xref: /openbmc/linux/sound/core/pcm_lib.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32 
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(snd_pcm_substream_t *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44 	snd_pcm_runtime_t *runtime = substream->runtime;
45 	snd_pcm_uframes_t frames, ofs, transfer;
46 
47 	if (runtime->silence_size < runtime->boundary) {
48 		snd_pcm_sframes_t noise_dist, n;
49 		if (runtime->silence_start != runtime->control->appl_ptr) {
50 			n = runtime->control->appl_ptr - runtime->silence_start;
51 			if (n < 0)
52 				n += runtime->boundary;
53 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54 				runtime->silence_filled -= n;
55 			else
56 				runtime->silence_filled = 0;
57 			runtime->silence_start = runtime->control->appl_ptr;
58 		}
59 		if (runtime->silence_filled == runtime->buffer_size)
60 			return;
61 		snd_assert(runtime->silence_filled <= runtime->buffer_size, return);
62 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64 			return;
65 		frames = runtime->silence_threshold - noise_dist;
66 		if (frames > runtime->silence_size)
67 			frames = runtime->silence_size;
68 	} else {
69 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
70 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71 			runtime->silence_filled = avail > 0 ? avail : 0;
72 			runtime->silence_start = (runtime->status->hw_ptr +
73 						  runtime->silence_filled) %
74 						 runtime->boundary;
75 		} else {
76 			ofs = runtime->status->hw_ptr;
77 			frames = new_hw_ptr - ofs;
78 			if ((snd_pcm_sframes_t)frames < 0)
79 				frames += runtime->boundary;
80 			runtime->silence_filled -= frames;
81 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
82 				runtime->silence_filled = 0;
83 				runtime->silence_start = (ofs + frames) - runtime->buffer_size;
84 			} else {
85 				runtime->silence_start = ofs - runtime->silence_filled;
86 			}
87 			if ((snd_pcm_sframes_t)runtime->silence_start < 0)
88 				runtime->silence_start += runtime->boundary;
89 		}
90 		frames = runtime->buffer_size - runtime->silence_filled;
91 	}
92 	snd_assert(frames <= runtime->buffer_size, return);
93 	if (frames == 0)
94 		return;
95 	ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
96 	while (frames > 0) {
97 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100 			if (substream->ops->silence) {
101 				int err;
102 				err = substream->ops->silence(substream, -1, ofs, transfer);
103 				snd_assert(err >= 0, );
104 			} else {
105 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107 			}
108 		} else {
109 			unsigned int c;
110 			unsigned int channels = runtime->channels;
111 			if (substream->ops->silence) {
112 				for (c = 0; c < channels; ++c) {
113 					int err;
114 					err = substream->ops->silence(substream, c, ofs, transfer);
115 					snd_assert(err >= 0, );
116 				}
117 			} else {
118 				size_t dma_csize = runtime->dma_bytes / channels;
119 				for (c = 0; c < channels; ++c) {
120 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122 				}
123 			}
124 		}
125 		runtime->silence_filled += transfer;
126 		frames -= transfer;
127 		ofs = 0;
128 	}
129 }
130 
131 static void xrun(snd_pcm_substream_t *substream)
132 {
133 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
134 #ifdef CONFIG_SND_DEBUG
135 	if (substream->pstr->xrun_debug) {
136 		snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
137 			   substream->pcm->card->number,
138 			   substream->pcm->device,
139 			   substream->stream ? 'c' : 'p');
140 		if (substream->pstr->xrun_debug > 1)
141 			dump_stack();
142 	}
143 #endif
144 }
145 
146 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(snd_pcm_substream_t *substream,
147 							  snd_pcm_runtime_t *runtime)
148 {
149 	snd_pcm_uframes_t pos;
150 
151 	pos = substream->ops->pointer(substream);
152 	if (pos == SNDRV_PCM_POS_XRUN)
153 		return pos; /* XRUN */
154 	if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
155 		snd_timestamp_now((snd_timestamp_t*)&runtime->status->tstamp, runtime->tstamp_timespec);
156 #ifdef CONFIG_SND_DEBUG
157 	if (pos >= runtime->buffer_size) {
158 		snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
159 	} else
160 #endif
161 	snd_runtime_check(pos < runtime->buffer_size, return 0);
162 	pos -= pos % runtime->min_align;
163 	return pos;
164 }
165 
166 static inline int snd_pcm_update_hw_ptr_post(snd_pcm_substream_t *substream,
167 					     snd_pcm_runtime_t *runtime)
168 {
169 	snd_pcm_uframes_t avail;
170 
171 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
172 		avail = snd_pcm_playback_avail(runtime);
173 	else
174 		avail = snd_pcm_capture_avail(runtime);
175 	if (avail > runtime->avail_max)
176 		runtime->avail_max = avail;
177 	if (avail >= runtime->stop_threshold) {
178 		if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
179 			snd_pcm_drain_done(substream);
180 		else
181 			xrun(substream);
182 		return -EPIPE;
183 	}
184 	if (avail >= runtime->control->avail_min)
185 		wake_up(&runtime->sleep);
186 	return 0;
187 }
188 
189 static inline int snd_pcm_update_hw_ptr_interrupt(snd_pcm_substream_t *substream)
190 {
191 	snd_pcm_runtime_t *runtime = substream->runtime;
192 	snd_pcm_uframes_t pos;
193 	snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
194 	snd_pcm_sframes_t delta;
195 
196 	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
197 	if (pos == SNDRV_PCM_POS_XRUN) {
198 		xrun(substream);
199 		return -EPIPE;
200 	}
201 	if (runtime->period_size == runtime->buffer_size)
202 		goto __next_buf;
203 	new_hw_ptr = runtime->hw_ptr_base + pos;
204 	hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
205 
206 	delta = hw_ptr_interrupt - new_hw_ptr;
207 	if (delta > 0) {
208 		if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
209 #ifdef CONFIG_SND_DEBUG
210 			if (runtime->periods > 1 && substream->pstr->xrun_debug) {
211 				snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
212 				if (substream->pstr->xrun_debug > 1)
213 					dump_stack();
214 			}
215 #endif
216 			return 0;
217 		}
218 	      __next_buf:
219 		runtime->hw_ptr_base += runtime->buffer_size;
220 		if (runtime->hw_ptr_base == runtime->boundary)
221 			runtime->hw_ptr_base = 0;
222 		new_hw_ptr = runtime->hw_ptr_base + pos;
223 	}
224 
225 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
226 	    runtime->silence_size > 0)
227 		snd_pcm_playback_silence(substream, new_hw_ptr);
228 
229 	runtime->status->hw_ptr = new_hw_ptr;
230 	runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
231 
232 	return snd_pcm_update_hw_ptr_post(substream, runtime);
233 }
234 
235 /* CAUTION: call it with irq disabled */
236 int snd_pcm_update_hw_ptr(snd_pcm_substream_t *substream)
237 {
238 	snd_pcm_runtime_t *runtime = substream->runtime;
239 	snd_pcm_uframes_t pos;
240 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
241 	snd_pcm_sframes_t delta;
242 
243 	old_hw_ptr = runtime->status->hw_ptr;
244 	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
245 	if (pos == SNDRV_PCM_POS_XRUN) {
246 		xrun(substream);
247 		return -EPIPE;
248 	}
249 	new_hw_ptr = runtime->hw_ptr_base + pos;
250 
251 	delta = old_hw_ptr - new_hw_ptr;
252 	if (delta > 0) {
253 		if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
254 #ifdef CONFIG_SND_DEBUG
255 			if (runtime->periods > 2 && substream->pstr->xrun_debug) {
256 				snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
257 				if (substream->pstr->xrun_debug > 1)
258 					dump_stack();
259 			}
260 #endif
261 			return 0;
262 		}
263 		runtime->hw_ptr_base += runtime->buffer_size;
264 		if (runtime->hw_ptr_base == runtime->boundary)
265 			runtime->hw_ptr_base = 0;
266 		new_hw_ptr = runtime->hw_ptr_base + pos;
267 	}
268 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
269 	    runtime->silence_size > 0)
270 		snd_pcm_playback_silence(substream, new_hw_ptr);
271 
272 	runtime->status->hw_ptr = new_hw_ptr;
273 
274 	return snd_pcm_update_hw_ptr_post(substream, runtime);
275 }
276 
277 /**
278  * snd_pcm_set_ops - set the PCM operators
279  * @pcm: the pcm instance
280  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
281  * @ops: the operator table
282  *
283  * Sets the given PCM operators to the pcm instance.
284  */
285 void snd_pcm_set_ops(snd_pcm_t *pcm, int direction, snd_pcm_ops_t *ops)
286 {
287 	snd_pcm_str_t *stream = &pcm->streams[direction];
288 	snd_pcm_substream_t *substream;
289 
290 	for (substream = stream->substream; substream != NULL; substream = substream->next)
291 		substream->ops = ops;
292 }
293 
294 
295 /**
296  * snd_pcm_sync - set the PCM sync id
297  * @substream: the pcm substream
298  *
299  * Sets the PCM sync identifier for the card.
300  */
301 void snd_pcm_set_sync(snd_pcm_substream_t * substream)
302 {
303 	snd_pcm_runtime_t *runtime = substream->runtime;
304 
305 	runtime->sync.id32[0] = substream->pcm->card->number;
306 	runtime->sync.id32[1] = -1;
307 	runtime->sync.id32[2] = -1;
308 	runtime->sync.id32[3] = -1;
309 }
310 
311 /*
312  *  Standard ioctl routine
313  */
314 
315 /* Code taken from alsa-lib */
316 #define assert(a) snd_assert((a), return -EINVAL)
317 
318 static inline unsigned int div32(unsigned int a, unsigned int b,
319 				 unsigned int *r)
320 {
321 	if (b == 0) {
322 		*r = 0;
323 		return UINT_MAX;
324 	}
325 	*r = a % b;
326 	return a / b;
327 }
328 
329 static inline unsigned int div_down(unsigned int a, unsigned int b)
330 {
331 	if (b == 0)
332 		return UINT_MAX;
333 	return a / b;
334 }
335 
336 static inline unsigned int div_up(unsigned int a, unsigned int b)
337 {
338 	unsigned int r;
339 	unsigned int q;
340 	if (b == 0)
341 		return UINT_MAX;
342 	q = div32(a, b, &r);
343 	if (r)
344 		++q;
345 	return q;
346 }
347 
348 static inline unsigned int mul(unsigned int a, unsigned int b)
349 {
350 	if (a == 0)
351 		return 0;
352 	if (div_down(UINT_MAX, a) < b)
353 		return UINT_MAX;
354 	return a * b;
355 }
356 
357 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
358 				    unsigned int c, unsigned int *r)
359 {
360 	u_int64_t n = (u_int64_t) a * b;
361 	if (c == 0) {
362 		snd_assert(n > 0, );
363 		*r = 0;
364 		return UINT_MAX;
365 	}
366 	div64_32(&n, c, r);
367 	if (n >= UINT_MAX) {
368 		*r = 0;
369 		return UINT_MAX;
370 	}
371 	return n;
372 }
373 
374 static int snd_interval_refine_min(snd_interval_t *i, unsigned int min, int openmin)
375 {
376 	int changed = 0;
377 	assert(!snd_interval_empty(i));
378 	if (i->min < min) {
379 		i->min = min;
380 		i->openmin = openmin;
381 		changed = 1;
382 	} else if (i->min == min && !i->openmin && openmin) {
383 		i->openmin = 1;
384 		changed = 1;
385 	}
386 	if (i->integer) {
387 		if (i->openmin) {
388 			i->min++;
389 			i->openmin = 0;
390 		}
391 	}
392 	if (snd_interval_checkempty(i)) {
393 		snd_interval_none(i);
394 		return -EINVAL;
395 	}
396 	return changed;
397 }
398 
399 static int snd_interval_refine_max(snd_interval_t *i, unsigned int max, int openmax)
400 {
401 	int changed = 0;
402 	assert(!snd_interval_empty(i));
403 	if (i->max > max) {
404 		i->max = max;
405 		i->openmax = openmax;
406 		changed = 1;
407 	} else if (i->max == max && !i->openmax && openmax) {
408 		i->openmax = 1;
409 		changed = 1;
410 	}
411 	if (i->integer) {
412 		if (i->openmax) {
413 			i->max--;
414 			i->openmax = 0;
415 		}
416 	}
417 	if (snd_interval_checkempty(i)) {
418 		snd_interval_none(i);
419 		return -EINVAL;
420 	}
421 	return changed;
422 }
423 
424 /**
425  * snd_interval_refine - refine the interval value of configurator
426  * @i: the interval value to refine
427  * @v: the interval value to refer to
428  *
429  * Refines the interval value with the reference value.
