xref: /openbmc/linux/security/selinux/ss/services.c (revision 048be156491ff1aeb0fe5ff0862644d38cd39015)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70 
71 struct selinux_policy_convert_data {
72 	struct convert_context_args args;
73 	struct sidtab_convert_params sidtab_params;
74 };
75 
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 				    struct context *context,
79 				    char **scontext,
80 				    u32 *scontext_len);
81 
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 				  struct sidtab *sidtab,
84 				  struct sidtab_entry *entry,
85 				  char **scontext,
86 				  u32 *scontext_len);
87 
88 static void context_struct_compute_av(struct policydb *policydb,
89 				      struct context *scontext,
90 				      struct context *tcontext,
91 				      u16 tclass,
92 				      struct av_decision *avd,
93 				      struct extended_perms *xperms);
94 
95 static int selinux_set_mapping(struct policydb *pol,
96 			       const struct security_class_mapping *map,
97 			       struct selinux_map *out_map)
98 {
99 	u16 i, j;
100 	unsigned k;
101 	bool print_unknown_handle = false;
102 
103 	/* Find number of classes in the input mapping */
104 	if (!map)
105 		return -EINVAL;
106 	i = 0;
107 	while (map[i].name)
108 		i++;
109 
110 	/* Allocate space for the class records, plus one for class zero */
111 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
112 	if (!out_map->mapping)
113 		return -ENOMEM;
114 
115 	/* Store the raw class and permission values */
116 	j = 0;
117 	while (map[j].name) {
118 		const struct security_class_mapping *p_in = map + (j++);
119 		struct selinux_mapping *p_out = out_map->mapping + j;
120 
121 		/* An empty class string skips ahead */
122 		if (!strcmp(p_in->name, "")) {
123 			p_out->num_perms = 0;
124 			continue;
125 		}
126 
127 		p_out->value = string_to_security_class(pol, p_in->name);
128 		if (!p_out->value) {
129 			pr_info("SELinux:  Class %s not defined in policy.\n",
130 			       p_in->name);
131 			if (pol->reject_unknown)
132 				goto err;
133 			p_out->num_perms = 0;
134 			print_unknown_handle = true;
135 			continue;
136 		}
137 
138 		k = 0;
139 		while (p_in->perms[k]) {
140 			/* An empty permission string skips ahead */
141 			if (!*p_in->perms[k]) {
142 				k++;
143 				continue;
144 			}
145 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 							    p_in->perms[k]);
147 			if (!p_out->perms[k]) {
148 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
149 				       p_in->perms[k], p_in->name);
150 				if (pol->reject_unknown)
151 					goto err;
152 				print_unknown_handle = true;
153 			}
154 
155 			k++;
156 		}
157 		p_out->num_perms = k;
158 	}
159 
160 	if (print_unknown_handle)
161 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 		       pol->allow_unknown ? "allowed" : "denied");
163 
164 	out_map->size = i;
165 	return 0;
166 err:
167 	kfree(out_map->mapping);
168 	out_map->mapping = NULL;
169 	return -EINVAL;
170 }
171 
172 /*
173  * Get real, policy values from mapped values
174  */
175 
176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
177 {
178 	if (tclass < map->size)
179 		return map->mapping[tclass].value;
180 
181 	return tclass;
182 }
183 
184 /*
185  * Get kernel value for class from its policy value
186  */
187 static u16 map_class(struct selinux_map *map, u16 pol_value)
188 {
189 	u16 i;
190 
191 	for (i = 1; i < map->size; i++) {
192 		if (map->mapping[i].value == pol_value)
193 			return i;
194 	}
195 
196 	return SECCLASS_NULL;
197 }
198 
199 static void map_decision(struct selinux_map *map,
200 			 u16 tclass, struct av_decision *avd,
201 			 int allow_unknown)
202 {
203 	if (tclass < map->size) {
204 		struct selinux_mapping *mapping = &map->mapping[tclass];
205 		unsigned int i, n = mapping->num_perms;
206 		u32 result;
207 
208 		for (i = 0, result = 0; i < n; i++) {
209 			if (avd->allowed & mapping->perms[i])
210 				result |= 1<<i;
211 			if (allow_unknown && !mapping->perms[i])
212 				result |= 1<<i;
213 		}
214 		avd->allowed = result;
215 
216 		for (i = 0, result = 0; i < n; i++)
217 			if (avd->auditallow & mapping->perms[i])
218 				result |= 1<<i;
219 		avd->auditallow = result;
220 
221 		for (i = 0, result = 0; i < n; i++) {
222 			if (avd->auditdeny & mapping->perms[i])
223 				result |= 1<<i;
224 			if (!allow_unknown && !mapping->perms[i])
225 				result |= 1<<i;
226 		}
227 		/*
228 		 * In case the kernel has a bug and requests a permission
229 		 * between num_perms and the maximum permission number, we
230 		 * should audit that denial
231 		 */
232 		for (; i < (sizeof(u32)*8); i++)
233 			result |= 1<<i;
234 		avd->auditdeny = result;
235 	}
236 }
237 
238 int security_mls_enabled(struct selinux_state *state)
239 {
240 	int mls_enabled;
241 	struct selinux_policy *policy;
242 
243 	if (!selinux_initialized(state))
244 		return 0;
245 
246 	rcu_read_lock();
247 	policy = rcu_dereference(state->policy);
248 	mls_enabled = policy->policydb.mls_enabled;
249 	rcu_read_unlock();
250 	return mls_enabled;
251 }
252 
253 /*
254  * Return the boolean value of a constraint expression
255  * when it is applied to the specified source and target
256  * security contexts.
257  *
258  * xcontext is a special beast...  It is used by the validatetrans rules
259  * only.  For these rules, scontext is the context before the transition,
260  * tcontext is the context after the transition, and xcontext is the context
261  * of the process performing the transition.  All other callers of
262  * constraint_expr_eval should pass in NULL for xcontext.
263  */
264 static int constraint_expr_eval(struct policydb *policydb,
265 				struct context *scontext,
266 				struct context *tcontext,
267 				struct context *xcontext,
268 				struct constraint_expr *cexpr)
269 {
270 	u32 val1, val2;
271 	struct context *c;
272 	struct role_datum *r1, *r2;
273 	struct mls_level *l1, *l2;
274 	struct constraint_expr *e;
275 	int s[CEXPR_MAXDEPTH];
276 	int sp = -1;
277 
278 	for (e = cexpr; e; e = e->next) {
279 		switch (e->expr_type) {
280 		case CEXPR_NOT:
281 			BUG_ON(sp < 0);
282 			s[sp] = !s[sp];
283 			break;
284 		case CEXPR_AND:
285 			BUG_ON(sp < 1);
286 			sp--;
287 			s[sp] &= s[sp + 1];
288 			break;
289 		case CEXPR_OR:
290 			BUG_ON(sp < 1);
291 			sp--;
292 			s[sp] |= s[sp + 1];
293 			break;
294 		case CEXPR_ATTR:
295 			if (sp == (CEXPR_MAXDEPTH - 1))
296 				return 0;
297 			switch (e->attr) {
298 			case CEXPR_USER:
299 				val1 = scontext->user;
300 				val2 = tcontext->user;
301 				break;
302 			case CEXPR_TYPE:
303 				val1 = scontext->type;
304 				val2 = tcontext->type;
305 				break;
306 			case CEXPR_ROLE:
307 				val1 = scontext->role;
308 				val2 = tcontext->role;
309 				r1 = policydb->role_val_to_struct[val1 - 1];
310 				r2 = policydb->role_val_to_struct[val2 - 1];
311 				switch (e->op) {
312 				case CEXPR_DOM:
313 					s[++sp] = ebitmap_get_bit(&r1->dominates,
314 								  val2 - 1);
315 					continue;
316 				case CEXPR_DOMBY:
317 					s[++sp] = ebitmap_get_bit(&r2->dominates,
318 								  val1 - 1);
319 					continue;
320 				case CEXPR_INCOMP:
321 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 								    val2 - 1) &&
323 						   !ebitmap_get_bit(&r2->dominates,
324 								    val1 - 1));
325 					continue;
326 				default:
327 					break;
328 				}
329 				break;
330 			case CEXPR_L1L2:
331 				l1 = &(scontext->range.level[0]);
332 				l2 = &(tcontext->range.level[0]);
333 				goto mls_ops;
334 			case CEXPR_L1H2:
335 				l1 = &(scontext->range.level[0]);
336 				l2 = &(tcontext->range.level[1]);
337 				goto mls_ops;
338 			case CEXPR_H1L2:
339 				l1 = &(scontext->range.level[1]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_H1H2:
343 				l1 = &(scontext->range.level[1]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_L1H1:
347 				l1 = &(scontext->range.level[0]);
348 				l2 = &(scontext->range.level[1]);
349 				goto mls_ops;
350 			case CEXPR_L2H2:
351 				l1 = &(tcontext->range.level[0]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 mls_ops:
355 				switch (e->op) {
356 				case CEXPR_EQ:
357 					s[++sp] = mls_level_eq(l1, l2);
358 					continue;
359 				case CEXPR_NEQ:
360 					s[++sp] = !mls_level_eq(l1, l2);
361 					continue;
362 				case CEXPR_DOM:
363 					s[++sp] = mls_level_dom(l1, l2);
364 					continue;
365 				case CEXPR_DOMBY:
366 					s[++sp] = mls_level_dom(l2, l1);
367 					continue;
368 				case CEXPR_INCOMP:
369 					s[++sp] = mls_level_incomp(l2, l1);
370 					continue;
371 				default:
372 					BUG();
373 					return 0;
374 				}
375 				break;
376 			default:
377 				BUG();
378 				return 0;
379 			}
380 
381 			switch (e->op) {
382 			case CEXPR_EQ:
383 				s[++sp] = (val1 == val2);
384 				break;
385 			case CEXPR_NEQ:
386 				s[++sp] = (val1 != val2);
387 				break;
388 			default:
389 				BUG();
390 				return 0;
391 			}
392 			break;
393 		case CEXPR_NAMES:
394 			if (sp == (CEXPR_MAXDEPTH-1))
395 				return 0;
396 			c = scontext;
397 			if (e->attr & CEXPR_TARGET)
398 				c = tcontext;
399 			else if (e->attr & CEXPR_XTARGET) {
400 				c = xcontext;
401 				if (!c) {
402 					BUG();
403 					return 0;
404 				}
405 			}
406 			if (e->attr & CEXPR_USER)
407 				val1 = c->user;
408 			else if (e->attr & CEXPR_ROLE)
409 				val1 = c->role;
410 			else if (e->attr & CEXPR_TYPE)
411 				val1 = c->type;
412 			else {
413 				BUG();
414 				return 0;
415 			}
416 
417 			switch (e->op) {
418 			case CEXPR_EQ:
419 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 				break;
421 			case CEXPR_NEQ:
422 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 				break;
424 			default:
425 				BUG();
426 				return 0;
427 			}
428 			break;
429 		default:
430 			BUG();
431 			return 0;
432 		}
433 	}
434 
435 	BUG_ON(sp != 0);
436 	return s[0];
437 }
438 
439 /*
440  * security_dump_masked_av - dumps masked permissions during
441  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442  */
443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 	struct perm_datum *pdatum = d;
446 	char **permission_names = args;
447 
448 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449 
450 	permission_names[pdatum->value - 1] = (char *)k;
451 
452 	return 0;
453 }
454 
455 static void security_dump_masked_av(struct policydb *policydb,
456 				    struct context *scontext,
457 				    struct context *tcontext,
458 				    u16 tclass,
459 				    u32 permissions,
460 				    const char *reason)
461 {
462 	struct common_datum *common_dat;
463 	struct class_datum *tclass_dat;
464 	struct audit_buffer *ab;
465 	char *tclass_name;
466 	char *scontext_name = NULL;
467 	char *tcontext_name = NULL;
468 	char *permission_names[32];
469 	int index;
470 	u32 length;
471 	bool need_comma = false;
472 
473 	if (!permissions)
474 		return;
475 
476 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 	common_dat = tclass_dat->comdatum;
479 
480 	/* init permission_names */
481 	if (common_dat &&
482 	    hashtab_map(&common_dat->permissions.table,
483 			dump_masked_av_helper, permission_names) < 0)
484 		goto out;
485 
486 	if (hashtab_map(&tclass_dat->permissions.table,
487 			dump_masked_av_helper, permission_names) < 0)
488 		goto out;
489 
490 	/* get scontext/tcontext in text form */
491 	if (context_struct_to_string(policydb, scontext,
492 				     &scontext_name, &length) < 0)
493 		goto out;
494 
495 	if (context_struct_to_string(policydb, tcontext,
496 				     &tcontext_name, &length) < 0)
497 		goto out;
498 
499 	/* audit a message */
500 	ab = audit_log_start(audit_context(),
501 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 	if (!ab)
503 		goto out;
504 
505 	audit_log_format(ab, "op=security_compute_av reason=%s "
506 			 "scontext=%s tcontext=%s tclass=%s perms=",
507 			 reason, scontext_name, tcontext_name, tclass_name);
508 
509 	for (index = 0; index < 32; index++) {
510 		u32 mask = (1 << index);
511 
512 		if ((mask & permissions) == 0)
513 			continue;
514 
515 		audit_log_format(ab, "%s%s",
516 				 need_comma ? "," : "",
517 				 permission_names[index]
518 				 ? permission_names[index] : "????");
519 		need_comma = true;
520 	}
521 	audit_log_end(ab);
522 out:
523 	/* release scontext/tcontext */
524 	kfree(tcontext_name);
525 	kfree(scontext_name);
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * flag which drivers have permissions
586  * only looking for ioctl based extended permssions
587  */
588 void services_compute_xperms_drivers(
589 		struct extended_perms *xperms,
590 		struct avtab_node *node)
591 {
592 	unsigned int i;
593 
594 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 		/* if one or more driver has all permissions allowed */
596 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 		/* if allowing permissions within a driver */
600 		security_xperm_set(xperms->drivers.p,
601 					node->datum.u.xperms->driver);
602 	}
603 
604 	xperms->len = 1;
605 }
606 
607 /*
608  * Compute access vectors and extended permissions based on a context
609  * structure pair for the permissions in a particular class.
610  */
611 static void context_struct_compute_av(struct policydb *policydb,
612 				      struct context *scontext,
613 				      struct context *tcontext,
614 				      u16 tclass,
615 				      struct av_decision *avd,
616 				      struct extended_perms *xperms)
617 {
618 	struct constraint_node *constraint;
619 	struct role_allow *ra;
620 	struct avtab_key avkey;
621 	struct avtab_node *node;
622 	struct class_datum *tclass_datum;
623 	struct ebitmap *sattr, *tattr;
624 	struct ebitmap_node *snode, *tnode;
625 	unsigned int i, j;
626 
627 	avd->allowed = 0;
628 	avd->auditallow = 0;
629 	avd->auditdeny = 0xffffffff;
630 	if (xperms) {
631 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
632 		xperms->len = 0;
633 	}
634 
635 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
636 		if (printk_ratelimit())
637 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
638 		return;
639 	}
640 
641 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
642 
643 	/*
644 	 * If a specific type enforcement rule was defined for
645 	 * this permission check, then use it.
