xref: /openbmc/linux/security/selinux/ss/services.c (revision 9f2ad66509b182b399a5b03de487f45bde623524)
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  * 	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *
20  * Updated: Chad Sellers <csellers@tresys.com>
21  *
22  *  Added validation of kernel classes and permissions
23  *
24  * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
25  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
26  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
27  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
28  *	This program is free software; you can redistribute it and/or modify
29  *  	it under the terms of the GNU General Public License as published by
30  *	the Free Software Foundation, version 2.
31  */
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/string.h>
35 #include <linux/spinlock.h>
36 #include <linux/rcupdate.h>
37 #include <linux/errno.h>
38 #include <linux/in.h>
39 #include <linux/sched.h>
40 #include <linux/audit.h>
41 #include <linux/mutex.h>
42 #include <net/sock.h>
43 #include <net/netlabel.h>
44 
45 #include "flask.h"
46 #include "avc.h"
47 #include "avc_ss.h"
48 #include "security.h"
49 #include "context.h"
50 #include "policydb.h"
51 #include "sidtab.h"
52 #include "services.h"
53 #include "conditional.h"
54 #include "mls.h"
55 #include "objsec.h"
56 #include "selinux_netlabel.h"
57 
58 extern void selnl_notify_policyload(u32 seqno);
59 unsigned int policydb_loaded_version;
60 
61 /*
62  * This is declared in avc.c
63  */
64 extern const struct selinux_class_perm selinux_class_perm;
65 
66 static DEFINE_RWLOCK(policy_rwlock);
67 #define POLICY_RDLOCK read_lock(&policy_rwlock)
68 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
69 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
70 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
71 
72 static DEFINE_MUTEX(load_mutex);
73 #define LOAD_LOCK mutex_lock(&load_mutex)
74 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
75 
76 static struct sidtab sidtab;
77 struct policydb policydb;
78 int ss_initialized = 0;
79 
80 /*
81  * The largest sequence number that has been used when
82  * providing an access decision to the access vector cache.
83  * The sequence number only changes when a policy change
84  * occurs.
85  */
86 static u32 latest_granting = 0;
87 
88 /* Forward declaration. */
89 static int context_struct_to_string(struct context *context, char **scontext,
90 				    u32 *scontext_len);
91 
92 /*
93  * Return the boolean value of a constraint expression
94  * when it is applied to the specified source and target
95  * security contexts.
96  *
97  * xcontext is a special beast...  It is used by the validatetrans rules
98  * only.  For these rules, scontext is the context before the transition,
99  * tcontext is the context after the transition, and xcontext is the context
100  * of the process performing the transition.  All other callers of
101  * constraint_expr_eval should pass in NULL for xcontext.
102  */
103 static int constraint_expr_eval(struct context *scontext,
104 				struct context *tcontext,
105 				struct context *xcontext,
106 				struct constraint_expr *cexpr)
107 {
108 	u32 val1, val2;
109 	struct context *c;
110 	struct role_datum *r1, *r2;
111 	struct mls_level *l1, *l2;
112 	struct constraint_expr *e;
113 	int s[CEXPR_MAXDEPTH];
114 	int sp = -1;
115 
116 	for (e = cexpr; e; e = e->next) {
117 		switch (e->expr_type) {
118 		case CEXPR_NOT:
119 			BUG_ON(sp < 0);
120 			s[sp] = !s[sp];
121 			break;
122 		case CEXPR_AND:
123 			BUG_ON(sp < 1);
124 			sp--;
125 			s[sp] &= s[sp+1];
126 			break;
127 		case CEXPR_OR:
128 			BUG_ON(sp < 1);
129 			sp--;
130 			s[sp] |= s[sp+1];
131 			break;
132 		case CEXPR_ATTR:
133 			if (sp == (CEXPR_MAXDEPTH-1))
134 				return 0;
135 			switch (e->attr) {
136 			case CEXPR_USER:
137 				val1 = scontext->user;
138 				val2 = tcontext->user;
139 				break;
140 			case CEXPR_TYPE:
141 				val1 = scontext->type;
142 				val2 = tcontext->type;
143 				break;
144 			case CEXPR_ROLE:
145 				val1 = scontext->role;
146 				val2 = tcontext->role;
147 				r1 = policydb.role_val_to_struct[val1 - 1];
148 				r2 = policydb.role_val_to_struct[val2 - 1];
149 				switch (e->op) {
150 				case CEXPR_DOM:
151 					s[++sp] = ebitmap_get_bit(&r1->dominates,
152 								  val2 - 1);
153 					continue;
154 				case CEXPR_DOMBY:
155 					s[++sp] = ebitmap_get_bit(&r2->dominates,
156 								  val1 - 1);
157 					continue;
158 				case CEXPR_INCOMP:
159 					s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
160 								     val2 - 1) &&
161 						    !ebitmap_get_bit(&r2->dominates,
162 								     val1 - 1) );
163 					continue;
164 				default:
165 					break;
166 				}
167 				break;
168 			case CEXPR_L1L2:
169 				l1 = &(scontext->range.level[0]);
170 				l2 = &(tcontext->range.level[0]);
171 				goto mls_ops;
172 			case CEXPR_L1H2:
173 				l1 = &(scontext->range.level[0]);
174 				l2 = &(tcontext->range.level[1]);
175 				goto mls_ops;
176 			case CEXPR_H1L2:
177 				l1 = &(scontext->range.level[1]);
178 				l2 = &(tcontext->range.level[0]);
179 				goto mls_ops;
180 			case CEXPR_H1H2:
181 				l1 = &(scontext->range.level[1]);
182 				l2 = &(tcontext->range.level[1]);
183 				goto mls_ops;
184 			case CEXPR_L1H1:
185 				l1 = &(scontext->range.level[0]);
186 				l2 = &(scontext->range.level[1]);
187 				goto mls_ops;
188 			case CEXPR_L2H2:
189 				l1 = &(tcontext->range.level[0]);
190 				l2 = &(tcontext->range.level[1]);
191 				goto mls_ops;
192 mls_ops:
193 			switch (e->op) {
194 			case CEXPR_EQ:
195 				s[++sp] = mls_level_eq(l1, l2);
196 				continue;
197 			case CEXPR_NEQ:
198 				s[++sp] = !mls_level_eq(l1, l2);
199 				continue;
200 			case CEXPR_DOM:
201 				s[++sp] = mls_level_dom(l1, l2);
202 				continue;
203 			case CEXPR_DOMBY:
204 				s[++sp] = mls_level_dom(l2, l1);
205 				continue;
206 			case CEXPR_INCOMP:
207 				s[++sp] = mls_level_incomp(l2, l1);
208 				continue;
209 			default:
210 				BUG();
211 				return 0;
212 			}
213 			break;
214 			default:
215 				BUG();
216 				return 0;
217 			}
218 
219 			switch (e->op) {
220 			case CEXPR_EQ:
221 				s[++sp] = (val1 == val2);
222 				break;
223 			case CEXPR_NEQ:
224 				s[++sp] = (val1 != val2);
225 				break;
226 			default:
227 				BUG();
228 				return 0;
229 			}
230 			break;
231 		case CEXPR_NAMES:
232 			if (sp == (CEXPR_MAXDEPTH-1))
233 				return 0;
234 			c = scontext;
235 			if (e->attr & CEXPR_TARGET)
236 				c = tcontext;
237 			else if (e->attr & CEXPR_XTARGET) {
238 				c = xcontext;
239 				if (!c) {
240 					BUG();
241 					return 0;
242 				}
243 			}
244 			if (e->attr & CEXPR_USER)
245 				val1 = c->user;
246 			else if (e->attr & CEXPR_ROLE)
247 				val1 = c->role;
248 			else if (e->attr & CEXPR_TYPE)
249 				val1 = c->type;
250 			else {
251 				BUG();
252 				return 0;
253 			}
254 
255 			switch (e->op) {
256 			case CEXPR_EQ:
257 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
258 				break;
259 			case CEXPR_NEQ:
260 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
261 				break;
262 			default:
263 				BUG();
264 				return 0;
265 			}
266 			break;
267 		default:
268 			BUG();
269 			return 0;
270 		}
271 	}
272 
273 	BUG_ON(sp != 0);
274 	return s[0];
275 }
276 
277 /*
278  * Compute access vectors based on a context structure pair for
279  * the permissions in a particular class.
280  */
281 static int context_struct_compute_av(struct context *scontext,
282 				     struct context *tcontext,
283 				     u16 tclass,
284 				     u32 requested,
285 				     struct av_decision *avd)
286 {
287 	struct constraint_node *constraint;
288 	struct role_allow *ra;
289 	struct avtab_key avkey;
290 	struct avtab_node *node;
291 	struct class_datum *tclass_datum;
292 	struct ebitmap *sattr, *tattr;
293 	struct ebitmap_node *snode, *tnode;
294 	unsigned int i, j;
295 
296 	/*
297 	 * Remap extended Netlink classes for old policy versions.
298 	 * Do this here rather than socket_type_to_security_class()
299 	 * in case a newer policy version is loaded, allowing sockets
300 	 * to remain in the correct class.
301 	 */
302 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
303 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
304 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
305 			tclass = SECCLASS_NETLINK_SOCKET;
306 
307 	if (!tclass || tclass > policydb.p_classes.nprim) {
308 		printk(KERN_ERR "security_compute_av:  unrecognized class %d\n",
309 		       tclass);
310 		return -EINVAL;
311 	}
312 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
313 
314 	/*
315 	 * Initialize the access vectors to the default values.
316 	 */
317 	avd->allowed = 0;
318 	avd->decided = 0xffffffff;
319 	avd->auditallow = 0;
320 	avd->auditdeny = 0xffffffff;
321 	avd->seqno = latest_granting;
322 
323 	/*
324 	 * If a specific type enforcement rule was defined for
325 	 * this permission check, then use it.
326 	 */
327 	avkey.target_class = tclass;
328 	avkey.specified = AVTAB_AV;
329 	sattr = &policydb.type_attr_map[scontext->type - 1];
330 	tattr = &policydb.type_attr_map[tcontext->type - 1];
331 	ebitmap_for_each_bit(sattr, snode, i) {
332 		if (!ebitmap_node_get_bit(snode, i))
333 			continue;
334 		ebitmap_for_each_bit(tattr, tnode, j) {
335 			if (!ebitmap_node_get_bit(tnode, j))
336 				continue;
337 			avkey.source_type = i + 1;
338 			avkey.target_type = j + 1;
339 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
340 			     node != NULL;
341 			     node = avtab_search_node_next(node, avkey.specified)) {
342 				if (node->key.specified == AVTAB_ALLOWED)
343 					avd->allowed |= node->datum.data;
344 				else if (node->key.specified == AVTAB_AUDITALLOW)
345 					avd->auditallow |= node->datum.data;
346 				else if (node->key.specified == AVTAB_AUDITDENY)
347 					avd->auditdeny &= node->datum.data;
348 			}
349 
350 			/* Check conditional av table for additional permissions */
351 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
352 
353 		}
354 	}
355 
356 	/*
357 	 * Remove any permissions prohibited by a constraint (this includes
358 	 * the MLS policy).
359 	 */
360 	constraint = tclass_datum->constraints;
361 	while (constraint) {
362 		if ((constraint->permissions & (avd->allowed)) &&
363 		    !constraint_expr_eval(scontext, tcontext, NULL,
364 					  constraint->expr)) {
365 			avd->allowed = (avd->allowed) & ~(constraint->permissions);
366 		}
367 		constraint = constraint->next;
368 	}
369 
370 	/*
371 	 * If checking process transition permission and the
372 	 * role is changing, then check the (current_role, new_role)
373 	 * pair.
