 	//cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2082 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2083 }
2084 
2085 static int snd_cmipci_put_native_mixer_sensitive(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2086 {
2087 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2088 	if (cm->mixer_insensitive) {
2089 		/* ignored */
2090 		return 0;
2091 	}
2092 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2093 }
2094 
2095 
2096 static snd_kcontrol_new_t snd_cmipci_mixers[] __devinitdata = {
2097 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2098 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2099 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2100 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2101 	{ /* switch with sensitivity */
2102 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2103 		.name = "PCM Playback Switch",
2104 		.info = snd_cmipci_info_native_mixer,
2105 		.get = snd_cmipci_get_native_mixer_sensitive,
2106 		.put = snd_cmipci_put_native_mixer_sensitive,
2107 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2108 	},
2109 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2110 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2111 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2112 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2113 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2114 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2115 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2116 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2117 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2118 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2119 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2120 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2121 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2122 	CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2123 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2124 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2125 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2126 	CMIPCI_MIXER_SW_MONO("Mic Boost", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2127 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2128 };
2129 
2130 /*
2131  * other switches
2132  */
2133 
2134 typedef struct snd_cmipci_switch_args {
2135 	int reg;		/* register index */
2136 	unsigned int mask;	/* mask bits */
2137 	unsigned int mask_on;	/* mask bits to turn on */
2138 	unsigned int is_byte: 1;		/* byte access? */
2139 	unsigned int ac3_sensitive: 1;	/* access forbidden during non-audio operation? */
2140 } snd_cmipci_switch_args_t;
2141 
2142 static int snd_cmipci_uswitch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
2143 {
2144 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2145 	uinfo->count = 1;
2146 	uinfo->value.integer.min = 0;
2147 	uinfo->value.integer.max = 1;
2148 	return 0;
2149 }
2150 
2151 static int _snd_cmipci_uswitch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol, snd_cmipci_switch_args_t *args)
2152 {
2153 	unsigned int val;
2154 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2155 
2156 	spin_lock_irq(&cm->reg_lock);
2157 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2158 		ucontrol->value.integer.value[0] = 0;
2159 		spin_unlock_irq(&cm->reg_lock);
2160 		return 0;
2161 	}
2162 	if (args->is_byte)
2163 		val = inb(cm->iobase + args->reg);
2164 	else
2165 		val = snd_cmipci_read(cm, args->reg);
2166 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2167 	spin_unlock_irq(&cm->reg_lock);
2168 	return 0;
2169 }
2170 
2171 static int snd_cmipci_uswitch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2172 {
2173 	snd_cmipci_switch_args_t *args = (snd_cmipci_switch_args_t*)kcontrol->private_value;
2174 	snd_assert(args != NULL, return -EINVAL);
2175 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2176 }
2177 
2178 static int _snd_cmipci_uswitch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol, snd_cmipci_switch_args_t *args)
2179 {
2180 	unsigned int val;
2181 	int change;
2182 	cmipci_t *cm = snd_kcontrol_chip(kcontrol);