646 	 */
647 	avkey.target_class = tclass;
648 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
649 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
650 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
651 	ebitmap_for_each_positive_bit(sattr, snode, i) {
652 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
653 			avkey.source_type = i + 1;
654 			avkey.target_type = j + 1;
655 			for (node = avtab_search_node(&policydb->te_avtab,
656 						      &avkey);
657 			     node;
658 			     node = avtab_search_node_next(node, avkey.specified)) {
659 				if (node->key.specified == AVTAB_ALLOWED)
660 					avd->allowed |= node->datum.u.data;
661 				else if (node->key.specified == AVTAB_AUDITALLOW)
662 					avd->auditallow |= node->datum.u.data;
663 				else if (node->key.specified == AVTAB_AUDITDENY)
664 					avd->auditdeny &= node->datum.u.data;
665 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
666 					services_compute_xperms_drivers(xperms, node);
667 			}
668 
669 			/* Check conditional av table for additional permissions */
670 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
671 					avd, xperms);
672 
673 		}
674 	}
675 
676 	/*
677 	 * Remove any permissions prohibited by a constraint (this includes
678 	 * the MLS policy).
679 	 */
680 	constraint = tclass_datum->constraints;
681 	while (constraint) {
682 		if ((constraint->permissions & (avd->allowed)) &&
683 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
684 					  constraint->expr)) {
685 			avd->allowed &= ~(constraint->permissions);
686 		}
687 		constraint = constraint->next;
688 	}
689 
690 	/*
691 	 * If checking process transition permission and the
692 	 * role is changing, then check the (current_role, new_role)
693 	 * pair.
694 	 */
695 	if (tclass == policydb->process_class &&
696 	    (avd->allowed & policydb->process_trans_perms) &&
697 	    scontext->role != tcontext->role) {
698 		for (ra = policydb->role_allow; ra; ra = ra->next) {
699 			if (scontext->role == ra->role &&
700 			    tcontext->role == ra->new_role)
701 				break;
702 		}
703 		if (!ra)
704 			avd->allowed &= ~policydb->process_trans_perms;
705 	}
706 
707 	/*
708 	 * If the given source and target types have boundary
709 	 * constraint, lazy checks have to mask any violated
710 	 * permission and notice it to userspace via audit.
711 	 */
712 	type_attribute_bounds_av(policydb, scontext, tcontext,
713 				 tclass, avd);
714 }
715 
716 static int security_validtrans_handle_fail(struct selinux_state *state,
717 					struct selinux_policy *policy,
718 					struct sidtab_entry *oentry,
719 					struct sidtab_entry *nentry,
720 					struct sidtab_entry *tentry,
721 					u16 tclass)
722 {
723 	struct policydb *p = &policy->policydb;
724 	struct sidtab *sidtab = policy->sidtab;
725 	char *o = NULL, *n = NULL, *t = NULL;
726 	u32 olen, nlen, tlen;
727 
728 	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
729 		goto out;
730 	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
731 		goto out;
732 	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
733 		goto out;
734 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
735 		  "op=security_validate_transition seresult=denied"
736 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
737 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
738 out:
739 	kfree(o);
740 	kfree(n);
741 	kfree(t);
742 
743 	if (!enforcing_enabled(state))
744 		return 0;
745 	return -EPERM;
746 }
747 
748 static int security_compute_validatetrans(struct selinux_state *state,
749 					  u32 oldsid, u32 newsid, u32 tasksid,
750 					  u16 orig_tclass, bool user)
751 {
752 	struct selinux_policy *policy;
753 	struct policydb *policydb;
754 	struct sidtab *sidtab;
755 	struct sidtab_entry *oentry;
756 	struct sidtab_entry *nentry;
757 	struct sidtab_entry *tentry;
758 	struct class_datum *tclass_datum;
759 	struct constraint_node *constraint;
760 	u16 tclass;
761 	int rc = 0;
762 
763 
764 	if (!selinux_initialized(state))
765 		return 0;
766 
767 	rcu_read_lock();
768 
769 	policy = rcu_dereference(state->policy);
770 	policydb = &policy->policydb;
771 	sidtab = policy->sidtab;
772 
773 	if (!user)
774 		tclass = unmap_class(&policy->map, orig_tclass);
775 	else
776 		tclass = orig_tclass;
777 
778 	if (!tclass || tclass > policydb->p_classes.nprim) {
779 		rc = -EINVAL;
780 		goto out;
781 	}
782 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
783 
784 	oentry = sidtab_search_entry(sidtab, oldsid);
785 	if (!oentry) {
786 		pr_err("SELinux: %s:  unrecognized SID %d\n",
787 			__func__, oldsid);
788 		rc = -EINVAL;
789 		goto out;
790 	}
791 
792 	nentry = sidtab_search_entry(sidtab, newsid);
793 	if (!nentry) {
794 		pr_err("SELinux: %s:  unrecognized SID %d\n",
795 			__func__, newsid);
796 		rc = -EINVAL;
797 		goto out;
798 	}
799 
800 	tentry = sidtab_search_entry(sidtab, tasksid);
801 	if (!tentry) {
802 		pr_err("SELinux: %s:  unrecognized SID %d\n",
803 			__func__, tasksid);
804 		rc = -EINVAL;
805 		goto out;
806 	}
807 
808 	constraint = tclass_datum->validatetrans;
809 	while (constraint) {
810 		if (!constraint_expr_eval(policydb, &oentry->context,
811 					  &nentry->context, &tentry->context,
812 					  constraint->expr)) {
813 			if (user)
814 				rc = -EPERM;
815 			else
816 				rc = security_validtrans_handle_fail(state,
817 								policy,
818 								oentry,
819 								nentry,
820 								tentry,
821 								tclass);
822 			goto out;
823 		}
824 		constraint = constraint->next;
825 	}
826 
827 out:
828 	rcu_read_unlock();
829 	return rc;
830 }
831 
832 int security_validate_transition_user(struct selinux_state *state,
833 				      u32 oldsid, u32 newsid, u32 tasksid,
834 				      u16 tclass)
835 {
836 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
837 					      tclass, true);
838 }
839 
840 int security_validate_transition(struct selinux_state *state,
841 				 u32 oldsid, u32 newsid, u32 tasksid,
842 				 u16 orig_tclass)
843 {
844 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
845 					      orig_tclass, false);
846 }
847 
848 /*
849  * security_bounded_transition - check whether the given
850  * transition is directed to bounded, or not.
851  * It returns 0, if @newsid is bounded by @oldsid.
852  * Otherwise, it returns error code.
853  *
854  * @state: SELinux state
855  * @oldsid : current security identifier
856  * @newsid : destinated security identifier
857  */
858 int security_bounded_transition(struct selinux_state *state,
859 				u32 old_sid, u32 new_sid)
860 {
861 	struct selinux_policy *policy;
862 	struct policydb *policydb;
863 	struct sidtab *sidtab;
864 	struct sidtab_entry *old_entry, *new_entry;
865 	struct type_datum *type;
866 	int index;
867 	int rc;
868 
869 	if (!selinux_initialized(state))
870 		return 0;
871 
872 	rcu_read_lock();
873 	policy = rcu_dereference(state->policy);
874 	policydb = &policy->policydb;
875 	sidtab = policy->sidtab;
876 
877 	rc = -EINVAL;
878 	old_entry = sidtab_search_entry(sidtab, old_sid);
879 	if (!old_entry) {
880 		pr_err("SELinux: %s: unrecognized SID %u\n",
881 		       __func__, old_sid);
882 		goto out;
883 	}
884 
885 	rc = -EINVAL;
886 	new_entry = sidtab_search_entry(sidtab, new_sid);
887 	if (!new_entry) {
888 		pr_err("SELinux: %s: unrecognized SID %u\n",
889 		       __func__, new_sid);
890 		goto out;
891 	}
892 
893 	rc = 0;
894 	/* type/domain unchanged */
895 	if (old_entry->context.type == new_entry->context.type)
896 		goto out;
897 
898 	index = new_entry->context.type;
899 	while (true) {
900 		type = policydb->type_val_to_struct[index - 1];
901 		BUG_ON(!type);
902 
903 		/* not bounded anymore */
904 		rc = -EPERM;
905 		if (!type->bounds)
906 			break;
907 
908 		/* @newsid is bounded by @oldsid */
909 		rc = 0;
910 		if (type->bounds == old_entry->context.type)
911 			break;
912 
913 		index = type->bounds;
914 	}
915 
916 	if (rc) {
917 		char *old_name = NULL;
918 		char *new_name = NULL;
919 		u32 length;
920 
921 		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
922 					    &old_name, &length) &&
923 		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
924 					    &new_name, &length)) {
925 			audit_log(audit_context(),
926 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
927 				  "op=security_bounded_transition "
928 				  "seresult=denied "
929 				  "oldcontext=%s newcontext=%s",
930 				  old_name, new_name);
931 		}
932 		kfree(new_name);
933 		kfree(old_name);
934 	}
935 out:
936 	rcu_read_unlock();
937 
938 	return rc;
939 }
940 
941 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
942 {
943 	avd->allowed = 0;
944 	avd->auditallow = 0;
945 	avd->auditdeny = 0xffffffff;
946 	if (policy)
947 		avd->seqno = policy->latest_granting;
948 	else
949 		avd->seqno = 0;
950 	avd->flags = 0;
951 }
952 
953 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
954 					struct avtab_node *node)
955 {
956 	unsigned int i;
957 
958 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
959 		if (xpermd->driver != node->datum.u.xperms->driver)
960 			return;
961 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
962 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
963 					xpermd->driver))
964 			return;
965 	} else {
966 		BUG();
967 	}
968 
969 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
970 		xpermd->used |= XPERMS_ALLOWED;
971 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
972 			memset(xpermd->allowed->p, 0xff,
973 					sizeof(xpermd->allowed->p));
974 		}
975 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
976 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
977 				xpermd->allowed->p[i] |=
978 					node->datum.u.xperms->perms.p[i];
979 		}
980 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
981 		xpermd->used |= XPERMS_AUDITALLOW;
982 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
983 			memset(xpermd->auditallow->p, 0xff,
984 					sizeof(xpermd->auditallow->p));
985 		}
986 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
987 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
988 				xpermd->auditallow->p[i] |=
989 					node->datum.u.xperms->perms.p[i];
990 		}
991 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
992 		xpermd->used |= XPERMS_DONTAUDIT;
993 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
994 			memset(xpermd->dontaudit->p, 0xff,
995 					sizeof(xpermd->dontaudit->p));
996 		}
997 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
998 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
999 				xpermd->dontaudit->p[i] |=
1000 					node->datum.u.xperms->perms.p[i];
1001 		}
1002 	} else {
1003 		BUG();
1004 	}
1005 }
1006 
1007 void security_compute_xperms_decision(struct selinux_state *state,
1008 				      u32 ssid,
1009 				      u32 tsid,
1010 				      u16 orig_tclass,
1011 				      u8 driver,
1012 				      struct extended_perms_decision *xpermd)
1013 {
1014 	struct selinux_policy *policy;
1015 	struct policydb *policydb;
1016 	struct sidtab *sidtab;
1017 	u16 tclass;
1018 	struct context *scontext, *tcontext;
1019 	struct avtab_key avkey;
1020 	struct avtab_node *node;
1021 	struct ebitmap *sattr, *tattr;
1022 	struct ebitmap_node *snode, *tnode;
1023 	unsigned int i, j;
1024 
1025 	xpermd->driver = driver;
1026 	xpermd->used = 0;
1027 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1028 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1029 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1030 
1031 	rcu_read_lock();
1032 	if (!selinux_initialized(state))
1033 		goto allow;
1034 
1035 	policy = rcu_dereference(state->policy);
1036 	policydb = &policy->policydb;
1037 	sidtab = policy->sidtab;
1038 
1039 	scontext = sidtab_search(sidtab, ssid);
1040 	if (!scontext) {
1041 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1042 		       __func__, ssid);
1043 		goto out;
1044 	}
1045 
1046 	tcontext = sidtab_search(sidtab, tsid);
1047 	if (!tcontext) {
1048 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1049 		       __func__, tsid);
1050 		goto out;
1051 	}
1052 
1053 	tclass = unmap_class(&policy->map, orig_tclass);
1054 	if (unlikely(orig_tclass && !tclass)) {
1055 		if (policydb->allow_unknown)
1056 			goto allow;
1057 		goto out;
1058 	}
1059 
1060 
1061 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1062 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1063 		goto out;
1064 	}
1065 
1066 	avkey.target_class = tclass;
1067 	avkey.specified = AVTAB_XPERMS;
1068 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1069 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1070 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1071 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1072 			avkey.source_type = i + 1;
1073 			avkey.target_type = j + 1;
1074 			for (node = avtab_search_node(&policydb->te_avtab,
1075 						      &avkey);
1076 			     node;
1077 			     node = avtab_search_node_next(node, avkey.specified))
1078 				services_compute_xperms_decision(xpermd, node);
1079 
1080 			cond_compute_xperms(&policydb->te_cond_avtab,
1081 						&avkey, xpermd);
1082 		}
1083 	}
1084 out:
1085 	rcu_read_unlock();
1086 	return;
1087 allow:
1088 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1089 	goto out;
1090 }
1091 
1092 /**
1093  * security_compute_av - Compute access vector decisions.
