1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_SECOND_MODULUS 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37 #define CIP_HEADER_QUADLETS 2 38 #define CIP_EOH_SHIFT 31 39 #define CIP_EOH (1u << CIP_EOH_SHIFT) 40 #define CIP_EOH_MASK 0x80000000 41 #define CIP_SID_SHIFT 24 42 #define CIP_SID_MASK 0x3f000000 43 #define CIP_DBS_MASK 0x00ff0000 44 #define CIP_DBS_SHIFT 16 45 #define CIP_SPH_MASK 0x00000400 46 #define CIP_SPH_SHIFT 10 47 #define CIP_DBC_MASK 0x000000ff 48 #define CIP_FMT_SHIFT 24 49 #define CIP_FMT_MASK 0x3f000000 50 #define CIP_FDF_MASK 0x00ff0000 51 #define CIP_FDF_SHIFT 16 52 #define CIP_SYT_MASK 0x0000ffff 53 #define CIP_SYT_NO_INFO 0xffff 54 55 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 56 57 /* Audio and Music transfer protocol specific parameters */ 58 #define CIP_FMT_AM 0x10 59 #define AMDTP_FDF_NO_DATA 0xff 60 61 // For iso header and tstamp. 62 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 63 // Add nothing. 64 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 65 // Add two quadlets CIP header. 66 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 67 #define HEADER_TSTAMP_MASK 0x0000ffff 68 69 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 70 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 71 72 // The initial firmware of OXFW970 can postpone transmission of packet during finishing 73 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 74 // overrun. Actual device can skip more, then this module stops the packet streaming. 75 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 76 77 static void pcm_period_work(struct work_struct *work); 78 79 /** 80 * amdtp_stream_init - initialize an AMDTP stream structure 81 * @s: the AMDTP stream to initialize 82 * @unit: the target of the stream 83 * @dir: the direction of stream 84 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 85 * @fmt: the value of fmt field in CIP header 86 * @process_ctx_payloads: callback handler to process payloads of isoc context 87 * @protocol_size: the size to allocate newly for protocol 88 */ 89 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 90 enum amdtp_stream_direction dir, unsigned int flags, 91 unsigned int fmt, 92 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 93 unsigned int protocol_size) 94 { 95 if (process_ctx_payloads == NULL) 96 return -EINVAL; 97 98 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 99 if (!s->protocol) 100 return -ENOMEM; 101 102 s->unit = unit; 103 s->direction = dir; 104 s->flags = flags; 105 s->context = ERR_PTR(-1); 106 mutex_init(&s->mutex); 107 INIT_WORK(&s->period_work, pcm_period_work); 108 s->packet_index = 0; 109 110 init_waitqueue_head(&s->ready_wait); 111 s->callbacked = false; 112 113 s->fmt = fmt; 114 s->process_ctx_payloads = process_ctx_payloads; 115 116 if (dir == AMDTP_OUT_STREAM) 117 s->ctx_data.rx.syt_override = -1; 118 119 return 0; 120 } 121 EXPORT_SYMBOL(amdtp_stream_init); 122 123 /** 124 * amdtp_stream_destroy - free stream resources 125 * @s: the AMDTP stream to destroy 126 */ 127 void amdtp_stream_destroy(struct amdtp_stream *s) 128 { 129 /* Not initialized. */ 130 if (s->protocol == NULL) 131 return; 132 133 WARN_ON(amdtp_stream_running(s)); 134 kfree(s->protocol); 135 mutex_destroy(&s->mutex); 136 } 137 EXPORT_SYMBOL(amdtp_stream_destroy); 138 139 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 140 [CIP_SFC_32000] = 8, 141 [CIP_SFC_44100] = 8, 142 [CIP_SFC_48000] = 8, 143 [CIP_SFC_88200] = 16, 144 [CIP_SFC_96000] = 16, 145 [CIP_SFC_176400] = 32, 146 [CIP_SFC_192000] = 32, 147 }; 148 EXPORT_SYMBOL(amdtp_syt_intervals); 149 150 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 151 [CIP_SFC_32000] = 32000, 152 [CIP_SFC_44100] = 44100, 153 [CIP_SFC_48000] = 48000, 154 [CIP_SFC_88200] = 88200, 155 [CIP_SFC_96000] = 96000, 156 [CIP_SFC_176400] = 176400, 157 [CIP_SFC_192000] = 192000, 158 }; 159 EXPORT_SYMBOL(amdtp_rate_table); 160 161 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 162 struct snd_pcm_hw_rule *rule) 163 { 164 struct snd_interval *s = hw_param_interval(params, rule->var); 165 const struct snd_interval *r = 166 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 167 struct snd_interval t = {0}; 168 unsigned int step = 0; 169 int i; 170 171 for (i = 0; i < CIP_SFC_COUNT; ++i) { 172 if (snd_interval_test(r, amdtp_rate_table[i])) 173 step = max(step, amdtp_syt_intervals[i]); 174 } 175 176 t.min = roundup(s->min, step); 177 t.max = rounddown(s->max, step); 178 t.integer = 1; 179 180 return snd_interval_refine(s, &t); 181 } 182 183 /** 184 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 185 * @s: the AMDTP stream, which must be initialized. 186 * @runtime: the PCM substream runtime 187 */ 188 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 189 struct snd_pcm_runtime *runtime) 190 { 191 struct snd_pcm_hardware *hw = &runtime->hw; 192 unsigned int ctx_header_size; 193 unsigned int maximum_usec_per_period; 194 int err; 195 196 hw->info = SNDRV_PCM_INFO_BATCH | 197 SNDRV_PCM_INFO_BLOCK_TRANSFER | 198 SNDRV_PCM_INFO_INTERLEAVED | 199 SNDRV_PCM_INFO_JOINT_DUPLEX | 200 SNDRV_PCM_INFO_MMAP | 201 SNDRV_PCM_INFO_MMAP_VALID; 202 203 /* SNDRV_PCM_INFO_BATCH */ 204 hw->periods_min = 2; 205 hw->periods_max = UINT_MAX; 206 207 /* bytes for a frame */ 208 hw->period_bytes_min = 4 * hw->channels_max; 209 210 /* Just to prevent from allocating much pages. */ 211 hw->period_bytes_max = hw->period_bytes_min * 2048; 212 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 213 214 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 215 // context when total size of accumulated context header reaches 216 // PAGE_SIZE. This kicks work for the isoc context and brings 217 // callback in the middle of scheduled interrupts. 218 // Although AMDTP streams in the same domain use the same events per 219 // IRQ, use the largest size of context header between IT/IR contexts. 220 // Here, use the value of context header in IR context is for both 221 // contexts. 222 if (!(s->flags & CIP_NO_HEADER)) 223 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 224 else 225 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 226 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 227 CYCLES_PER_SECOND / ctx_header_size; 228 229 // In IEC 61883-6, one isoc packet can transfer events up to the value 230 // of syt interval. This comes from the interval of isoc cycle. As 1394 231 // OHCI controller can generate hardware IRQ per isoc packet, the 232 // interval is 125 usec. 233 // However, there are two ways of transmission in IEC 61883-6; blocking 234 // and non-blocking modes. In blocking mode, the sequence of isoc packet 235 // includes 'empty' or 'NODATA' packets which include no event. In 236 // non-blocking mode, the number of events per packet is variable up to 237 // the syt interval. 