xref: /openbmc/linux/security/selinux/hooks.c (revision e3fea3f70fd68af0574a5f24246cdb4ed07f2b74)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>		/* for local_port_range[] */
54 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
55 #include <net/net_namespace.h>
56 #include <net/netlabel.h>
57 #include <linux/uaccess.h>
58 #include <asm/ioctls.h>
59 #include <linux/atomic.h>
60 #include <linux/bitops.h>
61 #include <linux/interrupt.h>
62 #include <linux/netdevice.h>	/* for network interface checks */
63 #include <linux/netlink.h>
64 #include <linux/tcp.h>
65 #include <linux/udp.h>
66 #include <linux/dccp.h>
67 #include <linux/quota.h>
68 #include <linux/un.h>		/* for Unix socket types */
69 #include <net/af_unix.h>	/* for Unix socket types */
70 #include <linux/parser.h>
71 #include <linux/nfs_mount.h>
72 #include <net/ipv6.h>
73 #include <linux/hugetlb.h>
74 #include <linux/personality.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79 #include <linux/posix-timers.h>
80 #include <linux/syslog.h>
81 #include <linux/user_namespace.h>
82 #include <linux/export.h>
83 #include <linux/msg.h>
84 #include <linux/shm.h>
85 
86 #include "avc.h"
87 #include "objsec.h"
88 #include "netif.h"
89 #include "netnode.h"
90 #include "netport.h"
91 #include "xfrm.h"
92 #include "netlabel.h"
93 #include "audit.h"
94 #include "avc_ss.h"
95 
96 #define NUM_SEL_MNT_OPTS 5
97 
98 extern struct security_operations *security_ops;
99 
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102 
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105 
106 static int __init enforcing_setup(char *str)
107 {
108 	unsigned long enforcing;
109 	if (!strict_strtoul(str, 0, &enforcing))
110 		selinux_enforcing = enforcing ? 1 : 0;
111 	return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115 
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118 
119 static int __init selinux_enabled_setup(char *str)
120 {
121 	unsigned long enabled;
122 	if (!strict_strtoul(str, 0, &enabled))
123 		selinux_enabled = enabled ? 1 : 0;
124 	return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130 
131 static struct kmem_cache *sel_inode_cache;
132 
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.
141  *
142  */
143 static int selinux_secmark_enabled(void)
144 {
145 	return (atomic_read(&selinux_secmark_refcount) > 0);
146 }
147 
148 /*
149  * initialise the security for the init task
150  */
151 static void cred_init_security(void)
152 {
153 	struct cred *cred = (struct cred *) current->real_cred;
154 	struct task_security_struct *tsec;
155 
156 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157 	if (!tsec)
158 		panic("SELinux:  Failed to initialize initial task.\n");
159 
160 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
161 	cred->security = tsec;
162 }
163 
164 /*
165  * get the security ID of a set of credentials
166  */
167 static inline u32 cred_sid(const struct cred *cred)
168 {
169 	const struct task_security_struct *tsec;
170 
171 	tsec = cred->security;
172 	return tsec->sid;
173 }
174 
175 /*
176  * get the objective security ID of a task
177  */
178 static inline u32 task_sid(const struct task_struct *task)
179 {
180 	u32 sid;
181 
182 	rcu_read_lock();
183 	sid = cred_sid(__task_cred(task));
184 	rcu_read_unlock();
185 	return sid;
186 }
187 
188 /*
189  * get the subjective security ID of the current task
190  */
191 static inline u32 current_sid(void)
192 {
193 	const struct task_security_struct *tsec = current_security();
194 
195 	return tsec->sid;
196 }
197 
198 /* Allocate and free functions for each kind of security blob. */
199 
200 static int inode_alloc_security(struct inode *inode)
201 {
202 	struct inode_security_struct *isec;
203 	u32 sid = current_sid();
204 
205 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206 	if (!isec)
207 		return -ENOMEM;
208 
209 	mutex_init(&isec->lock);
210 	INIT_LIST_HEAD(&isec->list);
211 	isec->inode = inode;
212 	isec->sid = SECINITSID_UNLABELED;
213 	isec->sclass = SECCLASS_FILE;
214 	isec->task_sid = sid;
215 	inode->i_security = isec;
216 
217 	return 0;
218 }
219 
220 static void inode_free_security(struct inode *inode)
221 {
222 	struct inode_security_struct *isec = inode->i_security;
223 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224 
225 	spin_lock(&sbsec->isec_lock);
226 	if (!list_empty(&isec->list))
227 		list_del_init(&isec->list);
228 	spin_unlock(&sbsec->isec_lock);
229 
230 	inode->i_security = NULL;
231 	kmem_cache_free(sel_inode_cache, isec);
232 }
233 
234 static int file_alloc_security(struct file *file)
235 {
236 	struct file_security_struct *fsec;
237 	u32 sid = current_sid();
238 
239 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240 	if (!fsec)
241 		return -ENOMEM;
242 
243 	fsec->sid = sid;
244 	fsec->fown_sid = sid;
245 	file->f_security = fsec;
246 
247 	return 0;
248 }
249 
250 static void file_free_security(struct file *file)
251 {
252 	struct file_security_struct *fsec = file->f_security;
253 	file->f_security = NULL;
254 	kfree(fsec);
255 }
256 
257 static int superblock_alloc_security(struct super_block *sb)
258 {
259 	struct superblock_security_struct *sbsec;
260 
261 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262 	if (!sbsec)
263 		return -ENOMEM;
264 
265 	mutex_init(&sbsec->lock);
266 	INIT_LIST_HEAD(&sbsec->isec_head);
267 	spin_lock_init(&sbsec->isec_lock);
268 	sbsec->sb = sb;
269 	sbsec->sid = SECINITSID_UNLABELED;
270 	sbsec->def_sid = SECINITSID_FILE;
271 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272 	sb->s_security = sbsec;
273 
274 	return 0;
275 }
276 
277 static void superblock_free_security(struct super_block *sb)
278 {
279 	struct superblock_security_struct *sbsec = sb->s_security;
280 	sb->s_security = NULL;
281 	kfree(sbsec);
282 }
283 
284 /* The file system's label must be initialized prior to use. */
285 
286 static const char *labeling_behaviors[6] = {
287 	"uses xattr",
288 	"uses transition SIDs",
289 	"uses task SIDs",
290 	"uses genfs_contexts",
291 	"not configured for labeling",
292 	"uses mountpoint labeling",
293 };
294 
295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296 
297 static inline int inode_doinit(struct inode *inode)
298 {
299 	return inode_doinit_with_dentry(inode, NULL);
300 }
301 
302 enum {
303 	Opt_error = -1,
304 	Opt_context = 1,
305 	Opt_fscontext = 2,
306 	Opt_defcontext = 3,
307 	Opt_rootcontext = 4,
308 	Opt_labelsupport = 5,
309 };
310 
311 static const match_table_t tokens = {
312 	{Opt_context, CONTEXT_STR "%s"},
313 	{Opt_fscontext, FSCONTEXT_STR "%s"},
314 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
315 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316 	{Opt_labelsupport, LABELSUPP_STR},
317 	{Opt_error, NULL},
318 };
319 
320 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
321 
322 static int may_context_mount_sb_relabel(u32 sid,
323 			struct superblock_security_struct *sbsec,
324 			const struct cred *cred)
325 {
326 	const struct task_security_struct *tsec = cred->security;
327 	int rc;
328 
329 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330 			  FILESYSTEM__RELABELFROM, NULL);
331 	if (rc)
332 		return rc;
333 
334 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335 			  FILESYSTEM__RELABELTO, NULL);
336 	return rc;
337 }
338 
339 static int may_context_mount_inode_relabel(u32 sid,
340 			struct superblock_security_struct *sbsec,
341 			const struct cred *cred)
342 {
343 	const struct task_security_struct *tsec = cred->security;
344 	int rc;
345 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346 			  FILESYSTEM__RELABELFROM, NULL);
347 	if (rc)
348 		return rc;
349 
350 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351 			  FILESYSTEM__ASSOCIATE, NULL);
352 	return rc;
353 }
354 
355 static int sb_finish_set_opts(struct super_block *sb)
356 {
357 	struct superblock_security_struct *sbsec = sb->s_security;
358 	struct dentry *root = sb->s_root;
359 	struct inode *root_inode = root->d_inode;
360 	int rc = 0;
361 
362 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363 		/* Make sure that the xattr handler exists and that no
364 		   error other than -ENODATA is returned by getxattr on
365 		   the root directory.  -ENODATA is ok, as this may be
366 		   the first boot of the SELinux kernel before we have
367 		   assigned xattr values to the filesystem. */
368 		if (!root_inode->i_op->getxattr) {
369 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370 			       "xattr support\n", sb->s_id, sb->s_type->name);
371 			rc = -EOPNOTSUPP;
372 			goto out;
373 		}
374 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375 		if (rc < 0 && rc != -ENODATA) {
376 			if (rc == -EOPNOTSUPP)
377 				printk(KERN_WARNING "SELinux: (dev %s, type "
378 				       "%s) has no security xattr handler\n",
379 				       sb->s_id, sb->s_type->name);
380 			else
381 				printk(KERN_WARNING "SELinux: (dev %s, type "
382 				       "%s) getxattr errno %d\n", sb->s_id,
383 				       sb->s_type->name, -rc);
384 			goto out;
385 		}
386 	}
387 
388 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389 
390 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392 		       sb->s_id, sb->s_type->name);
393 	else
394 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395 		       sb->s_id, sb->s_type->name,
396 		       labeling_behaviors[sbsec->behavior-1]);
397 
398 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
401 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 		sbsec->flags &= ~SE_SBLABELSUPP;
403 
404 	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
405 	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406 		sbsec->flags |= SE_SBLABELSUPP;
407 
408 	/* Initialize the root inode. */
409 	rc = inode_doinit_with_dentry(root_inode, root);
410 
411 	/* Initialize any other inodes associated with the superblock, e.g.
412 	   inodes created prior to initial policy load or inodes created
413 	   during get_sb by a pseudo filesystem that directly
414 	   populates itself. */
415 	spin_lock(&sbsec->isec_lock);
416 next_inode:
417 	if (!list_empty(&sbsec->isec_head)) {
418 		struct inode_security_struct *isec =
419 				list_entry(sbsec->isec_head.next,
420 					   struct inode_security_struct, list);
421 		struct inode *inode = isec->inode;
422 		spin_unlock(&sbsec->isec_lock);
423 		inode = igrab(inode);
424 		if (inode) {
425 			if (!IS_PRIVATE(inode))
426 				inode_doinit(inode);
427 			iput(inode);
428 		}
429 		spin_lock(&sbsec->isec_lock);
430 		list_del_init(&isec->list);
431 		goto next_inode;
432 	}
433 	spin_unlock(&sbsec->isec_lock);
434 out:
435 	return rc;
436 }
437 
438 /*
439  * This function should allow an FS to ask what it's mount security
440  * options were so it can use those later for submounts, displaying
441  * mount options, or whatever.
442  */
443 static int selinux_get_mnt_opts(const struct super_block *sb,
444 				struct security_mnt_opts *opts)
445 {
446 	int rc = 0, i;
447 	struct superblock_security_struct *sbsec = sb->s_security;
448 	char *context = NULL;
449 	u32 len;
450 	char tmp;
451 
452 	security_init_mnt_opts(opts);
453 
454 	if (!(sbsec->flags & SE_SBINITIALIZED))
455 		return -EINVAL;
456 
457 	if (!ss_initialized)
458 		return -EINVAL;
459 
460 	tmp = sbsec->flags & SE_MNTMASK;
461 	/* count the number of mount options for this sb */
462 	for (i = 0; i < 8; i++) {
463 		if (tmp & 0x01)
464 			opts->num_mnt_opts++;
465 		tmp >>= 1;
466 	}
467 	/* Check if the Label support flag is set */
468 	if (sbsec->flags & SE_SBLABELSUPP)
469 		opts->num_mnt_opts++;
470 
471 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 	if (!opts->mnt_opts) {
473 		rc = -ENOMEM;
474 		goto out_free;
475 	}
476 
477 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 	if (!opts->mnt_opts_flags) {
479 		rc = -ENOMEM;
480 		goto out_free;
481 	}
482 
483 	i = 0;
484 	if (sbsec->flags & FSCONTEXT_MNT) {
485 		rc = security_sid_to_context(sbsec->sid, &context, &len);
486 		if (rc)
487 			goto out_free;
488 		opts->mnt_opts[i] = context;
489 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 	}
491 	if (sbsec->flags & CONTEXT_MNT) {
492 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 		if (rc)
494 			goto out_free;
495 		opts->mnt_opts[i] = context;
496 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 	}
498 	if (sbsec->flags & DEFCONTEXT_MNT) {
499 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 		if (rc)
501 			goto out_free;
502 		opts->mnt_opts[i] = context;
503 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 	}
505 	if (sbsec->flags & ROOTCONTEXT_MNT) {
506 		struct inode *root = sbsec->sb->s_root->d_inode;
507 		struct inode_security_struct *isec = root->i_security;
508 
509 		rc = security_sid_to_context(isec->sid, &context, &len);
510 		if (rc)
511 			goto out_free;
512 		opts->mnt_opts[i] = context;
513 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 	}
515 	if (sbsec->flags & SE_SBLABELSUPP) {
516 		opts->mnt_opts[i] = NULL;
517 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518 	}
519 
520 	BUG_ON(i != opts->num_mnt_opts);
521 
522 	return 0;
523 
524 out_free:
525 	security_free_mnt_opts(opts);
526 	return rc;
527 }
528 
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 		      u32 old_sid, u32 new_sid)
531 {
532 	char mnt_flags = sbsec->flags & SE_MNTMASK;
533 
534 	/* check if the old mount command had the same options */
535 	if (sbsec->flags & SE_SBINITIALIZED)
536 		if (!(sbsec->flags & flag) ||
537 		    (old_sid != new_sid))
538 			return 1;
539 
540 	/* check if we were passed the same options twice,
541 	 * aka someone passed context=a,context=b
542 	 */
543 	if (!(sbsec->flags & SE_SBINITIALIZED))
544 		if (mnt_flags & flag)
545 			return 1;
546 	return 0;
547 }
548 
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554 				struct security_mnt_opts *opts)
555 {
556 	const struct cred *cred = current_cred();
557 	int rc = 0, i;
558 	struct superblock_security_struct *sbsec = sb->s_security;
559 	const char *name = sb->s_type->name;
560 	struct inode *inode = sbsec->sb->s_root->d_inode;
561 	struct inode_security_struct *root_isec = inode->i_security;
562 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563 	u32 defcontext_sid = 0;
564 	char **mount_options = opts->mnt_opts;
565 	int *flags = opts->mnt_opts_flags;
566 	int num_opts = opts->num_mnt_opts;
567 
568 	mutex_lock(&sbsec->lock);
569 
570 	if (!ss_initialized) {
571 		if (!num_opts) {
572 			/* Defer initialization until selinux_complete_init,
573 			   after the initial policy is loaded and the security
574 			   server is ready to handle calls. */
575 			goto out;
576 		}
577 		rc = -EINVAL;
578 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 			"before the security server is initialized\n");
580 		goto out;
581 	}
582 
583 	/*
584 	 * Binary mount data FS will come through this function twice.  Once
585 	 * from an explicit call and once from the generic calls from the vfs.
586 	 * Since the generic VFS calls will not contain any security mount data
587 	 * we need to skip the double mount verification.
588 	 *
589 	 * This does open a hole in which we will not notice if the first
590 	 * mount using this sb set explict options and a second mount using
591 	 * this sb does not set any security options.  (The first options
592 	 * will be used for both mounts)
593 	 */
594 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 	    && (num_opts == 0))
596 		goto out;
597 
598 	/*
599 	 * parse the mount options, check if they are valid sids.
600 	 * also check if someone is trying to mount the same sb more
601 	 * than once with different security options.