1094  * @state: SELinux state
1095  * @ssid: source security identifier
1096  * @tsid: target security identifier
1097  * @orig_tclass: target security class
1098  * @avd: access vector decisions
1099  * @xperms: extended permissions
1100  *
1101  * Compute a set of access vector decisions based on the
1102  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103  */
1104 void security_compute_av(struct selinux_state *state,
1105 			 u32 ssid,
1106 			 u32 tsid,
1107 			 u16 orig_tclass,
1108 			 struct av_decision *avd,
1109 			 struct extended_perms *xperms)
1110 {
1111 	struct selinux_policy *policy;
1112 	struct policydb *policydb;
1113 	struct sidtab *sidtab;
1114 	u16 tclass;
1115 	struct context *scontext = NULL, *tcontext = NULL;
1116 
1117 	rcu_read_lock();
1118 	policy = rcu_dereference(state->policy);
1119 	avd_init(policy, avd);
1120 	xperms->len = 0;
1121 	if (!selinux_initialized(state))
1122 		goto allow;
1123 
1124 	policydb = &policy->policydb;
1125 	sidtab = policy->sidtab;
1126 
1127 	scontext = sidtab_search(sidtab, ssid);
1128 	if (!scontext) {
1129 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1130 		       __func__, ssid);
1131 		goto out;
1132 	}
1133 
1134 	/* permissive domain? */
1135 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1136 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1137 
1138 	tcontext = sidtab_search(sidtab, tsid);
1139 	if (!tcontext) {
1140 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1141 		       __func__, tsid);
1142 		goto out;
1143 	}
1144 
1145 	tclass = unmap_class(&policy->map, orig_tclass);
1146 	if (unlikely(orig_tclass && !tclass)) {
1147 		if (policydb->allow_unknown)
1148 			goto allow;
1149 		goto out;
1150 	}
1151 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1152 				  xperms);
1153 	map_decision(&policy->map, orig_tclass, avd,
1154 		     policydb->allow_unknown);
1155 out:
1156 	rcu_read_unlock();
1157 	return;
1158 allow:
1159 	avd->allowed = 0xffffffff;
1160 	goto out;
1161 }
1162 
1163 void security_compute_av_user(struct selinux_state *state,
1164 			      u32 ssid,
1165 			      u32 tsid,
1166 			      u16 tclass,
1167 			      struct av_decision *avd)
1168 {
1169 	struct selinux_policy *policy;
1170 	struct policydb *policydb;
1171 	struct sidtab *sidtab;
1172 	struct context *scontext = NULL, *tcontext = NULL;
1173 
1174 	rcu_read_lock();
1175 	policy = rcu_dereference(state->policy);
1176 	avd_init(policy, avd);
1177 	if (!selinux_initialized(state))
1178 		goto allow;
1179 
1180 	policydb = &policy->policydb;
1181 	sidtab = policy->sidtab;
1182 
1183 	scontext = sidtab_search(sidtab, ssid);
1184 	if (!scontext) {
1185 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1186 		       __func__, ssid);
1187 		goto out;
1188 	}
1189 
1190 	/* permissive domain? */
1191 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1192 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1193 
1194 	tcontext = sidtab_search(sidtab, tsid);
1195 	if (!tcontext) {
1196 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1197 		       __func__, tsid);
1198 		goto out;
1199 	}
1200 
1201 	if (unlikely(!tclass)) {
1202 		if (policydb->allow_unknown)
1203 			goto allow;
1204 		goto out;
1205 	}
1206 
1207 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1208 				  NULL);
1209  out:
1210 	rcu_read_unlock();
1211 	return;
1212 allow:
1213 	avd->allowed = 0xffffffff;
1214 	goto out;
1215 }
1216 
1217 /*
1218  * Write the security context string representation of
1219  * the context structure `context' into a dynamically
1220  * allocated string of the correct size.  Set `*scontext'
1221  * to point to this string and set `*scontext_len' to
1222  * the length of the string.
1223  */
1224 static int context_struct_to_string(struct policydb *p,
1225 				    struct context *context,
1226 				    char **scontext, u32 *scontext_len)
1227 {
1228 	char *scontextp;
1229 
1230 	if (scontext)
1231 		*scontext = NULL;
1232 	*scontext_len = 0;
1233 
1234 	if (context->len) {
1235 		*scontext_len = context->len;
1236 		if (scontext) {
1237 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1238 			if (!(*scontext))
1239 				return -ENOMEM;
1240 		}
1241 		return 0;
1242 	}
1243 
1244 	/* Compute the size of the context. */
1245 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1246 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1247 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1248 	*scontext_len += mls_compute_context_len(p, context);
1249 
1250 	if (!scontext)
1251 		return 0;
1252 
1253 	/* Allocate space for the context; caller must free this space. */
1254 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1255 	if (!scontextp)
1256 		return -ENOMEM;
1257 	*scontext = scontextp;
1258 
1259 	/*
1260 	 * Copy the user name, role name and type name into the context.
1261 	 */
1262 	scontextp += sprintf(scontextp, "%s:%s:%s",
1263 		sym_name(p, SYM_USERS, context->user - 1),
1264 		sym_name(p, SYM_ROLES, context->role - 1),
1265 		sym_name(p, SYM_TYPES, context->type - 1));
1266 
1267 	mls_sid_to_context(p, context, &scontextp);
1268 
1269 	*scontextp = 0;
1270 
1271 	return 0;
1272 }
1273 
1274 static int sidtab_entry_to_string(struct policydb *p,
1275 				  struct sidtab *sidtab,
1276 				  struct sidtab_entry *entry,
1277 				  char **scontext, u32 *scontext_len)
1278 {
1279 	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1280 
1281 	if (rc != -ENOENT)
1282 		return rc;
1283 
1284 	rc = context_struct_to_string(p, &entry->context, scontext,
1285 				      scontext_len);
1286 	if (!rc && scontext)
1287 		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1288 	return rc;
1289 }
1290 
1291 #include "initial_sid_to_string.h"
1292 
1293 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1294 {
1295 	struct selinux_policy *policy;
1296 	int rc;
1297 
1298 	if (!selinux_initialized(state)) {
1299 		pr_err("SELinux: %s:  called before initial load_policy\n",
1300 		       __func__);
1301 		return -EINVAL;
1302 	}
1303 
1304 	rcu_read_lock();
1305 	policy = rcu_dereference(state->policy);
1306 	rc = sidtab_hash_stats(policy->sidtab, page);
1307 	rcu_read_unlock();
1308 
1309 	return rc;
1310 }
1311 
1312 const char *security_get_initial_sid_context(u32 sid)
1313 {
1314 	if (unlikely(sid > SECINITSID_NUM))
1315 		return NULL;
1316 	return initial_sid_to_string[sid];
1317 }
1318 
1319 static int security_sid_to_context_core(struct selinux_state *state,
1320 					u32 sid, char **scontext,
1321 					u32 *scontext_len, int force,
1322 					int only_invalid)
1323 {
1324 	struct selinux_policy *policy;
1325 	struct policydb *policydb;
1326 	struct sidtab *sidtab;
1327 	struct sidtab_entry *entry;
1328 	int rc = 0;
1329 
1330 	if (scontext)
1331 		*scontext = NULL;
1332 	*scontext_len  = 0;
1333 
1334 	if (!selinux_initialized(state)) {
1335 		if (sid <= SECINITSID_NUM) {
1336 			char *scontextp;
1337 			const char *s = initial_sid_to_string[sid];
1338 
1339 			if (!s)
1340 				return -EINVAL;
1341 			*scontext_len = strlen(s) + 1;
1342 			if (!scontext)
1343 				return 0;
1344 			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1345 			if (!scontextp)
1346 				return -ENOMEM;
1347 			*scontext = scontextp;
1348 			return 0;
1349 		}
1350 		pr_err("SELinux: %s:  called before initial "
1351 		       "load_policy on unknown SID %d\n", __func__, sid);
1352 		return -EINVAL;
1353 	}
1354 	rcu_read_lock();
1355 	policy = rcu_dereference(state->policy);
1356 	policydb = &policy->policydb;
1357 	sidtab = policy->sidtab;
1358 
1359 	if (force)
1360 		entry = sidtab_search_entry_force(sidtab, sid);
1361 	else
1362 		entry = sidtab_search_entry(sidtab, sid);
1363 	if (!entry) {
1364 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1365 			__func__, sid);
1366 		rc = -EINVAL;
1367 		goto out_unlock;
1368 	}
1369 	if (only_invalid && !entry->context.len)
1370 		goto out_unlock;
1371 
1372 	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1373 				    scontext_len);
1374 
1375 out_unlock:
1376 	rcu_read_unlock();
1377 	return rc;
1378 
1379 }
1380 
1381 /**
1382  * security_sid_to_context - Obtain a context for a given SID.
1383  * @state: SELinux state
1384  * @sid: security identifier, SID
1385  * @scontext: security context
1386  * @scontext_len: length in bytes
1387  *
1388  * Write the string representation of the context associated with @sid
1389  * into a dynamically allocated string of the correct size.  Set @scontext
1390  * to point to this string and set @scontext_len to the length of the string.
1391  */
1392 int security_sid_to_context(struct selinux_state *state,
1393 			    u32 sid, char **scontext, u32 *scontext_len)
1394 {
1395 	return security_sid_to_context_core(state, sid, scontext,
1396 					    scontext_len, 0, 0);
1397 }
1398 
1399 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1400 				  char **scontext, u32 *scontext_len)
1401 {
1402 	return security_sid_to_context_core(state, sid, scontext,
1403 					    scontext_len, 1, 0);
1404 }
1405 
1406 /**
1407  * security_sid_to_context_inval - Obtain a context for a given SID if it
1408  *                                 is invalid.
1409  * @state: SELinux state
1410  * @sid: security identifier, SID
1411  * @scontext: security context
1412  * @scontext_len: length in bytes
1413  *
1414  * Write the string representation of the context associated with @sid
1415  * into a dynamically allocated string of the correct size, but only if the
1416  * context is invalid in the current policy.  Set @scontext to point to
1417  * this string (or NULL if the context is valid) and set @scontext_len to
1418  * the length of the string (or 0 if the context is valid).
1419  */
1420 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1421 				  char **scontext, u32 *scontext_len)
1422 {
1423 	return security_sid_to_context_core(state, sid, scontext,
1424 					    scontext_len, 1, 1);
1425 }
1426 
1427 /*
1428  * Caveat:  Mutates scontext.
1429  */
1430 static int string_to_context_struct(struct policydb *pol,
1431 				    struct sidtab *sidtabp,
1432 				    char *scontext,
1433 				    struct context *ctx,
1434 				    u32 def_sid)
1435 {
1436 	struct role_datum *role;
1437 	struct type_datum *typdatum;
1438 	struct user_datum *usrdatum;
1439 	char *scontextp, *p, oldc;
1440 	int rc = 0;
1441 
1442 	context_init(ctx);
1443 
1444 	/* Parse the security context. */
1445 
1446 	rc = -EINVAL;
1447 	scontextp = scontext;
1448 
1449 	/* Extract the user. */
1450 	p = scontextp;
1451 	while (*p && *p != ':')
1452 		p++;
1453 
1454 	if (*p == 0)
1455 		goto out;
1456 
1457 	*p++ = 0;
1458 
1459 	usrdatum = symtab_search(&pol->p_users, scontextp);
1460 	if (!usrdatum)
1461 		goto out;
1462 
1463 	ctx->user = usrdatum->value;
1464 
1465 	/* Extract role. */
1466 	scontextp = p;
1467 	while (*p && *p != ':')
1468 		p++;
1469 
1470 	if (*p == 0)
1471 		goto out;
1472 
1473 	*p++ = 0;
1474 
1475 	role = symtab_search(&pol->p_roles, scontextp);
1476 	if (!role)
1477 		goto out;
1478 	ctx->role = role->value;
1479 
1480 	/* Extract type. */
1481 	scontextp = p;
1482 	while (*p && *p != ':')
1483 		p++;
1484 	oldc = *p;
1485 	*p++ = 0;
1486 
1487 	typdatum = symtab_search(&pol->p_types, scontextp);
1488 	if (!typdatum || typdatum->attribute)
1489 		goto out;
1490 
1491 	ctx->type = typdatum->value;
1492 
1493 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1494 	if (rc)
1495 		goto out;
1496 
1497 	/* Check the validity of the new context. */
1498 	rc = -EINVAL;
1499 	if (!policydb_context_isvalid(pol, ctx))
1500 		goto out;
1501 	rc = 0;
1502 out:
1503 	if (rc)
1504 		context_destroy(ctx);
1505 	return rc;
1506 }
1507 
1508 static int security_context_to_sid_core(struct selinux_state *state,
1509 					const char *scontext, u32 scontext_len,
1510 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1511 					int force)
1512 {
1513 	struct selinux_policy *policy;
1514 	struct policydb *policydb;
1515 	struct sidtab *sidtab;
1516 	char *scontext2, *str = NULL;
1517 	struct context context;
1518 	int rc = 0;
1519 
1520 	/* An empty security context is never valid. */
1521 	if (!scontext_len)
1522 		return -EINVAL;
1523 
1524 	/* Copy the string to allow changes and ensure a NUL terminator */
1525 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1526 	if (!scontext2)
1527 		return -ENOMEM;
1528 
1529 	if (!selinux_initialized(state)) {
1530 		int i;
1531 
1532 		for (i = 1; i < SECINITSID_NUM; i++) {
1533 			const char *s = initial_sid_to_string[i];
1534 
1535 			if (s && !strcmp(s, scontext2)) {
1536 				*sid = i;
1537 				goto out;
1538 			}
1539 		}
1540 		*sid = SECINITSID_KERNEL;
1541 		goto out;
1542 	}
1543 	*sid = SECSID_NULL;
1544 
1545 	if (force) {
1546 		/* Save another copy for storing in uninterpreted form */
1547 		rc = -ENOMEM;
1548 		str = kstrdup(scontext2, gfp_flags);
1549 		if (!str)
1550 			goto out;
1551 	}
1552 retry:
1553 	rcu_read_lock();
1554 	policy = rcu_dereference(state->policy);
1555 	policydb = &policy->policydb;
1556 	sidtab = policy->sidtab;
1557 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1558 				      &context, def_sid);
1559 	if (rc == -EINVAL && force) {
1560 		context.str = str;
1561 		context.len = strlen(str) + 1;
1562 		str = NULL;
1563 	} else if (rc)
1564 		goto out_unlock;
1565 	rc = sidtab_context_to_sid(sidtab, &context, sid);
1566 	if (rc == -ESTALE) {
1567 		rcu_read_unlock();
1568 		if (context.str) {
1569 			str = context.str;
1570 			context.str = NULL;
1571 		}
1572 		context_destroy(&context);
1573 		goto retry;
1574 	}
1575 	context_destroy(&context);
1576 out_unlock:
1577 	rcu_read_unlock();
1578 out:
1579 	kfree(scontext2);
1580 	kfree(str);
1581 	return rc;
1582 }
1583 
1584 /**
1585  * security_context_to_sid - Obtain a SID for a given security context.
1586  * @state: SELinux state
1587  * @scontext: security context
1588  * @scontext_len: length in bytes
1589  * @sid: security identifier, SID
1590  * @gfp: context for the allocation
1591  *
1592  * Obtains a SID associated with the security context that
1593  * has the string representation specified by @scontext.
1594  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1595  * memory is available, or 0 on success.
1596  */
1597 int security_context_to_sid(struct selinux_state *state,
1598 			    const char *scontext, u32 scontext_len, u32 *sid,
1599 			    gfp_t gfp)
1600 {
1601 	return security_context_to_sid_core(state, scontext, scontext_len,
1602 					    sid, SECSID_NULL, gfp, 0);
1603 }
1604 
1605 int security_context_str_to_sid(struct selinux_state *state,
1606 				const char *scontext, u32 *sid, gfp_t gfp)
1607 {
1608 	return security_context_to_sid(state, scontext, strlen(scontext),
1609 				       sid, gfp);
1610 }
1611 
1612 /**
1613  * security_context_to_sid_default - Obtain a SID for a given security context,
1614  * falling back to specified default if needed.
1615  *
1616  * @state: SELinux state
1617  * @scontext: security context
1618  * @scontext_len: length in bytes
1619  * @sid: security identifier, SID
1620  * @def_sid: default SID to assign on error
1621  * @gfp_flags: the allocator get-free-page (GFP) flags
1622  *
1623  * Obtains a SID associated with the security context that
1624  * has the string representation specified by @scontext.
1625  * The default SID is passed to the MLS layer to be used to allow
1626  * kernel labeling of the MLS field if the MLS field is not present
1627  * (for upgrading to MLS without full relabel).
1628  * Implicitly forces adding of the context even if it cannot be mapped yet.
