xref: /openbmc/linux/security/selinux/ss/services.c (revision 29e1c1ad3ff7f345d80c7b81b08175f5a8c84122)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70 
71 struct convert_context_args {
72 	struct selinux_state *state;
73 	struct policydb *oldp;
74 	struct policydb *newp;
75 };
76 
77 struct selinux_policy_convert_data {
78 	struct convert_context_args args;
79 	struct sidtab_convert_params sidtab_params;
80 };
81 
82 /* Forward declaration. */
83 static int context_struct_to_string(struct policydb *policydb,
84 				    struct context *context,
85 				    char **scontext,
86 				    u32 *scontext_len);
87 
88 static int sidtab_entry_to_string(struct policydb *policydb,
89 				  struct sidtab *sidtab,
90 				  struct sidtab_entry *entry,
91 				  char **scontext,
92 				  u32 *scontext_len);
93 
94 static void context_struct_compute_av(struct policydb *policydb,
95 				      struct context *scontext,
96 				      struct context *tcontext,
97 				      u16 tclass,
98 				      struct av_decision *avd,
99 				      struct extended_perms *xperms);
100 
101 static int selinux_set_mapping(struct policydb *pol,
102 			       struct security_class_mapping *map,
103 			       struct selinux_map *out_map)
104 {
105 	u16 i, j;
106 	unsigned k;
107 	bool print_unknown_handle = false;
108 
109 	/* Find number of classes in the input mapping */
110 	if (!map)
111 		return -EINVAL;
112 	i = 0;
113 	while (map[i].name)
114 		i++;
115 
116 	/* Allocate space for the class records, plus one for class zero */
117 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 	if (!out_map->mapping)
119 		return -ENOMEM;
120 
121 	/* Store the raw class and permission values */
122 	j = 0;
123 	while (map[j].name) {
124 		struct security_class_mapping *p_in = map + (j++);
125 		struct selinux_mapping *p_out = out_map->mapping + j;
126 
127 		/* An empty class string skips ahead */
128 		if (!strcmp(p_in->name, "")) {
129 			p_out->num_perms = 0;
130 			continue;
131 		}
132 
133 		p_out->value = string_to_security_class(pol, p_in->name);
134 		if (!p_out->value) {
135 			pr_info("SELinux:  Class %s not defined in policy.\n",
136 			       p_in->name);
137 			if (pol->reject_unknown)
138 				goto err;
139 			p_out->num_perms = 0;
140 			print_unknown_handle = true;
141 			continue;
142 		}
143 
144 		k = 0;
145 		while (p_in->perms[k]) {
146 			/* An empty permission string skips ahead */
147 			if (!*p_in->perms[k]) {
148 				k++;
149 				continue;
150 			}
151 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 							    p_in->perms[k]);
153 			if (!p_out->perms[k]) {
154 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
155 				       p_in->perms[k], p_in->name);
156 				if (pol->reject_unknown)
157 					goto err;
158 				print_unknown_handle = true;
159 			}
160 
161 			k++;
162 		}
163 		p_out->num_perms = k;
164 	}
165 
166 	if (print_unknown_handle)
167 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 		       pol->allow_unknown ? "allowed" : "denied");
169 
170 	out_map->size = i;
171 	return 0;
172 err:
173 	kfree(out_map->mapping);
174 	out_map->mapping = NULL;
175 	return -EINVAL;
176 }
177 
178 /*
179  * Get real, policy values from mapped values
180  */
181 
182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 	if (tclass < map->size)
185 		return map->mapping[tclass].value;
186 
187 	return tclass;
188 }
189 
190 /*
191  * Get kernel value for class from its policy value
192  */
193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 	u16 i;
196 
197 	for (i = 1; i < map->size; i++) {
198 		if (map->mapping[i].value == pol_value)
199 			return i;
200 	}
201 
202 	return SECCLASS_NULL;
203 }
204 
205 static void map_decision(struct selinux_map *map,
206 			 u16 tclass, struct av_decision *avd,
207 			 int allow_unknown)
208 {
209 	if (tclass < map->size) {
210 		struct selinux_mapping *mapping = &map->mapping[tclass];
211 		unsigned int i, n = mapping->num_perms;
212 		u32 result;
213 
214 		for (i = 0, result = 0; i < n; i++) {
215 			if (avd->allowed & mapping->perms[i])
216 				result |= 1<<i;
217 			if (allow_unknown && !mapping->perms[i])
218 				result |= 1<<i;
219 		}
220 		avd->allowed = result;
221 
222 		for (i = 0, result = 0; i < n; i++)
223 			if (avd->auditallow & mapping->perms[i])
224 				result |= 1<<i;
225 		avd->auditallow = result;
226 
227 		for (i = 0, result = 0; i < n; i++) {
228 			if (avd->auditdeny & mapping->perms[i])
229 				result |= 1<<i;
230 			if (!allow_unknown && !mapping->perms[i])
231 				result |= 1<<i;
232 		}
233 		/*
234 		 * In case the kernel has a bug and requests a permission
235 		 * between num_perms and the maximum permission number, we
236 		 * should audit that denial
237 		 */
238 		for (; i < (sizeof(u32)*8); i++)
239 			result |= 1<<i;
240 		avd->auditdeny = result;
241 	}
242 }
243 
244 int security_mls_enabled(struct selinux_state *state)
245 {
246 	int mls_enabled;
247 	struct selinux_policy *policy;
248 
249 	if (!selinux_initialized(state))
250 		return 0;
251 
252 	rcu_read_lock();
253 	policy = rcu_dereference(state->policy);
254 	mls_enabled = policy->policydb.mls_enabled;
255 	rcu_read_unlock();
256 	return mls_enabled;
257 }
258 
259 /*
260  * Return the boolean value of a constraint expression
261  * when it is applied to the specified source and target
262  * security contexts.
263  *
264  * xcontext is a special beast...  It is used by the validatetrans rules
265  * only.  For these rules, scontext is the context before the transition,
266  * tcontext is the context after the transition, and xcontext is the context
267  * of the process performing the transition.  All other callers of
268  * constraint_expr_eval should pass in NULL for xcontext.
269  */
270 static int constraint_expr_eval(struct policydb *policydb,
271 				struct context *scontext,
272 				struct context *tcontext,
273 				struct context *xcontext,
274 				struct constraint_expr *cexpr)
275 {
276 	u32 val1, val2;
277 	struct context *c;
278 	struct role_datum *r1, *r2;
279 	struct mls_level *l1, *l2;
280 	struct constraint_expr *e;
281 	int s[CEXPR_MAXDEPTH];
282 	int sp = -1;
283 
284 	for (e = cexpr; e; e = e->next) {
285 		switch (e->expr_type) {
286 		case CEXPR_NOT:
287 			BUG_ON(sp < 0);
288 			s[sp] = !s[sp];
289 			break;
290 		case CEXPR_AND:
291 			BUG_ON(sp < 1);
292 			sp--;
293 			s[sp] &= s[sp + 1];
294 			break;
295 		case CEXPR_OR:
296 			BUG_ON(sp < 1);
297 			sp--;
298 			s[sp] |= s[sp + 1];
299 			break;
300 		case CEXPR_ATTR:
301 			if (sp == (CEXPR_MAXDEPTH - 1))
302 				return 0;
303 			switch (e->attr) {
304 			case CEXPR_USER:
305 				val1 = scontext->user;
306 				val2 = tcontext->user;
307 				break;
308 			case CEXPR_TYPE:
309 				val1 = scontext->type;
310 				val2 = tcontext->type;
311 				break;
312 			case CEXPR_ROLE:
313 				val1 = scontext->role;
314 				val2 = tcontext->role;
315 				r1 = policydb->role_val_to_struct[val1 - 1];
316 				r2 = policydb->role_val_to_struct[val2 - 1];
317 				switch (e->op) {
318 				case CEXPR_DOM:
319 					s[++sp] = ebitmap_get_bit(&r1->dominates,
320 								  val2 - 1);
321 					continue;
322 				case CEXPR_DOMBY:
323 					s[++sp] = ebitmap_get_bit(&r2->dominates,
324 								  val1 - 1);
325 					continue;
326 				case CEXPR_INCOMP:
327 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328 								    val2 - 1) &&
329 						   !ebitmap_get_bit(&r2->dominates,
330 								    val1 - 1));
331 					continue;
332 				default:
333 					break;
334 				}
335 				break;
336 			case CEXPR_L1L2:
337 				l1 = &(scontext->range.level[0]);
338 				l2 = &(tcontext->range.level[0]);
339 				goto mls_ops;
340 			case CEXPR_L1H2:
341 				l1 = &(scontext->range.level[0]);
342 				l2 = &(tcontext->range.level[1]);
343 				goto mls_ops;
344 			case CEXPR_H1L2:
345 				l1 = &(scontext->range.level[1]);
346 				l2 = &(tcontext->range.level[0]);
347 				goto mls_ops;
348 			case CEXPR_H1H2:
349 				l1 = &(scontext->range.level[1]);
350 				l2 = &(tcontext->range.level[1]);
351 				goto mls_ops;
352 			case CEXPR_L1H1:
353 				l1 = &(scontext->range.level[0]);
354 				l2 = &(scontext->range.level[1]);
355 				goto mls_ops;
356 			case CEXPR_L2H2:
357 				l1 = &(tcontext->range.level[0]);
358 				l2 = &(tcontext->range.level[1]);
359 				goto mls_ops;
360 mls_ops:
361 			switch (e->op) {
362 			case CEXPR_EQ:
363 				s[++sp] = mls_level_eq(l1, l2);
364 				continue;
365 			case CEXPR_NEQ:
366 				s[++sp] = !mls_level_eq(l1, l2);
367 				continue;
368 			case CEXPR_DOM:
369 				s[++sp] = mls_level_dom(l1, l2);
370 				continue;
371 			case CEXPR_DOMBY:
372 				s[++sp] = mls_level_dom(l2, l1);
373 				continue;
374 			case CEXPR_INCOMP:
375 				s[++sp] = mls_level_incomp(l2, l1);
376 				continue;
377 			default:
378 				BUG();
379 				return 0;
380 			}
381 			break;
382 			default:
383 				BUG();
384 				return 0;
385 			}
386 
387 			switch (e->op) {
388 			case CEXPR_EQ:
389 				s[++sp] = (val1 == val2);
390 				break;
391 			case CEXPR_NEQ:
392 				s[++sp] = (val1 != val2);
393 				break;
394 			default:
395 				BUG();
396 				return 0;
397 			}
398 			break;
399 		case CEXPR_NAMES:
400 			if (sp == (CEXPR_MAXDEPTH-1))
401 				return 0;
402 			c = scontext;
403 			if (e->attr & CEXPR_TARGET)
404 				c = tcontext;
405 			else if (e->attr & CEXPR_XTARGET) {
406 				c = xcontext;
407 				if (!c) {
408 					BUG();
409 					return 0;
410 				}
411 			}
412 			if (e->attr & CEXPR_USER)
413 				val1 = c->user;
414 			else if (e->attr & CEXPR_ROLE)
415 				val1 = c->role;
416 			else if (e->attr & CEXPR_TYPE)
417 				val1 = c->type;
418 			else {
419 				BUG();
420 				return 0;
421 			}
422 
423 			switch (e->op) {
424 			case CEXPR_EQ:
425 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426 				break;
427 			case CEXPR_NEQ:
428 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429 				break;
430 			default:
431 				BUG();
432 				return 0;
433 			}
434 			break;
435 		default:
436 			BUG();
437 			return 0;
438 		}
439 	}
440 
441 	BUG_ON(sp != 0);
442 	return s[0];
443 }
444 
445 /*
446  * security_dump_masked_av - dumps masked permissions during
447  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448  */
449 static int dump_masked_av_helper(void *k, void *d, void *args)
450 {
451 	struct perm_datum *pdatum = d;
452 	char **permission_names = args;
453 
454 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455 
456 	permission_names[pdatum->value - 1] = (char *)k;
457 
458 	return 0;
459 }
460 
461 static void security_dump_masked_av(struct policydb *policydb,
462 				    struct context *scontext,
463 				    struct context *tcontext,
464 				    u16 tclass,
465 				    u32 permissions,
466 				    const char *reason)
467 {
468 	struct common_datum *common_dat;
469 	struct class_datum *tclass_dat;
470 	struct audit_buffer *ab;
471 	char *tclass_name;
472 	char *scontext_name = NULL;
473 	char *tcontext_name = NULL;
474 	char *permission_names[32];
475 	int index;
476 	u32 length;
477 	bool need_comma = false;
478 
479 	if (!permissions)
480 		return;
481 
482 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
483 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
484 	common_dat = tclass_dat->comdatum;
485 
486 	/* init permission_names */
487 	if (common_dat &&
488 	    hashtab_map(&common_dat->permissions.table,
489 			dump_masked_av_helper, permission_names) < 0)
490 		goto out;
491 
492 	if (hashtab_map(&tclass_dat->permissions.table,
493 			dump_masked_av_helper, permission_names) < 0)
494 		goto out;
495 
496 	/* get scontext/tcontext in text form */
497 	if (context_struct_to_string(policydb, scontext,
498 				     &scontext_name, &length) < 0)
499 		goto out;
500 
501 	if (context_struct_to_string(policydb, tcontext,
502 				     &tcontext_name, &length) < 0)
503 		goto out;
504 
505 	/* audit a message */
506 	ab = audit_log_start(audit_context(),
507 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
508 	if (!ab)
509 		goto out;
510 
511 	audit_log_format(ab, "op=security_compute_av reason=%s "
512 			 "scontext=%s tcontext=%s tclass=%s perms=",
513 			 reason, scontext_name, tcontext_name, tclass_name);
514 
515 	for (index = 0; index < 32; index++) {
516 		u32 mask = (1 << index);
517 
518 		if ((mask & permissions) == 0)
519 			continue;
520 
521 		audit_log_format(ab, "%s%s",
522 				 need_comma ? "," : "",
523 				 permission_names[index]
524 				 ? permission_names[index] : "????");
525 		need_comma = true;
526 	}
527 	audit_log_end(ab);
528 out:
529 	/* release scontext/tcontext */
530 	kfree(tcontext_name);
531 	kfree(scontext_name);
532 
533 	return;
534 }
535 
536 /*
537  * security_boundary_permission - drops violated permissions
538  * on boundary constraint.
