xref: /openbmc/linux/security/selinux/ss/policydb.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  * 	Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  *	This program is free software; you can redistribute it and/or modify
19  *  	it under the terms of the GNU General Public License as published by
20  *	the Free Software Foundation, version 2.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/errno.h>
28 #include "security.h"
29 
30 #include "policydb.h"
31 #include "conditional.h"
32 #include "mls.h"
33 
34 #define _DEBUG_HASHES
35 
36 #ifdef DEBUG_HASHES
37 static char *symtab_name[SYM_NUM] = {
38 	"common prefixes",
39 	"classes",
40 	"roles",
41 	"types",
42 	"users",
43 	"bools",
44 	"levels",
45 	"categories",
46 };
47 #endif
48 
49 int selinux_mls_enabled = 0;
50 
51 static unsigned int symtab_sizes[SYM_NUM] = {
52 	2,
53 	32,
54 	16,
55 	512,
56 	128,
57 	16,
58 	16,
59 	16,
60 };
61 
62 struct policydb_compat_info {
63 	int version;
64 	int sym_num;
65 	int ocon_num;
66 };
67 
68 /* These need to be updated if SYM_NUM or OCON_NUM changes */
69 static struct policydb_compat_info policydb_compat[] = {
70 	{
71 		.version        = POLICYDB_VERSION_BASE,
72 		.sym_num        = SYM_NUM - 3,
73 		.ocon_num       = OCON_NUM - 1,
74 	},
75 	{
76 		.version        = POLICYDB_VERSION_BOOL,
77 		.sym_num        = SYM_NUM - 2,
78 		.ocon_num       = OCON_NUM - 1,
79 	},
80 	{
81 		.version        = POLICYDB_VERSION_IPV6,
82 		.sym_num        = SYM_NUM - 2,
83 		.ocon_num       = OCON_NUM,
84 	},
85 	{
86 		.version        = POLICYDB_VERSION_NLCLASS,
87 		.sym_num        = SYM_NUM - 2,
88 		.ocon_num       = OCON_NUM,
89 	},
90 	{
91 		.version        = POLICYDB_VERSION_MLS,
92 		.sym_num        = SYM_NUM,
93 		.ocon_num       = OCON_NUM,
94 	},
95 	{
96 		.version        = POLICYDB_VERSION_AVTAB,
97 		.sym_num        = SYM_NUM,
98 		.ocon_num       = OCON_NUM,
99 	},
100 	{
101 		.version        = POLICYDB_VERSION_RANGETRANS,
102 		.sym_num        = SYM_NUM,
103 		.ocon_num       = OCON_NUM,
104 	},
105 };
106 
107 static struct policydb_compat_info *policydb_lookup_compat(int version)
108 {
109 	int i;
110 	struct policydb_compat_info *info = NULL;
111 
112 	for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
113 		if (policydb_compat[i].version == version) {
114 			info = &policydb_compat[i];
115 			break;
116 		}
117 	}
118 	return info;
119 }
120 
121 /*
122  * Initialize the role table.
123  */
124 static int roles_init(struct policydb *p)
125 {
126 	char *key = NULL;
127 	int rc;
128 	struct role_datum *role;
129 
130 	role = kzalloc(sizeof(*role), GFP_KERNEL);
131 	if (!role) {
132 		rc = -ENOMEM;
133 		goto out;
134 	}
135 	role->value = ++p->p_roles.nprim;
136 	if (role->value != OBJECT_R_VAL) {
137 		rc = -EINVAL;
138 		goto out_free_role;
139 	}
140 	key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
141 	if (!key) {
142 		rc = -ENOMEM;
143 		goto out_free_role;
144 	}
145 	strcpy(key, OBJECT_R);
146 	rc = hashtab_insert(p->p_roles.table, key, role);
147 	if (rc)
148 		goto out_free_key;
149 out:
150 	return rc;
151 
152 out_free_key:
153 	kfree(key);
154 out_free_role:
155 	kfree(role);
156 	goto out;
157 }
158 
159 /*
160  * Initialize a policy database structure.
161  */
162 static int policydb_init(struct policydb *p)
163 {
164 	int i, rc;
165 
166 	memset(p, 0, sizeof(*p));
167 
168 	for (i = 0; i < SYM_NUM; i++) {
169 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
170 		if (rc)
171 			goto out_free_symtab;
172 	}
173 
174 	rc = avtab_init(&p->te_avtab);
175 	if (rc)
176 		goto out_free_symtab;
177 
178 	rc = roles_init(p);
179 	if (rc)
180 		goto out_free_symtab;
181 
182 	rc = cond_policydb_init(p);
183 	if (rc)
184 		goto out_free_symtab;
185 
186 out:
187 	return rc;
188 
189 out_free_symtab:
190 	for (i = 0; i < SYM_NUM; i++)
191 		hashtab_destroy(p->symtab[i].table);
192 	goto out;
193 }
194 
195 /*
196  * The following *_index functions are used to
197  * define the val_to_name and val_to_struct arrays
198  * in a policy database structure.  The val_to_name
199  * arrays are used when converting security context
200  * structures into string representations.  The
201  * val_to_struct arrays are used when the attributes
202  * of a class, role, or user are needed.
203  */
204 
205 static int common_index(void *key, void *datum, void *datap)
206 {
207 	struct policydb *p;
208 	struct common_datum *comdatum;
209 
210 	comdatum = datum;
211 	p = datap;
212 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
213 		return -EINVAL;
214 	p->p_common_val_to_name[comdatum->value - 1] = key;
215 	return 0;
216 }
217 
218 static int class_index(void *key, void *datum, void *datap)
219 {
220 	struct policydb *p;
221 	struct class_datum *cladatum;
222 
223 	cladatum = datum;
224 	p = datap;
225 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
226 		return -EINVAL;
227 	p->p_class_val_to_name[cladatum->value - 1] = key;
228 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
229 	return 0;
230 }
231 
232 static int role_index(void *key, void *datum, void *datap)
233 {
234 	struct policydb *p;
235 	struct role_datum *role;
236 
237 	role = datum;
238 	p = datap;
239 	if (!role->value || role->value > p->p_roles.nprim)
240 		return -EINVAL;
241 	p->p_role_val_to_name[role->value - 1] = key;
242 	p->role_val_to_struct[role->value - 1] = role;
243 	return 0;
244 }
245 
246 static int type_index(void *key, void *datum, void *datap)
247 {
248 	struct policydb *p;
249 	struct type_datum *typdatum;
250 
251 	typdatum = datum;
252 	p = datap;
253 
254 	if (typdatum->primary) {
255 		if (!typdatum->value || typdatum->value > p->p_types.nprim)
256 			return -EINVAL;
257 		p->p_type_val_to_name[typdatum->value - 1] = key;
258 	}
259 
260 	return 0;
261 }
262 
263 static int user_index(void *key, void *datum, void *datap)
264 {
265 	struct policydb *p;
266 	struct user_datum *usrdatum;
267 
268 	usrdatum = datum;
269 	p = datap;
270 	if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
271 		return -EINVAL;
272 	p->p_user_val_to_name[usrdatum->value - 1] = key;
273 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
274 	return 0;
275 }
276 
277 static int sens_index(void *key, void *datum, void *datap)
278 {
279 	struct policydb *p;
280 	struct level_datum *levdatum;
281 
282 	levdatum = datum;
283 	p = datap;
284 
285 	if (!levdatum->isalias) {
286 		if (!levdatum->level->sens ||
287 		    levdatum->level->sens > p->p_levels.nprim)
288 			return -EINVAL;
289 		p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
290 	}
291 
292 	return 0;
293 }
294 
295 static int cat_index(void *key, void *datum, void *datap)
296 {
297 	struct policydb *p;
298 	struct cat_datum *catdatum;
299 
300 	catdatum = datum;
301 	p = datap;
302 
303 	if (!catdatum->isalias) {
304 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
305 			return -EINVAL;
306 		p->p_cat_val_to_name[catdatum->value - 1] = key;
307 	}
308 
309 	return 0;
310 }
311 
312 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
313 {
314 	common_index,
315 	class_index,
316 	role_index,
317 	type_index,
318 	user_index,
319 	cond_index_bool,
320 	sens_index,
321 	cat_index,
322 };
323 
324 /*
325  * Define the common val_to_name array and the class
326  * val_to_name and val_to_struct arrays in a policy
327  * database structure.