1629  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1630  * memory is available, or 0 on success.
1631  */
1632 int security_context_to_sid_default(struct selinux_state *state,
1633 				    const char *scontext, u32 scontext_len,
1634 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1635 {
1636 	return security_context_to_sid_core(state, scontext, scontext_len,
1637 					    sid, def_sid, gfp_flags, 1);
1638 }
1639 
1640 int security_context_to_sid_force(struct selinux_state *state,
1641 				  const char *scontext, u32 scontext_len,
1642 				  u32 *sid)
1643 {
1644 	return security_context_to_sid_core(state, scontext, scontext_len,
1645 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1646 }
1647 
1648 static int compute_sid_handle_invalid_context(
1649 	struct selinux_state *state,
1650 	struct selinux_policy *policy,
1651 	struct sidtab_entry *sentry,
1652 	struct sidtab_entry *tentry,
1653 	u16 tclass,
1654 	struct context *newcontext)
1655 {
1656 	struct policydb *policydb = &policy->policydb;
1657 	struct sidtab *sidtab = policy->sidtab;
1658 	char *s = NULL, *t = NULL, *n = NULL;
1659 	u32 slen, tlen, nlen;
1660 	struct audit_buffer *ab;
1661 
1662 	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1663 		goto out;
1664 	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1665 		goto out;
1666 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1667 		goto out;
1668 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1669 	if (!ab)
1670 		goto out;
1671 	audit_log_format(ab,
1672 			 "op=security_compute_sid invalid_context=");
1673 	/* no need to record the NUL with untrusted strings */
1674 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1675 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1676 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1677 	audit_log_end(ab);
1678 out:
1679 	kfree(s);
1680 	kfree(t);
1681 	kfree(n);
1682 	if (!enforcing_enabled(state))
1683 		return 0;
1684 	return -EACCES;
1685 }
1686 
1687 static void filename_compute_type(struct policydb *policydb,
1688 				  struct context *newcontext,
1689 				  u32 stype, u32 ttype, u16 tclass,
1690 				  const char *objname)
1691 {
1692 	struct filename_trans_key ft;
1693 	struct filename_trans_datum *datum;
1694 
1695 	/*
1696 	 * Most filename trans rules are going to live in specific directories
1697 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1698 	 * if the ttype does not contain any rules.
1699 	 */
1700 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1701 		return;
1702 
1703 	ft.ttype = ttype;
1704 	ft.tclass = tclass;
1705 	ft.name = objname;
1706 
1707 	datum = policydb_filenametr_search(policydb, &ft);
1708 	while (datum) {
1709 		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1710 			newcontext->type = datum->otype;
1711 			return;
1712 		}
1713 		datum = datum->next;
1714 	}
1715 }
1716 
1717 static int security_compute_sid(struct selinux_state *state,
1718 				u32 ssid,
1719 				u32 tsid,
1720 				u16 orig_tclass,
1721 				u32 specified,
1722 				const char *objname,
1723 				u32 *out_sid,
1724 				bool kern)
1725 {
1726 	struct selinux_policy *policy;
1727 	struct policydb *policydb;
1728 	struct sidtab *sidtab;
1729 	struct class_datum *cladatum;
1730 	struct context *scontext, *tcontext, newcontext;
1731 	struct sidtab_entry *sentry, *tentry;
1732 	struct avtab_key avkey;
1733 	struct avtab_datum *avdatum;
1734 	struct avtab_node *node;
1735 	u16 tclass;
1736 	int rc = 0;
1737 	bool sock;
1738 
1739 	if (!selinux_initialized(state)) {
1740 		switch (orig_tclass) {
1741 		case SECCLASS_PROCESS: /* kernel value */
1742 			*out_sid = ssid;
1743 			break;
1744 		default:
1745 			*out_sid = tsid;
1746 			break;
1747 		}
1748 		goto out;
1749 	}
1750 
1751 retry:
1752 	cladatum = NULL;
1753 	context_init(&newcontext);
1754 
1755 	rcu_read_lock();
1756 
1757 	policy = rcu_dereference(state->policy);
1758 
1759 	if (kern) {
1760 		tclass = unmap_class(&policy->map, orig_tclass);
1761 		sock = security_is_socket_class(orig_tclass);
1762 	} else {
1763 		tclass = orig_tclass;
1764 		sock = security_is_socket_class(map_class(&policy->map,
1765 							  tclass));
1766 	}
1767 
1768 	policydb = &policy->policydb;
1769 	sidtab = policy->sidtab;
1770 
1771 	sentry = sidtab_search_entry(sidtab, ssid);
1772 	if (!sentry) {
1773 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1774 		       __func__, ssid);
1775 		rc = -EINVAL;
1776 		goto out_unlock;
1777 	}
1778 	tentry = sidtab_search_entry(sidtab, tsid);
1779 	if (!tentry) {
1780 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1781 		       __func__, tsid);
1782 		rc = -EINVAL;
1783 		goto out_unlock;
1784 	}
1785 
1786 	scontext = &sentry->context;
1787 	tcontext = &tentry->context;
1788 
1789 	if (tclass && tclass <= policydb->p_classes.nprim)
1790 		cladatum = policydb->class_val_to_struct[tclass - 1];
1791 
1792 	/* Set the user identity. */
1793 	switch (specified) {
1794 	case AVTAB_TRANSITION:
1795 	case AVTAB_CHANGE:
1796 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1797 			newcontext.user = tcontext->user;
1798 		} else {
1799 			/* notice this gets both DEFAULT_SOURCE and unset */
1800 			/* Use the process user identity. */
1801 			newcontext.user = scontext->user;
1802 		}
1803 		break;
1804 	case AVTAB_MEMBER:
1805 		/* Use the related object owner. */
1806 		newcontext.user = tcontext->user;
1807 		break;
1808 	}
1809 
1810 	/* Set the role to default values. */
1811 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1812 		newcontext.role = scontext->role;
1813 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1814 		newcontext.role = tcontext->role;
1815 	} else {
1816 		if ((tclass == policydb->process_class) || sock)
1817 			newcontext.role = scontext->role;
1818 		else
1819 			newcontext.role = OBJECT_R_VAL;
1820 	}
1821 
1822 	/* Set the type to default values. */
1823 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1824 		newcontext.type = scontext->type;
1825 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1826 		newcontext.type = tcontext->type;
1827 	} else {
1828 		if ((tclass == policydb->process_class) || sock) {
1829 			/* Use the type of process. */
1830 			newcontext.type = scontext->type;
1831 		} else {
1832 			/* Use the type of the related object. */
1833 			newcontext.type = tcontext->type;
1834 		}
1835 	}
1836 
1837 	/* Look for a type transition/member/change rule. */
1838 	avkey.source_type = scontext->type;
1839 	avkey.target_type = tcontext->type;
1840 	avkey.target_class = tclass;
1841 	avkey.specified = specified;
1842 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1843 
1844 	/* If no permanent rule, also check for enabled conditional rules */
1845 	if (!avdatum) {
1846 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1847 		for (; node; node = avtab_search_node_next(node, specified)) {
1848 			if (node->key.specified & AVTAB_ENABLED) {
1849 				avdatum = &node->datum;
1850 				break;
1851 			}
1852 		}
1853 	}
1854 
1855 	if (avdatum) {
1856 		/* Use the type from the type transition/member/change rule. */
1857 		newcontext.type = avdatum->u.data;
1858 	}
1859 
1860 	/* if we have a objname this is a file trans check so check those rules */
1861 	if (objname)
1862 		filename_compute_type(policydb, &newcontext, scontext->type,
1863 				      tcontext->type, tclass, objname);
1864 
1865 	/* Check for class-specific changes. */
1866 	if (specified & AVTAB_TRANSITION) {
1867 		/* Look for a role transition rule. */
1868 		struct role_trans_datum *rtd;
1869 		struct role_trans_key rtk = {
1870 			.role = scontext->role,
1871 			.type = tcontext->type,
1872 			.tclass = tclass,
1873 		};
1874 
1875 		rtd = policydb_roletr_search(policydb, &rtk);
1876 		if (rtd)
1877 			newcontext.role = rtd->new_role;
1878 	}
1879 
1880 	/* Set the MLS attributes.
1881 	   This is done last because it may allocate memory. */
1882 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1883 			     &newcontext, sock);
1884 	if (rc)
1885 		goto out_unlock;
1886 
1887 	/* Check the validity of the context. */
1888 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1889 		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1890 							tentry, tclass,
1891 							&newcontext);
1892 		if (rc)
1893 			goto out_unlock;
1894 	}
1895 	/* Obtain the sid for the context. */
1896 	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1897 	if (rc == -ESTALE) {
1898 		rcu_read_unlock();
1899 		context_destroy(&newcontext);
1900 		goto retry;
1901 	}
1902 out_unlock:
1903 	rcu_read_unlock();
1904 	context_destroy(&newcontext);
1905 out:
1906 	return rc;
1907 }
1908 
1909 /**
1910  * security_transition_sid - Compute the SID for a new subject/object.
1911  * @state: SELinux state
1912  * @ssid: source security identifier
1913  * @tsid: target security identifier
1914  * @tclass: target security class
1915  * @qstr: object name
1916  * @out_sid: security identifier for new subject/object
1917  *
1918  * Compute a SID to use for labeling a new subject or object in the
1919  * class @tclass based on a SID pair (@ssid, @tsid).
1920  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1921  * if insufficient memory is available, or %0 if the new SID was
1922  * computed successfully.
1923  */
1924 int security_transition_sid(struct selinux_state *state,
1925 			    u32 ssid, u32 tsid, u16 tclass,
1926 			    const struct qstr *qstr, u32 *out_sid)
1927 {
1928 	return security_compute_sid(state, ssid, tsid, tclass,
1929 				    AVTAB_TRANSITION,
1930 				    qstr ? qstr->name : NULL, out_sid, true);
1931 }
1932 
1933 int security_transition_sid_user(struct selinux_state *state,
1934 				 u32 ssid, u32 tsid, u16 tclass,
1935 				 const char *objname, u32 *out_sid)
1936 {
1937 	return security_compute_sid(state, ssid, tsid, tclass,
1938 				    AVTAB_TRANSITION,
1939 				    objname, out_sid, false);
1940 }
1941 
1942 /**
1943  * security_member_sid - Compute the SID for member selection.
1944  * @state: SELinux state
1945  * @ssid: source security identifier
1946  * @tsid: target security identifier
1947  * @tclass: target security class
1948  * @out_sid: security identifier for selected member
1949  *
1950  * Compute a SID to use when selecting a member of a polyinstantiated
1951  * object of class @tclass based on a SID pair (@ssid, @tsid).
1952  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1953  * if insufficient memory is available, or %0 if the SID was
1954  * computed successfully.
1955  */
1956 int security_member_sid(struct selinux_state *state,
1957 			u32 ssid,
1958 			u32 tsid,
1959 			u16 tclass,
1960 			u32 *out_sid)
1961 {
1962 	return security_compute_sid(state, ssid, tsid, tclass,
1963 				    AVTAB_MEMBER, NULL,
1964 				    out_sid, false);
1965 }
1966 
1967 /**
1968  * security_change_sid - Compute the SID for object relabeling.
1969  * @state: SELinux state
1970  * @ssid: source security identifier
1971  * @tsid: target security identifier
1972  * @tclass: target security class
1973  * @out_sid: security identifier for selected member
1974  *
1975  * Compute a SID to use for relabeling an object of class @tclass
1976  * based on a SID pair (@ssid, @tsid).
1977  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1978  * if insufficient memory is available, or %0 if the SID was
1979  * computed successfully.
1980  */
1981 int security_change_sid(struct selinux_state *state,
1982 			u32 ssid,
1983 			u32 tsid,
1984 			u16 tclass,
1985 			u32 *out_sid)
1986 {
1987 	return security_compute_sid(state,
1988 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1989 				    out_sid, false);
1990 }
1991 
1992 static inline int convert_context_handle_invalid_context(
1993 	struct selinux_state *state,
1994 	struct policydb *policydb,
1995 	struct context *context)
1996 {
1997 	char *s;
1998 	u32 len;
1999 
2000 	if (enforcing_enabled(state))
2001 		return -EINVAL;
2002 
2003 	if (!context_struct_to_string(policydb, context, &s, &len)) {
2004 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2005 			s);
2006 		kfree(s);
2007 	}
2008 	return 0;
2009 }
2010 
2011 /**
2012  * services_convert_context - Convert a security context across policies.
2013  * @args: populated convert_context_args struct
2014  * @oldc: original context
2015  * @newc: converted context
2016  *
2017  * Convert the values in the security context structure @oldc from the values
2018  * specified in the policy @args->oldp to the values specified in the policy
2019  * @args->newp, storing the new context in @newc, and verifying that the
2020  * context is valid under the new policy.
2021  */
2022 int services_convert_context(struct convert_context_args *args,
2023 			     struct context *oldc, struct context *newc)
2024 {
2025 	struct ocontext *oc;
2026 	struct role_datum *role;
2027 	struct type_datum *typdatum;
2028 	struct user_datum *usrdatum;
2029 	char *s;
2030 	u32 len;
2031 	int rc;
2032 
2033 	if (oldc->str) {
2034 		s = kstrdup(oldc->str, GFP_KERNEL);
2035 		if (!s)
2036 			return -ENOMEM;
2037 
2038 		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2039 		if (rc == -EINVAL) {
2040 			/*
2041 			 * Retain string representation for later mapping.
2042 			 *
2043 			 * IMPORTANT: We need to copy the contents of oldc->str
2044 			 * back into s again because string_to_context_struct()
2045 			 * may have garbled it.
2046 			 */
2047 			memcpy(s, oldc->str, oldc->len);
2048 			context_init(newc);
2049 			newc->str = s;
2050 			newc->len = oldc->len;
2051 			return 0;
2052 		}
2053 		kfree(s);
2054 		if (rc) {
2055 			/* Other error condition, e.g. ENOMEM. */
2056 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2057 			       oldc->str, -rc);
2058 			return rc;
2059 		}
2060 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2061 			oldc->str);
2062 		return 0;
2063 	}
2064 
2065 	context_init(newc);
2066 
2067 	/* Convert the user. */
2068 	usrdatum = symtab_search(&args->newp->p_users,
2069 				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2070 	if (!usrdatum)
2071 		goto bad;
2072 	newc->user = usrdatum->value;
2073 
2074 	/* Convert the role. */
2075 	role = symtab_search(&args->newp->p_roles,
2076 			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2077 	if (!role)
2078 		goto bad;
2079 	newc->role = role->value;
2080 
2081 	/* Convert the type. */
2082 	typdatum = symtab_search(&args->newp->p_types,
2083 				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2084 	if (!typdatum)
2085 		goto bad;
2086 	newc->type = typdatum->value;
2087 
2088 	/* Convert the MLS fields if dealing with MLS policies */
2089 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2090 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2091 		if (rc)
2092 			goto bad;
2093 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2094 		/*
2095 		 * Switching between non-MLS and MLS policy:
2096 		 * ensure that the MLS fields of the context for all
2097 		 * existing entries in the sidtab are filled in with a
2098 		 * suitable default value, likely taken from one of the
2099 		 * initial SIDs.