430  * The interval is changed to the range satisfying both intervals.
431  * The interval status (min, max, integer, etc.) are evaluated.
432  *
433  * Returns non-zero if the value is changed, zero if not changed.
434  */
435 int snd_interval_refine(snd_interval_t *i, const snd_interval_t *v)
436 {
437 	int changed = 0;
438 	assert(!snd_interval_empty(i));
439 	if (i->min < v->min) {
440 		i->min = v->min;
441 		i->openmin = v->openmin;
442 		changed = 1;
443 	} else if (i->min == v->min && !i->openmin && v->openmin) {
444 		i->openmin = 1;
445 		changed = 1;
446 	}
447 	if (i->max > v->max) {
448 		i->max = v->max;
449 		i->openmax = v->openmax;
450 		changed = 1;
451 	} else if (i->max == v->max && !i->openmax && v->openmax) {
452 		i->openmax = 1;
453 		changed = 1;
454 	}
455 	if (!i->integer && v->integer) {
456 		i->integer = 1;
457 		changed = 1;
458 	}
459 	if (i->integer) {
460 		if (i->openmin) {
461 			i->min++;
462 			i->openmin = 0;
463 		}
464 		if (i->openmax) {
465 			i->max--;
466 			i->openmax = 0;
467 		}
468 	} else if (!i->openmin && !i->openmax && i->min == i->max)
469 		i->integer = 1;
470 	if (snd_interval_checkempty(i)) {
471 		snd_interval_none(i);
472 		return -EINVAL;
473 	}
474 	return changed;
475 }
476 
477 static int snd_interval_refine_first(snd_interval_t *i)
478 {
479 	assert(!snd_interval_empty(i));
480 	if (snd_interval_single(i))
481 		return 0;
482 	i->max = i->min;
483 	i->openmax = i->openmin;
484 	if (i->openmax)
485 		i->max++;
486 	return 1;
487 }
488 
489 static int snd_interval_refine_last(snd_interval_t *i)
490 {
491 	assert(!snd_interval_empty(i));
492 	if (snd_interval_single(i))
493 		return 0;
494 	i->min = i->max;
495 	i->openmin = i->openmax;
496 	if (i->openmin)
497 		i->min--;
498 	return 1;
499 }
500 
501 static int snd_interval_refine_set(snd_interval_t *i, unsigned int val)
502 {
503 	snd_interval_t t;
504 	t.empty = 0;
505 	t.min = t.max = val;
506 	t.openmin = t.openmax = 0;
507 	t.integer = 1;
508 	return snd_interval_refine(i, &t);
509 }
510 
511 void snd_interval_mul(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
512 {
513 	if (a->empty || b->empty) {
514 		snd_interval_none(c);
515 		return;
516 	}
517 	c->empty = 0;
518 	c->min = mul(a->min, b->min);
519 	c->openmin = (a->openmin || b->openmin);
520 	c->max = mul(a->max,  b->max);
521 	c->openmax = (a->openmax || b->openmax);
522 	c->integer = (a->integer && b->integer);
523 }
524 
525 /**
526  * snd_interval_div - refine the interval value with division
527  *
528  * c = a / b
529  *
530  * Returns non-zero if the value is changed, zero if not changed.
531  */
532 void snd_interval_div(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
533 {
534 	unsigned int r;
535 	if (a->empty || b->empty) {
536 		snd_interval_none(c);
537 		return;
538 	}
539 	c->empty = 0;
540 	c->min = div32(a->min, b->max, &r);
541 	c->openmin = (r || a->openmin || b->openmax);
542 	if (b->min > 0) {
543 		c->max = div32(a->max, b->min, &r);
544 		if (r) {
545 			c->max++;
546 			c->openmax = 1;
547 		} else
548 			c->openmax = (a->openmax || b->openmin);
549 	} else {
550 		c->max = UINT_MAX;
551 		c->openmax = 0;
552 	}
553 	c->integer = 0;
554 }
555 
556 /**
557  * snd_interval_muldivk - refine the interval value
558  *
559  * c = a * b / k
560  *
561  * Returns non-zero if the value is changed, zero if not changed.
562  */
563 void snd_interval_muldivk(const snd_interval_t *a, const snd_interval_t *b,
564 		      unsigned int k, snd_interval_t *c)
565 {
566 	unsigned int r;
567 	if (a->empty || b->empty) {
568 		snd_interval_none(c);
569 		return;
570 	}
571 	c->empty = 0;
572 	c->min = muldiv32(a->min, b->min, k, &r);
573 	c->openmin = (r || a->openmin || b->openmin);
574 	c->max = muldiv32(a->max, b->max, k, &r);
575 	if (r) {
576 		c->max++;
577 		c->openmax = 1;
578 	} else
579 		c->openmax = (a->openmax || b->openmax);
580 	c->integer = 0;
581 }
582 
583 /**
584  * snd_interval_mulkdiv - refine the interval value
585  *
586  * c = a * k / b
587  *
588  * Returns non-zero if the value is changed, zero if not changed.
589  */
590 void snd_interval_mulkdiv(const snd_interval_t *a, unsigned int k,
591 		      const snd_interval_t *b, snd_interval_t *c)
592 {
593 	unsigned int r;
594 	if (a->empty || b->empty) {
595 		snd_interval_none(c);
596 		return;
597 	}
598 	c->empty = 0;
599 	c->min = muldiv32(a->min, k, b->max, &r);
600 	c->openmin = (r || a->openmin || b->openmax);
601 	if (b->min > 0) {
602 		c->max = muldiv32(a->max, k, b->min, &r);
603 		if (r) {
604 			c->max++;
605 			c->openmax = 1;
606 		} else
607 			c->openmax = (a->openmax || b->openmin);
608 	} else {
609 		c->max = UINT_MAX;
610 		c->openmax = 0;
611 	}
612 	c->integer = 0;
613 }
614 
615 #undef assert
616 /* ---- */
617 
618 
619 /**
620  * snd_interval_ratnum - refine the interval value
621  *
622  * Returns non-zero if the value is changed, zero if not changed.
623  */
624 int snd_interval_ratnum(snd_interval_t *i,
625 		    unsigned int rats_count, ratnum_t *rats,
626 		    unsigned int *nump, unsigned int *denp)
627 {
628 	unsigned int best_num, best_diff, best_den;
629 	unsigned int k;
630 	snd_interval_t t;
631 	int err;
632 
633 	best_num = best_den = best_diff = 0;
634 	for (k = 0; k < rats_count; ++k) {
635 		unsigned int num = rats[k].num;
636 		unsigned int den;
637 		unsigned int q = i->min;
638 		int diff;
639 		if (q == 0)
640 			q = 1;
641 		den = div_down(num, q);
642 		if (den < rats[k].den_min)
643 			continue;
644 		if (den > rats[k].den_max)
645 			den = rats[k].den_max;
646 		else {
647 			unsigned int r;
648 			r = (den - rats[k].den_min) % rats[k].den_step;
649 			if (r != 0)
650 				den -= r;
651 		}
652 		diff = num - q * den;
653 		if (best_num == 0 ||
654 		    diff * best_den < best_diff * den) {
655 			best_diff = diff;
656 			best_den = den;
657 			best_num = num;
658 		}
659 	}
660 	if (best_den == 0) {
661 		i->empty = 1;
662 		return -EINVAL;
663 	}
664 	t.min = div_down(best_num, best_den);
665 	t.openmin = !!(best_num % best_den);
666 
667 	best_num = best_den = best_diff = 0;
668 	for (k = 0; k < rats_count; ++k) {
669 		unsigned int num = rats[k].num;
670 		unsigned int den;
671 		unsigned int q = i->max;
672 		int diff;
673 		if (q == 0) {
674 			i->empty = 1;
675 			return -EINVAL;
676 		}
677 		den = div_up(num, q);
678 		if (den > rats[k].den_max)
679 			continue;
680 		if (den < rats[k].den_min)
681 			den = rats[k].den_min;
682 		else {
683 			unsigned int r;
684 			r = (den - rats[k].den_min) % rats[k].den_step;
685 			if (r != 0)
686 				den += rats[k].den_step - r;
687 		}
688 		diff = q * den - num;
689 		if (best_num == 0 ||
690 		    diff * best_den < best_diff * den) {
691 			best_diff = diff;
692 			best_den = den;
693 			best_num = num;
694 		}
695 	}
696 	if (best_den == 0) {
697 		i->empty = 1;
698 		return -EINVAL;
699 	}
700 	t.max = div_up(best_num, best_den);
701 	t.openmax = !!(best_num % best_den);
702 	t.integer = 0;
703 	err = snd_interval_refine(i, &t);
704 	if (err < 0)
705 		return err;
706 
707 	if (snd_interval_single(i)) {
708 		if (nump)
709 			*nump = best_num;
710 		if (denp)
711 			*denp = best_den;
712 	}
713 	return err;
714 }
715 
716 /**
717  * snd_interval_ratden - refine the interval value
718  *
719  * Returns non-zero if the value is changed, zero if not changed.
