xref: /openbmc/linux/security/selinux/ss/conditional.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
2  *	    Frank Mayer <mayerf@tresys.com>
3  *
4  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
5  *	This program is free software; you can redistribute it and/or modify
6  *	it under the terms of the GNU General Public License as published by
7  *	the Free Software Foundation, version 2.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
15 
16 #include "security.h"
17 #include "conditional.h"
18 
19 /*
20  * cond_evaluate_expr evaluates a conditional expr
21  * in reverse polish notation. It returns true (1), false (0),
22  * or undefined (-1). Undefined occurs when the expression
23  * exceeds the stack depth of COND_EXPR_MAXDEPTH.
24  */
25 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
26 {
27 
28 	struct cond_expr *cur;
29 	int s[COND_EXPR_MAXDEPTH];
30 	int sp = -1;
31 
32 	for (cur = expr; cur; cur = cur->next) {
33 		switch (cur->expr_type) {
34 		case COND_BOOL:
35 			if (sp == (COND_EXPR_MAXDEPTH - 1))
36 				return -1;
37 			sp++;
38 			s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
39 			break;
40 		case COND_NOT:
41 			if (sp < 0)
42 				return -1;
43 			s[sp] = !s[sp];
44 			break;
45 		case COND_OR:
46 			if (sp < 1)
47 				return -1;
48 			sp--;
49 			s[sp] |= s[sp + 1];
50 			break;
51 		case COND_AND:
52 			if (sp < 1)
53 				return -1;
54 			sp--;
55 			s[sp] &= s[sp + 1];
56 			break;
57 		case COND_XOR:
58 			if (sp < 1)
59 				return -1;
60 			sp--;
61 			s[sp] ^= s[sp + 1];
62 			break;
63 		case COND_EQ:
64 			if (sp < 1)
65 				return -1;
66 			sp--;
67 			s[sp] = (s[sp] == s[sp + 1]);
68 			break;
69 		case COND_NEQ:
70 			if (sp < 1)
71 				return -1;
72 			sp--;
73 			s[sp] = (s[sp] != s[sp + 1]);
74 			break;
75 		default:
76 			return -1;
77 		}
78 	}
79 	return s[0];
80 }
81 
82 /*
83  * evaluate_cond_node evaluates the conditional stored in
84  * a struct cond_node and if the result is different than the
85  * current state of the node it sets the rules in the true/false
86  * list appropriately. If the result of the expression is undefined
87  * all of the rules are disabled for safety.
88  */
89 int evaluate_cond_node(struct policydb *p, struct cond_node *node)
90 {
91 	int new_state;
92 	struct cond_av_list *cur;
93 
94 	new_state = cond_evaluate_expr(p, node->expr);
95 	if (new_state != node->cur_state) {
96 		node->cur_state = new_state;
97 		if (new_state == -1)
98 			printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
99 		/* turn the rules on or off */
100 		for (cur = node->true_list; cur; cur = cur->next) {
101 			if (new_state <= 0)
102 				cur->node->key.specified &= ~AVTAB_ENABLED;
103 			else
104 				cur->node->key.specified |= AVTAB_ENABLED;
105 		}
106 
107 		for (cur = node->false_list; cur; cur = cur->next) {
108 			/* -1 or 1 */
109 			if (new_state)
110 				cur->node->key.specified &= ~AVTAB_ENABLED;
111 			else
112 				cur->node->key.specified |= AVTAB_ENABLED;
113 		}
114 	}
115 	return 0;
116 }
117 
118 int cond_policydb_init(struct policydb *p)
119 {
120 	int rc;
121 
122 	p->bool_val_to_struct = NULL;
123 	p->cond_list = NULL;
124 
125 	rc = avtab_init(&p->te_cond_avtab);
126 	if (rc)
127 		return rc;
128 
129 	return 0;
130 }
131 
132 static void cond_av_list_destroy(struct cond_av_list *list)
133 {
134 	struct cond_av_list *cur, *next;
135 	for (cur = list; cur; cur = next) {
136 		next = cur->next;
137 		/* the avtab_ptr_t node is destroy by the avtab */
138 		kfree(cur);
139 	}
140 }
141 
142 static void cond_node_destroy(struct cond_node *node)
143 {
144 	struct cond_expr *cur_expr, *next_expr;
145 
146 	for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