602 	 */
603 	for (i = 0; i < num_opts; i++) {
604 		u32 sid;
605 
606 		if (flags[i] == SE_SBLABELSUPP)
607 			continue;
608 		rc = security_context_to_sid(mount_options[i],
609 					     strlen(mount_options[i]), &sid);
610 		if (rc) {
611 			printk(KERN_WARNING "SELinux: security_context_to_sid"
612 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
613 			       mount_options[i], sb->s_id, name, rc);
614 			goto out;
615 		}
616 		switch (flags[i]) {
617 		case FSCONTEXT_MNT:
618 			fscontext_sid = sid;
619 
620 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621 					fscontext_sid))
622 				goto out_double_mount;
623 
624 			sbsec->flags |= FSCONTEXT_MNT;
625 			break;
626 		case CONTEXT_MNT:
627 			context_sid = sid;
628 
629 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630 					context_sid))
631 				goto out_double_mount;
632 
633 			sbsec->flags |= CONTEXT_MNT;
634 			break;
635 		case ROOTCONTEXT_MNT:
636 			rootcontext_sid = sid;
637 
638 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639 					rootcontext_sid))
640 				goto out_double_mount;
641 
642 			sbsec->flags |= ROOTCONTEXT_MNT;
643 
644 			break;
645 		case DEFCONTEXT_MNT:
646 			defcontext_sid = sid;
647 
648 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649 					defcontext_sid))
650 				goto out_double_mount;
651 
652 			sbsec->flags |= DEFCONTEXT_MNT;
653 
654 			break;
655 		default:
656 			rc = -EINVAL;
657 			goto out;
658 		}
659 	}
660 
661 	if (sbsec->flags & SE_SBINITIALIZED) {
662 		/* previously mounted with options, but not on this attempt? */
663 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664 			goto out_double_mount;
665 		rc = 0;
666 		goto out;
667 	}
668 
669 	if (strcmp(sb->s_type->name, "proc") == 0)
670 		sbsec->flags |= SE_SBPROC;
671 
672 	/* Determine the labeling behavior to use for this filesystem type. */
673 	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674 	if (rc) {
675 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676 		       __func__, sb->s_type->name, rc);
677 		goto out;
678 	}
679 
680 	/* sets the context of the superblock for the fs being mounted. */
681 	if (fscontext_sid) {
682 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683 		if (rc)
684 			goto out;
685 
686 		sbsec->sid = fscontext_sid;
687 	}
688 
689 	/*
690 	 * Switch to using mount point labeling behavior.
691 	 * sets the label used on all file below the mountpoint, and will set
692 	 * the superblock context if not already set.
693 	 */
694 	if (context_sid) {
695 		if (!fscontext_sid) {
696 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
697 							  cred);
698 			if (rc)
699 				goto out;
700 			sbsec->sid = context_sid;
701 		} else {
702 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
703 							     cred);
704 			if (rc)
705 				goto out;
706 		}
707 		if (!rootcontext_sid)
708 			rootcontext_sid = context_sid;
709 
710 		sbsec->mntpoint_sid = context_sid;
711 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712 	}
713 
714 	if (rootcontext_sid) {
715 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716 						     cred);
717 		if (rc)
718 			goto out;
719 
720 		root_isec->sid = rootcontext_sid;
721 		root_isec->initialized = 1;
722 	}
723 
724 	if (defcontext_sid) {
725 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726 			rc = -EINVAL;
727 			printk(KERN_WARNING "SELinux: defcontext option is "
728 			       "invalid for this filesystem type\n");
729 			goto out;
730 		}
731 
732 		if (defcontext_sid != sbsec->def_sid) {
733 			rc = may_context_mount_inode_relabel(defcontext_sid,
734 							     sbsec, cred);
735 			if (rc)
736 				goto out;
737 		}
738 
739 		sbsec->def_sid = defcontext_sid;
740 	}
741 
742 	rc = sb_finish_set_opts(sb);
743 out:
744 	mutex_unlock(&sbsec->lock);
745 	return rc;
746 out_double_mount:
747 	rc = -EINVAL;
748 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
749 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
750 	goto out;
751 }
752 
753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754 					struct super_block *newsb)
755 {
756 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757 	struct superblock_security_struct *newsbsec = newsb->s_security;
758 
759 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
760 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
761 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
762 
763 	/*
764 	 * if the parent was able to be mounted it clearly had no special lsm
765 	 * mount options.  thus we can safely deal with this superblock later
766 	 */
767 	if (!ss_initialized)
768 		return;
769 
770 	/* how can we clone if the old one wasn't set up?? */
771 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772 
773 	/* if fs is reusing a sb, just let its options stand... */
774 	if (newsbsec->flags & SE_SBINITIALIZED)
775 		return;
776 
777 	mutex_lock(&newsbsec->lock);
778 
779 	newsbsec->flags = oldsbsec->flags;
780 
781 	newsbsec->sid = oldsbsec->sid;
782 	newsbsec->def_sid = oldsbsec->def_sid;
783 	newsbsec->behavior = oldsbsec->behavior;
784 
785 	if (set_context) {
786 		u32 sid = oldsbsec->mntpoint_sid;
787 
788 		if (!set_fscontext)
789 			newsbsec->sid = sid;
790 		if (!set_rootcontext) {
791 			struct inode *newinode = newsb->s_root->d_inode;
792 			struct inode_security_struct *newisec = newinode->i_security;
793 			newisec->sid = sid;
794 		}
795 		newsbsec->mntpoint_sid = sid;
796 	}
797 	if (set_rootcontext) {
798 		const struct inode *oldinode = oldsb->s_root->d_inode;
799 		const struct inode_security_struct *oldisec = oldinode->i_security;
800 		struct inode *newinode = newsb->s_root->d_inode;
801 		struct inode_security_struct *newisec = newinode->i_security;
802 
803 		newisec->sid = oldisec->sid;
804 	}
805 
806 	sb_finish_set_opts(newsb);
807 	mutex_unlock(&newsbsec->lock);
808 }
809 
810 static int selinux_parse_opts_str(char *options,
811 				  struct security_mnt_opts *opts)
812 {
813 	char *p;
814 	char *context = NULL, *defcontext = NULL;
815 	char *fscontext = NULL, *rootcontext = NULL;
816 	int rc, num_mnt_opts = 0;
817 
818 	opts->num_mnt_opts = 0;
819 
820 	/* Standard string-based options. */
821 	while ((p = strsep(&options, "|")) != NULL) {
822 		int token;
823 		substring_t args[MAX_OPT_ARGS];
824 
825 		if (!*p)
826 			continue;
827 
828 		token = match_token(p, tokens, args);
829 
830 		switch (token) {
831 		case Opt_context:
832 			if (context || defcontext) {
833 				rc = -EINVAL;
834 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835 				goto out_err;
836 			}
837 			context = match_strdup(&args[0]);
838 			if (!context) {
839 				rc = -ENOMEM;
840 				goto out_err;
841 			}
842 			break;
843 
844 		case Opt_fscontext:
845 			if (fscontext) {
846 				rc = -EINVAL;
847 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 				goto out_err;
849 			}
850 			fscontext = match_strdup(&args[0]);
851 			if (!fscontext) {
852 				rc = -ENOMEM;
853 				goto out_err;
854 			}
855 			break;
856 
857 		case Opt_rootcontext:
858 			if (rootcontext) {
859 				rc = -EINVAL;
860 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 				goto out_err;
862 			}
863 			rootcontext = match_strdup(&args[0]);
864 			if (!rootcontext) {
865 				rc = -ENOMEM;
866 				goto out_err;
867 			}
868 			break;
869 
870 		case Opt_defcontext:
871 			if (context || defcontext) {
872 				rc = -EINVAL;
873 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 				goto out_err;
875 			}
876 			defcontext = match_strdup(&args[0]);
877 			if (!defcontext) {
878 				rc = -ENOMEM;
879 				goto out_err;
880 			}
881 			break;
882 		case Opt_labelsupport:
883 			break;
884 		default:
885 			rc = -EINVAL;
886 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
887 			goto out_err;
888 
889 		}
890 	}
891 
892 	rc = -ENOMEM;
893 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 	if (!opts->mnt_opts)
895 		goto out_err;
896 
897 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 	if (!opts->mnt_opts_flags) {
899 		kfree(opts->mnt_opts);
900 		goto out_err;
901 	}
902 
903 	if (fscontext) {
904 		opts->mnt_opts[num_mnt_opts] = fscontext;
905 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 	}
907 	if (context) {
908 		opts->mnt_opts[num_mnt_opts] = context;
909 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 	}
911 	if (rootcontext) {
912 		opts->mnt_opts[num_mnt_opts] = rootcontext;
913 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 	}
915 	if (defcontext) {
916 		opts->mnt_opts[num_mnt_opts] = defcontext;
917 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 	}
919 
920 	opts->num_mnt_opts = num_mnt_opts;
921 	return 0;
922 
923 out_err:
924 	kfree(context);
925 	kfree(defcontext);
926 	kfree(fscontext);
927 	kfree(rootcontext);
928 	return rc;
929 }
930 /*
931  * string mount options parsing and call set the sbsec
932  */
933 static int superblock_doinit(struct super_block *sb, void *data)
934 {
935 	int rc = 0;
936 	char *options = data;
937 	struct security_mnt_opts opts;
938 
939 	security_init_mnt_opts(&opts);
940 
941 	if (!data)
942 		goto out;
943 
944 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945 
946 	rc = selinux_parse_opts_str(options, &opts);
947 	if (rc)
948 		goto out_err;
949 
950 out:
951 	rc = selinux_set_mnt_opts(sb, &opts);
952 
953 out_err:
954 	security_free_mnt_opts(&opts);
955 	return rc;
956 }
957 
958 static void selinux_write_opts(struct seq_file *m,
959 			       struct security_mnt_opts *opts)
960 {
961 	int i;
962 	char *prefix;
963 
964 	for (i = 0; i < opts->num_mnt_opts; i++) {
965 		char *has_comma;
966 
967 		if (opts->mnt_opts[i])
968 			has_comma = strchr(opts->mnt_opts[i], ',');
969 		else
970 			has_comma = NULL;
971 
972 		switch (opts->mnt_opts_flags[i]) {
973 		case CONTEXT_MNT:
974 			prefix = CONTEXT_STR;
975 			break;
976 		case FSCONTEXT_MNT:
977 			prefix = FSCONTEXT_STR;
978 			break;
979 		case ROOTCONTEXT_MNT:
980 			prefix = ROOTCONTEXT_STR;
981 			break;
982 		case DEFCONTEXT_MNT:
983 			prefix = DEFCONTEXT_STR;
984 			break;
985 		case SE_SBLABELSUPP:
986 			seq_putc(m, ',');
987 			seq_puts(m, LABELSUPP_STR);
988 			continue;
989 		default:
990 			BUG();
991 			return;
992 		};
993 		/* we need a comma before each option */
994 		seq_putc(m, ',');
995 		seq_puts(m, prefix);
996 		if (has_comma)
997 			seq_putc(m, '\"');
998 		seq_puts(m, opts->mnt_opts[i]);
999 		if (has_comma)
1000 			seq_putc(m, '\"');
1001 	}
1002 }
1003 
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006 	struct security_mnt_opts opts;
1007 	int rc;
1008 
1009 	rc = selinux_get_mnt_opts(sb, &opts);
1010 	if (rc) {
1011 		/* before policy load we may get EINVAL, don't show anything */
1012 		if (rc == -EINVAL)
1013 			rc = 0;
1014 		return rc;
1015 	}
1016 
1017 	selinux_write_opts(m, &opts);
1018 
1019 	security_free_mnt_opts(&opts);
1020 
1021 	return rc;
1022 }
1023 
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026 	switch (mode & S_IFMT) {
1027 	case S_IFSOCK:
1028 		return SECCLASS_SOCK_FILE;
1029 	case S_IFLNK:
1030 		return SECCLASS_LNK_FILE;
1031 	case S_IFREG:
1032 		return SECCLASS_FILE;
1033 	case S_IFBLK:
1034 		return SECCLASS_BLK_FILE;
1035 	case S_IFDIR:
1036 		return SECCLASS_DIR;
1037 	case S_IFCHR:
1038 		return SECCLASS_CHR_FILE;
1039 	case S_IFIFO:
1040 		return SECCLASS_FIFO_FILE;
1041 
1042 	}
1043 
1044 	return SECCLASS_FILE;
1045 }
1046 
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051 
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056 
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059 	switch (family) {
1060 	case PF_UNIX:
1061 		switch (type) {
1062 		case SOCK_STREAM:
1063 		case SOCK_SEQPACKET:
1064 			return SECCLASS_UNIX_STREAM_SOCKET;
1065 		case SOCK_DGRAM:
1066 			return SECCLASS_UNIX_DGRAM_SOCKET;
1067 		}
1068 		break;
1069 	case PF_INET:
1070 	case PF_INET6:
1071 		switch (type) {
1072 		case SOCK_STREAM:
1073 			if (default_protocol_stream(protocol))
1074 				return SECCLASS_TCP_SOCKET;
1075 			else
1076 				return SECCLASS_RAWIP_SOCKET;
1077 		case SOCK_DGRAM:
1078 			if (default_protocol_dgram(protocol))
1079 				return SECCLASS_UDP_SOCKET;
1080 			else
1081 				return SECCLASS_RAWIP_SOCKET;
1082 		case SOCK_DCCP:
1083 			return SECCLASS_DCCP_SOCKET;
1084 		default:
1085 			return SECCLASS_RAWIP_SOCKET;
1086 		}
1087 		break;
1088 	case PF_NETLINK:
1089 		switch (protocol) {
1090 		case NETLINK_ROUTE:
1091 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1092 		case NETLINK_FIREWALL:
1093 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094 		case NETLINK_SOCK_DIAG:
1095 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096 		case NETLINK_NFLOG:
1097 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1098 		case NETLINK_XFRM:
1099 			return SECCLASS_NETLINK_XFRM_SOCKET;
1100 		case NETLINK_SELINUX:
1101 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1102 		case NETLINK_AUDIT:
1103 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1104 		case NETLINK_IP6_FW:
1105 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1106 		case NETLINK_DNRTMSG:
1107 			return SECCLASS_NETLINK_DNRT_SOCKET;
1108 		case NETLINK_KOBJECT_UEVENT:
1109 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110 		default:
1111 			return SECCLASS_NETLINK_SOCKET;
1112 		}
1113 	case PF_PACKET:
1114 		return SECCLASS_PACKET_SOCKET;
1115 	case PF_KEY:
1116 		return SECCLASS_KEY_SOCKET;
1117 	case PF_APPLETALK:
1118 		return SECCLASS_APPLETALK_SOCKET;
1119 	}
1120 
1121 	return SECCLASS_SOCKET;
1122 }
1123 
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126 				u16 tclass,
1127 				u32 *sid)
1128 {
1129 	int rc;
1130 	char *buffer, *path;
1131 
1132 	buffer = (char *)__get_free_page(GFP_KERNEL);
1133 	if (!buffer)
1134 		return -ENOMEM;
1135 
1136 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137 	if (IS_ERR(path))
1138 		rc = PTR_ERR(path);
1139 	else {
1140 		/* each process gets a /proc/PID/ entry. Strip off the
1141 		 * PID part to get a valid selinux labeling.
1142 		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143 		while (path[1] >= '0' && path[1] <= '9') {
1144 			path[1] = '/';
1145 			path++;
1146 		}
1147 		rc = security_genfs_sid("proc", path, tclass, sid);
1148 	}
1149 	free_page((unsigned long)buffer);
1150 	return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154 				u16 tclass,
1155 				u32 *sid)
1156 {
1157 	return -EINVAL;
1158 }
1159 #endif
1160 
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164 	struct superblock_security_struct *sbsec = NULL;
1165 	struct inode_security_struct *isec = inode->i_security;
1166 	u32 sid;
1167 	struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169 	char *context = NULL;
1170 	unsigned len = 0;
1171 	int rc = 0;
1172 
1173 	if (isec->initialized)
1174 		goto out;
1175 
1176 	mutex_lock(&isec->lock);
1177 	if (isec->initialized)
1178 		goto out_unlock;
1179 
1180 	sbsec = inode->i_sb->s_security;
1181 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182 		/* Defer initialization until selinux_complete_init,
1183 		   after the initial policy is loaded and the security
1184 		   server is ready to handle calls. */
1185 		spin_lock(&sbsec->isec_lock);
1186 		if (list_empty(&isec->list))
1187 			list_add(&isec->list, &sbsec->isec_head);
1188 		spin_unlock(&sbsec->isec_lock);
1189 		goto out_unlock;
1190 	}
1191 
1192 	switch (sbsec->behavior) {
1193 	case SECURITY_FS_USE_XATTR:
1194 		if (!inode->i_op->getxattr) {
1195 			isec->sid = sbsec->def_sid;
1196 			break;
1197 		}
1198 
1199 		/* Need a dentry, since the xattr API requires one.