238 // Due to the above protocol design, the minimum PCM frames per 239 // interrupt should be double of the value of syt interval, thus it is 240 // 250 usec. 241 err = snd_pcm_hw_constraint_minmax(runtime, 242 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 243 250, maximum_usec_per_period); 244 if (err < 0) 245 goto end; 246 247 /* Non-Blocking stream has no more constraints */ 248 if (!(s->flags & CIP_BLOCKING)) 249 goto end; 250 251 /* 252 * One AMDTP packet can include some frames. In blocking mode, the 253 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 254 * depending on its sampling rate. For accurate period interrupt, it's 255 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 256 */ 257 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 258 apply_constraint_to_size, NULL, 259 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 260 SNDRV_PCM_HW_PARAM_RATE, -1); 261 if (err < 0) 262 goto end; 263 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 264 apply_constraint_to_size, NULL, 265 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 266 SNDRV_PCM_HW_PARAM_RATE, -1); 267 if (err < 0) 268 goto end; 269 end: 270 return err; 271 } 272 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 273 274 /** 275 * amdtp_stream_set_parameters - set stream parameters 276 * @s: the AMDTP stream to configure 277 * @rate: the sample rate 278 * @data_block_quadlets: the size of a data block in quadlet unit 279 * 280 * The parameters must be set before the stream is started, and must not be 281 * changed while the stream is running. 282 */ 283 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 284 unsigned int data_block_quadlets) 285 { 286 unsigned int sfc; 287 288 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 289 if (amdtp_rate_table[sfc] == rate) 290 break; 291 } 292 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 293 return -EINVAL; 294 295 s->sfc = sfc; 296 s->data_block_quadlets = data_block_quadlets; 297 s->syt_interval = amdtp_syt_intervals[sfc]; 298 299 // default buffering in the device. 300 if (s->direction == AMDTP_OUT_STREAM) { 301 s->ctx_data.rx.transfer_delay = 302 TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 303 304 if (s->flags & CIP_BLOCKING) { 305 // additional buffering needed to adjust for no-data 306 // packets. 307 s->ctx_data.rx.transfer_delay += 308 TICKS_PER_SECOND * s->syt_interval / rate; 309 } 310 } 311 312 return 0; 313 } 314 EXPORT_SYMBOL(amdtp_stream_set_parameters); 315 316 // The CIP header is processed in context header apart from context payload. 317 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 318 { 319 unsigned int multiplier; 320 321 if (s->flags & CIP_JUMBO_PAYLOAD) 322 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 323 else 324 multiplier = 1; 325 326 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 327 } 328 329 /** 330 * amdtp_stream_get_max_payload - get the stream's packet size 331 * @s: the AMDTP stream 332 * 333 * This function must not be called before the stream has been configured 334 * with amdtp_stream_set_parameters(). 335 */ 336 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 337 { 338 unsigned int cip_header_size; 339 340 if (!(s->flags & CIP_NO_HEADER)) 341 cip_header_size = CIP_HEADER_SIZE; 342 else 343 cip_header_size = 0; 344 345 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 346 } 347 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 348 349 /** 350 * amdtp_stream_pcm_prepare - prepare PCM device for running 351 * @s: the AMDTP stream 352 * 353 * This function should be called from the PCM device's .prepare callback. 354 */ 355 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 356 { 357 cancel_work_sync(&s->period_work); 358 s->pcm_buffer_pointer = 0; 359 s->pcm_period_pointer = 0; 360 } 361 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 362 363 static unsigned int calculate_data_blocks(unsigned int *data_block_state, 364 bool is_blocking, bool is_no_info, 365 unsigned int syt_interval, enum cip_sfc sfc) 366 { 367 unsigned int data_blocks; 368 369 /* Blocking mode. */ 370 if (is_blocking) { 371 /* This module generate empty packet for 'no data'. */ 372 if (is_no_info) 373 data_blocks = 0; 374 else 375 data_blocks = syt_interval; 376 /* Non-blocking mode. */ 377 } else { 378 if (!cip_sfc_is_base_44100(sfc)) { 379 // Sample_rate / 8000 is an integer, and precomputed. 380 data_blocks = *data_block_state; 381 } else { 382 unsigned int phase = *data_block_state; 383 384 /* 385 * This calculates the number of data blocks per packet so that 386 * 1) the overall rate is correct and exactly synchronized to 387 * the bus clock, and 388 * 2) packets with a rounded-up number of blocks occur as early 389 * as possible in the sequence (to prevent underruns of the 390 * device's buffer). 391 */ 392 if (sfc == CIP_SFC_44100) 393 /* 6 6 5 6 5 6 5 ... */ 394 data_blocks = 5 + ((phase & 1) ^ 395 (phase == 0 || phase >= 40)); 396 else 397 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 398 data_blocks = 11 * (sfc >> 1) + (phase == 0); 399 if (++phase >= (80 >> (sfc >> 1))) 400 phase = 0; 401 *data_block_state = phase; 402 } 403 } 404 405 return data_blocks; 406 } 407 408 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 409 unsigned int *syt_offset_state, enum cip_sfc sfc) 410 { 411 unsigned int syt_offset; 412 413 if (*last_syt_offset < TICKS_PER_CYCLE) { 414 if (!cip_sfc_is_base_44100(sfc)) 415 syt_offset = *last_syt_offset + *syt_offset_state; 416 else { 417 /* 418 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 419 * n * SYT_INTERVAL * 24576000 / sample_rate 420 * Modulo TICKS_PER_CYCLE, the difference between successive 421 * elements is about 1386.23. Rounding the results of this 422 * formula to the SYT precision results in a sequence of 423 * differences that begins with: 424 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 425 * This code generates _exactly_ the same sequence. 426 */ 427 unsigned int phase = *syt_offset_state; 428 unsigned int index = phase % 13; 429 430 syt_offset = *last_syt_offset; 431 syt_offset += 1386 + ((index && !