2183 
2184 	spin_lock_irq(&cm->reg_lock);
2185 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2186 		/* ignored */
2187 		spin_unlock_irq(&cm->reg_lock);
2188 		return 0;
2189 	}
2190 	if (args->is_byte)
2191 		val = inb(cm->iobase + args->reg);
2192 	else
2193 		val = snd_cmipci_read(cm, args->reg);
2194 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ? args->mask : 0);
2195 	if (change) {
2196 		val &= ~args->mask;
2197 		if (ucontrol->value.integer.value[0])
2198 			val |= args->mask_on;
2199 		else
2200 			val |= (args->mask & ~args->mask_on);
2201 		if (args->is_byte)
2202 			outb((unsigned char)val, cm->iobase + args->reg);
2203 		else
2204 			snd_cmipci_write(cm, args->reg, val);
2205 	}
2206 	spin_unlock_irq(&cm->reg_lock);
2207 	return change;
2208 }
2209 
2210 static int snd_cmipci_uswitch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2211 {
2212 	snd_cmipci_switch_args_t *args = (snd_cmipci_switch_args_t*)kcontrol->private_value;
2213 	snd_assert(args != NULL, return -EINVAL);
2214 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2215 }
2216 
2217 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2218 static snd_cmipci_switch_args_t cmipci_switch_arg_##sname = { \
2219   .reg = xreg, \
2220   .mask = xmask, \
2221   .mask_on = xmask_on, \
2222   .is_byte = xis_byte, \
2223   .ac3_sensitive = xac3, \
2224 }
2225 
2226 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2227 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2228 
2229 #if 0 /* these will be controlled in pcm device */
2230 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2231 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2232 #endif
2233 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2234 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2235 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2236 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2237 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2238 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2239 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2240 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2241 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2242 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2243 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2244 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2245 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2246 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2247 #if CM_CH_PLAY == 1
2248 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2249 #else
2250 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2251 #endif
2252 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2253 DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_SPK4, 1, 0);
2254 DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS, 0, 0);
2255 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2256 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2257 
2258 #define DEFINE_SWITCH(sname, stype, sarg) \
2259 { .name = sname, \
2260   .iface = stype, \
2261   .info = snd_cmipci_uswitch_info, \
2262   .get = snd_cmipci_uswitch_get, \
2263   .put = snd_cmipci_uswitch_put, \
2264   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2265 }
2266 
2267 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2268 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2269 
2270 
2271 /*
2272  * callbacks for spdif output switch
2273  * needs toggle two registers..
2274  */
2275 static int snd_cmipci_spdout_enable_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2276 {
2277 	int changed;
2278 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2279 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2280 	return changed;
2281 }
2282 
2283 static int snd_cmipci_spdout_enable_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
2284 {
2285 	cmipci_t *chip = snd_kcontrol_chip(kcontrol);
2286 	int changed;
2287 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2288 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2289 	if (changed) {
2290 		if (ucontrol->value.integer.value[0]) {