1200 		   Life would be simpler if we could just pass the inode. */
1201 		if (opt_dentry) {
1202 			/* Called from d_instantiate or d_splice_alias. */
1203 			dentry = dget(opt_dentry);
1204 		} else {
1205 			/* Called from selinux_complete_init, try to find a dentry. */
1206 			dentry = d_find_alias(inode);
1207 		}
1208 		if (!dentry) {
1209 			/*
1210 			 * this is can be hit on boot when a file is accessed
1211 			 * before the policy is loaded.  When we load policy we
1212 			 * may find inodes that have no dentry on the
1213 			 * sbsec->isec_head list.  No reason to complain as these
1214 			 * will get fixed up the next time we go through
1215 			 * inode_doinit with a dentry, before these inodes could
1216 			 * be used again by userspace.
1217 			 */
1218 			goto out_unlock;
1219 		}
1220 
1221 		len = INITCONTEXTLEN;
1222 		context = kmalloc(len+1, GFP_NOFS);
1223 		if (!context) {
1224 			rc = -ENOMEM;
1225 			dput(dentry);
1226 			goto out_unlock;
1227 		}
1228 		context[len] = '\0';
1229 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230 					   context, len);
1231 		if (rc == -ERANGE) {
1232 			kfree(context);
1233 
1234 			/* Need a larger buffer.  Query for the right size. */
1235 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236 						   NULL, 0);
1237 			if (rc < 0) {
1238 				dput(dentry);
1239 				goto out_unlock;
1240 			}
1241 			len = rc;
1242 			context = kmalloc(len+1, GFP_NOFS);
1243 			if (!context) {
1244 				rc = -ENOMEM;
1245 				dput(dentry);
1246 				goto out_unlock;
1247 			}
1248 			context[len] = '\0';
1249 			rc = inode->i_op->getxattr(dentry,
1250 						   XATTR_NAME_SELINUX,
1251 						   context, len);
1252 		}
1253 		dput(dentry);
1254 		if (rc < 0) {
1255 			if (rc != -ENODATA) {
1256 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257 				       "%d for dev=%s ino=%ld\n", __func__,
1258 				       -rc, inode->i_sb->s_id, inode->i_ino);
1259 				kfree(context);
1260 				goto out_unlock;
1261 			}
1262 			/* Map ENODATA to the default file SID */
1263 			sid = sbsec->def_sid;
1264 			rc = 0;
1265 		} else {
1266 			rc = security_context_to_sid_default(context, rc, &sid,
1267 							     sbsec->def_sid,
1268 							     GFP_NOFS);
1269 			if (rc) {
1270 				char *dev = inode->i_sb->s_id;
1271 				unsigned long ino = inode->i_ino;
1272 
1273 				if (rc == -EINVAL) {
1274 					if (printk_ratelimit())
1275 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276 							"context=%s.  This indicates you may need to relabel the inode or the "
1277 							"filesystem in question.\n", ino, dev, context);
1278 				} else {
1279 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280 					       "returned %d for dev=%s ino=%ld\n",
1281 					       __func__, context, -rc, dev, ino);
1282 				}
1283 				kfree(context);
1284 				/* Leave with the unlabeled SID */
1285 				rc = 0;
1286 				break;
1287 			}
1288 		}
1289 		kfree(context);
1290 		isec->sid = sid;
1291 		break;
1292 	case SECURITY_FS_USE_TASK:
1293 		isec->sid = isec->task_sid;
1294 		break;
1295 	case SECURITY_FS_USE_TRANS:
1296 		/* Default to the fs SID. */
1297 		isec->sid = sbsec->sid;
1298 
1299 		/* Try to obtain a transition SID. */
1300 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302 					     isec->sclass, NULL, &sid);
1303 		if (rc)
1304 			goto out_unlock;
1305 		isec->sid = sid;
1306 		break;
1307 	case SECURITY_FS_USE_MNTPOINT:
1308 		isec->sid = sbsec->mntpoint_sid;
1309 		break;
1310 	default:
1311 		/* Default to the fs superblock SID. */
1312 		isec->sid = sbsec->sid;
1313 
1314 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315 			if (opt_dentry) {
1316 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317 				rc = selinux_proc_get_sid(opt_dentry,
1318 							  isec->sclass,
1319 							  &sid);
1320 				if (rc)
1321 					goto out_unlock;
1322 				isec->sid = sid;
1323 			}
1324 		}
1325 		break;
1326 	}
1327 
1328 	isec->initialized = 1;
1329 
1330 out_unlock:
1331 	mutex_unlock(&isec->lock);
1332 out:
1333 	if (isec->sclass == SECCLASS_FILE)
1334 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335 	return rc;
1336 }
1337 
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341 	u32 perm = 0;
1342 
1343 	switch (sig) {
1344 	case SIGCHLD:
1345 		/* Commonly granted from child to parent. */
1346 		perm = PROCESS__SIGCHLD;
1347 		break;
1348 	case SIGKILL:
1349 		/* Cannot be caught or ignored */
1350 		perm = PROCESS__SIGKILL;
1351 		break;
1352 	case SIGSTOP:
1353 		/* Cannot be caught or ignored */
1354 		perm = PROCESS__SIGSTOP;
1355 		break;
1356 	default:
1357 		/* All other signals. */
1358 		perm = PROCESS__SIGNAL;
1359 		break;
1360 	}
1361 
1362 	return perm;
1363 }
1364 
1365 /*
1366  * Check permission between a pair of credentials
1367  * fork check, ptrace check, etc.
1368  */
1369 static int cred_has_perm(const struct cred *actor,
1370 			 const struct cred *target,
1371 			 u32 perms)
1372 {
1373 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374 
1375 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377 
1378 /*
1379  * Check permission between a pair of tasks, e.g. signal checks,
1380  * fork check, ptrace check, etc.
1381  * tsk1 is the actor and tsk2 is the target
1382  * - this uses the default subjective creds of tsk1
1383  */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385 			 const struct task_struct *tsk2,
1386 			 u32 perms)
1387 {
1388 	const struct task_security_struct *__tsec1, *__tsec2;
1389 	u32 sid1, sid2;
1390 
1391 	rcu_read_lock();
1392 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1393 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1394 	rcu_read_unlock();
1395 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397 
1398 /*
1399  * Check permission between current and another task, e.g. signal checks,
1400  * fork check, ptrace check, etc.
1401  * current is the actor and tsk2 is the target
1402  * - this uses current's subjective creds
1403  */
1404 static int current_has_perm(const struct task_struct *tsk,
1405 			    u32 perms)
1406 {
1407 	u32 sid, tsid;
1408 
1409 	sid = current_sid();
1410 	tsid = task_sid(tsk);
1411 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413 
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417 
1418 /* Check whether a task is allowed to use a capability. */
1419 static int cred_has_capability(const struct cred *cred,
1420 			       int cap, int audit)
1421 {
1422 	struct common_audit_data ad;
1423 	struct av_decision avd;
1424 	u16 sclass;
1425 	u32 sid = cred_sid(cred);
1426 	u32 av = CAP_TO_MASK(cap);
1427 	int rc;
1428 
1429 	ad.type = LSM_AUDIT_DATA_CAP;
1430 	ad.u.cap = cap;
1431 
1432 	switch (CAP_TO_INDEX(cap)) {
1433 	case 0:
1434 		sclass = SECCLASS_CAPABILITY;
1435 		break;
1436 	case 1:
1437 		sclass = SECCLASS_CAPABILITY2;
1438 		break;
1439 	default:
1440 		printk(KERN_ERR
1441 		       "SELinux:  out of range capability %d\n", cap);
1442 		BUG();
1443 		return -EINVAL;
1444 	}
1445 
1446 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447 	if (audit == SECURITY_CAP_AUDIT) {
1448 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449 		if (rc2)
1450 			return rc2;
1451 	}
1452 	return rc;
1453 }
1454 
1455 /* Check whether a task is allowed to use a system operation. */
1456 static int task_has_system(struct task_struct *tsk,
1457 			   u32 perms)
1458 {
1459 	u32 sid = task_sid(tsk);
1460 
1461 	return avc_has_perm(sid, SECINITSID_KERNEL,
1462 			    SECCLASS_SYSTEM, perms, NULL);
1463 }
1464 
1465 /* Check whether a task has a particular permission to an inode.
1466    The 'adp' parameter is optional and allows other audit
1467    data to be passed (e.g. the dentry). */
1468 static int inode_has_perm(const struct cred *cred,
1469 			  struct inode *inode,
1470 			  u32 perms,
1471 			  struct common_audit_data *adp,
1472 			  unsigned flags)
1473 {
1474 	struct inode_security_struct *isec;
1475 	u32 sid;
1476 
1477 	validate_creds(cred);
1478 
1479 	if (unlikely(IS_PRIVATE(inode)))
1480 		return 0;
1481 
1482 	sid = cred_sid(cred);
1483 	isec = inode->i_security;
1484 
1485 	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486 }
1487 
1488 /* Same as inode_has_perm, but pass explicit audit data containing
1489    the dentry to help the auditing code to more easily generate the
1490    pathname if needed. */
1491 static inline int dentry_has_perm(const struct cred *cred,
1492 				  struct dentry *dentry,
1493 				  u32 av)
1494 {
1495 	struct inode *inode = dentry->d_inode;
1496 	struct common_audit_data ad;
1497 
1498 	ad.type = LSM_AUDIT_DATA_DENTRY;
1499 	ad.u.dentry = dentry;
1500 	return inode_has_perm(cred, inode, av, &ad, 0);
1501 }
1502 
1503 /* Same as inode_has_perm, but pass explicit audit data containing
1504    the path to help the auditing code to more easily generate the
1505    pathname if needed. */
1506 static inline int path_has_perm(const struct cred *cred,
1507 				struct path *path,
1508 				u32 av)
1509 {
1510 	struct inode *inode = path->dentry->d_inode;
1511 	struct common_audit_data ad;
1512 
1513 	ad.type = LSM_AUDIT_DATA_PATH;
1514 	ad.u.path = *path;
1515 	return inode_has_perm(cred, inode, av, &ad, 0);
1516 }
1517 
1518 /* Check whether a task can use an open file descriptor to
1519    access an inode in a given way.  Check access to the
1520    descriptor itself, and then use dentry_has_perm to
1521    check a particular permission to the file.
1522    Access to the descriptor is implicitly granted if it
1523    has the same SID as the process.  If av is zero, then
1524    access to the file is not checked, e.g. for cases
1525    where only the descriptor is affected like seek. */
1526 static int file_has_perm(const struct cred *cred,
1527 			 struct file *file,
1528 			 u32 av)
1529 {
1530 	struct file_security_struct *fsec = file->f_security;
1531 	struct inode *inode = file->f_path.dentry->d_inode;
1532 	struct common_audit_data ad;
1533 	u32 sid = cred_sid(cred);
1534 	int rc;
1535 
1536 	ad.type = LSM_AUDIT_DATA_PATH;
1537 	ad.u.path = file->f_path;
1538 
1539 	if (sid != fsec->sid) {
1540 		rc = avc_has_perm(sid, fsec->sid,
1541 				  SECCLASS_FD,
1542 				  FD__USE,
1543 				  &ad);
1544 		if (rc)
1545 			goto out;
1546 	}
1547 
1548 	/* av is zero if only checking access to the descriptor. */
1549 	rc = 0;
1550 	if (av)
1551 		rc = inode_has_perm(cred, inode, av, &ad, 0);
1552 
1553 out:
1554 	return rc;
1555 }
1556 
1557 /* Check whether a task can create a file. */
1558 static int may_create(struct inode *dir,
1559 		      struct dentry *dentry,
1560 		      u16 tclass)
1561 {
1562 	const struct task_security_struct *tsec = current_security();
1563 	struct inode_security_struct *dsec;
1564 	struct superblock_security_struct *sbsec;
1565 	u32 sid, newsid;
1566 	struct common_audit_data ad;
1567 	int rc;
1568 
1569 	dsec = dir->i_security;
1570 	sbsec = dir->i_sb->s_security;
1571 
1572 	sid = tsec->sid;
1573 	newsid = tsec->create_sid;
1574 
1575 	ad.type = LSM_AUDIT_DATA_DENTRY;
1576 	ad.u.dentry = dentry;
1577 
1578 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579 			  DIR__ADD_NAME | DIR__SEARCH,
1580 			  &ad);
1581 	if (rc)
1582 		return rc;
1583 
1584 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585 		rc = security_transition_sid(sid, dsec->sid, tclass,
1586 					     &dentry->d_name, &newsid);
1587 		if (rc)
1588 			return rc;
1589 	}
1590 
1591 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592 	if (rc)
1593 		return rc;
1594 
1595 	return avc_has_perm(newsid, sbsec->sid,
1596 			    SECCLASS_FILESYSTEM,
1597 			    FILESYSTEM__ASSOCIATE, &ad);
1598 }
1599 
1600 /* Check whether a task can create a key. */
1601 static int may_create_key(u32 ksid,
1602 			  struct task_struct *ctx)
1603 {
1604 	u32 sid = task_sid(ctx);
1605 
1606 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607 }
1608 
1609 #define MAY_LINK	0
1610 #define MAY_UNLINK	1
1611 #define MAY_RMDIR	2
1612 
1613 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1614 static int may_link(struct inode *dir,
1615 		    struct dentry *dentry,
1616 		    int kind)
1617 
1618 {
1619 	struct inode_security_struct *dsec, *isec;
1620 	struct common_audit_data ad;
1621 	u32 sid = current_sid();
1622 	u32 av;
1623 	int rc;
1624 
1625 	dsec = dir->i_security;
1626 	isec = dentry->d_inode->i_security;
1627 
1628 	ad.type = LSM_AUDIT_DATA_DENTRY;
1629 	ad.u.dentry = dentry;
1630 
1631 	av = DIR__SEARCH;
1632 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634 	if (rc)
1635 		return rc;
1636 
1637 	switch (kind) {
1638 	case MAY_LINK:
1639 		av = FILE__LINK;
1640 		break;
1641 	case MAY_UNLINK:
1642 		av = FILE__UNLINK;
1643 		break;
1644 	case MAY_RMDIR:
1645 		av = DIR__RMDIR;
1646 		break;
1647 	default:
1648 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649 			__func__, kind);
1650 		return 0;
1651 	}
1652 
1653 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654 	return rc;
1655 }
1656 
1657 static inline int may_rename(struct inode *old_dir,
1658 			     struct dentry *old_dentry,
1659 			     struct inode *new_dir,
1660 			     struct dentry *new_dentry)
1661 {
1662 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663 	struct common_audit_data ad;
1664 	u32 sid = current_sid();
1665 	u32 av;
1666 	int old_is_dir, new_is_dir;
1667 	int rc;
1668 
1669 	old_dsec = old_dir->i_security;
1670 	old_isec = old_dentry->d_inode->i_security;
1671 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672 	new_dsec = new_dir->i_security;
1673 
1674 	ad.type = LSM_AUDIT_DATA_DENTRY;
1675 
1676 	ad.u.dentry = old_dentry;
1677 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679 	if (rc)
1680 		return rc;
1681 	rc = avc_has_perm(sid, old_isec->sid,
1682 			  old_isec->sclass, FILE__RENAME, &ad);
1683 	if (rc)
1684 		return rc;
1685 	if (old_is_dir && new_dir != old_dir) {
1686 		rc = avc_has_perm(sid, old_isec->sid,
1687 				  old_isec->sclass, DIR__REPARENT, &ad);
1688 		if (rc)
1689 			return rc;
1690 	}
1691 
1692 	ad.u.dentry = new_dentry;
1693 	av = DIR__ADD_NAME | DIR__SEARCH;
1694 	if (new_dentry->d_inode)
1695 		av |= DIR__REMOVE_NAME;
1696 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697 	if (rc)
1698 		return rc;
1699 	if (new_dentry->d_inode) {
1700 		new_isec = new_dentry->d_inode->i_security;
1701 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702 		rc = avc_has_perm(sid, new_isec->sid,
1703 				  new_isec->sclass,
1704 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705 		if (rc)
1706 			return rc;
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 /* Check whether a task can perform a filesystem operation. */
1713 static int superblock_has_perm(const struct cred *cred,
1714 			       struct super_block *sb,
1715 			       u32 perms,
1716 			       struct common_audit_data *ad)
1717 {
1718 	struct superblock_security_struct *sbsec;
1719 	u32 sid = cred_sid(cred);
1720 
1721 	sbsec = sb->s_security;
1722 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723 }
1724 
1725 /* Convert a Linux mode and permission mask to an access vector. */
1726 static inline u32 file_mask_to_av(int mode, int mask)
1727 {
1728 	u32 av = 0;
1729 
1730 	if (!S_ISDIR(mode)) {
1731 		if (mask & MAY_EXEC)
1732 			av |= FILE__EXECUTE;
1733 		if (mask & MAY_READ)
1734 			av |= FILE__READ;
1735 
1736 		if (mask & MAY_APPEND)
1737 			av |= FILE__APPEND;
1738 		else if (mask & MAY_WRITE)
1739 			av |= FILE__WRITE;
1740 
1741 	} else {
1742 		if (mask & MAY_EXEC)
1743 			av |= DIR__SEARCH;
1744 		if (mask & MAY_WRITE)
1745 			av |= DIR__WRITE;
1746 		if (mask & MAY_READ)
1747 			av |= DIR__READ;
1748 	}
1749 
1750 	return av;
1751 }
1752 
1753 /* Convert a Linux file to an access vector. */
1754 static inline u32 file_to_av(struct file *file)
1755 {
1756 	u32 av = 0;
1757 
1758 	if (file->f_mode & FMODE_READ)
1759 		av |= FILE__READ;
1760 	if (file->f_mode & FMODE_WRITE) {
1761 		if (file->f_flags & O_APPEND)
1762 			av |= FILE__APPEND;
1763 		else
1764 			av |= FILE__WRITE;
1765 	}
1766 	if (!av) {
1767 		/*
1768 		 * Special file opened with flags 3 for ioctl-only use.