328  *
329  * Caller must clean up upon failure.
330  */
331 static int policydb_index_classes(struct policydb *p)
332 {
333 	int rc;
334 
335 	p->p_common_val_to_name =
336 		kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
337 	if (!p->p_common_val_to_name) {
338 		rc = -ENOMEM;
339 		goto out;
340 	}
341 
342 	rc = hashtab_map(p->p_commons.table, common_index, p);
343 	if (rc)
344 		goto out;
345 
346 	p->class_val_to_struct =
347 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
348 	if (!p->class_val_to_struct) {
349 		rc = -ENOMEM;
350 		goto out;
351 	}
352 
353 	p->p_class_val_to_name =
354 		kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
355 	if (!p->p_class_val_to_name) {
356 		rc = -ENOMEM;
357 		goto out;
358 	}
359 
360 	rc = hashtab_map(p->p_classes.table, class_index, p);
361 out:
362 	return rc;
363 }
364 
365 #ifdef DEBUG_HASHES
366 static void symtab_hash_eval(struct symtab *s)
367 {
368 	int i;
369 
370 	for (i = 0; i < SYM_NUM; i++) {
371 		struct hashtab *h = s[i].table;
372 		struct hashtab_info info;
373 
374 		hashtab_stat(h, &info);
375 		printk(KERN_DEBUG "%s:  %d entries and %d/%d buckets used, "
376 		       "longest chain length %d\n", symtab_name[i], h->nel,
377 		       info.slots_used, h->size, info.max_chain_len);
378 	}
379 }
380 #endif
381 
382 /*
383  * Define the other val_to_name and val_to_struct arrays
384  * in a policy database structure.
385  *
386  * Caller must clean up on failure.
387  */
388 static int policydb_index_others(struct policydb *p)
389 {
390 	int i, rc = 0;
391 
392 	printk(KERN_DEBUG "security:  %d users, %d roles, %d types, %d bools",
393 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
394 	if (selinux_mls_enabled)
395 		printk(", %d sens, %d cats", p->p_levels.nprim,
396 		       p->p_cats.nprim);
397 	printk("\n");
398 
399 	printk(KERN_DEBUG "security:  %d classes, %d rules\n",
400 	       p->p_classes.nprim, p->te_avtab.nel);
401 
402 #ifdef DEBUG_HASHES
403 	avtab_hash_eval(&p->te_avtab, "rules");
404 	symtab_hash_eval(p->symtab);
405 #endif
406 
407 	p->role_val_to_struct =
408 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
409 		        GFP_KERNEL);
410 	if (!p->role_val_to_struct) {
411 		rc = -ENOMEM;
412 		goto out;
413 	}
414 
415 	p->user_val_to_struct =
416 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
417 		        GFP_KERNEL);
418 	if (!p->user_val_to_struct) {
419 		rc = -ENOMEM;
420 		goto out;
421 	}
422 
423 	if (cond_init_bool_indexes(p)) {
424 		rc = -ENOMEM;
425 		goto out;
426 	}
427 
428 	for (i = SYM_ROLES; i < SYM_NUM; i++) {
429 		p->sym_val_to_name[i] =
430 			kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
431 		if (!p->sym_val_to_name[i]) {
432 			rc = -ENOMEM;
433 			goto out;
434 		}
435 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
436 		if (rc)
437 			goto out;
438 	}
439 
440 out:
441 	return rc;
442 }
443 
444 /*
445  * The following *_destroy functions are used to
446  * free any memory allocated for each kind of
447  * symbol data in the policy database.
448  */
449 
450 static int perm_destroy(void *key, void *datum, void *p)
451 {
452 	kfree(key);
453 	kfree(datum);
454 	return 0;
455 }
456 
457 static int common_destroy(void *key, void *datum, void *p)
458 {
459 	struct common_datum *comdatum;
460 
461 	kfree(key);
462 	comdatum = datum;
463 	hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
464 	hashtab_destroy(comdatum->permissions.table);
465 	kfree(datum);
466 	return 0;
467 }
468 
469 static int cls_destroy(void *key, void *datum, void *p)
470 {
471 	struct class_datum *cladatum;
472 	struct constraint_node *constraint, *ctemp;
473 	struct constraint_expr *e, *etmp;
474 
475 	kfree(key);
476 	cladatum = datum;
477 	hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
478 	hashtab_destroy(cladatum->permissions.table);
479 	constraint = cladatum->constraints;
480 	while (constraint) {
481 		e = constraint->expr;
482 		while (e) {
483 			ebitmap_destroy(&e->names);
484 			etmp = e;
485 			e = e->next;
486 			kfree(etmp);
487 		}
488 		ctemp = constraint;
489 		constraint = constraint->next;
490 		kfree(ctemp);
491 	}
492 
493 	constraint = cladatum->validatetrans;
494 	while (constraint) {
495 		e = constraint->expr;
496 		while (e) {
497 			ebitmap_destroy(&e->names);
498 			etmp = e;
499 			e = e->next;
500 			kfree(etmp);
501 		}
502 		ctemp = constraint;
503 		constraint = constraint->next;
504 		kfree(ctemp);
505 	}
506 
507 	kfree(cladatum->comkey);
508 	kfree(datum);
509 	return 0;
510 }
511 
512 static int role_destroy(void *key, void *datum, void *p)
513 {
514 	struct role_datum *role;
515 
516 	kfree(key);
517 	role = datum;
518 	ebitmap_destroy(&role->dominates);
519 	ebitmap_destroy(&role->types);
520 	kfree(datum);
521 	return 0;
522 }
523 
524 static int type_destroy(void *key, void *datum, void *p)
525 {
526 	kfree(key);
527 	kfree(datum);
528 	return 0;
529 }
530 
531 static int user_destroy(void *key, void *datum, void *p)
532 {
533 	struct user_datum *usrdatum;
534 
535 	kfree(key);
536 	usrdatum = datum;
537 	ebitmap_destroy(&usrdatum->roles);
538 	ebitmap_destroy(&usrdatum->range.level[0].cat);
539 	ebitmap_destroy(&usrdatum->range.level[1].cat);
540 	ebitmap_destroy(&usrdatum->dfltlevel.cat);
541 	kfree(datum);
542 	return 0;
543 }
544 
545 static int sens_destroy(void *key, void *datum, void *p)
546 {
547 	struct level_datum *levdatum;
548 
549 	kfree(key);
550 	levdatum = datum;
551 	ebitmap_destroy(&levdatum->level->cat);
552 	kfree(levdatum->level);
553 	kfree(datum);
554 	return 0;
555 }
556 
557 static int cat_destroy(void *key, void *datum, void *p)
558 {
559 	kfree(key);
560 	kfree(datum);
561 	return 0;
562 }
563 
564 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
565 {
566 	common_destroy,
567 	cls_destroy,
568 	role_destroy,
569 	type_destroy,
570 	user_destroy,
571 	cond_destroy_bool,
572 	sens_destroy,
573 	cat_destroy,
574 };
575 
576 static void ocontext_destroy(struct ocontext *c, int i)
577 {
578 	context_destroy(&c->context[0]);
579 	context_destroy(&c->context[1]);
580 	if (i == OCON_ISID || i == OCON_FS ||
581 	    i == OCON_NETIF || i == OCON_FSUSE)
582 		kfree(c->u.name);
583 	kfree(c);
584 }
585 
586 /*
587  * Free any memory allocated by a policy database structure.