374 	 */
375 	if (tclass == SECCLASS_PROCESS &&
376 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
377 	    scontext->role != tcontext->role) {
378 		for (ra = policydb.role_allow; ra; ra = ra->next) {
379 			if (scontext->role == ra->role &&
380 			    tcontext->role == ra->new_role)
381 				break;
382 		}
383 		if (!ra)
384 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
385 			                                PROCESS__DYNTRANSITION);
386 	}
387 
388 	return 0;
389 }
390 
391 static int security_validtrans_handle_fail(struct context *ocontext,
392                                            struct context *ncontext,
393                                            struct context *tcontext,
394                                            u16 tclass)
395 {
396 	char *o = NULL, *n = NULL, *t = NULL;
397 	u32 olen, nlen, tlen;
398 
399 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
400 		goto out;
401 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
402 		goto out;
403 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
404 		goto out;
405 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
406 	          "security_validate_transition:  denied for"
407 	          " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
408 	          o, n, t, policydb.p_class_val_to_name[tclass-1]);
409 out:
410 	kfree(o);
411 	kfree(n);
412 	kfree(t);
413 
414 	if (!selinux_enforcing)
415 		return 0;
416 	return -EPERM;
417 }
418 
419 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
420                                  u16 tclass)
421 {
422 	struct context *ocontext;
423 	struct context *ncontext;
424 	struct context *tcontext;
425 	struct class_datum *tclass_datum;
426 	struct constraint_node *constraint;
427 	int rc = 0;
428 
429 	if (!ss_initialized)
430 		return 0;
431 
432 	POLICY_RDLOCK;
433 
434 	/*
435 	 * Remap extended Netlink classes for old policy versions.
436 	 * Do this here rather than socket_type_to_security_class()
437 	 * in case a newer policy version is loaded, allowing sockets
438 	 * to remain in the correct class.
439 	 */
440 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
441 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
442 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
443 			tclass = SECCLASS_NETLINK_SOCKET;
444 
445 	if (!tclass || tclass > policydb.p_classes.nprim) {
446 		printk(KERN_ERR "security_validate_transition:  "
447 		       "unrecognized class %d\n", tclass);
448 		rc = -EINVAL;
449 		goto out;
450 	}
451 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
452 
453 	ocontext = sidtab_search(&sidtab, oldsid);
454 	if (!ocontext) {
455 		printk(KERN_ERR "security_validate_transition: "
456 		       " unrecognized SID %d\n", oldsid);
457 		rc = -EINVAL;
458 		goto out;
459 	}
460 
461 	ncontext = sidtab_search(&sidtab, newsid);
462 	if (!ncontext) {
463 		printk(KERN_ERR "security_validate_transition: "
464 		       " unrecognized SID %d\n", newsid);
465 		rc = -EINVAL;
466 		goto out;
467 	}
468 
469 	tcontext = sidtab_search(&sidtab, tasksid);
470 	if (!tcontext) {
471 		printk(KERN_ERR "security_validate_transition: "
472 		       " unrecognized SID %d\n", tasksid);
473 		rc = -EINVAL;
474 		goto out;
475 	}
476 
477 	constraint = tclass_datum->validatetrans;
478 	while (constraint) {
479 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
480 		                          constraint->expr)) {
481 			rc = security_validtrans_handle_fail(ocontext, ncontext,
482 			                                     tcontext, tclass);
483 			goto out;
484 		}
485 		constraint = constraint->next;
486 	}
487 
488 out:
489 	POLICY_RDUNLOCK;
490 	return rc;
491 }
492 
493 /**
494  * security_compute_av - Compute access vector decisions.
495  * @ssid: source security identifier
496  * @tsid: target security identifier
497  * @tclass: target security class
498  * @requested: requested permissions
499  * @avd: access vector decisions
500  *
501  * Compute a set of access vector decisions based on the
502  * SID pair (@ssid, @tsid) for the permissions in @tclass.
503  * Return -%EINVAL if any of the parameters are invalid or %0
504  * if the access vector decisions were computed successfully.
505  */
506 int security_compute_av(u32 ssid,
507 			u32 tsid,
508 			u16 tclass,
509 			u32 requested,
510 			struct av_decision *avd)
511 {
512 	struct context *scontext = NULL, *tcontext = NULL;
513 	int rc = 0;
514 
515 	if (!ss_initialized) {
516 		avd->allowed = 0xffffffff;
517 		avd->decided = 0xffffffff;
518 		avd->auditallow = 0;
519 		avd->auditdeny = 0xffffffff;
520 		avd->seqno = latest_granting;
521 		return 0;
522 	}
523 
524 	POLICY_RDLOCK;
525 
526 	scontext = sidtab_search(&sidtab, ssid);
527 	if (!scontext) {
528 		printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
529 		       ssid);
530 		rc = -EINVAL;
531 		goto out;
532 	}
533 	tcontext = sidtab_search(&sidtab, tsid);
534 	if (!tcontext) {
535 		printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
536 		       tsid);
537 		rc = -EINVAL;
538 		goto out;
539 	}
540 
541 	rc = context_struct_compute_av(scontext, tcontext, tclass,
542 				       requested, avd);
543 out:
544 	POLICY_RDUNLOCK;
545 	return rc;
546 }
547 
548 /*
549  * Write the security context string representation of
550  * the context structure `context' into a dynamically
551  * allocated string of the correct size.  Set `*scontext'
552  * to point to this string and set `*scontext_len' to
553  * the length of the string.
554  */
555 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
556 {
557 	char *scontextp;
558 
559 	*scontext = NULL;
560 	*scontext_len = 0;
561 
562 	/* Compute the size of the context. */
563 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
564 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
565 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
566 	*scontext_len += mls_compute_context_len(context);
567 
568 	/* Allocate space for the context; caller must free this space. */
569 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
570 	if (!scontextp) {
571 		return -ENOMEM;
572 	}
573 	*scontext = scontextp;
574 
575 	/*
576 	 * Copy the user name, role name and type name into the context.
577 	 */
578 	sprintf(scontextp, "%s:%s:%s",
579 		policydb.p_user_val_to_name[context->user - 1],
580 		policydb.p_role_val_to_name[context->role - 1],
581 		policydb.p_type_val_to_name[context->type - 1]);
582 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
583 	             1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
584 	             1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
585 
586 	mls_sid_to_context(context, &scontextp);
587 
588 	*scontextp = 0;
589 
590 	return 0;
591 }
592 
593 #include "initial_sid_to_string.h"
594 
595 /**
596  * security_sid_to_context - Obtain a context for a given SID.
597  * @sid: security identifier, SID
598  * @scontext: security context
599  * @scontext_len: length in bytes
600  *
601  * Write the string representation of the context associated with @sid
602  * into a dynamically allocated string of the correct size.  Set @scontext
603  * to point to this string and set @scontext_len to the length of the string.
604  */
605 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
606 {
607 	struct context *context;
608 	int rc = 0;
609 
610 	if (!ss_initialized) {
611 		if (sid <= SECINITSID_NUM) {
612 			char *scontextp;
613 
614 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
615 			scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
616 			if (!scontextp) {
617 				rc = -ENOMEM;
618 				goto out;
619 			}
620 			strcpy(scontextp, initial_sid_to_string[sid]);
621 			*scontext = scontextp;
622 			goto out;
623 		}
624 		printk(KERN_ERR "security_sid_to_context:  called before initial "
625 		       "load_policy on unknown SID %d\n", sid);
626 		rc = -EINVAL;
627 		goto out;
628 	}
629 	POLICY_RDLOCK;
630 	context = sidtab_search(&sidtab, sid);
631 	if (!context) {
632 		printk(KERN_ERR "security_sid_to_context:  unrecognized SID "
633 		       "%d\n", sid);
634 		rc = -EINVAL;
635 		goto out_unlock;
636 	}
637 	rc = context_struct_to_string(context, scontext, scontext_len);
638 out_unlock:
639 	POLICY_RDUNLOCK;
640 out:
641 	return rc;
642 
643 }
644 
645 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
646 {
647 	char *scontext2;
648 	struct context context;
649 	struct role_datum *role;
650 	struct type_datum *typdatum;
651 	struct user_datum *usrdatum;
652 	char *scontextp, *p, oldc;
653 	int rc = 0;
654 
655 	if (!ss_initialized) {
656 		int i;
657 
658 		for (i = 1; i < SECINITSID_NUM; i++) {
659 			if (!strcmp(initial_sid_to_string[i], scontext)) {
660 				*sid = i;
661 				goto out;
662 			}
663 		}
664 		*sid = SECINITSID_KERNEL;
665 		goto out;
666 	}
667 	*sid = SECSID_NULL;
668 
669 	/* Copy the string so that we can modify the copy as we parse it.
670 	   The string should already by null terminated, but we append a
671 	   null suffix to the copy to avoid problems with the existing
672 	   attr package, which doesn't view the null terminator as part
673 	   of the attribute value. */
674 	scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
675 	if (!scontext2) {
676 		rc = -ENOMEM;
677 		goto out;
678 	}
679 	memcpy(scontext2, scontext, scontext_len);
680 	scontext2[scontext_len] = 0;
681 
682 	context_init(&context);
683 	*sid = SECSID_NULL;
684 
685 	POLICY_RDLOCK;
686 
687 	/* Parse the security context. */
688 
689 	rc = -EINVAL;
690 	scontextp = (char *) scontext2;
691 
692 	/* Extract the user. */
693 	p = scontextp;
694 	while (*p && *p != ':')
695 		p++;
696 
697 	if (*p == 0)
698 		goto out_unlock;
699 
700 	*p++ = 0;
701 
702 	usrdatum = hashtab_search(policydb.p_users.table, scontextp);
703 	if (!usrdatum)
704 		goto out_unlock;
705 
706 	context.user = usrdatum->value;
707 
708 	/* Extract role. */
709 	scontextp = p;
710 	while (*p && *p != ':')
711 		p++;
712 
713 	if (*p == 0)
714 		goto out_unlock;
715 
716 	*p++ = 0;
717 
718 	role = hashtab_search(policydb.p_roles.table, scontextp);
719 	if (!role)
720 		goto out_unlock;
721 	context.role = role->value;
722 
723 	/* Extract type. */
724 	scontextp = p;
725 	while (*p && *p != ':')
726 		p++;
727 	oldc = *p;
728 	*p++ = 0;
729 
730 	typdatum = hashtab_search(policydb.p_types.table, scontextp);
731 	if (!typdatum)
732 		goto out_unlock;
733 
734 	context.type = typdatum->value;
735 
736 	rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
737 	if (rc)
738 		goto out_unlock;
739 
740 	if ((p - scontext2) < scontext_len) {
741 		rc = -EINVAL;
742 		goto out_unlock;
743 	}
744 
745 	/* Check the validity of the new context. */
746 	if (!policydb_context_isvalid(&policydb, &context)) {
747 		rc = -EINVAL;
748 		goto out_unlock;
749 	}
750 	/* Obtain the new sid. */
751 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
752 out_unlock:
753 	POLICY_RDUNLOCK;
754 	context_destroy(&context);
755 	kfree(scontext2);
756 out:
757 	return rc;
758 }
759 
760 /**
761  * security_context_to_sid - Obtain a SID for a given security context.