147 		next_expr = cur_expr->next;
148 		kfree(cur_expr);
149 	}
150 	cond_av_list_destroy(node->true_list);
151 	cond_av_list_destroy(node->false_list);
152 	kfree(node);
153 }
154 
155 static void cond_list_destroy(struct cond_node *list)
156 {
157 	struct cond_node *next, *cur;
158 
159 	if (list == NULL)
160 		return;
161 
162 	for (cur = list; cur; cur = next) {
163 		next = cur->next;
164 		cond_node_destroy(cur);
165 	}
166 }
167 
168 void cond_policydb_destroy(struct policydb *p)
169 {
170 	kfree(p->bool_val_to_struct);
171 	avtab_destroy(&p->te_cond_avtab);
172 	cond_list_destroy(p->cond_list);
173 }
174 
175 int cond_init_bool_indexes(struct policydb *p)
176 {
177 	kfree(p->bool_val_to_struct);
178 	p->bool_val_to_struct =
179 		kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
180 	if (!p->bool_val_to_struct)
181 		return -ENOMEM;
182 	return 0;
183 }
184 
185 int cond_destroy_bool(void *key, void *datum, void *p)
186 {
187 	kfree(key);
188 	kfree(datum);
189 	return 0;
190 }
191 
192 int cond_index_bool(void *key, void *datum, void *datap)
193 {
194 	struct policydb *p;
195 	struct cond_bool_datum *booldatum;
196 	struct flex_array *fa;
197 
198 	booldatum = datum;
199 	p = datap;
200 
201 	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
202 		return -EINVAL;
203 
204 	fa = p->sym_val_to_name[SYM_BOOLS];
205 	if (flex_array_put_ptr(fa, booldatum->value - 1, key,
206 			       GFP_KERNEL | __GFP_ZERO))
207 		BUG();
208 	p->bool_val_to_struct[booldatum->value - 1] = booldatum;
209 
210 	return 0;
211 }
212 
213 static int bool_isvalid(struct cond_bool_datum *b)
214 {
215 	if (!(b->state == 0 || b->state == 1))
216 		return 0;
217 	return 1;
218 }
219 
220 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
221 {
222 	char *key = NULL;
223 	struct cond_bool_datum *booldatum;
224 	__le32 buf[3];
225 	u32 len;
226 	int rc;
227 
228 	booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
229 	if (!booldatum)
230 		return -ENOMEM;
231 
232 	rc = next_entry(buf, fp, sizeof buf);
233 	if (rc)
234 		goto err;
235 
236 	booldatum->value = le32_to_cpu(buf[0]);
237 	booldatum->state = le32_to_cpu(buf[1]);
238 
239 	rc = -EINVAL;
240 	if (!bool_isvalid(booldatum))
241 		goto err;
242 
243 	len = le32_to_cpu(buf[2]);
244 
245 	rc = -ENOMEM;
246 	key = kmalloc(len + 1, GFP_KERNEL);
247 	if (!key)
248 		goto err;
249 	rc = next_entry(key, fp, len);
250 	if (rc)
251 		goto err;
252 	key[len] = '\0';
253 	rc = hashtab_insert(h, key, booldatum);
254 	if (rc)
255 		goto err;
256 
257 	return 0;
258 err:
259 	cond_destroy_bool(key, booldatum, NULL);
260 	return rc;
261 }
262 
263 struct cond_insertf_data {
264 	struct policydb *p;
265 	struct cond_av_list *other;
266 	struct cond_av_list *head;
267 	struct cond_av_list *tail;
268 };
269 
270 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
271 {
272 	struct cond_insertf_data *data = ptr;
273 	struct policydb *p = data->p;
274 	struct cond_av_list *other = data->other, *list, *cur;
275 	struct avtab_node *node_ptr;
276 	u8 found;
277 	int rc = -EINVAL;
278 
279 	/*
280 	 * For type rules we have to make certain there aren't any
281 	 * conflicting rules by searching the te_avtab and the
282 	 * cond_te_avtab.
283 	 */
284 	if (k->specified & AVTAB_TYPE) {
285 		if (avtab_search(&p->te_avtab, k)) {
286 			printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
287 			goto err;
288 		}
289 		/*
290 		 * If we are reading the false list other will be a pointer to
291 		 * the true list. We can have duplicate entries if there is only
292 		 * 1 other entry and it is in our true list.
293 		 *
294 		 * If we are reading the true list (other == NULL) there shouldn't
295 		 * be any other entries.