588  */
589 void policydb_destroy(struct policydb *p)
590 {
591 	struct ocontext *c, *ctmp;
592 	struct genfs *g, *gtmp;
593 	int i;
594 	struct role_allow *ra, *lra = NULL;
595 	struct role_trans *tr, *ltr = NULL;
596 	struct range_trans *rt, *lrt = NULL;
597 
598 	for (i = 0; i < SYM_NUM; i++) {
599 		cond_resched();
600 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
601 		hashtab_destroy(p->symtab[i].table);
602 	}
603 
604 	for (i = 0; i < SYM_NUM; i++)
605 		kfree(p->sym_val_to_name[i]);
606 
607 	kfree(p->class_val_to_struct);
608 	kfree(p->role_val_to_struct);
609 	kfree(p->user_val_to_struct);
610 
611 	avtab_destroy(&p->te_avtab);
612 
613 	for (i = 0; i < OCON_NUM; i++) {
614 		cond_resched();
615 		c = p->ocontexts[i];
616 		while (c) {
617 			ctmp = c;
618 			c = c->next;
619 			ocontext_destroy(ctmp,i);
620 		}
621 		p->ocontexts[i] = NULL;
622 	}
623 
624 	g = p->genfs;
625 	while (g) {
626 		cond_resched();
627 		kfree(g->fstype);
628 		c = g->head;
629 		while (c) {
630 			ctmp = c;
631 			c = c->next;
632 			ocontext_destroy(ctmp,OCON_FSUSE);
633 		}
634 		gtmp = g;
635 		g = g->next;
636 		kfree(gtmp);
637 	}
638 	p->genfs = NULL;
639 
640 	cond_policydb_destroy(p);
641 
642 	for (tr = p->role_tr; tr; tr = tr->next) {
643 		cond_resched();
644 		kfree(ltr);
645 		ltr = tr;
646 	}
647 	kfree(ltr);
648 
649 	for (ra = p->role_allow; ra; ra = ra -> next) {
650 		cond_resched();
651 		kfree(lra);
652 		lra = ra;
653 	}
654 	kfree(lra);
655 
656 	for (rt = p->range_tr; rt; rt = rt -> next) {
657 		cond_resched();
658 		if (lrt) {
659 			ebitmap_destroy(&lrt->target_range.level[0].cat);
660 			ebitmap_destroy(&lrt->target_range.level[1].cat);
661 			kfree(lrt);
662 		}
663 		lrt = rt;
664 	}
665 	if (lrt) {
666 		ebitmap_destroy(&lrt->target_range.level[0].cat);
667 		ebitmap_destroy(&lrt->target_range.level[1].cat);
668 		kfree(lrt);
669 	}
670 
671 	if (p->type_attr_map) {
672 		for (i = 0; i < p->p_types.nprim; i++)
673 			ebitmap_destroy(&p->type_attr_map[i]);
674 	}
675 	kfree(p->type_attr_map);
676 
677 	kfree(p->undefined_perms);
678 
679 	return;
680 }
681 
682 /*
683  * Load the initial SIDs specified in a policy database
684  * structure into a SID table.
685  */
686 int policydb_load_isids(struct policydb *p, struct sidtab *s)
687 {
688 	struct ocontext *head, *c;
689 	int rc;
690 
691 	rc = sidtab_init(s);
692 	if (rc) {
693 		printk(KERN_ERR "security:  out of memory on SID table init\n");
694 		goto out;
695 	}
696 
697 	head = p->ocontexts[OCON_ISID];
698 	for (c = head; c; c = c->next) {
699 		if (!c->context[0].user) {
700 			printk(KERN_ERR "security:  SID %s was never "
701 			       "defined.\n", c->u.name);
702 			rc = -EINVAL;
703 			goto out;
704 		}
705 		if (sidtab_insert(s, c->sid[0], &c->context[0])) {
706 			printk(KERN_ERR "security:  unable to load initial "
707 			       "SID %s.\n", c->u.name);
708 			rc = -EINVAL;
709 			goto out;
710 		}
711 	}
712 out:
713 	return rc;
714 }
715 
716 /*
717  * Return 1 if the fields in the security context
718  * structure `c' are valid.  Return 0 otherwise.
719  */
720 int policydb_context_isvalid(struct policydb *p, struct context *c)
721 {
722 	struct role_datum *role;
723 	struct user_datum *usrdatum;
724 
725 	if (!c->role || c->role > p->p_roles.nprim)
726 		return 0;
727 
728 	if (!c->user || c->user > p->p_users.nprim)
729 		return 0;
730 
731 	if (!c->type || c->type > p->p_types.nprim)
732 		return 0;
733 
734 	if (c->role != OBJECT_R_VAL) {
735 		/*
736 		 * Role must be authorized for the type.
737 		 */
738 		role = p->role_val_to_struct[c->role - 1];
739 		if (!ebitmap_get_bit(&role->types,
740 				     c->type - 1))
741 			/* role may not be associated with type */
742 			return 0;
743 
744 		/*
745 		 * User must be authorized for the role.
746 		 */
747 		usrdatum = p->user_val_to_struct[c->user - 1];
748 		if (!usrdatum)
749 			return 0;
750 
751 		if (!ebitmap_get_bit(&usrdatum->roles,
752 				     c->role - 1))
753 			/* user may not be associated with role */
754 			return 0;
755 	}
756 
757 	if (!mls_context_isvalid(p, c))
758 		return 0;
759 
760 	return 1;
761 }
762 
763 /*
764  * Read a MLS range structure from a policydb binary
765  * representation file.