762  * @scontext: security context
763  * @scontext_len: length in bytes
764  * @sid: security identifier, SID
765  *
766  * Obtains a SID associated with the security context that
767  * has the string representation specified by @scontext.
768  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
769  * memory is available, or 0 on success.
770  */
771 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
772 {
773 	return security_context_to_sid_core(scontext, scontext_len,
774 	                                    sid, SECSID_NULL);
775 }
776 
777 /**
778  * security_context_to_sid_default - Obtain a SID for a given security context,
779  * falling back to specified default if needed.
780  *
781  * @scontext: security context
782  * @scontext_len: length in bytes
783  * @sid: security identifier, SID
784  * @def_sid: default SID to assign on errror
785  *
786  * Obtains a SID associated with the security context that
787  * has the string representation specified by @scontext.
788  * The default SID is passed to the MLS layer to be used to allow
789  * kernel labeling of the MLS field if the MLS field is not present
790  * (for upgrading to MLS without full relabel).
791  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
792  * memory is available, or 0 on success.
793  */
794 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
795 {
796 	return security_context_to_sid_core(scontext, scontext_len,
797 	                                    sid, def_sid);
798 }
799 
800 static int compute_sid_handle_invalid_context(
801 	struct context *scontext,
802 	struct context *tcontext,
803 	u16 tclass,
804 	struct context *newcontext)
805 {
806 	char *s = NULL, *t = NULL, *n = NULL;
807 	u32 slen, tlen, nlen;
808 
809 	if (context_struct_to_string(scontext, &s, &slen) < 0)
810 		goto out;
811 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
812 		goto out;
813 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
814 		goto out;
815 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
816 		  "security_compute_sid:  invalid context %s"
817 		  " for scontext=%s"
818 		  " tcontext=%s"
819 		  " tclass=%s",
820 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
821 out:
822 	kfree(s);
823 	kfree(t);
824 	kfree(n);
825 	if (!selinux_enforcing)
826 		return 0;
827 	return -EACCES;
828 }
829 
830 static int security_compute_sid(u32 ssid,
831 				u32 tsid,
832 				u16 tclass,
833 				u32 specified,
834 				u32 *out_sid)
835 {
836 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
837 	struct role_trans *roletr = NULL;
838 	struct avtab_key avkey;
839 	struct avtab_datum *avdatum;
840 	struct avtab_node *node;
841 	int rc = 0;
842 
843 	if (!ss_initialized) {
844 		switch (tclass) {
845 		case SECCLASS_PROCESS:
846 			*out_sid = ssid;
847 			break;
848 		default:
849 			*out_sid = tsid;
850 			break;
851 		}
852 		goto out;
853 	}
854 
855 	context_init(&newcontext);
856 
857 	POLICY_RDLOCK;
858 
859 	scontext = sidtab_search(&sidtab, ssid);
860 	if (!scontext) {
861 		printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
862 		       ssid);
863 		rc = -EINVAL;
864 		goto out_unlock;
865 	}
866 	tcontext = sidtab_search(&sidtab, tsid);
867 	if (!tcontext) {
868 		printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
869 		       tsid);
870 		rc = -EINVAL;
871 		goto out_unlock;
872 	}
873 
874 	/* Set the user identity. */
875 	switch (specified) {
876 	case AVTAB_TRANSITION:
877 	case AVTAB_CHANGE:
878 		/* Use the process user identity. */
879 		newcontext.user = scontext->user;
880 		break;
881 	case AVTAB_MEMBER:
882 		/* Use the related object owner. */
883 		newcontext.user = tcontext->user;
884 		break;
885 	}
886 
887 	/* Set the role and type to default values. */
888 	switch (tclass) {
889 	case SECCLASS_PROCESS:
890 		/* Use the current role and type of process. */
891 		newcontext.role = scontext->role;
892 		newcontext.type = scontext->type;
893 		break;
894 	default:
895 		/* Use the well-defined object role. */
896 		newcontext.role = OBJECT_R_VAL;
897 		/* Use the type of the related object. */
898 		newcontext.type = tcontext->type;
899 	}
900 
901 	/* Look for a type transition/member/change rule. */
902 	avkey.source_type = scontext->type;
903 	avkey.target_type = tcontext->type;
904 	avkey.target_class = tclass;
905 	avkey.specified = specified;
906 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
907 
908 	/* If no permanent rule, also check for enabled conditional rules */
909 	if(!avdatum) {
910 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
911 		for (; node != NULL; node = avtab_search_node_next(node, specified)) {
912 			if (node->key.specified & AVTAB_ENABLED) {
913 				avdatum = &node->datum;
914 				break;
915 			}
916 		}
917 	}
918 
919 	if (avdatum) {
920 		/* Use the type from the type transition/member/change rule. */
921 		newcontext.type = avdatum->data;
922 	}
923 
924 	/* Check for class-specific changes. */
925 	switch (tclass) {
926 	case SECCLASS_PROCESS:
927 		if (specified & AVTAB_TRANSITION) {
928 			/* Look for a role transition rule. */
929 			for (roletr = policydb.role_tr; roletr;
930 			     roletr = roletr->next) {
931 				if (roletr->role == scontext->role &&
932 				    roletr->type == tcontext->type) {
933 					/* Use the role transition rule. */
934 					newcontext.role = roletr->new_role;
935 					break;
936 				}
937 			}
938 		}
939 		break;
940 	default:
941 		break;
942 	}
943 
944 	/* Set the MLS attributes.
945 	   This is done last because it may allocate memory. */
946 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
947 	if (rc)
948 		goto out_unlock;
949 
950 	/* Check the validity of the context. */
951 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
952 		rc = compute_sid_handle_invalid_context(scontext,
953 							tcontext,
954 							tclass,
955 							&newcontext);
956 		if (rc)
957 			goto out_unlock;
958 	}
959 	/* Obtain the sid for the context. */
960 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
961 out_unlock:
962 	POLICY_RDUNLOCK;
963 	context_destroy(&newcontext);
964 out:
965 	return rc;
966 }
967 
968 /**
969  * security_transition_sid - Compute the SID for a new subject/object.
970  * @ssid: source security identifier
971  * @tsid: target security identifier
972  * @tclass: target security class
973  * @out_sid: security identifier for new subject/object
974  *
975  * Compute a SID to use for labeling a new subject or object in the
976  * class @tclass based on a SID pair (@ssid, @tsid).
977  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
978  * if insufficient memory is available, or %0 if the new SID was
979  * computed successfully.
980  */
981 int security_transition_sid(u32 ssid,
982 			    u32 tsid,
983 			    u16 tclass,
984 			    u32 *out_sid)
985 {
986 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
987 }
988 
989 /**
990  * security_member_sid - Compute the SID for member selection.
991  * @ssid: source security identifier
992  * @tsid: target security identifier
993  * @tclass: target security class
994  * @out_sid: security identifier for selected member
995  *
996  * Compute a SID to use when selecting a member of a polyinstantiated
997  * object of class @tclass based on a SID pair (@ssid, @tsid).
998  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
999  * if insufficient memory is available, or %0 if the SID was
1000  * computed successfully.
1001  */
1002 int security_member_sid(u32 ssid,
1003 			u32 tsid,
1004 			u16 tclass,
1005 			u32 *out_sid)
1006 {
1007 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1008 }
1009 
1010 /**
1011  * security_change_sid - Compute the SID for object relabeling.
1012  * @ssid: source security identifier
1013  * @tsid: target security identifier
1014  * @tclass: target security class
1015  * @out_sid: security identifier for selected member
1016  *
1017  * Compute a SID to use for relabeling an object of class @tclass
1018  * based on a SID pair (@ssid, @tsid).
1019  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1020  * if insufficient memory is available, or %0 if the SID was
1021  * computed successfully.
1022  */
1023 int security_change_sid(u32 ssid,
1024 			u32 tsid,
1025 			u16 tclass,
1026 			u32 *out_sid)
1027 {
1028 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1029 }
1030 
1031 /*
1032  * Verify that each kernel class that is defined in the
1033  * policy is correct
1034  */
1035 static int validate_classes(struct policydb *p)
1036 {
1037 	int i, j;
1038 	struct class_datum *cladatum;
1039 	struct perm_datum *perdatum;
1040 	u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1041 	u16 class_val;
1042 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
1043 	const char *def_class, *def_perm, *pol_class;
1044 	struct symtab *perms;
1045 
1046 	for (i = 1; i < kdefs->cts_len; i++) {
1047 		def_class = kdefs->class_to_string[i];
1048 		if (i > p->p_classes.nprim) {
1049 			printk(KERN_INFO
1050 			       "security:  class %s not defined in policy\n",
1051 			       def_class);
1052 			continue;
1053 		}
1054 		pol_class = p->p_class_val_to_name[i-1];
1055 		if (strcmp(pol_class, def_class)) {
1056 			printk(KERN_ERR
1057 			       "security:  class %d is incorrect, found %s but should be %s\n",
1058 			       i, pol_class, def_class);
1059 			return -EINVAL;
1060 		}
1061 	}
1062 	for (i = 0; i < kdefs->av_pts_len; i++) {
1063 		class_val = kdefs->av_perm_to_string[i].tclass;
1064 		perm_val = kdefs->av_perm_to_string[i].value;
1065 		def_perm = kdefs->av_perm_to_string[i].name;
1066 		if (class_val > p->p_classes.nprim)
1067 			continue;
1068 		pol_class = p->p_class_val_to_name[class_val-1];
1069 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1070 		BUG_ON(!cladatum);
1071 		perms = &cladatum->permissions;
1072 		nprim = 1 << (perms->nprim - 1);
1073 		if (perm_val > nprim) {
1074 			printk(KERN_INFO
1075 			       "security:  permission %s in class %s not defined in policy\n",
1076 			       def_perm, pol_class);
1077 			continue;
1078 		}
1079 		perdatum = hashtab_search(perms->table, def_perm);
1080 		if (perdatum == NULL) {
1081 			printk(KERN_ERR
1082 			       "security:  permission %s in class %s not found in policy\n",
1083 			       def_perm, pol_class);
1084 			return -EINVAL;
1085 		}
1086 		pol_val = 1 << (perdatum->value - 1);
1087 		if (pol_val != perm_val) {
1088 			printk(KERN_ERR
1089 			       "security:  permission %s in class %s has incorrect value\n",
1090 			       def_perm, pol_class);
1091 			return -EINVAL;
1092 		}
1093 	}
1094 	for (i = 0; i < kdefs->av_inherit_len; i++) {
1095 		class_val = kdefs->av_inherit[i].tclass;
1096 		if (class_val > p->p_classes.nprim)
1097 			continue;
1098 		pol_class = p->p_class_val_to_name[class_val-1];
1099 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1100 		BUG_ON(!cladatum);
1101 		if (!cladatum->comdatum) {
1102 			printk(KERN_ERR
1103 			       "security:  class %s should have an inherits clause but does not\n",
1104 			       pol_class);
1105 			return -EINVAL;
1106 		}
1107 		tmp = kdefs->av_inherit[i].common_base;
1108 		common_pts_len = 0;
1109 		while (!(tmp & 0x01)) {
1110 			common_pts_len++;
1111 			tmp >>= 1;
1112 		}
1113 		perms = &cladatum->comdatum->permissions;
1114 		for (j = 0; j < common_pts_len; j++) {
1115 			def_perm = kdefs->av_inherit[i].common_pts[j];
1116 			if (j >= perms->nprim) {
1117 				printk(KERN_INFO
1118 				       "security:  permission %s in class %s not defined in policy\n",
1119 				       def_perm, pol_class);
1120 				continue;
1121 			}
1122 			perdatum = hashtab_search(perms->table, def_perm);
1123 			if (perdatum == NULL) {
1124 				printk(KERN_ERR
1125 				       "security:  permission %s in class %s not found in policy\n",
1126 				       def_perm, pol_class);
1127 				return -EINVAL;
1128 			}
1129 			if (perdatum->value != j + 1) {
1130 				printk(KERN_ERR
1131 				       "security:  permission %s in class %s has incorrect value\n",
1132 				       def_perm, pol_class);
1133 				return -EINVAL;
1134 			}
1135 		}
1136 	}
1137 	return 0;
1138 }
1139 
1140 /* Clone the SID into the new SID table. */
1141 static int clone_sid(u32 sid,
1142 		     struct context *context,
1143 		     void *arg)
1144 {
1145 	struct sidtab *s = arg;
1146 
1147 	return sidtab_insert(s, sid, context);
1148 }
1149 
1150 static inline int convert_context_handle_invalid_context(struct context *context)
1151 {
1152 	int rc = 0;
1153 
1154 	if (selinux_enforcing) {
1155 		rc = -EINVAL;
1156 	} else {
1157 		char *s;
1158 		u32 len;
1159 
1160 		context_struct_to_string(context, &s, &len);
1161 		printk(KERN_ERR "security:  context %s is invalid\n", s);
1162 		kfree(s);
1163 	}
1164 	return rc;
1165 }
1166 
1167 struct convert_context_args {
1168 	struct policydb *oldp;
1169 	struct policydb *newp;
1170 };
1171 
1172 /*
1173  * Convert the values in the security context
1174  * structure `c' from the values specified
1175  * in the policy `p->oldp' to the values specified
1176  * in the policy `p->newp'.  Verify that the
1177  * context is valid under the new policy.
