1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_SECOND_MODULUS 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37 #define CIP_HEADER_QUADLETS 2 38 #define CIP_EOH_SHIFT 31 39 #define CIP_EOH (1u << CIP_EOH_SHIFT) 40 #define CIP_EOH_MASK 0x80000000 41 #define CIP_SID_SHIFT 24 42 #define CIP_SID_MASK 0x3f000000 43 #define CIP_DBS_MASK 0x00ff0000 44 #define CIP_DBS_SHIFT 16 45 #define CIP_SPH_MASK 0x00000400 46 #define CIP_SPH_SHIFT 10 47 #define CIP_DBC_MASK 0x000000ff 48 #define CIP_FMT_SHIFT 24 49 #define CIP_FMT_MASK 0x3f000000 50 #define CIP_FDF_MASK 0x00ff0000 51 #define CIP_FDF_SHIFT 16 52 #define CIP_FDF_NO_DATA 0xff 53 #define CIP_SYT_MASK 0x0000ffff 54 #define CIP_SYT_NO_INFO 0xffff 55 #define CIP_SYT_CYCLE_MODULUS 16 56 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) 57 58 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 59 60 /* Audio and Music transfer protocol specific parameters */ 61 #define CIP_FMT_AM 0x10 62 #define AMDTP_FDF_NO_DATA 0xff 63 64 // For iso header and tstamp. 65 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 66 // Add nothing. 67 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 68 // Add two quadlets CIP header. 69 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 70 #define HEADER_TSTAMP_MASK 0x0000ffff 71 72 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 73 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 74 75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing 76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 77 // overrun. Actual device can skip more, then this module stops the packet streaming. 78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 79 80 static void pcm_period_work(struct work_struct *work); 81 82 /** 83 * amdtp_stream_init - initialize an AMDTP stream structure 84 * @s: the AMDTP stream to initialize 85 * @unit: the target of the stream 86 * @dir: the direction of stream 87 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 88 * @fmt: the value of fmt field in CIP header 89 * @process_ctx_payloads: callback handler to process payloads of isoc context 90 * @protocol_size: the size to allocate newly for protocol 91 */ 92 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 93 enum amdtp_stream_direction dir, unsigned int flags, 94 unsigned int fmt, 95 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 96 unsigned int protocol_size) 97 { 98 if (process_ctx_payloads == NULL) 99 return -EINVAL; 100 101 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 102 if (!s->protocol) 103 return -ENOMEM; 104 105 s->unit = unit; 106 s->direction = dir; 107 s->flags = flags; 108 s->context = ERR_PTR(-1); 109 mutex_init(&s->mutex); 110 INIT_WORK(&s->period_work, pcm_period_work); 111 s->packet_index = 0; 112 113 init_waitqueue_head(&s->ready_wait); 114 115 s->fmt = fmt; 116 s->process_ctx_payloads = process_ctx_payloads; 117 118 return 0; 119 } 120 EXPORT_SYMBOL(amdtp_stream_init); 121 122 /** 123 * amdtp_stream_destroy - free stream resources 124 * @s: the AMDTP stream to destroy 125 */ 126 void amdtp_stream_destroy(struct amdtp_stream *s) 127 { 128 /* Not initialized. */ 129 if (s->protocol == NULL) 130 return; 131 132 WARN_ON(amdtp_stream_running(s)); 133 kfree(s->protocol); 134 mutex_destroy(&s->mutex); 135 } 136 EXPORT_SYMBOL(amdtp_stream_destroy); 137 138 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 139 [CIP_SFC_32000] = 8, 140 [CIP_SFC_44100] = 8, 141 [CIP_SFC_48000] = 8, 142 [CIP_SFC_88200] = 16, 143 [CIP_SFC_96000] = 16, 144 [CIP_SFC_176400] = 32, 145 [CIP_SFC_192000] = 32, 146 }; 147 EXPORT_SYMBOL(amdtp_syt_intervals); 148 149 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 150 [CIP_SFC_32000] = 32000, 151 [CIP_SFC_44100] = 44100, 152 [CIP_SFC_48000] = 48000, 153 [CIP_SFC_88200] = 88200, 154 [CIP_SFC_96000] = 96000, 155 [CIP_SFC_176400] = 176400, 156 [CIP_SFC_192000] = 192000, 157 }; 158 EXPORT_SYMBOL(amdtp_rate_table); 159 160 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 161 struct snd_pcm_hw_rule *rule) 162 { 163 struct snd_interval *s = hw_param_interval(params, rule->var); 164 const struct snd_interval *r = 165 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 166 struct snd_interval t = {0}; 167 unsigned int step = 0; 168 int i; 169 170 for (i = 0; i < CIP_SFC_COUNT; ++i) { 171 if (snd_interval_test(r, amdtp_rate_table[i])) 172 step = max(step, amdtp_syt_intervals[i]); 173 } 174 175 t.min = roundup(s->min, step); 176 t.max = rounddown(s->max, step); 177 t.integer = 1; 178 179 return snd_interval_refine(s, &t); 180 } 181 182 /** 183 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 184 * @s: the AMDTP stream, which must be initialized. 185 * @runtime: the PCM substream runtime 186 */ 187 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 188 struct snd_pcm_runtime *runtime) 189 { 190 struct snd_pcm_hardware *hw = &runtime->hw; 191 unsigned int ctx_header_size; 192 unsigned int maximum_usec_per_period; 193 int err; 194 195 hw->info = SNDRV_PCM_INFO_BATCH | 196 SNDRV_PCM_INFO_BLOCK_TRANSFER | 197 SNDRV_PCM_INFO_INTERLEAVED | 198 SNDRV_PCM_INFO_JOINT_DUPLEX | 199 SNDRV_PCM_INFO_MMAP | 200 SNDRV_PCM_INFO_MMAP_VALID; 201 202 /* SNDRV_PCM_INFO_BATCH */ 203 hw->periods_min = 2; 204 hw->periods_max = UINT_MAX; 205 206 /* bytes for a frame */ 207 hw->period_bytes_min = 4 * hw->channels_max; 208 209 /* Just to prevent from allocating much pages. */ 210 hw->period_bytes_max = hw->period_bytes_min * 2048; 211 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 212 213 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 214 // context when total size of accumulated context header reaches 215 // PAGE_SIZE. This kicks work for the isoc context and brings 216 // callback in the middle of scheduled interrupts. 217 // Although AMDTP streams in the same domain use the same events per 218 // IRQ, use the largest size of context header between IT/IR contexts. 219 // Here, use the value of context header in IR context is for both 220 // contexts. 221 if (!(s->flags & CIP_NO_HEADER)) 222 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 223 else 224 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 225 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 226 CYCLES_PER_SECOND / ctx_header_size; 227 228 // In IEC 61883-6, one isoc packet can transfer events up to the value 229 // of syt interval. This comes from the interval of isoc cycle. As 1394 230 // OHCI controller can generate hardware IRQ per isoc packet, the 231 // interval is 125 usec. 232 // However, there are two ways of transmission in IEC 61883-6; blocking 233 // and non-blocking modes. In blocking mode, the sequence of isoc packet 234 // includes 'empty' or 'NODATA' packets which include no event. In 235 // non-blocking mode, the number of events per packet is variable up to 236 // the syt interval. 237 // Due to the above protocol design, the minimum PCM frames per 238 // interrupt should be double of the value of syt interval, thus it is 239 // 250 usec. 240 err = snd_pcm_hw_constraint_minmax(runtime, 241 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 242 250, maximum_usec_per_period); 243 if (err < 0) 244 goto end; 245 246 /* Non-Blocking stream has no more constraints */ 247 if (!