766  */
767 static int mls_read_range_helper(struct mls_range *r, void *fp)
768 {
769 	__le32 buf[2];
770 	u32 items;
771 	int rc;
772 
773 	rc = next_entry(buf, fp, sizeof(u32));
774 	if (rc < 0)
775 		goto out;
776 
777 	items = le32_to_cpu(buf[0]);
778 	if (items > ARRAY_SIZE(buf)) {
779 		printk(KERN_ERR "security: mls:  range overflow\n");
780 		rc = -EINVAL;
781 		goto out;
782 	}
783 	rc = next_entry(buf, fp, sizeof(u32) * items);
784 	if (rc < 0) {
785 		printk(KERN_ERR "security: mls:  truncated range\n");
786 		goto out;
787 	}
788 	r->level[0].sens = le32_to_cpu(buf[0]);
789 	if (items > 1)
790 		r->level[1].sens = le32_to_cpu(buf[1]);
791 	else
792 		r->level[1].sens = r->level[0].sens;
793 
794 	rc = ebitmap_read(&r->level[0].cat, fp);
795 	if (rc) {
796 		printk(KERN_ERR "security: mls:  error reading low "
797 		       "categories\n");
798 		goto out;
799 	}
800 	if (items > 1) {
801 		rc = ebitmap_read(&r->level[1].cat, fp);
802 		if (rc) {
803 			printk(KERN_ERR "security: mls:  error reading high "
804 			       "categories\n");
805 			goto bad_high;
806 		}
807 	} else {
808 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
809 		if (rc) {
810 			printk(KERN_ERR "security: mls:  out of memory\n");
811 			goto bad_high;
812 		}
813 	}
814 
815 	rc = 0;
816 out:
817 	return rc;
818 bad_high:
819 	ebitmap_destroy(&r->level[0].cat);
820 	goto out;
821 }
822 
823 /*
824  * Read and validate a security context structure
825  * from a policydb binary representation file.
826  */
827 static int context_read_and_validate(struct context *c,
828 				     struct policydb *p,
829 				     void *fp)
830 {
831 	__le32 buf[3];
832 	int rc;
833 
834 	rc = next_entry(buf, fp, sizeof buf);
835 	if (rc < 0) {
836 		printk(KERN_ERR "security: context truncated\n");
837 		goto out;
838 	}
839 	c->user = le32_to_cpu(buf[0]);
840 	c->role = le32_to_cpu(buf[1]);
841 	c->type = le32_to_cpu(buf[2]);
842 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
843 		if (mls_read_range_helper(&c->range, fp)) {
844 			printk(KERN_ERR "security: error reading MLS range of "
845 			       "context\n");
846 			rc = -EINVAL;
847 			goto out;
848 		}
849 	}
850 
851 	if (!policydb_context_isvalid(p, c)) {
852 		printk(KERN_ERR "security:  invalid security context\n");
853 		context_destroy(c);
854 		rc = -EINVAL;
855 	}
856 out:
857 	return rc;
858 }
859 
860 /*
861  * The following *_read functions are used to
862  * read the symbol data from a policy database
863  * binary representation file.
864  */
865 
866 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
867 {
868 	char *key = NULL;
869 	struct perm_datum *perdatum;
870 	int rc;
871 	__le32 buf[2];
872 	u32 len;
873 
874 	perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
875 	if (!perdatum) {
876 		rc = -ENOMEM;
877 		goto out;
878 	}
879 
880 	rc = next_entry(buf, fp, sizeof buf);
881 	if (rc < 0)
882 		goto bad;
883 
884 	len = le32_to_cpu(buf[0]);
885 	perdatum->value = le32_to_cpu(buf[1]);
886 
887 	key = kmalloc(len + 1,GFP_KERNEL);
888 	if (!key) {
889 		rc = -ENOMEM;
890 		goto bad;
891 	}
892 	rc = next_entry(key, fp, len);
893 	if (rc < 0)
894 		goto bad;
895 	key[len] = 0;
896 
897 	rc = hashtab_insert(h, key, perdatum);
898 	if (rc)
899 		goto bad;
900 out:
901 	return rc;
902 bad:
903 	perm_destroy(key, perdatum, NULL);
904 	goto out;
905 }
906 
907 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
908 {
909 	char *key = NULL;
910 	struct common_datum *comdatum;
911 	__le32 buf[4];
912 	u32 len, nel;
913 	int i, rc;
914 
915 	comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
916 	if (!comdatum) {
917 		rc = -ENOMEM;
918 		goto out;
919 	}
920 
921 	rc = next_entry(buf, fp, sizeof buf);
922 	if (rc < 0)
923 		goto bad;
924 
925 	len = le32_to_cpu(buf[0]);
926 	comdatum->value = le32_to_cpu(buf[1]);
927 
928 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
929 	if (rc)
930 		goto bad;
931 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
932 	nel = le32_to_cpu(buf[3]);
933 
934 	key = kmalloc(len + 1,GFP_KERNEL);
935 	if (!key) {
936 		rc = -ENOMEM;
937 		goto bad;
938 	}
939 	rc = next_entry(key, fp, len);
940 	if (rc < 0)
941 		goto bad;
942 	key[len] = 0;
943 
944 	for (i = 0; i < nel; i++) {
945 		rc = perm_read(p, comdatum->permissions.table, fp);
946 		if (rc)
947 			goto bad;
948 	}
949 
950 	rc = hashtab_insert(h, key, comdatum);
951 	if (rc)
952 		goto bad;
953 out:
954 	return rc;
955 bad:
956 	common_destroy(key, comdatum, NULL);
957 	goto out;
958 }
959 
960 static int read_cons_helper(struct constraint_node **nodep, int ncons,
961                             int allowxtarget, void *fp)
962 {
963 	struct constraint_node *c, *lc;
964 	struct constraint_expr *e, *le;
965 	__le32 buf[3];
966 	u32 nexpr;
967 	int rc, i, j, depth;
968 
969 	lc = NULL;
970 	for (i = 0; i < ncons; i++) {
971 		c = kzalloc(sizeof(*c), GFP_KERNEL);
972 		if (!c)
973 			return -ENOMEM;
974 
975 		if (lc) {
976 			lc->next = c;
977 		} else {
978 			*nodep = c;
979 		}
980 
981 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
982 		if (rc < 0)
983 			return rc;
984 		c->permissions = le32_to_cpu(buf[0]);
985 		nexpr = le32_to_cpu(buf[1]);
986 		le = NULL;
987 		depth = -1;
988 		for (j = 0; j < nexpr; j++) {
989 			e = kzalloc(sizeof(*e), GFP_KERNEL);
990 			if (!e)
991 				return -ENOMEM;
992 
993 			if (le) {
994 				le->next = e;
995 			} else {
996 				c->expr = e;
997 			}
998 
999 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
1000 			if (rc < 0)