2100 		 */
2101 		oc = args->newp->ocontexts[OCON_ISID];
2102 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2103 			oc = oc->next;
2104 		if (!oc) {
2105 			pr_err("SELinux:  unable to look up"
2106 				" the initial SIDs list\n");
2107 			goto bad;
2108 		}
2109 		rc = mls_range_set(newc, &oc->context[0].range);
2110 		if (rc)
2111 			goto bad;
2112 	}
2113 
2114 	/* Check the validity of the new context. */
2115 	if (!policydb_context_isvalid(args->newp, newc)) {
2116 		rc = convert_context_handle_invalid_context(args->state,
2117 							    args->oldp, oldc);
2118 		if (rc)
2119 			goto bad;
2120 	}
2121 
2122 	return 0;
2123 bad:
2124 	/* Map old representation to string and save it. */
2125 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2126 	if (rc)
2127 		return rc;
2128 	context_destroy(newc);
2129 	newc->str = s;
2130 	newc->len = len;
2131 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2132 		newc->str);
2133 	return 0;
2134 }
2135 
2136 static void security_load_policycaps(struct selinux_state *state,
2137 				struct selinux_policy *policy)
2138 {
2139 	struct policydb *p;
2140 	unsigned int i;
2141 	struct ebitmap_node *node;
2142 
2143 	p = &policy->policydb;
2144 
2145 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2146 		WRITE_ONCE(state->policycap[i],
2147 			ebitmap_get_bit(&p->policycaps, i));
2148 
2149 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2150 		pr_info("SELinux:  policy capability %s=%d\n",
2151 			selinux_policycap_names[i],
2152 			ebitmap_get_bit(&p->policycaps, i));
2153 
2154 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2155 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2156 			pr_info("SELinux:  unknown policy capability %u\n",
2157 				i);
2158 	}
2159 }
2160 
2161 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2162 				struct selinux_policy *newpolicy);
2163 
2164 static void selinux_policy_free(struct selinux_policy *policy)
2165 {
2166 	if (!policy)
2167 		return;
2168 
2169 	sidtab_destroy(policy->sidtab);
2170 	kfree(policy->map.mapping);
2171 	policydb_destroy(&policy->policydb);
2172 	kfree(policy->sidtab);
2173 	kfree(policy);
2174 }
2175 
2176 static void selinux_policy_cond_free(struct selinux_policy *policy)
2177 {
2178 	cond_policydb_destroy_dup(&policy->policydb);
2179 	kfree(policy);
2180 }
2181 
2182 void selinux_policy_cancel(struct selinux_state *state,
2183 			   struct selinux_load_state *load_state)
2184 {
2185 	struct selinux_policy *oldpolicy;
2186 
2187 	oldpolicy = rcu_dereference_protected(state->policy,
2188 					lockdep_is_held(&state->policy_mutex));
2189 
2190 	sidtab_cancel_convert(oldpolicy->sidtab);
2191 	selinux_policy_free(load_state->policy);
2192 	kfree(load_state->convert_data);
2193 }
2194 
2195 static void selinux_notify_policy_change(struct selinux_state *state,
2196 					u32 seqno)
2197 {
2198 	/* Flush external caches and notify userspace of policy load */
2199 	avc_ss_reset(state->avc, seqno);
2200 	selnl_notify_policyload(seqno);
2201 	selinux_status_update_policyload(state, seqno);
2202 	selinux_netlbl_cache_invalidate();
2203 	selinux_xfrm_notify_policyload();
2204 	selinux_ima_measure_state_locked(state);
2205 }
2206 
2207 void selinux_policy_commit(struct selinux_state *state,
2208 			   struct selinux_load_state *load_state)
2209 {
2210 	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2211 	unsigned long flags;
2212 	u32 seqno;
2213 
2214 	oldpolicy = rcu_dereference_protected(state->policy,
2215 					lockdep_is_held(&state->policy_mutex));
2216 
2217 	/* If switching between different policy types, log MLS status */
2218 	if (oldpolicy) {
2219 		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2220 			pr_info("SELinux: Disabling MLS support...\n");
2221 		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2222 			pr_info("SELinux: Enabling MLS support...\n");
2223 	}
2224 
2225 	/* Set latest granting seqno for new policy. */
2226 	if (oldpolicy)
2227 		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2228 	else
2229 		newpolicy->latest_granting = 1;
2230 	seqno = newpolicy->latest_granting;
2231 
2232 	/* Install the new policy. */
2233 	if (oldpolicy) {
2234 		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2235 		rcu_assign_pointer(state->policy, newpolicy);
2236 		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2237 	} else {
2238 		rcu_assign_pointer(state->policy, newpolicy);
2239 	}
2240 
2241 	/* Load the policycaps from the new policy */
2242 	security_load_policycaps(state, newpolicy);
2243 
2244 	if (!selinux_initialized(state)) {
2245 		/*
2246 		 * After first policy load, the security server is
2247 		 * marked as initialized and ready to handle requests and
2248 		 * any objects created prior to policy load are then labeled.
2249 		 */
2250 		selinux_mark_initialized(state);
2251 		selinux_complete_init();
2252 	}
2253 
2254 	/* Free the old policy */
2255 	synchronize_rcu();
2256 	selinux_policy_free(oldpolicy);
2257 	kfree(load_state->convert_data);
2258 
2259 	/* Notify others of the policy change */
2260 	selinux_notify_policy_change(state, seqno);
2261 }
2262 
2263 /**
2264  * security_load_policy - Load a security policy configuration.
2265  * @state: SELinux state
2266  * @data: binary policy data
2267  * @len: length of data in bytes
2268  * @load_state: policy load state
2269  *
2270  * Load a new set of security policy configuration data,
2271  * validate it and convert the SID table as necessary.
2272  * This function will flush the access vector cache after
2273  * loading the new policy.
2274  */
2275 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2276 			 struct selinux_load_state *load_state)
2277 {
2278 	struct selinux_policy *newpolicy, *oldpolicy;
2279 	struct selinux_policy_convert_data *convert_data;
2280 	int rc = 0;
2281 	struct policy_file file = { data, len }, *fp = &file;
2282 
2283 	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2284 	if (!newpolicy)
2285 		return -ENOMEM;
2286 
2287 	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2288 	if (!newpolicy->sidtab) {
2289 		rc = -ENOMEM;
2290 		goto err_policy;
2291 	}
2292 
2293 	rc = policydb_read(&newpolicy->policydb, fp);
2294 	if (rc)
2295 		goto err_sidtab;
2296 
2297 	newpolicy->policydb.len = len;
2298 	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2299 				&newpolicy->map);
2300 	if (rc)
2301 		goto err_policydb;
2302 
2303 	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2304 	if (rc) {
2305 		pr_err("SELinux:  unable to load the initial SIDs\n");
2306 		goto err_mapping;
2307 	}
2308 
2309 	if (!selinux_initialized(state)) {
2310 		/* First policy load, so no need to preserve state from old policy */
2311 		load_state->policy = newpolicy;
2312 		load_state->convert_data = NULL;
2313 		return 0;
2314 	}
2315 
2316 	oldpolicy = rcu_dereference_protected(state->policy,
2317 					lockdep_is_held(&state->policy_mutex));
2318 
2319 	/* Preserve active boolean values from the old policy */
2320 	rc = security_preserve_bools(oldpolicy, newpolicy);
2321 	if (rc) {
2322 		pr_err("SELinux:  unable to preserve booleans\n");
2323 		goto err_free_isids;
2324 	}
2325 
2326 	/*
2327 	 * Convert the internal representations of contexts
2328 	 * in the new SID table.
2329 	 */
2330 
2331 	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2332 	if (!convert_data) {
2333 		rc = -ENOMEM;
2334 		goto err_free_isids;
2335 	}
2336 
2337 	convert_data->args.state = state;
2338 	convert_data->args.oldp = &oldpolicy->policydb;
2339 	convert_data->args.newp = &newpolicy->policydb;
2340 
2341 	convert_data->sidtab_params.args = &convert_data->args;
2342 	convert_data->sidtab_params.target = newpolicy->sidtab;
2343 
2344 	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2345 	if (rc) {
2346 		pr_err("SELinux:  unable to convert the internal"
2347 			" representation of contexts in the new SID"
2348 			" table\n");
2349 		goto err_free_convert_data;
2350 	}
2351 
2352 	load_state->policy = newpolicy;
2353 	load_state->convert_data = convert_data;
2354 	return 0;
2355 
2356 err_free_convert_data:
2357 	kfree(convert_data);
2358 err_free_isids:
2359 	sidtab_destroy(newpolicy->sidtab);
2360 err_mapping:
2361 	kfree(newpolicy->map.mapping);
2362 err_policydb:
2363 	policydb_destroy(&newpolicy->policydb);
2364 err_sidtab:
2365 	kfree(newpolicy->sidtab);
2366 err_policy:
2367 	kfree(newpolicy);
2368 
2369 	return rc;
2370 }
2371 
2372 /**
2373  * ocontext_to_sid - Helper to safely get sid for an ocontext
2374  * @sidtab: SID table
2375  * @c: ocontext structure
2376  * @index: index of the context entry (0 or 1)
2377  * @out_sid: pointer to the resulting SID value
2378  *
2379  * For all ocontexts except OCON_ISID the SID fields are populated
2380  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2381  * operation, this helper must be used to do that safely.
2382  *
2383  * WARNING: This function may return -ESTALE, indicating that the caller
2384  * must retry the operation after re-acquiring the policy pointer!
2385  */
2386 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2387 			   size_t index, u32 *out_sid)
2388 {
2389 	int rc;
2390 	u32 sid;
2391 
2392 	/* Ensure the associated sidtab entry is visible to this thread. */
2393 	sid = smp_load_acquire(&c->sid[index]);
2394 	if (!sid) {
2395 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2396 		if (rc)
2397 			return rc;
2398 
2399 		/*
2400 		 * Ensure the new sidtab entry is visible to other threads
2401 		 * when they see the SID.
2402 		 */
2403 		smp_store_release(&c->sid[index], sid);
2404 	}
2405 	*out_sid = sid;
2406 	return 0;
2407 }
2408 
2409 /**
2410  * security_port_sid - Obtain the SID for a port.
2411  * @state: SELinux state
2412  * @protocol: protocol number
2413  * @port: port number
2414  * @out_sid: security identifier
2415  */
2416 int security_port_sid(struct selinux_state *state,
2417 		      u8 protocol, u16 port, u32 *out_sid)
2418 {
2419 	struct selinux_policy *policy;
2420 	struct policydb *policydb;
2421 	struct sidtab *sidtab;
2422 	struct ocontext *c;
2423 	int rc;
2424 
2425 	if (!selinux_initialized(state)) {
2426 		*out_sid = SECINITSID_PORT;
2427 		return 0;
2428 	}
2429 
2430 retry:
2431 	rc = 0;
2432 	rcu_read_lock();
2433 	policy = rcu_dereference(state->policy);
2434 	policydb = &policy->policydb;
2435 	sidtab = policy->sidtab;
2436 
2437 	c = policydb->ocontexts[OCON_PORT];
2438 	while (c) {
2439 		if (c->u.port.protocol == protocol &&
2440 		    c->u.port.low_port <= port &&
2441 		    c->u.port.high_port >= port)
2442 			break;
2443 		c = c->next;
2444 	}
2445 
2446 	if (c) {
2447 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2448 		if (rc == -ESTALE) {
2449 			rcu_read_unlock();
2450 			goto retry;
2451 		}
2452 		if (rc)
2453 			goto out;
2454 	} else {
2455 		*out_sid = SECINITSID_PORT;
2456 	}
2457 
2458 out:
2459 	rcu_read_unlock();
2460 	return rc;
2461 }
2462 
2463 /**
2464  * security_ib_pkey_sid - Obtain the SID for a pkey.
2465  * @state: SELinux state
2466  * @subnet_prefix: Subnet Prefix
2467  * @pkey_num: pkey number
2468  * @out_sid: security identifier
2469  */
2470 int security_ib_pkey_sid(struct selinux_state *state,
2471 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2472 {
2473 	struct selinux_policy *policy;
2474 	struct policydb *policydb;
2475 	struct sidtab *sidtab;
2476 	struct ocontext *c;
2477 	int rc;
2478 
2479 	if (!selinux_initialized(state)) {
2480 		*out_sid = SECINITSID_UNLABELED;
2481 		return 0;
2482 	}
2483 
2484 retry:
2485 	rc = 0;
2486 	rcu_read_lock();
2487 	policy = rcu_dereference(state->policy);
2488 	policydb = &policy->policydb;
2489 	sidtab = policy->sidtab;
2490 
2491 	c = policydb->ocontexts[OCON_IBPKEY];
2492 	while (c) {
2493 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2494 		    c->u.ibpkey.high_pkey >= pkey_num &&
2495 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2496 			break;
2497 
2498 		c = c->next;
2499 	}
2500 
2501 	if (c) {
2502 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2503 		if (rc == -ESTALE) {
2504 			rcu_read_unlock();
2505 			goto retry;
2506 		}
2507 		if (rc)
2508 			goto out;
2509 	} else
2510 		*out_sid = SECINITSID_UNLABELED;
2511 
2512 out:
2513 	rcu_read_unlock();
2514 	return rc;
2515 }
2516 
2517 /**
2518  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2519  * @state: SELinux state
2520  * @dev_name: device name
2521  * @port_num: port number
2522  * @out_sid: security identifier
2523  */
2524 int security_ib_endport_sid(struct selinux_state *state,
2525 			    const char *dev_name, u8 port_num, u32 *out_sid)
2526 {
2527 	struct selinux_policy *policy;
2528 	struct policydb *policydb;
2529 	struct sidtab *sidtab;
2530 	struct ocontext *c;
2531 	int rc;
2532 
2533 	if (!selinux_initialized(state)) {
2534 		*out_sid = SECINITSID_UNLABELED;
2535 		return 0;
2536 	}
2537 
2538 retry:
2539 	rc = 0;
2540 	rcu_read_lock();
2541 	policy = rcu_dereference(state->policy);
2542 	policydb = &policy->policydb;
2543 	sidtab = policy->sidtab;
2544 
2545 	c = policydb->ocontexts[OCON_IBENDPORT];
2546 	while (c) {
2547 		if (c->u.ibendport.port == port_num &&
2548 		    !strncmp(c->u.ibendport.dev_name,
2549 			     dev_name,
2550 			     IB_DEVICE_NAME_MAX))
2551 			break;
2552 
2553 		c = c->next;
2554 	}
2555 
2556 	if (c) {
2557 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2558 		if (rc == -ESTALE) {
2559 			rcu_read_unlock();
2560 			goto retry;
2561 		}
2562 		if (rc)
2563 			goto out;
2564 	} else
2565 		*out_sid = SECINITSID_UNLABELED;
2566 
2567 out:
2568 	rcu_read_unlock();
2569 	return rc;
2570 }
2571 
2572 /**
2573  * security_netif_sid - Obtain the SID for a network interface.