(s->flags & CIP_BLOCKING)) 248 goto end; 249 250 /* 251 * One AMDTP packet can include some frames. In blocking mode, the 252 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 253 * depending on its sampling rate. For accurate period interrupt, it's 254 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 255 */ 256 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 257 apply_constraint_to_size, NULL, 258 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 259 SNDRV_PCM_HW_PARAM_RATE, -1); 260 if (err < 0) 261 goto end; 262 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 263 apply_constraint_to_size, NULL, 264 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 265 SNDRV_PCM_HW_PARAM_RATE, -1); 266 if (err < 0) 267 goto end; 268 end: 269 return err; 270 } 271 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 272 273 /** 274 * amdtp_stream_set_parameters - set stream parameters 275 * @s: the AMDTP stream to configure 276 * @rate: the sample rate 277 * @data_block_quadlets: the size of a data block in quadlet unit 278 * 279 * The parameters must be set before the stream is started, and must not be 280 * changed while the stream is running. 281 */ 282 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 283 unsigned int data_block_quadlets) 284 { 285 unsigned int sfc; 286 287 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 288 if (amdtp_rate_table[sfc] == rate) 289 break; 290 } 291 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 292 return -EINVAL; 293 294 s->sfc = sfc; 295 s->data_block_quadlets = data_block_quadlets; 296 s->syt_interval = amdtp_syt_intervals[sfc]; 297 298 // default buffering in the device. 299 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 300 301 // additional buffering needed to adjust for no-data packets. 302 if (s->flags & CIP_BLOCKING) 303 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 304 305 return 0; 306 } 307 EXPORT_SYMBOL(amdtp_stream_set_parameters); 308 309 // The CIP header is processed in context header apart from context payload. 310 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 311 { 312 unsigned int multiplier; 313 314 if (s->flags & CIP_JUMBO_PAYLOAD) 315 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 316 else 317 multiplier = 1; 318 319 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 320 } 321 322 /** 323 * amdtp_stream_get_max_payload - get the stream's packet size 324 * @s: the AMDTP stream 325 * 326 * This function must not be called before the stream has been configured 327 * with amdtp_stream_set_parameters(). 328 */ 329 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 330 { 331 unsigned int cip_header_size; 332 333 if (!(s->flags & CIP_NO_HEADER)) 334 cip_header_size = CIP_HEADER_SIZE; 335 else 336 cip_header_size = 0; 337 338 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 339 } 340 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 341 342 /** 343 * amdtp_stream_pcm_prepare - prepare PCM device for running 344 * @s: the AMDTP stream 345 * 346 * This function should be called from the PCM device's .prepare callback. 347 */ 348 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 349 { 350 cancel_work_sync(&s->period_work); 351 s->pcm_buffer_pointer = 0; 352 s->pcm_period_pointer = 0; 353 } 354 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 355 356 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 357 const unsigned int seq_size, unsigned int seq_tail, 358 unsigned int count) 359 { 360 const unsigned int syt_interval = s->syt_interval; 361 int i; 362 363 for (i = 0; i < count; ++i) { 364 struct seq_desc *desc = descs + seq_tail; 365 366 if (desc->syt_offset != CIP_SYT_NO_INFO) 367 desc->data_blocks = syt_interval; 368 else 369 desc->data_blocks = 0; 370 371 seq_tail = (seq_tail + 1) % seq_size; 372 } 373 } 374 375 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 376 const unsigned int seq_size, unsigned int seq_tail, 377 unsigned int count) 378 { 379 const enum cip_sfc sfc = s->sfc; 380 unsigned int state = s->ctx_data.rx.data_block_state; 381 int i; 382 383 for (i = 0; i < count; ++i) { 384 struct seq_desc *desc = descs + seq_tail; 385 386 if (!cip_sfc_is_base_44100(sfc)) { 387 // Sample_rate / 8000 is an integer, and precomputed. 388 desc->data_blocks = state; 389 } else { 390 unsigned int phase = state; 391 392 /* 393 * This calculates the number of data blocks per packet so that 394 * 1) the overall rate is correct and exactly synchronized to 395 * the bus clock, and 396 * 2) packets with a rounded-up number of blocks occur as early 397 * as possible in the sequence (to prevent underruns of the 398 * device's buffer). 399 */ 400 if (sfc == CIP_SFC_44100) 401 /* 6 6 5 6 5 6 5 ... */ 402 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); 403 else 404 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 405 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); 406 if (++phase >= (80 >> (sfc >> 1))) 407 phase = 0; 408 state = phase; 409 } 410 411 seq_tail = (seq_tail + 1) % seq_size; 412 } 413 414 s->ctx_data.rx.data_block_state = state; 415 } 416 417 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 418 unsigned int *syt_offset_state, enum cip_sfc sfc) 419 { 420 unsigned int syt_offset; 421 422 if (*last_syt_offset < TICKS_PER_CYCLE) { 423 if (!cip_sfc_is_base_44100(sfc)) 424 syt_offset = *last_syt_offset + *syt_offset_state; 425 else { 426 /* 427 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 428 * n * SYT_INTERVAL * 24576000 / sample_rate 429 * Modulo TICKS_PER_CYCLE, the difference between successive 430 * elements is about 1386.23. Rounding the results of this 431 * formula to the SYT precision results in a sequence of 432 * differences that begins with: 433 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 434 * This code generates _exactly_ the same sequence. 435 */ 436 unsigned int phase = *syt_offset_state; 437 unsigned int index = phase % 13; 438 439 syt_offset = *last_syt_offset; 440 syt_offset += 1386 + ((index && !(index & 3)) || 441 phase == 146); 442 if (++phase >= 147) 443 phase = 0; 444 *syt_offset_state = phase; 445 } 446 } else 447 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 448 *last_syt_offset = syt_offset; 449 450 if (syt_offset >= TICKS_PER_CYCLE) 451 syt_offset = CIP_SYT_NO_INFO; 452 453 return syt_offset; 454 } 455 456 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, 457 const unsigned int seq_size, unsigned int seq_tail, 458 unsigned int count) 459 { 460 const enum cip_sfc sfc = s->sfc; 461 unsigned int last = s->ctx_data.rx.last_syt_offset; 462 unsigned int state = s->ctx_data.rx.syt_offset_state; 463 int i; 464 465 for (i = 0; i < count; ++i) { 466 struct seq_desc *desc = descs + seq_tail; 467 468 desc->syt_offset = calculate_syt_offset(&last, &state, sfc); 469 470 seq_tail = (seq_tail + 1) % seq_size; 471 } 472 473 s->ctx_data.rx.last_syt_offset = last; 474 s->ctx_data.rx.syt_offset_state = state; 475 } 476 477 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, 478 unsigned int transfer_delay) 479 { 480 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; 481 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; 482 unsigned int syt_offset; 483 484 // Round up. 485 if (syt_cycle_lo < cycle_lo) 486 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; 487 syt_cycle_lo -= cycle_lo; 488 489 // Subtract transfer delay so that the synchronization offset is not so large 490 // at transmission. 491 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); 492 if (syt_offset < transfer_delay) 493 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; 494 495 return syt_offset - transfer_delay; 496 } 497 498 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. 