1178  */
1179 static int convert_context(u32 key,
1180 			   struct context *c,
1181 			   void *p)
1182 {
1183 	struct convert_context_args *args;
1184 	struct context oldc;
1185 	struct role_datum *role;
1186 	struct type_datum *typdatum;
1187 	struct user_datum *usrdatum;
1188 	char *s;
1189 	u32 len;
1190 	int rc;
1191 
1192 	args = p;
1193 
1194 	rc = context_cpy(&oldc, c);
1195 	if (rc)
1196 		goto out;
1197 
1198 	rc = -EINVAL;
1199 
1200 	/* Convert the user. */
1201 	usrdatum = hashtab_search(args->newp->p_users.table,
1202 	                          args->oldp->p_user_val_to_name[c->user - 1]);
1203 	if (!usrdatum) {
1204 		goto bad;
1205 	}
1206 	c->user = usrdatum->value;
1207 
1208 	/* Convert the role. */
1209 	role = hashtab_search(args->newp->p_roles.table,
1210 	                      args->oldp->p_role_val_to_name[c->role - 1]);
1211 	if (!role) {
1212 		goto bad;
1213 	}
1214 	c->role = role->value;
1215 
1216 	/* Convert the type. */
1217 	typdatum = hashtab_search(args->newp->p_types.table,
1218 	                          args->oldp->p_type_val_to_name[c->type - 1]);
1219 	if (!typdatum) {
1220 		goto bad;
1221 	}
1222 	c->type = typdatum->value;
1223 
1224 	rc = mls_convert_context(args->oldp, args->newp, c);
1225 	if (rc)
1226 		goto bad;
1227 
1228 	/* Check the validity of the new context. */
1229 	if (!policydb_context_isvalid(args->newp, c)) {
1230 		rc = convert_context_handle_invalid_context(&oldc);
1231 		if (rc)
1232 			goto bad;
1233 	}
1234 
1235 	context_destroy(&oldc);
1236 out:
1237 	return rc;
1238 bad:
1239 	context_struct_to_string(&oldc, &s, &len);
1240 	context_destroy(&oldc);
1241 	printk(KERN_ERR "security:  invalidating context %s\n", s);
1242 	kfree(s);
1243 	goto out;
1244 }
1245 
1246 extern void selinux_complete_init(void);
1247 
1248 /**
1249  * security_load_policy - Load a security policy configuration.
1250  * @data: binary policy data
1251  * @len: length of data in bytes
1252  *
1253  * Load a new set of security policy configuration data,
1254  * validate it and convert the SID table as necessary.
1255  * This function will flush the access vector cache after
1256  * loading the new policy.
1257  */
1258 int security_load_policy(void *data, size_t len)
1259 {
1260 	struct policydb oldpolicydb, newpolicydb;
1261 	struct sidtab oldsidtab, newsidtab;
1262 	struct convert_context_args args;
1263 	u32 seqno;
1264 	int rc = 0;
1265 	struct policy_file file = { data, len }, *fp = &file;
1266 
1267 	LOAD_LOCK;
1268 
1269 	if (!ss_initialized) {
1270 		avtab_cache_init();
1271 		if (policydb_read(&policydb, fp)) {
1272 			LOAD_UNLOCK;
1273 			avtab_cache_destroy();
1274 			return -EINVAL;
1275 		}
1276 		if (policydb_load_isids(&policydb, &sidtab)) {
1277 			LOAD_UNLOCK;
1278 			policydb_destroy(&policydb);
1279 			avtab_cache_destroy();
1280 			return -EINVAL;
1281 		}
1282 		/* Verify that the kernel defined classes are correct. */
1283 		if (validate_classes(&policydb)) {
1284 			printk(KERN_ERR
1285 			       "security:  the definition of a class is incorrect\n");
1286 			LOAD_UNLOCK;
1287 			sidtab_destroy(&sidtab);
1288 			policydb_destroy(&policydb);
1289 			avtab_cache_destroy();
1290 			return -EINVAL;
1291 		}
1292 		policydb_loaded_version = policydb.policyvers;
1293 		ss_initialized = 1;
1294 		seqno = ++latest_granting;
1295 		LOAD_UNLOCK;
1296 		selinux_complete_init();
1297 		avc_ss_reset(seqno);
1298 		selnl_notify_policyload(seqno);
1299 		selinux_netlbl_cache_invalidate();
1300 		return 0;
1301 	}
1302 
1303 #if 0
1304 	sidtab_hash_eval(&sidtab, "sids");
1305 #endif
1306 
1307 	if (policydb_read(&newpolicydb, fp)) {
1308 		LOAD_UNLOCK;
1309 		return -EINVAL;
1310 	}
1311 
1312 	sidtab_init(&newsidtab);
1313 
1314 	/* Verify that the kernel defined classes are correct. */
1315 	if (validate_classes(&newpolicydb)) {
1316 		printk(KERN_ERR
1317 		       "security:  the definition of a class is incorrect\n");
1318 		rc = -EINVAL;
1319 		goto err;
1320 	}
1321 
1322 	/* Clone the SID table. */
1323 	sidtab_shutdown(&sidtab);
1324 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1325 		rc = -ENOMEM;
1326 		goto err;
1327 	}
1328 
1329 	/* Convert the internal representations of contexts
1330 	   in the new SID table and remove invalid SIDs. */
1331 	args.oldp = &policydb;
1332 	args.newp = &newpolicydb;
1333 	sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1334 
1335 	/* Save the old policydb and SID table to free later. */
1336 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1337 	sidtab_set(&oldsidtab, &sidtab);
1338 
1339 	/* Install the new policydb and SID table. */
1340 	POLICY_WRLOCK;
1341 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1342 	sidtab_set(&sidtab, &newsidtab);
1343 	seqno = ++latest_granting;
1344 	policydb_loaded_version = policydb.policyvers;
1345 	POLICY_WRUNLOCK;
1346 	LOAD_UNLOCK;
1347 
1348 	/* Free the old policydb and SID table. */
1349 	policydb_destroy(&oldpolicydb);
1350 	sidtab_destroy(&oldsidtab);
1351 
1352 	avc_ss_reset(seqno);
1353 	selnl_notify_policyload(seqno);
1354 	selinux_netlbl_cache_invalidate();
1355 
1356 	return 0;
1357 
1358 err:
1359 	LOAD_UNLOCK;
1360 	sidtab_destroy(&newsidtab);
1361 	policydb_destroy(&newpolicydb);
1362 	return rc;
1363 
1364 }
1365 
1366 /**
1367  * security_port_sid - Obtain the SID for a port.
1368  * @domain: communication domain aka address family
1369  * @type: socket type
1370  * @protocol: protocol number
1371  * @port: port number
1372  * @out_sid: security identifier
1373  */
1374 int security_port_sid(u16 domain,
1375 		      u16 type,
1376 		      u8 protocol,
1377 		      u16 port,
1378 		      u32 *out_sid)
1379 {
1380 	struct ocontext *c;
1381 	int rc = 0;
1382 
1383 	POLICY_RDLOCK;
1384 
1385 	c = policydb.ocontexts[OCON_PORT];
1386 	while (c) {
1387 		if (c->u.port.protocol == protocol &&
1388 		    c->u.port.low_port <= port &&
1389 		    c->u.port.high_port >= port)
1390 			break;
1391 		c = c->next;
1392 	}
1393 
1394 	if (c) {
1395 		if (!c->sid[0]) {
1396 			rc = sidtab_context_to_sid(&sidtab,
1397 						   &c->context[0],
1398 						   &c->sid[0]);
1399 			if (rc)
1400 				goto out;
1401 		}
1402 		*out_sid = c->sid[0];
1403 	} else {
1404 		*out_sid = SECINITSID_PORT;
1405 	}
1406 
1407 out:
1408 	POLICY_RDUNLOCK;
1409 	return rc;
1410 }
1411 
1412 /**
1413  * security_netif_sid - Obtain the SID for a network interface.
1414  * @name: interface name
1415  * @if_sid: interface SID
1416  * @msg_sid: default SID for received packets
1417  */
1418 int security_netif_sid(char *name,
1419 		       u32 *if_sid,
1420 		       u32 *msg_sid)
1421 {
1422 	int rc = 0;
1423 	struct ocontext *c;
1424 
1425 	POLICY_RDLOCK;
1426 
1427 	c = policydb.ocontexts[OCON_NETIF];
1428 	while (c) {
1429 		if (strcmp(name, c->u.name) == 0)
1430 			break;
1431 		c = c->next;
1432 	}
1433 
1434 	if (c) {
1435 		if (!c->sid[0] || !c->sid[1]) {
1436 			rc = sidtab_context_to_sid(&sidtab,
1437 						  &c->context[0],
1438 						  &c->sid[0]);
1439 			if (rc)
1440 				goto out;
1441 			rc = sidtab_context_to_sid(&sidtab,
1442 						   &c->context[1],
1443 						   &c->sid[1]);
1444 			if (rc)
1445 				goto out;
1446 		}
1447 		*if_sid = c->sid[0];
1448 		*msg_sid = c->sid[1];
1449 	} else {
1450 		*if_sid = SECINITSID_NETIF;
1451 		*msg_sid = SECINITSID_NETMSG;
1452 	}
1453 
1454 out:
1455 	POLICY_RDUNLOCK;
1456 	return rc;
1457 }
1458 
1459 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1460 {
1461 	int i, fail = 0;
1462 
1463 	for(i = 0; i < 4; i++)
1464 		if(addr[i] != (input[i] & mask[i])) {
1465 			fail = 1;
1466 			break;
1467 		}
1468 
1469 	return !fail;
1470 }
1471 
1472 /**
1473  * security_node_sid - Obtain the SID for a node (host).