1769 		 */
1770 		av = FILE__IOCTL;
1771 	}
1772 
1773 	return av;
1774 }
1775 
1776 /*
1777  * Convert a file to an access vector and include the correct open
1778  * open permission.
1779  */
1780 static inline u32 open_file_to_av(struct file *file)
1781 {
1782 	u32 av = file_to_av(file);
1783 
1784 	if (selinux_policycap_openperm)
1785 		av |= FILE__OPEN;
1786 
1787 	return av;
1788 }
1789 
1790 /* Hook functions begin here. */
1791 
1792 static int selinux_ptrace_access_check(struct task_struct *child,
1793 				     unsigned int mode)
1794 {
1795 	int rc;
1796 
1797 	rc = cap_ptrace_access_check(child, mode);
1798 	if (rc)
1799 		return rc;
1800 
1801 	if (mode & PTRACE_MODE_READ) {
1802 		u32 sid = current_sid();
1803 		u32 csid = task_sid(child);
1804 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805 	}
1806 
1807 	return current_has_perm(child, PROCESS__PTRACE);
1808 }
1809 
1810 static int selinux_ptrace_traceme(struct task_struct *parent)
1811 {
1812 	int rc;
1813 
1814 	rc = cap_ptrace_traceme(parent);
1815 	if (rc)
1816 		return rc;
1817 
1818 	return task_has_perm(parent, current, PROCESS__PTRACE);
1819 }
1820 
1821 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823 {
1824 	int error;
1825 
1826 	error = current_has_perm(target, PROCESS__GETCAP);
1827 	if (error)
1828 		return error;
1829 
1830 	return cap_capget(target, effective, inheritable, permitted);
1831 }
1832 
1833 static int selinux_capset(struct cred *new, const struct cred *old,
1834 			  const kernel_cap_t *effective,
1835 			  const kernel_cap_t *inheritable,
1836 			  const kernel_cap_t *permitted)
1837 {
1838 	int error;
1839 
1840 	error = cap_capset(new, old,
1841 				      effective, inheritable, permitted);
1842 	if (error)
1843 		return error;
1844 
1845 	return cred_has_perm(old, new, PROCESS__SETCAP);
1846 }
1847 
1848 /*
1849  * (This comment used to live with the selinux_task_setuid hook,
1850  * which was removed).
1851  *
1852  * Since setuid only affects the current process, and since the SELinux
1853  * controls are not based on the Linux identity attributes, SELinux does not
1854  * need to control this operation.  However, SELinux does control the use of
1855  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856  */
1857 
1858 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859 			   int cap, int audit)
1860 {
1861 	int rc;
1862 
1863 	rc = cap_capable(cred, ns, cap, audit);
1864 	if (rc)
1865 		return rc;
1866 
1867 	return cred_has_capability(cred, cap, audit);
1868 }
1869 
1870 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871 {
1872 	const struct cred *cred = current_cred();
1873 	int rc = 0;
1874 
1875 	if (!sb)
1876 		return 0;
1877 
1878 	switch (cmds) {
1879 	case Q_SYNC:
1880 	case Q_QUOTAON:
1881 	case Q_QUOTAOFF:
1882 	case Q_SETINFO:
1883 	case Q_SETQUOTA:
1884 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885 		break;
1886 	case Q_GETFMT:
1887 	case Q_GETINFO:
1888 	case Q_GETQUOTA:
1889 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890 		break;
1891 	default:
1892 		rc = 0;  /* let the kernel handle invalid cmds */
1893 		break;
1894 	}
1895 	return rc;
1896 }
1897 
1898 static int selinux_quota_on(struct dentry *dentry)
1899 {
1900 	const struct cred *cred = current_cred();
1901 
1902 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903 }
1904 
1905 static int selinux_syslog(int type)
1906 {
1907 	int rc;
1908 
1909 	switch (type) {
1910 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1911 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1912 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913 		break;
1914 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1915 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1916 	/* Set level of messages printed to console */
1917 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1918 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919 		break;
1920 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1921 	case SYSLOG_ACTION_OPEN:	/* Open log */
1922 	case SYSLOG_ACTION_READ:	/* Read from log */
1923 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1924 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1925 	default:
1926 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927 		break;
1928 	}
1929 	return rc;
1930 }
1931 
1932 /*
1933  * Check that a process has enough memory to allocate a new virtual
1934  * mapping. 0 means there is enough memory for the allocation to
1935  * succeed and -ENOMEM implies there is not.
1936  *
1937  * Do not audit the selinux permission check, as this is applied to all
1938  * processes that allocate mappings.
1939  */
1940 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941 {
1942 	int rc, cap_sys_admin = 0;
1943 
1944 	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945 			     SECURITY_CAP_NOAUDIT);
1946 	if (rc == 0)
1947 		cap_sys_admin = 1;
1948 
1949 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1950 }
1951 
1952 /* binprm security operations */
1953 
1954 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955 {
1956 	const struct task_security_struct *old_tsec;
1957 	struct task_security_struct *new_tsec;
1958 	struct inode_security_struct *isec;
1959 	struct common_audit_data ad;
1960 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961 	int rc;
1962 
1963 	rc = cap_bprm_set_creds(bprm);
1964 	if (rc)
1965 		return rc;
1966 
1967 	/* SELinux context only depends on initial program or script and not
1968 	 * the script interpreter */
1969 	if (bprm->cred_prepared)
1970 		return 0;
1971 
1972 	old_tsec = current_security();
1973 	new_tsec = bprm->cred->security;
1974 	isec = inode->i_security;
1975 
1976 	/* Default to the current task SID. */
1977 	new_tsec->sid = old_tsec->sid;
1978 	new_tsec->osid = old_tsec->sid;
1979 
1980 	/* Reset fs, key, and sock SIDs on execve. */
1981 	new_tsec->create_sid = 0;
1982 	new_tsec->keycreate_sid = 0;
1983 	new_tsec->sockcreate_sid = 0;
1984 
1985 	if (old_tsec->exec_sid) {
1986 		new_tsec->sid = old_tsec->exec_sid;
1987 		/* Reset exec SID on execve. */
1988 		new_tsec->exec_sid = 0;
1989 
1990 		/*
1991 		 * Minimize confusion: if no_new_privs and a transition is
1992 		 * explicitly requested, then fail the exec.
1993 		 */
1994 		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995 			return -EPERM;
1996 	} else {
1997 		/* Check for a default transition on this program. */
1998 		rc = security_transition_sid(old_tsec->sid, isec->sid,
1999 					     SECCLASS_PROCESS, NULL,
2000 					     &new_tsec->sid);
2001 		if (rc)
2002 			return rc;
2003 	}
2004 
2005 	ad.type = LSM_AUDIT_DATA_PATH;
2006 	ad.u.path = bprm->file->f_path;
2007 
2008 	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009 	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010 		new_tsec->sid = old_tsec->sid;
2011 
2012 	if (new_tsec->sid == old_tsec->sid) {
2013 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2014 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015 		if (rc)
2016 			return rc;
2017 	} else {
2018 		/* Check permissions for the transition. */
2019 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021 		if (rc)
2022 			return rc;
2023 
2024 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2025 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026 		if (rc)
2027 			return rc;
2028 
2029 		/* Check for shared state */
2030 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032 					  SECCLASS_PROCESS, PROCESS__SHARE,
2033 					  NULL);
2034 			if (rc)
2035 				return -EPERM;
2036 		}
2037 
2038 		/* Make sure that anyone attempting to ptrace over a task that
2039 		 * changes its SID has the appropriate permit */
2040 		if (bprm->unsafe &
2041 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042 			struct task_struct *tracer;
2043 			struct task_security_struct *sec;
2044 			u32 ptsid = 0;
2045 
2046 			rcu_read_lock();
2047 			tracer = ptrace_parent(current);
2048 			if (likely(tracer != NULL)) {
2049 				sec = __task_cred(tracer)->security;
2050 				ptsid = sec->sid;
2051 			}
2052 			rcu_read_unlock();
2053 
2054 			if (ptsid != 0) {
2055 				rc = avc_has_perm(ptsid, new_tsec->sid,
2056 						  SECCLASS_PROCESS,
2057 						  PROCESS__PTRACE, NULL);
2058 				if (rc)
2059 					return -EPERM;
2060 			}
2061 		}
2062 
2063 		/* Clear any possibly unsafe personality bits on exec: */
2064 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071 {
2072 	const struct task_security_struct *tsec = current_security();
2073 	u32 sid, osid;
2074 	int atsecure = 0;
2075 
2076 	sid = tsec->sid;
2077 	osid = tsec->osid;
2078 
2079 	if (osid != sid) {
2080 		/* Enable secure mode for SIDs transitions unless
2081 		   the noatsecure permission is granted between
2082 		   the two SIDs, i.e. ahp returns 0. */
2083 		atsecure = avc_has_perm(osid, sid,
2084 					SECCLASS_PROCESS,
2085 					PROCESS__NOATSECURE, NULL);
2086 	}
2087 
2088 	return (atsecure || cap_bprm_secureexec(bprm));
2089 }
2090 
2091 /* Derived from fs/exec.c:flush_old_files. */
2092 static inline void flush_unauthorized_files(const struct cred *cred,
2093 					    struct files_struct *files)
2094 {
2095 	struct file *file, *devnull = NULL;
2096 	struct tty_struct *tty;
2097 	struct fdtable *fdt;
2098 	long j = -1;
2099 	int drop_tty = 0;
2100 
2101 	tty = get_current_tty();
2102 	if (tty) {
2103 		spin_lock(&tty_files_lock);
2104 		if (!list_empty(&tty->tty_files)) {
2105 			struct tty_file_private *file_priv;
2106 
2107 			/* Revalidate access to controlling tty.
2108 			   Use path_has_perm on the tty path directly rather
2109 			   than using file_has_perm, as this particular open
2110 			   file may belong to another process and we are only
2111 			   interested in the inode-based check here. */
2112 			file_priv = list_first_entry(&tty->tty_files,
2113 						struct tty_file_private, list);
2114 			file = file_priv->file;
2115 			if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2116 				drop_tty = 1;
2117 		}
2118 		spin_unlock(&tty_files_lock);
2119 		tty_kref_put(tty);
2120 	}
2121 	/* Reset controlling tty. */
2122 	if (drop_tty)
2123 		no_tty();
2124 
2125 	/* Revalidate access to inherited open files. */
2126 	spin_lock(&files->file_lock);
2127 	for (;;) {
2128 		unsigned long set, i;
2129 		int fd;
2130 
2131 		j++;
2132 		i = j * BITS_PER_LONG;
2133 		fdt = files_fdtable(files);
2134 		if (i >= fdt->max_fds)
2135 			break;
2136 		set = fdt->open_fds[j];
2137 		if (!set)
2138 			continue;
2139 		spin_unlock(&files->file_lock);
2140 		for ( ; set ; i++, set >>= 1) {
2141 			if (set & 1) {
2142 				file = fget(i);
2143 				if (!file)
2144 					continue;
2145 				if (file_has_perm(cred,
2146 						  file,
2147 						  file_to_av(file))) {
2148 					sys_close(i);
2149 					fd = get_unused_fd();
2150 					if (fd != i) {
2151 						if (fd >= 0)
2152 							put_unused_fd(fd);
2153 						fput(file);
2154 						continue;
2155 					}
2156 					if (devnull) {
2157 						get_file(devnull);
2158 					} else {
2159 						devnull = dentry_open(
2160 							&selinux_null,
2161 							O_RDWR, cred);
2162 						if (IS_ERR(devnull)) {
2163 							devnull = NULL;
2164 							put_unused_fd(fd);
2165 							fput(file);
2166 							continue;
2167 						}
2168 					}
2169 					fd_install(fd, devnull);
2170 				}
2171 				fput(file);
2172 			}
2173 		}
2174 		spin_lock(&files->file_lock);
2175 
2176 	}
2177 	spin_unlock(&files->file_lock);
2178 }
2179 
2180 /*
2181  * Prepare a process for imminent new credential changes due to exec
2182  */
2183 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2184 {
2185 	struct task_security_struct *new_tsec;
2186 	struct rlimit *rlim, *initrlim;
2187 	int rc, i;
2188 
2189 	new_tsec = bprm->cred->security;
2190 	if (new_tsec->sid == new_tsec->osid)
2191 		return;
2192 
2193 	/* Close files for which the new task SID is not authorized. */
2194 	flush_unauthorized_files(bprm->cred, current->files);
2195 
2196 	/* Always clear parent death signal on SID transitions. */
2197 	current->pdeath_signal = 0;
2198 
2199 	/* Check whether the new SID can inherit resource limits from the old
2200 	 * SID.  If not, reset all soft limits to the lower of the current
2201 	 * task's hard limit and the init task's soft limit.
2202 	 *
2203 	 * Note that the setting of hard limits (even to lower them) can be
2204 	 * controlled by the setrlimit check.  The inclusion of the init task's
2205 	 * soft limit into the computation is to avoid resetting soft limits
2206 	 * higher than the default soft limit for cases where the default is
2207 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2208 	 */
2209 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2210 			  PROCESS__RLIMITINH, NULL);
2211 	if (rc) {
2212 		/* protect against do_prlimit() */
2213 		task_lock(current);
2214 		for (i = 0; i < RLIM_NLIMITS; i++) {
2215 			rlim = current->signal->rlim + i;
2216 			initrlim = init_task.signal->rlim + i;
2217 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2218 		}
2219 		task_unlock(current);
2220 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2221 	}
2222 }
2223 
2224 /*
2225  * Clean up the process immediately after the installation of new credentials
2226  * due to exec
2227  */
2228 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2229 {
2230 	const struct task_security_struct *tsec = current_security();
2231 	struct itimerval itimer;
2232 	u32 osid, sid;
2233 	int rc, i;
2234 
2235 	osid = tsec->osid;
2236 	sid = tsec->sid;
2237 
2238 	if (sid == osid)
2239 		return;
2240 
2241 	/* Check whether the new SID can inherit signal state from the old SID.
2242 	 * If not, clear itimers to avoid subsequent signal generation and
2243 	 * flush and unblock signals.
2244 	 *
2245 	 * This must occur _after_ the task SID has been updated so that any
2246 	 * kill done after the flush will be checked against the new SID.