539  */
540 static void type_attribute_bounds_av(struct policydb *policydb,
541 				     struct context *scontext,
542 				     struct context *tcontext,
543 				     u16 tclass,
544 				     struct av_decision *avd)
545 {
546 	struct context lo_scontext;
547 	struct context lo_tcontext, *tcontextp = tcontext;
548 	struct av_decision lo_avd;
549 	struct type_datum *source;
550 	struct type_datum *target;
551 	u32 masked = 0;
552 
553 	source = policydb->type_val_to_struct[scontext->type - 1];
554 	BUG_ON(!source);
555 
556 	if (!source->bounds)
557 		return;
558 
559 	target = policydb->type_val_to_struct[tcontext->type - 1];
560 	BUG_ON(!target);
561 
562 	memset(&lo_avd, 0, sizeof(lo_avd));
563 
564 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
565 	lo_scontext.type = source->bounds;
566 
567 	if (target->bounds) {
568 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
569 		lo_tcontext.type = target->bounds;
570 		tcontextp = &lo_tcontext;
571 	}
572 
573 	context_struct_compute_av(policydb, &lo_scontext,
574 				  tcontextp,
575 				  tclass,
576 				  &lo_avd,
577 				  NULL);
578 
579 	masked = ~lo_avd.allowed & avd->allowed;
580 
581 	if (likely(!masked))
582 		return;		/* no masked permission */
583 
584 	/* mask violated permissions */
585 	avd->allowed &= ~masked;
586 
587 	/* audit masked permissions */
588 	security_dump_masked_av(policydb, scontext, tcontext,
589 				tclass, masked, "bounds");
590 }
591 
592 /*
593  * flag which drivers have permissions
594  * only looking for ioctl based extended permssions
595  */
596 void services_compute_xperms_drivers(
597 		struct extended_perms *xperms,
598 		struct avtab_node *node)
599 {
600 	unsigned int i;
601 
602 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
603 		/* if one or more driver has all permissions allowed */
604 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
605 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
606 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
607 		/* if allowing permissions within a driver */
608 		security_xperm_set(xperms->drivers.p,
609 					node->datum.u.xperms->driver);
610 	}
611 
612 	xperms->len = 1;
613 }
614 
615 /*
616  * Compute access vectors and extended permissions based on a context
617  * structure pair for the permissions in a particular class.
618  */
619 static void context_struct_compute_av(struct policydb *policydb,
620 				      struct context *scontext,
621 				      struct context *tcontext,
622 				      u16 tclass,
623 				      struct av_decision *avd,
624 				      struct extended_perms *xperms)
625 {
626 	struct constraint_node *constraint;
627 	struct role_allow *ra;
628 	struct avtab_key avkey;
629 	struct avtab_node *node;
630 	struct class_datum *tclass_datum;
631 	struct ebitmap *sattr, *tattr;
632 	struct ebitmap_node *snode, *tnode;
633 	unsigned int i, j;
634 
635 	avd->allowed = 0;
636 	avd->auditallow = 0;
637 	avd->auditdeny = 0xffffffff;
638 	if (xperms) {
639 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
640 		xperms->len = 0;
641 	}
642 
643 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
644 		if (printk_ratelimit())
645 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
646 		return;
647 	}
648 
649 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
650 
651 	/*
652 	 * If a specific type enforcement rule was defined for
653 	 * this permission check, then use it.
654 	 */
655 	avkey.target_class = tclass;
656 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
658 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
659 	ebitmap_for_each_positive_bit(sattr, snode, i) {
660 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
661 			avkey.source_type = i + 1;
662 			avkey.target_type = j + 1;
663 			for (node = avtab_search_node(&policydb->te_avtab,
664 						      &avkey);
665 			     node;
666 			     node = avtab_search_node_next(node, avkey.specified)) {
667 				if (node->key.specified == AVTAB_ALLOWED)
668 					avd->allowed |= node->datum.u.data;
669 				else if (node->key.specified == AVTAB_AUDITALLOW)
670 					avd->auditallow |= node->datum.u.data;
671 				else if (node->key.specified == AVTAB_AUDITDENY)
672 					avd->auditdeny &= node->datum.u.data;
673 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
674 					services_compute_xperms_drivers(xperms, node);
675 			}
676 
677 			/* Check conditional av table for additional permissions */
678 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
679 					avd, xperms);
680 
681 		}
682 	}
683 
684 	/*
685 	 * Remove any permissions prohibited by a constraint (this includes
686 	 * the MLS policy).
687 	 */
688 	constraint = tclass_datum->constraints;
689 	while (constraint) {
690 		if ((constraint->permissions & (avd->allowed)) &&
691 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
692 					  constraint->expr)) {
693 			avd->allowed &= ~(constraint->permissions);
694 		}
695 		constraint = constraint->next;
696 	}
697 
698 	/*
699 	 * If checking process transition permission and the
700 	 * role is changing, then check the (current_role, new_role)
701 	 * pair.
702 	 */
703 	if (tclass == policydb->process_class &&
704 	    (avd->allowed & policydb->process_trans_perms) &&
705 	    scontext->role != tcontext->role) {
706 		for (ra = policydb->role_allow; ra; ra = ra->next) {
707 			if (scontext->role == ra->role &&
708 			    tcontext->role == ra->new_role)
709 				break;
710 		}
711 		if (!ra)
712 			avd->allowed &= ~policydb->process_trans_perms;
713 	}
714 
715 	/*
716 	 * If the given source and target types have boundary
717 	 * constraint, lazy checks have to mask any violated
718 	 * permission and notice it to userspace via audit.
719 	 */
720 	type_attribute_bounds_av(policydb, scontext, tcontext,
721 				 tclass, avd);
722 }
723 
724 static int security_validtrans_handle_fail(struct selinux_state *state,
725 					struct selinux_policy *policy,
726 					struct sidtab_entry *oentry,
727 					struct sidtab_entry *nentry,
728 					struct sidtab_entry *tentry,
729 					u16 tclass)
730 {
731 	struct policydb *p = &policy->policydb;
732 	struct sidtab *sidtab = policy->sidtab;
733 	char *o = NULL, *n = NULL, *t = NULL;
734 	u32 olen, nlen, tlen;
735 
736 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
737 		goto out;
738 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
739 		goto out;
740 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
741 		goto out;
742 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
743 		  "op=security_validate_transition seresult=denied"
744 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
745 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
746 out:
747 	kfree(o);
748 	kfree(n);
749 	kfree(t);
750 
751 	if (!enforcing_enabled(state))
752 		return 0;
753 	return -EPERM;
754 }
755 
756 static int security_compute_validatetrans(struct selinux_state *state,
757 					  u32 oldsid, u32 newsid, u32 tasksid,
758 					  u16 orig_tclass, bool user)
759 {
760 	struct selinux_policy *policy;
761 	struct policydb *policydb;
762 	struct sidtab *sidtab;
763 	struct sidtab_entry *oentry;
764 	struct sidtab_entry *nentry;
765 	struct sidtab_entry *tentry;
766 	struct class_datum *tclass_datum;
767 	struct constraint_node *constraint;
768 	u16 tclass;
769 	int rc = 0;
770 
771 
772 	if (!selinux_initialized(state))
773 		return 0;
774 
775 	rcu_read_lock();
776 
777 	policy = rcu_dereference(state->policy);
778 	policydb = &policy->policydb;
779 	sidtab = policy->sidtab;
780 
781 	if (!user)
782 		tclass = unmap_class(&policy->map, orig_tclass);
783 	else
784 		tclass = orig_tclass;
785 
786 	if (!tclass || tclass > policydb->p_classes.nprim) {
787 		rc = -EINVAL;
788 		goto out;
789 	}
790 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
791 
792 	oentry = sidtab_search_entry(sidtab, oldsid);
793 	if (!oentry) {
794 		pr_err("SELinux: %s:  unrecognized SID %d\n",
795 			__func__, oldsid);
796 		rc = -EINVAL;
797 		goto out;
798 	}
799 
800 	nentry = sidtab_search_entry(sidtab, newsid);
801 	if (!nentry) {
802 		pr_err("SELinux: %s:  unrecognized SID %d\n",
803 			__func__, newsid);
804 		rc = -EINVAL;
805 		goto out;
806 	}
807 
808 	tentry = sidtab_search_entry(sidtab, tasksid);
809 	if (!tentry) {
810 		pr_err("SELinux: %s:  unrecognized SID %d\n",
811 			__func__, tasksid);
812 		rc = -EINVAL;
813 		goto out;
814 	}
815 
816 	constraint = tclass_datum->validatetrans;
817 	while (constraint) {
818 		if (!constraint_expr_eval(policydb, &oentry->context,
819 					  &nentry->context, &tentry->context,
820 					  constraint->expr)) {
821 			if (user)
822 				rc = -EPERM;
823 			else
824 				rc = security_validtrans_handle_fail(state,
825 								policy,
826 								oentry,
827 								nentry,
828 								tentry,
829 								tclass);
830 			goto out;
831 		}
832 		constraint = constraint->next;
833 	}
834 
835 out:
836 	rcu_read_unlock();
837 	return rc;
838 }
839 
840 int security_validate_transition_user(struct selinux_state *state,
841 				      u32 oldsid, u32 newsid, u32 tasksid,
842 				      u16 tclass)
843 {
844 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 					      tclass, true);
846 }
847 
848 int security_validate_transition(struct selinux_state *state,
849 				 u32 oldsid, u32 newsid, u32 tasksid,
850 				 u16 orig_tclass)
851 {
852 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
853 					      orig_tclass, false);
854 }
855 
856 /*
857  * security_bounded_transition - check whether the given
858  * transition is directed to bounded, or not.
859  * It returns 0, if @newsid is bounded by @oldsid.
860  * Otherwise, it returns error code.
861  *
862  * @oldsid : current security identifier
863  * @newsid : destinated security identifier
864  */
865 int security_bounded_transition(struct selinux_state *state,
866 				u32 old_sid, u32 new_sid)
867 {
868 	struct selinux_policy *policy;
869 	struct policydb *policydb;
870 	struct sidtab *sidtab;
871 	struct sidtab_entry *old_entry, *new_entry;
872 	struct type_datum *type;
873 	int index;
874 	int rc;
875 
876 	if (!selinux_initialized(state))
877 		return 0;
878 
879 	rcu_read_lock();
880 	policy = rcu_dereference(state->policy);
881 	policydb = &policy->policydb;
882 	sidtab = policy->sidtab;
883 
884 	rc = -EINVAL;
885 	old_entry = sidtab_search_entry(sidtab, old_sid);
886 	if (!old_entry) {
887 		pr_err("SELinux: %s: unrecognized SID %u\n",
888 		       __func__, old_sid);
889 		goto out;
890 	}
891 
892 	rc = -EINVAL;
893 	new_entry = sidtab_search_entry(sidtab, new_sid);
894 	if (!new_entry) {
895 		pr_err("SELinux: %s: unrecognized SID %u\n",
896 		       __func__, new_sid);
897 		goto out;
898 	}
899 
900 	rc = 0;
901 	/* type/domain unchanged */
902 	if (old_entry->context.type == new_entry->context.type)
903 		goto out;
904 
905 	index = new_entry->context.type;
906 	while (true) {
907 		type = policydb->type_val_to_struct[index - 1];
908 		BUG_ON(!type);
909 
910 		/* not bounded anymore */
911 		rc = -EPERM;
912 		if (!type->bounds)
913 			break;
914 
915 		/* @newsid is bounded by @oldsid */
916 		rc = 0;
917 		if (type->bounds == old_entry->context.type)
918 			break;
919 
920 		index = type->bounds;
921 	}
922 
923 	if (rc) {
924 		char *old_name = NULL;
925 		char *new_name = NULL;
926 		u32 length;
927 
928 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
929 					    &old_name, &length) &&
930 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
931 					    &new_name, &length)) {
932 			audit_log(audit_context(),
933 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
934 				  "op=security_bounded_transition "
935 				  "seresult=denied "
936 				  "oldcontext=%s newcontext=%s",
937 				  old_name, new_name);
938 		}
939 		kfree(new_name);
940 		kfree(old_name);
941 	}
942 out:
943 	rcu_read_unlock();
944 
945 	return rc;
946 }
947 
948 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
949 {
950 	avd->allowed = 0;
951 	avd->auditallow = 0;
952 	avd->auditdeny = 0xffffffff;
953 	if (policy)
954 		avd->seqno = policy->latest_granting;
955 	else
956 		avd->seqno = 0;
957 	avd->flags = 0;
958 }
959 
960 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
961 					struct avtab_node *node)
962 {
963 	unsigned int i;
964 
965 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
966 		if (xpermd->driver != node->datum.u.xperms->driver)
967 			return;
968 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
969 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
970 					xpermd->driver))
971 			return;
972 	} else {
973 		BUG();
974 	}
975 
976 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
977 		xpermd->used |= XPERMS_ALLOWED;
978 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
979 			memset(xpermd->allowed->p, 0xff,
980 					sizeof(xpermd->allowed->p));
981 		}
982 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
983 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
984 				xpermd->allowed->p[i] |=
985 					node->datum.u.xperms->perms.p[i];
986 		}
987 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
988 		xpermd->used |= XPERMS_AUDITALLOW;
989 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
990 			memset(xpermd->auditallow->p, 0xff,
991 					sizeof(xpermd->auditallow->p));
992 		}
993 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
994 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
995 				xpermd->auditallow->p[i] |=
996 					node->datum.u.xperms->perms.p[i];
997 		}
998 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
999 		xpermd->used |= XPERMS_DONTAUDIT;
1000 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1001 			memset(xpermd->dontaudit->p, 0xff,
1002 					sizeof(xpermd->dontaudit->p));
1003 		}
1004 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1005 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1006 				xpermd->dontaudit->p[i] |=
1007 					node->datum.u.xperms->perms.p[i];
1008 		}
1009 	} else {
1010 		BUG();
1011 	}
1012 }
1013 
1014 void security_compute_xperms_decision(struct selinux_state *state,
1015 				      u32 ssid,
1016 				      u32 tsid,
1017 				      u16 orig_tclass,
1018 				      u8 driver,
1019 				      struct extended_perms_decision *xpermd)
1020 {
1021 	struct selinux_policy *policy;
1022 	struct policydb *policydb;
1023 	struct sidtab *sidtab;
1024 	u16 tclass;
1025 	struct context *scontext, *tcontext;
1026 	struct avtab_key avkey;
1027 	struct avtab_node *node;
1028 	struct ebitmap *sattr, *tattr;
1029 	struct ebitmap_node *snode, *tnode;
1030 	unsigned int i, j;
1031 
1032 	xpermd->driver = driver;
1033 	xpermd->used = 0;
1034 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1035 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1036 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1037 
1038 	rcu_read_lock();
1039 	if (!selinux_initialized(state))
1040 		goto allow;
1041 
1042 	policy = rcu_dereference(state->policy);
1043 	policydb = &policy->policydb;
1044 	sidtab = policy->sidtab;
1045 
1046 	scontext = sidtab_search(sidtab, ssid);
1047 	if (!scontext) {
1048 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1049 		       __func__, ssid);
1050 		goto out;
1051 	}
1052 
1053 	tcontext = sidtab_search(sidtab, tsid);
1054 	if (!tcontext) {
1055 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1056 		       __func__, tsid);
1057 		goto out;
1058 	}
1059 
1060 	tclass = unmap_class(&policy->map, orig_tclass);
1061 	if (unlikely(orig_tclass && !tclass)) {
1062 		if (policydb->allow_unknown)
1063 			goto allow;
1064 		goto out;
1065 	}
1066 
1067 
1068 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1069 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1070 		goto out;
1071 	}
1072 
1073 	avkey.target_class = tclass;
1074 	avkey.specified = AVTAB_XPERMS;
1075 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1076 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1077 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1078 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1079 			avkey.source_type = i + 1;
1080 			avkey.target_type = j + 1;
1081 			for (node = avtab_search_node(&policydb->te_avtab,
1082 						      &avkey);
1083 			     node;
1084 			     node = avtab_search_node_next(node, avkey.specified))
1085 				services_compute_xperms_decision(xpermd, node);
1086 
1087 			cond_compute_xperms(&policydb->te_cond_avtab,
1088 						&avkey, xpermd);
1089 		}
1090 	}
1091 out:
1092 	rcu_read_unlock();
1093 	return;
1094 allow:
1095 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1096 	goto out;
1097 }
1098 
1099 /**
1100  * security_compute_av - Compute access vector decisions.