2291 			if (chip->spdif_playback_avail)
2292 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2293 		} else {
2294 			if (chip->spdif_playback_avail)
2295 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2296 		}
2297 	}
2298 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2299 	return changed;
2300 }
2301 
2302 
2303 /* both for CM8338/8738 */
2304 static snd_kcontrol_new_t snd_cmipci_mixer_switches[] __devinitdata = {
2305 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2306 	DEFINE_MIXER_SWITCH("Line-In As Rear", line_rear),
2307 };
2308 
2309 /* for non-multichannel chips */
2310 static snd_kcontrol_new_t snd_cmipci_nomulti_switch __devinitdata =
2311 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2312 
2313 /* only for CM8738 */
2314 static snd_kcontrol_new_t snd_cmipci_8738_mixer_switches[] __devinitdata = {
2315 #if 0 /* controlled in pcm device */
2316 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2317 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2318 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2319 #endif
2320 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2321 	{ .name = "IEC958 Output Switch",
2322 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2323 	  .info = snd_cmipci_uswitch_info,
2324 	  .get = snd_cmipci_spdout_enable_get,
2325 	  .put = snd_cmipci_spdout_enable_put,
2326 	},
2327 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2328 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2329 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2330 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2331 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2332 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2333 };
2334 
2335 /* only for model 033/037 */
2336 static snd_kcontrol_new_t snd_cmipci_old_mixer_switches[] __devinitdata = {
2337 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2338 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2339 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2340 };
2341 
2342 /* only for model 039 or later */
2343 static snd_kcontrol_new_t snd_cmipci_extra_mixer_switches[] __devinitdata = {
2344 	DEFINE_MIXER_SWITCH("Line-In As Bass", line_bass),
2345 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2346 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2347 	DEFINE_MIXER_SWITCH("Mic As Center/LFE", spdi_phase), /* same bit as spdi_phase */
2348 };
2349 
2350 /* card control switches */
2351 static snd_kcontrol_new_t snd_cmipci_control_switches[] __devinitdata = {
2352 	// DEFINE_CARD_SWITCH("Joystick", joystick), /* now module option */
2353 	DEFINE_CARD_SWITCH("Modem", modem),
2354 };
2355 
2356 
2357 static int __devinit snd_cmipci_mixer_new(cmipci_t *cm, int pcm_spdif_device)
2358 {
2359 	snd_card_t *card;
2360 	snd_kcontrol_new_t *sw;
2361 	snd_kcontrol_t *kctl;
2362 	unsigned int idx;
2363 	int err;
2364 
2365 	snd_assert(cm != NULL && cm->card != NULL, return -EINVAL);
2366 
2367 	card = cm->card;
2368 
2369 	strcpy(card->mixername, "CMedia PCI");
2370 
2371 	spin_lock_irq(&cm->reg_lock);
2372 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2373 	spin_unlock_irq(&cm->reg_lock);
2374 
2375 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2376 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2377 			if (!strcmp(snd_cmipci_mixers[idx].name,
2378 				"PCM Playback Volume"))
2379 				continue;
2380 		}
2381 		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2382 			return err;
2383 	}
2384 
2385 	/* mixer switches */
2386 	sw = snd_cmipci_mixer_switches;
2387 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2388 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2389 		if (err < 0)
2390 			return err;
2391 	}
2392 	if (! cm->can_multi_ch) {
2393 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2394 		if (err < 0)
2395 			return err;
2396 	}
2397 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2398 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2399 		sw = snd_cmipci_8738_mixer_switches;
2400 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2401 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2402 			if (err < 0)