1474  * @domain: communication domain aka address family
1475  * @addrp: address
1476  * @addrlen: address length in bytes
1477  * @out_sid: security identifier
1478  */
1479 int security_node_sid(u16 domain,
1480 		      void *addrp,
1481 		      u32 addrlen,
1482 		      u32 *out_sid)
1483 {
1484 	int rc = 0;
1485 	struct ocontext *c;
1486 
1487 	POLICY_RDLOCK;
1488 
1489 	switch (domain) {
1490 	case AF_INET: {
1491 		u32 addr;
1492 
1493 		if (addrlen != sizeof(u32)) {
1494 			rc = -EINVAL;
1495 			goto out;
1496 		}
1497 
1498 		addr = *((u32 *)addrp);
1499 
1500 		c = policydb.ocontexts[OCON_NODE];
1501 		while (c) {
1502 			if (c->u.node.addr == (addr & c->u.node.mask))
1503 				break;
1504 			c = c->next;
1505 		}
1506 		break;
1507 	}
1508 
1509 	case AF_INET6:
1510 		if (addrlen != sizeof(u64) * 2) {
1511 			rc = -EINVAL;
1512 			goto out;
1513 		}
1514 		c = policydb.ocontexts[OCON_NODE6];
1515 		while (c) {
1516 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1517 						c->u.node6.mask))
1518 				break;
1519 			c = c->next;
1520 		}
1521 		break;
1522 
1523 	default:
1524 		*out_sid = SECINITSID_NODE;
1525 		goto out;
1526 	}
1527 
1528 	if (c) {
1529 		if (!c->sid[0]) {
1530 			rc = sidtab_context_to_sid(&sidtab,
1531 						   &c->context[0],
1532 						   &c->sid[0]);
1533 			if (rc)
1534 				goto out;
1535 		}
1536 		*out_sid = c->sid[0];
1537 	} else {
1538 		*out_sid = SECINITSID_NODE;
1539 	}
1540 
1541 out:
1542 	POLICY_RDUNLOCK;
1543 	return rc;
1544 }
1545 
1546 #define SIDS_NEL 25
1547 
1548 /**
1549  * security_get_user_sids - Obtain reachable SIDs for a user.
1550  * @fromsid: starting SID
1551  * @username: username
1552  * @sids: array of reachable SIDs for user
1553  * @nel: number of elements in @sids
1554  *
1555  * Generate the set of SIDs for legal security contexts
1556  * for a given user that can be reached by @fromsid.
1557  * Set *@sids to point to a dynamically allocated
1558  * array containing the set of SIDs.  Set *@nel to the
1559  * number of elements in the array.
1560  */
1561 
1562 int security_get_user_sids(u32 fromsid,
1563 	                   char *username,
1564 			   u32 **sids,
1565 			   u32 *nel)
1566 {
1567 	struct context *fromcon, usercon;
1568 	u32 *mysids, *mysids2, sid;
1569 	u32 mynel = 0, maxnel = SIDS_NEL;
1570 	struct user_datum *user;
1571 	struct role_datum *role;
1572 	struct av_decision avd;
1573 	struct ebitmap_node *rnode, *tnode;
1574 	int rc = 0, i, j;
1575 
1576 	if (!ss_initialized) {
1577 		*sids = NULL;
1578 		*nel = 0;
1579 		goto out;
1580 	}
1581 
1582 	POLICY_RDLOCK;
1583 
1584 	fromcon = sidtab_search(&sidtab, fromsid);
1585 	if (!fromcon) {
1586 		rc = -EINVAL;
1587 		goto out_unlock;
1588 	}
1589 
1590 	user = hashtab_search(policydb.p_users.table, username);
1591 	if (!user) {
1592 		rc = -EINVAL;
1593 		goto out_unlock;
1594 	}
1595 	usercon.user = user->value;
1596 
1597 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1598 	if (!mysids) {
1599 		rc = -ENOMEM;
1600 		goto out_unlock;
1601 	}
1602 
1603 	ebitmap_for_each_bit(&user->roles, rnode, i) {
1604 		if (!ebitmap_node_get_bit(rnode, i))
1605 			continue;
1606 		role = policydb.role_val_to_struct[i];
1607 		usercon.role = i+1;
1608 		ebitmap_for_each_bit(&role->types, tnode, j) {
1609 			if (!ebitmap_node_get_bit(tnode, j))
1610 				continue;
1611 			usercon.type = j+1;
1612 
1613 			if (mls_setup_user_range(fromcon, user, &usercon))
1614 				continue;
1615 
1616 			rc = context_struct_compute_av(fromcon, &usercon,
1617 						       SECCLASS_PROCESS,
1618 						       PROCESS__TRANSITION,
1619 						       &avd);
1620 			if (rc ||  !(avd.allowed & PROCESS__TRANSITION))
1621 				continue;
1622 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1623 			if (rc) {
1624 				kfree(mysids);
1625 				goto out_unlock;
1626 			}
1627 			if (mynel < maxnel) {
1628 				mysids[mynel++] = sid;
1629 			} else {
1630 				maxnel += SIDS_NEL;
1631 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1632 				if (!mysids2) {
1633 					rc = -ENOMEM;
1634 					kfree(mysids);
1635 					goto out_unlock;
1636 				}
1637 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1638 				kfree(mysids);
1639 				mysids = mysids2;
1640 				mysids[mynel++] = sid;
1641 			}
1642 		}
1643 	}
1644 
1645 	*sids = mysids;
1646 	*nel = mynel;
1647 
1648 out_unlock:
1649 	POLICY_RDUNLOCK;
1650 out:
1651 	return rc;
1652 }
1653 
1654 /**
1655  * security_genfs_sid - Obtain a SID for a file in a filesystem
1656  * @fstype: filesystem type
1657  * @path: path from root of mount
1658  * @sclass: file security class
1659  * @sid: SID for path
1660  *
1661  * Obtain a SID to use for a file in a filesystem that
1662  * cannot support xattr or use a fixed labeling behavior like
1663  * transition SIDs or task SIDs.
1664  */
1665 int security_genfs_sid(const char *fstype,
1666 	               char *path,
1667 		       u16 sclass,
1668 		       u32 *sid)
1669 {
1670 	int len;
1671 	struct genfs *genfs;
1672 	struct ocontext *c;
1673 	int rc = 0, cmp = 0;
1674 
1675 	POLICY_RDLOCK;
1676 
1677 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1678 		cmp = strcmp(fstype, genfs->fstype);
1679 		if (cmp <= 0)
1680 			break;
1681 	}
1682 
1683 	if (!genfs || cmp) {
1684 		*sid = SECINITSID_UNLABELED;
1685 		rc = -ENOENT;
1686 		goto out;
1687 	}
1688 
1689 	for (c = genfs->head; c; c = c->next) {
1690 		len = strlen(c->u.name);
1691 		if ((!c->v.sclass || sclass == c->v.sclass) &&
1692 		    (strncmp(c->u.name, path, len) == 0))
1693 			break;
1694 	}
1695 
1696 	if (!c) {
1697 		*sid = SECINITSID_UNLABELED;
1698 		rc = -ENOENT;
1699 		goto out;
1700 	}
1701 
1702 	if (!c->sid[0]) {
1703 		rc = sidtab_context_to_sid(&sidtab,
1704 					   &c->context[0],
1705 					   &c->sid[0]);
1706 		if (rc)
1707 			goto out;
1708 	}
1709 
1710 	*sid = c->sid[0];
1711 out:
1712 	POLICY_RDUNLOCK;
1713 	return rc;
1714 }
1715 
1716 /**
1717  * security_fs_use - Determine how to handle labeling for a filesystem.
1718  * @fstype: filesystem type
1719  * @behavior: labeling behavior
1720  * @sid: SID for filesystem (superblock)
1721  */
1722 int security_fs_use(
1723 	const char *fstype,
1724 	unsigned int *behavior,
1725 	u32 *sid)
1726 {
1727 	int rc = 0;
1728 	struct ocontext *c;
1729 
1730 	POLICY_RDLOCK;
1731 
1732 	c = policydb.ocontexts[OCON_FSUSE];
1733 	while (c) {
1734 		if (strcmp(fstype, c->u.name) == 0)
1735 			break;
1736 		c = c->next;
1737 	}
1738 
1739 	if (c) {
1740 		*behavior = c->v.behavior;
1741 		if (!c->sid[0]) {
1742 			rc = sidtab_context_to_sid(&sidtab,
1743 						   &c->context[0],
1744 						   &c->sid[0]);
1745 			if (rc)
1746 				goto out;
1747 		}
1748 		*sid = c->sid[0];
1749 	} else {
1750 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1751 		if (rc) {
1752 			*behavior = SECURITY_FS_USE_NONE;
1753 			rc = 0;
1754 		} else {
1755 			*behavior = SECURITY_FS_USE_GENFS;
1756 		}
1757 	}
1758 
1759 out:
1760 	POLICY_RDUNLOCK;
1761 	return rc;
1762 }
1763 
1764 int security_get_bools(int *len, char ***names, int **values)
1765 {
1766 	int i, rc = -ENOMEM;
1767 
1768 	POLICY_RDLOCK;
1769 	*names = NULL;
1770 	*values = NULL;
1771 
1772 	*len = policydb.p_bools.nprim;
1773 	if (!*len) {
1774 		rc = 0;
1775 		goto out;
1776 	}
1777 
1778        *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1779 	if (!*names)
1780 		goto err;
1781 
1782        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1783 	if (!*values)
1784 		goto err;
1785 
1786 	for (i = 0; i < *len; i++) {
1787 		size_t name_len;
1788 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
1789 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1790                (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1791 		if (!(*names)[i])
1792 			goto err;
1793 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1794 		(*names)[i][name_len - 1] = 0;
1795 	}
1796 	rc = 0;
1797 out:
1798 	POLICY_RDUNLOCK;
1799 	return rc;
1800 err:
1801 	if (*names) {
1802 		for (i = 0; i < *len; i++)
1803 			kfree((*names)[i]);
1804 	}
1805 	kfree(*values);
1806 	goto out;
1807 }
1808 
1809 
1810 int security_set_bools(int len, int *values)
1811 {
1812 	int i, rc = 0;
1813 	int lenp, seqno = 0;
1814 	struct cond_node *cur;
1815 
1816 	POLICY_WRLOCK;
1817 
1818 	lenp = policydb.p_bools.nprim;
1819 	if (len != lenp) {
1820 		rc = -EFAULT;
1821 		goto out;
1822 	}
1823 
1824 	for (i = 0; i < len; i++) {
1825 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1826 			audit_log(current->audit_context, GFP_ATOMIC,
1827 				AUDIT_MAC_CONFIG_CHANGE,
1828 				"bool=%s val=%d old_val=%d auid=%u",
1829 				policydb.p_bool_val_to_name[i],
1830 				!!values[i],
1831 				policydb.bool_val_to_struct[i]->state,
1832 				audit_get_loginuid(current->audit_context));
1833 		}
1834 		if (values[i]) {
1835 			policydb.bool_val_to_struct[i]->state = 1;
1836 		} else {
1837 			policydb.bool_val_to_struct[i]->state = 0;
1838 		}
1839 	}
1840 
1841 	for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1842 		rc = evaluate_cond_node(&policydb, cur);
1843 		if (rc)
1844 			goto out;
1845 	}
1846 
1847 	seqno = ++latest_granting;
1848 
1849 out:
1850 	POLICY_WRUNLOCK;
1851 	if (!rc) {
1852 		avc_ss_reset(seqno);
1853 		selnl_notify_policyload(seqno);
1854 	}
1855 	return rc;
1856 }
1857 
1858 int security_get_bool_value(int bool)
1859 {
1860 	int rc = 0;
1861 	int len;
1862 
1863 	POLICY_RDLOCK;
1864 
1865 	len = policydb.p_bools.nprim;
1866 	if (bool >= len) {
1867 		rc = -EFAULT;
1868 		goto out;
1869 	}
1870 
1871 	rc = policydb.bool_val_to_struct[bool]->state;
1872 out:
1873 	POLICY_RDUNLOCK;
1874 	return rc;
1875 }
1876 
1877 /*
1878  * security_sid_mls_copy() - computes a new sid based on the given
1879  * sid and the mls portion of mls_sid.