1101  * @ssid: source security identifier
1102  * @tsid: target security identifier
1103  * @tclass: target security class
1104  * @avd: access vector decisions
1105  * @xperms: extended permissions
1106  *
1107  * Compute a set of access vector decisions based on the
1108  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1109  */
1110 void security_compute_av(struct selinux_state *state,
1111 			 u32 ssid,
1112 			 u32 tsid,
1113 			 u16 orig_tclass,
1114 			 struct av_decision *avd,
1115 			 struct extended_perms *xperms)
1116 {
1117 	struct selinux_policy *policy;
1118 	struct policydb *policydb;
1119 	struct sidtab *sidtab;
1120 	u16 tclass;
1121 	struct context *scontext = NULL, *tcontext = NULL;
1122 
1123 	rcu_read_lock();
1124 	policy = rcu_dereference(state->policy);
1125 	avd_init(policy, avd);
1126 	xperms->len = 0;
1127 	if (!selinux_initialized(state))
1128 		goto allow;
1129 
1130 	policydb = &policy->policydb;
1131 	sidtab = policy->sidtab;
1132 
1133 	scontext = sidtab_search(sidtab, ssid);
1134 	if (!scontext) {
1135 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1136 		       __func__, ssid);
1137 		goto out;
1138 	}
1139 
1140 	/* permissive domain? */
1141 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1142 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1143 
1144 	tcontext = sidtab_search(sidtab, tsid);
1145 	if (!tcontext) {
1146 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1147 		       __func__, tsid);
1148 		goto out;
1149 	}
1150 
1151 	tclass = unmap_class(&policy->map, orig_tclass);
1152 	if (unlikely(orig_tclass && !tclass)) {
1153 		if (policydb->allow_unknown)
1154 			goto allow;
1155 		goto out;
1156 	}
1157 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1158 				  xperms);
1159 	map_decision(&policy->map, orig_tclass, avd,
1160 		     policydb->allow_unknown);
1161 out:
1162 	rcu_read_unlock();
1163 	return;
1164 allow:
1165 	avd->allowed = 0xffffffff;
1166 	goto out;
1167 }
1168 
1169 void security_compute_av_user(struct selinux_state *state,
1170 			      u32 ssid,
1171 			      u32 tsid,
1172 			      u16 tclass,
1173 			      struct av_decision *avd)
1174 {
1175 	struct selinux_policy *policy;
1176 	struct policydb *policydb;
1177 	struct sidtab *sidtab;
1178 	struct context *scontext = NULL, *tcontext = NULL;
1179 
1180 	rcu_read_lock();
1181 	policy = rcu_dereference(state->policy);
1182 	avd_init(policy, avd);
1183 	if (!selinux_initialized(state))
1184 		goto allow;
1185 
1186 	policydb = &policy->policydb;
1187 	sidtab = policy->sidtab;
1188 
1189 	scontext = sidtab_search(sidtab, ssid);
1190 	if (!scontext) {
1191 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1192 		       __func__, ssid);
1193 		goto out;
1194 	}
1195 
1196 	/* permissive domain? */
1197 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1198 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1199 
1200 	tcontext = sidtab_search(sidtab, tsid);
1201 	if (!tcontext) {
1202 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1203 		       __func__, tsid);
1204 		goto out;
1205 	}
1206 
1207 	if (unlikely(!tclass)) {
1208 		if (policydb->allow_unknown)
1209 			goto allow;
1210 		goto out;
1211 	}
1212 
1213 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1214 				  NULL);
1215  out:
1216 	rcu_read_unlock();
1217 	return;
1218 allow:
1219 	avd->allowed = 0xffffffff;
1220 	goto out;
1221 }
1222 
1223 /*
1224  * Write the security context string representation of
1225  * the context structure `context' into a dynamically
1226  * allocated string of the correct size.  Set `*scontext'
1227  * to point to this string and set `*scontext_len' to
1228  * the length of the string.
1229  */
1230 static int context_struct_to_string(struct policydb *p,
1231 				    struct context *context,
1232 				    char **scontext, u32 *scontext_len)
1233 {
1234 	char *scontextp;
1235 
1236 	if (scontext)
1237 		*scontext = NULL;
1238 	*scontext_len = 0;
1239 
1240 	if (context->len) {
1241 		*scontext_len = context->len;
1242 		if (scontext) {
1243 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1244 			if (!(*scontext))
1245 				return -ENOMEM;
1246 		}
1247 		return 0;
1248 	}
1249 
1250 	/* Compute the size of the context. */
1251 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1252 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1253 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1254 	*scontext_len += mls_compute_context_len(p, context);
1255 
1256 	if (!scontext)
1257 		return 0;
1258 
1259 	/* Allocate space for the context; caller must free this space. */
1260 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1261 	if (!scontextp)
1262 		return -ENOMEM;
1263 	*scontext = scontextp;
1264 
1265 	/*
1266 	 * Copy the user name, role name and type name into the context.
1267 	 */
1268 	scontextp += sprintf(scontextp, "%s:%s:%s",
1269 		sym_name(p, SYM_USERS, context->user - 1),
1270 		sym_name(p, SYM_ROLES, context->role - 1),
1271 		sym_name(p, SYM_TYPES, context->type - 1));
1272 
1273 	mls_sid_to_context(p, context, &scontextp);
1274 
1275 	*scontextp = 0;
1276 
1277 	return 0;
1278 }
1279 
1280 static int sidtab_entry_to_string(struct policydb *p,
1281 				  struct sidtab *sidtab,
1282 				  struct sidtab_entry *entry,
1283 				  char **scontext, u32 *scontext_len)
1284 {
1285 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1286 
1287 	if (rc != -ENOENT)
1288 		return rc;
1289 
1290 	rc = context_struct_to_string(p, &entry->context, scontext,
1291 				      scontext_len);
1292 	if (!rc && scontext)
1293 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1294 	return rc;
1295 }
1296 
1297 #include "initial_sid_to_string.h"
1298 
1299 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1300 {
1301 	struct selinux_policy *policy;
1302 	int rc;
1303 
1304 	if (!selinux_initialized(state)) {
1305 		pr_err("SELinux: %s:  called before initial load_policy\n",
1306 		       __func__);
1307 		return -EINVAL;
1308 	}
1309 
1310 	rcu_read_lock();
1311 	policy = rcu_dereference(state->policy);
1312 	rc = sidtab_hash_stats(policy->sidtab, page);
1313 	rcu_read_unlock();
1314 
1315 	return rc;
1316 }
1317 
1318 const char *security_get_initial_sid_context(u32 sid)
1319 {
1320 	if (unlikely(sid > SECINITSID_NUM))
1321 		return NULL;
1322 	return initial_sid_to_string[sid];
1323 }
1324 
1325 static int security_sid_to_context_core(struct selinux_state *state,
1326 					u32 sid, char **scontext,
1327 					u32 *scontext_len, int force,
1328 					int only_invalid)
1329 {
1330 	struct selinux_policy *policy;
1331 	struct policydb *policydb;
1332 	struct sidtab *sidtab;
1333 	struct sidtab_entry *entry;
1334 	int rc = 0;
1335 
1336 	if (scontext)
1337 		*scontext = NULL;
1338 	*scontext_len  = 0;
1339 
1340 	if (!selinux_initialized(state)) {
1341 		if (sid <= SECINITSID_NUM) {
1342 			char *scontextp;
1343 			const char *s = initial_sid_to_string[sid];
1344 
1345 			if (!s)
1346 				return -EINVAL;
1347 			*scontext_len = strlen(s) + 1;
1348 			if (!scontext)
1349 				return 0;
1350 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1351 			if (!scontextp)
1352 				return -ENOMEM;
1353 			*scontext = scontextp;
1354 			return 0;
1355 		}
1356 		pr_err("SELinux: %s:  called before initial "
1357 		       "load_policy on unknown SID %d\n", __func__, sid);
1358 		return -EINVAL;
1359 	}
1360 	rcu_read_lock();
1361 	policy = rcu_dereference(state->policy);
1362 	policydb = &policy->policydb;
1363 	sidtab = policy->sidtab;
1364 
1365 	if (force)
1366 		entry = sidtab_search_entry_force(sidtab, sid);
1367 	else
1368 		entry = sidtab_search_entry(sidtab, sid);
1369 	if (!entry) {
1370 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1371 			__func__, sid);
1372 		rc = -EINVAL;
1373 		goto out_unlock;
1374 	}
1375 	if (only_invalid && !entry->context.len)
1376 		goto out_unlock;
1377 
1378 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1379 				    scontext_len);
1380 
1381 out_unlock:
1382 	rcu_read_unlock();
1383 	return rc;
1384 
1385 }
1386 
1387 /**
1388  * security_sid_to_context - Obtain a context for a given SID.
1389  * @sid: security identifier, SID
1390  * @scontext: security context
1391  * @scontext_len: length in bytes
1392  *
1393  * Write the string representation of the context associated with @sid
1394  * into a dynamically allocated string of the correct size.  Set @scontext
1395  * to point to this string and set @scontext_len to the length of the string.
1396  */
1397 int security_sid_to_context(struct selinux_state *state,
1398 			    u32 sid, char **scontext, u32 *scontext_len)
1399 {
1400 	return security_sid_to_context_core(state, sid, scontext,
1401 					    scontext_len, 0, 0);
1402 }
1403 
1404 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1405 				  char **scontext, u32 *scontext_len)
1406 {
1407 	return security_sid_to_context_core(state, sid, scontext,
1408 					    scontext_len, 1, 0);
1409 }
1410 
1411 /**
1412  * security_sid_to_context_inval - Obtain a context for a given SID if it
1413  *                                 is invalid.
1414  * @sid: security identifier, SID
1415  * @scontext: security context
1416  * @scontext_len: length in bytes
1417  *
1418  * Write the string representation of the context associated with @sid
1419  * into a dynamically allocated string of the correct size, but only if the
1420  * context is invalid in the current policy.  Set @scontext to point to
1421  * this string (or NULL if the context is valid) and set @scontext_len to
1422  * the length of the string (or 0 if the context is valid).
1423  */
1424 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1425 				  char **scontext, u32 *scontext_len)
1426 {
1427 	return security_sid_to_context_core(state, sid, scontext,
1428 					    scontext_len, 1, 1);
1429 }
1430 
1431 /*
1432  * Caveat:  Mutates scontext.
1433  */
1434 static int string_to_context_struct(struct policydb *pol,
1435 				    struct sidtab *sidtabp,
1436 				    char *scontext,
1437 				    struct context *ctx,
1438 				    u32 def_sid)
1439 {
1440 	struct role_datum *role;
1441 	struct type_datum *typdatum;
1442 	struct user_datum *usrdatum;
1443 	char *scontextp, *p, oldc;
1444 	int rc = 0;
1445 
1446 	context_init(ctx);
1447 
1448 	/* Parse the security context. */
1449 
1450 	rc = -EINVAL;
1451 	scontextp = (char *) scontext;
1452 
1453 	/* Extract the user. */
1454 	p = scontextp;
1455 	while (*p && *p != ':')
1456 		p++;
1457 
1458 	if (*p == 0)
1459 		goto out;
1460 
1461 	*p++ = 0;
1462 
1463 	usrdatum = symtab_search(&pol->p_users, scontextp);
1464 	if (!usrdatum)
1465 		goto out;
1466 
1467 	ctx->user = usrdatum->value;
1468 
1469 	/* Extract role. */
1470 	scontextp = p;
1471 	while (*p && *p != ':')
1472 		p++;
1473 
1474 	if (*p == 0)
1475 		goto out;
1476 
1477 	*p++ = 0;
1478 
1479 	role = symtab_search(&pol->p_roles, scontextp);
1480 	if (!role)
1481 		goto out;
1482 	ctx->role = role->value;
1483 
1484 	/* Extract type. */
1485 	scontextp = p;
1486 	while (*p && *p != ':')
1487 		p++;
1488 	oldc = *p;
1489 	*p++ = 0;
1490 
1491 	typdatum = symtab_search(&pol->p_types, scontextp);
1492 	if (!typdatum || typdatum->attribute)
1493 		goto out;
1494 
1495 	ctx->type = typdatum->value;
1496 
1497 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1498 	if (rc)
1499 		goto out;
1500 
1501 	/* Check the validity of the new context. */
1502 	rc = -EINVAL;
1503 	if (!policydb_context_isvalid(pol, ctx))
1504 		goto out;
1505 	rc = 0;
1506 out:
1507 	if (rc)
1508 		context_destroy(ctx);
1509 	return rc;
1510 }
1511 
1512 static int security_context_to_sid_core(struct selinux_state *state,
1513 					const char *scontext, u32 scontext_len,
1514 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1515 					int force)
1516 {
1517 	struct selinux_policy *policy;
1518 	struct policydb *policydb;
1519 	struct sidtab *sidtab;
1520 	char *scontext2, *str = NULL;
1521 	struct context context;
1522 	int rc = 0;
1523 
1524 	/* An empty security context is never valid. */
1525 	if (!scontext_len)
1526 		return -EINVAL;
1527 
1528 	/* Copy the string to allow changes and ensure a NUL terminator */
1529 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1530 	if (!scontext2)
1531 		return -ENOMEM;
1532 
1533 	if (!selinux_initialized(state)) {
1534 		int i;
1535 
1536 		for (i = 1; i < SECINITSID_NUM; i++) {
1537 			const char *s = initial_sid_to_string[i];
1538 
1539 			if (s && !strcmp(s, scontext2)) {
1540 				*sid = i;
1541 				goto out;
1542 			}
1543 		}
1544 		*sid = SECINITSID_KERNEL;
1545 		goto out;
1546 	}
1547 	*sid = SECSID_NULL;
1548 
1549 	if (force) {
1550 		/* Save another copy for storing in uninterpreted form */
1551 		rc = -ENOMEM;
1552 		str = kstrdup(scontext2, gfp_flags);
1553 		if (!str)
1554 			goto out;
1555 	}
1556 retry:
1557 	rcu_read_lock();
1558 	policy = rcu_dereference(state->policy);
1559 	policydb = &policy->policydb;
1560 	sidtab = policy->sidtab;
1561 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1562 				      &context, def_sid);
1563 	if (rc == -EINVAL && force) {
1564 		context.str = str;
1565 		context.len = strlen(str) + 1;
1566 		str = NULL;
1567 	} else if (rc)
1568 		goto out_unlock;
1569 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1570 	if (rc == -ESTALE) {
1571 		rcu_read_unlock();
1572 		if (context.str) {
1573 			str = context.str;
1574 			context.str = NULL;
1575 		}
1576 		context_destroy(&context);
1577 		goto retry;
1578 	}
1579 	context_destroy(&context);
1580 out_unlock:
1581 	rcu_read_unlock();
1582 out:
1583 	kfree(scontext2);
1584 	kfree(str);
1585 	return rc;
1586 }
1587 
1588 /**
1589  * security_context_to_sid - Obtain a SID for a given security context.