1001 				return rc;
1002 			e->expr_type = le32_to_cpu(buf[0]);
1003 			e->attr = le32_to_cpu(buf[1]);
1004 			e->op = le32_to_cpu(buf[2]);
1005 
1006 			switch (e->expr_type) {
1007 			case CEXPR_NOT:
1008 				if (depth < 0)
1009 					return -EINVAL;
1010 				break;
1011 			case CEXPR_AND:
1012 			case CEXPR_OR:
1013 				if (depth < 1)
1014 					return -EINVAL;
1015 				depth--;
1016 				break;
1017 			case CEXPR_ATTR:
1018 				if (depth == (CEXPR_MAXDEPTH - 1))
1019 					return -EINVAL;
1020 				depth++;
1021 				break;
1022 			case CEXPR_NAMES:
1023 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1024 					return -EINVAL;
1025 				if (depth == (CEXPR_MAXDEPTH - 1))
1026 					return -EINVAL;
1027 				depth++;
1028 				if (ebitmap_read(&e->names, fp))
1029 					return -EINVAL;
1030 				break;
1031 			default:
1032 				return -EINVAL;
1033 			}
1034 			le = e;
1035 		}
1036 		if (depth != 0)
1037 			return -EINVAL;
1038 		lc = c;
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1045 {
1046 	char *key = NULL;
1047 	struct class_datum *cladatum;
1048 	__le32 buf[6];
1049 	u32 len, len2, ncons, nel;
1050 	int i, rc;
1051 
1052 	cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1053 	if (!cladatum) {
1054 		rc = -ENOMEM;
1055 		goto out;
1056 	}
1057 
1058 	rc = next_entry(buf, fp, sizeof(u32)*6);
1059 	if (rc < 0)
1060 		goto bad;
1061 
1062 	len = le32_to_cpu(buf[0]);
1063 	len2 = le32_to_cpu(buf[1]);
1064 	cladatum->value = le32_to_cpu(buf[2]);
1065 
1066 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1067 	if (rc)
1068 		goto bad;
1069 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1070 	nel = le32_to_cpu(buf[4]);
1071 
1072 	ncons = le32_to_cpu(buf[5]);
1073 
1074 	key = kmalloc(len + 1,GFP_KERNEL);
1075 	if (!key) {
1076 		rc = -ENOMEM;
1077 		goto bad;
1078 	}
1079 	rc = next_entry(key, fp, len);
1080 	if (rc < 0)
1081 		goto bad;
1082 	key[len] = 0;
1083 
1084 	if (len2) {
1085 		cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1086 		if (!cladatum->comkey) {
1087 			rc = -ENOMEM;
1088 			goto bad;
1089 		}
1090 		rc = next_entry(cladatum->comkey, fp, len2);
1091 		if (rc < 0)
1092 			goto bad;
1093 		cladatum->comkey[len2] = 0;
1094 
1095 		cladatum->comdatum = hashtab_search(p->p_commons.table,
1096 						    cladatum->comkey);
1097 		if (!cladatum->comdatum) {
1098 			printk(KERN_ERR "security:  unknown common %s\n",
1099 			       cladatum->comkey);
1100 			rc = -EINVAL;
1101 			goto bad;
1102 		}
1103 	}
1104 	for (i = 0; i < nel; i++) {
1105 		rc = perm_read(p, cladatum->permissions.table, fp);
1106 		if (rc)
1107 			goto bad;
1108 	}
1109 
1110 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1111 	if (rc)
1112 		goto bad;
1113 
1114 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1115 		/* grab the validatetrans rules */
1116 		rc = next_entry(buf, fp, sizeof(u32));
1117 		if (rc < 0)
1118 			goto bad;
1119 		ncons = le32_to_cpu(buf[0]);
1120 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1121 		if (rc)
1122 			goto bad;
1123 	}
1124 
1125 	rc = hashtab_insert(h, key, cladatum);
1126 	if (rc)
1127 		goto bad;
1128 
1129 	rc = 0;
1130 out:
1131 	return rc;
1132 bad:
1133 	cls_destroy(key, cladatum, NULL);
1134 	goto out;
1135 }
1136 
1137 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1138 {
1139 	char *key = NULL;
1140 	struct role_datum *role;
1141 	int rc;
1142 	__le32 buf[2];
1143 	u32 len;
1144 
1145 	role = kzalloc(sizeof(*role), GFP_KERNEL);
1146 	if (!role) {
1147 		rc = -ENOMEM;
1148 		goto out;
1149 	}
1150 
1151 	rc = next_entry(buf, fp, sizeof buf);
1152 	if (rc < 0)
1153 		goto bad;
1154 
1155 	len = le32_to_cpu(buf[0]);
1156 	role->value = le32_to_cpu(buf[1]);
1157 
1158 	key = kmalloc(len + 1,GFP_KERNEL);
1159 	if (!key) {
1160 		rc = -ENOMEM;
1161 		goto bad;
1162 	}
1163 	rc = next_entry(key, fp, len);
1164 	if (rc < 0)
1165 		goto bad;
1166 	key[len] = 0;
1167 
1168 	rc = ebitmap_read(&role->dominates, fp);
1169 	if (rc)
1170 		goto bad;
1171 
1172 	rc = ebitmap_read(&role->types, fp);
1173 	if (rc)
1174 		goto bad;
1175 
1176 	if (strcmp(key, OBJECT_R) == 0) {
1177 		if (role->value != OBJECT_R_VAL) {
1178 			printk(KERN_ERR "Role %s has wrong value %d\n",
1179 			       OBJECT_R, role->value);
1180 			rc = -EINVAL;
1181 			goto bad;
1182 		}
1183 		rc = 0;
1184 		goto bad;
1185 	}
1186 
1187 	rc = hashtab_insert(h, key, role);
1188 	if (rc)
1189 		goto bad;
1190 out:
1191 	return rc;
1192 bad:
1193 	role_destroy(key, role, NULL);
1194 	goto out;
1195 }
1196 
1197 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1198 {
1199 	char *key = NULL;
1200 	struct type_datum *typdatum;
1201 	int rc;
1202 	__le32 buf[3];
1203 	u32 len;
1204 
1205 	typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL);
1206 	if (!typdatum) {
1207 		rc = -ENOMEM;
1208 		return rc;
1209 	}
1210 
1211 	rc = next_entry(buf, fp, sizeof buf);
1212 	if (rc < 0)
1213 		goto bad;
1214 
1215 	len = le32_to_cpu(buf[0]);
1216 	typdatum->value = le32_to_cpu(buf[1]);
1217 	typdatum->primary = le32_to_cpu(buf[2]);
1218 
1219 	key = kmalloc(len + 1,GFP_KERNEL);
1220 	if (!key) {
1221 		rc = -ENOMEM;
1222 		goto bad;
1223 	}
1224 	rc = next_entry(key, fp, len);
1225 	if (rc < 0)
1226 		goto bad;
1227 	key[len] = 0;
1228 
1229 	rc = hashtab_insert(h, key, typdatum);
1230 	if (rc)
1231 		goto bad;
1232 out:
1233 	return rc;
1234 bad:
1235 	type_destroy(key, typdatum, NULL);
1236 	goto out;
1237 }
1238 
1239 
1240 /*
1241  * Read a MLS level structure from a policydb binary
1242  * representation file.