2403 				return err;
2404 		}
2405 		if (cm->can_ac3_hw) {
2406 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2407 				return err;
2408 			kctl->id.device = pcm_spdif_device;
2409 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2410 				return err;
2411 			kctl->id.device = pcm_spdif_device;
2412 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2413 				return err;
2414 			kctl->id.device = pcm_spdif_device;
2415 		}
2416 		if (cm->chip_version <= 37) {
2417 			sw = snd_cmipci_old_mixer_switches;
2418 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2419 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2420 				if (err < 0)
2421 					return err;
2422 			}
2423 		}
2424 	}
2425 	if (cm->chip_version >= 39) {
2426 		sw = snd_cmipci_extra_mixer_switches;
2427 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2428 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2429 			if (err < 0)
2430 				return err;
2431 		}
2432 	}
2433 
2434 	/* card switches */
2435 	sw = snd_cmipci_control_switches;
2436 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_control_switches); idx++, sw++) {
2437 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2438 		if (err < 0)
2439 			return err;
2440 	}
2441 
2442 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2443 		snd_ctl_elem_id_t id;
2444 		snd_kcontrol_t *ctl;
2445 		memset(&id, 0, sizeof(id));
2446 		id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2447 		strcpy(id.name, cm_saved_mixer[idx].name);
2448 		if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL)
2449 			cm->mixer_res_ctl[idx] = ctl;
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 
2456 /*
2457  * proc interface
2458  */
2459 
2460 #ifdef CONFIG_PROC_FS
2461 static void snd_cmipci_proc_read(snd_info_entry_t *entry,
2462 				 snd_info_buffer_t *buffer)
2463 {
2464 	cmipci_t *cm = entry->private_data;
2465 	int i;
2466 
2467 	snd_iprintf(buffer, "%s\n\n", cm->card->longname);
2468 	for (i = 0; i < 0x40; i++) {
2469 		int v = inb(cm->iobase + i);
2470 		if (i % 4 == 0)
2471 			snd_iprintf(buffer, "%02x: ", i);
2472 		snd_iprintf(buffer, "%02x", v);
2473 		if (i % 4 == 3)
2474 			snd_iprintf(buffer, "\n");
2475 		else
2476 			snd_iprintf(buffer, " ");
2477 	}
2478 }
2479 
2480 static void __devinit snd_cmipci_proc_init(cmipci_t *cm)
2481 {
2482 	snd_info_entry_t *entry;
2483 
2484 	if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2485 		snd_info_set_text_ops(entry, cm, 1024, snd_cmipci_proc_read);
2486 }
2487 #else /* !CONFIG_PROC_FS */
2488 static inline void snd_cmipci_proc_init(cmipci_t *cm) {}
2489 #endif
2490 
2491 
2492 static struct pci_device_id snd_cmipci_ids[] = {
2493 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2494 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2495 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2496 	{PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2497 	{PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2498 	{0,},
2499 };
2500 
2501 
2502 /*
2503  * check chip version and capabilities
2504  * driver name is modified according to the chip model
2505  */
2506 static void __devinit query_chip(cmipci_t *cm)
2507 {
2508 	unsigned int detect;
2509 
2510 	/* check reg 0Ch, bit 24-31 */
2511 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2512 	if (! detect) {
2513 		/* check reg 08h, bit 24-28 */
2514 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2515 		if (! detect) {
2516 			cm->chip_version = 33;
2517 			cm->max_channels = 2;
2518 			if (cm->do_soft_ac3)
2519 				cm->can_ac3_sw = 1;
2520 			else
2521 				cm->can_ac3_hw = 1;
2522 			cm->has_dual_dac = 1;
2523 		} else {
2524 			cm->chip_version = 37;
2525 			cm->max_channels = 2;
2526 			cm->can_ac3_hw = 1;
2527 			cm->has_dual_dac = 1;
2528 		}
2529 	} else {
2530 		/* check reg 0Ch, bit 26 */
2531 		if (detect & CM_CHIP_8768) {
2532 			cm->chip_version = 68;
2533 			cm->max_channels = 8;
2534 			cm->can_ac3_hw = 1;
2535 			cm->has_dual_dac = 1;
2536 			cm->can_multi_ch = 1;
2537 		} else if (detect & CM_CHIP_055) {
2538 			cm->chip_version = 55;