(index & 3)) || 432 phase == 146); 433 if (++phase >= 147) 434 phase = 0; 435 *syt_offset_state = phase; 436 } 437 } else 438 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 439 *last_syt_offset = syt_offset; 440 441 if (syt_offset >= TICKS_PER_CYCLE) 442 syt_offset = CIP_SYT_NO_INFO; 443 444 return syt_offset; 445 } 446 447 static void update_pcm_pointers(struct amdtp_stream *s, 448 struct snd_pcm_substream *pcm, 449 unsigned int frames) 450 { 451 unsigned int ptr; 452 453 ptr = s->pcm_buffer_pointer + frames; 454 if (ptr >= pcm->runtime->buffer_size) 455 ptr -= pcm->runtime->buffer_size; 456 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 457 458 s->pcm_period_pointer += frames; 459 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 460 s->pcm_period_pointer -= pcm->runtime->period_size; 461 queue_work(system_highpri_wq, &s->period_work); 462 } 463 } 464 465 static void pcm_period_work(struct work_struct *work) 466 { 467 struct amdtp_stream *s = container_of(work, struct amdtp_stream, 468 period_work); 469 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 470 471 if (pcm) 472 snd_pcm_period_elapsed(pcm); 473 } 474 475 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 476 bool sched_irq) 477 { 478 int err; 479 480 params->interrupt = sched_irq; 481 params->tag = s->tag; 482 params->sy = 0; 483 484 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 485 s->buffer.packets[s->packet_index].offset); 486 if (err < 0) { 487 dev_err(&s->unit->device, "queueing error: %d\n", err); 488 goto end; 489 } 490 491 if (++s->packet_index >= s->queue_size) 492 s->packet_index = 0; 493 end: 494 return err; 495 } 496 497 static inline int queue_out_packet(struct amdtp_stream *s, 498 struct fw_iso_packet *params, bool sched_irq) 499 { 500 params->skip = 501 !!(params->header_length == 0 && params->payload_length == 0); 502 return queue_packet(s, params, sched_irq); 503 } 504 505 static inline int queue_in_packet(struct amdtp_stream *s, 506 struct fw_iso_packet *params) 507 { 508 // Queue one packet for IR context. 509 params->header_length = s->ctx_data.tx.ctx_header_size; 510 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 511 params->skip = false; 512 return queue_packet(s, params, false); 513 } 514 515 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 516 unsigned int data_block_counter, unsigned int syt) 517 { 518 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 519 (s->data_block_quadlets << CIP_DBS_SHIFT) | 520 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 521 data_block_counter); 522 cip_header[1] = cpu_to_be32(CIP_EOH | 523 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 524 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 525 (syt & CIP_SYT_MASK)); 526 } 527 528 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 529 struct fw_iso_packet *params, unsigned int header_length, 530 unsigned int data_blocks, 531 unsigned int data_block_counter, 532 unsigned int syt, unsigned int index) 533 { 534 unsigned int payload_length; 535 __be32 *cip_header; 536 537 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 538 params->payload_length = payload_length; 539 540 if (header_length > 0) { 541 cip_header = (__be32 *)params->header; 542 generate_cip_header(s, cip_header, data_block_counter, syt); 543 params->header_length = header_length; 544 } else { 545 cip_header = NULL; 546 } 547 548 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 549 data_block_counter, s->packet_index, index); 550 } 551 552 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 553 unsigned int payload_length, 554 unsigned int *data_blocks, 555 unsigned int *data_block_counter, unsigned int *syt) 556 { 557 u32 cip_header[2]; 558 unsigned int sph; 559 unsigned int fmt; 560 unsigned int fdf; 561 unsigned int dbc; 562 bool lost; 563 564 cip_header[0] = be32_to_cpu(buf[0]); 565 cip_header[1] = be32_to_cpu(buf[1]); 566 567 /* 568 * This module supports 'Two-quadlet CIP header with SYT field'. 569 * For convenience, also check FMT field is AM824 or not. 570 */ 571 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 572 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 573 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 574 dev_info_ratelimited(&s->unit->device, 575 "Invalid CIP header for AMDTP: %08X:%08X\n", 576 cip_header[0], cip_header[1]); 577 return -EAGAIN; 578 } 579 580 /* Check valid protocol or not. */ 581 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 582 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 583 if (sph != s->sph || fmt != s->fmt) { 584 dev_info_ratelimited(&s->unit->device, 585 "Detect unexpected protocol: %08x %08x\n", 586 cip_header[0], cip_header[1]); 587 return -EAGAIN; 588 } 589 590 /* Calculate data blocks */ 591 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 592 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 593 *data_blocks = 0; 594 } else { 595 unsigned int data_block_quadlets = 596 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 597 /* avoid division by zero */ 598 if (data_block_quadlets == 0) { 599 dev_err(&s->unit->device, 600 "Detect invalid value in dbs field: %08X\n", 601 cip_header[0]); 602 return -EPROTO; 603 } 604 if (s->flags & CIP_WRONG_DBS) 605 data_block_quadlets = s->data_block_quadlets; 606 607 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 608 } 609 610 /* Check data block counter continuity */ 611 dbc = cip_header[0] & CIP_DBC_MASK; 612 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 613 *data_block_counter != UINT_MAX) 614 dbc = *data_block_counter; 615 616 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 617 *data_block_counter == UINT_MAX) { 618 lost = false; 619 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 620 lost = dbc != *data_block_counter; 621 } else { 622 unsigned int dbc_interval; 623 624 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 625 dbc_interval = s->ctx_data.tx.dbc_interval; 626 else 627 dbc_interval = *data_blocks; 628 629 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 630 } 631 632 if (lost) { 633 dev_err(&s->unit->device, 634 "Detect discontinuity of CIP: %02X %02X\n", 635 *data_block_counter, dbc); 636 return -EIO; 637 } 638 639 *data_block_counter = dbc; 640 641 *syt = cip_header[1] & CIP_SYT_MASK; 642 643 return 0; 644 } 645 646 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 647 const __be32 *ctx_header, 648 unsigned int *data_blocks, 649 unsigned int *data_block_counter, 650 unsigned int *syt, unsigned int packet_index, unsigned int index) 651 { 652 unsigned int payload_length; 653 const __be32 *cip_header; 654 unsigned int cip_header_size; 655 int err; 656 657 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 658 659 if (!