2574  * @state: SELinux state
2575  * @name: interface name
2576  * @if_sid: interface SID
2577  */
2578 int security_netif_sid(struct selinux_state *state,
2579 		       char *name, u32 *if_sid)
2580 {
2581 	struct selinux_policy *policy;
2582 	struct policydb *policydb;
2583 	struct sidtab *sidtab;
2584 	int rc;
2585 	struct ocontext *c;
2586 
2587 	if (!selinux_initialized(state)) {
2588 		*if_sid = SECINITSID_NETIF;
2589 		return 0;
2590 	}
2591 
2592 retry:
2593 	rc = 0;
2594 	rcu_read_lock();
2595 	policy = rcu_dereference(state->policy);
2596 	policydb = &policy->policydb;
2597 	sidtab = policy->sidtab;
2598 
2599 	c = policydb->ocontexts[OCON_NETIF];
2600 	while (c) {
2601 		if (strcmp(name, c->u.name) == 0)
2602 			break;
2603 		c = c->next;
2604 	}
2605 
2606 	if (c) {
2607 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2608 		if (rc == -ESTALE) {
2609 			rcu_read_unlock();
2610 			goto retry;
2611 		}
2612 		if (rc)
2613 			goto out;
2614 	} else
2615 		*if_sid = SECINITSID_NETIF;
2616 
2617 out:
2618 	rcu_read_unlock();
2619 	return rc;
2620 }
2621 
2622 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2623 {
2624 	int i, fail = 0;
2625 
2626 	for (i = 0; i < 4; i++)
2627 		if (addr[i] != (input[i] & mask[i])) {
2628 			fail = 1;
2629 			break;
2630 		}
2631 
2632 	return !fail;
2633 }
2634 
2635 /**
2636  * security_node_sid - Obtain the SID for a node (host).
2637  * @state: SELinux state
2638  * @domain: communication domain aka address family
2639  * @addrp: address
2640  * @addrlen: address length in bytes
2641  * @out_sid: security identifier
2642  */
2643 int security_node_sid(struct selinux_state *state,
2644 		      u16 domain,
2645 		      void *addrp,
2646 		      u32 addrlen,
2647 		      u32 *out_sid)
2648 {
2649 	struct selinux_policy *policy;
2650 	struct policydb *policydb;
2651 	struct sidtab *sidtab;
2652 	int rc;
2653 	struct ocontext *c;
2654 
2655 	if (!selinux_initialized(state)) {
2656 		*out_sid = SECINITSID_NODE;
2657 		return 0;
2658 	}
2659 
2660 retry:
2661 	rcu_read_lock();
2662 	policy = rcu_dereference(state->policy);
2663 	policydb = &policy->policydb;
2664 	sidtab = policy->sidtab;
2665 
2666 	switch (domain) {
2667 	case AF_INET: {
2668 		u32 addr;
2669 
2670 		rc = -EINVAL;
2671 		if (addrlen != sizeof(u32))
2672 			goto out;
2673 
2674 		addr = *((u32 *)addrp);
2675 
2676 		c = policydb->ocontexts[OCON_NODE];
2677 		while (c) {
2678 			if (c->u.node.addr == (addr & c->u.node.mask))
2679 				break;
2680 			c = c->next;
2681 		}
2682 		break;
2683 	}
2684 
2685 	case AF_INET6:
2686 		rc = -EINVAL;
2687 		if (addrlen != sizeof(u64) * 2)
2688 			goto out;
2689 		c = policydb->ocontexts[OCON_NODE6];
2690 		while (c) {
2691 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2692 						c->u.node6.mask))
2693 				break;
2694 			c = c->next;
2695 		}
2696 		break;
2697 
2698 	default:
2699 		rc = 0;
2700 		*out_sid = SECINITSID_NODE;
2701 		goto out;
2702 	}
2703 
2704 	if (c) {
2705 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2706 		if (rc == -ESTALE) {
2707 			rcu_read_unlock();
2708 			goto retry;
2709 		}
2710 		if (rc)
2711 			goto out;
2712 	} else {
2713 		*out_sid = SECINITSID_NODE;
2714 	}
2715 
2716 	rc = 0;
2717 out:
2718 	rcu_read_unlock();
2719 	return rc;
2720 }
2721 
2722 #define SIDS_NEL 25
2723 
2724 /**
2725  * security_get_user_sids - Obtain reachable SIDs for a user.
2726  * @state: SELinux state
2727  * @fromsid: starting SID
2728  * @username: username
2729  * @sids: array of reachable SIDs for user
2730  * @nel: number of elements in @sids
2731  *
2732  * Generate the set of SIDs for legal security contexts
2733  * for a given user that can be reached by @fromsid.
2734  * Set *@sids to point to a dynamically allocated
2735  * array containing the set of SIDs.  Set *@nel to the
2736  * number of elements in the array.
2737  */
2738 
2739 int security_get_user_sids(struct selinux_state *state,
2740 			   u32 fromsid,
2741 			   char *username,
2742 			   u32 **sids,
2743 			   u32 *nel)
2744 {
2745 	struct selinux_policy *policy;
2746 	struct policydb *policydb;
2747 	struct sidtab *sidtab;
2748 	struct context *fromcon, usercon;
2749 	u32 *mysids = NULL, *mysids2, sid;
2750 	u32 i, j, mynel, maxnel = SIDS_NEL;
2751 	struct user_datum *user;
2752 	struct role_datum *role;
2753 	struct ebitmap_node *rnode, *tnode;
2754 	int rc;
2755 
2756 	*sids = NULL;
2757 	*nel = 0;
2758 
2759 	if (!selinux_initialized(state))
2760 		return 0;
2761 
2762 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2763 	if (!mysids)
2764 		return -ENOMEM;
2765 
2766 retry:
2767 	mynel = 0;
2768 	rcu_read_lock();
2769 	policy = rcu_dereference(state->policy);
2770 	policydb = &policy->policydb;
2771 	sidtab = policy->sidtab;
2772 
2773 	context_init(&usercon);
2774 
2775 	rc = -EINVAL;
2776 	fromcon = sidtab_search(sidtab, fromsid);
2777 	if (!fromcon)
2778 		goto out_unlock;
2779 
2780 	rc = -EINVAL;
2781 	user = symtab_search(&policydb->p_users, username);
2782 	if (!user)
2783 		goto out_unlock;
2784 
2785 	usercon.user = user->value;
2786 
2787 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2788 		role = policydb->role_val_to_struct[i];
2789 		usercon.role = i + 1;
2790 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2791 			usercon.type = j + 1;
2792 
2793 			if (mls_setup_user_range(policydb, fromcon, user,
2794 						 &usercon))
2795 				continue;
2796 
2797 			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2798 			if (rc == -ESTALE) {
2799 				rcu_read_unlock();
2800 				goto retry;
2801 			}
2802 			if (rc)
2803 				goto out_unlock;
2804 			if (mynel < maxnel) {
2805 				mysids[mynel++] = sid;
2806 			} else {
2807 				rc = -ENOMEM;
2808 				maxnel += SIDS_NEL;
2809 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2810 				if (!mysids2)
2811 					goto out_unlock;
2812 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2813 				kfree(mysids);
2814 				mysids = mysids2;
2815 				mysids[mynel++] = sid;
2816 			}
2817 		}
2818 	}
2819 	rc = 0;
2820 out_unlock:
2821 	rcu_read_unlock();
2822 	if (rc || !mynel) {
2823 		kfree(mysids);
2824 		return rc;
2825 	}
2826 
2827 	rc = -ENOMEM;
2828 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2829 	if (!mysids2) {
2830 		kfree(mysids);
2831 		return rc;
2832 	}
2833 	for (i = 0, j = 0; i < mynel; i++) {
2834 		struct av_decision dummy_avd;
2835 		rc = avc_has_perm_noaudit(state,
2836 					  fromsid, mysids[i],
2837 					  SECCLASS_PROCESS, /* kernel value */
2838 					  PROCESS__TRANSITION, AVC_STRICT,
2839 					  &dummy_avd);
2840 		if (!rc)
2841 			mysids2[j++] = mysids[i];
2842 		cond_resched();
2843 	}
2844 	kfree(mysids);
2845 	*sids = mysids2;
2846 	*nel = j;
2847 	return 0;
2848 }
2849 
2850 /**
2851  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2852  * @policy: policy
2853  * @fstype: filesystem type
2854  * @path: path from root of mount
2855  * @orig_sclass: file security class
2856  * @sid: SID for path
2857  *
2858  * Obtain a SID to use for a file in a filesystem that
2859  * cannot support xattr or use a fixed labeling behavior like
2860  * transition SIDs or task SIDs.
2861  *
2862  * WARNING: This function may return -ESTALE, indicating that the caller
2863  * must retry the operation after re-acquiring the policy pointer!
2864  */
2865 static inline int __security_genfs_sid(struct selinux_policy *policy,
2866 				       const char *fstype,
2867 				       const char *path,
2868 				       u16 orig_sclass,
2869 				       u32 *sid)
2870 {
2871 	struct policydb *policydb = &policy->policydb;
2872 	struct sidtab *sidtab = policy->sidtab;
2873 	int len;
2874 	u16 sclass;
2875 	struct genfs *genfs;
2876 	struct ocontext *c;
2877 	int cmp = 0;
2878 
2879 	while (path[0] == '/' && path[1] == '/')
2880 		path++;
2881 
2882 	sclass = unmap_class(&policy->map, orig_sclass);
2883 	*sid = SECINITSID_UNLABELED;
2884 
2885 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2886 		cmp = strcmp(fstype, genfs->fstype);
2887 		if (cmp <= 0)
2888 			break;
2889 	}
2890 
2891 	if (!genfs || cmp)
2892 		return -ENOENT;
2893 
2894 	for (c = genfs->head; c; c = c->next) {
2895 		len = strlen(c->u.name);
2896 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2897 		    (strncmp(c->u.name, path, len) == 0))
2898 			break;
2899 	}
2900 
2901 	if (!c)
2902 		return -ENOENT;
2903 
2904 	return ocontext_to_sid(sidtab, c, 0, sid);
2905 }
2906 
2907 /**
2908  * security_genfs_sid - Obtain a SID for a file in a filesystem
2909  * @state: SELinux state
2910  * @fstype: filesystem type
2911  * @path: path from root of mount
2912  * @orig_sclass: file security class
2913  * @sid: SID for path
2914  *
2915  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2916  * it afterward.
2917  */
2918 int security_genfs_sid(struct selinux_state *state,
2919 		       const char *fstype,
2920 		       const char *path,
2921 		       u16 orig_sclass,
2922 		       u32 *sid)
2923 {
2924 	struct selinux_policy *policy;
2925 	int retval;
2926 
2927 	if (!selinux_initialized(state)) {
2928 		*sid = SECINITSID_UNLABELED;
2929 		return 0;
2930 	}
2931 
2932 	do {
2933 		rcu_read_lock();
2934 		policy = rcu_dereference(state->policy);
2935 		retval = __security_genfs_sid(policy, fstype, path,
2936 					      orig_sclass, sid);
2937 		rcu_read_unlock();
2938 	} while (retval == -ESTALE);
2939 	return retval;
2940 }
2941 
2942 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2943 			const char *fstype,
2944 			const char *path,
2945 			u16 orig_sclass,
2946 			u32 *sid)
2947 {
2948 	/* no lock required, policy is not yet accessible by other threads */
2949 	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2950 }
2951 
2952 /**
2953  * security_fs_use - Determine how to handle labeling for a filesystem.
2954  * @state: SELinux state
2955  * @sb: superblock in question
2956  */
2957 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2958 {
2959 	struct selinux_policy *policy;
2960 	struct policydb *policydb;
2961 	struct sidtab *sidtab;
2962 	int rc;
2963 	struct ocontext *c;
2964 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2965 	const char *fstype = sb->s_type->name;
2966 
2967 	if (!selinux_initialized(state)) {
2968 		sbsec->behavior = SECURITY_FS_USE_NONE;
2969 		sbsec->sid = SECINITSID_UNLABELED;
2970 		return 0;
2971 	}
2972 
2973 retry:
2974 	rcu_read_lock();
2975 	policy = rcu_dereference(state->policy);
2976 	policydb = &policy->policydb;
2977 	sidtab = policy->sidtab;
2978 
2979 	c = policydb->ocontexts[OCON_FSUSE];
2980 	while (c) {
2981 		if (strcmp(fstype, c->u.name) == 0)
2982 			break;
2983 		c = c->next;
2984 	}
2985 
2986 	if (c) {
2987 		sbsec->behavior = c->v.behavior;
2988 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2989 		if (rc == -ESTALE) {
2990 			rcu_read_unlock();
2991 			goto retry;
2992 		}
2993 		if (rc)
2994 			goto out;
2995 	} else {
2996 		rc = __security_genfs_sid(policy, fstype, "/",
2997 					SECCLASS_DIR, &sbsec->sid);
2998 		if (rc == -ESTALE) {
2999 			rcu_read_unlock();
3000 			goto retry;
3001 		}
3002 		if (rc) {
3003 			sbsec->behavior = SECURITY_FS_USE_NONE;
3004 			rc = 0;
3005 		} else {
3006 			sbsec->behavior = SECURITY_FS_USE_GENFS;
3007 		}
3008 	}
3009 
3010 out:
3011 	rcu_read_unlock();
3012 	return rc;
3013 }
3014 
3015 int security_get_bools(struct selinux_policy *policy,
3016 		       u32 *len, char ***names, int **values)
3017 {
3018 	struct policydb *policydb;
3019 	u32 i;
3020 	int rc;
3021 
3022 	policydb = &policy->policydb;
3023 
3024 	*names = NULL;
3025 	*values = NULL;
3026 
3027 	rc = 0;
3028 	*len = policydb->p_bools.nprim;
3029 	if (!*len)
3030 		goto out;
3031 
3032 	rc = -ENOMEM;
3033 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3034 	if (!*names)
3035 		goto err;
3036 
3037 	rc = -ENOMEM;
3038 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3039 	if (!*values)
3040 		goto err;
3041 
3042 	for (i = 0; i < *len; i++) {
3043 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3044 
3045 		rc = -ENOMEM;
3046 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3047 				      GFP_ATOMIC);
3048 		if (!(*names)[i])
3049 			goto err;
3050 	}
3051 	rc = 0;
3052 out:
3053 	return rc;
3054 err:
3055 	if (*names) {
3056 		for (i = 0; i < *len; i++)
3057 			kfree((*names)[i]);
3058 		kfree(*names);
3059 	}
3060 	kfree(*values);
3061 	*len = 0;
3062 	*names = NULL;
3063 	*values = NULL;
3064 	goto out;
3065 }
3066 
3067 
3068 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3069 {
3070 	struct selinux_policy *newpolicy, *oldpolicy;
3071 	int rc;
3072 	u32 i, seqno = 0;
3073 
3074 	if (!selinux_initialized(state))
3075 		return -EINVAL;
3076 
3077 	oldpolicy = rcu_dereference_protected(state->policy,
3078 					lockdep_is_held(&state->policy_mutex));
3079 
3080 	/* Consistency check on number of booleans, should never fail */
3081 	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3082 		return -EINVAL;
3083 
3084 	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3085 	if (!newpolicy)
3086 		return -ENOMEM;
3087 
3088 	/*
3089 	 * Deep copy only the parts of the policydb that might be
3090 	 * modified as a result of changing booleans.