2247 	 */
2248 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2249 	if (rc) {
2250 		memset(&itimer, 0, sizeof itimer);
2251 		for (i = 0; i < 3; i++)
2252 			do_setitimer(i, &itimer, NULL);
2253 		spin_lock_irq(&current->sighand->siglock);
2254 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2255 			__flush_signals(current);
2256 			flush_signal_handlers(current, 1);
2257 			sigemptyset(&current->blocked);
2258 		}
2259 		spin_unlock_irq(&current->sighand->siglock);
2260 	}
2261 
2262 	/* Wake up the parent if it is waiting so that it can recheck
2263 	 * wait permission to the new task SID. */
2264 	read_lock(&tasklist_lock);
2265 	__wake_up_parent(current, current->real_parent);
2266 	read_unlock(&tasklist_lock);
2267 }
2268 
2269 /* superblock security operations */
2270 
2271 static int selinux_sb_alloc_security(struct super_block *sb)
2272 {
2273 	return superblock_alloc_security(sb);
2274 }
2275 
2276 static void selinux_sb_free_security(struct super_block *sb)
2277 {
2278 	superblock_free_security(sb);
2279 }
2280 
2281 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2282 {
2283 	if (plen > olen)
2284 		return 0;
2285 
2286 	return !memcmp(prefix, option, plen);
2287 }
2288 
2289 static inline int selinux_option(char *option, int len)
2290 {
2291 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2292 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2293 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2294 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2295 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2296 }
2297 
2298 static inline void take_option(char **to, char *from, int *first, int len)
2299 {
2300 	if (!*first) {
2301 		**to = ',';
2302 		*to += 1;
2303 	} else
2304 		*first = 0;
2305 	memcpy(*to, from, len);
2306 	*to += len;
2307 }
2308 
2309 static inline void take_selinux_option(char **to, char *from, int *first,
2310 				       int len)
2311 {
2312 	int current_size = 0;
2313 
2314 	if (!*first) {
2315 		**to = '|';
2316 		*to += 1;
2317 	} else
2318 		*first = 0;
2319 
2320 	while (current_size < len) {
2321 		if (*from != '"') {
2322 			**to = *from;
2323 			*to += 1;
2324 		}
2325 		from += 1;
2326 		current_size += 1;
2327 	}
2328 }
2329 
2330 static int selinux_sb_copy_data(char *orig, char *copy)
2331 {
2332 	int fnosec, fsec, rc = 0;
2333 	char *in_save, *in_curr, *in_end;
2334 	char *sec_curr, *nosec_save, *nosec;
2335 	int open_quote = 0;
2336 
2337 	in_curr = orig;
2338 	sec_curr = copy;
2339 
2340 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2341 	if (!nosec) {
2342 		rc = -ENOMEM;
2343 		goto out;
2344 	}
2345 
2346 	nosec_save = nosec;
2347 	fnosec = fsec = 1;
2348 	in_save = in_end = orig;
2349 
2350 	do {
2351 		if (*in_end == '"')
2352 			open_quote = !open_quote;
2353 		if ((*in_end == ',' && open_quote == 0) ||
2354 				*in_end == '\0') {
2355 			int len = in_end - in_curr;
2356 
2357 			if (selinux_option(in_curr, len))
2358 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2359 			else
2360 				take_option(&nosec, in_curr, &fnosec, len);
2361 
2362 			in_curr = in_end + 1;
2363 		}
2364 	} while (*in_end++);
2365 
2366 	strcpy(in_save, nosec_save);
2367 	free_page((unsigned long)nosec_save);
2368 out:
2369 	return rc;
2370 }
2371 
2372 static int selinux_sb_remount(struct super_block *sb, void *data)
2373 {
2374 	int rc, i, *flags;
2375 	struct security_mnt_opts opts;
2376 	char *secdata, **mount_options;
2377 	struct superblock_security_struct *sbsec = sb->s_security;
2378 
2379 	if (!(sbsec->flags & SE_SBINITIALIZED))
2380 		return 0;
2381 
2382 	if (!data)
2383 		return 0;
2384 
2385 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2386 		return 0;
2387 
2388 	security_init_mnt_opts(&opts);
2389 	secdata = alloc_secdata();
2390 	if (!secdata)
2391 		return -ENOMEM;
2392 	rc = selinux_sb_copy_data(data, secdata);
2393 	if (rc)
2394 		goto out_free_secdata;
2395 
2396 	rc = selinux_parse_opts_str(secdata, &opts);
2397 	if (rc)
2398 		goto out_free_secdata;
2399 
2400 	mount_options = opts.mnt_opts;
2401 	flags = opts.mnt_opts_flags;
2402 
2403 	for (i = 0; i < opts.num_mnt_opts; i++) {
2404 		u32 sid;
2405 		size_t len;
2406 
2407 		if (flags[i] == SE_SBLABELSUPP)
2408 			continue;
2409 		len = strlen(mount_options[i]);
2410 		rc = security_context_to_sid(mount_options[i], len, &sid);
2411 		if (rc) {
2412 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2413 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2414 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2415 			goto out_free_opts;
2416 		}
2417 		rc = -EINVAL;
2418 		switch (flags[i]) {
2419 		case FSCONTEXT_MNT:
2420 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2421 				goto out_bad_option;
2422 			break;
2423 		case CONTEXT_MNT:
2424 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2425 				goto out_bad_option;
2426 			break;
2427 		case ROOTCONTEXT_MNT: {
2428 			struct inode_security_struct *root_isec;
2429 			root_isec = sb->s_root->d_inode->i_security;
2430 
2431 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2432 				goto out_bad_option;
2433 			break;
2434 		}
2435 		case DEFCONTEXT_MNT:
2436 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2437 				goto out_bad_option;
2438 			break;
2439 		default:
2440 			goto out_free_opts;
2441 		}
2442 	}
2443 
2444 	rc = 0;
2445 out_free_opts:
2446 	security_free_mnt_opts(&opts);
2447 out_free_secdata:
2448 	free_secdata(secdata);
2449 	return rc;
2450 out_bad_option:
2451 	printk(KERN_WARNING "SELinux: unable to change security options "
2452 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2453 	       sb->s_type->name);
2454 	goto out_free_opts;
2455 }
2456 
2457 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2458 {
2459 	const struct cred *cred = current_cred();
2460 	struct common_audit_data ad;
2461 	int rc;
2462 
2463 	rc = superblock_doinit(sb, data);
2464 	if (rc)
2465 		return rc;
2466 
2467 	/* Allow all mounts performed by the kernel */
2468 	if (flags & MS_KERNMOUNT)
2469 		return 0;
2470 
2471 	ad.type = LSM_AUDIT_DATA_DENTRY;
2472 	ad.u.dentry = sb->s_root;
2473 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2474 }
2475 
2476 static int selinux_sb_statfs(struct dentry *dentry)
2477 {
2478 	const struct cred *cred = current_cred();
2479 	struct common_audit_data ad;
2480 
2481 	ad.type = LSM_AUDIT_DATA_DENTRY;
2482 	ad.u.dentry = dentry->d_sb->s_root;
2483 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2484 }
2485 
2486 static int selinux_mount(char *dev_name,
2487 			 struct path *path,
2488 			 char *type,
2489 			 unsigned long flags,
2490 			 void *data)
2491 {
2492 	const struct cred *cred = current_cred();
2493 
2494 	if (flags & MS_REMOUNT)
2495 		return superblock_has_perm(cred, path->dentry->d_sb,
2496 					   FILESYSTEM__REMOUNT, NULL);
2497 	else
2498 		return path_has_perm(cred, path, FILE__MOUNTON);
2499 }
2500 
2501 static int selinux_umount(struct vfsmount *mnt, int flags)
2502 {
2503 	const struct cred *cred = current_cred();
2504 
2505 	return superblock_has_perm(cred, mnt->mnt_sb,
2506 				   FILESYSTEM__UNMOUNT, NULL);
2507 }
2508 
2509 /* inode security operations */
2510 
2511 static int selinux_inode_alloc_security(struct inode *inode)
2512 {
2513 	return inode_alloc_security(inode);
2514 }
2515 
2516 static void selinux_inode_free_security(struct inode *inode)
2517 {
2518 	inode_free_security(inode);
2519 }
2520 
2521 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2522 				       const struct qstr *qstr, char **name,
2523 				       void **value, size_t *len)
2524 {
2525 	const struct task_security_struct *tsec = current_security();
2526 	struct inode_security_struct *dsec;
2527 	struct superblock_security_struct *sbsec;
2528 	u32 sid, newsid, clen;
2529 	int rc;
2530 	char *namep = NULL, *context;
2531 
2532 	dsec = dir->i_security;
2533 	sbsec = dir->i_sb->s_security;
2534 
2535 	sid = tsec->sid;
2536 	newsid = tsec->create_sid;
2537 
2538 	if ((sbsec->flags & SE_SBINITIALIZED) &&
2539 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2540 		newsid = sbsec->mntpoint_sid;
2541 	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2542 		rc = security_transition_sid(sid, dsec->sid,
2543 					     inode_mode_to_security_class(inode->i_mode),
2544 					     qstr, &newsid);
2545 		if (rc) {
2546 			printk(KERN_WARNING "%s:  "
2547 			       "security_transition_sid failed, rc=%d (dev=%s "
2548 			       "ino=%ld)\n",
2549 			       __func__,
2550 			       -rc, inode->i_sb->s_id, inode->i_ino);
2551 			return rc;
2552 		}
2553 	}
2554 
2555 	/* Possibly defer initialization to selinux_complete_init. */
2556 	if (sbsec->flags & SE_SBINITIALIZED) {
2557 		struct inode_security_struct *isec = inode->i_security;
2558 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2559 		isec->sid = newsid;
2560 		isec->initialized = 1;
2561 	}
2562 
2563 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2564 		return -EOPNOTSUPP;
2565 
2566 	if (name) {
2567 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2568 		if (!namep)
2569 			return -ENOMEM;
2570 		*name = namep;
2571 	}
2572 
2573 	if (value && len) {
2574 		rc = security_sid_to_context_force(newsid, &context, &clen);
2575 		if (rc) {
2576 			kfree(namep);
2577 			return rc;
2578 		}
2579 		*value = context;
2580 		*len = clen;
2581 	}
2582 
2583 	return 0;
2584 }
2585 
2586 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2587 {
2588 	return may_create(dir, dentry, SECCLASS_FILE);
2589 }
2590 
2591 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2592 {
2593 	return may_link(dir, old_dentry, MAY_LINK);
2594 }
2595 
2596 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2597 {
2598 	return may_link(dir, dentry, MAY_UNLINK);
2599 }
2600 
2601 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2602 {
2603 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2604 }
2605 
2606 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2607 {
2608 	return may_create(dir, dentry, SECCLASS_DIR);
2609 }
2610 
2611 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2612 {
2613 	return may_link(dir, dentry, MAY_RMDIR);
2614 }
2615 
2616 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2617 {
2618 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2619 }
2620 
2621 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2622 				struct inode *new_inode, struct dentry *new_dentry)
2623 {
2624 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2625 }
2626 
2627 static int selinux_inode_readlink(struct dentry *dentry)
2628 {
2629 	const struct cred *cred = current_cred();
2630 
2631 	return dentry_has_perm(cred, dentry, FILE__READ);
2632 }
2633 
2634 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2635 {
2636 	const struct cred *cred = current_cred();
2637 
2638 	return dentry_has_perm(cred, dentry, FILE__READ);
2639 }
2640 
2641 static noinline int audit_inode_permission(struct inode *inode,
2642 					   u32 perms, u32 audited, u32 denied,
2643 					   unsigned flags)
2644 {
2645 	struct common_audit_data ad;
2646 	struct inode_security_struct *isec = inode->i_security;
2647 	int rc;
2648 
2649 	ad.type = LSM_AUDIT_DATA_INODE;
2650 	ad.u.inode = inode;
2651 
2652 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2653 			    audited, denied, &ad, flags);
2654 	if (rc)
2655 		return rc;
2656 	return 0;
2657 }
2658 
2659 static int selinux_inode_permission(struct inode *inode, int mask)
2660 {
2661 	const struct cred *cred = current_cred();
2662 	u32 perms;
2663 	bool from_access;
2664 	unsigned flags = mask & MAY_NOT_BLOCK;
2665 	struct inode_security_struct *isec;
2666 	u32 sid;
2667 	struct av_decision avd;
2668 	int rc, rc2;
2669 	u32 audited, denied;
2670 
2671 	from_access = mask & MAY_ACCESS;
2672 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2673 
2674 	/* No permission to check.  Existence test. */
2675 	if (!mask)
2676 		return 0;
2677 
2678 	validate_creds(cred);
2679 
2680 	if (unlikely(IS_PRIVATE(inode)))
2681 		return 0;
2682 
2683 	perms = file_mask_to_av(inode->i_mode, mask);
2684 
2685 	sid = cred_sid(cred);
2686 	isec = inode->i_security;
2687 
2688 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2689 	audited = avc_audit_required(perms, &avd, rc,
2690 				     from_access ? FILE__AUDIT_ACCESS : 0,
2691 				     &denied);
2692 	if (likely(!audited))
2693 		return rc;
2694 
2695 	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2696 	if (rc2)
2697 		return rc2;
2698 	return rc;
2699 }
2700 
2701 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2702 {
2703 	const struct cred *cred = current_cred();
2704 	unsigned int ia_valid = iattr->ia_valid;
2705 	__u32 av = FILE__WRITE;
2706 
2707 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2708 	if (ia_valid & ATTR_FORCE) {
2709 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2710 			      ATTR_FORCE);
2711 		if (!ia_valid)
2712 			return 0;
2713 	}
2714 
2715 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2716 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2717 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2718 
2719 	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2720 		av |= FILE__OPEN;
2721 
2722 	return dentry_has_perm(cred, dentry, av);
2723 }
2724 
2725 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2726 {
2727 	const struct cred *cred = current_cred();
2728 	struct path path;
2729 
2730 	path.dentry = dentry;
2731 	path.mnt = mnt;
2732 
2733 	return path_has_perm(cred, &path, FILE__GETATTR);
2734 }
2735 
2736 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2737 {
2738 	const struct cred *cred = current_cred();
2739 
2740 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2741 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2742 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2743 			if (!capable(CAP_SETFCAP))
2744 				return -EPERM;
2745 		} else if (!capable(CAP_SYS_ADMIN)) {
2746 			/* A different attribute in the security namespace.
2747 			   Restrict to administrator. */
2748 			return -EPERM;
2749 		}
2750 	}
2751 
2752 	/* Not an attribute we recognize, so just check the
2753 	   ordinary setattr permission. */
2754 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2755 }
2756 
2757 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2758 				  const void *value, size_t size, int flags)
2759 {
2760 	struct inode *inode = dentry->d_inode;
2761 	struct inode_security_struct *isec = inode->i_security;
2762 	struct superblock_security_struct *sbsec;
2763 	struct common_audit_data ad;
2764 	u32 newsid, sid = current_sid();
2765 	int rc = 0;
2766 
2767 	if (strcmp(name, XATTR_NAME_SELINUX))
2768 		return selinux_inode_setotherxattr(dentry, name);
2769 
2770 	sbsec = inode->i_sb->s_security;
2771 	if (!(sbsec->flags & SE_SBLABELSUPP))
2772 		return -EOPNOTSUPP;
2773 
2774 	if (!inode_owner_or_capable(inode))
2775 		return -EPERM;
2776 
2777 	ad.type = LSM_AUDIT_DATA_DENTRY;
2778 	ad.u.dentry = dentry;
2779 
2780 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2781 			  FILE__RELABELFROM, &ad);
2782 	if (rc)
2783 		return rc;
2784 
2785 	rc = security_context_to_sid(value, size, &newsid);
2786 	if (rc == -EINVAL) {
2787 		if (!capable(CAP_MAC_ADMIN)) {
2788 			struct audit_buffer *ab;
2789 			size_t audit_size;
2790 			const char *str;
2791 
2792 			/* We strip a nul only if it is at the end, otherwise the
2793 			 * context contains a nul and we should audit that */
2794 			if (value) {
2795 				str = value;
2796 				if (str[size - 1] == '\0')
2797 					audit_size = size - 1;
2798 				else
2799 					audit_size = size;
2800 			} else {
2801 				str = "";
2802 				audit_size = 0;
2803 			}
2804 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2805 			audit_log_format(ab, "op=setxattr invalid_context=");
2806 			audit_log_n_untrustedstring(ab, value, audit_size);
2807 			audit_log_end(ab);
2808 
2809 			return rc;
2810 		}
2811 		rc = security_context_to_sid_force(value, size, &newsid);
2812 	}
2813 	if (rc)
2814 		return rc;
2815 
2816 	rc = avc_has_perm(sid, newsid, isec->sclass,
2817 			  FILE__RELABELTO, &ad);
2818 	if (rc)
2819 		return rc;
2820 
2821 	rc = security_validate_transition(isec->sid, newsid, sid,
2822 					  isec->sclass);
2823 	if (rc)
2824 		return rc;
2825 
2826 	return avc_has_perm(newsid,
2827 			    sbsec->sid,
2828 			    SECCLASS_FILESYSTEM,
2829 			    FILESYSTEM__ASSOCIATE,
2830 			    &ad);
2831 }
2832 
2833 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2834 					const void *value, size_t size,
2835 					int flags)
2836 {
2837 	struct inode *inode = dentry->d_inode;
2838 	struct inode_security_struct *isec = inode->i_security;
2839 	u32 newsid;
2840 	int rc;
2841 
2842 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2843 		/* Not an attribute we recognize, so nothing to do. */
2844 		return;
2845 	}
2846 
2847 	rc = security_context_to_sid_force(value, size, &newsid);
2848 	if (rc) {
2849 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2850 		       "for (%s, %lu), rc=%d\n",
2851 		       inode->i_sb->s_id, inode->i_ino, -rc);
2852 		return;
2853 	}
2854 
2855 	isec->sid = newsid;
2856 	return;
2857 }
2858 
2859 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2860 {
2861 	const struct cred *cred = current_cred();
2862 
2863 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2864 }
2865 
2866 static int selinux_inode_listxattr(struct dentry *dentry)
2867 {
2868 	const struct cred *cred = current_cred();
2869 
2870 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2871 }
2872 
2873 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2874 {
2875 	if (strcmp(name, XATTR_NAME_SELINUX))
2876 		return selinux_inode_setotherxattr(dentry, name);
2877 
2878 	/* No one is allowed to remove a SELinux security label.