720  */
721 static int snd_interval_ratden(snd_interval_t *i,
722 			       unsigned int rats_count, ratden_t *rats,
723 			       unsigned int *nump, unsigned int *denp)
724 {
725 	unsigned int best_num, best_diff, best_den;
726 	unsigned int k;
727 	snd_interval_t t;
728 	int err;
729 
730 	best_num = best_den = best_diff = 0;
731 	for (k = 0; k < rats_count; ++k) {
732 		unsigned int num;
733 		unsigned int den = rats[k].den;
734 		unsigned int q = i->min;
735 		int diff;
736 		num = mul(q, den);
737 		if (num > rats[k].num_max)
738 			continue;
739 		if (num < rats[k].num_min)
740 			num = rats[k].num_max;
741 		else {
742 			unsigned int r;
743 			r = (num - rats[k].num_min) % rats[k].num_step;
744 			if (r != 0)
745 				num += rats[k].num_step - r;
746 		}
747 		diff = num - q * den;
748 		if (best_num == 0 ||
749 		    diff * best_den < best_diff * den) {
750 			best_diff = diff;
751 			best_den = den;
752 			best_num = num;
753 		}
754 	}
755 	if (best_den == 0) {
756 		i->empty = 1;
757 		return -EINVAL;
758 	}
759 	t.min = div_down(best_num, best_den);
760 	t.openmin = !!(best_num % best_den);
761 
762 	best_num = best_den = best_diff = 0;
763 	for (k = 0; k < rats_count; ++k) {
764 		unsigned int num;
765 		unsigned int den = rats[k].den;
766 		unsigned int q = i->max;
767 		int diff;
768 		num = mul(q, den);
769 		if (num < rats[k].num_min)
770 			continue;
771 		if (num > rats[k].num_max)
772 			num = rats[k].num_max;
773 		else {
774 			unsigned int r;
775 			r = (num - rats[k].num_min) % rats[k].num_step;
776 			if (r != 0)
777 				num -= r;
778 		}
779 		diff = q * den - num;
780 		if (best_num == 0 ||
781 		    diff * best_den < best_diff * den) {
782 			best_diff = diff;
783 			best_den = den;
784 			best_num = num;
785 		}
786 	}
787 	if (best_den == 0) {
788 		i->empty = 1;
789 		return -EINVAL;
790 	}
791 	t.max = div_up(best_num, best_den);
792 	t.openmax = !!(best_num % best_den);
793 	t.integer = 0;
794 	err = snd_interval_refine(i, &t);
795 	if (err < 0)
796 		return err;
797 
798 	if (snd_interval_single(i)) {
799 		if (nump)
800 			*nump = best_num;
801 		if (denp)
802 			*denp = best_den;
803 	}
804 	return err;
805 }
806 
807 /**
808  * snd_interval_list - refine the interval value from the list
809  * @i: the interval value to refine
810  * @count: the number of elements in the list
811  * @list: the value list
812  * @mask: the bit-mask to evaluate
813  *
814  * Refines the interval value from the list.
815  * When mask is non-zero, only the elements corresponding to bit 1 are
816  * evaluated.
817  *
818  * Returns non-zero if the value is changed, zero if not changed.
819  */
820 int snd_interval_list(snd_interval_t *i, unsigned int count, unsigned int *list, unsigned int mask)
821 {
822         unsigned int k;
823 	int changed = 0;
824         for (k = 0; k < count; k++) {
825 		if (mask && !(mask & (1 << k)))
826 			continue;
827                 if (i->min == list[k] && !i->openmin)
828                         goto _l1;
829                 if (i->min < list[k]) {
830                         i->min = list[k];
831 			i->openmin = 0;
832 			changed = 1;
833                         goto _l1;
834                 }
835         }
836         i->empty = 1;
837         return -EINVAL;
838  _l1:
839         for (k = count; k-- > 0;) {
840 		if (mask && !(mask & (1 << k)))
841 			continue;
842                 if (i->max == list[k] && !i->openmax)
843                         goto _l2;
844                 if (i->max > list[k]) {
845                         i->max = list[k];
846 			i->openmax = 0;
847 			changed = 1;
848                         goto _l2;
849                 }
850         }
851         i->empty = 1;
852         return -EINVAL;
853  _l2:
854 	if (snd_interval_checkempty(i)) {
855 		i->empty = 1;
856 		return -EINVAL;
857 	}
858         return changed;
859 }
860 
861 static int snd_interval_step(snd_interval_t *i, unsigned int min, unsigned int step)
862 {
863 	unsigned int n;
864 	int changed = 0;
865 	n = (i->min - min) % step;
866 	if (n != 0 || i->openmin) {
867 		i->min += step - n;
868 		changed = 1;
869 	}
870 	n = (i->max - min) % step;
871 	if (n != 0 || i->openmax) {
872 		i->max -= n;
873 		changed = 1;
874 	}
875 	if (snd_interval_checkempty(i)) {
876 		i->empty = 1;
877 		return -EINVAL;
878 	}
879 	return changed;
880 }
881 
882 /* Info constraints helpers */
883 
884 /**
885  * snd_pcm_hw_rule_add - add the hw-constraint rule
886  * @runtime: the pcm runtime instance
887  * @cond: condition bits
888  * @var: the variable to evaluate
889  * @func: the evaluation function
890  * @private: the private data pointer passed to function
891  * @dep: the dependent variables
892  *
893  * Returns zero if successful, or a negative error code on failure.
894  */
895 int snd_pcm_hw_rule_add(snd_pcm_runtime_t *runtime, unsigned int cond,
896 			int var,
897 			snd_pcm_hw_rule_func_t func, void *private,
898 			int dep, ...)
899 {
900 	snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
901 	snd_pcm_hw_rule_t *c;
902 	unsigned int k;
903 	va_list args;
904 	va_start(args, dep);
905 	if (constrs->rules_num >= constrs->rules_all) {
906 		snd_pcm_hw_rule_t *new;
907 		unsigned int new_rules = constrs->rules_all + 16;
908 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
909 		if (!new)
910 			return -ENOMEM;
911 		if (constrs->rules) {
912 			memcpy(new, constrs->rules,
913 			       constrs->rules_num * sizeof(*c));
914 			kfree(constrs->rules);
915 		}
916 		constrs->rules = new;
917 		constrs->rules_all = new_rules;
918 	}
919 	c = &constrs->rules[constrs->rules_num];
920 	c->cond = cond;
921 	c->func = func;
922 	c->var = var;
923 	c->private = private;
924 	k = 0;
925 	while (1) {
926 		snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
927 		c->deps[k++] = dep;
928 		if (dep < 0)
929 			break;
930 		dep = va_arg(args, int);
931 	}
932 	constrs->rules_num++;
933 	va_end(args);
934 	return 0;
935 }
936 
937 /**
938  * snd_pcm_hw_constraint_mask
939  */
940 int snd_pcm_hw_constraint_mask(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
941 			       u_int32_t mask)
942 {
943 	snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
944 	snd_mask_t *maskp = constrs_mask(constrs, var);
945 	*maskp->bits &= mask;
946 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
947 	if (*maskp->bits == 0)
948 		return -EINVAL;
949 	return 0;
950 }
951 
952 /**
953  * snd_pcm_hw_constraint_mask64
954  */
955 int snd_pcm_hw_constraint_mask64(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
956 				 u_int64_t mask)
957 {
958 	snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
959 	snd_mask_t *maskp = constrs_mask(constrs, var);
960 	maskp->bits[0] &= (u_int32_t)mask;
961 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
962 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
963 	if (! maskp->bits[0] && ! maskp->bits[1])
964 		return -EINVAL;
965 	return 0;
966 }
967 
968 /**
969  * snd_pcm_hw_constraint_integer
970  */
971 int snd_pcm_hw_constraint_integer(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var)
972 {
973 	snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
974 	return snd_interval_setinteger(constrs_interval(constrs, var));
975 }
976 
977 /**
978  * snd_pcm_hw_constraint_minmax
979  */
980 int snd_pcm_hw_constraint_minmax(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
981 				 unsigned int min, unsigned int max)
982 {
983 	snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
984 	snd_interval_t t;
985 	t.min = min;
986 	t.max = max;
987 	t.openmin = t.openmax = 0;
988 	t.integer = 0;
989 	return snd_interval_refine(constrs_interval(constrs, var), &t);
990 }
991 
992 static int snd_pcm_hw_rule_list(snd_pcm_hw_params_t *params,
993 				snd_pcm_hw_rule_t *rule)
994 {
995 	snd_pcm_hw_constraint_list_t *list = rule->private;
996 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
997 }
998 
999 
1000 /**
1001  * snd_pcm_hw_constraint_list
1002  */
1003 int snd_pcm_hw_constraint_list(snd_pcm_runtime_t *runtime,
1004 			       unsigned int cond,
1005 			       snd_pcm_hw_param_t var,
1006 			       snd_pcm_hw_constraint_list_t *l)
1007 {
1008 	return snd_pcm_hw_rule_add(runtime, cond, var,
1009 				   snd_pcm_hw_rule_list, l,
1010 				   var, -1);
1011 }
1012 
1013 static int snd_pcm_hw_rule_ratnums(snd_pcm_hw_params_t *params,
1014 				   snd_pcm_hw_rule_t *rule)
1015 {
1016 	snd_pcm_hw_constraint_ratnums_t *r = rule->private;
1017 	unsigned int num = 0, den = 0;
1018 	int err;
1019 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1020 				  r->nrats, r->rats, &num, &den);
1021 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1022 		params->rate_num = num;
1023 		params->rate_den = den;
1024 	}
1025 	return err;
1026 }
1027 
1028 /**
1029  * snd_pcm_hw_constraint_ratnums
1030  */
1031 int snd_pcm_hw_constraint_ratnums(snd_pcm_runtime_t *runtime,
1032 				  unsigned int cond,
1033 				  snd_pcm_hw_param_t var,
1034 				  snd_pcm_hw_constraint_ratnums_t *r)
1035 {
1036 	return snd_pcm_hw_rule_add(runtime, cond, var,
1037 				   snd_pcm_hw_rule_ratnums, r,
1038 				   var, -1);
1039 }
1040 
1041 static int snd_pcm_hw_rule_ratdens(snd_pcm_hw_params_t *params,
1042 				   snd_pcm_hw_rule_t *rule)
1043 {
1044 	snd_pcm_hw_constraint_ratdens_t *r = rule->private;
1045 	unsigned int num = 0, den = 0;
1046 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1047 				  r->nrats, r->rats, &num, &den);
1048 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1049 		params->rate_num = num;
1050 		params->rate_den = den;
1051 	}
1052 	return err;
1053 }
1054 
1055 /**
1056  * snd_pcm_hw_constraint_ratdens
1057  */