499 // Additionally, the sequence of tx packets is severely checked against any discontinuity 500 // before filling entries in the queue. The calculation is safe even if it looks fragile by 501 // overrun. 502 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) 503 { 504 const unsigned int cache_size = s->ctx_data.tx.cache.size; 505 unsigned int cycles = s->ctx_data.tx.cache.tail; 506 507 if (cycles < head) 508 cycles += cache_size; 509 cycles -= head; 510 511 return cycles; 512 } 513 514 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *descs, unsigned int desc_count) 515 { 516 const unsigned int transfer_delay = s->transfer_delay; 517 const unsigned int cache_size = s->ctx_data.tx.cache.size; 518 struct seq_desc *cache = s->ctx_data.tx.cache.descs; 519 unsigned int cache_tail = s->ctx_data.tx.cache.tail; 520 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 521 int i; 522 523 for (i = 0; i < desc_count; ++i) { 524 struct seq_desc *dst = cache + cache_tail; 525 const struct pkt_desc *src = descs + i; 526 527 if (aware_syt && src->syt != CIP_SYT_NO_INFO) 528 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); 529 else 530 dst->syt_offset = CIP_SYT_NO_INFO; 531 dst->data_blocks = src->data_blocks; 532 533 cache_tail = (cache_tail + 1) % cache_size; 534 } 535 536 s->ctx_data.tx.cache.tail = cache_tail; 537 } 538 539 static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count) 540 { 541 struct seq_desc *descs = s->ctx_data.rx.seq.descs; 542 unsigned int seq_tail = s->ctx_data.rx.seq.tail; 543 const unsigned int seq_size = s->ctx_data.rx.seq.size; 544 545 pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count); 546 547 if (s->flags & CIP_BLOCKING) 548 pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count); 549 else 550 pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count); 551 552 s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size; 553 } 554 555 static void pool_replayed_seq(struct amdtp_stream *s, unsigned int count) 556 { 557 struct amdtp_stream *target = s->ctx_data.rx.replay_target; 558 const struct seq_desc *cache = target->ctx_data.tx.cache.descs; 559 const unsigned int cache_size = target->ctx_data.tx.cache.size; 560 unsigned int cache_head = s->ctx_data.rx.cache_head; 561 struct seq_desc *descs = s->ctx_data.rx.seq.descs; 562 const unsigned int seq_size = s->ctx_data.rx.seq.size; 563 unsigned int seq_tail = s->ctx_data.rx.seq.tail; 564 int i; 565 566 for (i = 0; i < count; ++i) { 567 descs[seq_tail] = cache[cache_head]; 568 seq_tail = (seq_tail + 1) % seq_size; 569 cache_head = (cache_head + 1) % cache_size; 570 } 571 572 s->ctx_data.rx.seq.tail = seq_tail; 573 s->ctx_data.rx.cache_head = cache_head; 574 } 575 576 static void pool_seq_descs(struct amdtp_stream *s, unsigned int count) 577 { 578 struct amdtp_domain *d = s->domain; 579 580 if (!d->replay.enable || !s->ctx_data.rx.replay_target) { 581 pool_ideal_seq_descs(s, count); 582 } else { 583 if (!d->replay.on_the_fly) { 584 pool_replayed_seq(s, count); 585 } else { 586 struct amdtp_stream *tx = s->ctx_data.rx.replay_target; 587 const unsigned int cache_size = tx->ctx_data.tx.cache.size; 588 const unsigned int cache_head = s->ctx_data.rx.cache_head; 589 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_head); 590 591 if (cached_cycles > count && cached_cycles > cache_size / 2) 592 pool_replayed_seq(s, count); 593 else 594 pool_ideal_seq_descs(s, count); 595 } 596 } 597 } 598 599 static void update_pcm_pointers(struct amdtp_stream *s, 600 struct snd_pcm_substream *pcm, 601 unsigned int frames) 602 { 603 unsigned int ptr; 604 605 ptr = s->pcm_buffer_pointer + frames; 606 if (ptr >= pcm->runtime->buffer_size) 607 ptr -= pcm->runtime->buffer_size; 608 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 609 610 s->pcm_period_pointer += frames; 611 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 612 s->pcm_period_pointer -= pcm->runtime->period_size; 613 queue_work(system_highpri_wq, &s->period_work); 614 } 615 } 616 617 static void pcm_period_work(struct work_struct *work) 618 { 619 struct amdtp_stream *s = container_of(work, struct amdtp_stream, 620 period_work); 621 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 622 623 if (pcm) 624 snd_pcm_period_elapsed(pcm); 625 } 626 627 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 628 bool sched_irq) 629 { 630 int err; 631 632 params->interrupt = sched_irq; 633 params->tag = s->tag; 634 params->sy = 0; 635 636 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 637 s->buffer.packets[s->packet_index].offset); 638 if (err < 0) { 639 dev_err(&s->unit->device, "queueing error: %d\n", err); 640 goto end; 641 } 642 643 if (++s->packet_index >= s->queue_size) 644 s->packet_index = 0; 645 end: 646 return err; 647 } 648 649 static inline int queue_out_packet(struct amdtp_stream *s, 650 struct fw_iso_packet *params, bool sched_irq) 651 { 652 params->skip = 653 !!(params->header_length == 0 && params->payload_length == 0); 654 return queue_packet(s, params, sched_irq); 655 } 656 657 static inline int queue_in_packet(struct amdtp_stream *s, 658 struct fw_iso_packet *params) 659 { 660 // Queue one packet for IR context. 661 params->header_length = s->ctx_data.tx.ctx_header_size; 662 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 663 params->skip = false; 664 return queue_packet(s, params, false); 665 } 666 667 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 668 unsigned int data_block_counter, unsigned int syt) 669 { 670 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 671 (s->data_block_quadlets << CIP_DBS_SHIFT) | 672 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 673 data_block_counter); 674 cip_header[1] = cpu_to_be32(CIP_EOH | 675 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 676 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 677 (syt & CIP_SYT_MASK)); 678 } 679 680 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 681 struct fw_iso_packet *params, unsigned int header_length, 682 unsigned int data_blocks, 683 unsigned int data_block_counter, 684 unsigned int syt, unsigned int index) 685 { 686 unsigned int payload_length; 687 __be32 *cip_header; 688 689 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 690 params->payload_length = payload_length; 691 692 if (header_length > 0) { 693 cip_header = (__be32 *)params->header; 694 generate_cip_header(s, cip_header, data_block_counter, syt); 695 params->header_length = header_length; 696 } else { 697 cip_header = NULL; 698 } 699 700 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 701 data_block_counter, s->packet_index, index); 702 } 703 704 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 705 unsigned int payload_length, 706 unsigned int *data_blocks, 707 unsigned int *data_block_counter, unsigned int *syt) 708 { 709 u32 cip_header[2]; 710 unsigned int sph; 711 unsigned int fmt; 712 unsigned int fdf; 713 unsigned int dbc; 714 bool lost; 715 716 cip_header[0] = be32_to_cpu(buf[0]); 717 cip_header[1] = be32_to_cpu(buf[1]); 718 719 /* 720 * This module supports 'Two-quadlet CIP header with SYT field'. 