296 		 */
297 		if (other) {
298 			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
299 			if (node_ptr) {
300 				if (avtab_search_node_next(node_ptr, k->specified)) {
301 					printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
302 					goto err;
303 				}
304 				found = 0;
305 				for (cur = other; cur; cur = cur->next) {
306 					if (cur->node == node_ptr) {
307 						found = 1;
308 						break;
309 					}
310 				}
311 				if (!found) {
312 					printk(KERN_ERR "SELinux: conflicting type rules.\n");
313 					goto err;
314 				}
315 			}
316 		} else {
317 			if (avtab_search(&p->te_cond_avtab, k)) {
318 				printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
319 				goto err;
320 			}
321 		}
322 	}
323 
324 	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
325 	if (!node_ptr) {
326 		printk(KERN_ERR "SELinux: could not insert rule.\n");
327 		rc = -ENOMEM;
328 		goto err;
329 	}
330 
331 	list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
332 	if (!list) {
333 		rc = -ENOMEM;
334 		goto err;
335 	}
336 
337 	list->node = node_ptr;
338 	if (!data->head)
339 		data->head = list;
340 	else
341 		data->tail->next = list;
342 	data->tail = list;
343 	return 0;
344 
345 err:
346 	cond_av_list_destroy(data->head);
347 	data->head = NULL;
348 	return rc;
349 }
350 
351 static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
352 {
353 	int i, rc;
354 	__le32 buf[1];
355 	u32 len;
356 	struct cond_insertf_data data;
357 
358 	*ret_list = NULL;
359 
360 	len = 0;
361 	rc = next_entry(buf, fp, sizeof(u32));
362 	if (rc)
363 		return rc;
364 
365 	len = le32_to_cpu(buf[0]);
366 	if (len == 0)
367 		return 0;
368 
369 	data.p = p;
370 	data.other = other;
371 	data.head = NULL;
372 	data.tail = NULL;
373 	for (i = 0; i < len; i++) {
374 		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
375 				     &data);
376 		if (rc)
377 			return rc;
378 	}
379 
380 	*ret_list = data.head;
381 	return 0;
382 }
383 
384 static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
385 {
386 	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
387 		printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
388 		return 0;
389 	}
390 
391 	if (expr->bool > p->p_bools.nprim) {
392 		printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
393 		return 0;
394 	}
395 	return 1;
396 }
397 
398 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
399 {
400 	__le32 buf[2];
401 	u32 len, i;
402 	int rc;
403 	struct cond_expr *expr = NULL, *last = NULL;
404 
405 	rc = next_entry(buf, fp, sizeof(u32) * 2);
406 	if (rc)
407 		goto err;
408 
409 	node->cur_state = le32_to_cpu(buf[0]);
410 
411 	/* expr */
412 	len = le32_to_cpu(buf[1]);
413 
414 	for (i = 0; i < len; i++) {
415 		rc = next_entry(buf, fp, sizeof(u32) * 2);
416 		if (rc)
417 			goto err;
418 
419 		rc = -ENOMEM;
420 		expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
421 		if (!expr)
422 			goto err;
423 
424 		expr->expr_type = le32_to_cpu(buf[0]);
425 		expr->bool = le32_to_cpu(buf[1]);
426 
427 		if (!expr_isvalid(p, expr)) {
428 			rc = -EINVAL;
429 			kfree(expr);
430 			goto err;
431 		}
432 
433 		if (i == 0)
434 			node->expr = expr;
435 		else
436 			last->next = expr;
437 		last = expr;
438 	}
439 
440 	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
441 	if (rc)
442 		goto err;
443 	rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
444 	if (rc)
445 		goto err;
446 	return 0;
447 err:
448 	cond_node_destroy(node);
449 	return rc;
450 }
451 
452 int cond_read_list(struct policydb *p, void *fp)
453 {
454 	struct cond_node *node, *last = NULL;
455 	__le32 buf[1];
456 	u32 i, len;
457 	int rc;
458 
459 	rc = next_entry(buf, fp, sizeof buf);
460 	if (rc)
461 		return rc;
462 
463 	len = le32_to_cpu(buf[0]);
464 
465 	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
466 	if (rc)
467 		goto err;
468 
469 	for (i = 0; i < len; i++) {
470 		rc = -ENOMEM;
471 		node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
472 		if (!node)
473 			goto err;
474 
475 		rc = cond_read_node(p, node, fp);
476 		if (rc)
477 			goto err;
478 
479 		if (i == 0)
480 			p->cond_list = node;
481 		else
482 			last->next = node;
483 		last = node;
484 	}
485 	return 0;
486 err:
487 	cond_list_destroy(p->cond_list);
488 	p->cond_list = NULL;
489 	return rc;
490 }
491 
492 int cond_write_bool(void *vkey, void *datum, void *ptr)
493 {
494 	char *key = vkey;
495 	struct cond_bool_datum *booldatum = datum;
496 	struct policy_data *pd = ptr;
497 	void *fp = pd->fp;
498 	__le32 buf[3];
499 	u32 len;
500 	int rc;
501 
502 	len = strlen(key);
503 	buf[0] = cpu_to_le32(booldatum->value);
504 	buf[1] = cpu_to_le32(booldatum->state);
505 	buf[2] = cpu_to_le32(len);
506 	rc = put_entry(buf, sizeof(u32), 3, fp);
507 	if (rc)
508 		return rc;
509 	rc = put_entry(key, 1, len, fp);
510 	if (rc)
511 		return rc;
512 	return 0;
513 }
514 
515 /*
516  * cond_write_cond_av_list doesn't write out the av_list nodes.