3091 	 */
3092 	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3093 	if (rc) {
3094 		kfree(newpolicy);
3095 		return -ENOMEM;
3096 	}
3097 
3098 	/* Update the boolean states in the copy */
3099 	for (i = 0; i < len; i++) {
3100 		int new_state = !!values[i];
3101 		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3102 
3103 		if (new_state != old_state) {
3104 			audit_log(audit_context(), GFP_ATOMIC,
3105 				AUDIT_MAC_CONFIG_CHANGE,
3106 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3107 				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3108 				new_state,
3109 				old_state,
3110 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3111 				audit_get_sessionid(current));
3112 			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3113 		}
3114 	}
3115 
3116 	/* Re-evaluate the conditional rules in the copy */
3117 	evaluate_cond_nodes(&newpolicy->policydb);
3118 
3119 	/* Set latest granting seqno for new policy */
3120 	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3121 	seqno = newpolicy->latest_granting;
3122 
3123 	/* Install the new policy */
3124 	rcu_assign_pointer(state->policy, newpolicy);
3125 
3126 	/*
3127 	 * Free the conditional portions of the old policydb
3128 	 * that were copied for the new policy, and the oldpolicy
3129 	 * structure itself but not what it references.
3130 	 */
3131 	synchronize_rcu();
3132 	selinux_policy_cond_free(oldpolicy);
3133 
3134 	/* Notify others of the policy change */
3135 	selinux_notify_policy_change(state, seqno);
3136 	return 0;
3137 }
3138 
3139 int security_get_bool_value(struct selinux_state *state,
3140 			    u32 index)
3141 {
3142 	struct selinux_policy *policy;
3143 	struct policydb *policydb;
3144 	int rc;
3145 	u32 len;
3146 
3147 	if (!selinux_initialized(state))
3148 		return 0;
3149 
3150 	rcu_read_lock();
3151 	policy = rcu_dereference(state->policy);
3152 	policydb = &policy->policydb;
3153 
3154 	rc = -EFAULT;
3155 	len = policydb->p_bools.nprim;
3156 	if (index >= len)
3157 		goto out;
3158 
3159 	rc = policydb->bool_val_to_struct[index]->state;
3160 out:
3161 	rcu_read_unlock();
3162 	return rc;
3163 }
3164 
3165 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3166 				struct selinux_policy *newpolicy)
3167 {
3168 	int rc, *bvalues = NULL;
3169 	char **bnames = NULL;
3170 	struct cond_bool_datum *booldatum;
3171 	u32 i, nbools = 0;
3172 
3173 	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3174 	if (rc)
3175 		goto out;
3176 	for (i = 0; i < nbools; i++) {
3177 		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3178 					bnames[i]);
3179 		if (booldatum)
3180 			booldatum->state = bvalues[i];
3181 	}
3182 	evaluate_cond_nodes(&newpolicy->policydb);
3183 
3184 out:
3185 	if (bnames) {
3186 		for (i = 0; i < nbools; i++)
3187 			kfree(bnames[i]);
3188 	}
3189 	kfree(bnames);
3190 	kfree(bvalues);
3191 	return rc;
3192 }
3193 
3194 /*
3195  * security_sid_mls_copy() - computes a new sid based on the given
3196  * sid and the mls portion of mls_sid.
3197  */
3198 int security_sid_mls_copy(struct selinux_state *state,
3199 			  u32 sid, u32 mls_sid, u32 *new_sid)
3200 {
3201 	struct selinux_policy *policy;
3202 	struct policydb *policydb;
3203 	struct sidtab *sidtab;
3204 	struct context *context1;
3205 	struct context *context2;
3206 	struct context newcon;
3207 	char *s;
3208 	u32 len;
3209 	int rc;
3210 
3211 	if (!selinux_initialized(state)) {
3212 		*new_sid = sid;
3213 		return 0;
3214 	}
3215 
3216 retry:
3217 	rc = 0;
3218 	context_init(&newcon);
3219 
3220 	rcu_read_lock();
3221 	policy = rcu_dereference(state->policy);
3222 	policydb = &policy->policydb;
3223 	sidtab = policy->sidtab;
3224 
3225 	if (!policydb->mls_enabled) {
3226 		*new_sid = sid;
3227 		goto out_unlock;
3228 	}
3229 
3230 	rc = -EINVAL;
3231 	context1 = sidtab_search(sidtab, sid);
3232 	if (!context1) {
3233 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3234 			__func__, sid);
3235 		goto out_unlock;
3236 	}
3237 
3238 	rc = -EINVAL;
3239 	context2 = sidtab_search(sidtab, mls_sid);
3240 	if (!context2) {
3241 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3242 			__func__, mls_sid);
3243 		goto out_unlock;
3244 	}
3245 
3246 	newcon.user = context1->user;
3247 	newcon.role = context1->role;
3248 	newcon.type = context1->type;
3249 	rc = mls_context_cpy(&newcon, context2);
3250 	if (rc)
3251 		goto out_unlock;
3252 
3253 	/* Check the validity of the new context. */
3254 	if (!policydb_context_isvalid(policydb, &newcon)) {
3255 		rc = convert_context_handle_invalid_context(state, policydb,
3256 							&newcon);
3257 		if (rc) {
3258 			if (!context_struct_to_string(policydb, &newcon, &s,
3259 						      &len)) {
3260 				struct audit_buffer *ab;
3261 
3262 				ab = audit_log_start(audit_context(),
3263 						     GFP_ATOMIC,
3264 						     AUDIT_SELINUX_ERR);
3265 				audit_log_format(ab,
3266 						 "op=security_sid_mls_copy invalid_context=");
3267 				/* don't record NUL with untrusted strings */
3268 				audit_log_n_untrustedstring(ab, s, len - 1);
3269 				audit_log_end(ab);
3270 				kfree(s);
3271 			}
3272 			goto out_unlock;
3273 		}
3274 	}
3275 	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3276 	if (rc == -ESTALE) {
3277 		rcu_read_unlock();
3278 		context_destroy(&newcon);
3279 		goto retry;
3280 	}
3281 out_unlock:
3282 	rcu_read_unlock();
3283 	context_destroy(&newcon);
3284 	return rc;
3285 }
3286 
3287 /**
3288  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3289  * @state: SELinux state
3290  * @nlbl_sid: NetLabel SID
3291  * @nlbl_type: NetLabel labeling protocol type
3292  * @xfrm_sid: XFRM SID
3293  * @peer_sid: network peer sid
3294  *
3295  * Description:
3296  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3297  * resolved into a single SID it is returned via @peer_sid and the function
3298  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3299  * returns a negative value.  A table summarizing the behavior is below:
3300  *
3301  *                                 | function return |      @sid
3302  *   ------------------------------+-----------------+-----------------
3303  *   no peer labels                |        0        |    SECSID_NULL
3304  *   single peer label             |        0        |    <peer_label>
3305  *   multiple, consistent labels   |        0        |    <peer_label>
3306  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3307  *
3308  */
3309 int security_net_peersid_resolve(struct selinux_state *state,
3310 				 u32 nlbl_sid, u32 nlbl_type,
3311 				 u32 xfrm_sid,
3312 				 u32 *peer_sid)
3313 {
3314 	struct selinux_policy *policy;
3315 	struct policydb *policydb;
3316 	struct sidtab *sidtab;
3317 	int rc;
3318 	struct context *nlbl_ctx;
3319 	struct context *xfrm_ctx;
3320 
3321 	*peer_sid = SECSID_NULL;
3322 
3323 	/* handle the common (which also happens to be the set of easy) cases
3324 	 * right away, these two if statements catch everything involving a
3325 	 * single or absent peer SID/label */
3326 	if (xfrm_sid == SECSID_NULL) {
3327 		*peer_sid = nlbl_sid;
3328 		return 0;
3329 	}
3330 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3331 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3332 	 * is present */
3333 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3334 		*peer_sid = xfrm_sid;
3335 		return 0;
3336 	}
3337 
3338 	if (!selinux_initialized(state))
3339 		return 0;
3340 
3341 	rcu_read_lock();
3342 	policy = rcu_dereference(state->policy);
3343 	policydb = &policy->policydb;
3344 	sidtab = policy->sidtab;
3345 
3346 	/*
3347 	 * We don't need to check initialized here since the only way both
3348 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3349 	 * security server was initialized and state->initialized was true.
3350 	 */
3351 	if (!policydb->mls_enabled) {
3352 		rc = 0;
3353 		goto out;
3354 	}
3355 
3356 	rc = -EINVAL;
3357 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3358 	if (!nlbl_ctx) {
3359 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3360 		       __func__, nlbl_sid);
3361 		goto out;
3362 	}
3363 	rc = -EINVAL;
3364 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3365 	if (!xfrm_ctx) {
3366 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3367 		       __func__, xfrm_sid);
3368 		goto out;
3369 	}
3370 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3371 	if (rc)
3372 		goto out;
3373 
3374 	/* at present NetLabel SIDs/labels really only carry MLS
3375 	 * information so if the MLS portion of the NetLabel SID
3376 	 * matches the MLS portion of the labeled XFRM SID/label
3377 	 * then pass along the XFRM SID as it is the most
3378 	 * expressive */
3379 	*peer_sid = xfrm_sid;
3380 out:
3381 	rcu_read_unlock();
3382 	return rc;
3383 }
3384 
3385 static int get_classes_callback(void *k, void *d, void *args)
3386 {
3387 	struct class_datum *datum = d;
3388 	char *name = k, **classes = args;
3389 	int value = datum->value - 1;
3390 
3391 	classes[value] = kstrdup(name, GFP_ATOMIC);
3392 	if (!classes[value])
3393 		return -ENOMEM;
3394 
3395 	return 0;
3396 }
3397 
3398 int security_get_classes(struct selinux_policy *policy,
3399 			 char ***classes, int *nclasses)
3400 {
3401 	struct policydb *policydb;
3402 	int rc;
3403 
3404 	policydb = &policy->policydb;
3405 
3406 	rc = -ENOMEM;
3407 	*nclasses = policydb->p_classes.nprim;
3408 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3409 	if (!*classes)
3410 		goto out;
3411 
3412 	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3413 			 *classes);
3414 	if (rc) {
3415 		int i;
3416 		for (i = 0; i < *nclasses; i++)
3417 			kfree((*classes)[i]);
3418 		kfree(*classes);
3419 	}
3420 
3421 out:
3422 	return rc;
3423 }
3424 
3425 static int get_permissions_callback(void *k, void *d, void *args)
3426 {
3427 	struct perm_datum *datum = d;
3428 	char *name = k, **perms = args;
3429 	int value = datum->value - 1;
3430 
3431 	perms[value] = kstrdup(name, GFP_ATOMIC);
3432 	if (!perms[value])
3433 		return -ENOMEM;
3434 
3435 	return 0;
3436 }
3437 
3438 int security_get_permissions(struct selinux_policy *policy,
3439 			     char *class, char ***perms, int *nperms)
3440 {
3441 	struct policydb *policydb;
3442 	int rc, i;
3443 	struct class_datum *match;
3444 
3445 	policydb = &policy->policydb;
3446 
3447 	rc = -EINVAL;
3448 	match = symtab_search(&policydb->p_classes, class);
3449 	if (!match) {
3450 		pr_err("SELinux: %s:  unrecognized class %s\n",
3451 			__func__, class);
3452 		goto out;
3453 	}
3454 
3455 	rc = -ENOMEM;
3456 	*nperms = match->permissions.nprim;
3457 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3458 	if (!*perms)
3459 		goto out;
3460 
3461 	if (match->comdatum) {
3462 		rc = hashtab_map(&match->comdatum->permissions.table,
3463 				 get_permissions_callback, *perms);
3464 		if (rc)
3465 			goto err;
3466 	}
3467 
3468 	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3469 			 *perms);
3470 	if (rc)
3471 		goto err;
3472 
3473 out:
3474 	return rc;
3475 
3476 err:
3477 	for (i = 0; i < *nperms; i++)
3478 		kfree((*perms)[i]);
3479 	kfree(*perms);
3480 	return rc;
3481 }
3482 
3483 int security_get_reject_unknown(struct selinux_state *state)
3484 {
3485 	struct selinux_policy *policy;
3486 	int value;
3487 
3488 	if (!selinux_initialized(state))
3489 		return 0;
3490 
3491 	rcu_read_lock();
3492 	policy = rcu_dereference(state->policy);
3493 	value = policy->policydb.reject_unknown;
3494 	rcu_read_unlock();
3495 	return value;
3496 }
3497 
3498 int security_get_allow_unknown(struct selinux_state *state)
3499 {
3500 	struct selinux_policy *policy;
3501 	int value;
3502 
3503 	if (!selinux_initialized(state))
3504 		return 0;
3505 
3506 	rcu_read_lock();
3507 	policy = rcu_dereference(state->policy);
3508 	value = policy->policydb.allow_unknown;
3509 	rcu_read_unlock();
3510 	return value;
3511 }
3512 
3513 /**
3514  * security_policycap_supported - Check for a specific policy capability
3515  * @state: SELinux state
3516  * @req_cap: capability
3517  *
3518  * Description:
3519  * This function queries the currently loaded policy to see if it supports the
3520  * capability specified by @req_cap.  Returns true (1) if the capability is
3521  * supported, false (0) if it isn't supported.