721 * For convenience, also check FMT field is AM824 or not. 722 */ 723 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 724 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 725 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 726 dev_info_ratelimited(&s->unit->device, 727 "Invalid CIP header for AMDTP: %08X:%08X\n", 728 cip_header[0], cip_header[1]); 729 return -EAGAIN; 730 } 731 732 /* Check valid protocol or not. */ 733 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 734 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 735 if (sph != s->sph || fmt != s->fmt) { 736 dev_info_ratelimited(&s->unit->device, 737 "Detect unexpected protocol: %08x %08x\n", 738 cip_header[0], cip_header[1]); 739 return -EAGAIN; 740 } 741 742 /* Calculate data blocks */ 743 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 744 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 745 *data_blocks = 0; 746 } else { 747 unsigned int data_block_quadlets = 748 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 749 /* avoid division by zero */ 750 if (data_block_quadlets == 0) { 751 dev_err(&s->unit->device, 752 "Detect invalid value in dbs field: %08X\n", 753 cip_header[0]); 754 return -EPROTO; 755 } 756 if (s->flags & CIP_WRONG_DBS) 757 data_block_quadlets = s->data_block_quadlets; 758 759 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 760 } 761 762 /* Check data block counter continuity */ 763 dbc = cip_header[0] & CIP_DBC_MASK; 764 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 765 *data_block_counter != UINT_MAX) 766 dbc = *data_block_counter; 767 768 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 769 *data_block_counter == UINT_MAX) { 770 lost = false; 771 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 772 lost = dbc != *data_block_counter; 773 } else { 774 unsigned int dbc_interval; 775 776 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 777 dbc_interval = s->ctx_data.tx.dbc_interval; 778 else 779 dbc_interval = *data_blocks; 780 781 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 782 } 783 784 if (lost) { 785 dev_err(&s->unit->device, 786 "Detect discontinuity of CIP: %02X %02X\n", 787 *data_block_counter, dbc); 788 return -EIO; 789 } 790 791 *data_block_counter = dbc; 792 793 if (!(s->flags & CIP_UNAWARE_SYT)) 794 *syt = cip_header[1] & CIP_SYT_MASK; 795 796 return 0; 797 } 798 799 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 800 const __be32 *ctx_header, 801 unsigned int *data_blocks, 802 unsigned int *data_block_counter, 803 unsigned int *syt, unsigned int packet_index, unsigned int index) 804 { 805 unsigned int payload_length; 806 const __be32 *cip_header; 807 unsigned int cip_header_size; 808 809 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 810 811 if (!(s->flags & CIP_NO_HEADER)) 812 cip_header_size = CIP_HEADER_SIZE; 813 else 814 cip_header_size = 0; 815 816 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 817 dev_err(&s->unit->device, 818 "Detect jumbo payload: %04x %04x\n", 819 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 820 return -EIO; 821 } 822 823 if (cip_header_size > 0) { 824 if (payload_length >= cip_header_size) { 825 int err; 826 827 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 828 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 829 data_blocks, data_block_counter, syt); 830 if (err < 0) 831 return err; 832 } else { 833 // Handle the cycle so that empty packet arrives. 834 cip_header = NULL; 835 *data_blocks = 0; 836 *syt = 0; 837 } 838 } else { 839 cip_header = NULL; 840 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 841 *syt = 0; 842 843 if (*data_block_counter == UINT_MAX) 844 *data_block_counter = 0; 845 } 846 847 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 848 *data_block_counter, packet_index, index); 849 850 return 0; 851 } 852 853 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 854 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 855 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 856 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 857 { 858 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 859 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); 860 } 861 862 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 863 { 864 cycle += addend; 865 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 866 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 867 return cycle; 868 } 869 870 static int compare_ohci_cycle_count(u32 lval, u32 rval) 871 { 872 if (lval == rval) 873 return 0; 874 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 875 return -1; 876 else 877 return 1; 878 } 879 880 // Align to actual cycle count for the packet which is going to be scheduled. 881 // This module queued the same number of isochronous cycle as the size of queue 882 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 883 // the size of queue for scheduled cycle. 884 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 885 unsigned int queue_size) 886 { 887 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 888 return increment_ohci_cycle_count(cycle, queue_size); 889 } 890 891 static int generate_device_pkt_descs(struct amdtp_stream *s, 892 struct pkt_desc *descs, 893 const __be32 *ctx_header, 894 unsigned int packets, 895 unsigned int *desc_count) 896 { 897 unsigned int next_cycle = s->next_cycle; 898 unsigned int dbc = s->data_block_counter; 899 unsigned int packet_index = s->packet_index; 900 unsigned int queue_size = s->queue_size; 901 int i; 902 int err; 903 904 *desc_count = 0; 905 for (i = 0; i < packets; ++i) { 906 struct pkt_desc *desc = descs + *desc_count; 907 unsigned int cycle; 908 bool lost; 909 unsigned int data_blocks; 910 unsigned int syt; 911 912 cycle = compute_ohci_cycle_count(ctx_header[1]); 913 lost = (next_cycle != cycle); 914 if (lost) { 915 if (s->flags & CIP_NO_HEADER) { 916 // Fireface skips transmission just for an isoc cycle corresponding 917 // to empty packet. 918 unsigned int prev_cycle = next_cycle; 919 920 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 921 lost = (next_cycle != cycle); 922 if (!lost) { 923 // Prepare a description for the skipped cycle for 924 // sequence replay. 925 desc->cycle = prev_cycle; 926 desc->syt = 0; 927 desc->data_blocks = 0; 928 desc->data_block_counter = dbc; 929 desc->ctx_payload = NULL; 930 ++desc; 931 ++(*desc_count); 932 } 933 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 934 // OXFW970 skips transmission for several isoc cycles during 935 // asynchronous transaction. The sequence replay is impossible due 936 // to the reason. 937 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 938 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 939 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0); 940 } 941 if (lost) { 942 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 943 next_cycle, cycle); 944 return -EIO; 945 } 946 } 947 948 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 949 packet_index, i); 950 if (err < 0) 951 return err; 952 953 desc->cycle = cycle; 954 desc->syt = syt; 955 desc->data_blocks = data_blocks; 956 desc->data_block_counter = dbc; 957 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 958 959 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 960 dbc = (dbc + desc->data_blocks) & 0xff; 961 962 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 963 ++(*desc_count); 964 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 965 packet_index = (packet_index + 1) % queue_size; 966 } 967 968 s->next_cycle = next_cycle; 969 s->data_block_counter = dbc; 970 971 return 0; 972 } 973 974 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 975 unsigned int transfer_delay) 976 { 977 unsigned int syt; 978 979 syt_offset += transfer_delay; 980 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 981 (syt_offset % TICKS_PER_CYCLE); 982 return syt & CIP_SYT_MASK; 983 } 984 985 static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets) 