1880  */
1881 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
1882 {
1883 	struct context *context1;
1884 	struct context *context2;
1885 	struct context newcon;
1886 	char *s;
1887 	u32 len;
1888 	int rc = 0;
1889 
1890 	if (!ss_initialized || !selinux_mls_enabled) {
1891 		*new_sid = sid;
1892 		goto out;
1893 	}
1894 
1895 	context_init(&newcon);
1896 
1897 	POLICY_RDLOCK;
1898 	context1 = sidtab_search(&sidtab, sid);
1899 	if (!context1) {
1900 		printk(KERN_ERR "security_sid_mls_copy:  unrecognized SID "
1901 		       "%d\n", sid);
1902 		rc = -EINVAL;
1903 		goto out_unlock;
1904 	}
1905 
1906 	context2 = sidtab_search(&sidtab, mls_sid);
1907 	if (!context2) {
1908 		printk(KERN_ERR "security_sid_mls_copy:  unrecognized SID "
1909 		       "%d\n", mls_sid);
1910 		rc = -EINVAL;
1911 		goto out_unlock;
1912 	}
1913 
1914 	newcon.user = context1->user;
1915 	newcon.role = context1->role;
1916 	newcon.type = context1->type;
1917 	rc = mls_copy_context(&newcon, context2);
1918 	if (rc)
1919 		goto out_unlock;
1920 
1921 
1922 	/* Check the validity of the new context. */
1923 	if (!policydb_context_isvalid(&policydb, &newcon)) {
1924 		rc = convert_context_handle_invalid_context(&newcon);
1925 		if (rc)
1926 			goto bad;
1927 	}
1928 
1929 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
1930 	goto out_unlock;
1931 
1932 bad:
1933 	if (!context_struct_to_string(&newcon, &s, &len)) {
1934 		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1935 			  "security_sid_mls_copy: invalid context %s", s);
1936 		kfree(s);
1937 	}
1938 
1939 out_unlock:
1940 	POLICY_RDUNLOCK;
1941 	context_destroy(&newcon);
1942 out:
1943 	return rc;
1944 }
1945 
1946 struct selinux_audit_rule {
1947 	u32 au_seqno;
1948 	struct context au_ctxt;
1949 };
1950 
1951 void selinux_audit_rule_free(struct selinux_audit_rule *rule)
1952 {
1953 	if (rule) {
1954 		context_destroy(&rule->au_ctxt);
1955 		kfree(rule);
1956 	}
1957 }
1958 
1959 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
1960                             struct selinux_audit_rule **rule)
1961 {
1962 	struct selinux_audit_rule *tmprule;
1963 	struct role_datum *roledatum;
1964 	struct type_datum *typedatum;
1965 	struct user_datum *userdatum;
1966 	int rc = 0;
1967 
1968 	*rule = NULL;
1969 
1970 	if (!ss_initialized)
1971 		return -ENOTSUPP;
1972 
1973 	switch (field) {
1974 	case AUDIT_SUBJ_USER:
1975 	case AUDIT_SUBJ_ROLE:
1976 	case AUDIT_SUBJ_TYPE:
1977 	case AUDIT_OBJ_USER:
1978 	case AUDIT_OBJ_ROLE:
1979 	case AUDIT_OBJ_TYPE:
1980 		/* only 'equals' and 'not equals' fit user, role, and type */
1981 		if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
1982 			return -EINVAL;
1983 		break;
1984 	case AUDIT_SUBJ_SEN:
1985 	case AUDIT_SUBJ_CLR:
1986 	case AUDIT_OBJ_LEV_LOW:
1987 	case AUDIT_OBJ_LEV_HIGH:
1988 		/* we do not allow a range, indicated by the presense of '-' */
1989 		if (strchr(rulestr, '-'))
1990 			return -EINVAL;
1991 		break;
1992 	default:
1993 		/* only the above fields are valid */
1994 		return -EINVAL;
1995 	}
1996 
1997 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
1998 	if (!tmprule)
1999 		return -ENOMEM;
2000 
2001 	context_init(&tmprule->au_ctxt);
2002 
2003 	POLICY_RDLOCK;
2004 
2005 	tmprule->au_seqno = latest_granting;
2006 
2007 	switch (field) {
2008 	case AUDIT_SUBJ_USER:
2009 	case AUDIT_OBJ_USER:
2010 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2011 		if (!userdatum)
2012 			rc = -EINVAL;
2013 		else
2014 			tmprule->au_ctxt.user = userdatum->value;
2015 		break;
2016 	case AUDIT_SUBJ_ROLE:
2017 	case AUDIT_OBJ_ROLE:
2018 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2019 		if (!roledatum)
2020 			rc = -EINVAL;
2021 		else
2022 			tmprule->au_ctxt.role = roledatum->value;
2023 		break;
2024 	case AUDIT_SUBJ_TYPE:
2025 	case AUDIT_OBJ_TYPE:
2026 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2027 		if (!typedatum)
2028 			rc = -EINVAL;
2029 		else
2030 			tmprule->au_ctxt.type = typedatum->value;
2031 		break;
2032 	case AUDIT_SUBJ_SEN:
2033 	case AUDIT_SUBJ_CLR:
2034 	case AUDIT_OBJ_LEV_LOW:
2035 	case AUDIT_OBJ_LEV_HIGH:
2036 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2037 		break;
2038 	}
2039 
2040 	POLICY_RDUNLOCK;
2041 
2042 	if (rc) {
2043 		selinux_audit_rule_free(tmprule);
2044 		tmprule = NULL;
2045 	}
2046 
2047 	*rule = tmprule;
2048 
2049 	return rc;
2050 }
2051 
2052 int selinux_audit_rule_match(u32 sid, u32 field, u32 op,
2053                              struct selinux_audit_rule *rule,
2054                              struct audit_context *actx)
2055 {
2056 	struct context *ctxt;
2057 	struct mls_level *level;
2058 	int match = 0;
2059 
2060 	if (!rule) {
2061 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2062 		          "selinux_audit_rule_match: missing rule\n");
2063 		return -ENOENT;
2064 	}
2065 
2066 	POLICY_RDLOCK;
2067 
2068 	if (rule->au_seqno < latest_granting) {
2069 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2070 		          "selinux_audit_rule_match: stale rule\n");
2071 		match = -ESTALE;
2072 		goto out;
2073 	}
2074 
2075 	ctxt = sidtab_search(&sidtab, sid);
2076 	if (!ctxt) {
2077 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2078 		          "selinux_audit_rule_match: unrecognized SID %d\n",
2079 		          sid);
2080 		match = -ENOENT;
2081 		goto out;
2082 	}
2083 
2084 	/* a field/op pair that is not caught here will simply fall through
2085 	   without a match */
2086 	switch (field) {
2087 	case AUDIT_SUBJ_USER:
2088 	case AUDIT_OBJ_USER:
2089 		switch (op) {
2090 		case AUDIT_EQUAL:
2091 			match = (ctxt->user == rule->au_ctxt.user);
2092 			break;
2093 		case AUDIT_NOT_EQUAL:
2094 			match = (ctxt->user != rule->au_ctxt.user);
2095 			break;
2096 		}
2097 		break;
2098 	case AUDIT_SUBJ_ROLE:
2099 	case AUDIT_OBJ_ROLE:
2100 		switch (op) {
2101 		case AUDIT_EQUAL:
2102 			match = (ctxt->role == rule->au_ctxt.role);
2103 			break;
2104 		case AUDIT_NOT_EQUAL:
2105 			match = (ctxt->role != rule->au_ctxt.role);
2106 			break;
2107 		}
2108 		break;
2109 	case AUDIT_SUBJ_TYPE:
2110 	case AUDIT_OBJ_TYPE:
2111 		switch (op) {
2112 		case AUDIT_EQUAL:
2113 			match = (ctxt->type == rule->au_ctxt.type);
2114 			break;
2115 		case AUDIT_NOT_EQUAL:
2116 			match = (ctxt->type != rule->au_ctxt.type);
2117 			break;
2118 		}
2119 		break;
2120 	case AUDIT_SUBJ_SEN:
2121 	case AUDIT_SUBJ_CLR:
2122 	case AUDIT_OBJ_LEV_LOW:
2123 	case AUDIT_OBJ_LEV_HIGH:
2124 		level = ((field == AUDIT_SUBJ_SEN ||
2125 		          field == AUDIT_OBJ_LEV_LOW) ?
2126 		         &ctxt->range.level[0] : &ctxt->range.level[1]);
2127 		switch (op) {
2128 		case AUDIT_EQUAL:
2129 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2130 			                     level);
2131 			break;
2132 		case AUDIT_NOT_EQUAL:
2133 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2134 			                      level);
2135 			break;
2136 		case AUDIT_LESS_THAN:
2137 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2138 			                       level) &&
2139 			         !mls_level_eq(&rule->au_ctxt.range.level[0],
2140 			                       level));
2141 			break;
2142 		case AUDIT_LESS_THAN_OR_EQUAL:
2143 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2144 			                      level);
2145 			break;
2146 		case AUDIT_GREATER_THAN:
2147 			match = (mls_level_dom(level,
2148 			                      &rule->au_ctxt.range.level[0]) &&
2149 			         !mls_level_eq(level,
2150 			                       &rule->au_ctxt.range.level[0]));
2151 			break;
2152 		case AUDIT_GREATER_THAN_OR_EQUAL:
2153 			match = mls_level_dom(level,
2154 			                      &rule->au_ctxt.range.level[0]);
2155 			break;
2156 		}
2157 	}
2158 
2159 out:
2160 	POLICY_RDUNLOCK;
2161 	return match;
2162 }
2163 
2164 static int (*aurule_callback)(void) = NULL;
2165 
2166 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2167                                u16 class, u32 perms, u32 *retained)
2168 {
2169 	int err = 0;
2170 
2171 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2172 		err = aurule_callback();
2173 	return err;
2174 }
2175 
2176 static int __init aurule_init(void)
2177 {
2178 	int err;
2179 
2180 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2181 	                       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2182 	if (err)
2183 		panic("avc_add_callback() failed, error %d\n", err);
2184 
2185 	return err;
2186 }
2187 __initcall(aurule_init);
2188 
2189 void selinux_audit_set_callback(int (*callback)(void))
2190 {
2191 	aurule_callback = callback;
2192 }
2193 
2194 #ifdef CONFIG_NETLABEL
2195 /*
2196  * This is the structure we store inside the NetLabel cache block.
2197  */
2198 #define NETLBL_CACHE(x)           ((struct netlbl_cache *)(x))
2199 #define NETLBL_CACHE_T_NONE       0
2200 #define NETLBL_CACHE_T_SID        1
2201 #define NETLBL_CACHE_T_MLS        2
2202 struct netlbl_cache {
2203 	u32 type;
2204 	union {
2205 		u32 sid;
2206 		struct mls_range mls_label;
2207 	} data;
2208 };
2209 
2210 /**
2211  * selinux_netlbl_cache_free - Free the NetLabel cached data
2212  * @data: the data to free
2213  *
2214  * Description:
2215  * This function is intended to be used as the free() callback inside the
2216  * netlbl_lsm_cache structure.