1058 int snd_pcm_hw_constraint_ratdens(snd_pcm_runtime_t *runtime,
1059 				  unsigned int cond,
1060 				  snd_pcm_hw_param_t var,
1061 				  snd_pcm_hw_constraint_ratdens_t *r)
1062 {
1063 	return snd_pcm_hw_rule_add(runtime, cond, var,
1064 				   snd_pcm_hw_rule_ratdens, r,
1065 				   var, -1);
1066 }
1067 
1068 static int snd_pcm_hw_rule_msbits(snd_pcm_hw_params_t *params,
1069 				  snd_pcm_hw_rule_t *rule)
1070 {
1071 	unsigned int l = (unsigned long) rule->private;
1072 	int width = l & 0xffff;
1073 	unsigned int msbits = l >> 16;
1074 	snd_interval_t *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1075 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1076 		params->msbits = msbits;
1077 	return 0;
1078 }
1079 
1080 /**
1081  * snd_pcm_hw_constraint_msbits
1082  */
1083 int snd_pcm_hw_constraint_msbits(snd_pcm_runtime_t *runtime,
1084 				 unsigned int cond,
1085 				 unsigned int width,
1086 				 unsigned int msbits)
1087 {
1088 	unsigned long l = (msbits << 16) | width;
1089 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1090 				    snd_pcm_hw_rule_msbits,
1091 				    (void*) l,
1092 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1093 }
1094 
1095 static int snd_pcm_hw_rule_step(snd_pcm_hw_params_t *params,
1096 				snd_pcm_hw_rule_t *rule)
1097 {
1098 	unsigned long step = (unsigned long) rule->private;
1099 	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1100 }
1101 
1102 /**
1103  * snd_pcm_hw_constraint_step
1104  */
1105 int snd_pcm_hw_constraint_step(snd_pcm_runtime_t *runtime,
1106 			       unsigned int cond,
1107 			       snd_pcm_hw_param_t var,
1108 			       unsigned long step)
1109 {
1110 	return snd_pcm_hw_rule_add(runtime, cond, var,
1111 				   snd_pcm_hw_rule_step, (void *) step,
1112 				   var, -1);
1113 }
1114 
1115 static int snd_pcm_hw_rule_pow2(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule)
1116 {
1117 	static int pow2_sizes[] = {
1118 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1119 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1120 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1121 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1122 	};
1123 	return snd_interval_list(hw_param_interval(params, rule->var),
1124 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1125 }
1126 
1127 /**
1128  * snd_pcm_hw_constraint_pow2
1129  */
1130 int snd_pcm_hw_constraint_pow2(snd_pcm_runtime_t *runtime,
1131 			       unsigned int cond,
1132 			       snd_pcm_hw_param_t var)
1133 {
1134 	return snd_pcm_hw_rule_add(runtime, cond, var,
1135 				   snd_pcm_hw_rule_pow2, NULL,
1136 				   var, -1);
1137 }
1138 
1139 /* To use the same code we have in alsa-lib */
1140 #define snd_pcm_t snd_pcm_substream_t
1141 #define assert(i) snd_assert((i), return -EINVAL)
1142 #ifndef INT_MIN
1143 #define INT_MIN ((int)((unsigned int)INT_MAX+1))
1144 #endif
1145 
1146 void _snd_pcm_hw_param_any(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var)
1147 {
1148 	if (hw_is_mask(var)) {
1149 		snd_mask_any(hw_param_mask(params, var));
1150 		params->cmask |= 1 << var;
1151 		params->rmask |= 1 << var;
1152 		return;
1153 	}
1154 	if (hw_is_interval(var)) {
1155 		snd_interval_any(hw_param_interval(params, var));
1156 		params->cmask |= 1 << var;
1157 		params->rmask |= 1 << var;
1158 		return;
1159 	}
1160 	snd_BUG();
1161 }
1162 
1163 /**
1164  * snd_pcm_hw_param_any
1165  */
1166 int snd_pcm_hw_param_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1167 			 snd_pcm_hw_param_t var)
1168 {
1169 	_snd_pcm_hw_param_any(params, var);
1170 	return snd_pcm_hw_refine(pcm, params);
1171 }
1172 
1173 void _snd_pcm_hw_params_any(snd_pcm_hw_params_t *params)
1174 {
1175 	unsigned int k;
1176 	memset(params, 0, sizeof(*params));
1177 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1178 		_snd_pcm_hw_param_any(params, k);
1179 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1180 		_snd_pcm_hw_param_any(params, k);
1181 	params->info = ~0U;
1182 }
1183 
1184 /**
1185  * snd_pcm_hw_params_any
1186  *
1187  * Fill PARAMS with full configuration space boundaries
1188  */
1189 int snd_pcm_hw_params_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1190 {
1191 	_snd_pcm_hw_params_any(params);
1192 	return snd_pcm_hw_refine(pcm, params);
1193 }
1194 
1195 /**
1196  * snd_pcm_hw_param_value
1197  *
1198  * Return the value for field PAR if it's fixed in configuration space
1199  *  defined by PARAMS. Return -EINVAL otherwise
1200  */
1201 int snd_pcm_hw_param_value(const snd_pcm_hw_params_t *params,
1202 			   snd_pcm_hw_param_t var, int *dir)
1203 {
1204 	if (hw_is_mask(var)) {
1205 		const snd_mask_t *mask = hw_param_mask_c(params, var);
1206 		if (!snd_mask_single(mask))
1207 			return -EINVAL;
1208 		if (dir)
1209 			*dir = 0;
1210 		return snd_mask_value(mask);
1211 	}
1212 	if (hw_is_interval(var)) {
1213 		const snd_interval_t *i = hw_param_interval_c(params, var);
1214 		if (!snd_interval_single(i))
1215 			return -EINVAL;
1216 		if (dir)
1217 			*dir = i->openmin;
1218 		return snd_interval_value(i);
1219 	}
1220 	assert(0);
1221 	return -EINVAL;
1222 }
1223 
1224 /**
1225  * snd_pcm_hw_param_value_min
1226  *
1227  * Return the minimum value for field PAR.
1228  */
1229 unsigned int snd_pcm_hw_param_value_min(const snd_pcm_hw_params_t *params,
1230 					snd_pcm_hw_param_t var, int *dir)
1231 {
1232 	if (hw_is_mask(var)) {
1233 		if (dir)
1234 			*dir = 0;
1235 		return snd_mask_min(hw_param_mask_c(params, var));
1236 	}
1237 	if (hw_is_interval(var)) {
1238 		const snd_interval_t *i = hw_param_interval_c(params, var);
1239 		if (dir)
1240 			*dir = i->openmin;
1241 		return snd_interval_min(i);
1242 	}
1243 	assert(0);
1244 	return -EINVAL;
1245 }
1246 
1247 /**
1248  * snd_pcm_hw_param_value_max
1249  *
1250  * Return the maximum value for field PAR.
1251  */
1252 unsigned int snd_pcm_hw_param_value_max(const snd_pcm_hw_params_t *params,
1253 					snd_pcm_hw_param_t var, int *dir)
1254 {
1255 	if (hw_is_mask(var)) {
1256 		if (dir)
1257 			*dir = 0;
1258 		return snd_mask_max(hw_param_mask_c(params, var));
1259 	}
1260 	if (hw_is_interval(var)) {
1261 		const snd_interval_t *i = hw_param_interval_c(params, var);
1262 		if (dir)
1263 			*dir = - (int) i->openmax;
1264 		return snd_interval_max(i);
1265 	}
1266 	assert(0);
1267 	return -EINVAL;
1268 }
1269 
1270 void _snd_pcm_hw_param_setempty(snd_pcm_hw_params_t *params,
1271 				snd_pcm_hw_param_t var)
1272 {
1273 	if (hw_is_mask(var)) {
1274 		snd_mask_none(hw_param_mask(params, var));
1275 		params->cmask |= 1 << var;
1276 		params->rmask |= 1 << var;
1277 	} else if (hw_is_interval(var)) {
1278 		snd_interval_none(hw_param_interval(params, var));
1279 		params->cmask |= 1 << var;
1280 		params->rmask |= 1 << var;
1281 	} else {
1282 		snd_BUG();
1283 	}
1284 }
1285 
1286 int _snd_pcm_hw_param_setinteger(snd_pcm_hw_params_t *params,
1287 				 snd_pcm_hw_param_t var)
1288 {
1289 	int changed;
1290 	assert(hw_is_interval(var));
1291 	changed = snd_interval_setinteger(hw_param_interval(params, var));
1292 	if (changed) {
1293 		params->cmask |= 1 << var;
1294 		params->rmask |= 1 << var;
1295 	}
1296 	return changed;
1297 }
1298 
1299 /**
1300  * snd_pcm_hw_param_setinteger
1301  *
1302  * Inside configuration space defined by PARAMS remove from PAR all
1303  * non integer values. Reduce configuration space accordingly.
1304  * Return -EINVAL if the configuration space is empty
1305  */
1306 int snd_pcm_hw_param_setinteger(snd_pcm_t *pcm,
1307 				snd_pcm_hw_params_t *params,
1308 				snd_pcm_hw_param_t var)
1309 {
1310 	int changed = _snd_pcm_hw_param_setinteger(params, var);
1311 	if (changed < 0)
1312 		return changed;
1313 	if (params->rmask) {
1314 		int err = snd_pcm_hw_refine(pcm, params);
1315 		if (err < 0)
1316 			return err;
1317 	}
1318 	return 0;
1319 }
1320 
1321 int _snd_pcm_hw_param_first(snd_pcm_hw_params_t *params,
1322 			    snd_pcm_hw_param_t var)
1323 {
1324 	int changed;
1325 	if (hw_is_mask(var))
1326 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1327 	else if (hw_is_interval(var))
1328 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1329 	else {
1330 		assert(0);
1331 		return -EINVAL;
1332 	}
1333 	if (changed) {
1334 		params->cmask |= 1 << var;
1335 		params->rmask |= 1 << var;
1336 	}
1337 	return changed;
1338 }
1339 
1340 
1341 /**
1342  * snd_pcm_hw_param_first
1343  *
1344  * Inside configuration space defined by PARAMS remove from PAR all
1345  * values > minimum. Reduce configuration space accordingly.
1346  * Return the minimum.
1347  */
1348 int snd_pcm_hw_param_first(snd_pcm_t *pcm,
1349 			   snd_pcm_hw_params_t *params,
1350 			   snd_pcm_hw_param_t var, int *dir)
1351 {
1352 	int changed = _snd_pcm_hw_param_first(params, var);
1353 	if (changed < 0)
1354 		return changed;
1355 	if (params->rmask) {
1356 		int err = snd_pcm_hw_refine(pcm, params);
1357 		assert(err >= 0);
1358 	}
1359 	return snd_pcm_hw_param_value(params, var, dir);
1360 }
1361 
1362 int _snd_pcm_hw_param_last(snd_pcm_hw_params_t *params,
1363 			   snd_pcm_hw_param_t var)
1364 {
1365 	int changed;
1366 	if (hw_is_mask(var))
1367 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1368 	else if (hw_is_interval(var))
1369 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1370 	else {
1371 		assert(0);
1372 		return -EINVAL;
1373 	}
1374 	if (changed) {
1375 		params->cmask |= 1 << var;
1376 		params->rmask |= 1 << var;
1377 	}
1378 	return changed;
1379 }
1380 
1381 
1382 /**
1383  * snd_pcm_hw_param_last
1384  *
1385  * Inside configuration space defined by PARAMS remove from PAR all
1386  * values < maximum. Reduce configuration space accordingly.