1590  * @scontext: security context
1591  * @scontext_len: length in bytes
1592  * @sid: security identifier, SID
1593  * @gfp: context for the allocation
1594  *
1595  * Obtains a SID associated with the security context that
1596  * has the string representation specified by @scontext.
1597  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1598  * memory is available, or 0 on success.
1599  */
1600 int security_context_to_sid(struct selinux_state *state,
1601 			    const char *scontext, u32 scontext_len, u32 *sid,
1602 			    gfp_t gfp)
1603 {
1604 	return security_context_to_sid_core(state, scontext, scontext_len,
1605 					    sid, SECSID_NULL, gfp, 0);
1606 }
1607 
1608 int security_context_str_to_sid(struct selinux_state *state,
1609 				const char *scontext, u32 *sid, gfp_t gfp)
1610 {
1611 	return security_context_to_sid(state, scontext, strlen(scontext),
1612 				       sid, gfp);
1613 }
1614 
1615 /**
1616  * security_context_to_sid_default - Obtain a SID for a given security context,
1617  * falling back to specified default if needed.
1618  *
1619  * @scontext: security context
1620  * @scontext_len: length in bytes
1621  * @sid: security identifier, SID
1622  * @def_sid: default SID to assign on error
1623  *
1624  * Obtains a SID associated with the security context that
1625  * has the string representation specified by @scontext.
1626  * The default SID is passed to the MLS layer to be used to allow
1627  * kernel labeling of the MLS field if the MLS field is not present
1628  * (for upgrading to MLS without full relabel).
1629  * Implicitly forces adding of the context even if it cannot be mapped yet.
1630  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1631  * memory is available, or 0 on success.
1632  */
1633 int security_context_to_sid_default(struct selinux_state *state,
1634 				    const char *scontext, u32 scontext_len,
1635 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1636 {
1637 	return security_context_to_sid_core(state, scontext, scontext_len,
1638 					    sid, def_sid, gfp_flags, 1);
1639 }
1640 
1641 int security_context_to_sid_force(struct selinux_state *state,
1642 				  const char *scontext, u32 scontext_len,
1643 				  u32 *sid)
1644 {
1645 	return security_context_to_sid_core(state, scontext, scontext_len,
1646 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1647 }
1648 
1649 static int compute_sid_handle_invalid_context(
1650 	struct selinux_state *state,
1651 	struct selinux_policy *policy,
1652 	struct sidtab_entry *sentry,
1653 	struct sidtab_entry *tentry,
1654 	u16 tclass,
1655 	struct context *newcontext)
1656 {
1657 	struct policydb *policydb = &policy->policydb;
1658 	struct sidtab *sidtab = policy->sidtab;
1659 	char *s = NULL, *t = NULL, *n = NULL;
1660 	u32 slen, tlen, nlen;
1661 	struct audit_buffer *ab;
1662 
1663 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1664 		goto out;
1665 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1666 		goto out;
1667 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1668 		goto out;
1669 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1670 	audit_log_format(ab,
1671 			 "op=security_compute_sid invalid_context=");
1672 	/* no need to record the NUL with untrusted strings */
1673 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1674 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1675 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1676 	audit_log_end(ab);
1677 out:
1678 	kfree(s);
1679 	kfree(t);
1680 	kfree(n);
1681 	if (!enforcing_enabled(state))
1682 		return 0;
1683 	return -EACCES;
1684 }
1685 
1686 static void filename_compute_type(struct policydb *policydb,
1687 				  struct context *newcontext,
1688 				  u32 stype, u32 ttype, u16 tclass,
1689 				  const char *objname)
1690 {
1691 	struct filename_trans_key ft;
1692 	struct filename_trans_datum *datum;
1693 
1694 	/*
1695 	 * Most filename trans rules are going to live in specific directories
1696 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1697 	 * if the ttype does not contain any rules.
1698 	 */
1699 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1700 		return;
1701 
1702 	ft.ttype = ttype;
1703 	ft.tclass = tclass;
1704 	ft.name = objname;
1705 
1706 	datum = policydb_filenametr_search(policydb, &ft);
1707 	while (datum) {
1708 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1709 			newcontext->type = datum->otype;
1710 			return;
1711 		}
1712 		datum = datum->next;
1713 	}
1714 }
1715 
1716 static int security_compute_sid(struct selinux_state *state,
1717 				u32 ssid,
1718 				u32 tsid,
1719 				u16 orig_tclass,
1720 				u32 specified,
1721 				const char *objname,
1722 				u32 *out_sid,
1723 				bool kern)
1724 {
1725 	struct selinux_policy *policy;
1726 	struct policydb *policydb;
1727 	struct sidtab *sidtab;
1728 	struct class_datum *cladatum;
1729 	struct context *scontext, *tcontext, newcontext;
1730 	struct sidtab_entry *sentry, *tentry;
1731 	struct avtab_key avkey;
1732 	struct avtab_datum *avdatum;
1733 	struct avtab_node *node;
1734 	u16 tclass;
1735 	int rc = 0;
1736 	bool sock;
1737 
1738 	if (!selinux_initialized(state)) {
1739 		switch (orig_tclass) {
1740 		case SECCLASS_PROCESS: /* kernel value */
1741 			*out_sid = ssid;
1742 			break;
1743 		default:
1744 			*out_sid = tsid;
1745 			break;
1746 		}
1747 		goto out;
1748 	}
1749 
1750 retry:
1751 	cladatum = NULL;
1752 	context_init(&newcontext);
1753 
1754 	rcu_read_lock();
1755 
1756 	policy = rcu_dereference(state->policy);
1757 
1758 	if (kern) {
1759 		tclass = unmap_class(&policy->map, orig_tclass);
1760 		sock = security_is_socket_class(orig_tclass);
1761 	} else {
1762 		tclass = orig_tclass;
1763 		sock = security_is_socket_class(map_class(&policy->map,
1764 							  tclass));
1765 	}
1766 
1767 	policydb = &policy->policydb;
1768 	sidtab = policy->sidtab;
1769 
1770 	sentry = sidtab_search_entry(sidtab, ssid);
1771 	if (!sentry) {
1772 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1773 		       __func__, ssid);
1774 		rc = -EINVAL;
1775 		goto out_unlock;
1776 	}
1777 	tentry = sidtab_search_entry(sidtab, tsid);
1778 	if (!tentry) {
1779 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1780 		       __func__, tsid);
1781 		rc = -EINVAL;
1782 		goto out_unlock;
1783 	}
1784 
1785 	scontext = &sentry->context;
1786 	tcontext = &tentry->context;
1787 
1788 	if (tclass && tclass <= policydb->p_classes.nprim)
1789 		cladatum = policydb->class_val_to_struct[tclass - 1];
1790 
1791 	/* Set the user identity. */
1792 	switch (specified) {
1793 	case AVTAB_TRANSITION:
1794 	case AVTAB_CHANGE:
1795 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1796 			newcontext.user = tcontext->user;
1797 		} else {
1798 			/* notice this gets both DEFAULT_SOURCE and unset */
1799 			/* Use the process user identity. */
1800 			newcontext.user = scontext->user;
1801 		}
1802 		break;
1803 	case AVTAB_MEMBER:
1804 		/* Use the related object owner. */
1805 		newcontext.user = tcontext->user;
1806 		break;
1807 	}
1808 
1809 	/* Set the role to default values. */
1810 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1811 		newcontext.role = scontext->role;
1812 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1813 		newcontext.role = tcontext->role;
1814 	} else {
1815 		if ((tclass == policydb->process_class) || sock)
1816 			newcontext.role = scontext->role;
1817 		else
1818 			newcontext.role = OBJECT_R_VAL;
1819 	}
1820 
1821 	/* Set the type to default values. */
1822 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1823 		newcontext.type = scontext->type;
1824 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1825 		newcontext.type = tcontext->type;
1826 	} else {
1827 		if ((tclass == policydb->process_class) || sock) {
1828 			/* Use the type of process. */
1829 			newcontext.type = scontext->type;
1830 		} else {
1831 			/* Use the type of the related object. */
1832 			newcontext.type = tcontext->type;
1833 		}
1834 	}
1835 
1836 	/* Look for a type transition/member/change rule. */
1837 	avkey.source_type = scontext->type;
1838 	avkey.target_type = tcontext->type;
1839 	avkey.target_class = tclass;
1840 	avkey.specified = specified;
1841 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1842 
1843 	/* If no permanent rule, also check for enabled conditional rules */
1844 	if (!avdatum) {
1845 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1846 		for (; node; node = avtab_search_node_next(node, specified)) {
1847 			if (node->key.specified & AVTAB_ENABLED) {
1848 				avdatum = &node->datum;
1849 				break;
1850 			}
1851 		}
1852 	}
1853 
1854 	if (avdatum) {
1855 		/* Use the type from the type transition/member/change rule. */
1856 		newcontext.type = avdatum->u.data;
1857 	}
1858 
1859 	/* if we have a objname this is a file trans check so check those rules */
1860 	if (objname)
1861 		filename_compute_type(policydb, &newcontext, scontext->type,
1862 				      tcontext->type, tclass, objname);
1863 
1864 	/* Check for class-specific changes. */
1865 	if (specified & AVTAB_TRANSITION) {
1866 		/* Look for a role transition rule. */
1867 		struct role_trans_datum *rtd;
1868 		struct role_trans_key rtk = {
1869 			.role = scontext->role,
1870 			.type = tcontext->type,
1871 			.tclass = tclass,
1872 		};
1873 
1874 		rtd = policydb_roletr_search(policydb, &rtk);
1875 		if (rtd)
1876 			newcontext.role = rtd->new_role;
1877 	}
1878 
1879 	/* Set the MLS attributes.
1880 	   This is done last because it may allocate memory. */
1881 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1882 			     &newcontext, sock);
1883 	if (rc)
1884 		goto out_unlock;
1885 
1886 	/* Check the validity of the context. */
1887 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1888 		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1889 							tentry, tclass,
1890 							&newcontext);
1891 		if (rc)
1892 			goto out_unlock;
1893 	}
1894 	/* Obtain the sid for the context. */
1895 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1896 	if (rc == -ESTALE) {
1897 		rcu_read_unlock();
1898 		context_destroy(&newcontext);
1899 		goto retry;
1900 	}
1901 out_unlock:
1902 	rcu_read_unlock();
1903 	context_destroy(&newcontext);
1904 out:
1905 	return rc;
1906 }
1907 
1908 /**
1909  * security_transition_sid - Compute the SID for a new subject/object.
1910  * @ssid: source security identifier
1911  * @tsid: target security identifier
1912  * @tclass: target security class
1913  * @out_sid: security identifier for new subject/object
1914  *
1915  * Compute a SID to use for labeling a new subject or object in the
1916  * class @tclass based on a SID pair (@ssid, @tsid).
1917  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1918  * if insufficient memory is available, or %0 if the new SID was
1919  * computed successfully.
1920  */
1921 int security_transition_sid(struct selinux_state *state,
1922 			    u32 ssid, u32 tsid, u16 tclass,
1923 			    const struct qstr *qstr, u32 *out_sid)
1924 {
1925 	return security_compute_sid(state, ssid, tsid, tclass,
1926 				    AVTAB_TRANSITION,
1927 				    qstr ? qstr->name : NULL, out_sid, true);
1928 }
1929 
1930 int security_transition_sid_user(struct selinux_state *state,
1931 				 u32 ssid, u32 tsid, u16 tclass,
1932 				 const char *objname, u32 *out_sid)
1933 {
1934 	return security_compute_sid(state, ssid, tsid, tclass,
1935 				    AVTAB_TRANSITION,
1936 				    objname, out_sid, false);
1937 }
1938 
1939 /**
1940  * security_member_sid - Compute the SID for member selection.
1941  * @ssid: source security identifier
1942  * @tsid: target security identifier
1943  * @tclass: target security class
1944  * @out_sid: security identifier for selected member
1945  *
1946  * Compute a SID to use when selecting a member of a polyinstantiated
1947  * object of class @tclass based on a SID pair (@ssid, @tsid).
1948  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1949  * if insufficient memory is available, or %0 if the SID was
1950  * computed successfully.
1951  */
1952 int security_member_sid(struct selinux_state *state,
1953 			u32 ssid,
1954 			u32 tsid,
1955 			u16 tclass,
1956 			u32 *out_sid)
1957 {
1958 	return security_compute_sid(state, ssid, tsid, tclass,
1959 				    AVTAB_MEMBER, NULL,
1960 				    out_sid, false);
1961 }
1962 
1963 /**
1964  * security_change_sid - Compute the SID for object relabeling.
1965  * @ssid: source security identifier
1966  * @tsid: target security identifier
1967  * @tclass: target security class
1968  * @out_sid: security identifier for selected member
1969  *
1970  * Compute a SID to use for relabeling an object of class @tclass
1971  * based on a SID pair (@ssid, @tsid).
1972  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1973  * if insufficient memory is available, or %0 if the SID was
1974  * computed successfully.
1975  */
1976 int security_change_sid(struct selinux_state *state,
1977 			u32 ssid,
1978 			u32 tsid,
1979 			u16 tclass,
1980 			u32 *out_sid)
1981 {
1982 	return security_compute_sid(state,
1983 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1984 				    out_sid, false);
1985 }
1986 
1987 static inline int convert_context_handle_invalid_context(
1988 	struct selinux_state *state,
1989 	struct policydb *policydb,
1990 	struct context *context)
1991 {
1992 	char *s;
1993 	u32 len;
1994 
1995 	if (enforcing_enabled(state))
1996 		return -EINVAL;
1997 
1998 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1999 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2000 			s);
2001 		kfree(s);
2002 	}
2003 	return 0;
2004 }
2005 
2006 /*
2007  * Convert the values in the security context
2008  * structure `oldc' from the values specified
2009  * in the policy `p->oldp' to the values specified
2010  * in the policy `p->newp', storing the new context
2011  * in `newc'.  Verify that the context is valid
2012  * under the new policy.
2013  */
2014 static int convert_context(struct context *oldc, struct context *newc, void *p)
2015 {
2016 	struct convert_context_args *args;
2017 	struct ocontext *oc;
2018 	struct role_datum *role;
2019 	struct type_datum *typdatum;
2020 	struct user_datum *usrdatum;
2021 	char *s;
2022 	u32 len;
2023 	int rc;
2024 
2025 	args = p;
2026 
2027 	if (oldc->str) {
2028 		s = kstrdup(oldc->str, GFP_KERNEL);
2029 		if (!s)
2030 			return -ENOMEM;
2031 
2032 		rc = string_to_context_struct(args->newp, NULL, s,
2033 					      newc, SECSID_NULL);
2034 		if (rc == -EINVAL) {
2035 			/*
2036 			 * Retain string representation for later mapping.
2037 			 *
2038 			 * IMPORTANT: We need to copy the contents of oldc->str
2039 			 * back into s again because string_to_context_struct()
2040 			 * may have garbled it.