2879 	   You can change the label, but all data must be labeled. */
2880 	return -EACCES;
2881 }
2882 
2883 /*
2884  * Copy the inode security context value to the user.
2885  *
2886  * Permission check is handled by selinux_inode_getxattr hook.
2887  */
2888 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2889 {
2890 	u32 size;
2891 	int error;
2892 	char *context = NULL;
2893 	struct inode_security_struct *isec = inode->i_security;
2894 
2895 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2896 		return -EOPNOTSUPP;
2897 
2898 	/*
2899 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2900 	 * value even if it is not defined by current policy; otherwise,
2901 	 * use the in-core value under current policy.
2902 	 * Use the non-auditing forms of the permission checks since
2903 	 * getxattr may be called by unprivileged processes commonly
2904 	 * and lack of permission just means that we fall back to the
2905 	 * in-core context value, not a denial.
2906 	 */
2907 	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2908 				SECURITY_CAP_NOAUDIT);
2909 	if (!error)
2910 		error = security_sid_to_context_force(isec->sid, &context,
2911 						      &size);
2912 	else
2913 		error = security_sid_to_context(isec->sid, &context, &size);
2914 	if (error)
2915 		return error;
2916 	error = size;
2917 	if (alloc) {
2918 		*buffer = context;
2919 		goto out_nofree;
2920 	}
2921 	kfree(context);
2922 out_nofree:
2923 	return error;
2924 }
2925 
2926 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2927 				     const void *value, size_t size, int flags)
2928 {
2929 	struct inode_security_struct *isec = inode->i_security;
2930 	u32 newsid;
2931 	int rc;
2932 
2933 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2934 		return -EOPNOTSUPP;
2935 
2936 	if (!value || !size)
2937 		return -EACCES;
2938 
2939 	rc = security_context_to_sid((void *)value, size, &newsid);
2940 	if (rc)
2941 		return rc;
2942 
2943 	isec->sid = newsid;
2944 	isec->initialized = 1;
2945 	return 0;
2946 }
2947 
2948 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2949 {
2950 	const int len = sizeof(XATTR_NAME_SELINUX);
2951 	if (buffer && len <= buffer_size)
2952 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2953 	return len;
2954 }
2955 
2956 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2957 {
2958 	struct inode_security_struct *isec = inode->i_security;
2959 	*secid = isec->sid;
2960 }
2961 
2962 /* file security operations */
2963 
2964 static int selinux_revalidate_file_permission(struct file *file, int mask)
2965 {
2966 	const struct cred *cred = current_cred();
2967 	struct inode *inode = file->f_path.dentry->d_inode;
2968 
2969 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2970 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2971 		mask |= MAY_APPEND;
2972 
2973 	return file_has_perm(cred, file,
2974 			     file_mask_to_av(inode->i_mode, mask));
2975 }
2976 
2977 static int selinux_file_permission(struct file *file, int mask)
2978 {
2979 	struct inode *inode = file->f_path.dentry->d_inode;
2980 	struct file_security_struct *fsec = file->f_security;
2981 	struct inode_security_struct *isec = inode->i_security;
2982 	u32 sid = current_sid();
2983 
2984 	if (!mask)
2985 		/* No permission to check.  Existence test. */
2986 		return 0;
2987 
2988 	if (sid == fsec->sid && fsec->isid == isec->sid &&
2989 	    fsec->pseqno == avc_policy_seqno())
2990 		/* No change since file_open check. */
2991 		return 0;
2992 
2993 	return selinux_revalidate_file_permission(file, mask);
2994 }
2995 
2996 static int selinux_file_alloc_security(struct file *file)
2997 {
2998 	return file_alloc_security(file);
2999 }
3000 
3001 static void selinux_file_free_security(struct file *file)
3002 {
3003 	file_free_security(file);
3004 }
3005 
3006 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3007 			      unsigned long arg)
3008 {
3009 	const struct cred *cred = current_cred();
3010 	int error = 0;
3011 
3012 	switch (cmd) {
3013 	case FIONREAD:
3014 	/* fall through */
3015 	case FIBMAP:
3016 	/* fall through */
3017 	case FIGETBSZ:
3018 	/* fall through */
3019 	case FS_IOC_GETFLAGS:
3020 	/* fall through */
3021 	case FS_IOC_GETVERSION:
3022 		error = file_has_perm(cred, file, FILE__GETATTR);
3023 		break;
3024 
3025 	case FS_IOC_SETFLAGS:
3026 	/* fall through */
3027 	case FS_IOC_SETVERSION:
3028 		error = file_has_perm(cred, file, FILE__SETATTR);
3029 		break;
3030 
3031 	/* sys_ioctl() checks */
3032 	case FIONBIO:
3033 	/* fall through */
3034 	case FIOASYNC:
3035 		error = file_has_perm(cred, file, 0);
3036 		break;
3037 
3038 	case KDSKBENT:
3039 	case KDSKBSENT:
3040 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3041 					    SECURITY_CAP_AUDIT);
3042 		break;
3043 
3044 	/* default case assumes that the command will go
3045 	 * to the file's ioctl() function.
3046 	 */
3047 	default:
3048 		error = file_has_perm(cred, file, FILE__IOCTL);
3049 	}
3050 	return error;
3051 }
3052 
3053 static int default_noexec;
3054 
3055 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3056 {
3057 	const struct cred *cred = current_cred();
3058 	int rc = 0;
3059 
3060 	if (default_noexec &&
3061 	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3062 		/*
3063 		 * We are making executable an anonymous mapping or a
3064 		 * private file mapping that will also be writable.
3065 		 * This has an additional check.
3066 		 */
3067 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3068 		if (rc)
3069 			goto error;
3070 	}
3071 
3072 	if (file) {
3073 		/* read access is always possible with a mapping */
3074 		u32 av = FILE__READ;
3075 
3076 		/* write access only matters if the mapping is shared */
3077 		if (shared && (prot & PROT_WRITE))
3078 			av |= FILE__WRITE;
3079 
3080 		if (prot & PROT_EXEC)
3081 			av |= FILE__EXECUTE;
3082 
3083 		return file_has_perm(cred, file, av);
3084 	}
3085 
3086 error:
3087 	return rc;
3088 }
3089 
3090 static int selinux_mmap_addr(unsigned long addr)
3091 {
3092 	int rc = 0;
3093 	u32 sid = current_sid();
3094 
3095 	/*
3096 	 * notice that we are intentionally putting the SELinux check before
3097 	 * the secondary cap_file_mmap check.  This is such a likely attempt
3098 	 * at bad behaviour/exploit that we always want to get the AVC, even
3099 	 * if DAC would have also denied the operation.
3100 	 */
3101 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3102 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3103 				  MEMPROTECT__MMAP_ZERO, NULL);
3104 		if (rc)
3105 			return rc;
3106 	}
3107 
3108 	/* do DAC check on address space usage */
3109 	return cap_mmap_addr(addr);
3110 }
3111 
3112 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3113 			     unsigned long prot, unsigned long flags)
3114 {
3115 	if (selinux_checkreqprot)
3116 		prot = reqprot;
3117 
3118 	return file_map_prot_check(file, prot,
3119 				   (flags & MAP_TYPE) == MAP_SHARED);
3120 }
3121 
3122 static int selinux_file_mprotect(struct vm_area_struct *vma,
3123 				 unsigned long reqprot,
3124 				 unsigned long prot)
3125 {
3126 	const struct cred *cred = current_cred();
3127 
3128 	if (selinux_checkreqprot)
3129 		prot = reqprot;
3130 
3131 	if (default_noexec &&
3132 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3133 		int rc = 0;
3134 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3135 		    vma->vm_end <= vma->vm_mm->brk) {
3136 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3137 		} else if (!vma->vm_file &&
3138 			   vma->vm_start <= vma->vm_mm->start_stack &&
3139 			   vma->vm_end >= vma->vm_mm->start_stack) {
3140 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3141 		} else if (vma->vm_file && vma->anon_vma) {
3142 			/*
3143 			 * We are making executable a file mapping that has
3144 			 * had some COW done. Since pages might have been
3145 			 * written, check ability to execute the possibly
3146 			 * modified content.  This typically should only
3147 			 * occur for text relocations.
3148 			 */
3149 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3150 		}
3151 		if (rc)
3152 			return rc;
3153 	}
3154 
3155 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3156 }
3157 
3158 static int selinux_file_lock(struct file *file, unsigned int cmd)
3159 {
3160 	const struct cred *cred = current_cred();
3161 
3162 	return file_has_perm(cred, file, FILE__LOCK);
3163 }
3164 
3165 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3166 			      unsigned long arg)
3167 {
3168 	const struct cred *cred = current_cred();
3169 	int err = 0;
3170 
3171 	switch (cmd) {
3172 	case F_SETFL:
3173 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3174 			err = -EINVAL;
3175 			break;
3176 		}
3177 
3178 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3179 			err = file_has_perm(cred, file, FILE__WRITE);
3180 			break;
3181 		}
3182 		/* fall through */
3183 	case F_SETOWN:
3184 	case F_SETSIG:
3185 	case F_GETFL:
3186 	case F_GETOWN:
3187 	case F_GETSIG:
3188 		/* Just check FD__USE permission */
3189 		err = file_has_perm(cred, file, 0);
3190 		break;
3191 	case F_GETLK:
3192 	case F_SETLK:
3193 	case F_SETLKW:
3194 #if BITS_PER_LONG == 32
3195 	case F_GETLK64:
3196 	case F_SETLK64:
3197 	case F_SETLKW64:
3198 #endif
3199 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3200 			err = -EINVAL;
3201 			break;
3202 		}
3203 		err = file_has_perm(cred, file, FILE__LOCK);
3204 		break;
3205 	}
3206 
3207 	return err;
3208 }
3209 
3210 static int selinux_file_set_fowner(struct file *file)
3211 {
3212 	struct file_security_struct *fsec;
3213 
3214 	fsec = file->f_security;
3215 	fsec->fown_sid = current_sid();
3216 
3217 	return 0;
3218 }
3219 
3220 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3221 				       struct fown_struct *fown, int signum)
3222 {
3223 	struct file *file;
3224 	u32 sid = task_sid(tsk);
3225 	u32 perm;
3226 	struct file_security_struct *fsec;
3227 
3228 	/* struct fown_struct is never outside the context of a struct file */
3229 	file = container_of(fown, struct file, f_owner);
3230 
3231 	fsec = file->f_security;
3232 
3233 	if (!signum)
3234 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3235 	else
3236 		perm = signal_to_av(signum);
3237 
3238 	return avc_has_perm(fsec->fown_sid, sid,
3239 			    SECCLASS_PROCESS, perm, NULL);
3240 }
3241 
3242 static int selinux_file_receive(struct file *file)
3243 {
3244 	const struct cred *cred = current_cred();
3245 
3246 	return file_has_perm(cred, file, file_to_av(file));
3247 }
3248 
3249 static int selinux_file_open(struct file *file, const struct cred *cred)
3250 {
3251 	struct file_security_struct *fsec;
3252 	struct inode_security_struct *isec;
3253 
3254 	fsec = file->f_security;
3255 	isec = file->f_path.dentry->d_inode->i_security;
3256 	/*
3257 	 * Save inode label and policy sequence number
3258 	 * at open-time so that selinux_file_permission
3259 	 * can determine whether revalidation is necessary.
3260 	 * Task label is already saved in the file security
3261 	 * struct as its SID.
3262 	 */
3263 	fsec->isid = isec->sid;
3264 	fsec->pseqno = avc_policy_seqno();
3265 	/*
3266 	 * Since the inode label or policy seqno may have changed
3267 	 * between the selinux_inode_permission check and the saving
3268 	 * of state above, recheck that access is still permitted.
3269 	 * Otherwise, access might never be revalidated against the
3270 	 * new inode label or new policy.
3271 	 * This check is not redundant - do not remove.
3272 	 */
3273 	return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3274 }
3275 
3276 /* task security operations */
3277 
3278 static int selinux_task_create(unsigned long clone_flags)
3279 {
3280 	return current_has_perm(current, PROCESS__FORK);
3281 }
3282 
3283 /*
3284  * allocate the SELinux part of blank credentials
3285  */
3286 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3287 {
3288 	struct task_security_struct *tsec;
3289 
3290 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3291 	if (!tsec)
3292 		return -ENOMEM;
3293 
3294 	cred->security = tsec;
3295 	return 0;
3296 }
3297 
3298 /*
3299  * detach and free the LSM part of a set of credentials
3300  */
3301 static void selinux_cred_free(struct cred *cred)
3302 {
3303 	struct task_security_struct *tsec = cred->security;
3304 
3305 	/*
3306 	 * cred->security == NULL if security_cred_alloc_blank() or
3307 	 * security_prepare_creds() returned an error.