2217  *
2218  */
2219 static void selinux_netlbl_cache_free(const void *data)
2220 {
2221 	struct netlbl_cache *cache;
2222 
2223 	if (data == NULL)
2224 		return;
2225 
2226 	cache = NETLBL_CACHE(data);
2227 	switch (cache->type) {
2228 	case NETLBL_CACHE_T_MLS:
2229 		ebitmap_destroy(&cache->data.mls_label.level[0].cat);
2230 		break;
2231 	}
2232 	kfree(data);
2233 }
2234 
2235 /**
2236  * selinux_netlbl_cache_add - Add an entry to the NetLabel cache
2237  * @skb: the packet
2238  * @ctx: the SELinux context
2239  *
2240  * Description:
2241  * Attempt to cache the context in @ctx, which was derived from the packet in
2242  * @skb, in the NetLabel subsystem cache.
2243  *
2244  */
2245 static void selinux_netlbl_cache_add(struct sk_buff *skb, struct context *ctx)
2246 {
2247 	struct netlbl_cache *cache = NULL;
2248 	struct netlbl_lsm_secattr secattr;
2249 
2250 	netlbl_secattr_init(&secattr);
2251 	secattr.cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2252 	if (secattr.cache == NULL)
2253 		goto netlbl_cache_add_return;
2254 
2255 	cache = kzalloc(sizeof(*cache),	GFP_ATOMIC);
2256 	if (cache == NULL)
2257 		goto netlbl_cache_add_return;
2258 
2259 	cache->type = NETLBL_CACHE_T_MLS;
2260 	if (ebitmap_cpy(&cache->data.mls_label.level[0].cat,
2261 			&ctx->range.level[0].cat) != 0)
2262 		goto netlbl_cache_add_return;
2263 	cache->data.mls_label.level[1].cat.highbit =
2264 		cache->data.mls_label.level[0].cat.highbit;
2265 	cache->data.mls_label.level[1].cat.node =
2266 		cache->data.mls_label.level[0].cat.node;
2267 	cache->data.mls_label.level[0].sens = ctx->range.level[0].sens;
2268 	cache->data.mls_label.level[1].sens = ctx->range.level[0].sens;
2269 
2270 	secattr.cache->free = selinux_netlbl_cache_free;
2271 	secattr.cache->data = (void *)cache;
2272 	secattr.flags = NETLBL_SECATTR_CACHE;
2273 
2274 	netlbl_cache_add(skb, &secattr);
2275 
2276 netlbl_cache_add_return:
2277 	netlbl_secattr_destroy(&secattr);
2278 }
2279 
2280 /**
2281  * selinux_netlbl_cache_invalidate - Invalidate the NetLabel cache
2282  *
2283  * Description:
2284  * Invalidate the NetLabel security attribute mapping cache.
2285  *
2286  */
2287 void selinux_netlbl_cache_invalidate(void)
2288 {
2289 	netlbl_cache_invalidate();
2290 }
2291 
2292 /**
2293  * selinux_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2294  * @skb: the network packet
2295  * @secattr: the NetLabel packet security attributes
2296  * @base_sid: the SELinux SID to use as a context for MLS only attributes
2297  * @sid: the SELinux SID
2298  *
2299  * Description:
2300  * Convert the given NetLabel packet security attributes in @secattr into a
2301  * SELinux SID.  If the @secattr field does not contain a full SELinux
2302  * SID/context then use the context in @base_sid as the foundation.  If @skb
2303  * is not NULL attempt to cache as much data as possibile.  Returns zero on
2304  * success, negative values on failure.
2305  *
2306  */
2307 static int selinux_netlbl_secattr_to_sid(struct sk_buff *skb,
2308 					 struct netlbl_lsm_secattr *secattr,
2309 					 u32 base_sid,
2310 					 u32 *sid)
2311 {
2312 	int rc = -EIDRM;
2313 	struct context *ctx;
2314 	struct context ctx_new;
2315 	struct netlbl_cache *cache;
2316 
2317 	POLICY_RDLOCK;
2318 
2319 	if (secattr->flags & NETLBL_SECATTR_CACHE) {
2320 		cache = NETLBL_CACHE(secattr->cache->data);
2321 		switch (cache->type) {
2322 		case NETLBL_CACHE_T_SID:
2323 			*sid = cache->data.sid;
2324 			rc = 0;
2325 			break;
2326 		case NETLBL_CACHE_T_MLS:
2327 			ctx = sidtab_search(&sidtab, base_sid);
2328 			if (ctx == NULL)
2329 				goto netlbl_secattr_to_sid_return;
2330 
2331 			ctx_new.user = ctx->user;
2332 			ctx_new.role = ctx->role;
2333 			ctx_new.type = ctx->type;
2334 			ctx_new.range.level[0].sens =
2335 				cache->data.mls_label.level[0].sens;
2336 			ctx_new.range.level[0].cat.highbit =
2337 				cache->data.mls_label.level[0].cat.highbit;
2338 			ctx_new.range.level[0].cat.node =
2339 				cache->data.mls_label.level[0].cat.node;
2340 			ctx_new.range.level[1].sens =
2341 				cache->data.mls_label.level[1].sens;
2342 			ctx_new.range.level[1].cat.highbit =
2343 				cache->data.mls_label.level[1].cat.highbit;
2344 			ctx_new.range.level[1].cat.node =
2345 				cache->data.mls_label.level[1].cat.node;
2346 
2347 			rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2348 			break;
2349 		default:
2350 			goto netlbl_secattr_to_sid_return;
2351 		}
2352 	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2353 		ctx = sidtab_search(&sidtab, base_sid);
2354 		if (ctx == NULL)
2355 			goto netlbl_secattr_to_sid_return;
2356 
2357 		ctx_new.user = ctx->user;
2358 		ctx_new.role = ctx->role;
2359 		ctx_new.type = ctx->type;
2360 		mls_import_lvl(&ctx_new, secattr->mls_lvl, secattr->mls_lvl);
2361 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2362 			if (mls_import_cat(&ctx_new,
2363 					   secattr->mls_cat,
2364 					   secattr->mls_cat_len,
2365 					   NULL,
2366 					   0) != 0)
2367 				goto netlbl_secattr_to_sid_return;
2368 			ctx_new.range.level[1].cat.highbit =
2369 				ctx_new.range.level[0].cat.highbit;
2370 			ctx_new.range.level[1].cat.node =
2371 				ctx_new.range.level[0].cat.node;
2372 		} else {
2373 			ebitmap_init(&ctx_new.range.level[0].cat);
2374 			ebitmap_init(&ctx_new.range.level[1].cat);
2375 		}
2376 		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2377 			goto netlbl_secattr_to_sid_return_cleanup;
2378 
2379 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2380 		if (rc != 0)
2381 			goto netlbl_secattr_to_sid_return_cleanup;
2382 
2383 		if (skb != NULL)
2384 			selinux_netlbl_cache_add(skb, &ctx_new);
2385 		ebitmap_destroy(&ctx_new.range.level[0].cat);
2386 	} else {
2387 		*sid = SECSID_NULL;
2388 		rc = 0;
2389 	}
2390 
2391 netlbl_secattr_to_sid_return:
2392 	POLICY_RDUNLOCK;
2393 	return rc;
2394 netlbl_secattr_to_sid_return_cleanup:
2395 	ebitmap_destroy(&ctx_new.range.level[0].cat);
2396 	goto netlbl_secattr_to_sid_return;
2397 }
2398 
2399 /**
2400  * selinux_netlbl_skbuff_getsid - Get the sid of a packet using NetLabel
2401  * @skb: the packet
2402  * @base_sid: the SELinux SID to use as a context for MLS only attributes
2403  * @sid: the SID
2404  *
2405  * Description:
2406  * Call the NetLabel mechanism to get the security attributes of the given
2407  * packet and use those attributes to determine the correct context/SID to
2408  * assign to the packet.  Returns zero on success, negative values on failure.
2409  *
2410  */
2411 static int selinux_netlbl_skbuff_getsid(struct sk_buff *skb,
2412 					u32 base_sid,
2413 					u32 *sid)
2414 {
2415 	int rc;
2416 	struct netlbl_lsm_secattr secattr;
2417 
2418 	netlbl_secattr_init(&secattr);
2419 	rc = netlbl_skbuff_getattr(skb, &secattr);
2420 	if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE)
2421 		rc = selinux_netlbl_secattr_to_sid(skb,
2422 						   &secattr,
2423 						   base_sid,
2424 						   sid);
2425 	else
2426 		*sid = SECSID_NULL;
2427 	netlbl_secattr_destroy(&secattr);
2428 
2429 	return rc;
2430 }
2431 
2432 /**
2433  * selinux_netlbl_socket_setsid - Label a socket using the NetLabel mechanism
2434  * @sock: the socket to label
2435  * @sid: the SID to use
2436  *
2437  * Description:
2438  * Attempt to label a socket using the NetLabel mechanism using the given
2439  * SID.  Returns zero values on success, negative values on failure.  The
2440  * caller is responsibile for calling rcu_read_lock() before calling this
2441  * this function and rcu_read_unlock() after this function returns.
2442  *
2443  */
2444 static int selinux_netlbl_socket_setsid(struct socket *sock, u32 sid)
2445 {
2446 	int rc = -ENOENT;
2447 	struct sk_security_struct *sksec = sock->sk->sk_security;
2448 	struct netlbl_lsm_secattr secattr;
2449 	struct context *ctx;
2450 
2451 	if (!ss_initialized)
2452 		return 0;
2453 
2454 	netlbl_secattr_init(&secattr);
2455 
2456 	POLICY_RDLOCK;
2457 
2458 	ctx = sidtab_search(&sidtab, sid);
2459 	if (ctx == NULL)
2460 		goto netlbl_socket_setsid_return;
2461 
2462 	secattr.domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2463 				 GFP_ATOMIC);
2464 	mls_export_lvl(ctx, &secattr.mls_lvl, NULL);
2465 	rc = mls_export_cat(ctx,
2466 			    &secattr.mls_cat,
2467 			    &secattr.mls_cat_len,
2468 			    NULL,
2469 			    NULL);
2470 	if (rc != 0)
2471 		goto netlbl_socket_setsid_return;
2472 
2473 	secattr.flags |= NETLBL_SECATTR_DOMAIN | NETLBL_SECATTR_MLS_LVL;
2474 	if (secattr.mls_cat)
2475 		secattr.flags |= NETLBL_SECATTR_MLS_CAT;
2476 
2477 	rc = netlbl_socket_setattr(sock, &secattr);
2478 	if (rc == 0) {
2479 		spin_lock(&sksec->nlbl_lock);
2480 		sksec->nlbl_state = NLBL_LABELED;
2481 		spin_unlock(&sksec->nlbl_lock);
2482 	}
2483 
2484 netlbl_socket_setsid_return:
2485 	POLICY_RDUNLOCK;
2486 	netlbl_secattr_destroy(&secattr);
2487 	return rc;
2488 }
2489 
2490 /**
2491  * selinux_netlbl_sk_security_reset - Reset the NetLabel fields
2492  * @ssec: the sk_security_struct
2493  * @family: the socket family
2494  *
2495  * Description:
2496  * Called when the NetLabel state of a sk_security_struct needs to be reset.