2041 			 */
2042 			memcpy(s, oldc->str, oldc->len);
2043 			context_init(newc);
2044 			newc->str = s;
2045 			newc->len = oldc->len;
2046 			return 0;
2047 		}
2048 		kfree(s);
2049 		if (rc) {
2050 			/* Other error condition, e.g. ENOMEM. */
2051 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2052 			       oldc->str, -rc);
2053 			return rc;
2054 		}
2055 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2056 			oldc->str);
2057 		return 0;
2058 	}
2059 
2060 	context_init(newc);
2061 
2062 	/* Convert the user. */
2063 	rc = -EINVAL;
2064 	usrdatum = symtab_search(&args->newp->p_users,
2065 				 sym_name(args->oldp,
2066 					  SYM_USERS, oldc->user - 1));
2067 	if (!usrdatum)
2068 		goto bad;
2069 	newc->user = usrdatum->value;
2070 
2071 	/* Convert the role. */
2072 	rc = -EINVAL;
2073 	role = symtab_search(&args->newp->p_roles,
2074 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2075 	if (!role)
2076 		goto bad;
2077 	newc->role = role->value;
2078 
2079 	/* Convert the type. */
2080 	rc = -EINVAL;
2081 	typdatum = symtab_search(&args->newp->p_types,
2082 				 sym_name(args->oldp,
2083 					  SYM_TYPES, oldc->type - 1));
2084 	if (!typdatum)
2085 		goto bad;
2086 	newc->type = typdatum->value;
2087 
2088 	/* Convert the MLS fields if dealing with MLS policies */
2089 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2090 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2091 		if (rc)
2092 			goto bad;
2093 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2094 		/*
2095 		 * Switching between non-MLS and MLS policy:
2096 		 * ensure that the MLS fields of the context for all
2097 		 * existing entries in the sidtab are filled in with a
2098 		 * suitable default value, likely taken from one of the
2099 		 * initial SIDs.
2100 		 */
2101 		oc = args->newp->ocontexts[OCON_ISID];
2102 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2103 			oc = oc->next;
2104 		rc = -EINVAL;
2105 		if (!oc) {
2106 			pr_err("SELinux:  unable to look up"
2107 				" the initial SIDs list\n");
2108 			goto bad;
2109 		}
2110 		rc = mls_range_set(newc, &oc->context[0].range);
2111 		if (rc)
2112 			goto bad;
2113 	}
2114 
2115 	/* Check the validity of the new context. */
2116 	if (!policydb_context_isvalid(args->newp, newc)) {
2117 		rc = convert_context_handle_invalid_context(args->state,
2118 							args->oldp,
2119 							oldc);
2120 		if (rc)
2121 			goto bad;
2122 	}
2123 
2124 	return 0;
2125 bad:
2126 	/* Map old representation to string and save it. */
2127 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2128 	if (rc)
2129 		return rc;
2130 	context_destroy(newc);
2131 	newc->str = s;
2132 	newc->len = len;
2133 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2134 		newc->str);
2135 	return 0;
2136 }
2137 
2138 static void security_load_policycaps(struct selinux_state *state,
2139 				struct selinux_policy *policy)
2140 {
2141 	struct policydb *p;
2142 	unsigned int i;
2143 	struct ebitmap_node *node;
2144 
2145 	p = &policy->policydb;
2146 
2147 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2148 		WRITE_ONCE(state->policycap[i],
2149 			ebitmap_get_bit(&p->policycaps, i));
2150 
2151 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152 		pr_info("SELinux:  policy capability %s=%d\n",
2153 			selinux_policycap_names[i],
2154 			ebitmap_get_bit(&p->policycaps, i));
2155 
2156 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2158 			pr_info("SELinux:  unknown policy capability %u\n",
2159 				i);
2160 	}
2161 }
2162 
2163 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2164 				struct selinux_policy *newpolicy);
2165 
2166 static void selinux_policy_free(struct selinux_policy *policy)
2167 {
2168 	if (!policy)
2169 		return;
2170 
2171 	sidtab_destroy(policy->sidtab);
2172 	kfree(policy->map.mapping);
2173 	policydb_destroy(&policy->policydb);
2174 	kfree(policy->sidtab);
2175 	kfree(policy);
2176 }
2177 
2178 static void selinux_policy_cond_free(struct selinux_policy *policy)
2179 {
2180 	cond_policydb_destroy_dup(&policy->policydb);
2181 	kfree(policy);
2182 }
2183 
2184 void selinux_policy_cancel(struct selinux_state *state,
2185 			   struct selinux_load_state *load_state)
2186 {
2187 	struct selinux_policy *oldpolicy;
2188 
2189 	oldpolicy = rcu_dereference_protected(state->policy,
2190 					lockdep_is_held(&state->policy_mutex));
2191 
2192 	sidtab_cancel_convert(oldpolicy->sidtab);
2193 	selinux_policy_free(load_state->policy);
2194 	kfree(load_state->convert_data);
2195 }
2196 
2197 static void selinux_notify_policy_change(struct selinux_state *state,
2198 					u32 seqno)
2199 {
2200 	/* Flush external caches and notify userspace of policy load */
2201 	avc_ss_reset(state->avc, seqno);
2202 	selnl_notify_policyload(seqno);
2203 	selinux_status_update_policyload(state, seqno);
2204 	selinux_netlbl_cache_invalidate();
2205 	selinux_xfrm_notify_policyload();
2206 	selinux_ima_measure_state_locked(state);
2207 }
2208 
2209 void selinux_policy_commit(struct selinux_state *state,
2210 			   struct selinux_load_state *load_state)
2211 {
2212 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2213 	unsigned long flags;
2214 	u32 seqno;
2215 
2216 	oldpolicy = rcu_dereference_protected(state->policy,
2217 					lockdep_is_held(&state->policy_mutex));
2218 
2219 	/* If switching between different policy types, log MLS status */
2220 	if (oldpolicy) {
2221 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2222 			pr_info("SELinux: Disabling MLS support...\n");
2223 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2224 			pr_info("SELinux: Enabling MLS support...\n");
2225 	}
2226 
2227 	/* Set latest granting seqno for new policy. */
2228 	if (oldpolicy)
2229 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2230 	else
2231 		newpolicy->latest_granting = 1;
2232 	seqno = newpolicy->latest_granting;
2233 
2234 	/* Install the new policy. */
2235 	if (oldpolicy) {
2236 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2237 		rcu_assign_pointer(state->policy, newpolicy);
2238 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2239 	} else {
2240 		rcu_assign_pointer(state->policy, newpolicy);
2241 	}
2242 
2243 	/* Load the policycaps from the new policy */
2244 	security_load_policycaps(state, newpolicy);
2245 
2246 	if (!selinux_initialized(state)) {
2247 		/*
2248 		 * After first policy load, the security server is
2249 		 * marked as initialized and ready to handle requests and
2250 		 * any objects created prior to policy load are then labeled.
2251 		 */
2252 		selinux_mark_initialized(state);
2253 		selinux_complete_init();
2254 	}
2255 
2256 	/* Free the old policy */
2257 	synchronize_rcu();
2258 	selinux_policy_free(oldpolicy);
2259 	kfree(load_state->convert_data);
2260 
2261 	/* Notify others of the policy change */
2262 	selinux_notify_policy_change(state, seqno);
2263 }
2264 
2265 /**
2266  * security_load_policy - Load a security policy configuration.
2267  * @data: binary policy data
2268  * @len: length of data in bytes
2269  *
2270  * Load a new set of security policy configuration data,
2271  * validate it and convert the SID table as necessary.
2272  * This function will flush the access vector cache after
2273  * loading the new policy.
2274  */
2275 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2276 			 struct selinux_load_state *load_state)
2277 {
2278 	struct selinux_policy *newpolicy, *oldpolicy;
2279 	struct selinux_policy_convert_data *convert_data;
2280 	int rc = 0;
2281 	struct policy_file file = { data, len }, *fp = &file;
2282 
2283 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2284 	if (!newpolicy)
2285 		return -ENOMEM;
2286 
2287 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2288 	if (!newpolicy->sidtab) {
2289 		rc = -ENOMEM;
2290 		goto err_policy;
2291 	}
2292 
2293 	rc = policydb_read(&newpolicy->policydb, fp);
2294 	if (rc)
2295 		goto err_sidtab;
2296 
2297 	newpolicy->policydb.len = len;
2298 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2299 				&newpolicy->map);
2300 	if (rc)
2301 		goto err_policydb;
2302 
2303 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2304 	if (rc) {
2305 		pr_err("SELinux:  unable to load the initial SIDs\n");
2306 		goto err_mapping;
2307 	}
2308 
2309 	if (!selinux_initialized(state)) {
2310 		/* First policy load, so no need to preserve state from old policy */
2311 		load_state->policy = newpolicy;
2312 		load_state->convert_data = NULL;
2313 		return 0;
2314 	}
2315 
2316 	oldpolicy = rcu_dereference_protected(state->policy,
2317 					lockdep_is_held(&state->policy_mutex));
2318 
2319 	/* Preserve active boolean values from the old policy */
2320 	rc = security_preserve_bools(oldpolicy, newpolicy);
2321 	if (rc) {
2322 		pr_err("SELinux:  unable to preserve booleans\n");
2323 		goto err_free_isids;
2324 	}
2325 
2326 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2327 	if (!convert_data) {
2328 		rc = -ENOMEM;
2329 		goto err_free_isids;
2330 	}
2331 
2332 	/*
2333 	 * Convert the internal representations of contexts
2334 	 * in the new SID table.
2335 	 */
2336 	convert_data->args.state = state;
2337 	convert_data->args.oldp = &oldpolicy->policydb;
2338 	convert_data->args.newp = &newpolicy->policydb;
2339 
2340 	convert_data->sidtab_params.func = convert_context;
2341 	convert_data->sidtab_params.args = &convert_data->args;
2342 	convert_data->sidtab_params.target = newpolicy->sidtab;
2343 
2344 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2345 	if (rc) {
2346 		pr_err("SELinux:  unable to convert the internal"
2347 			" representation of contexts in the new SID"
2348 			" table\n");
2349 		goto err_free_convert_data;
2350 	}
2351 
2352 	load_state->policy = newpolicy;
2353 	load_state->convert_data = convert_data;
2354 	return 0;
2355 
2356 err_free_convert_data:
2357 	kfree(convert_data);
2358 err_free_isids:
2359 	sidtab_destroy(newpolicy->sidtab);
2360 err_mapping:
2361 	kfree(newpolicy->map.mapping);
2362 err_policydb:
2363 	policydb_destroy(&newpolicy->policydb);
2364 err_sidtab:
2365 	kfree(newpolicy->sidtab);
2366 err_policy:
2367 	kfree(newpolicy);
2368 
2369 	return rc;
2370 }
2371 
2372 /**
2373  * security_port_sid - Obtain the SID for a port.
2374  * @protocol: protocol number
2375  * @port: port number
2376  * @out_sid: security identifier
2377  */
2378 int security_port_sid(struct selinux_state *state,
2379 		      u8 protocol, u16 port, u32 *out_sid)
2380 {
2381 	struct selinux_policy *policy;
2382 	struct policydb *policydb;
2383 	struct sidtab *sidtab;
2384 	struct ocontext *c;
2385 	int rc;
2386 
2387 	if (!selinux_initialized(state)) {
2388 		*out_sid = SECINITSID_PORT;
2389 		return 0;
2390 	}
2391 
2392 retry:
2393 	rc = 0;
2394 	rcu_read_lock();
2395 	policy = rcu_dereference(state->policy);
2396 	policydb = &policy->policydb;
2397 	sidtab = policy->sidtab;
2398 
2399 	c = policydb->ocontexts[OCON_PORT];
2400 	while (c) {
2401 		if (c->u.port.protocol == protocol &&
2402 		    c->u.port.low_port <= port &&
2403 		    c->u.port.high_port >= port)
2404 			break;
2405 		c = c->next;
2406 	}
2407 
2408 	if (c) {
2409 		if (!c->sid[0]) {
2410 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2411 						   &c->sid[0]);
2412 			if (rc == -ESTALE) {
2413 				rcu_read_unlock();
2414 				goto retry;
2415 			}
2416 			if (rc)
2417 				goto out;
2418 		}
2419 		*out_sid = c->sid[0];
2420 	} else {
2421 		*out_sid = SECINITSID_PORT;
2422 	}
2423 
2424 out:
2425 	rcu_read_unlock();
2426 	return rc;
2427 }
2428 
2429 /**
2430  * security_pkey_sid - Obtain the SID for a pkey.
2431  * @subnet_prefix: Subnet Prefix
2432  * @pkey_num: pkey number
2433  * @out_sid: security identifier
2434  */
2435 int security_ib_pkey_sid(struct selinux_state *state,
2436 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2437 {
2438 	struct selinux_policy *policy;
2439 	struct policydb *policydb;
2440 	struct sidtab *sidtab;
2441 	struct ocontext *c;
2442 	int rc;
2443 
2444 	if (!selinux_initialized(state)) {
2445 		*out_sid = SECINITSID_UNLABELED;
2446 		return 0;
2447 	}
2448 
2449 retry:
2450 	rc = 0;
2451 	rcu_read_lock();
2452 	policy = rcu_dereference(state->policy);
2453 	policydb = &policy->policydb;
2454 	sidtab = policy->sidtab;
2455 
2456 	c = policydb->ocontexts[OCON_IBPKEY];
2457 	while (c) {
2458 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2459 		    c->u.ibpkey.high_pkey >= pkey_num &&
2460 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2461 			break;
2462 
2463 		c = c->next;
2464 	}
2465 
2466 	if (c) {
2467 		if (!c->sid[0]) {
2468 			rc = sidtab_context_to_sid(sidtab,
2469 						   &c->context[0],
2470 						   &c->sid[0]);
2471 			if (rc == -ESTALE) {
2472 				rcu_read_unlock();
2473 				goto retry;
2474 			}
2475 			if (rc)
2476 				goto out;
2477 		}
2478 		*out_sid = c->sid[0];
2479 	} else
2480 		*out_sid = SECINITSID_UNLABELED;
2481 
2482 out:
2483 	rcu_read_unlock();
2484 	return rc;
2485 }
2486 
2487 /**
2488  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2489  * @dev_name: device name
2490  * @port: port number
2491  * @out_sid: security identifier
2492  */
2493 int security_ib_endport_sid(struct selinux_state *state,
2494 			    const char *dev_name, u8 port_num, u32 *out_sid)
2495 {
2496 	struct selinux_policy *policy;
2497 	struct policydb *policydb;
2498 	struct sidtab *sidtab;
2499 	struct ocontext *c;
2500 	int rc;
2501 
2502 	if (!selinux_initialized(state)) {
2503 		*out_sid = SECINITSID_UNLABELED;
2504 		return 0;
2505 	}
2506 
2507 retry:
2508 	rc = 0;
2509 	rcu_read_lock();
2510 	policy = rcu_dereference(state->policy);
2511 	policydb = &policy->policydb;
2512 	sidtab = policy->sidtab;
2513 
2514 	c = policydb->ocontexts[OCON_IBENDPORT];
2515 	while (c) {
2516 		if (c->u.ibendport.port == port_num &&
2517 		    !strncmp(c->u.ibendport.dev_name,
2518 			     dev_name,
2519 			     IB_DEVICE_NAME_MAX))
2520 			break;
2521 
2522 		c = c->next;
2523 	}
2524 
2525 	if (c) {
2526 		if (!c->sid[0]) {
2527 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2528 						   &c->sid[0]);
2529 			if (rc == -ESTALE) {
2530 				rcu_read_unlock();
2531 				goto retry;
2532 			}
2533 			if (rc)
2534 				goto out;
2535 		}
2536 		*out_sid = c->sid[0];
2537 	} else
2538 		*out_sid = SECINITSID_UNLABELED;
2539 
2540 out:
2541 	rcu_read_unlock();
2542 	return rc;
2543 }
2544 
2545 /**
2546  * security_netif_sid - Obtain the SID for a network interface.