1387  * Return the maximum.
1388  */
1389 int snd_pcm_hw_param_last(snd_pcm_t *pcm,
1390 			  snd_pcm_hw_params_t *params,
1391 			  snd_pcm_hw_param_t var, int *dir)
1392 {
1393 	int changed = _snd_pcm_hw_param_last(params, var);
1394 	if (changed < 0)
1395 		return changed;
1396 	if (params->rmask) {
1397 		int err = snd_pcm_hw_refine(pcm, params);
1398 		assert(err >= 0);
1399 	}
1400 	return snd_pcm_hw_param_value(params, var, dir);
1401 }
1402 
1403 int _snd_pcm_hw_param_min(snd_pcm_hw_params_t *params,
1404 			  snd_pcm_hw_param_t var, unsigned int val, int dir)
1405 {
1406 	int changed;
1407 	int open = 0;
1408 	if (dir) {
1409 		if (dir > 0) {
1410 			open = 1;
1411 		} else if (dir < 0) {
1412 			if (val > 0) {
1413 				open = 1;
1414 				val--;
1415 			}
1416 		}
1417 	}
1418 	if (hw_is_mask(var))
1419 		changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open);
1420 	else if (hw_is_interval(var))
1421 		changed = snd_interval_refine_min(hw_param_interval(params, var), val, open);
1422 	else {
1423 		assert(0);
1424 		return -EINVAL;
1425 	}
1426 	if (changed) {
1427 		params->cmask |= 1 << var;
1428 		params->rmask |= 1 << var;
1429 	}
1430 	return changed;
1431 }
1432 
1433 /**
1434  * snd_pcm_hw_param_min
1435  *
1436  * Inside configuration space defined by PARAMS remove from PAR all
1437  * values < VAL. Reduce configuration space accordingly.
1438  * Return new minimum or -EINVAL if the configuration space is empty
1439  */
1440 int snd_pcm_hw_param_min(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1441 			 snd_pcm_hw_param_t var, unsigned int val, int *dir)
1442 {
1443 	int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0);
1444 	if (changed < 0)
1445 		return changed;
1446 	if (params->rmask) {
1447 		int err = snd_pcm_hw_refine(pcm, params);
1448 		if (err < 0)
1449 			return err;
1450 	}
1451 	return snd_pcm_hw_param_value_min(params, var, dir);
1452 }
1453 
1454 int _snd_pcm_hw_param_max(snd_pcm_hw_params_t *params,
1455 			   snd_pcm_hw_param_t var, unsigned int val, int dir)
1456 {
1457 	int changed;
1458 	int open = 0;
1459 	if (dir) {
1460 		if (dir < 0) {
1461 			open = 1;
1462 		} else if (dir > 0) {
1463 			open = 1;
1464 			val++;
1465 		}
1466 	}
1467 	if (hw_is_mask(var)) {
1468 		if (val == 0 && open) {
1469 			snd_mask_none(hw_param_mask(params, var));
1470 			changed = -EINVAL;
1471 		} else
1472 			changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open);
1473 	} else if (hw_is_interval(var))
1474 		changed = snd_interval_refine_max(hw_param_interval(params, var), val, open);
1475 	else {
1476 		assert(0);
1477 		return -EINVAL;
1478 	}
1479 	if (changed) {
1480 		params->cmask |= 1 << var;
1481 		params->rmask |= 1 << var;
1482 	}
1483 	return changed;
1484 }
1485 
1486 /**
1487  * snd_pcm_hw_param_max
1488  *
1489  * Inside configuration space defined by PARAMS remove from PAR all
1490  *  values >= VAL + 1. Reduce configuration space accordingly.
1491  *  Return new maximum or -EINVAL if the configuration space is empty
1492  */
1493 int snd_pcm_hw_param_max(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1494 			  snd_pcm_hw_param_t var, unsigned int val, int *dir)
1495 {
1496 	int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0);
1497 	if (changed < 0)
1498 		return changed;
1499 	if (params->rmask) {
1500 		int err = snd_pcm_hw_refine(pcm, params);
1501 		if (err < 0)
1502 			return err;
1503 	}
1504 	return snd_pcm_hw_param_value_max(params, var, dir);
1505 }
1506 
1507 int _snd_pcm_hw_param_set(snd_pcm_hw_params_t *params,
1508 			  snd_pcm_hw_param_t var, unsigned int val, int dir)
1509 {
1510 	int changed;
1511 	if (hw_is_mask(var)) {
1512 		snd_mask_t *m = hw_param_mask(params, var);
1513 		if (val == 0 && dir < 0) {
1514 			changed = -EINVAL;
1515 			snd_mask_none(m);
1516 		} else {
1517 			if (dir > 0)
1518 				val++;
1519 			else if (dir < 0)
1520 				val--;
1521 			changed = snd_mask_refine_set(hw_param_mask(params, var), val);
1522 		}
1523 	} else if (hw_is_interval(var)) {
1524 		snd_interval_t *i = hw_param_interval(params, var);
1525 		if (val == 0 && dir < 0) {
1526 			changed = -EINVAL;
1527 			snd_interval_none(i);
1528 		} else if (dir == 0)
1529 			changed = snd_interval_refine_set(i, val);
1530 		else {
1531 			snd_interval_t t;
1532 			t.openmin = 1;
1533 			t.openmax = 1;
1534 			t.empty = 0;
1535 			t.integer = 0;
1536 			if (dir < 0) {
1537 				t.min = val - 1;
1538 				t.max = val;
1539 			} else {
1540 				t.min = val;
1541 				t.max = val+1;
1542 			}
1543 			changed = snd_interval_refine(i, &t);
1544 		}
1545 	} else {
1546 		assert(0);
1547 		return -EINVAL;
1548 	}
1549 	if (changed) {
1550 		params->cmask |= 1 << var;
1551 		params->rmask |= 1 << var;
1552 	}
1553 	return changed;
1554 }
1555 
1556 /**
1557  * snd_pcm_hw_param_set
1558  *
1559  * Inside configuration space defined by PARAMS remove from PAR all
1560  * values != VAL. Reduce configuration space accordingly.
1561  *  Return VAL or -EINVAL if the configuration space is empty
1562  */
1563 int snd_pcm_hw_param_set(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1564 			 snd_pcm_hw_param_t var, unsigned int val, int dir)
1565 {
1566 	int changed = _snd_pcm_hw_param_set(params, var, val, dir);
1567 	if (changed < 0)
1568 		return changed;
1569 	if (params->rmask) {
1570 		int err = snd_pcm_hw_refine(pcm, params);
1571 		if (err < 0)
1572 			return err;
1573 	}
1574 	return snd_pcm_hw_param_value(params, var, NULL);
1575 }
1576 
1577 int _snd_pcm_hw_param_mask(snd_pcm_hw_params_t *params,
1578 			   snd_pcm_hw_param_t var, const snd_mask_t *val)
1579 {
1580 	int changed;
1581 	assert(hw_is_mask(var));
1582 	changed = snd_mask_refine(hw_param_mask(params, var), val);
1583 	if (changed) {
1584 		params->cmask |= 1 << var;
1585 		params->rmask |= 1 << var;
1586 	}
1587 	return changed;
1588 }
1589 
1590 /**
1591  * snd_pcm_hw_param_mask
1592  *
1593  * Inside configuration space defined by PARAMS remove from PAR all values
1594  * not contained in MASK. Reduce configuration space accordingly.
1595  * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS,
1596  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1597  * Return 0 on success or -EINVAL
1598  * if the configuration space is empty
1599  */
1600 int snd_pcm_hw_param_mask(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1601 			  snd_pcm_hw_param_t var, const snd_mask_t *val)
1602 {
1603 	int changed = _snd_pcm_hw_param_mask(params, var, val);
1604 	if (changed < 0)
1605 		return changed;
1606 	if (params->rmask) {
1607 		int err = snd_pcm_hw_refine(pcm, params);
1608 		if (err < 0)
1609 			return err;
1610 	}
1611 	return 0;
1612 }
1613 
1614 static int boundary_sub(int a, int adir,
1615 			int b, int bdir,
1616 			int *c, int *cdir)
1617 {
1618 	adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0);
1619 	bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0);
1620 	*c = a - b;
1621 	*cdir = adir - bdir;
1622 	if (*cdir == -2) {
1623 		assert(*c > INT_MIN);
1624 		(*c)--;
1625 	} else if (*cdir == 2) {
1626 		assert(*c < INT_MAX);
1627 		(*c)++;
1628 	}
1629 	return 0;
1630 }
1631 
1632 static int boundary_lt(unsigned int a, int adir,
1633 		       unsigned int b, int bdir)
1634 {
1635 	assert(a > 0 || adir >= 0);
1636 	assert(b > 0 || bdir >= 0);
1637 	if (adir < 0) {
1638 		a--;
1639 		adir = 1;
1640 	} else if (adir > 0)
1641 		adir = 1;
1642 	if (bdir < 0) {
1643 		b--;
1644 		bdir = 1;
1645 	} else if (bdir > 0)
1646 		bdir = 1;
1647 	return a < b || (a == b && adir < bdir);
1648 }
1649 
1650 /* Return 1 if min is nearer to best than max */
1651 static int boundary_nearer(int min, int mindir,
1652 			   int best, int bestdir,
1653 			   int max, int maxdir)
1654 {
1655 	int dmin, dmindir;
1656 	int dmax, dmaxdir;
1657 	boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir);
1658 	boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir);
1659 	return boundary_lt(dmin, dmindir, dmax, dmaxdir);
1660 }
1661 
1662 /**
1663  * snd_pcm_hw_param_near
1664  *
1665  * Inside configuration space defined by PARAMS set PAR to the available value
1666  * nearest to VAL. Reduce configuration space accordingly.
1667  * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS,
1668  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1669  * Return the value found.