2539 			cm->max_channels = 6;
2540 			cm->can_ac3_hw = 1;
2541 			cm->has_dual_dac = 1;
2542 			cm->can_multi_ch = 1;
2543 		} else if (detect & CM_CHIP_039) {
2544 			cm->chip_version = 39;
2545 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2546 				cm->max_channels = 6;
2547 			else
2548 				cm->max_channels = 4;
2549 			cm->can_ac3_hw = 1;
2550 			cm->has_dual_dac = 1;
2551 			cm->can_multi_ch = 1;
2552 		} else {
2553 			printk(KERN_ERR "chip %x version not supported\n", detect);
2554 		}
2555 	}
2556 }
2557 
2558 #ifdef SUPPORT_JOYSTICK
2559 static int __devinit snd_cmipci_create_gameport(cmipci_t *cm, int dev)
2560 {
2561 	static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2562 	struct gameport *gp;
2563 	struct resource *r = NULL;
2564 	int i, io_port = 0;
2565 
2566 	if (joystick_port[dev] == 0)
2567 		return -ENODEV;
2568 
2569 	if (joystick_port[dev] == 1) { /* auto-detect */
2570 		for (i = 0; ports[i]; i++) {
2571 			io_port = ports[i];
2572 			r = request_region(io_port, 1, "CMIPCI gameport");
2573 			if (r)
2574 				break;
2575 		}
2576 	} else {
2577 		io_port = joystick_port[dev];
2578 		r = request_region(io_port, 1, "CMIPCI gameport");
2579 	}
2580 
2581 	if (!r) {
2582 		printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2583 		return -EBUSY;
2584 	}
2585 
2586 	cm->gameport = gp = gameport_allocate_port();
2587 	if (!gp) {
2588 		printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2589 		release_resource(r);
2590 		kfree_nocheck(r);
2591 		return -ENOMEM;
2592 	}
2593 	gameport_set_name(gp, "C-Media Gameport");
2594 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2595 	gameport_set_dev_parent(gp, &cm->pci->dev);
2596 	gp->io = io_port;
2597 	gameport_set_port_data(gp, r);
2598 
2599 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2600 
2601 	gameport_register_port(cm->gameport);
2602 
2603 	return 0;
2604 }
2605 
2606 static void snd_cmipci_free_gameport(cmipci_t *cm)
2607 {
2608 	if (cm->gameport) {
2609 		struct resource *r = gameport_get_port_data(cm->gameport);
2610 
2611 		gameport_unregister_port(cm->gameport);
2612 		cm->gameport = NULL;
2613 
2614 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2615 		release_resource(r);
2616 		kfree_nocheck(r);
2617 	}
2618 }
2619 #else
2620 static inline int snd_cmipci_create_gameport(cmipci_t *cm, int dev) { return -ENOSYS; }
2621 static inline void snd_cmipci_free_gameport(cmipci_t *cm) { }
2622 #endif
2623 
2624 static int snd_cmipci_free(cmipci_t *cm)
2625 {
2626 	if (cm->irq >= 0) {
2627 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2628 		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2629 		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2630 		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2631 		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2632 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2633 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2634 
2635 		/* reset mixer */
2636 		snd_cmipci_mixer_write(cm, 0, 0);
2637 
2638 		synchronize_irq(cm->irq);
2639 
2640 		free_irq(cm->irq, (void *)cm);
2641 	}
2642 
2643 	snd_cmipci_free_gameport(cm);
2644 	pci_release_regions(cm->pci);
2645 	pci_disable_device(cm->pci);
2646 	kfree(cm);
2647 	return 0;
2648 }
2649 
2650 static int snd_cmipci_dev_free(snd_device_t *device)
2651 {
2652 	cmipci_t *cm = device->device_data;
2653 	return snd_cmipci_free(cm);
2654 }
2655 
2656 static int __devinit snd_cmipci_create(snd_card_t *card, struct pci_dev *pci,
2657 				       int dev, cmipci_t **rcmipci)
2658 {
2659 	cmipci_t *cm;
2660 	int err;
2661 	static snd_device_ops_t ops = {
2662 		.dev_free =	snd_cmipci_dev_free,
2663 	};
2664 	unsigned int val = 0;
2665 	long iomidi = mpu_port[dev];
2666 	long iosynth = fm_port[dev];
2667 	int pcm_index, pcm_spdif_index;
2668 	static struct pci_device_id intel_82437vx[] = {
2669 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2670 		{ },
2671 	};
2672 
2673 	*rcmipci = NULL;
2674 
2675 	if ((err = pci_enable_device(pci)) < 0)
2676 		return err;
2677 
2678 	cm = kcalloc(1, sizeof(*cm), GFP_KERNEL);
2679 	if (cm == NULL) {