2547  * @name: interface name
2548  * @if_sid: interface SID
2549  */
2550 int security_netif_sid(struct selinux_state *state,
2551 		       char *name, u32 *if_sid)
2552 {
2553 	struct selinux_policy *policy;
2554 	struct policydb *policydb;
2555 	struct sidtab *sidtab;
2556 	int rc;
2557 	struct ocontext *c;
2558 
2559 	if (!selinux_initialized(state)) {
2560 		*if_sid = SECINITSID_NETIF;
2561 		return 0;
2562 	}
2563 
2564 retry:
2565 	rc = 0;
2566 	rcu_read_lock();
2567 	policy = rcu_dereference(state->policy);
2568 	policydb = &policy->policydb;
2569 	sidtab = policy->sidtab;
2570 
2571 	c = policydb->ocontexts[OCON_NETIF];
2572 	while (c) {
2573 		if (strcmp(name, c->u.name) == 0)
2574 			break;
2575 		c = c->next;
2576 	}
2577 
2578 	if (c) {
2579 		if (!c->sid[0] || !c->sid[1]) {
2580 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2581 						   &c->sid[0]);
2582 			if (rc == -ESTALE) {
2583 				rcu_read_unlock();
2584 				goto retry;
2585 			}
2586 			if (rc)
2587 				goto out;
2588 			rc = sidtab_context_to_sid(sidtab, &c->context[1],
2589 						   &c->sid[1]);
2590 			if (rc == -ESTALE) {
2591 				rcu_read_unlock();
2592 				goto retry;
2593 			}
2594 			if (rc)
2595 				goto out;
2596 		}
2597 		*if_sid = c->sid[0];
2598 	} else
2599 		*if_sid = SECINITSID_NETIF;
2600 
2601 out:
2602 	rcu_read_unlock();
2603 	return rc;
2604 }
2605 
2606 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2607 {
2608 	int i, fail = 0;
2609 
2610 	for (i = 0; i < 4; i++)
2611 		if (addr[i] != (input[i] & mask[i])) {
2612 			fail = 1;
2613 			break;
2614 		}
2615 
2616 	return !fail;
2617 }
2618 
2619 /**
2620  * security_node_sid - Obtain the SID for a node (host).
2621  * @domain: communication domain aka address family
2622  * @addrp: address
2623  * @addrlen: address length in bytes
2624  * @out_sid: security identifier
2625  */
2626 int security_node_sid(struct selinux_state *state,
2627 		      u16 domain,
2628 		      void *addrp,
2629 		      u32 addrlen,
2630 		      u32 *out_sid)
2631 {
2632 	struct selinux_policy *policy;
2633 	struct policydb *policydb;
2634 	struct sidtab *sidtab;
2635 	int rc;
2636 	struct ocontext *c;
2637 
2638 	if (!selinux_initialized(state)) {
2639 		*out_sid = SECINITSID_NODE;
2640 		return 0;
2641 	}
2642 
2643 retry:
2644 	rcu_read_lock();
2645 	policy = rcu_dereference(state->policy);
2646 	policydb = &policy->policydb;
2647 	sidtab = policy->sidtab;
2648 
2649 	switch (domain) {
2650 	case AF_INET: {
2651 		u32 addr;
2652 
2653 		rc = -EINVAL;
2654 		if (addrlen != sizeof(u32))
2655 			goto out;
2656 
2657 		addr = *((u32 *)addrp);
2658 
2659 		c = policydb->ocontexts[OCON_NODE];
2660 		while (c) {
2661 			if (c->u.node.addr == (addr & c->u.node.mask))
2662 				break;
2663 			c = c->next;
2664 		}
2665 		break;
2666 	}
2667 
2668 	case AF_INET6:
2669 		rc = -EINVAL;
2670 		if (addrlen != sizeof(u64) * 2)
2671 			goto out;
2672 		c = policydb->ocontexts[OCON_NODE6];
2673 		while (c) {
2674 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2675 						c->u.node6.mask))
2676 				break;
2677 			c = c->next;
2678 		}
2679 		break;
2680 
2681 	default:
2682 		rc = 0;
2683 		*out_sid = SECINITSID_NODE;
2684 		goto out;
2685 	}
2686 
2687 	if (c) {
2688 		if (!c->sid[0]) {
2689 			rc = sidtab_context_to_sid(sidtab,
2690 						   &c->context[0],
2691 						   &c->sid[0]);
2692 			if (rc == -ESTALE) {
2693 				rcu_read_unlock();
2694 				goto retry;
2695 			}
2696 			if (rc)
2697 				goto out;
2698 		}
2699 		*out_sid = c->sid[0];
2700 	} else {
2701 		*out_sid = SECINITSID_NODE;
2702 	}
2703 
2704 	rc = 0;
2705 out:
2706 	rcu_read_unlock();
2707 	return rc;
2708 }
2709 
2710 #define SIDS_NEL 25
2711 
2712 /**
2713  * security_get_user_sids - Obtain reachable SIDs for a user.
2714  * @fromsid: starting SID
2715  * @username: username
2716  * @sids: array of reachable SIDs for user
2717  * @nel: number of elements in @sids
2718  *
2719  * Generate the set of SIDs for legal security contexts
2720  * for a given user that can be reached by @fromsid.
2721  * Set *@sids to point to a dynamically allocated
2722  * array containing the set of SIDs.  Set *@nel to the
2723  * number of elements in the array.
2724  */
2725 
2726 int security_get_user_sids(struct selinux_state *state,
2727 			   u32 fromsid,
2728 			   char *username,
2729 			   u32 **sids,
2730 			   u32 *nel)
2731 {
2732 	struct selinux_policy *policy;
2733 	struct policydb *policydb;
2734 	struct sidtab *sidtab;
2735 	struct context *fromcon, usercon;
2736 	u32 *mysids = NULL, *mysids2, sid;
2737 	u32 i, j, mynel, maxnel = SIDS_NEL;
2738 	struct user_datum *user;
2739 	struct role_datum *role;
2740 	struct ebitmap_node *rnode, *tnode;
2741 	int rc;
2742 
2743 	*sids = NULL;
2744 	*nel = 0;
2745 
2746 	if (!selinux_initialized(state))
2747 		return 0;
2748 
2749 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2750 	if (!mysids)
2751 		return -ENOMEM;
2752 
2753 retry:
2754 	mynel = 0;
2755 	rcu_read_lock();
2756 	policy = rcu_dereference(state->policy);
2757 	policydb = &policy->policydb;
2758 	sidtab = policy->sidtab;
2759 
2760 	context_init(&usercon);
2761 
2762 	rc = -EINVAL;
2763 	fromcon = sidtab_search(sidtab, fromsid);
2764 	if (!fromcon)
2765 		goto out_unlock;
2766 
2767 	rc = -EINVAL;
2768 	user = symtab_search(&policydb->p_users, username);
2769 	if (!user)
2770 		goto out_unlock;
2771 
2772 	usercon.user = user->value;
2773 
2774 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2775 		role = policydb->role_val_to_struct[i];
2776 		usercon.role = i + 1;
2777 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2778 			usercon.type = j + 1;
2779 
2780 			if (mls_setup_user_range(policydb, fromcon, user,
2781 						 &usercon))
2782 				continue;
2783 
2784 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2785 			if (rc == -ESTALE) {
2786 				rcu_read_unlock();
2787 				goto retry;
2788 			}
2789 			if (rc)
2790 				goto out_unlock;
2791 			if (mynel < maxnel) {
2792 				mysids[mynel++] = sid;
2793 			} else {
2794 				rc = -ENOMEM;
2795 				maxnel += SIDS_NEL;
2796 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2797 				if (!mysids2)
2798 					goto out_unlock;
2799 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2800 				kfree(mysids);
2801 				mysids = mysids2;
2802 				mysids[mynel++] = sid;
2803 			}
2804 		}
2805 	}
2806 	rc = 0;
2807 out_unlock:
2808 	rcu_read_unlock();
2809 	if (rc || !mynel) {
2810 		kfree(mysids);
2811 		return rc;
2812 	}
2813 
2814 	rc = -ENOMEM;
2815 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2816 	if (!mysids2) {
2817 		kfree(mysids);
2818 		return rc;
2819 	}
2820 	for (i = 0, j = 0; i < mynel; i++) {
2821 		struct av_decision dummy_avd;
2822 		rc = avc_has_perm_noaudit(state,
2823 					  fromsid, mysids[i],
2824 					  SECCLASS_PROCESS, /* kernel value */
2825 					  PROCESS__TRANSITION, AVC_STRICT,
2826 					  &dummy_avd);
2827 		if (!rc)
2828 			mysids2[j++] = mysids[i];
2829 		cond_resched();
2830 	}
2831 	kfree(mysids);
2832 	*sids = mysids2;
2833 	*nel = j;
2834 	return 0;
2835 }
2836 
2837 /**
2838  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2839  * @fstype: filesystem type
2840  * @path: path from root of mount
2841  * @sclass: file security class
2842  * @sid: SID for path
2843  *
2844  * Obtain a SID to use for a file in a filesystem that
2845  * cannot support xattr or use a fixed labeling behavior like
2846  * transition SIDs or task SIDs.
2847  *
2848  * WARNING: This function may return -ESTALE, indicating that the caller
2849  * must retry the operation after re-acquiring the policy pointer!
2850  */
2851 static inline int __security_genfs_sid(struct selinux_policy *policy,
2852 				       const char *fstype,
2853 				       char *path,
2854 				       u16 orig_sclass,
2855 				       u32 *sid)
2856 {
2857 	struct policydb *policydb = &policy->policydb;
2858 	struct sidtab *sidtab = policy->sidtab;
2859 	int len;
2860 	u16 sclass;
2861 	struct genfs *genfs;
2862 	struct ocontext *c;
2863 	int rc, cmp = 0;
2864 
2865 	while (path[0] == '/' && path[1] == '/')
2866 		path++;
2867 
2868 	sclass = unmap_class(&policy->map, orig_sclass);
2869 	*sid = SECINITSID_UNLABELED;
2870 
2871 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2872 		cmp = strcmp(fstype, genfs->fstype);
2873 		if (cmp <= 0)
2874 			break;
2875 	}
2876 
2877 	rc = -ENOENT;
2878 	if (!genfs || cmp)
2879 		goto out;
2880 
2881 	for (c = genfs->head; c; c = c->next) {
2882 		len = strlen(c->u.name);
2883 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2884 		    (strncmp(c->u.name, path, len) == 0))
2885 			break;
2886 	}
2887 
2888 	rc = -ENOENT;
2889 	if (!c)
2890 		goto out;
2891 
2892 	if (!c->sid[0]) {
2893 		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2894 		if (rc)
2895 			goto out;
2896 	}
2897 
2898 	*sid = c->sid[0];
2899 	rc = 0;
2900 out:
2901 	return rc;
2902 }
2903 
2904 /**
2905  * security_genfs_sid - Obtain a SID for a file in a filesystem
2906  * @fstype: filesystem type
2907  * @path: path from root of mount
2908  * @sclass: file security class
2909  * @sid: SID for path
2910  *
2911  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2912  * it afterward.
2913  */
2914 int security_genfs_sid(struct selinux_state *state,
2915 		       const char *fstype,
2916 		       char *path,
2917 		       u16 orig_sclass,
2918 		       u32 *sid)
2919 {
2920 	struct selinux_policy *policy;
2921 	int retval;
2922 
2923 	if (!selinux_initialized(state)) {
2924 		*sid = SECINITSID_UNLABELED;
2925 		return 0;
2926 	}
2927 
2928 	do {
2929 		rcu_read_lock();
2930 		policy = rcu_dereference(state->policy);
2931 		retval = __security_genfs_sid(policy, fstype, path,
2932 					      orig_sclass, sid);
2933 		rcu_read_unlock();
2934 	} while (retval == -ESTALE);
2935 	return retval;
2936 }
2937 
2938 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2939 			const char *fstype,
2940 			char *path,
2941 			u16 orig_sclass,
2942 			u32 *sid)
2943 {
2944 	/* no lock required, policy is not yet accessible by other threads */
2945 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2946 }
2947 
2948 /**
2949  * security_fs_use - Determine how to handle labeling for a filesystem.
2950  * @sb: superblock in question
2951  */
2952 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2953 {
2954 	struct selinux_policy *policy;
2955 	struct policydb *policydb;
2956 	struct sidtab *sidtab;
2957 	int rc;
2958 	struct ocontext *c;
2959 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2960 	const char *fstype = sb->s_type->name;
2961 
2962 	if (!selinux_initialized(state)) {
2963 		sbsec->behavior = SECURITY_FS_USE_NONE;
2964 		sbsec->sid = SECINITSID_UNLABELED;
2965 		return 0;
2966 	}
2967 
2968 retry:
2969 	rc = 0;
2970 	rcu_read_lock();
2971 	policy = rcu_dereference(state->policy);
2972 	policydb = &policy->policydb;
2973 	sidtab = policy->sidtab;
2974 
2975 	c = policydb->ocontexts[OCON_FSUSE];
2976 	while (c) {
2977 		if (strcmp(fstype, c->u.name) == 0)
2978 			break;
2979 		c = c->next;
2980 	}
2981 
2982 	if (c) {
2983 		sbsec->behavior = c->v.behavior;
2984 		if (!c->sid[0]) {
2985 			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2986 						   &c->sid[0]);
2987 			if (rc == -ESTALE) {
2988 				rcu_read_unlock();
2989 				goto retry;
2990 			}
2991 			if (rc)
2992 				goto out;
2993 		}
2994 		sbsec->sid = c->sid[0];
2995 	} else {
2996 		rc = __security_genfs_sid(policy, fstype, "/",
2997 					SECCLASS_DIR, &sbsec->sid);
2998 		if (rc == -ESTALE) {
2999 			rcu_read_unlock();
3000 			goto retry;
3001 		}
3002 		if (rc) {
3003 			sbsec->behavior = SECURITY_FS_USE_NONE;
3004 			rc = 0;
3005 		} else {
3006 			sbsec->behavior = SECURITY_FS_USE_GENFS;
3007 		}
3008 	}
3009 
3010 out:
3011 	rcu_read_unlock();
3012 	return rc;
3013 }
3014 
3015 int security_get_bools(struct selinux_policy *policy,
3016 		       u32 *len, char ***names, int **values)
3017 {
3018 	struct policydb *policydb;
3019 	u32 i;
3020 	int rc;
3021 
3022 	policydb = &policy->policydb;
3023 
3024 	*names = NULL;
3025 	*values = NULL;
3026 
3027 	rc = 0;
3028 	*len = policydb->p_bools.nprim;
3029 	if (!*len)
3030 		goto out;
3031 
3032 	rc = -ENOMEM;
3033 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3034 	if (!*names)
3035 		goto err;
3036 
3037 	rc = -ENOMEM;
3038 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3039 	if (!*values)
3040 		goto err;
3041 
3042 	for (i = 0; i < *len; i++) {
3043 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3044 
3045 		rc = -ENOMEM;
3046 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3047 				      GFP_ATOMIC);
3048 		if (!(*names)[i])
3049 			goto err;
3050 	}
3051 	rc = 0;
3052 out:
3053 	return rc;
3054 err:
3055 	if (*names) {
3056 		for (i = 0; i < *len; i++)
3057 			kfree((*names)[i]);
3058 		kfree(*names);
3059 	}
3060 	kfree(*values);
3061 	*len = 0;
3062 	*names = NULL;
3063 	*values = NULL;
3064 	goto out;
3065 }
3066 
3067 
3068 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3069 {
3070 	struct selinux_policy *newpolicy, *oldpolicy;
3071 	int rc;
3072 	u32 i, seqno = 0;
3073 
3074 	if (!selinux_initialized(state))
3075 		return -EINVAL;
3076 
3077 	oldpolicy = rcu_dereference_protected(state->policy,
3078 					lockdep_is_held(&state->policy_mutex));
3079 
3080 	/* Consistency check on number of booleans, should never fail */
3081 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3082 		return -EINVAL;
3083 
3084 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3085 	if (!newpolicy)
3086 		return -ENOMEM;
3087 
3088 	/*
3089 	 * Deep copy only the parts of the policydb that might be
3090 	 * modified as a result of changing booleans.