986 { 987 struct pkt_desc *descs = s->pkt_descs; 988 const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; 989 const unsigned int seq_size = s->ctx_data.rx.seq.size; 990 unsigned int dbc = s->data_block_counter; 991 unsigned int seq_head = s->ctx_data.rx.seq.head; 992 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 993 int i; 994 995 for (i = 0; i < packets; ++i) { 996 struct pkt_desc *desc = descs + i; 997 unsigned int index = (s->packet_index + i) % s->queue_size; 998 const struct seq_desc *seq = seq_descs + seq_head; 999 1000 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 1001 1002 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) 1003 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); 1004 else 1005 desc->syt = CIP_SYT_NO_INFO; 1006 1007 desc->data_blocks = seq->data_blocks; 1008 1009 if (s->flags & CIP_DBC_IS_END_EVENT) 1010 dbc = (dbc + desc->data_blocks) & 0xff; 1011 1012 desc->data_block_counter = dbc; 1013 1014 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1015 dbc = (dbc + desc->data_blocks) & 0xff; 1016 1017 desc->ctx_payload = s->buffer.packets[index].buffer; 1018 1019 seq_head = (seq_head + 1) % seq_size; 1020 1021 ++ctx_header; 1022 } 1023 1024 s->data_block_counter = dbc; 1025 s->ctx_data.rx.seq.head = seq_head; 1026 } 1027 1028 static inline void cancel_stream(struct amdtp_stream *s) 1029 { 1030 s->packet_index = -1; 1031 if (current_work() == &s->period_work) 1032 amdtp_stream_pcm_abort(s); 1033 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 1034 } 1035 1036 static void process_ctx_payloads(struct amdtp_stream *s, 1037 const struct pkt_desc *descs, 1038 unsigned int packets) 1039 { 1040 struct snd_pcm_substream *pcm; 1041 unsigned int pcm_frames; 1042 1043 pcm = READ_ONCE(s->pcm); 1044 pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm); 1045 if (pcm) 1046 update_pcm_pointers(s, pcm, pcm_frames); 1047 } 1048 1049 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1050 void *header, void *private_data) 1051 { 1052 struct amdtp_stream *s = private_data; 1053 const struct amdtp_domain *d = s->domain; 1054 const __be32 *ctx_header = header; 1055 const unsigned int events_per_period = d->events_per_period; 1056 unsigned int event_count = s->ctx_data.rx.event_count; 1057 unsigned int pkt_header_length; 1058 unsigned int packets; 1059 int i; 1060 1061 if (s->packet_index < 0) 1062 return; 1063 1064 // Calculate the number of packets in buffer and check XRUN. 1065 packets = header_length / sizeof(*ctx_header); 1066 1067 pool_seq_descs(s, packets); 1068 1069 generate_pkt_descs(s, ctx_header, packets); 1070 1071 process_ctx_payloads(s, s->pkt_descs, packets); 1072 1073 if (!(s->flags & CIP_NO_HEADER)) 1074 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 1075 else 1076 pkt_header_length = 0; 1077 1078 for (i = 0; i < packets; ++i) { 1079 const struct pkt_desc *desc = s->pkt_descs + i; 1080 struct { 1081 struct fw_iso_packet params; 1082 __be32 header[CIP_HEADER_QUADLETS]; 1083 } template = { {0}, {0} }; 1084 bool sched_irq = false; 1085 1086 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length, 1087 desc->data_blocks, desc->data_block_counter, 1088 desc->syt, i); 1089 1090 if (s == s->domain->irq_target) { 1091 event_count += desc->data_blocks; 1092 if (event_count >= events_per_period) { 1093 event_count -= events_per_period; 1094 sched_irq = true; 1095 } 1096 } 1097 1098 if (queue_out_packet(s, &template.params, sched_irq) < 0) { 1099 cancel_stream(s); 1100 return; 1101 } 1102 } 1103 1104 s->ctx_data.rx.event_count = event_count; 1105 } 1106 1107 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1108 void *header, void *private_data) 1109 { 1110 struct amdtp_stream *s = private_data; 1111 struct amdtp_domain *d = s->domain; 1112 const __be32 *ctx_header = header; 1113 unsigned int packets; 1114 unsigned int cycle; 1115 int i; 1116 1117 if (s->packet_index < 0) 1118 return; 1119 1120 packets = header_length / sizeof(*ctx_header); 1121 1122 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 1123 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1124 1125 for (i = 0; i < packets; ++i) { 1126 struct fw_iso_packet params = { 1127 .header_length = 0, 1128 .payload_length = 0, 1129 }; 1130 bool sched_irq = (s == d->irq_target && i == packets - 1); 1131 1132 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 1133 cancel_stream(s); 1134 return; 1135 } 1136 } 1137 } 1138 1139 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1140 void *header, void *private_data); 1141 1142 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1143 size_t header_length, void *header, void *private_data) 1144 { 1145 struct amdtp_stream *s = private_data; 1146 struct amdtp_domain *d = s->domain; 1147 __be32 *ctx_header = header; 1148 const unsigned int queue_size = s->queue_size; 1149 unsigned int packets; 1150 unsigned int offset; 1151 1152 if (s->packet_index < 0) 1153 return; 1154 1155 packets = header_length / sizeof(*ctx_header); 1156 1157 offset = 0; 1158 while (offset < packets) { 1159 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1160 1161 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1162 break; 1163 1164 ++offset; 1165 } 1166 1167 if (offset > 0) { 1168 unsigned int length = sizeof(*ctx_header) * offset; 1169 1170 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1171 if (amdtp_streaming_error(s)) 1172 return; 1173 1174 ctx_header += offset; 1175 header_length -= length; 1176 } 1177 1178 if (offset < packets) { 1179 s->ready_processing = true; 1180 wake_up(&s->ready_wait); 1181 1182 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1183 if (amdtp_streaming_error(s)) 1184 return; 1185 1186 if (s == d->irq_target) 1187 s->context->callback.sc = irq_target_callback; 1188 else 1189 s->context->callback.sc = process_rx_packets; 1190 } 1191 } 1192 1193 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1194 void *header, void *private_data) 1195 { 1196 struct amdtp_stream *s = private_data; 1197 __be32 *ctx_header = header; 1198 unsigned int packets; 1199 unsigned int desc_count; 1200 int i; 1201 int err; 1202 1203 if (s->packet_index < 0) 1204 return; 1205 1206 // Calculate the number of packets in buffer and check XRUN. 1207 packets = header_length / s->ctx_data.tx.ctx_header_size; 1208 1209 desc_count = 0; 1210 err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count); 1211 if (err < 0) { 1212 if (err != -EAGAIN) { 1213 cancel_stream(s); 1214 return; 1215 } 1216 } else { 1217 struct amdtp_domain *d = s->domain; 1218 1219 process_ctx_payloads(s, s->pkt_descs, desc_count); 1220 1221 if (d->replay.enable) 1222 cache_seq(s, s->pkt_descs, desc_count); 1223 } 1224 1225 for (i = 0; i < packets; ++i) { 1226 struct fw_iso_packet params = {0}; 1227 1228 if (queue_in_packet(s, ¶ms) < 0) { 1229 cancel_stream(s); 1230 return; 1231 } 1232 } 1233 } 1234 1235 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1236 void *header, void *private_data) 1237 { 1238 struct amdtp_stream *s = private_data; 1239 const __be32 *ctx_header = header; 1240 unsigned int packets; 1241 unsigned int cycle; 1242 int i; 1243 1244 if (s->packet_index < 0) 1245 return; 1246 1247 packets = header_length / s->ctx_data.tx.ctx_header_size; 1248 1249 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1250 cycle = compute_ohci_cycle_count(ctx_header[1]); 1251 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1252 1253 for (i = 0; i < packets; ++i) { 1254 struct fw_iso_packet params = {0}; 1255 