1670   */
1671 int snd_pcm_hw_param_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1672 			  snd_pcm_hw_param_t var, unsigned int best, int *dir)
1673 {
1674 	snd_pcm_hw_params_t *save = NULL;
1675 	int v;
1676 	unsigned int saved_min;
1677 	int last = 0;
1678 	int min, max;
1679 	int mindir, maxdir;
1680 	int valdir = dir ? *dir : 0;
1681 	/* FIXME */
1682 	if (best > INT_MAX)
1683 		best = INT_MAX;
1684 	min = max = best;
1685 	mindir = maxdir = valdir;
1686 	if (maxdir > 0)
1687 		maxdir = 0;
1688 	else if (maxdir == 0)
1689 		maxdir = -1;
1690 	else {
1691 		maxdir = 1;
1692 		max--;
1693 	}
1694 	save = kmalloc(sizeof(*save), GFP_KERNEL);
1695 	if (save == NULL)
1696 		return -ENOMEM;
1697 	*save = *params;
1698 	saved_min = min;
1699 	min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir);
1700 	if (min >= 0) {
1701 		snd_pcm_hw_params_t *params1;
1702 		if (max < 0)
1703 			goto _end;
1704 		if ((unsigned int)min == saved_min && mindir == valdir)
1705 			goto _end;
1706 		params1 = kmalloc(sizeof(*params1), GFP_KERNEL);
1707 		if (params1 == NULL) {
1708 			kfree(save);
1709 			return -ENOMEM;
1710 		}
1711 		*params1 = *save;
1712 		max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir);
1713 		if (max < 0) {
1714 			kfree(params1);
1715 			goto _end;
1716 		}
1717 		if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) {
1718 			*params = *params1;
1719 			last = 1;
1720 		}
1721 		kfree(params1);
1722 	} else {
1723 		*params = *save;
1724 		max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir);
1725 		assert(max >= 0);
1726 		last = 1;
1727 	}
1728  _end:
1729  	kfree(save);
1730 	if (last)
1731 		v = snd_pcm_hw_param_last(pcm, params, var, dir);
1732 	else
1733 		v = snd_pcm_hw_param_first(pcm, params, var, dir);
1734 	assert(v >= 0);
1735 	return v;
1736 }
1737 
1738 /**
1739  * snd_pcm_hw_param_choose
1740  *
1741  * Choose one configuration from configuration space defined by PARAMS
1742  * The configuration chosen is that obtained fixing in this order:
1743  * first access, first format, first subformat, min channels,
1744  * min rate, min period time, max buffer size, min tick time
1745  */
1746 int snd_pcm_hw_params_choose(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1747 {
1748 	int err;
1749 
1750 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL);
1751 	assert(err >= 0);
1752 
1753 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL);
1754 	assert(err >= 0);
1755 
1756 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL);
1757 	assert(err >= 0);
1758 
1759 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL);
1760 	assert(err >= 0);
1761 
1762 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL);
1763 	assert(err >= 0);
1764 
1765 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL);
1766 	assert(err >= 0);
1767 
1768 	err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL);
1769 	assert(err >= 0);
1770 
1771 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL);
1772 	assert(err >= 0);
1773 
1774 	return 0;
1775 }
1776 
1777 #undef snd_pcm_t
1778 #undef assert
1779 
1780 static int snd_pcm_lib_ioctl_reset(snd_pcm_substream_t *substream,
1781 				   void *arg)
1782 {
1783 	snd_pcm_runtime_t *runtime = substream->runtime;
1784 	unsigned long flags;
1785 	snd_pcm_stream_lock_irqsave(substream, flags);
1786 	if (snd_pcm_running(substream) &&
1787 	    snd_pcm_update_hw_ptr(substream) >= 0)
1788 		runtime->status->hw_ptr %= runtime->buffer_size;
1789 	else
1790 		runtime->status->hw_ptr = 0;
1791 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1792 	return 0;
1793 }
1794 
1795 static int snd_pcm_lib_ioctl_channel_info(snd_pcm_substream_t *substream,
1796 					  void *arg)
1797 {
1798 	snd_pcm_channel_info_t *info = arg;
1799 	snd_pcm_runtime_t *runtime = substream->runtime;
1800 	int width;
1801 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1802 		info->offset = -1;
1803 		return 0;
1804 	}
1805 	width = snd_pcm_format_physical_width(runtime->format);
1806 	if (width < 0)
1807 		return width;
1808 	info->offset = 0;
1809 	switch (runtime->access) {
1810 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1811 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1812 		info->first = info->channel * width;
1813 		info->step = runtime->channels * width;
1814 		break;
1815 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1816 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1817 	{
1818 		size_t size = runtime->dma_bytes / runtime->channels;
1819 		info->first = info->channel * size * 8;
1820 		info->step = width;
1821 		break;
1822 	}
1823 	default:
1824 		snd_BUG();
1825 		break;
1826 	}
1827 	return 0;
1828 }
1829 
1830 /**
1831  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1832  * @substream: the pcm substream instance
1833  * @cmd: ioctl command
1834  * @arg: ioctl argument
1835  *
1836  * Processes the generic ioctl commands for PCM.
1837  * Can be passed as the ioctl callback for PCM ops.
1838  *
1839  * Returns zero if successful, or a negative error code on failure.
1840  */
1841 int snd_pcm_lib_ioctl(snd_pcm_substream_t *substream,
1842 		      unsigned int cmd, void *arg)
1843 {
1844 	switch (cmd) {
1845 	case SNDRV_PCM_IOCTL1_INFO:
1846 		return 0;
1847 	case SNDRV_PCM_IOCTL1_RESET:
1848 		return snd_pcm_lib_ioctl_reset(substream, arg);
1849 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1850 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1851 	}
1852 	return -ENXIO;
1853 }
1854 
1855 /*
1856  *  Conditions
1857  */
1858 
1859 static void snd_pcm_system_tick_set(snd_pcm_substream_t *substream,
1860 				    unsigned long ticks)
1861 {
1862 	snd_pcm_runtime_t *runtime = substream->runtime;
1863 	if (ticks == 0)
1864 		del_timer(&runtime->tick_timer);
1865 	else {
1866 		ticks += (1000000 / HZ) - 1;
1867 		ticks /= (1000000 / HZ);
1868 		mod_timer(&runtime->tick_timer, jiffies + ticks);
1869 	}
1870 }
1871 
1872 /* Temporary alias */
1873 void snd_pcm_tick_set(snd_pcm_substream_t *substream, unsigned long ticks)
1874 {
1875 	snd_pcm_system_tick_set(substream, ticks);
1876 }
1877 
1878 void snd_pcm_tick_prepare(snd_pcm_substream_t *substream)
1879 {
1880 	snd_pcm_runtime_t *runtime = substream->runtime;
1881 	snd_pcm_uframes_t frames = ULONG_MAX;
1882 	snd_pcm_uframes_t avail, dist;
1883 	unsigned int ticks;
1884 	u_int64_t n;
1885 	u_int32_t r;
1886 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1887 		if (runtime->silence_size >= runtime->boundary) {
1888 			frames = 1;
1889 		} else if (runtime->silence_size > 0 &&
1890 			   runtime->silence_filled < runtime->buffer_size) {
1891 			snd_pcm_sframes_t noise_dist;
1892 			noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
1893 			snd_assert(noise_dist <= (snd_pcm_sframes_t)runtime->silence_threshold, );
1894 			frames = noise_dist - runtime->silence_threshold;
1895 		}
1896 		avail = snd_pcm_playback_avail(runtime);
1897 	} else {
1898 		avail = snd_pcm_capture_avail(runtime);
1899 	}
1900 	if (avail < runtime->control->avail_min) {
1901 		snd_pcm_sframes_t n = runtime->control->avail_min - avail;
1902 		if (n > 0 && frames > (snd_pcm_uframes_t)n)
1903 			frames = n;
1904 	}
1905 	if (avail < runtime->buffer_size) {
1906 		snd_pcm_sframes_t n = runtime->buffer_size - avail;
1907 		if (n > 0 && frames > (snd_pcm_uframes_t)n)
1908 			frames = n;
1909 	}
1910 	if (frames == ULONG_MAX) {
1911 		snd_pcm_tick_set(substream, 0);
1912 		return;
1913 	}
1914 	dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
1915 	/* Distance to next interrupt */
1916 	dist = runtime->period_size - dist % runtime->period_size;
1917 	if (dist <= frames) {
1918 		snd_pcm_tick_set(substream, 0);
1919 		return;
1920 	}
1921 	/* the base time is us */
1922 	n = frames;
1923 	n *= 1000000;
1924 	div64_32(&n, runtime->tick_time * runtime->rate, &r);
1925 	ticks = n + (r > 0 ? 1 : 0);
1926 	if (ticks < runtime->sleep_min)
1927 		ticks = runtime->sleep_min;
1928 	snd_pcm_tick_set(substream, (unsigned long) ticks);
1929 }
1930 
1931 void snd_pcm_tick_elapsed(snd_pcm_substream_t *substream)
1932 {
1933 	snd_pcm_runtime_t *runtime;
1934 	unsigned long flags;
1935 
1936 	snd_assert(substream != NULL, return);
1937 	runtime = substream->runtime;
1938 	snd_assert(runtime != NULL, return);
1939 
1940 	snd_pcm_stream_lock_irqsave(substream, flags);
1941 	if (!snd_pcm_running(substream) ||
1942 	    snd_pcm_update_hw_ptr(substream) < 0)
1943 		goto _end;
1944 	if (runtime->sleep_min)
1945 		snd_pcm_tick_prepare(substream);
1946  _end:
1947 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1948 }
1949 
1950 /**
1951  * snd_pcm_period_elapsed - update the pcm status for the next period
1952  * @substream: the pcm substream instance
1953  *
1954  * This function is called from the interrupt handler when the
1955  * PCM has processed the period size.  It will update the current
1956  * pointer, set up the tick, wake up sleepers, etc.
1957  *
1958  * Even if more than one periods have elapsed since the last call, you
1959  * have to call this only once.