3091 	 */
3092 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3093 	if (rc) {
3094 		kfree(newpolicy);
3095 		return -ENOMEM;
3096 	}
3097 
3098 	/* Update the boolean states in the copy */
3099 	for (i = 0; i < len; i++) {
3100 		int new_state = !!values[i];
3101 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3102 
3103 		if (new_state != old_state) {
3104 			audit_log(audit_context(), GFP_ATOMIC,
3105 				AUDIT_MAC_CONFIG_CHANGE,
3106 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3107 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3108 				new_state,
3109 				old_state,
3110 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3111 				audit_get_sessionid(current));
3112 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3113 		}
3114 	}
3115 
3116 	/* Re-evaluate the conditional rules in the copy */
3117 	evaluate_cond_nodes(&newpolicy->policydb);
3118 
3119 	/* Set latest granting seqno for new policy */
3120 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3121 	seqno = newpolicy->latest_granting;
3122 
3123 	/* Install the new policy */
3124 	rcu_assign_pointer(state->policy, newpolicy);
3125 
3126 	/*
3127 	 * Free the conditional portions of the old policydb
3128 	 * that were copied for the new policy, and the oldpolicy
3129 	 * structure itself but not what it references.
3130 	 */
3131 	synchronize_rcu();
3132 	selinux_policy_cond_free(oldpolicy);
3133 
3134 	/* Notify others of the policy change */
3135 	selinux_notify_policy_change(state, seqno);
3136 	return 0;
3137 }
3138 
3139 int security_get_bool_value(struct selinux_state *state,
3140 			    u32 index)
3141 {
3142 	struct selinux_policy *policy;
3143 	struct policydb *policydb;
3144 	int rc;
3145 	u32 len;
3146 
3147 	if (!selinux_initialized(state))
3148 		return 0;
3149 
3150 	rcu_read_lock();
3151 	policy = rcu_dereference(state->policy);
3152 	policydb = &policy->policydb;
3153 
3154 	rc = -EFAULT;
3155 	len = policydb->p_bools.nprim;
3156 	if (index >= len)
3157 		goto out;
3158 
3159 	rc = policydb->bool_val_to_struct[index]->state;
3160 out:
3161 	rcu_read_unlock();
3162 	return rc;
3163 }
3164 
3165 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3166 				struct selinux_policy *newpolicy)
3167 {
3168 	int rc, *bvalues = NULL;
3169 	char **bnames = NULL;
3170 	struct cond_bool_datum *booldatum;
3171 	u32 i, nbools = 0;
3172 
3173 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3174 	if (rc)
3175 		goto out;
3176 	for (i = 0; i < nbools; i++) {
3177 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3178 					bnames[i]);
3179 		if (booldatum)
3180 			booldatum->state = bvalues[i];
3181 	}
3182 	evaluate_cond_nodes(&newpolicy->policydb);
3183 
3184 out:
3185 	if (bnames) {
3186 		for (i = 0; i < nbools; i++)
3187 			kfree(bnames[i]);
3188 	}
3189 	kfree(bnames);
3190 	kfree(bvalues);
3191 	return rc;
3192 }
3193 
3194 /*
3195  * security_sid_mls_copy() - computes a new sid based on the given
3196  * sid and the mls portion of mls_sid.
3197  */
3198 int security_sid_mls_copy(struct selinux_state *state,
3199 			  u32 sid, u32 mls_sid, u32 *new_sid)
3200 {
3201 	struct selinux_policy *policy;
3202 	struct policydb *policydb;
3203 	struct sidtab *sidtab;
3204 	struct context *context1;
3205 	struct context *context2;
3206 	struct context newcon;
3207 	char *s;
3208 	u32 len;
3209 	int rc;
3210 
3211 	if (!selinux_initialized(state)) {
3212 		*new_sid = sid;
3213 		return 0;
3214 	}
3215 
3216 retry:
3217 	rc = 0;
3218 	context_init(&newcon);
3219 
3220 	rcu_read_lock();
3221 	policy = rcu_dereference(state->policy);
3222 	policydb = &policy->policydb;
3223 	sidtab = policy->sidtab;
3224 
3225 	if (!policydb->mls_enabled) {
3226 		*new_sid = sid;
3227 		goto out_unlock;
3228 	}
3229 
3230 	rc = -EINVAL;
3231 	context1 = sidtab_search(sidtab, sid);
3232 	if (!context1) {
3233 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3234 			__func__, sid);
3235 		goto out_unlock;
3236 	}
3237 
3238 	rc = -EINVAL;
3239 	context2 = sidtab_search(sidtab, mls_sid);
3240 	if (!context2) {
3241 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3242 			__func__, mls_sid);
3243 		goto out_unlock;
3244 	}
3245 
3246 	newcon.user = context1->user;
3247 	newcon.role = context1->role;
3248 	newcon.type = context1->type;
3249 	rc = mls_context_cpy(&newcon, context2);
3250 	if (rc)
3251 		goto out_unlock;
3252 
3253 	/* Check the validity of the new context. */
3254 	if (!policydb_context_isvalid(policydb, &newcon)) {
3255 		rc = convert_context_handle_invalid_context(state, policydb,
3256 							&newcon);
3257 		if (rc) {
3258 			if (!context_struct_to_string(policydb, &newcon, &s,
3259 						      &len)) {
3260 				struct audit_buffer *ab;
3261 
3262 				ab = audit_log_start(audit_context(),
3263 						     GFP_ATOMIC,
3264 						     AUDIT_SELINUX_ERR);
3265 				audit_log_format(ab,
3266 						 "op=security_sid_mls_copy invalid_context=");
3267 				/* don't record NUL with untrusted strings */
3268 				audit_log_n_untrustedstring(ab, s, len - 1);
3269 				audit_log_end(ab);
3270 				kfree(s);
3271 			}
3272 			goto out_unlock;
3273 		}
3274 	}
3275 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3276 	if (rc == -ESTALE) {
3277 		rcu_read_unlock();
3278 		context_destroy(&newcon);
3279 		goto retry;
3280 	}
3281 out_unlock:
3282 	rcu_read_unlock();
3283 	context_destroy(&newcon);
3284 	return rc;
3285 }
3286 
3287 /**
3288  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3289  * @nlbl_sid: NetLabel SID
3290  * @nlbl_type: NetLabel labeling protocol type
3291  * @xfrm_sid: XFRM SID
3292  *
3293  * Description:
3294  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3295  * resolved into a single SID it is returned via @peer_sid and the function
3296  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3297  * returns a negative value.  A table summarizing the behavior is below:
3298  *
3299  *                                 | function return |      @sid
3300  *   ------------------------------+-----------------+-----------------
3301  *   no peer labels                |        0        |    SECSID_NULL
3302  *   single peer label             |        0        |    <peer_label>
3303  *   multiple, consistent labels   |        0        |    <peer_label>
3304  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3305  *
3306  */
3307 int security_net_peersid_resolve(struct selinux_state *state,
3308 				 u32 nlbl_sid, u32 nlbl_type,
3309 				 u32 xfrm_sid,
3310 				 u32 *peer_sid)
3311 {
3312 	struct selinux_policy *policy;
3313 	struct policydb *policydb;
3314 	struct sidtab *sidtab;
3315 	int rc;
3316 	struct context *nlbl_ctx;
3317 	struct context *xfrm_ctx;
3318 
3319 	*peer_sid = SECSID_NULL;
3320 
3321 	/* handle the common (which also happens to be the set of easy) cases
3322 	 * right away, these two if statements catch everything involving a
3323 	 * single or absent peer SID/label */
3324 	if (xfrm_sid == SECSID_NULL) {
3325 		*peer_sid = nlbl_sid;
3326 		return 0;
3327 	}
3328 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3329 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3330 	 * is present */
3331 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3332 		*peer_sid = xfrm_sid;
3333 		return 0;
3334 	}
3335 
3336 	if (!selinux_initialized(state))
3337 		return 0;
3338 
3339 	rcu_read_lock();
3340 	policy = rcu_dereference(state->policy);
3341 	policydb = &policy->policydb;
3342 	sidtab = policy->sidtab;
3343 
3344 	/*
3345 	 * We don't need to check initialized here since the only way both
3346 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3347 	 * security server was initialized and state->initialized was true.
3348 	 */
3349 	if (!policydb->mls_enabled) {
3350 		rc = 0;
3351 		goto out;
3352 	}
3353 
3354 	rc = -EINVAL;
3355 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3356 	if (!nlbl_ctx) {
3357 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3358 		       __func__, nlbl_sid);
3359 		goto out;
3360 	}
3361 	rc = -EINVAL;
3362 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3363 	if (!xfrm_ctx) {
3364 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3365 		       __func__, xfrm_sid);
3366 		goto out;
3367 	}
3368 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3369 	if (rc)
3370 		goto out;
3371 
3372 	/* at present NetLabel SIDs/labels really only carry MLS
3373 	 * information so if the MLS portion of the NetLabel SID
3374 	 * matches the MLS portion of the labeled XFRM SID/label
3375 	 * then pass along the XFRM SID as it is the most
3376 	 * expressive */
3377 	*peer_sid = xfrm_sid;
3378 out:
3379 	rcu_read_unlock();
3380 	return rc;
3381 }
3382 
3383 static int get_classes_callback(void *k, void *d, void *args)
3384 {
3385 	struct class_datum *datum = d;
3386 	char *name = k, **classes = args;
3387 	int value = datum->value - 1;
3388 
3389 	classes[value] = kstrdup(name, GFP_ATOMIC);
3390 	if (!classes[value])
3391 		return -ENOMEM;
3392 
3393 	return 0;
3394 }
3395 
3396 int security_get_classes(struct selinux_policy *policy,
3397 			 char ***classes, int *nclasses)
3398 {
3399 	struct policydb *policydb;
3400 	int rc;
3401 
3402 	policydb = &policy->policydb;
3403 
3404 	rc = -ENOMEM;
3405 	*nclasses = policydb->p_classes.nprim;
3406 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3407 	if (!*classes)
3408 		goto out;
3409 
3410 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3411 			 *classes);
3412 	if (rc) {
3413 		int i;
3414 		for (i = 0; i < *nclasses; i++)
3415 			kfree((*classes)[i]);
3416 		kfree(*classes);
3417 	}
3418 
3419 out:
3420 	return rc;
3421 }
3422 
3423 static int get_permissions_callback(void *k, void *d, void *args)
3424 {
3425 	struct perm_datum *datum = d;
3426 	char *name = k, **perms = args;
3427 	int value = datum->value - 1;
3428 
3429 	perms[value] = kstrdup(name, GFP_ATOMIC);
3430 	if (!perms[value])
3431 		return -ENOMEM;
3432 
3433 	return 0;
3434 }
3435 
3436 int security_get_permissions(struct selinux_policy *policy,
3437 			     char *class, char ***perms, int *nperms)
3438 {
3439 	struct policydb *policydb;
3440 	int rc, i;
3441 	struct class_datum *match;
3442 
3443 	policydb = &policy->policydb;
3444 
3445 	rc = -EINVAL;
3446 	match = symtab_search(&policydb->p_classes, class);
3447 	if (!match) {
3448 		pr_err("SELinux: %s:  unrecognized class %s\n",
3449 			__func__, class);
3450 		goto out;
3451 	}
3452 
3453 	rc = -ENOMEM;
3454 	*nperms = match->permissions.nprim;
3455 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3456 	if (!*perms)
3457 		goto out;
3458 
3459 	if (match->comdatum) {
3460 		rc = hashtab_map(&match->comdatum->permissions.table,
3461 				 get_permissions_callback, *perms);
3462 		if (rc)
3463 			goto err;
3464 	}
3465 
3466 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3467 			 *perms);
3468 	if (rc)
3469 		goto err;
3470 
3471 out:
3472 	return rc;
3473 
3474 err:
3475 	for (i = 0; i < *nperms; i++)
3476 		kfree((*perms)[i]);
3477 	kfree(*perms);
3478 	return rc;
3479 }
3480 
3481 int security_get_reject_unknown(struct selinux_state *state)
3482 {
3483 	struct selinux_policy *policy;
3484 	int value;
3485 
3486 	if (!selinux_initialized(state))
3487 		return 0;
3488 
3489 	rcu_read_lock();
3490 	policy = rcu_dereference(state->policy);
3491 	value = policy->policydb.reject_unknown;
3492 	rcu_read_unlock();
3493 	return value;
3494 }
3495 
3496 int security_get_allow_unknown(struct selinux_state *state)
3497 {
3498 	struct selinux_policy *policy;
3499 	int value;
3500 
3501 	if (!selinux_initialized(state))
3502 		return 0;
3503 
3504 	rcu_read_lock();
3505 	policy = rcu_dereference(state->policy);
3506 	value = policy->policydb.allow_unknown;
3507 	rcu_read_unlock();
3508 	return value;
3509 }
3510 
3511 /**
3512  * security_policycap_supported - Check for a specific policy capability
3513  * @req_cap: capability
3514  *
3515  * Description:
3516  * This function queries the currently loaded policy to see if it supports the
3517  * capability specified by @req_cap.  Returns true (1) if the capability is
3518  * supported, false (0) if it isn't supported.