(s->flags & CIP_NO_HEADER)) 660 cip_header_size = CIP_HEADER_SIZE; 661 else 662 cip_header_size = 0; 663 664 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 665 dev_err(&s->unit->device, 666 "Detect jumbo payload: %04x %04x\n", 667 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 668 return -EIO; 669 } 670 671 if (cip_header_size > 0) { 672 if (payload_length >= cip_header_size) { 673 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 674 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 675 data_blocks, data_block_counter, syt); 676 if (err < 0) 677 return err; 678 } else { 679 // Handle the cycle so that empty packet arrives. 680 cip_header = NULL; 681 *data_blocks = 0; 682 *syt = 0; 683 } 684 } else { 685 cip_header = NULL; 686 err = 0; 687 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 688 *syt = 0; 689 690 if (*data_block_counter == UINT_MAX) 691 *data_block_counter = 0; 692 } 693 694 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 695 *data_block_counter, packet_index, index); 696 697 return err; 698 } 699 700 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 701 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 702 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 703 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 704 { 705 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 706 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); 707 } 708 709 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 710 { 711 cycle += addend; 712 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 713 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 714 return cycle; 715 } 716 717 static int compare_ohci_cycle_count(u32 lval, u32 rval) 718 { 719 if (lval == rval) 720 return 0; 721 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 722 return -1; 723 else 724 return 1; 725 } 726 727 // Align to actual cycle count for the packet which is going to be scheduled. 728 // This module queued the same number of isochronous cycle as the size of queue 729 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 730 // the size of queue for scheduled cycle. 731 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 732 unsigned int queue_size) 733 { 734 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 735 return increment_ohci_cycle_count(cycle, queue_size); 736 } 737 738 static int generate_device_pkt_descs(struct amdtp_stream *s, 739 struct pkt_desc *descs, 740 const __be32 *ctx_header, 741 unsigned int packets, 742 unsigned int *desc_count) 743 { 744 unsigned int next_cycle = s->next_cycle; 745 unsigned int dbc = s->data_block_counter; 746 unsigned int packet_index = s->packet_index; 747 unsigned int queue_size = s->queue_size; 748 int i; 749 int err; 750 751 *desc_count = 0; 752 for (i = 0; i < packets; ++i) { 753 struct pkt_desc *desc = descs + *desc_count; 754 unsigned int cycle; 755 bool lost; 756 unsigned int data_blocks; 757 unsigned int syt; 758 759 cycle = compute_ohci_cycle_count(ctx_header[1]); 760 lost = (next_cycle != cycle); 761 if (lost) { 762 if (s->flags & CIP_NO_HEADER) { 763 // Fireface skips transmission just for an isoc cycle corresponding 764 // to empty packet. 765 unsigned int prev_cycle = next_cycle; 766 767 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 768 lost = (next_cycle != cycle); 769 if (!lost) { 770 // Prepare a description for the skipped cycle for 771 // sequence replay. 772 desc->cycle = prev_cycle; 773 desc->syt = 0; 774 desc->data_blocks = 0; 775 desc->data_block_counter = dbc; 776 desc->ctx_payload = NULL; 777 ++desc; 778 ++(*desc_count); 779 } 780 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 781 // OXFW970 skips transmission for several isoc cycles during 782 // asynchronous transaction. The sequence replay is impossible due 783 // to the reason. 784 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 785 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 786 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0); 787 } 788 if (lost) { 789 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 790 next_cycle, cycle); 791 return -EIO; 792 } 793 } 794 795 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 796 packet_index, i); 797 if (err < 0) 798 return err; 799 800 desc->cycle = cycle; 801 desc->syt = syt; 802 desc->data_blocks = data_blocks; 803 desc->data_block_counter = dbc; 804 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 805 806 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 807 dbc = (dbc + desc->data_blocks) & 0xff; 808 809 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 810 ++(*desc_count); 811 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 812 packet_index = (packet_index + 1) % queue_size; 813 } 814 815 s->next_cycle = next_cycle; 816 s->data_block_counter = dbc; 817 818 return 0; 819 } 820 821 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 822 unsigned int transfer_delay) 823 { 824 unsigned int syt; 825 826 syt_offset += transfer_delay; 827 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 828 (syt_offset % TICKS_PER_CYCLE); 829 return syt & CIP_SYT_MASK; 830 } 831 832 static void generate_pkt_descs(struct amdtp_stream *s, struct pkt_desc *descs, 833 const __be32 *ctx_header, unsigned int packets, 834 const struct seq_desc *seq_descs, 835 unsigned int seq_size) 836 { 837 unsigned int dbc = s->data_block_counter; 838 unsigned int seq_index = s->ctx_data.rx.seq_index; 839 int i; 840 841 for (i = 0; i < packets; ++i) { 842 struct pkt_desc *desc = descs + i; 843 unsigned int index = (s->packet_index + i) % s->queue_size; 844 const struct seq_desc *seq = seq_descs + seq_index; 845 unsigned int syt; 846 847 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 848 849 syt = seq->syt_offset; 850 if (syt != CIP_SYT_NO_INFO) { 851 syt = compute_syt(syt, desc->cycle, 852 s->ctx_data.rx.transfer_delay); 853 } 854 desc->syt = syt; 855 desc->data_blocks = seq->data_blocks; 856 857 if (s->flags & CIP_DBC_IS_END_EVENT) 858 dbc = (dbc + desc->data_blocks) & 0xff; 859 860 desc->data_block_counter = dbc; 861 862 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 863 dbc = (dbc + desc->data_blocks) & 0xff; 864 865 desc->ctx_payload = s->buffer.packets[index].buffer; 866 867 seq_index = (seq_index + 1) % seq_size; 868 869 ++ctx_header; 870 } 871 872 s->data_block_counter = dbc; 873 s->ctx_data.rx.seq_index = seq_index; 874 } 875 876 static inline void cancel_stream(struct amdtp_stream *s) 877 { 878 s->packet_index = -1; 879 if (current_work() == &s->period_work) 880 amdtp_stream_pcm_abort(s); 881 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 882 } 883 884 static void process_ctx_payloads(struct amdtp_stream *s, 885 const struct pkt_desc *descs, 886 unsigned int packets) 887 { 888 struct snd_pcm_substream *pcm; 889 unsigned int pcm_frames; 890 891 pcm = READ_ONCE(s->pcm); 892 pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm); 893 if (pcm) 894 update_pcm_pointers(s, pcm, pcm_frames); 895 } 896 897 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 898 void *header, void *private_data) 899 { 900 struct amdtp_stream *s = private_data; 901 const struct amdtp_domain *d = s->domain; 902 const __be32 *ctx_header = header; 903 const unsigned int events_per_period = d->events_per_period; 904 unsigned int event_count = s->ctx_data.rx.event_count; 905 unsigned int pkt_header_length; 906 unsigned int packets; 907 int i; 908 909 if (s->packet_index < 0) 910 return; 911 912 // Calculate the number of packets in buffer and check XRUN. 913 packets = header_length / sizeof(*ctx_header); 914 915 generate_pkt_descs(s, s->pkt_descs, ctx_header, packets, d->seq.descs, 916 d->seq.size); 917 918 process_ctx_payloads(s, s->pkt_descs, packets); 919 920 if (!(s->flags & CIP_NO_HEADER)) 921 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 922 else 923 pkt_header_length = 0; 924 925 for (i = 0; i < packets; ++i) { 926 const struct pkt_desc *desc = s->pkt_descs + i; 927 unsigned int syt; 928 struct { 929 struct fw_iso_packet params; 930 __be32 header[CIP_HEADER_QUADLETS]; 931 } template = { {0}, {0} }; 932 bool sched_irq = false; 933 934 if (s->ctx_data.rx.syt_override < 0) 935 syt = desc->syt; 936 else 937 syt = s->ctx_data.rx.syt_override; 938 939 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length, 940 desc->data_blocks, desc->data_block_counter, 941 syt, i); 942 943 if (s == s->domain->irq_target) { 944 event_count += desc->data_blocks; 945 if (event_count >= events_per_period) { 946 event_count -= events_per_period; 947 sched_irq = true; 948 } 949 } 950 951 if (queue_out_packet(s, &template.params, sched_irq) < 0) { 952 cancel_stream(s); 953 return; 954 } 955 } 956 957 s->ctx_data.rx.event_count = event_count; 958 } 959 960 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 961 void *header, void *private_data) 962 { 963 struct amdtp_stream *s = private_data; 964 struct amdtp_domain *d = s->domain; 965 const __be32 *ctx_header = header; 966 unsigned int packets; 967 unsigned int cycle; 968 int i; 969 970 if (s->packet_index < 0) 971 return; 972 973 packets = header_length / sizeof(*ctx_header); 974 975 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 976 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 977 978 for (i = 0; i < packets; ++i) { 979 struct fw_iso_packet params = { 980 .header_length = 0, 981 .payload_length = 0, 982 }; 983 bool sched_irq = (s == d->irq_target && i == packets - 1); 984 985 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 986 cancel_stream(s); 987 return; 988 } 989 } 990 } 991 992 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 993 void *header, void *private_data); 994 995 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 996 size_t header_length, void *header, void *private_data) 997 { 998 struct amdtp_stream *s = private_data; 999 struct amdtp_domain *d = s->domain; 1000 __be32 *ctx_header = header; 1001 const unsigned int queue_size = s->queue_size; 1002 unsigned int packets; 1003 unsigned int offset; 1004 1005 if (s->packet_index < 0) 1006 return; 1007 1008 packets = header_length / sizeof(*ctx_header); 1009 1010 offset = 0; 1011 while (offset < packets) { 1012 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1013 1014 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1015 break; 1016 1017 ++offset; 1018 } 1019 1020 if (offset > 0) { 1021 unsigned int length = sizeof(*ctx_header) * offset; 1022 1023 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1024 if (amdtp_streaming_error(s)) 1025 return; 1026 1027 ctx_header += offset; 1028 header_length -= length; 1029 } 1030 1031 if (offset < packets) { 1032 s->ready_processing = true; 1033 wake_up(&s->ready_wait); 1034 1035 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1036 if (amdtp_streaming_error(s)) 1037 return; 1038 1039 if (s == d->irq_target) 1040 s->context->callback.sc = irq_target_callback; 1041 else 1042 s->context->callback.sc = process_rx_packets; 1043 } 1044 } 1045 1046 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1047 void *header, void *private_data) 1048 { 1049 struct amdtp_stream *s = private_data; 1050 __be32 *ctx_header = header; 1051 unsigned int packets; 1052 unsigned int desc_count; 1053 int i; 1054 int err; 1055 1056 if (s->packet_index < 0) 1057 return; 1058 1059 // Calculate the number of packets in buffer and check XRUN. 1060 packets = header_length / s->ctx_data.tx.ctx_header_size; 1061 1062 desc_count = 0; 1063 err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count); 1064 if (err < 0) { 1065 if (err != -EAGAIN) { 1066 cancel_stream(s); 1067 return; 1068 } 1069 } else { 1070 process_ctx_payloads(s, s->pkt_descs, desc_count); 1071 } 1072 1073 for (i = 0; i < packets; ++i) { 1074 struct fw_iso_packet params = {0}; 1075 1076 if (queue_in_packet(s, ¶ms) < 0) { 1077 cancel_stream(s); 1078 return; 1079 } 1080 } 1081 } 1082 1083 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1084 void *header, void *private_data) 1085 { 1086 struct amdtp_stream *s = private_data; 1087 const __be32 *ctx_header = header; 1088 unsigned int packets; 1089 unsigned int cycle; 1090 int i; 1091 1092 if (s->packet_index < 0) 1093 return; 1094 1095 packets = header_length / s->ctx_data.tx.ctx_header_size; 1096 1097 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1098 cycle = compute_ohci_cycle_count(ctx_header[1]); 1099 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1100 1101 for (i = 0; i < packets; ++i) { 1102 struct fw_iso_packet params = {0}; 1103 1104 if (queue_in_packet(s, ¶ms) < 0) { 1105 cancel_stream(s); 1106 return; 1107 } 1108 } 1109 } 1110 1111 