1256 if (queue_in_packet(s, ¶ms) < 0) { 1257 cancel_stream(s); 1258 return; 1259 } 1260 } 1261 } 1262 1263 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1264 size_t header_length, void *header, void *private_data) 1265 { 1266 struct amdtp_stream *s = private_data; 1267 struct amdtp_domain *d = s->domain; 1268 __be32 *ctx_header; 1269 unsigned int packets; 1270 unsigned int offset; 1271 1272 if (s->packet_index < 0) 1273 return; 1274 1275 packets = header_length / s->ctx_data.tx.ctx_header_size; 1276 1277 offset = 0; 1278 ctx_header = header; 1279 while (offset < packets) { 1280 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1281 1282 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1283 break; 1284 1285 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1286 ++offset; 1287 } 1288 1289 ctx_header = header; 1290 1291 if (offset > 0) { 1292 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1293 1294 drop_tx_packets(context, tstamp, length, ctx_header, s); 1295 if (amdtp_streaming_error(s)) 1296 return; 1297 1298 ctx_header += length / sizeof(*ctx_header); 1299 header_length -= length; 1300 } 1301 1302 if (offset < packets) { 1303 s->ready_processing = true; 1304 wake_up(&s->ready_wait); 1305 1306 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1307 if (amdtp_streaming_error(s)) 1308 return; 1309 1310 context->callback.sc = process_tx_packets; 1311 } 1312 } 1313 1314 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, 1315 size_t header_length, void *header, void *private_data) 1316 { 1317 struct amdtp_stream *s = private_data; 1318 struct amdtp_domain *d = s->domain; 1319 __be32 *ctx_header; 1320 unsigned int count; 1321 unsigned int events; 1322 int i; 1323 1324 if (s->packet_index < 0) 1325 return; 1326 1327 count = header_length / s->ctx_data.tx.ctx_header_size; 1328 1329 // Attempt to detect any event in the batch of packets. 1330 events = 0; 1331 ctx_header = header; 1332 for (i = 0; i < count; ++i) { 1333 unsigned int payload_quads = 1334 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); 1335 unsigned int data_blocks; 1336 1337 if (s->flags & CIP_NO_HEADER) { 1338 data_blocks = payload_quads / s->data_block_quadlets; 1339 } else { 1340 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 1341 1342 if (payload_quads < CIP_HEADER_QUADLETS) { 1343 data_blocks = 0; 1344 } else { 1345 payload_quads -= CIP_HEADER_QUADLETS; 1346 1347 if (s->flags & CIP_UNAWARE_SYT) { 1348 data_blocks = payload_quads / s->data_block_quadlets; 1349 } else { 1350 u32 cip1 = be32_to_cpu(cip_headers[1]); 1351 1352 // NODATA packet can includes any data blocks but they are 1353 // not available as event. 1354 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) 1355 data_blocks = 0; 1356 else 1357 data_blocks = payload_quads / s->data_block_quadlets; 1358 } 1359 } 1360 } 1361 1362 events += data_blocks; 1363 1364 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1365 } 1366 1367 drop_tx_packets(context, tstamp, header_length, header, s); 1368 1369 if (events > 0) 1370 s->ctx_data.tx.event_starts = true; 1371 1372 // Decide the cycle count to begin processing content of packet in IR contexts. 1373 { 1374 unsigned int stream_count = 0; 1375 unsigned int event_starts_count = 0; 1376 unsigned int cycle = UINT_MAX; 1377 1378 list_for_each_entry(s, &d->streams, list) { 1379 if (s->direction == AMDTP_IN_STREAM) { 1380 ++stream_count; 1381 if (s->ctx_data.tx.event_starts) 1382 ++event_starts_count; 1383 } 1384 } 1385 1386 if (stream_count == event_starts_count) { 1387 unsigned int next_cycle; 1388 1389 list_for_each_entry(s, &d->streams, list) { 1390 if (s->direction != AMDTP_IN_STREAM) 1391 continue; 1392 1393 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1394 d->processing_cycle.tx_init_skip); 1395 if (cycle == UINT_MAX || 1396 compare_ohci_cycle_count(next_cycle, cycle) > 0) 1397 cycle = next_cycle; 1398 1399 s->context->callback.sc = process_tx_packets_intermediately; 1400 } 1401 1402 d->processing_cycle.tx_start = cycle; 1403 } 1404 } 1405 } 1406 1407 static void process_ctxs_in_domain(struct amdtp_domain *d) 1408 { 1409 struct amdtp_stream *s; 1410 1411 list_for_each_entry(s, &d->streams, list) { 1412 if (s != d->irq_target && amdtp_stream_running(s)) 1413 fw_iso_context_flush_completions(s->context); 1414 1415 if (amdtp_streaming_error(s)) 1416 goto error; 1417 } 1418 1419 return; 1420 error: 1421 if (amdtp_stream_running(d->irq_target)) 1422 cancel_stream(d->irq_target); 1423 1424 list_for_each_entry(s, &d->streams, list) { 1425 if (amdtp_stream_running(s)) 1426 cancel_stream(s); 1427 } 1428 } 1429 1430 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1431 void *header, void *private_data) 1432 { 1433 struct amdtp_stream *s = private_data; 1434 struct amdtp_domain *d = s->domain; 1435 1436 process_rx_packets(context, tstamp, header_length, header, private_data); 1437 process_ctxs_in_domain(d); 1438 } 1439 1440 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1441 size_t header_length, void *header, void *private_data) 1442 { 1443 struct amdtp_stream *s = private_data; 1444 struct amdtp_domain *d = s->domain; 1445 1446 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1447 process_ctxs_in_domain(d); 1448 } 1449 1450 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1451 size_t header_length, void *header, void *private_data) 1452 { 1453 struct amdtp_stream *s = private_data; 1454 struct amdtp_domain *d = s->domain; 1455 bool ready_to_start; 1456 1457 skip_rx_packets(context, tstamp, header_length, header, private_data); 1458 process_ctxs_in_domain(d); 1459 1460 if (d->replay.enable && !d->replay.on_the_fly) { 1461 unsigned int rx_count = 0; 1462 unsigned int rx_ready_count = 0; 1463 struct amdtp_stream *rx; 1464 1465 list_for_each_entry(rx, &d->streams, list) { 1466 struct amdtp_stream *tx; 1467 unsigned int cached_cycles; 1468 1469 if (rx->direction != AMDTP_OUT_STREAM) 1470 continue; 1471 ++rx_count; 1472 1473 tx = rx->ctx_data.rx.replay_target; 1474 cached_cycles = calculate_cached_cycle_count(tx, 0); 1475 if (cached_cycles > tx->ctx_data.tx.cache.size / 2) 1476 ++rx_ready_count; 1477 } 1478 1479 ready_to_start = (rx_count == rx_ready_count); 1480 } else { 1481 ready_to_start = true; 1482 } 1483 1484 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1485 // contexts are expected to start and get callback when reaching here. 1486 if (ready_to_start) { 1487 unsigned int cycle = s->next_cycle; 1488 list_for_each_entry(s, &d->streams, list) { 1489 if (s->direction != AMDTP_OUT_STREAM) 1490 continue; 1491 1492 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1493 cycle = s->next_cycle; 1494 1495 if (s == d->irq_target) 1496 s->context->callback.sc = irq_target_callback_intermediately; 1497 else 1498 s->context->callback.sc = process_rx_packets_intermediately; 1499 } 1500 1501 d->processing_cycle.rx_start = cycle; 1502 } 1503 } 1504 1505 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to 1506 // transmit first packet. 1507 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1508 u32 tstamp, size_t header_length, 1509 void *header, void *private_data) 1510 { 1511 struct amdtp_stream *s = private_data; 1512 struct amdtp_domain *d = s->domain; 1513 1514 if (s->direction == AMDTP_IN_STREAM) { 1515 context->callback.sc = drop_tx_packets_initially; 1516 } else { 1517 if (s == d->irq_target) 1518 context->callback.sc = irq_target_callback_skip; 1519 else 1520 context->callback.sc = skip_rx_packets; 1521 } 1522 1523 context->callback.sc(context, tstamp, header_length, header, s); 1524 } 1525 1526 /** 1527 * amdtp_stream_start - start transferring packets 1528 * @s: the AMDTP stream to start 1529 * @channel: the isochronous channel on the bus 1530 * @speed: firewire speed code 1531 * @queue_size: The number of packets in the queue. 