1243  */
1244 static int mls_read_level(struct mls_level *lp, void *fp)
1245 {
1246 	__le32 buf[1];
1247 	int rc;
1248 
1249 	memset(lp, 0, sizeof(*lp));
1250 
1251 	rc = next_entry(buf, fp, sizeof buf);
1252 	if (rc < 0) {
1253 		printk(KERN_ERR "security: mls: truncated level\n");
1254 		goto bad;
1255 	}
1256 	lp->sens = le32_to_cpu(buf[0]);
1257 
1258 	if (ebitmap_read(&lp->cat, fp)) {
1259 		printk(KERN_ERR "security: mls:  error reading level "
1260 		       "categories\n");
1261 		goto bad;
1262 	}
1263 	return 0;
1264 
1265 bad:
1266 	return -EINVAL;
1267 }
1268 
1269 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1270 {
1271 	char *key = NULL;
1272 	struct user_datum *usrdatum;
1273 	int rc;
1274 	__le32 buf[2];
1275 	u32 len;
1276 
1277 	usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1278 	if (!usrdatum) {
1279 		rc = -ENOMEM;
1280 		goto out;
1281 	}
1282 
1283 	rc = next_entry(buf, fp, sizeof buf);
1284 	if (rc < 0)
1285 		goto bad;
1286 
1287 	len = le32_to_cpu(buf[0]);
1288 	usrdatum->value = le32_to_cpu(buf[1]);
1289 
1290 	key = kmalloc(len + 1,GFP_KERNEL);
1291 	if (!key) {
1292 		rc = -ENOMEM;
1293 		goto bad;
1294 	}
1295 	rc = next_entry(key, fp, len);
1296 	if (rc < 0)
1297 		goto bad;
1298 	key[len] = 0;
1299 
1300 	rc = ebitmap_read(&usrdatum->roles, fp);
1301 	if (rc)
1302 		goto bad;
1303 
1304 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1305 		rc = mls_read_range_helper(&usrdatum->range, fp);
1306 		if (rc)
1307 			goto bad;
1308 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1309 		if (rc)
1310 			goto bad;
1311 	}
1312 
1313 	rc = hashtab_insert(h, key, usrdatum);
1314 	if (rc)
1315 		goto bad;
1316 out:
1317 	return rc;
1318 bad:
1319 	user_destroy(key, usrdatum, NULL);
1320 	goto out;
1321 }
1322 
1323 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1324 {
1325 	char *key = NULL;
1326 	struct level_datum *levdatum;
1327 	int rc;
1328 	__le32 buf[2];
1329 	u32 len;
1330 
1331 	levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1332 	if (!levdatum) {
1333 		rc = -ENOMEM;
1334 		goto out;
1335 	}
1336 
1337 	rc = next_entry(buf, fp, sizeof buf);
1338 	if (rc < 0)
1339 		goto bad;
1340 
1341 	len = le32_to_cpu(buf[0]);
1342 	levdatum->isalias = le32_to_cpu(buf[1]);
1343 
1344 	key = kmalloc(len + 1,GFP_ATOMIC);
1345 	if (!key) {
1346 		rc = -ENOMEM;
1347 		goto bad;
1348 	}
1349 	rc = next_entry(key, fp, len);
1350 	if (rc < 0)
1351 		goto bad;
1352 	key[len] = 0;
1353 
1354 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1355 	if (!levdatum->level) {
1356 		rc = -ENOMEM;
1357 		goto bad;
1358 	}
1359 	if (mls_read_level(levdatum->level, fp)) {
1360 		rc = -EINVAL;
1361 		goto bad;
1362 	}
1363 
1364 	rc = hashtab_insert(h, key, levdatum);
1365 	if (rc)
1366 		goto bad;
1367 out:
1368 	return rc;
1369 bad:
1370 	sens_destroy(key, levdatum, NULL);
1371 	goto out;
1372 }
1373 
1374 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1375 {
1376 	char *key = NULL;
1377 	struct cat_datum *catdatum;
1378 	int rc;
1379 	__le32 buf[3];
1380 	u32 len;
1381 
1382 	catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1383 	if (!catdatum) {
1384 		rc = -ENOMEM;
1385 		goto out;
1386 	}
1387 
1388 	rc = next_entry(buf, fp, sizeof buf);
1389 	if (rc < 0)
1390 		goto bad;
1391 
1392 	len = le32_to_cpu(buf[0]);
1393 	catdatum->value = le32_to_cpu(buf[1]);
1394 	catdatum->isalias = le32_to_cpu(buf[2]);
1395 
1396 	key = kmalloc(len + 1,GFP_ATOMIC);
1397 	if (!key) {
1398 		rc = -ENOMEM;
1399 		goto bad;
1400 	}
1401 	rc = next_entry(key, fp, len);
1402 	if (rc < 0)
1403 		goto bad;
1404 	key[len] = 0;
1405 
1406 	rc = hashtab_insert(h, key, catdatum);
1407 	if (rc)
1408 		goto bad;
1409 out:
1410 	return rc;
1411 
1412 bad:
1413 	cat_destroy(key, catdatum, NULL);
1414 	goto out;
1415 }
1416 
1417 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1418 {
1419 	common_read,
1420 	class_read,
1421 	role_read,
1422 	type_read,
1423 	user_read,
1424 	cond_read_bool,
1425 	sens_read,
1426 	cat_read,
1427 };
1428 
1429 extern int ss_initialized;
1430 
1431 /*
1432  * Read the configuration data from a policy database binary
1433  * representation file into a policy database structure.
1434  */
1435 int policydb_read(struct policydb *p, void *fp)
1436 {
1437 	struct role_allow *ra, *lra;
1438 	struct role_trans *tr, *ltr;
1439 	struct ocontext *l, *c, *newc;
1440 	struct genfs *genfs_p, *genfs, *newgenfs;
1441 	int i, j, rc;
1442 	__le32 buf[8];
1443 	u32 len, len2, config, nprim, nel, nel2;
1444 	char *policydb_str;
1445 	struct policydb_compat_info *info;
1446 	struct range_trans *rt, *lrt;
1447 
1448 	config = 0;
1449 
1450 	rc = policydb_init(p);
1451 	if (rc)
1452 		goto out;
1453 
1454 	/* Read the magic number and string length. */
1455 	rc = next_entry(buf, fp, sizeof(u32)* 2);
1456 	if (rc < 0)
1457 		goto bad;
1458 
1459 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1460 		printk(KERN_ERR "security:  policydb magic number 0x%x does "
1461 		       "not match expected magic number 0x%x\n",
1462 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1463 		goto bad;
1464 	}
1465 
1466 	len = le32_to_cpu(buf[1]);
1467 	if (len != strlen(POLICYDB_STRING)) {
1468 		printk(KERN_ERR "security:  policydb string length %d does not "
1469 		       "match expected length %Zu\n",
1470 		       len, strlen(POLICYDB_STRING));
1471 		goto bad;
1472 	}
1473 	policydb_str = kmalloc(len + 1,GFP_KERNEL);
1474 	if (!policydb_str) {
1475 		printk(KERN_ERR "security:  unable to allocate memory for policydb "
1476 		       "string of length %d\n", len);
1477 		rc = -ENOMEM;
1478 		goto bad;
1479 	}
1480 	rc = next_entry(policydb_str, fp, len);
1481 	if (rc < 0) {
1482 		printk(KERN_ERR "security:  truncated policydb string identifier\n");
1483 		kfree(policydb_str);
1484 		goto bad;
1485 	}
1486 	policydb_str[len] = 0;
1487 	if (strcmp(policydb_str, POLICYDB_STRING)) {
1488 		printk(KERN_ERR "security:  policydb string %s does not match "