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1112 size_t header_length, void *header, void *private_data) 1113 { 1114 struct amdtp_stream *s = private_data; 1115 struct amdtp_domain *d = s->domain; 1116 __be32 *ctx_header; 1117 unsigned int packets; 1118 unsigned int offset; 1119 1120 if (s->packet_index < 0) 1121 return; 1122 1123 packets = header_length / s->ctx_data.tx.ctx_header_size; 1124 1125 offset = 0; 1126 ctx_header = header; 1127 while (offset < packets) { 1128 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1129 1130 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1131 break; 1132 1133 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1134 ++offset; 1135 } 1136 1137 ctx_header = header; 1138 1139 if (offset > 0) { 1140 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1141 1142 drop_tx_packets(context, tstamp, length, ctx_header, s); 1143 if (amdtp_streaming_error(s)) 1144 return; 1145 1146 ctx_header += length / sizeof(*ctx_header); 1147 header_length -= length; 1148 } 1149 1150 if (offset < packets) { 1151 s->ready_processing = true; 1152 wake_up(&s->ready_wait); 1153 1154 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1155 if (amdtp_streaming_error(s)) 1156 return; 1157 1158 context->callback.sc = process_tx_packets; 1159 } 1160 } 1161 1162 static void pool_ideal_seq_descs(struct amdtp_domain *d, unsigned int packets) 1163 { 1164 struct amdtp_stream *irq_target = d->irq_target; 1165 unsigned int seq_tail = d->seq.tail; 1166 unsigned int seq_size = d->seq.size; 1167 unsigned int min_avail; 1168 struct amdtp_stream *s; 1169 1170 min_avail = d->seq.size; 1171 list_for_each_entry(s, &d->streams, list) { 1172 unsigned int seq_index; 1173 unsigned int avail; 1174 1175 if (s->direction == AMDTP_IN_STREAM) 1176 continue; 1177 1178 seq_index = s->ctx_data.rx.seq_index; 1179 avail = d->seq.tail; 1180 if (seq_index > avail) 1181 avail += d->seq.size; 1182 avail -= seq_index; 1183 1184 if (avail < min_avail) 1185 min_avail = avail; 1186 } 1187 1188 while (min_avail < packets) { 1189 struct seq_desc *desc = d->seq.descs + seq_tail; 1190 1191 desc->syt_offset = calculate_syt_offset(&d->last_syt_offset, 1192 &d->syt_offset_state, irq_target->sfc); 1193 desc->data_blocks = calculate_data_blocks(&d->data_block_state, 1194 !!(irq_target->flags & CIP_BLOCKING), 1195 desc->syt_offset == CIP_SYT_NO_INFO, 1196 irq_target->syt_interval, irq_target->sfc); 1197 1198 ++seq_tail; 1199 seq_tail %= seq_size; 1200 1201 ++min_avail; 1202 } 1203 1204 d->seq.tail = seq_tail; 1205 } 1206 1207 static void process_ctxs_in_domain(struct amdtp_domain *d) 1208 { 1209 struct amdtp_stream *s; 1210 1211 list_for_each_entry(s, &d->streams, list) { 1212 if (s != d->irq_target && amdtp_stream_running(s)) 1213 fw_iso_context_flush_completions(s->context); 1214 1215 if (amdtp_streaming_error(s)) 1216 goto error; 1217 } 1218 1219 return; 1220 error: 1221 if (amdtp_stream_running(d->irq_target)) 1222 cancel_stream(d->irq_target); 1223 1224 list_for_each_entry(s, &d->streams, list) { 1225 if (amdtp_stream_running(s)) 1226 cancel_stream(s); 1227 } 1228 } 1229 1230 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1231 void *header, void *private_data) 1232 { 1233 struct amdtp_stream *s = private_data; 1234 struct amdtp_domain *d = s->domain; 1235 unsigned int packets = header_length / sizeof(__be32); 1236 1237 pool_ideal_seq_descs(d, packets); 1238 1239 process_rx_packets(context, tstamp, header_length, header, private_data); 1240 process_ctxs_in_domain(d); 1241 } 1242 1243 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1244 size_t header_length, void *header, void *private_data) 1245 { 1246 struct amdtp_stream *s = private_data; 1247 struct amdtp_domain *d = s->domain; 1248 unsigned int packets = header_length / sizeof(__be32); 1249 1250 pool_ideal_seq_descs(d, packets); 1251 1252 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1253 process_ctxs_in_domain(d); 1254 } 1255 1256 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1257 size_t header_length, void *header, void *private_data) 1258 { 1259 struct amdtp_stream *s = private_data; 1260 struct amdtp_domain *d = s->domain; 1261 unsigned int cycle; 1262 1263 skip_rx_packets(context, tstamp, header_length, header, private_data); 1264 process_ctxs_in_domain(d); 1265 1266 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1267 // contexts are expected to start and get callback when reaching here. 1268 cycle = s->next_cycle; 1269 list_for_each_entry(s, &d->streams, list) { 1270 if (s->direction != AMDTP_OUT_STREAM) 1271 continue; 1272 1273 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1274 cycle = s->next_cycle; 1275 1276 if (s == d->irq_target) 1277 s->context->callback.sc = irq_target_callback_intermediately; 1278 else 1279 s->context->callback.sc = process_rx_packets_intermediately; 1280 } 1281 1282 d->processing_cycle.rx_start = cycle; 1283 } 1284 1285 // this is executed one time. 1286 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1287 u32 tstamp, size_t header_length, 1288 void *header, void *private_data) 1289 { 1290 struct amdtp_stream *s = private_data; 1291 struct amdtp_domain *d = s->domain; 1292 const __be32 *ctx_header = header; 1293 u32 cycle; 1294 1295 // For in-stream, first packet has come. 1296 // For out-stream, prepared to transmit first packet 1297 s->callbacked = true; 1298 1299 if (s->direction == AMDTP_IN_STREAM) { 1300 cycle = compute_ohci_cycle_count(ctx_header[1]); 1301 1302 context->callback.sc = drop_tx_packets; 1303 } else { 1304 cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 1305 1306 if (s == d->irq_target) 1307 context->callback.sc = irq_target_callback_skip; 1308 else 1309 context->callback.sc = skip_rx_packets; 1310 } 1311 1312 context->callback.sc(context, tstamp, header_length, header, s); 1313 1314 // Decide the cycle count to begin processing content of packet in IR contexts. 1315 if (s->direction == AMDTP_IN_STREAM) { 1316 unsigned int stream_count = 0; 1317 unsigned int callbacked_count = 0; 1318 1319 list_for_each_entry(s, &d->streams, list) { 1320 if (s->direction == AMDTP_IN_STREAM) { 1321 ++stream_count; 1322 if (s->callbacked) 1323 ++callbacked_count; 1324 } 1325 } 1326 1327 if (stream_count == callbacked_count) { 1328 unsigned int next_cycle; 1329 1330 list_for_each_entry(s, &d->streams, list) { 1331 if (s->direction != AMDTP_IN_STREAM) 1332 continue; 1333 1334 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1335 d->processing_cycle.tx_init_skip); 1336 if (compare_ohci_cycle_count(next_cycle, cycle) > 0) 1337 cycle = next_cycle; 1338 1339 s->context->callback.sc = process_tx_packets_intermediately; 1340 } 1341 1342 d->processing_cycle.tx_start = cycle; 1343 } 1344 } 1345 } 1346 1347 /** 1348 * amdtp_stream_start - start transferring packets 1349 * @s: the AMDTP stream to start 1350 * @channel: the isochronous channel on the bus 1351 * @speed: firewire speed code 1352 * @queue_size: The number of packets in the queue. 