1532 * @idle_irq_interval: the interval to queue packet during initial state. 1533 * 1534 * The stream cannot be started until it has been configured with 1535 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1536 * device can be started. 1537 */ 1538 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1539 unsigned int queue_size, unsigned int idle_irq_interval) 1540 { 1541 bool is_irq_target = (s == s->domain->irq_target); 1542 unsigned int ctx_header_size; 1543 unsigned int max_ctx_payload_size; 1544 enum dma_data_direction dir; 1545 int type, tag, err; 1546 1547 mutex_lock(&s->mutex); 1548 1549 if (WARN_ON(amdtp_stream_running(s) || 1550 (s->data_block_quadlets < 1))) { 1551 err = -EBADFD; 1552 goto err_unlock; 1553 } 1554 1555 if (s->direction == AMDTP_IN_STREAM) { 1556 // NOTE: IT context should be used for constant IRQ. 1557 if (is_irq_target) { 1558 err = -EINVAL; 1559 goto err_unlock; 1560 } 1561 1562 s->data_block_counter = UINT_MAX; 1563 } else { 1564 s->data_block_counter = 0; 1565 } 1566 1567 // initialize packet buffer. 1568 if (s->direction == AMDTP_IN_STREAM) { 1569 dir = DMA_FROM_DEVICE; 1570 type = FW_ISO_CONTEXT_RECEIVE; 1571 if (!(s->flags & CIP_NO_HEADER)) 1572 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1573 else 1574 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1575 } else { 1576 dir = DMA_TO_DEVICE; 1577 type = FW_ISO_CONTEXT_TRANSMIT; 1578 ctx_header_size = 0; // No effect for IT context. 1579 } 1580 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1581 1582 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1583 if (err < 0) 1584 goto err_unlock; 1585 s->queue_size = queue_size; 1586 1587 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1588 type, channel, speed, ctx_header_size, 1589 amdtp_stream_first_callback, s); 1590 if (IS_ERR(s->context)) { 1591 err = PTR_ERR(s->context); 1592 if (err == -EBUSY) 1593 dev_err(&s->unit->device, 1594 "no free stream on this controller\n"); 1595 goto err_buffer; 1596 } 1597 1598 amdtp_stream_update(s); 1599 1600 if (s->direction == AMDTP_IN_STREAM) { 1601 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1602 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1603 s->ctx_data.tx.event_starts = false; 1604 1605 if (s->domain->replay.enable) { 1606 // struct fw_iso_context.drop_overflow_headers is false therefore it's 1607 // possible to cache much unexpectedly. 1608 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, 1609 queue_size * 3 / 2); 1610 s->ctx_data.tx.cache.tail = 0; 1611 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, 1612 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); 1613 if (!s->ctx_data.tx.cache.descs) 1614 goto err_context; 1615 } 1616 } else { 1617 static const struct { 1618 unsigned int data_block; 1619 unsigned int syt_offset; 1620 } *entry, initial_state[] = { 1621 [CIP_SFC_32000] = { 4, 3072 }, 1622 [CIP_SFC_48000] = { 6, 1024 }, 1623 [CIP_SFC_96000] = { 12, 1024 }, 1624 [CIP_SFC_192000] = { 24, 1024 }, 1625 [CIP_SFC_44100] = { 0, 67 }, 1626 [CIP_SFC_88200] = { 0, 67 }, 1627 [CIP_SFC_176400] = { 0, 67 }, 1628 }; 1629 1630 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); 1631 if (!s->ctx_data.rx.seq.descs) 1632 goto err_context; 1633 s->ctx_data.rx.seq.size = queue_size; 1634 s->ctx_data.rx.seq.tail = 0; 1635 s->ctx_data.rx.seq.head = 0; 1636 1637 entry = &initial_state[s->sfc]; 1638 s->ctx_data.rx.data_block_state = entry->data_block; 1639 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 1640 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 1641 1642 s->ctx_data.rx.event_count = 0; 1643 } 1644 1645 if (s->flags & CIP_NO_HEADER) 1646 s->tag = TAG_NO_CIP_HEADER; 1647 else 1648 s->tag = TAG_CIP; 1649 1650 s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs), 1651 GFP_KERNEL); 1652 if (!s->pkt_descs) { 1653 err = -ENOMEM; 1654 goto err_context; 1655 } 1656 1657 s->packet_index = 0; 1658 do { 1659 struct fw_iso_packet params; 1660 1661 if (s->direction == AMDTP_IN_STREAM) { 1662 err = queue_in_packet(s, ¶ms); 1663 } else { 1664 bool sched_irq = false; 1665 1666 params.header_length = 0; 1667 params.payload_length = 0; 1668 1669 if (is_irq_target) { 1670 sched_irq = !((s->packet_index + 1) % 1671 idle_irq_interval); 1672 } 1673 1674 err = queue_out_packet(s, ¶ms, sched_irq); 1675 } 1676 if (err < 0) 1677 goto err_pkt_descs; 1678 } while (s->packet_index > 0); 1679 1680 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1681 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1682 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1683 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1684 1685 s->ready_processing = false; 1686 err = fw_iso_context_start(s->context, -1, 0, tag); 1687 if (err < 0) 1688 goto err_pkt_descs; 1689 1690 mutex_unlock(&s->mutex); 1691 1692 return 0; 1693 err_pkt_descs: 1694 kfree(s->pkt_descs); 1695 err_context: 1696 if (s->direction == AMDTP_OUT_STREAM) { 1697 kfree(s->ctx_data.rx.seq.descs); 1698 } else { 1699 if (s->domain->replay.enable) 1700 kfree(s->ctx_data.tx.cache.descs); 1701 } 1702 fw_iso_context_destroy(s->context); 1703 s->context = ERR_PTR(-1); 1704 err_buffer: 1705 iso_packets_buffer_destroy(&s->buffer, s->unit); 1706 err_unlock: 1707 mutex_unlock(&s->mutex); 1708 1709 return err; 1710 } 1711 1712 /** 1713 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1714 * @d: the AMDTP domain. 1715 * @s: the AMDTP stream that transports the PCM data 1716 * 1717 * Returns the current buffer position, in frames. 1718 */ 1719 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1720 struct amdtp_stream *s) 1721 { 1722 struct amdtp_stream *irq_target = d->irq_target; 1723 1724 if (irq_target && amdtp_stream_running(irq_target)) { 1725 // This function is called in software IRQ context of 1726 // period_work or process context. 1727 // 1728 // When the software IRQ context was scheduled by software IRQ 1729 // context of IT contexts, queued packets were already handled. 1730 // Therefore, no need to flush the queue in buffer furthermore. 1731 // 1732 // When the process context reach here, some packets will be 1733 // already queued in the buffer. These packets should be handled 1734 // immediately to keep better granularity of PCM pointer. 1735 // 1736 // Later, the process context will sometimes schedules software 1737 // IRQ context of the period_work. Then, no need to flush the 1738 // queue by the same reason as described in the above 1739 if (current_work() != &s->period_work) { 1740 // Queued packet should be processed without any kernel 1741 // preemption to keep latency against bus cycle. 1742 preempt_disable(); 1743 fw_iso_context_flush_completions(irq_target->context); 1744 preempt_enable(); 1745 } 1746 } 1747 1748 return READ_ONCE(s->pcm_buffer_pointer); 1749 } 1750 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1751 1752 /** 1753 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1754 * @d: the AMDTP domain. 1755 * @s: the AMDTP stream that transfers the PCM frames 1756 * 1757 * Returns zero always. 1758 */ 1759 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1760 { 1761 struct amdtp_stream *irq_target = d->irq_target; 1762 1763 // Process isochronous packets for recent isochronous cycle to handle 1764 // queued PCM frames. 