3522  *
3523  */
3524 int security_policycap_supported(struct selinux_state *state,
3525 				 unsigned int req_cap)
3526 {
3527 	struct selinux_policy *policy;
3528 	int rc;
3529 
3530 	if (!selinux_initialized(state))
3531 		return 0;
3532 
3533 	rcu_read_lock();
3534 	policy = rcu_dereference(state->policy);
3535 	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3536 	rcu_read_unlock();
3537 
3538 	return rc;
3539 }
3540 
3541 struct selinux_audit_rule {
3542 	u32 au_seqno;
3543 	struct context au_ctxt;
3544 };
3545 
3546 void selinux_audit_rule_free(void *vrule)
3547 {
3548 	struct selinux_audit_rule *rule = vrule;
3549 
3550 	if (rule) {
3551 		context_destroy(&rule->au_ctxt);
3552 		kfree(rule);
3553 	}
3554 }
3555 
3556 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3557 {
3558 	struct selinux_state *state = &selinux_state;
3559 	struct selinux_policy *policy;
3560 	struct policydb *policydb;
3561 	struct selinux_audit_rule *tmprule;
3562 	struct role_datum *roledatum;
3563 	struct type_datum *typedatum;
3564 	struct user_datum *userdatum;
3565 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3566 	int rc = 0;
3567 
3568 	*rule = NULL;
3569 
3570 	if (!selinux_initialized(state))
3571 		return -EOPNOTSUPP;
3572 
3573 	switch (field) {
3574 	case AUDIT_SUBJ_USER:
3575 	case AUDIT_SUBJ_ROLE:
3576 	case AUDIT_SUBJ_TYPE:
3577 	case AUDIT_OBJ_USER:
3578 	case AUDIT_OBJ_ROLE:
3579 	case AUDIT_OBJ_TYPE:
3580 		/* only 'equals' and 'not equals' fit user, role, and type */
3581 		if (op != Audit_equal && op != Audit_not_equal)
3582 			return -EINVAL;
3583 		break;
3584 	case AUDIT_SUBJ_SEN:
3585 	case AUDIT_SUBJ_CLR:
3586 	case AUDIT_OBJ_LEV_LOW:
3587 	case AUDIT_OBJ_LEV_HIGH:
3588 		/* we do not allow a range, indicated by the presence of '-' */
3589 		if (strchr(rulestr, '-'))
3590 			return -EINVAL;
3591 		break;
3592 	default:
3593 		/* only the above fields are valid */
3594 		return -EINVAL;
3595 	}
3596 
3597 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3598 	if (!tmprule)
3599 		return -ENOMEM;
3600 
3601 	context_init(&tmprule->au_ctxt);
3602 
3603 	rcu_read_lock();
3604 	policy = rcu_dereference(state->policy);
3605 	policydb = &policy->policydb;
3606 
3607 	tmprule->au_seqno = policy->latest_granting;
3608 
3609 	switch (field) {
3610 	case AUDIT_SUBJ_USER:
3611 	case AUDIT_OBJ_USER:
3612 		rc = -EINVAL;
3613 		userdatum = symtab_search(&policydb->p_users, rulestr);
3614 		if (!userdatum)
3615 			goto out;
3616 		tmprule->au_ctxt.user = userdatum->value;
3617 		break;
3618 	case AUDIT_SUBJ_ROLE:
3619 	case AUDIT_OBJ_ROLE:
3620 		rc = -EINVAL;
3621 		roledatum = symtab_search(&policydb->p_roles, rulestr);
3622 		if (!roledatum)
3623 			goto out;
3624 		tmprule->au_ctxt.role = roledatum->value;
3625 		break;
3626 	case AUDIT_SUBJ_TYPE:
3627 	case AUDIT_OBJ_TYPE:
3628 		rc = -EINVAL;
3629 		typedatum = symtab_search(&policydb->p_types, rulestr);
3630 		if (!typedatum)
3631 			goto out;
3632 		tmprule->au_ctxt.type = typedatum->value;
3633 		break;
3634 	case AUDIT_SUBJ_SEN:
3635 	case AUDIT_SUBJ_CLR:
3636 	case AUDIT_OBJ_LEV_LOW:
3637 	case AUDIT_OBJ_LEV_HIGH:
3638 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3639 				     GFP_ATOMIC);
3640 		if (rc)
3641 			goto out;
3642 		break;
3643 	}
3644 	rc = 0;
3645 out:
3646 	rcu_read_unlock();
3647 
3648 	if (rc) {
3649 		selinux_audit_rule_free(tmprule);
3650 		tmprule = NULL;
3651 	}
3652 
3653 	*rule = tmprule;
3654 
3655 	return rc;
3656 }
3657 
3658 /* Check to see if the rule contains any selinux fields */
3659 int selinux_audit_rule_known(struct audit_krule *rule)
3660 {
3661 	int i;
3662 
3663 	for (i = 0; i < rule->field_count; i++) {
3664 		struct audit_field *f = &rule->fields[i];
3665 		switch (f->type) {
3666 		case AUDIT_SUBJ_USER:
3667 		case AUDIT_SUBJ_ROLE:
3668 		case AUDIT_SUBJ_TYPE:
3669 		case AUDIT_SUBJ_SEN:
3670 		case AUDIT_SUBJ_CLR:
3671 		case AUDIT_OBJ_USER:
3672 		case AUDIT_OBJ_ROLE:
3673 		case AUDIT_OBJ_TYPE:
3674 		case AUDIT_OBJ_LEV_LOW:
3675 		case AUDIT_OBJ_LEV_HIGH:
3676 			return 1;
3677 		}
3678 	}
3679 
3680 	return 0;
3681 }
3682 
3683 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3684 {
3685 	struct selinux_state *state = &selinux_state;
3686 	struct selinux_policy *policy;
3687 	struct context *ctxt;
3688 	struct mls_level *level;
3689 	struct selinux_audit_rule *rule = vrule;
3690 	int match = 0;
3691 
3692 	if (unlikely(!rule)) {
3693 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3694 		return -ENOENT;
3695 	}
3696 
3697 	if (!selinux_initialized(state))
3698 		return 0;
3699 
3700 	rcu_read_lock();
3701 
3702 	policy = rcu_dereference(state->policy);
3703 
3704 	if (rule->au_seqno < policy->latest_granting) {
3705 		match = -ESTALE;
3706 		goto out;
3707 	}
3708 
3709 	ctxt = sidtab_search(policy->sidtab, sid);
3710 	if (unlikely(!ctxt)) {
3711 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3712 			  sid);
3713 		match = -ENOENT;
3714 		goto out;
3715 	}
3716 
3717 	/* a field/op pair that is not caught here will simply fall through
3718 	   without a match */
3719 	switch (field) {
3720 	case AUDIT_SUBJ_USER:
3721 	case AUDIT_OBJ_USER:
3722 		switch (op) {
3723 		case Audit_equal:
3724 			match = (ctxt->user == rule->au_ctxt.user);
3725 			break;
3726 		case Audit_not_equal:
3727 			match = (ctxt->user != rule->au_ctxt.user);
3728 			break;
3729 		}
3730 		break;
3731 	case AUDIT_SUBJ_ROLE:
3732 	case AUDIT_OBJ_ROLE:
3733 		switch (op) {
3734 		case Audit_equal:
3735 			match = (ctxt->role == rule->au_ctxt.role);
3736 			break;
3737 		case Audit_not_equal:
3738 			match = (ctxt->role != rule->au_ctxt.role);
3739 			break;
3740 		}
3741 		break;
3742 	case AUDIT_SUBJ_TYPE:
3743 	case AUDIT_OBJ_TYPE:
3744 		switch (op) {
3745 		case Audit_equal:
3746 			match = (ctxt->type == rule->au_ctxt.type);
3747 			break;
3748 		case Audit_not_equal:
3749 			match = (ctxt->type != rule->au_ctxt.type);
3750 			break;
3751 		}
3752 		break;
3753 	case AUDIT_SUBJ_SEN:
3754 	case AUDIT_SUBJ_CLR:
3755 	case AUDIT_OBJ_LEV_LOW:
3756 	case AUDIT_OBJ_LEV_HIGH:
3757 		level = ((field == AUDIT_SUBJ_SEN ||
3758 			  field == AUDIT_OBJ_LEV_LOW) ?
3759 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3760 		switch (op) {
3761 		case Audit_equal:
3762 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3763 					     level);
3764 			break;
3765 		case Audit_not_equal:
3766 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3767 					      level);
3768 			break;
3769 		case Audit_lt:
3770 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3771 					       level) &&
3772 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3773 					       level));
3774 			break;
3775 		case Audit_le:
3776 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3777 					      level);
3778 			break;
3779 		case Audit_gt:
3780 			match = (mls_level_dom(level,
3781 					      &rule->au_ctxt.range.level[0]) &&
3782 				 !mls_level_eq(level,
3783 					       &rule->au_ctxt.range.level[0]));
3784 			break;
3785 		case Audit_ge:
3786 			match = mls_level_dom(level,
3787 					      &rule->au_ctxt.range.level[0]);
3788 			break;
3789 		}
3790 	}
3791 
3792 out:
3793 	rcu_read_unlock();
3794 	return match;
3795 }
3796 
3797 static int aurule_avc_callback(u32 event)
3798 {
3799 	if (event == AVC_CALLBACK_RESET)
3800 		return audit_update_lsm_rules();
3801 	return 0;
3802 }
3803 
3804 static int __init aurule_init(void)
3805 {
3806 	int err;
3807 
3808 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3809 	if (err)
3810 		panic("avc_add_callback() failed, error %d\n", err);
3811 
3812 	return err;
3813 }
3814 __initcall(aurule_init);
3815 
3816 #ifdef CONFIG_NETLABEL
3817 /**
3818  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3819  * @secattr: the NetLabel packet security attributes
3820  * @sid: the SELinux SID
3821  *
3822  * Description:
3823  * Attempt to cache the context in @ctx, which was derived from the packet in
3824  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3825  * already been initialized.
3826  *
3827  */
3828 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3829 				      u32 sid)
3830 {
3831 	u32 *sid_cache;
3832 
3833 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3834 	if (sid_cache == NULL)
3835 		return;
3836 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3837 	if (secattr->cache == NULL) {
3838 		kfree(sid_cache);
3839 		return;
3840 	}
3841 
3842 	*sid_cache = sid;
3843 	secattr->cache->free = kfree;
3844 	secattr->cache->data = sid_cache;
3845 	secattr->flags |= NETLBL_SECATTR_CACHE;
3846 }
3847 
3848 /**
3849  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3850  * @state: SELinux state
3851  * @secattr: the NetLabel packet security attributes
3852  * @sid: the SELinux SID
3853  *
3854  * Description:
3855  * Convert the given NetLabel security attributes in @secattr into a
3856  * SELinux SID.  If the @secattr field does not contain a full SELinux
3857  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3858  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3859  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3860  * conversion for future lookups.  Returns zero on success, negative values on
3861  * failure.
3862  *
3863  */
3864 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3865 				   struct netlbl_lsm_secattr *secattr,
3866 				   u32 *sid)
3867 {
3868 	struct selinux_policy *policy;
3869 	struct policydb *policydb;
3870 	struct sidtab *sidtab;
3871 	int rc;
3872 	struct context *ctx;
3873 	struct context ctx_new;
3874 
3875 	if (!selinux_initialized(state)) {
3876 		*sid = SECSID_NULL;
3877 		return 0;
3878 	}
3879 
3880 retry:
3881 	rc = 0;
3882 	rcu_read_lock();
3883 	policy = rcu_dereference(state->policy);
3884 	policydb = &policy->policydb;
3885 	sidtab = policy->sidtab;
3886 
3887 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3888 		*sid = *(u32 *)secattr->cache->data;
3889 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3890 		*sid = secattr->attr.secid;
3891 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3892 		rc = -EIDRM;
3893 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3894 		if (ctx == NULL)
3895 			goto out;
3896 
3897 		context_init(&ctx_new);
3898 		ctx_new.user = ctx->user;
3899 		ctx_new.role = ctx->role;
3900 		ctx_new.type = ctx->type;
3901 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3902 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3903 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3904 			if (rc)
3905 				goto out;
3906 		}
3907 		rc = -EIDRM;
3908 		if (!mls_context_isvalid(policydb, &ctx_new)) {
3909 			ebitmap_destroy(&ctx_new.range.level[0].cat);
3910 			goto out;
3911 		}
3912 
3913 		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3914 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3915 		if (rc == -ESTALE) {
3916 			rcu_read_unlock();
3917 			goto retry;
3918 		}
3919 		if (rc)
3920 			goto out;
3921 
3922 		security_netlbl_cache_add(secattr, *sid);
3923 	} else
3924 		*sid = SECSID_NULL;
3925 
3926 out:
3927 	rcu_read_unlock();
3928 	return rc;
3929 }
3930 
3931 /**
3932  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3933  * @state: SELinux state
3934  * @sid: the SELinux SID
3935  * @secattr: the NetLabel packet security attributes
3936  *
3937  * Description:
3938  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3939  * Returns zero on success, negative values on failure.
3940  *
3941  */
3942 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3943 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3944 {
3945 	struct selinux_policy *policy;
3946 	struct policydb *policydb;
3947 	int rc;
3948 	struct context *ctx;
3949 
3950 	if (!selinux_initialized(state))
3951 		return 0;
3952 
3953 	rcu_read_lock();
3954 	policy = rcu_dereference(state->policy);
3955 	policydb = &policy->policydb;
3956 
3957 	rc = -ENOENT;
3958 	ctx = sidtab_search(policy->sidtab, sid);
3959 	if (ctx == NULL)
3960 		goto out;
3961 
3962 	rc = -ENOMEM;
3963 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3964 				  GFP_ATOMIC);
3965 	if (secattr->domain == NULL)
3966 		goto out;
3967 
3968 	secattr->attr.secid = sid;
3969 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3970 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3971 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3972 out:
3973 	rcu_read_unlock();
3974 	return rc;
3975 }
3976 #endif /* CONFIG_NETLABEL */
3977 
3978 /**
3979  * __security_read_policy - read the policy.
3980  * @policy: SELinux policy
3981  * @data: binary policy data
3982  * @len: length of data in bytes
3983  *
3984  */
3985 static int __security_read_policy(struct selinux_policy *policy,
3986 				  void *data, size_t *len)
3987 {
3988 	int rc;
3989 	struct policy_file fp;
3990 
3991 	fp.data = data;
3992 	fp.len = *len;
3993 
3994 	rc = policydb_write(&policy->policydb, &fp);
3995 	if (rc)
3996 		return rc;
3997 
3998 	*len = (unsigned long)fp.data - (unsigned long)data;
3999 	return 0;
4000 }
4001 
4002 /**
4003  * security_read_policy - read the policy.
4004  * @state: selinux_state
4005  * @data: binary policy data
4006  * @len: length of data in bytes
4007  *
4008  */
4009 int security_read_policy(struct selinux_state *state,
4010 			 void **data, size_t *len)
4011 {
4012 	struct selinux_policy *policy;
4013 
4014 	policy = rcu_dereference_protected(
4015 			state->policy, lockdep_is_held(&state->policy_mutex));
4016 	if (!policy)
4017 		return -EINVAL;
4018 
4019 	*len = policy->policydb.len;
4020 	*data = vmalloc_user(*len);
4021 	if (!*data)
4022 		return -ENOMEM;
4023 
4024 	return __security_read_policy(policy, *data, len);
4025 }
4026 
4027 /**
4028  * security_read_state_kernel - read the policy.
4029  * @state: selinux_state
4030  * @data: binary policy data
4031  * @len: length of data in bytes
4032  *
4033  * Allocates kernel memory for reading SELinux policy.
4034  * This function is for internal use only and should not
4035  * be used for returning data to user space.
4036  *
4037  * This function must be called with policy_mutex held.
4038  */
4039 int security_read_state_kernel(struct selinux_state *state,
4040 			       void **data, size_t *len)
4041 {
4042 	int err;
4043 	struct selinux_policy *policy;
4044 
4045 	policy = rcu_dereference_protected(
4046 			state->policy, lockdep_is_held(&state->policy_mutex));
4047 	if (!policy)
4048 		return -EINVAL;
4049 
4050 	*len = policy->policydb.len;
4051 	*data = vmalloc(*len);
4052 	if (!*data)
4053 		return -ENOMEM;
4054 
4055 	err = __security_read_policy(policy, *data, len);
4056 	if (err) {
4057 		vfree(*data);
4058 		*data = NULL;
4059 		*len = 0;
4060 	}
4061 	return err;
4062 }
4063