1353 * @idle_irq_interval: the interval to queue packet during initial state. 1354 * 1355 * The stream cannot be started until it has been configured with 1356 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1357 * device can be started. 1358 */ 1359 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1360 unsigned int queue_size, unsigned int idle_irq_interval) 1361 { 1362 bool is_irq_target = (s == s->domain->irq_target); 1363 unsigned int ctx_header_size; 1364 unsigned int max_ctx_payload_size; 1365 enum dma_data_direction dir; 1366 int type, tag, err; 1367 1368 mutex_lock(&s->mutex); 1369 1370 if (WARN_ON(amdtp_stream_running(s) || 1371 (s->data_block_quadlets < 1))) { 1372 err = -EBADFD; 1373 goto err_unlock; 1374 } 1375 1376 if (s->direction == AMDTP_IN_STREAM) { 1377 // NOTE: IT context should be used for constant IRQ. 1378 if (is_irq_target) { 1379 err = -EINVAL; 1380 goto err_unlock; 1381 } 1382 1383 s->data_block_counter = UINT_MAX; 1384 } else { 1385 s->data_block_counter = 0; 1386 } 1387 1388 // initialize packet buffer. 1389 if (s->direction == AMDTP_IN_STREAM) { 1390 dir = DMA_FROM_DEVICE; 1391 type = FW_ISO_CONTEXT_RECEIVE; 1392 if (!(s->flags & CIP_NO_HEADER)) 1393 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1394 else 1395 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1396 } else { 1397 dir = DMA_TO_DEVICE; 1398 type = FW_ISO_CONTEXT_TRANSMIT; 1399 ctx_header_size = 0; // No effect for IT context. 1400 } 1401 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1402 1403 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1404 if (err < 0) 1405 goto err_unlock; 1406 s->queue_size = queue_size; 1407 1408 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1409 type, channel, speed, ctx_header_size, 1410 amdtp_stream_first_callback, s); 1411 if (IS_ERR(s->context)) { 1412 err = PTR_ERR(s->context); 1413 if (err == -EBUSY) 1414 dev_err(&s->unit->device, 1415 "no free stream on this controller\n"); 1416 goto err_buffer; 1417 } 1418 1419 amdtp_stream_update(s); 1420 1421 if (s->direction == AMDTP_IN_STREAM) { 1422 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1423 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1424 } else { 1425 s->ctx_data.rx.seq_index = 0; 1426 s->ctx_data.rx.event_count = 0; 1427 } 1428 1429 if (s->flags & CIP_NO_HEADER) 1430 s->tag = TAG_NO_CIP_HEADER; 1431 else 1432 s->tag = TAG_CIP; 1433 1434 s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs), 1435 GFP_KERNEL); 1436 if (!s->pkt_descs) { 1437 err = -ENOMEM; 1438 goto err_context; 1439 } 1440 1441 s->packet_index = 0; 1442 do { 1443 struct fw_iso_packet params; 1444 1445 if (s->direction == AMDTP_IN_STREAM) { 1446 err = queue_in_packet(s, ¶ms); 1447 } else { 1448 bool sched_irq = false; 1449 1450 params.header_length = 0; 1451 params.payload_length = 0; 1452 1453 if (is_irq_target) { 1454 sched_irq = !((s->packet_index + 1) % 1455 idle_irq_interval); 1456 } 1457 1458 err = queue_out_packet(s, ¶ms, sched_irq); 1459 } 1460 if (err < 0) 1461 goto err_pkt_descs; 1462 } while (s->packet_index > 0); 1463 1464 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1465 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1466 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1467 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1468 1469 s->callbacked = false; 1470 s->ready_processing = false; 1471 err = fw_iso_context_start(s->context, -1, 0, tag); 1472 if (err < 0) 1473 goto err_pkt_descs; 1474 1475 mutex_unlock(&s->mutex); 1476 1477 return 0; 1478 err_pkt_descs: 1479 kfree(s->pkt_descs); 1480 err_context: 1481 fw_iso_context_destroy(s->context); 1482 s->context = ERR_PTR(-1); 1483 err_buffer: 1484 iso_packets_buffer_destroy(&s->buffer, s->unit); 1485 err_unlock: 1486 mutex_unlock(&s->mutex); 1487 1488 return err; 1489 } 1490 1491 /** 1492 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1493 * @d: the AMDTP domain. 1494 * @s: the AMDTP stream that transports the PCM data 1495 * 1496 * Returns the current buffer position, in frames. 1497 */ 1498 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1499 struct amdtp_stream *s) 1500 { 1501 struct amdtp_stream *irq_target = d->irq_target; 1502 1503 if (irq_target && amdtp_stream_running(irq_target)) { 1504 // This function is called in software IRQ context of 1505 // period_work or process context. 1506 // 1507 // When the software IRQ context was scheduled by software IRQ 1508 // context of IT contexts, queued packets were already handled. 1509 // Therefore, no need to flush the queue in buffer furthermore. 1510 // 1511 // When the process context reach here, some packets will be 1512 // already queued in the buffer. These packets should be handled 1513 // immediately to keep better granularity of PCM pointer. 1514 // 1515 // Later, the process context will sometimes schedules software 1516 // IRQ context of the period_work. Then, no need to flush the 1517 // queue by the same reason as described in the above 1518 if (current_work() != &s->period_work) { 1519 // Queued packet should be processed without any kernel 1520 // preemption to keep latency against bus cycle. 1521 preempt_disable(); 1522 fw_iso_context_flush_completions(irq_target->context); 1523 preempt_enable(); 1524 } 1525 } 1526 1527 return READ_ONCE(s->pcm_buffer_pointer); 1528 } 1529 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1530 1531 /** 1532 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1533 * @d: the AMDTP domain. 1534 * @s: the AMDTP stream that transfers the PCM frames 1535 * 1536 * Returns zero always. 1537 */ 1538 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1539 { 1540 struct amdtp_stream *irq_target = d->irq_target; 1541 1542 // Process isochronous packets for recent isochronous cycle to handle 1543 // queued PCM frames. 1544 if (irq_target && amdtp_stream_running(irq_target)) { 1545 // Queued packet should be processed without any kernel 1546 // preemption to keep latency against bus cycle. 