3308 	 */
3309 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3310 	cred->security = (void *) 0x7UL;
3311 	kfree(tsec);
3312 }
3313 
3314 /*
3315  * prepare a new set of credentials for modification
3316  */
3317 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3318 				gfp_t gfp)
3319 {
3320 	const struct task_security_struct *old_tsec;
3321 	struct task_security_struct *tsec;
3322 
3323 	old_tsec = old->security;
3324 
3325 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3326 	if (!tsec)
3327 		return -ENOMEM;
3328 
3329 	new->security = tsec;
3330 	return 0;
3331 }
3332 
3333 /*
3334  * transfer the SELinux data to a blank set of creds
3335  */
3336 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3337 {
3338 	const struct task_security_struct *old_tsec = old->security;
3339 	struct task_security_struct *tsec = new->security;
3340 
3341 	*tsec = *old_tsec;
3342 }
3343 
3344 /*
3345  * set the security data for a kernel service
3346  * - all the creation contexts are set to unlabelled
3347  */
3348 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3349 {
3350 	struct task_security_struct *tsec = new->security;
3351 	u32 sid = current_sid();
3352 	int ret;
3353 
3354 	ret = avc_has_perm(sid, secid,
3355 			   SECCLASS_KERNEL_SERVICE,
3356 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3357 			   NULL);
3358 	if (ret == 0) {
3359 		tsec->sid = secid;
3360 		tsec->create_sid = 0;
3361 		tsec->keycreate_sid = 0;
3362 		tsec->sockcreate_sid = 0;
3363 	}
3364 	return ret;
3365 }
3366 
3367 /*
3368  * set the file creation context in a security record to the same as the
3369  * objective context of the specified inode
3370  */
3371 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3372 {
3373 	struct inode_security_struct *isec = inode->i_security;
3374 	struct task_security_struct *tsec = new->security;
3375 	u32 sid = current_sid();
3376 	int ret;
3377 
3378 	ret = avc_has_perm(sid, isec->sid,
3379 			   SECCLASS_KERNEL_SERVICE,
3380 			   KERNEL_SERVICE__CREATE_FILES_AS,
3381 			   NULL);
3382 
3383 	if (ret == 0)
3384 		tsec->create_sid = isec->sid;
3385 	return ret;
3386 }
3387 
3388 static int selinux_kernel_module_request(char *kmod_name)
3389 {
3390 	u32 sid;
3391 	struct common_audit_data ad;
3392 
3393 	sid = task_sid(current);
3394 
3395 	ad.type = LSM_AUDIT_DATA_KMOD;
3396 	ad.u.kmod_name = kmod_name;
3397 
3398 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3399 			    SYSTEM__MODULE_REQUEST, &ad);
3400 }
3401 
3402 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3403 {
3404 	return current_has_perm(p, PROCESS__SETPGID);
3405 }
3406 
3407 static int selinux_task_getpgid(struct task_struct *p)
3408 {
3409 	return current_has_perm(p, PROCESS__GETPGID);
3410 }
3411 
3412 static int selinux_task_getsid(struct task_struct *p)
3413 {
3414 	return current_has_perm(p, PROCESS__GETSESSION);
3415 }
3416 
3417 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3418 {
3419 	*secid = task_sid(p);
3420 }
3421 
3422 static int selinux_task_setnice(struct task_struct *p, int nice)
3423 {
3424 	int rc;
3425 
3426 	rc = cap_task_setnice(p, nice);
3427 	if (rc)
3428 		return rc;
3429 
3430 	return current_has_perm(p, PROCESS__SETSCHED);
3431 }
3432 
3433 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3434 {
3435 	int rc;
3436 
3437 	rc = cap_task_setioprio(p, ioprio);
3438 	if (rc)
3439 		return rc;
3440 
3441 	return current_has_perm(p, PROCESS__SETSCHED);
3442 }
3443 
3444 static int selinux_task_getioprio(struct task_struct *p)
3445 {
3446 	return current_has_perm(p, PROCESS__GETSCHED);
3447 }
3448 
3449 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3450 		struct rlimit *new_rlim)
3451 {
3452 	struct rlimit *old_rlim = p->signal->rlim + resource;
3453 
3454 	/* Control the ability to change the hard limit (whether
3455 	   lowering or raising it), so that the hard limit can
3456 	   later be used as a safe reset point for the soft limit
3457 	   upon context transitions.  See selinux_bprm_committing_creds. */
3458 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3459 		return current_has_perm(p, PROCESS__SETRLIMIT);
3460 
3461 	return 0;
3462 }
3463 
3464 static int selinux_task_setscheduler(struct task_struct *p)
3465 {
3466 	int rc;
3467 
3468 	rc = cap_task_setscheduler(p);
3469 	if (rc)
3470 		return rc;
3471 
3472 	return current_has_perm(p, PROCESS__SETSCHED);
3473 }
3474 
3475 static int selinux_task_getscheduler(struct task_struct *p)
3476 {
3477 	return current_has_perm(p, PROCESS__GETSCHED);
3478 }
3479 
3480 static int selinux_task_movememory(struct task_struct *p)
3481 {
3482 	return current_has_perm(p, PROCESS__SETSCHED);
3483 }
3484 
3485 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3486 				int sig, u32 secid)
3487 {
3488 	u32 perm;
3489 	int rc;
3490 
3491 	if (!sig)
3492 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3493 	else
3494 		perm = signal_to_av(sig);
3495 	if (secid)
3496 		rc = avc_has_perm(secid, task_sid(p),
3497 				  SECCLASS_PROCESS, perm, NULL);
3498 	else
3499 		rc = current_has_perm(p, perm);
3500 	return rc;
3501 }
3502 
3503 static int selinux_task_wait(struct task_struct *p)
3504 {
3505 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3506 }
3507 
3508 static void selinux_task_to_inode(struct task_struct *p,
3509 				  struct inode *inode)
3510 {
3511 	struct inode_security_struct *isec = inode->i_security;
3512 	u32 sid = task_sid(p);
3513 
3514 	isec->sid = sid;
3515 	isec->initialized = 1;
3516 }
3517 
3518 /* Returns error only if unable to parse addresses */
3519 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3520 			struct common_audit_data *ad, u8 *proto)
3521 {
3522 	int offset, ihlen, ret = -EINVAL;
3523 	struct iphdr _iph, *ih;
3524 
3525 	offset = skb_network_offset(skb);
3526 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3527 	if (ih == NULL)
3528 		goto out;
3529 
3530 	ihlen = ih->ihl * 4;
3531 	if (ihlen < sizeof(_iph))
3532 		goto out;
3533 
3534 	ad->u.net->v4info.saddr = ih->saddr;
3535 	ad->u.net->v4info.daddr = ih->daddr;
3536 	ret = 0;
3537 
3538 	if (proto)
3539 		*proto = ih->protocol;
3540 
3541 	switch (ih->protocol) {
3542 	case IPPROTO_TCP: {
3543 		struct tcphdr _tcph, *th;
3544 
3545 		if (ntohs(ih->frag_off) & IP_OFFSET)
3546 			break;
3547 
3548 		offset += ihlen;
3549 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3550 		if (th == NULL)
3551 			break;
3552 
3553 		ad->u.net->sport = th->source;
3554 		ad->u.net->dport = th->dest;
3555 		break;
3556 	}
3557 
3558 	case IPPROTO_UDP: {
3559 		struct udphdr _udph, *uh;
3560 
3561 		if (ntohs(ih->frag_off) & IP_OFFSET)
3562 			break;
3563 
3564 		offset += ihlen;
3565 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3566 		if (uh == NULL)
3567 			break;
3568 
3569 		ad->u.net->sport = uh->source;
3570 		ad->u.net->dport = uh->dest;
3571 		break;
3572 	}
3573 
3574 	case IPPROTO_DCCP: {
3575 		struct dccp_hdr _dccph, *dh;
3576 
3577 		if (ntohs(ih->frag_off) & IP_OFFSET)
3578 			break;
3579 
3580 		offset += ihlen;
3581 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3582 		if (dh == NULL)
3583 			break;
3584 
3585 		ad->u.net->sport = dh->dccph_sport;
3586 		ad->u.net->dport = dh->dccph_dport;
3587 		break;
3588 	}
3589 
3590 	default:
3591 		break;
3592 	}
3593 out:
3594 	return ret;
3595 }
3596 
3597 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3598 
3599 /* Returns error only if unable to parse addresses */
3600 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3601 			struct common_audit_data *ad, u8 *proto)
3602 {
3603 	u8 nexthdr;
3604 	int ret = -EINVAL, offset;
3605 	struct ipv6hdr _ipv6h, *ip6;
3606 	__be16 frag_off;
3607 
3608 	offset = skb_network_offset(skb);
3609 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3610 	if (ip6 == NULL)
3611 		goto out;
3612 
3613 	ad->u.net->v6info.saddr = ip6->saddr;
3614 	ad->u.net->v6info.daddr = ip6->daddr;
3615 	ret = 0;
3616 
3617 	nexthdr = ip6->nexthdr;
3618 	offset += sizeof(_ipv6h);
3619 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3620 	if (offset < 0)
3621 		goto out;
3622 
3623 	if (proto)
3624 		*proto = nexthdr;
3625 
3626 	switch (nexthdr) {
3627 	case IPPROTO_TCP: {
3628 		struct tcphdr _tcph, *th;
3629 
3630 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3631 		if (th == NULL)
3632 			break;
3633 
3634 		ad->u.net->sport = th->source;
3635 		ad->u.net->dport = th->dest;
3636 		break;
3637 	}
3638 
3639 	case IPPROTO_UDP: {
3640 		struct udphdr _udph, *uh;
3641 
3642 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3643 		if (uh == NULL)
3644 			break;
3645 
3646 		ad->u.net->sport = uh->source;
3647 		ad->u.net->dport = uh->dest;
3648 		break;
3649 	}
3650 
3651 	case IPPROTO_DCCP: {
3652 		struct dccp_hdr _dccph, *dh;
3653 
3654 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3655 		if (dh == NULL)
3656 			break;
3657 
3658 		ad->u.net->sport = dh->dccph_sport;
3659 		ad->u.net->dport = dh->dccph_dport;
3660 		break;
3661 	}
3662 
3663 	/* includes fragments */
3664 	default:
3665 		break;
3666 	}
3667 out:
3668 	return ret;
3669 }
3670 
3671 #endif /* IPV6 */
3672 
3673 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3674 			     char **_addrp, int src, u8 *proto)
3675 {
3676 	char *addrp;
3677 	int ret;
3678 
3679 	switch (ad->u.net->family) {
3680 	case PF_INET:
3681 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3682 		if (ret)
3683 			goto parse_error;
3684 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3685 				       &ad->u.net->v4info.daddr);
3686 		goto okay;
3687 
3688 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3689 	case PF_INET6:
3690 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3691 		if (ret)
3692 			goto parse_error;
3693 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3694 				       &ad->u.net->v6info.daddr);
3695 		goto okay;
3696 #endif	/* IPV6 */
3697 	default:
3698 		addrp = NULL;
3699 		goto okay;
3700 	}
3701 
3702 parse_error:
3703 	printk(KERN_WARNING
3704 	       "SELinux: failure in selinux_parse_skb(),"
3705 	       " unable to parse packet\n");
3706 	return ret;
3707 
3708 okay:
3709 	if (_addrp)
3710 		*_addrp = addrp;
3711 	return 0;
3712 }
3713 
3714 /**
3715  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3716  * @skb: the packet
3717  * @family: protocol family
3718  * @sid: the packet's peer label SID
3719  *
3720  * Description:
3721  * Check the various different forms of network peer labeling and determine
3722  * the peer label/SID for the packet; most of the magic actually occurs in
3723  * the security server function security_net_peersid_cmp().  The function
3724  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3725  * or -EACCES if @sid is invalid due to inconsistencies with the different
3726  * peer labels.
3727  *
3728  */
3729 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3730 {
3731 	int err;
3732 	u32 xfrm_sid;
3733 	u32 nlbl_sid;
3734 	u32 nlbl_type;
3735 
3736 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3737 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3738 
3739 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3740 	if (unlikely(err)) {
3741 		printk(KERN_WARNING
3742 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3743 		       " unable to determine packet's peer label\n");
3744 		return -EACCES;
3745 	}
3746 
3747 	return 0;
3748 }
3749 
3750 /* socket security operations */
3751 
3752 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3753 				 u16 secclass, u32 *socksid)
3754 {
3755 	if (tsec->sockcreate_sid > SECSID_NULL) {
3756 		*socksid = tsec->sockcreate_sid;
3757 		return 0;
3758 	}
3759 
3760 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3761 				       socksid);
3762 }
3763 
3764 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3765 {
3766 	struct sk_security_struct *sksec = sk->sk_security;
3767 	struct common_audit_data ad;
3768 	struct lsm_network_audit net = {0,};
3769 	u32 tsid = task_sid(task);
3770 
3771 	if (sksec->sid == SECINITSID_KERNEL)
3772 		return 0;
3773 
3774 	ad.type = LSM_AUDIT_DATA_NET;
3775 	ad.u.net = &net;
3776 	ad.u.net->sk = sk;
3777 
3778 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3779 }
3780 
3781 static int selinux_socket_create(int family, int type,
3782 				 int protocol, int kern)
3783 {
3784 	const struct task_security_struct *tsec = current_security();
3785 	u32 newsid;
3786 	u16 secclass;
3787 	int rc;
3788 
3789 	if (kern)
3790 		return 0;
3791 
3792 	secclass = socket_type_to_security_class(family, type, protocol);
3793 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3794 	if (rc)
3795 		return rc;
3796 
3797 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3798 }
3799 
3800 static int selinux_socket_post_create(struct socket *sock, int family,
3801 				      int type, int protocol, int kern)
3802 {
3803 	const struct task_security_struct *tsec = current_security();
3804 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3805 	struct sk_security_struct *sksec;
3806 	int err = 0;
3807 
3808 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3809 
3810 	if (kern)
3811 		isec->sid = SECINITSID_KERNEL;
3812 	else {
3813 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3814 		if (err)
3815 			return err;
3816 	}
3817 
3818 	isec->initialized = 1;
3819 
3820 	if (sock->sk) {
3821 		sksec = sock->sk->sk_security;
3822 		sksec->sid = isec->sid;
3823 		sksec->sclass = isec->sclass;
3824 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3825 	}
3826 
3827 	return err;
3828 }
3829 
3830 /* Range of port numbers used to automatically bind.
3831    Need to determine whether we should perform a name_bind
3832    permission check between the socket and the port number. */
3833 
3834 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3835 {
3836 	struct sock *sk = sock->sk;
3837 	u16 family;
3838 	int err;
3839 
3840 	err = sock_has_perm(current, sk, SOCKET__BIND);
3841 	if (err)
3842 		goto out;
3843 
3844 	/*
3845 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3846 	 * Multiple address binding for SCTP is not supported yet: we just
3847 	 * check the first address now.