1960  */
1961 void snd_pcm_period_elapsed(snd_pcm_substream_t *substream)
1962 {
1963 	snd_pcm_runtime_t *runtime;
1964 	unsigned long flags;
1965 
1966 	snd_assert(substream != NULL, return);
1967 	runtime = substream->runtime;
1968 	snd_assert(runtime != NULL, return);
1969 
1970 	if (runtime->transfer_ack_begin)
1971 		runtime->transfer_ack_begin(substream);
1972 
1973 	snd_pcm_stream_lock_irqsave(substream, flags);
1974 	if (!snd_pcm_running(substream) ||
1975 	    snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1976 		goto _end;
1977 
1978 	if (substream->timer_running)
1979 		snd_timer_interrupt(substream->timer, 1);
1980 	if (runtime->sleep_min)
1981 		snd_pcm_tick_prepare(substream);
1982  _end:
1983 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1984 	if (runtime->transfer_ack_end)
1985 		runtime->transfer_ack_end(substream);
1986 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1987 }
1988 
1989 static int snd_pcm_lib_write_transfer(snd_pcm_substream_t *substream,
1990 				      unsigned int hwoff,
1991 				      unsigned long data, unsigned int off,
1992 				      snd_pcm_uframes_t frames)
1993 {
1994 	snd_pcm_runtime_t *runtime = substream->runtime;
1995 	int err;
1996 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1997 	if (substream->ops->copy) {
1998 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1999 			return err;
2000 	} else {
2001 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2002 		snd_assert(runtime->dma_area, return -EFAULT);
2003 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2004 			return -EFAULT;
2005 	}
2006 	return 0;
2007 }
2008 
2009 typedef int (*transfer_f)(snd_pcm_substream_t *substream, unsigned int hwoff,
2010 			  unsigned long data, unsigned int off,
2011 			  snd_pcm_uframes_t size);
2012 
2013 static snd_pcm_sframes_t snd_pcm_lib_write1(snd_pcm_substream_t *substream,
2014 					    unsigned long data,
2015 					    snd_pcm_uframes_t size,
2016 					    int nonblock,
2017 					    transfer_f transfer)
2018 {
2019 	snd_pcm_runtime_t *runtime = substream->runtime;
2020 	snd_pcm_uframes_t xfer = 0;
2021 	snd_pcm_uframes_t offset = 0;
2022 	int err = 0;
2023 
2024 	if (size == 0)
2025 		return 0;
2026 	if (size > runtime->xfer_align)
2027 		size -= size % runtime->xfer_align;
2028 
2029 	snd_pcm_stream_lock_irq(substream);
2030 	switch (runtime->status->state) {
2031 	case SNDRV_PCM_STATE_PREPARED:
2032 	case SNDRV_PCM_STATE_RUNNING:
2033 	case SNDRV_PCM_STATE_PAUSED:
2034 		break;
2035 	case SNDRV_PCM_STATE_XRUN:
2036 		err = -EPIPE;
2037 		goto _end_unlock;
2038 	case SNDRV_PCM_STATE_SUSPENDED:
2039 		err = -ESTRPIPE;
2040 		goto _end_unlock;
2041 	default:
2042 		err = -EBADFD;
2043 		goto _end_unlock;
2044 	}
2045 
2046 	while (size > 0) {
2047 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2048 		snd_pcm_uframes_t avail;
2049 		snd_pcm_uframes_t cont;
2050 		if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2051 			snd_pcm_update_hw_ptr(substream);
2052 		avail = snd_pcm_playback_avail(runtime);
2053 		if (((avail < runtime->control->avail_min && size > avail) ||
2054 		   (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
2055 			wait_queue_t wait;
2056 			enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED } state;
2057 			long tout;
2058 
2059 			if (nonblock) {
2060 				err = -EAGAIN;
2061 				goto _end_unlock;
2062 			}
2063 
2064 			init_waitqueue_entry(&wait, current);
2065 			add_wait_queue(&runtime->sleep, &wait);
2066 			while (1) {
2067 				if (signal_pending(current)) {
2068 					state = SIGNALED;
2069 					break;
2070 				}
2071 				set_current_state(TASK_INTERRUPTIBLE);
2072 				snd_pcm_stream_unlock_irq(substream);
2073 				tout = schedule_timeout(10 * HZ);
2074 				snd_pcm_stream_lock_irq(substream);
2075 				if (tout == 0) {
2076 					if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2077 					    runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2078 						state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2079 						break;
2080 					}
2081 				}
2082 				switch (runtime->status->state) {
2083 				case SNDRV_PCM_STATE_XRUN:
2084 				case SNDRV_PCM_STATE_DRAINING:
2085 					state = ERROR;
2086 					goto _end_loop;
2087 				case SNDRV_PCM_STATE_SUSPENDED:
2088 					state = SUSPENDED;
2089 					goto _end_loop;
2090 				default:
2091 					break;
2092 				}
2093 				avail = snd_pcm_playback_avail(runtime);
2094 				if (avail >= runtime->control->avail_min) {
2095 					state = READY;
2096 					break;
2097 				}
2098 			}
2099 		       _end_loop:
2100 			remove_wait_queue(&runtime->sleep, &wait);
2101 
2102 			switch (state) {
2103 			case ERROR:
2104 				err = -EPIPE;
2105 				goto _end_unlock;
2106 			case SUSPENDED:
2107 				err = -ESTRPIPE;
2108 				goto _end_unlock;
2109 			case SIGNALED:
2110 				err = -ERESTARTSYS;
2111 				goto _end_unlock;
2112 			case EXPIRED:
2113 				snd_printd("playback write error (DMA or IRQ trouble?)\n");
2114 				err = -EIO;
2115 				goto _end_unlock;
2116 			default:
2117 				break;
2118 			}
2119 		}
2120 		if (avail > runtime->xfer_align)
2121 			avail -= avail % runtime->xfer_align;
2122 		frames = size > avail ? avail : size;
2123 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2124 		if (frames > cont)
2125 			frames = cont;
2126 		snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2127 		appl_ptr = runtime->control->appl_ptr;
2128 		appl_ofs = appl_ptr % runtime->buffer_size;
2129 		snd_pcm_stream_unlock_irq(substream);
2130 		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2131 			goto _end;
2132 		snd_pcm_stream_lock_irq(substream);
2133 		switch (runtime->status->state) {
2134 		case SNDRV_PCM_STATE_XRUN:
2135 			err = -EPIPE;
2136 			goto _end_unlock;
2137 		case SNDRV_PCM_STATE_SUSPENDED:
2138 			err = -ESTRPIPE;
2139 			goto _end_unlock;
2140 		default:
2141 			break;
2142 		}
2143 		appl_ptr += frames;
2144 		if (appl_ptr >= runtime->boundary)
2145 			appl_ptr -= runtime->boundary;
2146 		runtime->control->appl_ptr = appl_ptr;
2147 		if (substream->ops->ack)
2148 			substream->ops->ack(substream);
2149 
2150 		offset += frames;
2151 		size -= frames;
2152 		xfer += frames;
2153 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2154 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2155 			err = snd_pcm_start(substream);
2156 			if (err < 0)
2157 				goto _end_unlock;
2158 		}
2159 		if (runtime->sleep_min &&
2160 		    runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2161 			snd_pcm_tick_prepare(substream);
2162 	}
2163  _end_unlock:
2164 	snd_pcm_stream_unlock_irq(substream);
2165  _end:
2166 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2167 }
2168 
2169 snd_pcm_sframes_t snd_pcm_lib_write(snd_pcm_substream_t *substream, const void __user *buf, snd_pcm_uframes_t size)
2170 {
2171 	snd_pcm_runtime_t *runtime;
2172 	int nonblock;
2173 
2174 	snd_assert(substream != NULL, return -ENXIO);
2175 	runtime = substream->runtime;
2176 	snd_assert(runtime != NULL, return -ENXIO);
2177 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2178 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2179 		return -EBADFD;
2180 
2181 	snd_assert(substream->ffile != NULL, return -ENXIO);
2182 	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2183 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2184 	if (substream->oss.oss) {
2185 		snd_pcm_oss_setup_t *setup = substream->oss.setup;
2186 		if (setup != NULL) {
2187 			if (setup->nonblock)
2188 				nonblock = 1;
2189 			else if (setup->block)
2190 				nonblock = 0;
2191 		}
2192 	}
2193 #endif
2194 
2195 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2196 	    runtime->channels > 1)
2197 		return -EINVAL;
2198 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2199 				  snd_pcm_lib_write_transfer);
2200 }
2201 
2202 static int snd_pcm_lib_writev_transfer(snd_pcm_substream_t *substream,
2203 				       unsigned int hwoff,
2204 				       unsigned long data, unsigned int off,
2205 				       snd_pcm_uframes_t frames)
2206 {
2207 	snd_pcm_runtime_t *runtime = substream->runtime;
2208 	int err;
2209 	void __user **bufs = (void __user **)data;
2210 	int channels = runtime->channels;
2211 	int c;
2212 	if (substream->ops->copy) {
2213 		snd_assert(substream->ops->silence != NULL, return -EINVAL);
2214 		for (c = 0; c < channels; ++c, ++bufs) {
2215 			if (*bufs == NULL) {
2216 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2217 					return err;
2218 			} else {
2219 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2220 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2221 					return err;
2222 			}
2223 		}
2224 	} else {
2225 		/* default transfer behaviour */
2226 		size_t dma_csize = runtime->dma_bytes / channels;
2227 		snd_assert(runtime->dma_area, return -EFAULT);
2228 		for (c = 0; c < channels; ++c, ++bufs) {
2229 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2230 			if (*bufs == NULL) {
2231 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2232 			} else {
2233 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2234 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2235 					return -EFAULT;
2236 			}
2237 		}
2238 	}
2239 	return 0;
2240 }
2241 
2242 snd_pcm_sframes_t snd_pcm_lib_writev(snd_pcm_substream_t *substream,
2243 				     void __user **bufs,
2244 				     snd_pcm_uframes_t frames)
2245 {
2246 	snd_pcm_runtime_t *runtime;
2247 	int nonblock;
2248 
2249 	snd_assert(substream != NULL, return -ENXIO);
2250 	runtime = substream->runtime;
2251 	snd_assert(runtime != NULL, return -ENXIO);
2252 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2253 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2254 		return -EBADFD;
2255 
2256 	snd_assert(substream->ffile != NULL, return -ENXIO);
2257 	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2258 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2259 	if (substream->oss.oss) {
2260 		snd_pcm_oss_setup_t *setup = substream->oss.setup;
2261 		if (setup != NULL) {
2262 			if (setup->nonblock)
2263 				nonblock = 1;
2264 			else if (setup->block)
2265 				nonblock = 0;
2266 		}
2267 	}
2268 #endif
2269 
2270 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2271 		return -EINVAL;
2272 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2273 				  nonblock, snd_pcm_lib_writev_transfer);
2274 }
2275 
2276 static int snd_pcm_lib_read_transfer(snd_pcm_substream_t *substream,
2277 				     unsigned int hwoff,
2278 				     unsigned long data, unsigned int off,
2279 				     snd_pcm_uframes_t frames)
2280 {
2281 	snd_pcm_runtime_t *runtime = substream->runtime;
2282 	int err;
2283 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2284 	if (substream->ops->copy) {
2285 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2286 			return err;
2287 	} else {
2288 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2289 		snd_assert(runtime->dma_area, return -EFAULT);