517  * Instead it writes out the key/value pairs from the avtab. This
518  * is necessary because there is no way to uniquely identifying rules
519  * in the avtab so it is not possible to associate individual rules
520  * in the avtab with a conditional without saving them as part of
521  * the conditional. This means that the avtab with the conditional
522  * rules will not be saved but will be rebuilt on policy load.
523  */
524 static int cond_write_av_list(struct policydb *p,
525 			      struct cond_av_list *list, struct policy_file *fp)
526 {
527 	__le32 buf[1];
528 	struct cond_av_list *cur_list;
529 	u32 len;
530 	int rc;
531 
532 	len = 0;
533 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
534 		len++;
535 
536 	buf[0] = cpu_to_le32(len);
537 	rc = put_entry(buf, sizeof(u32), 1, fp);
538 	if (rc)
539 		return rc;
540 
541 	if (len == 0)
542 		return 0;
543 
544 	for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
545 		rc = avtab_write_item(p, cur_list->node, fp);
546 		if (rc)
547 			return rc;
548 	}
549 
550 	return 0;
551 }
552 
553 static int cond_write_node(struct policydb *p, struct cond_node *node,
554 		    struct policy_file *fp)
555 {
556 	struct cond_expr *cur_expr;
557 	__le32 buf[2];
558 	int rc;
559 	u32 len = 0;
560 
561 	buf[0] = cpu_to_le32(node->cur_state);
562 	rc = put_entry(buf, sizeof(u32), 1, fp);
563 	if (rc)
564 		return rc;
565 
566 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
567 		len++;
568 
569 	buf[0] = cpu_to_le32(len);
570 	rc = put_entry(buf, sizeof(u32), 1, fp);
571 	if (rc)
572 		return rc;
573 
574 	for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
575 		buf[0] = cpu_to_le32(cur_expr->expr_type);
576 		buf[1] = cpu_to_le32(cur_expr->bool);
577 		rc = put_entry(buf, sizeof(u32), 2, fp);
578 		if (rc)
579 			return rc;
580 	}
581 
582 	rc = cond_write_av_list(p, node->true_list, fp);
583 	if (rc)
584 		return rc;
585 	rc = cond_write_av_list(p, node->false_list, fp);
586 	if (rc)
587 		return rc;
588 
589 	return 0;
590 }
591 
592 int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
593 {
594 	struct cond_node *cur;
595 	u32 len;
596 	__le32 buf[1];
597 	int rc;
598 
599 	len = 0;
600 	for (cur = list; cur != NULL; cur = cur->next)
601 		len++;
602 	buf[0] = cpu_to_le32(len);
603 	rc = put_entry(buf, sizeof(u32), 1, fp);
604 	if (rc)
605 		return rc;
606 
607 	for (cur = list; cur != NULL; cur = cur->next) {
608 		rc = cond_write_node(p, cur, fp);
609 		if (rc)
610 			return rc;
611 	}
612 
613 	return 0;
614 }
615 /* Determine whether additional permissions are granted by the conditional
616  * av table, and if so, add them to the result
617  */
618 void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd)
619 {
620 	struct avtab_node *node;
621 
622 	if (!ctab || !key || !avd)
623 		return;
624 
625 	for (node = avtab_search_node(ctab, key); node;
626 				node = avtab_search_node_next(node, key->specified)) {
627 		if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
628 		    (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
629 			avd->allowed |= node->datum.data;
630 		if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
631 		    (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
632 			/* Since a '0' in an auditdeny mask represents a
633 			 * permission we do NOT want to audit (dontaudit), we use
634 			 * the '&' operand to ensure that all '0's in the mask
635 			 * are retained (much unlike the allow and auditallow cases).
636 			 */
637 			avd->auditdeny &= node->datum.data;
638 		if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
639 		    (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
640 			avd->auditallow |= node->datum.data;
641 	}
642 	return;
643 }
644