1489 		       "my string %s\n", policydb_str, POLICYDB_STRING);
1490 		kfree(policydb_str);
1491 		goto bad;
1492 	}
1493 	/* Done with policydb_str. */
1494 	kfree(policydb_str);
1495 	policydb_str = NULL;
1496 
1497 	/* Read the version, config, and table sizes. */
1498 	rc = next_entry(buf, fp, sizeof(u32)*4);
1499 	if (rc < 0)
1500 		goto bad;
1501 
1502 	p->policyvers = le32_to_cpu(buf[0]);
1503 	if (p->policyvers < POLICYDB_VERSION_MIN ||
1504 	    p->policyvers > POLICYDB_VERSION_MAX) {
1505 	    	printk(KERN_ERR "security:  policydb version %d does not match "
1506 	    	       "my version range %d-%d\n",
1507 	    	       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1508 	    	goto bad;
1509 	}
1510 
1511 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1512 		if (ss_initialized && !selinux_mls_enabled) {
1513 			printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1514 			       "policies\n");
1515 			goto bad;
1516 		}
1517 		selinux_mls_enabled = 1;
1518 		config |= POLICYDB_CONFIG_MLS;
1519 
1520 		if (p->policyvers < POLICYDB_VERSION_MLS) {
1521 			printk(KERN_ERR "security policydb version %d (MLS) "
1522 			       "not backwards compatible\n", p->policyvers);
1523 			goto bad;
1524 		}
1525 	} else {
1526 		if (ss_initialized && selinux_mls_enabled) {
1527 			printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1528 			       "policies\n");
1529 			goto bad;
1530 		}
1531 	}
1532 	p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
1533 	p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
1534 
1535 	info = policydb_lookup_compat(p->policyvers);
1536 	if (!info) {
1537 		printk(KERN_ERR "security:  unable to find policy compat info "
1538 		       "for version %d\n", p->policyvers);
1539 		goto bad;
1540 	}
1541 
1542 	if (le32_to_cpu(buf[2]) != info->sym_num ||
1543 		le32_to_cpu(buf[3]) != info->ocon_num) {
1544 		printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1545 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1546 			le32_to_cpu(buf[3]),
1547 		       info->sym_num, info->ocon_num);
1548 		goto bad;
1549 	}
1550 
1551 	for (i = 0; i < info->sym_num; i++) {
1552 		rc = next_entry(buf, fp, sizeof(u32)*2);
1553 		if (rc < 0)
1554 			goto bad;
1555 		nprim = le32_to_cpu(buf[0]);
1556 		nel = le32_to_cpu(buf[1]);
1557 		for (j = 0; j < nel; j++) {
1558 			rc = read_f[i](p, p->symtab[i].table, fp);
1559 			if (rc)
1560 				goto bad;
1561 		}
1562 
1563 		p->symtab[i].nprim = nprim;
1564 	}
1565 
1566 	rc = avtab_read(&p->te_avtab, fp, p->policyvers);
1567 	if (rc)
1568 		goto bad;
1569 
1570 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1571 		rc = cond_read_list(p, fp);
1572 		if (rc)
1573 			goto bad;
1574 	}
1575 
1576 	rc = next_entry(buf, fp, sizeof(u32));
1577 	if (rc < 0)
1578 		goto bad;
1579 	nel = le32_to_cpu(buf[0]);
1580 	ltr = NULL;
1581 	for (i = 0; i < nel; i++) {
1582 		tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1583 		if (!tr) {
1584 			rc = -ENOMEM;
1585 			goto bad;
1586 		}
1587 		if (ltr) {
1588 			ltr->next = tr;
1589 		} else {
1590 			p->role_tr = tr;
1591 		}
1592 		rc = next_entry(buf, fp, sizeof(u32)*3);
1593 		if (rc < 0)
1594 			goto bad;
1595 		tr->role = le32_to_cpu(buf[0]);
1596 		tr->type = le32_to_cpu(buf[1]);
1597 		tr->new_role = le32_to_cpu(buf[2]);
1598 		ltr = tr;
1599 	}
1600 
1601 	rc = next_entry(buf, fp, sizeof(u32));
1602 	if (rc < 0)
1603 		goto bad;
1604 	nel = le32_to_cpu(buf[0]);
1605 	lra = NULL;
1606 	for (i = 0; i < nel; i++) {
1607 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1608 		if (!ra) {
1609 			rc = -ENOMEM;
1610 			goto bad;
1611 		}
1612 		if (lra) {
1613 			lra->next = ra;
1614 		} else {
1615 			p->role_allow = ra;
1616 		}
1617 		rc = next_entry(buf, fp, sizeof(u32)*2);
1618 		if (rc < 0)
1619 			goto bad;
1620 		ra->role = le32_to_cpu(buf[0]);
1621 		ra->new_role = le32_to_cpu(buf[1]);
1622 		lra = ra;
1623 	}
1624 
1625 	rc = policydb_index_classes(p);
1626 	if (rc)
1627 		goto bad;
1628 
1629 	rc = policydb_index_others(p);
1630 	if (rc)
1631 		goto bad;
1632 
1633 	for (i = 0; i < info->ocon_num; i++) {
1634 		rc = next_entry(buf, fp, sizeof(u32));
1635 		if (rc < 0)
1636 			goto bad;
1637 		nel = le32_to_cpu(buf[0]);
1638 		l = NULL;
1639 		for (j = 0; j < nel; j++) {
1640 			c = kzalloc(sizeof(*c), GFP_KERNEL);
1641 			if (!c) {
1642 				rc = -ENOMEM;
1643 				goto bad;
1644 			}
1645 			if (l) {
1646 				l->next = c;
1647 			} else {
1648 				p->ocontexts[i] = c;
1649 			}
1650 			l = c;
1651 			rc = -EINVAL;
1652 			switch (i) {
1653 			case OCON_ISID:
1654 				rc = next_entry(buf, fp, sizeof(u32));
1655 				if (rc < 0)
1656 					goto bad;
1657 				c->sid[0] = le32_to_cpu(buf[0]);
1658 				rc = context_read_and_validate(&c->context[0], p, fp);
1659 				if (rc)
1660 					goto bad;
1661 				break;
1662 			case OCON_FS:
1663 			case OCON_NETIF:
1664 				rc = next_entry(buf, fp, sizeof(u32));
1665 				if (rc < 0)
1666 					goto bad;
1667 				len = le32_to_cpu(buf[0]);
1668 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1669 				if (!c->u.name) {
1670 					rc = -ENOMEM;
1671 					goto bad;
1672 				}
1673 				rc = next_entry(c->u.name, fp, len);
1674 				if (rc < 0)
1675 					goto bad;
1676 				c->u.name[len] = 0;
1677 				rc = context_read_and_validate(&c->context[0], p, fp);
1678 				if (rc)
1679 					goto bad;
1680 				rc = context_read_and_validate(&c->context[1], p, fp);
1681 				if (rc)
1682 					goto bad;
1683 				break;
1684 			case OCON_PORT:
1685 				rc = next_entry(buf, fp, sizeof(u32)*3);
1686 				if (rc < 0)
1687 					goto bad;
1688 				c->u.port.protocol = le32_to_cpu(buf[0]);
1689 				c->u.port.low_port = le32_to_cpu(buf[1]);
1690 				c->u.port.high_port = le32_to_cpu(buf[2]);
1691 				rc = context_read_and_validate(&c->context[0], p, fp);
1692 				if (rc)
1693 					goto bad;
1694 				break;
1695 			case OCON_NODE:
1696 				rc = next_entry(buf, fp, sizeof(u32)* 2);
1697 				if (rc < 0)
1698 					goto bad;
1699 				c->u.node.addr = le32_to_cpu(buf[0]);