2290 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2291 			return -EFAULT;
2292 	}
2293 	return 0;
2294 }
2295 
2296 static snd_pcm_sframes_t snd_pcm_lib_read1(snd_pcm_substream_t *substream,
2297 					   unsigned long data,
2298 					   snd_pcm_uframes_t size,
2299 					   int nonblock,
2300 					   transfer_f transfer)
2301 {
2302 	snd_pcm_runtime_t *runtime = substream->runtime;
2303 	snd_pcm_uframes_t xfer = 0;
2304 	snd_pcm_uframes_t offset = 0;
2305 	int err = 0;
2306 
2307 	if (size == 0)
2308 		return 0;
2309 	if (size > runtime->xfer_align)
2310 		size -= size % runtime->xfer_align;
2311 
2312 	snd_pcm_stream_lock_irq(substream);
2313 	switch (runtime->status->state) {
2314 	case SNDRV_PCM_STATE_PREPARED:
2315 		if (size >= runtime->start_threshold) {
2316 			err = snd_pcm_start(substream);
2317 			if (err < 0)
2318 				goto _end_unlock;
2319 		}
2320 		break;
2321 	case SNDRV_PCM_STATE_DRAINING:
2322 	case SNDRV_PCM_STATE_RUNNING:
2323 	case SNDRV_PCM_STATE_PAUSED:
2324 		break;
2325 	case SNDRV_PCM_STATE_XRUN:
2326 		err = -EPIPE;
2327 		goto _end_unlock;
2328 	case SNDRV_PCM_STATE_SUSPENDED:
2329 		err = -ESTRPIPE;
2330 		goto _end_unlock;
2331 	default:
2332 		err = -EBADFD;
2333 		goto _end_unlock;
2334 	}
2335 
2336 	while (size > 0) {
2337 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2338 		snd_pcm_uframes_t avail;
2339 		snd_pcm_uframes_t cont;
2340 		if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2341 			snd_pcm_update_hw_ptr(substream);
2342 	      __draining:
2343 		avail = snd_pcm_capture_avail(runtime);
2344 		if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2345 			if (avail < runtime->xfer_align) {
2346 				err = -EPIPE;
2347 				goto _end_unlock;
2348 			}
2349 		} else if ((avail < runtime->control->avail_min && size > avail) ||
2350 			   (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
2351 			wait_queue_t wait;
2352 			enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED } state;
2353 			long tout;
2354 
2355 			if (nonblock) {
2356 				err = -EAGAIN;
2357 				goto _end_unlock;
2358 			}
2359 
2360 			init_waitqueue_entry(&wait, current);
2361 			add_wait_queue(&runtime->sleep, &wait);
2362 			while (1) {
2363 				if (signal_pending(current)) {
2364 					state = SIGNALED;
2365 					break;
2366 				}
2367 				set_current_state(TASK_INTERRUPTIBLE);
2368 				snd_pcm_stream_unlock_irq(substream);
2369 				tout = schedule_timeout(10 * HZ);
2370 				snd_pcm_stream_lock_irq(substream);
2371 				if (tout == 0) {
2372 					if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2373 					    runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2374 						state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2375 						break;
2376 					}
2377 				}
2378 				switch (runtime->status->state) {
2379 				case SNDRV_PCM_STATE_XRUN:
2380 					state = ERROR;
2381 					goto _end_loop;
2382 				case SNDRV_PCM_STATE_SUSPENDED:
2383 					state = SUSPENDED;
2384 					goto _end_loop;
2385 				case SNDRV_PCM_STATE_DRAINING:
2386 					goto __draining;
2387 				default:
2388 					break;
2389 				}
2390 				avail = snd_pcm_capture_avail(runtime);
2391 				if (avail >= runtime->control->avail_min) {
2392 					state = READY;
2393 					break;
2394 				}
2395 			}
2396 		       _end_loop:
2397 			remove_wait_queue(&runtime->sleep, &wait);
2398 
2399 			switch (state) {
2400 			case ERROR:
2401 				err = -EPIPE;
2402 				goto _end_unlock;
2403 			case SUSPENDED:
2404 				err = -ESTRPIPE;
2405 				goto _end_unlock;
2406 			case SIGNALED:
2407 				err = -ERESTARTSYS;
2408 				goto _end_unlock;
2409 			case EXPIRED:
2410 				snd_printd("capture read error (DMA or IRQ trouble?)\n");
2411 				err = -EIO;
2412 				goto _end_unlock;
2413 			default:
2414 				break;
2415 			}
2416 		}
2417 		if (avail > runtime->xfer_align)
2418 			avail -= avail % runtime->xfer_align;
2419 		frames = size > avail ? avail : size;
2420 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2421 		if (frames > cont)
2422 			frames = cont;
2423 		snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2424 		appl_ptr = runtime->control->appl_ptr;
2425 		appl_ofs = appl_ptr % runtime->buffer_size;
2426 		snd_pcm_stream_unlock_irq(substream);
2427 		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2428 			goto _end;
2429 		snd_pcm_stream_lock_irq(substream);
2430 		switch (runtime->status->state) {
2431 		case SNDRV_PCM_STATE_XRUN:
2432 			err = -EPIPE;
2433 			goto _end_unlock;
2434 		case SNDRV_PCM_STATE_SUSPENDED:
2435 			err = -ESTRPIPE;
2436 			goto _end_unlock;
2437 		default:
2438 			break;
2439 		}
2440 		appl_ptr += frames;
2441 		if (appl_ptr >= runtime->boundary)
2442 			appl_ptr -= runtime->boundary;
2443 		runtime->control->appl_ptr = appl_ptr;
2444 		if (substream->ops->ack)
2445 			substream->ops->ack(substream);
2446 
2447 		offset += frames;
2448 		size -= frames;
2449 		xfer += frames;
2450 		if (runtime->sleep_min &&
2451 		    runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2452 			snd_pcm_tick_prepare(substream);
2453 	}
2454  _end_unlock:
2455 	snd_pcm_stream_unlock_irq(substream);
2456  _end:
2457 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2458 }
2459 
2460 snd_pcm_sframes_t snd_pcm_lib_read(snd_pcm_substream_t *substream, void __user *buf, snd_pcm_uframes_t size)
2461 {
2462 	snd_pcm_runtime_t *runtime;
2463 	int nonblock;
2464 
2465 	snd_assert(substream != NULL, return -ENXIO);
2466 	runtime = substream->runtime;
2467 	snd_assert(runtime != NULL, return -ENXIO);
2468 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2469 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2470 		return -EBADFD;
2471 
2472 	snd_assert(substream->ffile != NULL, return -ENXIO);
2473 	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2474 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2475 	if (substream->oss.oss) {
2476 		snd_pcm_oss_setup_t *setup = substream->oss.setup;
2477 		if (setup != NULL) {
2478 			if (setup->nonblock)
2479 				nonblock = 1;
2480 			else if (setup->block)
2481 				nonblock = 0;
2482 		}
2483 	}
2484 #endif
2485 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2486 		return -EINVAL;
2487 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2488 }
2489 
2490 static int snd_pcm_lib_readv_transfer(snd_pcm_substream_t *substream,
2491 				      unsigned int hwoff,
2492 				      unsigned long data, unsigned int off,
2493 				      snd_pcm_uframes_t frames)
2494 {
2495 	snd_pcm_runtime_t *runtime = substream->runtime;
2496 	int err;
2497 	void __user **bufs = (void __user **)data;
2498 	int channels = runtime->channels;
2499 	int c;
2500 	if (substream->ops->copy) {
2501 		for (c = 0; c < channels; ++c, ++bufs) {
2502 			char __user *buf;
2503 			if (*bufs == NULL)
2504 				continue;
2505 			buf = *bufs + samples_to_bytes(runtime, off);
2506 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2507 				return err;
2508 		}
2509 	} else {
2510 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2511 		snd_assert(runtime->dma_area, return -EFAULT);
2512 		for (c = 0; c < channels; ++c, ++bufs) {
2513 			char *hwbuf;
2514 			char __user *buf;
2515 			if (*bufs == NULL)
2516 				continue;
2517 
2518 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2519 			buf = *bufs + samples_to_bytes(runtime, off);
2520 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2521 				return -EFAULT;
2522 		}
2523 	}
2524 	return 0;
2525 }
2526 
2527 snd_pcm_sframes_t snd_pcm_lib_readv(snd_pcm_substream_t *substream,
2528 				    void __user **bufs,
2529 				    snd_pcm_uframes_t frames)
2530 {
2531 	snd_pcm_runtime_t *runtime;
2532 	int nonblock;
2533 
2534 	snd_assert(substream != NULL, return -ENXIO);
2535 	runtime = substream->runtime;
2536 	snd_assert(runtime != NULL, return -ENXIO);
2537 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2538 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2539 		return -EBADFD;
2540 
2541 	snd_assert(substream->ffile != NULL, return -ENXIO);
2542 	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2543 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2544 	if (substream->oss.oss) {
2545 		snd_pcm_oss_setup_t *setup = substream->oss.setup;
2546 		if (setup != NULL) {
2547 			if (setup->nonblock)
2548 				nonblock = 1;
2549 			else if (setup->block)
2550 				nonblock = 0;
2551 		}
2552 	}
2553 #endif
2554 
2555 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2556 		return -EINVAL;
2557 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2558 }
2559 
2560 /*
2561  *  Exported symbols
2562  */
2563 
2564 EXPORT_SYMBOL(snd_interval_refine);
2565 EXPORT_SYMBOL(snd_interval_list);
2566 EXPORT_SYMBOL(snd_interval_ratnum);
2567 EXPORT_SYMBOL(snd_interval_muldivk);
2568 EXPORT_SYMBOL(snd_interval_mulkdiv);
2569 EXPORT_SYMBOL(snd_interval_div);
2570 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
2571 EXPORT_SYMBOL(_snd_pcm_hw_param_min);
2572 EXPORT_SYMBOL(_snd_pcm_hw_param_set);
2573 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
2574 EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger);
2575 EXPORT_SYMBOL(snd_pcm_hw_param_value_min);
2576 EXPORT_SYMBOL(snd_pcm_hw_param_value_max);
2577 EXPORT_SYMBOL(snd_pcm_hw_param_mask);
2578 EXPORT_SYMBOL(snd_pcm_hw_param_first);
2579 EXPORT_SYMBOL(snd_pcm_hw_param_last);
2580 EXPORT_SYMBOL(snd_pcm_hw_param_near);
2581 EXPORT_SYMBOL(snd_pcm_hw_param_set);
2582 EXPORT_SYMBOL(snd_pcm_hw_refine);
2583 EXPORT_SYMBOL(snd_pcm_hw_params);
2584 EXPORT_SYMBOL(snd_pcm_hw_constraints_init);
2585 EXPORT_SYMBOL(snd_pcm_hw_constraints_complete);
2586 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
2587 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
2588 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
2589 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
2590 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
2591 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
2592 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
2593 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
2594 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
2595 EXPORT_SYMBOL(snd_pcm_set_ops);
2596 EXPORT_SYMBOL(snd_pcm_set_sync);
2597 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
2598 EXPORT_SYMBOL(snd_pcm_stop);
2599 EXPORT_SYMBOL(snd_pcm_period_elapsed);
2600 EXPORT_SYMBOL(snd_pcm_lib_write);
2601 EXPORT_SYMBOL(snd_pcm_lib_read);
2602 EXPORT_SYMBOL(snd_pcm_lib_writev);
2603 EXPORT_SYMBOL(snd_pcm_lib_readv);
2604 EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes);
2605 EXPORT_SYMBOL(snd_pcm_lib_period_bytes);
2606 /* pcm_memory.c */
2607 EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all);
2608 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages);
2609 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all);
2610 EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page);
2611 EXPORT_SYMBOL(snd_pcm_lib_malloc_pages);
2612 EXPORT_SYMBOL(snd_pcm_lib_free_pages);
2613