1547 preempt_disable(); 1548 fw_iso_context_flush_completions(irq_target->context); 1549 preempt_enable(); 1550 } 1551 1552 return 0; 1553 } 1554 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1555 1556 /** 1557 * amdtp_stream_update - update the stream after a bus reset 1558 * @s: the AMDTP stream 1559 */ 1560 void amdtp_stream_update(struct amdtp_stream *s) 1561 { 1562 /* Precomputing. */ 1563 WRITE_ONCE(s->source_node_id_field, 1564 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1565 } 1566 EXPORT_SYMBOL(amdtp_stream_update); 1567 1568 /** 1569 * amdtp_stream_stop - stop sending packets 1570 * @s: the AMDTP stream to stop 1571 * 1572 * All PCM and MIDI devices of the stream must be stopped before the stream 1573 * itself can be stopped. 1574 */ 1575 static void amdtp_stream_stop(struct amdtp_stream *s) 1576 { 1577 mutex_lock(&s->mutex); 1578 1579 if (!amdtp_stream_running(s)) { 1580 mutex_unlock(&s->mutex); 1581 return; 1582 } 1583 1584 cancel_work_sync(&s->period_work); 1585 fw_iso_context_stop(s->context); 1586 fw_iso_context_destroy(s->context); 1587 s->context = ERR_PTR(-1); 1588 iso_packets_buffer_destroy(&s->buffer, s->unit); 1589 kfree(s->pkt_descs); 1590 1591 s->callbacked = false; 1592 1593 mutex_unlock(&s->mutex); 1594 } 1595 1596 /** 1597 * amdtp_stream_pcm_abort - abort the running PCM device 1598 * @s: the AMDTP stream about to be stopped 1599 * 1600 * If the isochronous stream needs to be stopped asynchronously, call this 1601 * function first to stop the PCM device. 1602 */ 1603 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1604 { 1605 struct snd_pcm_substream *pcm; 1606 1607 pcm = READ_ONCE(s->pcm); 1608 if (pcm) 1609 snd_pcm_stop_xrun(pcm); 1610 } 1611 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1612 1613 /** 1614 * amdtp_domain_init - initialize an AMDTP domain structure 1615 * @d: the AMDTP domain to initialize. 1616 */ 1617 int amdtp_domain_init(struct amdtp_domain *d) 1618 { 1619 INIT_LIST_HEAD(&d->streams); 1620 1621 d->events_per_period = 0; 1622 1623 d->seq.descs = NULL; 1624 1625 return 0; 1626 } 1627 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1628 1629 /** 1630 * amdtp_domain_destroy - destroy an AMDTP domain structure 1631 * @d: the AMDTP domain to destroy. 1632 */ 1633 void amdtp_domain_destroy(struct amdtp_domain *d) 1634 { 1635 // At present nothing to do. 1636 return; 1637 } 1638 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 1639 1640 /** 1641 * amdtp_domain_add_stream - register isoc context into the domain. 1642 * @d: the AMDTP domain. 1643 * @s: the AMDTP stream. 1644 * @channel: the isochronous channel on the bus. 1645 * @speed: firewire speed code. 1646 */ 1647 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 1648 int channel, int speed) 1649 { 1650 struct amdtp_stream *tmp; 1651 1652 list_for_each_entry(tmp, &d->streams, list) { 1653 if (s == tmp) 1654 return -EBUSY; 1655 } 1656 1657 list_add(&s->list, &d->streams); 1658 1659 s->channel = channel; 1660 s->speed = speed; 1661 s->domain = d; 1662 1663 return 0; 1664 } 1665 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 1666 1667 /** 1668 * amdtp_domain_start - start sending packets for isoc context in the domain. 1669 * @d: the AMDTP domain. 1670 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 1671 * contexts. 1672 */ 1673 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles) 1674 { 1675 static const struct { 1676 unsigned int data_block; 1677 unsigned int syt_offset; 1678 } *entry, initial_state[] = { 1679 [CIP_SFC_32000] = { 4, 3072 }, 1680 [CIP_SFC_48000] = { 6, 1024 }, 1681 [CIP_SFC_96000] = { 12, 1024 }, 1682 [CIP_SFC_192000] = { 24, 1024 }, 1683 [CIP_SFC_44100] = { 0, 67 }, 1684 [CIP_SFC_88200] = { 0, 67 }, 1685 [CIP_SFC_176400] = { 0, 67 }, 1686 }; 1687 unsigned int events_per_buffer = d->events_per_buffer; 1688 unsigned int events_per_period = d->events_per_period; 1689 unsigned int queue_size; 1690 struct amdtp_stream *s; 1691 int err; 1692 1693 // Select an IT context as IRQ target. 1694 list_for_each_entry(s, &d->streams, list) { 1695 if (s->direction == AMDTP_OUT_STREAM) 1696 break; 1697 } 1698 if (!s) 1699 return -ENXIO; 1700 d->irq_target = s; 1701 1702 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 1703 1704 // This is a case that AMDTP streams in domain run just for MIDI 1705 // substream. Use the number of events equivalent to 10 msec as 1706 // interval of hardware IRQ. 1707 if (events_per_period == 0) 1708 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 1709 if (events_per_buffer == 0) 1710 events_per_buffer = events_per_period * 3; 1711 1712 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 1713 amdtp_rate_table[d->irq_target->sfc]); 1714 1715 d->seq.descs = kcalloc(queue_size, sizeof(*d->seq.descs), GFP_KERNEL); 1716 if (!d->seq.descs) 1717 return -ENOMEM; 1718 d->seq.size = queue_size; 1719 d->seq.tail = 0; 1720 1721 entry = &initial_state[s->sfc]; 1722 d->data_block_state = entry->data_block; 1723 d->syt_offset_state = entry->syt_offset; 1724 d->last_syt_offset = TICKS_PER_CYCLE; 1725 1726 list_for_each_entry(s, &d->streams, list) { 1727 unsigned int idle_irq_interval = 0; 1728 1729 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 1730 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 1731 amdtp_rate_table[d->irq_target->sfc]); 1732 } 1733 1734 // Starts immediately but actually DMA context starts several hundred cycles later. 1735 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 1736 if (err < 0) 1737 goto error; 1738 } 1739 1740 return 0; 1741 error: 1742 list_for_each_entry(s, &d->streams, list) 1743 amdtp_stream_stop(s); 1744 kfree(d->seq.descs); 1745 d->seq.descs = NULL; 1746 return err; 1747 } 1748 EXPORT_SYMBOL_GPL(amdtp_domain_start); 1749 1750 /** 1751 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 1752 * @d: the AMDTP domain to which the isoc contexts belong. 1753 */ 1754 void amdtp_domain_stop(struct amdtp_domain *d) 1755 { 1756 struct amdtp_stream *s, *next; 1757 1758 if (d->irq_target) 1759 amdtp_stream_stop(d->irq_target); 1760 1761 list_for_each_entry_safe(s, next, &d->streams, list) { 1762 list_del(&s->list); 1763 1764 if (s != d->irq_target) 1765 amdtp_stream_stop(s); 1766 } 1767 1768 d->events_per_period = 0; 1769 d->irq_target = NULL; 1770 1771 kfree(d->seq.descs); 1772 d->seq.descs = NULL; 1773 } 1774 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 1775