1700 				c->u.node.mask = le32_to_cpu(buf[1]);
1701 				rc = context_read_and_validate(&c->context[0], p, fp);
1702 				if (rc)
1703 					goto bad;
1704 				break;
1705 			case OCON_FSUSE:
1706 				rc = next_entry(buf, fp, sizeof(u32)*2);
1707 				if (rc < 0)
1708 					goto bad;
1709 				c->v.behavior = le32_to_cpu(buf[0]);
1710 				if (c->v.behavior > SECURITY_FS_USE_NONE)
1711 					goto bad;
1712 				len = le32_to_cpu(buf[1]);
1713 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1714 				if (!c->u.name) {
1715 					rc = -ENOMEM;
1716 					goto bad;
1717 				}
1718 				rc = next_entry(c->u.name, fp, len);
1719 				if (rc < 0)
1720 					goto bad;
1721 				c->u.name[len] = 0;
1722 				rc = context_read_and_validate(&c->context[0], p, fp);
1723 				if (rc)
1724 					goto bad;
1725 				break;
1726 			case OCON_NODE6: {
1727 				int k;
1728 
1729 				rc = next_entry(buf, fp, sizeof(u32) * 8);
1730 				if (rc < 0)
1731 					goto bad;
1732 				for (k = 0; k < 4; k++)
1733 					c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1734 				for (k = 0; k < 4; k++)
1735 					c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1736 				if (context_read_and_validate(&c->context[0], p, fp))
1737 					goto bad;
1738 				break;
1739 			}
1740 			}
1741 		}
1742 	}
1743 
1744 	rc = next_entry(buf, fp, sizeof(u32));
1745 	if (rc < 0)
1746 		goto bad;
1747 	nel = le32_to_cpu(buf[0]);
1748 	genfs_p = NULL;
1749 	rc = -EINVAL;
1750 	for (i = 0; i < nel; i++) {
1751 		rc = next_entry(buf, fp, sizeof(u32));
1752 		if (rc < 0)
1753 			goto bad;
1754 		len = le32_to_cpu(buf[0]);
1755 		newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1756 		if (!newgenfs) {
1757 			rc = -ENOMEM;
1758 			goto bad;
1759 		}
1760 
1761 		newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1762 		if (!newgenfs->fstype) {
1763 			rc = -ENOMEM;
1764 			kfree(newgenfs);
1765 			goto bad;
1766 		}
1767 		rc = next_entry(newgenfs->fstype, fp, len);
1768 		if (rc < 0) {
1769 			kfree(newgenfs->fstype);
1770 			kfree(newgenfs);
1771 			goto bad;
1772 		}
1773 		newgenfs->fstype[len] = 0;
1774 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1775 		     genfs_p = genfs, genfs = genfs->next) {
1776 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1777 				printk(KERN_ERR "security:  dup genfs "
1778 				       "fstype %s\n", newgenfs->fstype);
1779 				kfree(newgenfs->fstype);
1780 				kfree(newgenfs);
1781 				goto bad;
1782 			}
1783 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1784 				break;
1785 		}
1786 		newgenfs->next = genfs;
1787 		if (genfs_p)
1788 			genfs_p->next = newgenfs;
1789 		else
1790 			p->genfs = newgenfs;
1791 		rc = next_entry(buf, fp, sizeof(u32));
1792 		if (rc < 0)
1793 			goto bad;
1794 		nel2 = le32_to_cpu(buf[0]);
1795 		for (j = 0; j < nel2; j++) {
1796 			rc = next_entry(buf, fp, sizeof(u32));
1797 			if (rc < 0)
1798 				goto bad;
1799 			len = le32_to_cpu(buf[0]);
1800 
1801 			newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1802 			if (!newc) {
1803 				rc = -ENOMEM;
1804 				goto bad;
1805 			}
1806 
1807 			newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1808 			if (!newc->u.name) {
1809 				rc = -ENOMEM;
1810 				goto bad_newc;
1811 			}
1812 			rc = next_entry(newc->u.name, fp, len);
1813 			if (rc < 0)
1814 				goto bad_newc;
1815 			newc->u.name[len] = 0;
1816 			rc = next_entry(buf, fp, sizeof(u32));
1817 			if (rc < 0)
1818 				goto bad_newc;
1819 			newc->v.sclass = le32_to_cpu(buf[0]);
1820 			if (context_read_and_validate(&newc->context[0], p, fp))
1821 				goto bad_newc;
1822 			for (l = NULL, c = newgenfs->head; c;
1823 			     l = c, c = c->next) {
1824 				if (!strcmp(newc->u.name, c->u.name) &&
1825 				    (!c->v.sclass || !newc->v.sclass ||
1826 				     newc->v.sclass == c->v.sclass)) {
1827 					printk(KERN_ERR "security:  dup genfs "
1828 					       "entry (%s,%s)\n",
1829 					       newgenfs->fstype, c->u.name);
1830 					goto bad_newc;
1831 				}
1832 				len = strlen(newc->u.name);
1833 				len2 = strlen(c->u.name);
1834 				if (len > len2)
1835 					break;
1836 			}
1837 
1838 			newc->next = c;
1839 			if (l)
1840 				l->next = newc;
1841 			else
1842 				newgenfs->head = newc;
1843 		}
1844 	}
1845 
1846 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1847 		int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS;
1848 		rc = next_entry(buf, fp, sizeof(u32));
1849 		if (rc < 0)
1850 			goto bad;
1851 		nel = le32_to_cpu(buf[0]);
1852 		lrt = NULL;
1853 		for (i = 0; i < nel; i++) {
1854 			rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1855 			if (!rt) {
1856 				rc = -ENOMEM;
1857 				goto bad;
1858 			}
1859 			if (lrt)
1860 				lrt->next = rt;
1861 			else
1862 				p->range_tr = rt;
1863 			rc = next_entry(buf, fp, (sizeof(u32) * 2));
1864 			if (rc < 0)
1865 				goto bad;
1866 			rt->source_type = le32_to_cpu(buf[0]);
1867 			rt->target_type = le32_to_cpu(buf[1]);
1868 			if (new_rangetr) {
1869 				rc = next_entry(buf, fp, sizeof(u32));
1870 				if (rc < 0)
1871 					goto bad;
1872 				rt->target_class = le32_to_cpu(buf[0]);
1873 			} else
1874 				rt->target_class = SECCLASS_PROCESS;
1875 			rc = mls_read_range_helper(&rt->target_range, fp);
1876 			if (rc)
1877 				goto bad;
1878 			lrt = rt;
1879 		}
1880 	}
1881 
1882 	p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1883 	if (!p->type_attr_map)
1884 		goto bad;
1885 
1886 	for (i = 0; i < p->p_types.nprim; i++) {
1887 		ebitmap_init(&p->type_attr_map[i]);
1888 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1889 			if (ebitmap_read(&p->type_attr_map[i], fp))
1890 				goto bad;
1891 		}
1892 		/* add the type itself as the degenerate case */
1893 		if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1894 				goto bad;
1895 	}
1896 
1897 	rc = 0;
1898 out:
1899 	return rc;
1900 bad_newc:
1901 	ocontext_destroy(newc,OCON_FSUSE);
1902 bad:
1903 	if (!rc)
1904 		rc = -EINVAL;
1905 	policydb_destroy(p);
1906 	goto out;
1907 }
1908