2680 		pci_disable_device(pci);
2681 		return -ENOMEM;
2682 	}
2683 
2684 	spin_lock_init(&cm->reg_lock);
2685 	init_MUTEX(&cm->open_mutex);
2686 	cm->device = pci->device;
2687 	cm->card = card;
2688 	cm->pci = pci;
2689 	cm->irq = -1;
2690 	cm->channel[0].ch = 0;
2691 	cm->channel[1].ch = 1;
2692 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2693 
2694 	if ((err = pci_request_regions(pci, card->driver)) < 0) {
2695 		kfree(cm);
2696 		pci_disable_device(pci);
2697 		return err;
2698 	}
2699 	cm->iobase = pci_resource_start(pci, 0);
2700 
2701 	if (request_irq(pci->irq, snd_cmipci_interrupt, SA_INTERRUPT|SA_SHIRQ, card->driver, (void *)cm)) {
2702 		snd_printk("unable to grab IRQ %d\n", pci->irq);
2703 		snd_cmipci_free(cm);
2704 		return -EBUSY;
2705 	}
2706 	cm->irq = pci->irq;
2707 
2708 	pci_set_master(cm->pci);
2709 
2710 	/*
2711 	 * check chip version, max channels and capabilities
2712 	 */
2713 
2714 	cm->chip_version = 0;
2715 	cm->max_channels = 2;
2716 	cm->do_soft_ac3 = soft_ac3[dev];
2717 
2718 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
2719 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
2720 		query_chip(cm);
2721 	/* added -MCx suffix for chip supporting multi-channels */
2722 	if (cm->can_multi_ch)
2723 		sprintf(cm->card->driver + strlen(cm->card->driver),
2724 			"-MC%d", cm->max_channels);
2725 	else if (cm->can_ac3_sw)
2726 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
2727 
2728 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2729 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2730 
2731 #if CM_CH_PLAY == 1
2732 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
2733 #else
2734 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
2735 #endif
2736 
2737 	/* initialize codec registers */
2738 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
2739 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2740 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2741 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
2742 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2743 
2744 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
2745 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
2746 #if CM_CH_PLAY == 1
2747 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2748 #else
2749 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2750 #endif
2751 	/* Set Bus Master Request */
2752 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
2753 
2754 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
2755 	switch (pci->device) {
2756 	case PCI_DEVICE_ID_CMEDIA_CM8738:
2757 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
2758 		if (!pci_dev_present(intel_82437vx))
2759 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
2760 		break;
2761 	default:
2762 		break;
2763 	}
2764 
2765 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
2766 		snd_cmipci_free(cm);
2767 		return err;
2768 	}
2769 
2770 	/* set MPU address */
2771 	switch (iomidi) {
2772 	case 0x320: val = CM_VMPU_320; break;
2773 	case 0x310: val = CM_VMPU_310; break;
2774 	case 0x300: val = CM_VMPU_300; break;
2775 	case 0x330: val = CM_VMPU_330; break;
2776 	default:
2777 		iomidi = 0; break;
2778 	}
2779 	if (iomidi > 0) {
2780 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2781 		/* enable UART */
2782 		snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
2783 	}
2784 
2785 	/* set FM address */
2786 	val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2787 	switch (iosynth) {
2788 	case 0x3E8: val |= CM_FMSEL_3E8; break;
2789 	case 0x3E0: val |= CM_FMSEL_3E0; break;
2790 	case 0x3C8: val |= CM_FMSEL_3C8; break;
2791 	case 0x388: val |= CM_FMSEL_388; break;
2792 	default:
2793 		iosynth = 0; break;
2794 	}
2795 	if (iosynth > 0) {
2796 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2797 		/* enable FM */
2798 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2799 
2800 		if (snd_opl3_create(card, iosynth, iosynth + 2,
2801 				    OPL3_HW_OPL3, 0, &cm->opl3) < 0) {
2802 			printk(KERN_ERR "cmipci: no OPL device at 0x%lx, skipping...\n", iosynth);
2803 			iosynth = 0;