3519  *
3520  */
3521 int security_policycap_supported(struct selinux_state *state,
3522 				 unsigned int req_cap)
3523 {
3524 	struct selinux_policy *policy;
3525 	int rc;
3526 
3527 	if (!selinux_initialized(state))
3528 		return 0;
3529 
3530 	rcu_read_lock();
3531 	policy = rcu_dereference(state->policy);
3532 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3533 	rcu_read_unlock();
3534 
3535 	return rc;
3536 }
3537 
3538 struct selinux_audit_rule {
3539 	u32 au_seqno;
3540 	struct context au_ctxt;
3541 };
3542 
3543 void selinux_audit_rule_free(void *vrule)
3544 {
3545 	struct selinux_audit_rule *rule = vrule;
3546 
3547 	if (rule) {
3548 		context_destroy(&rule->au_ctxt);
3549 		kfree(rule);
3550 	}
3551 }
3552 
3553 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3554 {
3555 	struct selinux_state *state = &selinux_state;
3556 	struct selinux_policy *policy;
3557 	struct policydb *policydb;
3558 	struct selinux_audit_rule *tmprule;
3559 	struct role_datum *roledatum;
3560 	struct type_datum *typedatum;
3561 	struct user_datum *userdatum;
3562 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3563 	int rc = 0;
3564 
3565 	*rule = NULL;
3566 
3567 	if (!selinux_initialized(state))
3568 		return -EOPNOTSUPP;
3569 
3570 	switch (field) {
3571 	case AUDIT_SUBJ_USER:
3572 	case AUDIT_SUBJ_ROLE:
3573 	case AUDIT_SUBJ_TYPE:
3574 	case AUDIT_OBJ_USER:
3575 	case AUDIT_OBJ_ROLE:
3576 	case AUDIT_OBJ_TYPE:
3577 		/* only 'equals' and 'not equals' fit user, role, and type */
3578 		if (op != Audit_equal && op != Audit_not_equal)
3579 			return -EINVAL;
3580 		break;
3581 	case AUDIT_SUBJ_SEN:
3582 	case AUDIT_SUBJ_CLR:
3583 	case AUDIT_OBJ_LEV_LOW:
3584 	case AUDIT_OBJ_LEV_HIGH:
3585 		/* we do not allow a range, indicated by the presence of '-' */
3586 		if (strchr(rulestr, '-'))
3587 			return -EINVAL;
3588 		break;
3589 	default:
3590 		/* only the above fields are valid */
3591 		return -EINVAL;
3592 	}
3593 
3594 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3595 	if (!tmprule)
3596 		return -ENOMEM;
3597 
3598 	context_init(&tmprule->au_ctxt);
3599 
3600 	rcu_read_lock();
3601 	policy = rcu_dereference(state->policy);
3602 	policydb = &policy->policydb;
3603 
3604 	tmprule->au_seqno = policy->latest_granting;
3605 
3606 	switch (field) {
3607 	case AUDIT_SUBJ_USER:
3608 	case AUDIT_OBJ_USER:
3609 		rc = -EINVAL;
3610 		userdatum = symtab_search(&policydb->p_users, rulestr);
3611 		if (!userdatum)
3612 			goto out;
3613 		tmprule->au_ctxt.user = userdatum->value;
3614 		break;
3615 	case AUDIT_SUBJ_ROLE:
3616 	case AUDIT_OBJ_ROLE:
3617 		rc = -EINVAL;
3618 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3619 		if (!roledatum)
3620 			goto out;
3621 		tmprule->au_ctxt.role = roledatum->value;
3622 		break;
3623 	case AUDIT_SUBJ_TYPE:
3624 	case AUDIT_OBJ_TYPE:
3625 		rc = -EINVAL;
3626 		typedatum = symtab_search(&policydb->p_types, rulestr);
3627 		if (!typedatum)
3628 			goto out;
3629 		tmprule->au_ctxt.type = typedatum->value;
3630 		break;
3631 	case AUDIT_SUBJ_SEN:
3632 	case AUDIT_SUBJ_CLR:
3633 	case AUDIT_OBJ_LEV_LOW:
3634 	case AUDIT_OBJ_LEV_HIGH:
3635 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3636 				     GFP_ATOMIC);
3637 		if (rc)
3638 			goto out;
3639 		break;
3640 	}
3641 	rc = 0;
3642 out:
3643 	rcu_read_unlock();
3644 
3645 	if (rc) {
3646 		selinux_audit_rule_free(tmprule);
3647 		tmprule = NULL;
3648 	}
3649 
3650 	*rule = tmprule;
3651 
3652 	return rc;
3653 }
3654 
3655 /* Check to see if the rule contains any selinux fields */
3656 int selinux_audit_rule_known(struct audit_krule *rule)
3657 {
3658 	int i;
3659 
3660 	for (i = 0; i < rule->field_count; i++) {
3661 		struct audit_field *f = &rule->fields[i];
3662 		switch (f->type) {
3663 		case AUDIT_SUBJ_USER:
3664 		case AUDIT_SUBJ_ROLE:
3665 		case AUDIT_SUBJ_TYPE:
3666 		case AUDIT_SUBJ_SEN:
3667 		case AUDIT_SUBJ_CLR:
3668 		case AUDIT_OBJ_USER:
3669 		case AUDIT_OBJ_ROLE:
3670 		case AUDIT_OBJ_TYPE:
3671 		case AUDIT_OBJ_LEV_LOW:
3672 		case AUDIT_OBJ_LEV_HIGH:
3673 			return 1;
3674 		}
3675 	}
3676 
3677 	return 0;
3678 }
3679 
3680 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3681 {
3682 	struct selinux_state *state = &selinux_state;
3683 	struct selinux_policy *policy;
3684 	struct context *ctxt;
3685 	struct mls_level *level;
3686 	struct selinux_audit_rule *rule = vrule;
3687 	int match = 0;
3688 
3689 	if (unlikely(!rule)) {
3690 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3691 		return -ENOENT;
3692 	}
3693 
3694 	if (!selinux_initialized(state))
3695 		return 0;
3696 
3697 	rcu_read_lock();
3698 
3699 	policy = rcu_dereference(state->policy);
3700 
3701 	if (rule->au_seqno < policy->latest_granting) {
3702 		match = -ESTALE;
3703 		goto out;
3704 	}
3705 
3706 	ctxt = sidtab_search(policy->sidtab, sid);
3707 	if (unlikely(!ctxt)) {
3708 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3709 			  sid);
3710 		match = -ENOENT;
3711 		goto out;
3712 	}
3713 
3714 	/* a field/op pair that is not caught here will simply fall through
3715 	   without a match */
3716 	switch (field) {
3717 	case AUDIT_SUBJ_USER:
3718 	case AUDIT_OBJ_USER:
3719 		switch (op) {
3720 		case Audit_equal:
3721 			match = (ctxt->user == rule->au_ctxt.user);
3722 			break;
3723 		case Audit_not_equal:
3724 			match = (ctxt->user != rule->au_ctxt.user);
3725 			break;
3726 		}
3727 		break;
3728 	case AUDIT_SUBJ_ROLE:
3729 	case AUDIT_OBJ_ROLE:
3730 		switch (op) {
3731 		case Audit_equal:
3732 			match = (ctxt->role == rule->au_ctxt.role);
3733 			break;
3734 		case Audit_not_equal:
3735 			match = (ctxt->role != rule->au_ctxt.role);
3736 			break;
3737 		}
3738 		break;
3739 	case AUDIT_SUBJ_TYPE:
3740 	case AUDIT_OBJ_TYPE:
3741 		switch (op) {
3742 		case Audit_equal:
3743 			match = (ctxt->type == rule->au_ctxt.type);
3744 			break;
3745 		case Audit_not_equal:
3746 			match = (ctxt->type != rule->au_ctxt.type);
3747 			break;
3748 		}
3749 		break;
3750 	case AUDIT_SUBJ_SEN:
3751 	case AUDIT_SUBJ_CLR:
3752 	case AUDIT_OBJ_LEV_LOW:
3753 	case AUDIT_OBJ_LEV_HIGH:
3754 		level = ((field == AUDIT_SUBJ_SEN ||
3755 			  field == AUDIT_OBJ_LEV_LOW) ?
3756 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3757 		switch (op) {
3758 		case Audit_equal:
3759 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3760 					     level);
3761 			break;
3762 		case Audit_not_equal:
3763 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3764 					      level);
3765 			break;
3766 		case Audit_lt:
3767 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3768 					       level) &&
3769 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3770 					       level));
3771 			break;
3772 		case Audit_le:
3773 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3774 					      level);
3775 			break;
3776 		case Audit_gt:
3777 			match = (mls_level_dom(level,
3778 					      &rule->au_ctxt.range.level[0]) &&
3779 				 !mls_level_eq(level,
3780 					       &rule->au_ctxt.range.level[0]));
3781 			break;
3782 		case Audit_ge:
3783 			match = mls_level_dom(level,
3784 					      &rule->au_ctxt.range.level[0]);
3785 			break;
3786 		}
3787 	}
3788 
3789 out:
3790 	rcu_read_unlock();
3791 	return match;
3792 }
3793 
3794 static int aurule_avc_callback(u32 event)
3795 {
3796 	if (event == AVC_CALLBACK_RESET)
3797 		return audit_update_lsm_rules();
3798 	return 0;
3799 }
3800 
3801 static int __init aurule_init(void)
3802 {
3803 	int err;
3804 
3805 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3806 	if (err)
3807 		panic("avc_add_callback() failed, error %d\n", err);
3808 
3809 	return err;
3810 }
3811 __initcall(aurule_init);
3812 
3813 #ifdef CONFIG_NETLABEL
3814 /**
3815  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3816  * @secattr: the NetLabel packet security attributes
3817  * @sid: the SELinux SID
3818  *
3819  * Description:
3820  * Attempt to cache the context in @ctx, which was derived from the packet in
3821  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3822  * already been initialized.
3823  *
3824  */
3825 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3826 				      u32 sid)
3827 {
3828 	u32 *sid_cache;
3829 
3830 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3831 	if (sid_cache == NULL)
3832 		return;
3833 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3834 	if (secattr->cache == NULL) {
3835 		kfree(sid_cache);
3836 		return;
3837 	}
3838 
3839 	*sid_cache = sid;
3840 	secattr->cache->free = kfree;
3841 	secattr->cache->data = sid_cache;
3842 	secattr->flags |= NETLBL_SECATTR_CACHE;
3843 }
3844 
3845 /**
3846  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3847  * @secattr: the NetLabel packet security attributes
3848  * @sid: the SELinux SID
3849  *
3850  * Description:
3851  * Convert the given NetLabel security attributes in @secattr into a
3852  * SELinux SID.  If the @secattr field does not contain a full SELinux
3853  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3854  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3855  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3856  * conversion for future lookups.  Returns zero on success, negative values on
3857  * failure.
3858  *
3859  */
3860 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3861 				   struct netlbl_lsm_secattr *secattr,
3862 				   u32 *sid)
3863 {
3864 	struct selinux_policy *policy;
3865 	struct policydb *policydb;
3866 	struct sidtab *sidtab;
3867 	int rc;
3868 	struct context *ctx;
3869 	struct context ctx_new;
3870 
3871 	if (!selinux_initialized(state)) {
3872 		*sid = SECSID_NULL;
3873 		return 0;
3874 	}
3875 
3876 retry:
3877 	rc = 0;
3878 	rcu_read_lock();
3879 	policy = rcu_dereference(state->policy);
3880 	policydb = &policy->policydb;
3881 	sidtab = policy->sidtab;
3882 
3883 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3884 		*sid = *(u32 *)secattr->cache->data;
3885 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3886 		*sid = secattr->attr.secid;
3887 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3888 		rc = -EIDRM;
3889 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3890 		if (ctx == NULL)
3891 			goto out;
3892 
3893 		context_init(&ctx_new);
3894 		ctx_new.user = ctx->user;
3895 		ctx_new.role = ctx->role;
3896 		ctx_new.type = ctx->type;
3897 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3898 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3899 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3900 			if (rc)
3901 				goto out;
3902 		}
3903 		rc = -EIDRM;
3904 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3905 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3906 			goto out;
3907 		}
3908 
3909 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3910 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3911 		if (rc == -ESTALE) {
3912 			rcu_read_unlock();
3913 			goto retry;
3914 		}
3915 		if (rc)
3916 			goto out;
3917 
3918 		security_netlbl_cache_add(secattr, *sid);
3919 	} else
3920 		*sid = SECSID_NULL;
3921 
3922 out:
3923 	rcu_read_unlock();
3924 	return rc;
3925 }
3926 
3927 /**
3928  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3929  * @sid: the SELinux SID
3930  * @secattr: the NetLabel packet security attributes
3931  *
3932  * Description:
3933  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3934  * Returns zero on success, negative values on failure.
3935  *
3936  */
3937 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3938 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3939 {
3940 	struct selinux_policy *policy;
3941 	struct policydb *policydb;
3942 	int rc;
3943 	struct context *ctx;
3944 
3945 	if (!selinux_initialized(state))
3946 		return 0;
3947 
3948 	rcu_read_lock();
3949 	policy = rcu_dereference(state->policy);
3950 	policydb = &policy->policydb;
3951 
3952 	rc = -ENOENT;
3953 	ctx = sidtab_search(policy->sidtab, sid);
3954 	if (ctx == NULL)
3955 		goto out;
3956 
3957 	rc = -ENOMEM;
3958 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3959 				  GFP_ATOMIC);
3960 	if (secattr->domain == NULL)
3961 		goto out;
3962 
3963 	secattr->attr.secid = sid;
3964 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3965 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3966 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3967 out:
3968 	rcu_read_unlock();
3969 	return rc;
3970 }
3971 #endif /* CONFIG_NETLABEL */
3972 
3973 /**
3974  * __security_read_policy - read the policy.
3975  * @policy: SELinux policy
3976  * @data: binary policy data
3977  * @len: length of data in bytes
3978  *
3979  */
3980 static int __security_read_policy(struct selinux_policy *policy,
3981 				  void *data, size_t *len)
3982 {
3983 	int rc;
3984 	struct policy_file fp;
3985 
3986 	fp.data = data;
3987 	fp.len = *len;
3988 
3989 	rc = policydb_write(&policy->policydb, &fp);
3990 	if (rc)
3991 		return rc;
3992 
3993 	*len = (unsigned long)fp.data - (unsigned long)data;
3994 	return 0;
3995 }
3996 
3997 /**
3998  * security_read_policy - read the policy.
3999  * @state: selinux_state
4000  * @data: binary policy data
4001  * @len: length of data in bytes
4002  *
4003  */
4004 int security_read_policy(struct selinux_state *state,
4005 			 void **data, size_t *len)
4006 {
4007 	struct selinux_policy *policy;
4008 
4009 	policy = rcu_dereference_protected(
4010 			state->policy, lockdep_is_held(&state->policy_mutex));
4011 	if (!policy)
4012 		return -EINVAL;
4013 
4014 	*len = policy->policydb.len;
4015 	*data = vmalloc_user(*len);
4016 	if (!*data)
4017 		return -ENOMEM;
4018 
4019 	return __security_read_policy(policy, *data, len);
4020 }
4021 
4022 /**
4023  * security_read_state_kernel - read the policy.
4024  * @state: selinux_state
4025  * @data: binary policy data
4026  * @len: length of data in bytes
4027  *
4028  * Allocates kernel memory for reading SELinux policy.
4029  * This function is for internal use only and should not
4030  * be used for returning data to user space.
4031  *
4032  * This function must be called with policy_mutex held.
4033  */
4034 int security_read_state_kernel(struct selinux_state *state,
4035 			       void **data, size_t *len)
4036 {
4037 	struct selinux_policy *policy;
4038 
4039 	policy = rcu_dereference_protected(
4040 			state->policy, lockdep_is_held(&state->policy_mutex));
4041 	if (!policy)
4042 		return -EINVAL;
4043 
4044 	*len = policy->policydb.len;
4045 	*data = vmalloc(*len);
4046 	if (!*data)
4047 		return -ENOMEM;
4048 
4049 	return __security_read_policy(policy, *data, len);
4050 }
4051