2497  * The caller is responsibile for all the NetLabel sk_security_struct locking.
2498  *
2499  */
2500 void selinux_netlbl_sk_security_reset(struct sk_security_struct *ssec,
2501 				      int family)
2502 {
2503         if (family == PF_INET)
2504 		ssec->nlbl_state = NLBL_REQUIRE;
2505 	else
2506 		ssec->nlbl_state = NLBL_UNSET;
2507 }
2508 
2509 /**
2510  * selinux_netlbl_sk_security_init - Setup the NetLabel fields
2511  * @ssec: the sk_security_struct
2512  * @family: the socket family
2513  *
2514  * Description:
2515  * Called when a new sk_security_struct is allocated to initialize the NetLabel
2516  * fields.
2517  *
2518  */
2519 void selinux_netlbl_sk_security_init(struct sk_security_struct *ssec,
2520 				     int family)
2521 {
2522 	/* No locking needed, we are the only one who has access to ssec */
2523 	selinux_netlbl_sk_security_reset(ssec, family);
2524 	spin_lock_init(&ssec->nlbl_lock);
2525 }
2526 
2527 /**
2528  * selinux_netlbl_sk_security_clone - Copy the NetLabel fields
2529  * @ssec: the original sk_security_struct
2530  * @newssec: the cloned sk_security_struct
2531  *
2532  * Description:
2533  * Clone the NetLabel specific sk_security_struct fields from @ssec to
2534  * @newssec.
2535  *
2536  */
2537 void selinux_netlbl_sk_security_clone(struct sk_security_struct *ssec,
2538 				      struct sk_security_struct *newssec)
2539 {
2540 	/* We don't need to take newssec->nlbl_lock because we are the only
2541 	 * thread with access to newssec, but we do need to take the RCU read
2542 	 * lock as other threads could have access to ssec */
2543 	rcu_read_lock();
2544 	selinux_netlbl_sk_security_reset(newssec, ssec->sk->sk_family);
2545 	newssec->sclass = ssec->sclass;
2546 	rcu_read_unlock();
2547 }
2548 
2549 /**
2550  * selinux_netlbl_socket_post_create - Label a socket using NetLabel
2551  * @sock: the socket to label
2552  *
2553  * Description:
2554  * Attempt to label a socket using the NetLabel mechanism using the given
2555  * SID.  Returns zero values on success, negative values on failure.
2556  *
2557  */
2558 int selinux_netlbl_socket_post_create(struct socket *sock)
2559 {
2560 	int rc = 0;
2561 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
2562 	struct sk_security_struct *sksec = sock->sk->sk_security;
2563 
2564 	sksec->sclass = isec->sclass;
2565 
2566 	rcu_read_lock();
2567 	if (sksec->nlbl_state == NLBL_REQUIRE)
2568 		rc = selinux_netlbl_socket_setsid(sock, sksec->sid);
2569 	rcu_read_unlock();
2570 
2571 	return rc;
2572 }
2573 
2574 /**
2575  * selinux_netlbl_sock_graft - Netlabel the new socket
2576  * @sk: the new connection
2577  * @sock: the new socket
2578  *
2579  * Description:
2580  * The connection represented by @sk is being grafted onto @sock so set the
2581  * socket's NetLabel to match the SID of @sk.
2582  *
2583  */
2584 void selinux_netlbl_sock_graft(struct sock *sk, struct socket *sock)
2585 {
2586 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
2587 	struct sk_security_struct *sksec = sk->sk_security;
2588 	struct netlbl_lsm_secattr secattr;
2589 	u32 nlbl_peer_sid;
2590 
2591 	sksec->sclass = isec->sclass;
2592 
2593 	rcu_read_lock();
2594 
2595 	if (sksec->nlbl_state != NLBL_REQUIRE) {
2596 		rcu_read_unlock();
2597 		return;
2598 	}
2599 
2600 	netlbl_secattr_init(&secattr);
2601 	if (netlbl_sock_getattr(sk, &secattr) == 0 &&
2602 	    secattr.flags != NETLBL_SECATTR_NONE &&
2603 	    selinux_netlbl_secattr_to_sid(NULL,
2604 					  &secattr,
2605 					  SECINITSID_UNLABELED,
2606 					  &nlbl_peer_sid) == 0)
2607 		sksec->peer_sid = nlbl_peer_sid;
2608 	netlbl_secattr_destroy(&secattr);
2609 
2610 	/* Try to set the NetLabel on the socket to save time later, if we fail
2611 	 * here we will pick up the pieces in later calls to
2612 	 * selinux_netlbl_inode_permission(). */
2613 	selinux_netlbl_socket_setsid(sock, sksec->sid);
2614 
2615 	rcu_read_unlock();
2616 }
2617 
2618 /**
2619  * selinux_netlbl_inet_conn_request - Handle a new connection request
2620  * @skb: the packet
2621  * @sock_sid: the SID of the parent socket
2622  *
2623  * Description:
2624  * If present, use the security attributes of the packet in @skb and the
2625  * parent sock's SID to arrive at a SID for the new child sock.  Returns the
2626  * SID of the connection or SECSID_NULL on failure.
2627  *
2628  */
2629 u32 selinux_netlbl_inet_conn_request(struct sk_buff *skb, u32 sock_sid)
2630 {
2631 	int rc;
2632 	u32 peer_sid;
2633 
2634 	rc = selinux_netlbl_skbuff_getsid(skb, sock_sid, &peer_sid);
2635 	if (rc != 0)
2636 		return SECSID_NULL;
2637 
2638 	return peer_sid;
2639 }
2640 
2641 /**
2642  * selinux_netlbl_inode_permission - Verify the socket is NetLabel labeled
2643  * @inode: the file descriptor's inode
2644  * @mask: the permission mask
2645  *
2646  * Description:
2647  * Looks at a file's inode and if it is marked as a socket protected by
2648  * NetLabel then verify that the socket has been labeled, if not try to label
2649  * the socket now with the inode's SID.  Returns zero on success, negative
2650  * values on failure.
2651  *
2652  */
2653 int selinux_netlbl_inode_permission(struct inode *inode, int mask)
2654 {
2655 	int rc;
2656 	struct sk_security_struct *sksec;
2657 	struct socket *sock;
2658 
2659 	if (!S_ISSOCK(inode->i_mode) ||
2660 	    ((mask & (MAY_WRITE | MAY_APPEND)) == 0))
2661 		return 0;
2662 	sock = SOCKET_I(inode);
2663 	sksec = sock->sk->sk_security;
2664 
2665 	rcu_read_lock();
2666 	if (sksec->nlbl_state != NLBL_REQUIRE) {
2667 		rcu_read_unlock();
2668 		return 0;
2669 	}
2670 	lock_sock(sock->sk);
2671 	rc = selinux_netlbl_socket_setsid(sock, sksec->sid);
2672 	release_sock(sock->sk);
2673 	rcu_read_unlock();
2674 
2675 	return rc;
2676 }
2677 
2678 /**
2679  * selinux_netlbl_sock_rcv_skb - Do an inbound access check using NetLabel
2680  * @sksec: the sock's sk_security_struct
2681  * @skb: the packet
2682  * @ad: the audit data
2683  *
2684  * Description:
2685  * Fetch the NetLabel security attributes from @skb and perform an access check
2686  * against the receiving socket.  Returns zero on success, negative values on
2687  * error.
2688  *
2689  */
2690 int selinux_netlbl_sock_rcv_skb(struct sk_security_struct *sksec,
2691 				struct sk_buff *skb,
2692 				struct avc_audit_data *ad)
2693 {
2694 	int rc;
2695 	u32 netlbl_sid;
2696 	u32 recv_perm;
2697 
2698 	rc = selinux_netlbl_skbuff_getsid(skb,
2699 					  SECINITSID_UNLABELED,
2700 					  &netlbl_sid);
2701 	if (rc != 0)
2702 		return rc;
2703 
2704 	if (netlbl_sid == SECSID_NULL)
2705 		return 0;
2706 
2707 	switch (sksec->sclass) {
2708 	case SECCLASS_UDP_SOCKET:
2709 		recv_perm = UDP_SOCKET__RECVFROM;
2710 		break;
2711 	case SECCLASS_TCP_SOCKET:
2712 		recv_perm = TCP_SOCKET__RECVFROM;
2713 		break;
2714 	default:
2715 		recv_perm = RAWIP_SOCKET__RECVFROM;
2716 	}
2717 
2718 	rc = avc_has_perm(sksec->sid,
2719 			  netlbl_sid,
2720 			  sksec->sclass,
2721 			  recv_perm,
2722 			  ad);
2723 	if (rc == 0)
2724 		return 0;
2725 
2726 	netlbl_skbuff_err(skb, rc);
2727 	return rc;
2728 }
2729 
2730 /**
2731  * selinux_netlbl_socket_getpeersec_stream - Return the connected peer's SID
2732  * @sock: the socket
2733  *
2734  * Description:
2735  * Examine @sock to find the connected peer's SID.  Returns the SID on success
2736  * or SECSID_NULL on error.
2737  *
2738  */
2739 u32 selinux_netlbl_socket_getpeersec_stream(struct socket *sock)
2740 {
2741 	struct sk_security_struct *sksec = sock->sk->sk_security;
2742 	return sksec->peer_sid;
2743 }
2744 
2745 /**
2746  * selinux_netlbl_socket_getpeersec_dgram - Return the SID of a NetLabel packet
2747  * @skb: the packet
2748  *
2749  * Description:
2750  * Examine @skb to find the SID assigned to it by NetLabel.  Returns the SID on
2751  * success, SECSID_NULL on error.
2752  *
2753  */
2754 u32 selinux_netlbl_socket_getpeersec_dgram(struct sk_buff *skb)
2755 {
2756 	int peer_sid;
2757 
2758 	if (selinux_netlbl_skbuff_getsid(skb,
2759 					 SECINITSID_UNLABELED,
2760 					 &peer_sid) != 0)
2761 		return SECSID_NULL;
2762 
2763 	return peer_sid;
2764 }
2765 
2766 /**
2767  * selinux_netlbl_socket_setsockopt - Do not allow users to remove a NetLabel
2768  * @sock: the socket
2769  * @level: the socket level or protocol
2770  * @optname: the socket option name
2771  *
2772  * Description:
2773  * Check the setsockopt() call and if the user is trying to replace the IP
2774  * options on a socket and a NetLabel is in place for the socket deny the
2775  * access; otherwise allow the access.  Returns zero when the access is
2776  * allowed, -EACCES when denied, and other negative values on error.
2777  *
2778  */
2779 int selinux_netlbl_socket_setsockopt(struct socket *sock,
2780 				     int level,
2781 				     int optname)
2782 {
2783 	int rc = 0;
2784 	struct sk_security_struct *sksec = sock->sk->sk_security;
2785 	struct netlbl_lsm_secattr secattr;
2786 
2787 	rcu_read_lock();
2788 	if (level == IPPROTO_IP && optname == IP_OPTIONS &&
2789 	    sksec->nlbl_state == NLBL_LABELED) {
2790 		netlbl_secattr_init(&secattr);
2791 		rc = netlbl_socket_getattr(sock, &secattr);
2792 		if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE)
2793 			rc = -EACCES;
2794 		netlbl_secattr_destroy(&secattr);
2795 	}
2796 	rcu_read_unlock();
2797 
2798 	return rc;
2799 }
2800 #endif /* CONFIG_NETLABEL */
2801