2804 		} else {
2805 			if ((err = snd_opl3_hwdep_new(cm->opl3, 0, 1, &cm->opl3hwdep)) < 0) {
2806 				printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2807 				return err;
2808 			}
2809 		}
2810 	}
2811 	if (! iosynth) {
2812 		/* disable FM */
2813 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val & ~CM_FMSEL_MASK);
2814 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2815 	}
2816 
2817 	/* reset mixer */
2818 	snd_cmipci_mixer_write(cm, 0, 0);
2819 
2820 	snd_cmipci_proc_init(cm);
2821 
2822 	/* create pcm devices */
2823 	pcm_index = pcm_spdif_index = 0;
2824 	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
2825 		return err;
2826 	pcm_index++;
2827 	if (cm->has_dual_dac) {
2828 		if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
2829 			return err;
2830 		pcm_index++;
2831 	}
2832 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
2833 		pcm_spdif_index = pcm_index;
2834 		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
2835 			return err;
2836 	}
2837 
2838 	/* create mixer interface & switches */
2839 	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
2840 		return err;
2841 
2842 	if (iomidi > 0) {
2843 		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
2844 					       iomidi, 0,
2845 					       cm->irq, 0, &cm->rmidi)) < 0) {
2846 			printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
2847 		}
2848 	}
2849 
2850 #ifdef USE_VAR48KRATE
2851 	for (val = 0; val < ARRAY_SIZE(rates); val++)
2852 		snd_cmipci_set_pll(cm, rates[val], val);
2853 
2854 	/*
2855 	 * (Re-)Enable external switch spdo_48k
2856 	 */
2857 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
2858 #endif /* USE_VAR48KRATE */
2859 
2860 	if (snd_cmipci_create_gameport(cm, dev) < 0)
2861 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2862 
2863 	snd_card_set_dev(card, &pci->dev);
2864 
2865 	*rcmipci = cm;
2866 	return 0;
2867 }
2868 
2869 /*
2870  */
2871 
2872 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
2873 
2874 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
2875 				      const struct pci_device_id *pci_id)
2876 {
2877 	static int dev;
2878 	snd_card_t *card;
2879 	cmipci_t *cm;
2880 	int err;
2881 
2882 	if (dev >= SNDRV_CARDS)
2883 		return -ENODEV;
2884 	if (! enable[dev]) {
2885 		dev++;
2886 		return -ENOENT;
2887 	}
2888 
2889 	card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
2890 	if (card == NULL)
2891 		return -ENOMEM;
2892 
2893 	switch (pci->device) {
2894 	case PCI_DEVICE_ID_CMEDIA_CM8738:
2895 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
2896 		strcpy(card->driver, "CMI8738");
2897 		break;
2898 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
2899 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
2900 		strcpy(card->driver, "CMI8338");
2901 		break;
2902 	default:
2903 		strcpy(card->driver, "CMIPCI");
2904 		break;
2905 	}
2906 
2907 	if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
2908 		snd_card_free(card);
2909 		return err;
2910 	}
2911 
2912 	sprintf(card->shortname, "C-Media PCI %s", card->driver);
2913 	sprintf(card->longname, "%s (model %d) at 0x%lx, irq %i",
2914 		card->shortname,
2915 		cm->chip_version,
2916 		cm->iobase,
2917 		cm->irq);
2918 
2919 	//snd_printd("%s is detected\n", card->longname);
2920 
2921 	if ((err = snd_card_register(card)) < 0) {
2922 		snd_card_free(card);
2923 		return err;
2924 	}
2925 	pci_set_drvdata(pci, card);
2926 	dev++;
2927 	return 0;
2928 
2929 }
2930 
2931 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
2932 {
2933 	snd_card_free(pci_get_drvdata(pci));
2934 	pci_set_drvdata(pci, NULL);
2935 }
2936 
2937 
2938 static struct pci_driver driver = {
2939 	.name = "C-Media PCI",
2940 	.id_table = snd_cmipci_ids,
2941 	.probe = snd_cmipci_probe,
2942 	.remove = __devexit_p(snd_cmipci_remove),
2943 };
2944 
2945 static int __init alsa_card_cmipci_init(void)
2946 {
2947 	return pci_module_init(&driver);
2948 }
2949 
2950 static void __exit alsa_card_cmipci_exit(void)
2951 {
2952 	pci_unregister_driver(&driver);
2953 }
2954 
2955 module_init(alsa_card_cmipci_init)
2956 module_exit(alsa_card_cmipci_exit)
2957