1765 if (irq_target && amdtp_stream_running(irq_target)) { 1766 // Queued packet should be processed without any kernel 1767 // preemption to keep latency against bus cycle. 1768 preempt_disable(); 1769 fw_iso_context_flush_completions(irq_target->context); 1770 preempt_enable(); 1771 } 1772 1773 return 0; 1774 } 1775 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1776 1777 /** 1778 * amdtp_stream_update - update the stream after a bus reset 1779 * @s: the AMDTP stream 1780 */ 1781 void amdtp_stream_update(struct amdtp_stream *s) 1782 { 1783 /* Precomputing. */ 1784 WRITE_ONCE(s->source_node_id_field, 1785 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1786 } 1787 EXPORT_SYMBOL(amdtp_stream_update); 1788 1789 /** 1790 * amdtp_stream_stop - stop sending packets 1791 * @s: the AMDTP stream to stop 1792 * 1793 * All PCM and MIDI devices of the stream must be stopped before the stream 1794 * itself can be stopped. 1795 */ 1796 static void amdtp_stream_stop(struct amdtp_stream *s) 1797 { 1798 mutex_lock(&s->mutex); 1799 1800 if (!amdtp_stream_running(s)) { 1801 mutex_unlock(&s->mutex); 1802 return; 1803 } 1804 1805 cancel_work_sync(&s->period_work); 1806 fw_iso_context_stop(s->context); 1807 fw_iso_context_destroy(s->context); 1808 s->context = ERR_PTR(-1); 1809 iso_packets_buffer_destroy(&s->buffer, s->unit); 1810 kfree(s->pkt_descs); 1811 1812 if (s->direction == AMDTP_OUT_STREAM) { 1813 kfree(s->ctx_data.rx.seq.descs); 1814 } else { 1815 if (s->domain->replay.enable) 1816 kfree(s->ctx_data.tx.cache.descs); 1817 } 1818 1819 mutex_unlock(&s->mutex); 1820 } 1821 1822 /** 1823 * amdtp_stream_pcm_abort - abort the running PCM device 1824 * @s: the AMDTP stream about to be stopped 1825 * 1826 * If the isochronous stream needs to be stopped asynchronously, call this 1827 * function first to stop the PCM device. 1828 */ 1829 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1830 { 1831 struct snd_pcm_substream *pcm; 1832 1833 pcm = READ_ONCE(s->pcm); 1834 if (pcm) 1835 snd_pcm_stop_xrun(pcm); 1836 } 1837 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1838 1839 /** 1840 * amdtp_domain_init - initialize an AMDTP domain structure 1841 * @d: the AMDTP domain to initialize. 1842 */ 1843 int amdtp_domain_init(struct amdtp_domain *d) 1844 { 1845 INIT_LIST_HEAD(&d->streams); 1846 1847 d->events_per_period = 0; 1848 1849 return 0; 1850 } 1851 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1852 1853 /** 1854 * amdtp_domain_destroy - destroy an AMDTP domain structure 1855 * @d: the AMDTP domain to destroy. 1856 */ 1857 void amdtp_domain_destroy(struct amdtp_domain *d) 1858 { 1859 // At present nothing to do. 1860 return; 1861 } 1862 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 1863 1864 /** 1865 * amdtp_domain_add_stream - register isoc context into the domain. 1866 * @d: the AMDTP domain. 1867 * @s: the AMDTP stream. 1868 * @channel: the isochronous channel on the bus. 1869 * @speed: firewire speed code. 1870 */ 1871 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 1872 int channel, int speed) 1873 { 1874 struct amdtp_stream *tmp; 1875 1876 list_for_each_entry(tmp, &d->streams, list) { 1877 if (s == tmp) 1878 return -EBUSY; 1879 } 1880 1881 list_add(&s->list, &d->streams); 1882 1883 s->channel = channel; 1884 s->speed = speed; 1885 s->domain = d; 1886 1887 return 0; 1888 } 1889 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 1890 1891 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams 1892 // is less than the number of rx streams, the first tx stream is selected. 1893 static int make_association(struct amdtp_domain *d) 1894 { 1895 unsigned int dst_index = 0; 1896 struct amdtp_stream *rx; 1897 1898 // Make association to replay target. 1899 list_for_each_entry(rx, &d->streams, list) { 1900 if (rx->direction == AMDTP_OUT_STREAM) { 1901 unsigned int src_index = 0; 1902 struct amdtp_stream *tx = NULL; 1903 struct amdtp_stream *s; 1904 1905 list_for_each_entry(s, &d->streams, list) { 1906 if (s->direction == AMDTP_IN_STREAM) { 1907 if (dst_index == src_index) { 1908 tx = s; 1909 break; 1910 } 1911 1912 ++src_index; 1913 } 1914 } 1915 if (!tx) { 1916 // Select the first entry. 1917 list_for_each_entry(s, &d->streams, list) { 1918 if (s->direction == AMDTP_IN_STREAM) { 1919 tx = s; 1920 break; 1921 } 1922 } 1923 // No target is available to replay sequence. 1924 if (!tx) 1925 return -EINVAL; 1926 } 1927 1928 rx->ctx_data.rx.replay_target = tx; 1929 rx->ctx_data.rx.cache_head = 0; 1930 1931 ++dst_index; 1932 } 1933 } 1934 1935 return 0; 1936 } 1937 1938 /** 1939 * amdtp_domain_start - start sending packets for isoc context in the domain. 1940 * @d: the AMDTP domain. 1941 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 1942 * contexts. 1943 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in 1944 * IT context. 1945 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay 1946 * according to arrival of events in tx packets. 1947 */ 1948 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, 1949 bool replay_on_the_fly) 1950 { 1951 unsigned int events_per_buffer = d->events_per_buffer; 1952 unsigned int events_per_period = d->events_per_period; 1953 unsigned int queue_size; 1954 struct amdtp_stream *s; 1955 int err; 1956 1957 if (replay_seq) { 1958 err = make_association(d); 1959 if (err < 0) 1960 return err; 1961 } 1962 d->replay.enable = replay_seq; 1963 d->replay.on_the_fly = replay_on_the_fly; 1964 1965 // Select an IT context as IRQ target. 1966 list_for_each_entry(s, &d->streams, list) { 1967 if (s->direction == AMDTP_OUT_STREAM) 1968 break; 1969 } 1970 if (!s) 1971 return -ENXIO; 1972 d->irq_target = s; 1973 1974 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 1975 1976 // This is a case that AMDTP streams in domain run just for MIDI 1977 // substream. Use the number of events equivalent to 10 msec as 1978 // interval of hardware IRQ. 1979 if (events_per_period == 0) 1980 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 1981 if (events_per_buffer == 0) 1982 events_per_buffer = events_per_period * 3; 1983 1984 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 1985 amdtp_rate_table[d->irq_target->sfc]); 1986 1987 list_for_each_entry(s, &d->streams, list) { 1988 unsigned int idle_irq_interval = 0; 1989 1990 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 1991 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 1992 amdtp_rate_table[d->irq_target->sfc]); 1993 } 1994 1995 // Starts immediately but actually DMA context starts several hundred cycles later. 1996 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 1997 if (err < 0) 1998 goto error; 1999 } 2000 2001 return 0; 2002 error: 2003 list_for_each_entry(s, &d->streams, list) 2004 amdtp_stream_stop(s); 2005 return err; 2006 } 2007 EXPORT_SYMBOL_GPL(amdtp_domain_start); 2008 2009 /** 2010 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 2011 * @d: the AMDTP domain to which the isoc contexts belong. 2012 */ 2013 void amdtp_domain_stop(struct amdtp_domain *d) 2014 { 2015 struct amdtp_stream *s, *next; 2016 2017 if (d->irq_target) 2018 amdtp_stream_stop(d->irq_target); 2019 2020 list_for_each_entry_safe(s, next, &d->streams, list) { 2021 list_del(&s->list); 2022 2023 if (s != d->irq_target) 2024 amdtp_stream_stop(s); 2025 } 2026 2027 d->events_per_period = 0; 2028 d->irq_target = NULL; 2029 } 2030 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 2031