3848 	 */
3849 	family = sk->sk_family;
3850 	if (family == PF_INET || family == PF_INET6) {
3851 		char *addrp;
3852 		struct sk_security_struct *sksec = sk->sk_security;
3853 		struct common_audit_data ad;
3854 		struct lsm_network_audit net = {0,};
3855 		struct sockaddr_in *addr4 = NULL;
3856 		struct sockaddr_in6 *addr6 = NULL;
3857 		unsigned short snum;
3858 		u32 sid, node_perm;
3859 
3860 		if (family == PF_INET) {
3861 			addr4 = (struct sockaddr_in *)address;
3862 			snum = ntohs(addr4->sin_port);
3863 			addrp = (char *)&addr4->sin_addr.s_addr;
3864 		} else {
3865 			addr6 = (struct sockaddr_in6 *)address;
3866 			snum = ntohs(addr6->sin6_port);
3867 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3868 		}
3869 
3870 		if (snum) {
3871 			int low, high;
3872 
3873 			inet_get_local_port_range(&low, &high);
3874 
3875 			if (snum < max(PROT_SOCK, low) || snum > high) {
3876 				err = sel_netport_sid(sk->sk_protocol,
3877 						      snum, &sid);
3878 				if (err)
3879 					goto out;
3880 				ad.type = LSM_AUDIT_DATA_NET;
3881 				ad.u.net = &net;
3882 				ad.u.net->sport = htons(snum);
3883 				ad.u.net->family = family;
3884 				err = avc_has_perm(sksec->sid, sid,
3885 						   sksec->sclass,
3886 						   SOCKET__NAME_BIND, &ad);
3887 				if (err)
3888 					goto out;
3889 			}
3890 		}
3891 
3892 		switch (sksec->sclass) {
3893 		case SECCLASS_TCP_SOCKET:
3894 			node_perm = TCP_SOCKET__NODE_BIND;
3895 			break;
3896 
3897 		case SECCLASS_UDP_SOCKET:
3898 			node_perm = UDP_SOCKET__NODE_BIND;
3899 			break;
3900 
3901 		case SECCLASS_DCCP_SOCKET:
3902 			node_perm = DCCP_SOCKET__NODE_BIND;
3903 			break;
3904 
3905 		default:
3906 			node_perm = RAWIP_SOCKET__NODE_BIND;
3907 			break;
3908 		}
3909 
3910 		err = sel_netnode_sid(addrp, family, &sid);
3911 		if (err)
3912 			goto out;
3913 
3914 		ad.type = LSM_AUDIT_DATA_NET;
3915 		ad.u.net = &net;
3916 		ad.u.net->sport = htons(snum);
3917 		ad.u.net->family = family;
3918 
3919 		if (family == PF_INET)
3920 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3921 		else
3922 			ad.u.net->v6info.saddr = addr6->sin6_addr;
3923 
3924 		err = avc_has_perm(sksec->sid, sid,
3925 				   sksec->sclass, node_perm, &ad);
3926 		if (err)
3927 			goto out;
3928 	}
3929 out:
3930 	return err;
3931 }
3932 
3933 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3934 {
3935 	struct sock *sk = sock->sk;
3936 	struct sk_security_struct *sksec = sk->sk_security;
3937 	int err;
3938 
3939 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3940 	if (err)
3941 		return err;
3942 
3943 	/*
3944 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3945 	 */
3946 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3947 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
3948 		struct common_audit_data ad;
3949 		struct lsm_network_audit net = {0,};
3950 		struct sockaddr_in *addr4 = NULL;
3951 		struct sockaddr_in6 *addr6 = NULL;
3952 		unsigned short snum;
3953 		u32 sid, perm;
3954 
3955 		if (sk->sk_family == PF_INET) {
3956 			addr4 = (struct sockaddr_in *)address;
3957 			if (addrlen < sizeof(struct sockaddr_in))
3958 				return -EINVAL;
3959 			snum = ntohs(addr4->sin_port);
3960 		} else {
3961 			addr6 = (struct sockaddr_in6 *)address;
3962 			if (addrlen < SIN6_LEN_RFC2133)
3963 				return -EINVAL;
3964 			snum = ntohs(addr6->sin6_port);
3965 		}
3966 
3967 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3968 		if (err)
3969 			goto out;
3970 
3971 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3972 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3973 
3974 		ad.type = LSM_AUDIT_DATA_NET;
3975 		ad.u.net = &net;
3976 		ad.u.net->dport = htons(snum);
3977 		ad.u.net->family = sk->sk_family;
3978 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3979 		if (err)
3980 			goto out;
3981 	}
3982 
3983 	err = selinux_netlbl_socket_connect(sk, address);
3984 
3985 out:
3986 	return err;
3987 }
3988 
3989 static int selinux_socket_listen(struct socket *sock, int backlog)
3990 {
3991 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3992 }
3993 
3994 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3995 {
3996 	int err;
3997 	struct inode_security_struct *isec;
3998 	struct inode_security_struct *newisec;
3999 
4000 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4001 	if (err)
4002 		return err;
4003 
4004 	newisec = SOCK_INODE(newsock)->i_security;
4005 
4006 	isec = SOCK_INODE(sock)->i_security;
4007 	newisec->sclass = isec->sclass;
4008 	newisec->sid = isec->sid;
4009 	newisec->initialized = 1;
4010 
4011 	return 0;
4012 }
4013 
4014 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4015 				  int size)
4016 {
4017 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4018 }
4019 
4020 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4021 				  int size, int flags)
4022 {
4023 	return sock_has_perm(current, sock->sk, SOCKET__READ);
4024 }
4025 
4026 static int selinux_socket_getsockname(struct socket *sock)
4027 {
4028 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4029 }
4030 
4031 static int selinux_socket_getpeername(struct socket *sock)
4032 {
4033 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4034 }
4035 
4036 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4037 {
4038 	int err;
4039 
4040 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4041 	if (err)
4042 		return err;
4043 
4044 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4045 }
4046 
4047 static int selinux_socket_getsockopt(struct socket *sock, int level,
4048 				     int optname)
4049 {
4050 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4051 }
4052 
4053 static int selinux_socket_shutdown(struct socket *sock, int how)
4054 {
4055 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4056 }
4057 
4058 static int selinux_socket_unix_stream_connect(struct sock *sock,
4059 					      struct sock *other,
4060 					      struct sock *newsk)
4061 {
4062 	struct sk_security_struct *sksec_sock = sock->sk_security;
4063 	struct sk_security_struct *sksec_other = other->sk_security;
4064 	struct sk_security_struct *sksec_new = newsk->sk_security;
4065 	struct common_audit_data ad;
4066 	struct lsm_network_audit net = {0,};
4067 	int err;
4068 
4069 	ad.type = LSM_AUDIT_DATA_NET;
4070 	ad.u.net = &net;
4071 	ad.u.net->sk = other;
4072 
4073 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4074 			   sksec_other->sclass,
4075 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4076 	if (err)
4077 		return err;
4078 
4079 	/* server child socket */
4080 	sksec_new->peer_sid = sksec_sock->sid;
4081 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4082 				    &sksec_new->sid);
4083 	if (err)
4084 		return err;
4085 
4086 	/* connecting socket */
4087 	sksec_sock->peer_sid = sksec_new->sid;
4088 
4089 	return 0;
4090 }
4091 
4092 static int selinux_socket_unix_may_send(struct socket *sock,
4093 					struct socket *other)
4094 {
4095 	struct sk_security_struct *ssec = sock->sk->sk_security;
4096 	struct sk_security_struct *osec = other->sk->sk_security;
4097 	struct common_audit_data ad;
4098 	struct lsm_network_audit net = {0,};
4099 
4100 	ad.type = LSM_AUDIT_DATA_NET;
4101 	ad.u.net = &net;
4102 	ad.u.net->sk = other->sk;
4103 
4104 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4105 			    &ad);
4106 }
4107 
4108 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4109 				    u32 peer_sid,
4110 				    struct common_audit_data *ad)
4111 {
4112 	int err;
4113 	u32 if_sid;
4114 	u32 node_sid;
4115 
4116 	err = sel_netif_sid(ifindex, &if_sid);
4117 	if (err)
4118 		return err;
4119 	err = avc_has_perm(peer_sid, if_sid,
4120 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4121 	if (err)
4122 		return err;
4123 
4124 	err = sel_netnode_sid(addrp, family, &node_sid);
4125 	if (err)
4126 		return err;
4127 	return avc_has_perm(peer_sid, node_sid,
4128 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4129 }
4130 
4131 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4132 				       u16 family)
4133 {
4134 	int err = 0;
4135 	struct sk_security_struct *sksec = sk->sk_security;
4136 	u32 sk_sid = sksec->sid;
4137 	struct common_audit_data ad;
4138 	struct lsm_network_audit net = {0,};
4139 	char *addrp;
4140 
4141 	ad.type = LSM_AUDIT_DATA_NET;
4142 	ad.u.net = &net;
4143 	ad.u.net->netif = skb->skb_iif;
4144 	ad.u.net->family = family;
4145 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4146 	if (err)
4147 		return err;
4148 
4149 	if (selinux_secmark_enabled()) {
4150 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4151 				   PACKET__RECV, &ad);
4152 		if (err)
4153 			return err;
4154 	}
4155 
4156 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4157 	if (err)
4158 		return err;
4159 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4160 
4161 	return err;
4162 }
4163 
4164 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4165 {
4166 	int err;
4167 	struct sk_security_struct *sksec = sk->sk_security;
4168 	u16 family = sk->sk_family;
4169 	u32 sk_sid = sksec->sid;
4170 	struct common_audit_data ad;
4171 	struct lsm_network_audit net = {0,};
4172 	char *addrp;
4173 	u8 secmark_active;
4174 	u8 peerlbl_active;
4175 
4176 	if (family != PF_INET && family != PF_INET6)
4177 		return 0;
4178 
4179 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4180 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4181 		family = PF_INET;
4182 
4183 	/* If any sort of compatibility mode is enabled then handoff processing
4184 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4185 	 * special handling.  We do this in an attempt to keep this function
4186 	 * as fast and as clean as possible. */
4187 	if (!selinux_policycap_netpeer)
4188 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4189 
4190 	secmark_active = selinux_secmark_enabled();
4191 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4192 	if (!secmark_active && !peerlbl_active)
4193 		return 0;
4194 
4195 	ad.type = LSM_AUDIT_DATA_NET;
4196 	ad.u.net = &net;
4197 	ad.u.net->netif = skb->skb_iif;
4198 	ad.u.net->family = family;
4199 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4200 	if (err)
4201 		return err;
4202 
4203 	if (peerlbl_active) {
4204 		u32 peer_sid;
4205 
4206 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4207 		if (err)
4208 			return err;
4209 		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4210 					       peer_sid, &ad);
4211 		if (err) {
4212 			selinux_netlbl_err(skb, err, 0);
4213 			return err;
4214 		}
4215 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4216 				   PEER__RECV, &ad);
4217 		if (err)
4218 			selinux_netlbl_err(skb, err, 0);
4219 	}
4220 
4221 	if (secmark_active) {
4222 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4223 				   PACKET__RECV, &ad);
4224 		if (err)
4225 			return err;
4226 	}
4227 
4228 	return err;
4229 }
4230 
4231 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4232 					    int __user *optlen, unsigned len)
4233 {
4234 	int err = 0;
4235 	char *scontext;
4236 	u32 scontext_len;
4237 	struct sk_security_struct *sksec = sock->sk->sk_security;
4238 	u32 peer_sid = SECSID_NULL;
4239 
4240 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4241 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4242 		peer_sid = sksec->peer_sid;
4243 	if (peer_sid == SECSID_NULL)
4244 		return -ENOPROTOOPT;
4245 
4246 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4247 	if (err)
4248 		return err;
4249 
4250 	if (scontext_len > len) {
4251 		err = -ERANGE;
4252 		goto out_len;
4253 	}
4254 
4255 	if (copy_to_user(optval, scontext, scontext_len))
4256 		err = -EFAULT;
4257 
4258 out_len:
4259 	if (put_user(scontext_len, optlen))
4260 		err = -EFAULT;
4261 	kfree(scontext);
4262 	return err;
4263 }
4264 
4265 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4266 {
4267 	u32 peer_secid = SECSID_NULL;
4268 	u16 family;
4269 
4270 	if (skb && skb->protocol == htons(ETH_P_IP))
4271 		family = PF_INET;
4272 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4273 		family = PF_INET6;
4274 	else if (sock)
4275 		family = sock->sk->sk_family;
4276 	else
4277 		goto out;
4278 
4279 	if (sock && family == PF_UNIX)
4280 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4281 	else if (skb)
4282 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4283 
4284 out:
4285 	*secid = peer_secid;
4286 	if (peer_secid == SECSID_NULL)
4287 		return -EINVAL;
4288 	return 0;
4289 }
4290 
4291 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4292 {
4293 	struct sk_security_struct *sksec;
4294 
4295 	sksec = kzalloc(sizeof(*sksec), priority);
4296 	if (!sksec)
4297 		return -ENOMEM;
4298 
4299 	sksec->peer_sid = SECINITSID_UNLABELED;
4300 	sksec->sid = SECINITSID_UNLABELED;
4301 	selinux_netlbl_sk_security_reset(sksec);
4302 	sk->sk_security = sksec;
4303 
4304 	return 0;
4305 }
4306 
4307 static void selinux_sk_free_security(struct sock *sk)
4308 {
4309 	struct sk_security_struct *sksec = sk->sk_security;
4310 
4311 	sk->sk_security = NULL;
4312 	selinux_netlbl_sk_security_free(sksec);
4313 	kfree(sksec);
4314 }
4315 
4316 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4317 {
4318 	struct sk_security_struct *sksec = sk->sk_security;
4319 	struct sk_security_struct *newsksec = newsk->sk_security;
4320 
4321 	newsksec->sid = sksec->sid;
4322 	newsksec->peer_sid = sksec->peer_sid;
4323 	newsksec->sclass = sksec->sclass;
4324 
4325 	selinux_netlbl_sk_security_reset(newsksec);
4326 }
4327 
4328 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4329 {
4330 	if (!sk)
4331 		*secid = SECINITSID_ANY_SOCKET;
4332 	else {
4333 		struct sk_security_struct *sksec = sk->sk_security;
4334 
4335 		*secid = sksec->sid;
4336 	}
4337 }
4338 
4339 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4340 {
4341 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4342 	struct sk_security_struct *sksec = sk->sk_security;
4343 
4344 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4345 	    sk->sk_family == PF_UNIX)
4346 		isec->sid = sksec->sid;
4347 	sksec->sclass = isec->sclass;
4348 }
4349 
4350 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4351 				     struct request_sock *req)
4352 {
4353 	struct sk_security_struct *sksec = sk->sk_security;
4354 	int err;
4355 	u16 family = sk->sk_family;
4356 	u32 newsid;
4357 	u32 peersid;
4358 
4359 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4360 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4361 		family = PF_INET;
4362 
4363 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4364 	if (err)
4365 		return err;
4366 	if (peersid == SECSID_NULL) {
4367 		req->secid = sksec->sid;
4368 		req->peer_secid = SECSID_NULL;
4369 	} else {
4370 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4371 		if (err)
4372 			return err;
4373 		req->secid = newsid;
4374 		req->peer_secid = peersid;
4375 	}
4376 
4377 	return selinux_netlbl_inet_conn_request(req, family);
4378 }
4379 
4380 static void selinux_inet_csk_clone(struct sock *newsk,
4381 				   const struct request_sock *req)
4382 {
4383 	struct sk_security_struct *newsksec = newsk->sk_security;
4384 
4385 	newsksec->sid = req->secid;
4386 	newsksec->peer_sid = req->peer_secid;
4387 	/* NOTE: Ideally, we should also get the isec->sid for the
4388 	   new socket in sync, but we don't have the isec available yet.
4389 	   So we will wait until sock_graft to do it, by which
4390 	   time it will have been created and available. */
4391 
4392 	/* We don't need to take any sort of lock here as we are the only
4393 	 * thread with access to newsksec */
4394 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4395 }
4396 
4397 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4398 {
4399 	u16 family = sk->sk_family;
4400 	struct sk_security_struct *sksec = sk->sk_security;
4401 
4402 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4403 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4404 		family = PF_INET;
4405 
4406 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4407 }
4408 
4409 static int selinux_secmark_relabel_packet(u32 sid)
4410 {
4411 	const struct task_security_struct *__tsec;
4412 	u32 tsid;
4413 
4414 	__tsec = current_security();
4415 	tsid = __tsec->sid;
4416 
4417 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4418 }
4419 
4420 static void selinux_secmark_refcount_inc(void)
4421 {
4422 	atomic_inc(&selinux_secmark_refcount);
4423 }
4424 
4425 static void selinux_secmark_refcount_dec(void)
4426 {
4427 	atomic_dec(&selinux_secmark_refcount);
4428 }
4429 
4430 static void selinux_req_classify_flow(const struct request_sock *req,
4431 				      struct flowi *fl)
4432 {
4433 	fl->flowi_secid = req->secid;
4434 }
4435 
4436 static int selinux_tun_dev_create(void)
4437 {
4438 	u32 sid = current_sid();
4439 
4440 	/* we aren't taking into account the "sockcreate" SID since the socket
4441 	 * that is being created here is not a socket in the traditional sense,
4442 	 * instead it is a private sock, accessible only to the kernel, and
4443 	 * representing a wide range of network traffic spanning multiple
4444 	 * connections unlike traditional sockets - check the TUN driver to
4445 	 * get a better understanding of why this socket is special */
4446 
4447 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4448 			    NULL);
4449 }
4450 
4451 static void selinux_tun_dev_post_create(struct sock *sk)
4452 {
4453 	struct sk_security_struct *sksec = sk->sk_security;
4454 
4455 	/* we don't currently perform any NetLabel based labeling here and it
4456 	 * isn't clear that we would want to do so anyway; while we could apply
4457 	 * labeling without the support of the TUN user the resulting labeled
4458 	 * traffic from the other end of the connection would almost certainly
4459 	 * cause confusion to the TUN user that had no idea network labeling
4460 	 * protocols were being used */
4461 
4462 	/* see the comments in selinux_tun_dev_create() about why we don't use
4463 	 * the sockcreate SID here */
4464 
4465 	sksec->sid = current_sid();
4466 	sksec->sclass = SECCLASS_TUN_SOCKET;
4467 }
4468 
4469 static int selinux_tun_dev_attach(struct sock *sk)
4470 {
4471 	struct sk_security_struct *sksec = sk->sk_security;
4472 	u32 sid = current_sid();
4473 	int err;
4474 
4475 	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4476 			   TUN_SOCKET__RELABELFROM, NULL);
4477 	if (err)
4478 		return err;
4479 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4480 			   TUN_SOCKET__RELABELTO, NULL);
4481 	if (err)
4482 		return err;
4483 
4484 	sksec->sid = sid;
4485 
4486 	return 0;
4487 }
4488 
4489 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4490 {
4491 	int err = 0;
4492 	u32 perm;
4493 	struct nlmsghdr *nlh;
4494 	struct sk_security_struct *sksec = sk->sk_security;
4495 
4496 	if (skb->len < NLMSG_SPACE(0)) {
4497 		err = -EINVAL;
4498 		goto out;
4499 	}
4500 	nlh = nlmsg_hdr(skb);
4501 
4502 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4503 	if (err) {
4504 		if (err == -EINVAL) {
4505 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4506 				  "SELinux:  unrecognized netlink message"
4507 				  " type=%hu for sclass=%hu\n",
4508 				  nlh->nlmsg_type, sksec->sclass);
4509 			if (!selinux_enforcing || security_get_allow_unknown())
4510 				err = 0;
4511 		}
4512 
4513 		/* Ignore */
4514 		if (err == -ENOENT)
4515 			err = 0;
4516 		goto out;
4517 	}
4518 
4519 	err = sock_has_perm(current, sk, perm);
4520 out:
4521 	return err;
4522 }
4523 
4524 #ifdef CONFIG_NETFILTER
4525 
4526 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4527 				       u16 family)
4528 {
4529 	int err;
4530 	char *addrp;
4531 	u32 peer_sid;
4532 	struct common_audit_data ad;
4533 	struct lsm_network_audit net = {0,};
4534 	u8 secmark_active;
4535 	u8 netlbl_active;
4536 	u8 peerlbl_active;
4537 
4538 	if (!selinux_policycap_netpeer)
4539 		return NF_ACCEPT;
4540 
4541 	secmark_active = selinux_secmark_enabled();
4542 	netlbl_active = netlbl_enabled();
4543 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4544 	if (!secmark_active && !peerlbl_active)
4545 		return NF_ACCEPT;
4546 
4547 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4548 		return NF_DROP;
4549 
4550 	ad.type = LSM_AUDIT_DATA_NET;
4551 	ad.u.net = &net;
4552 	ad.u.net->netif = ifindex;
4553 	ad.u.net->family = family;
4554 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4555 		return NF_DROP;
4556 
4557 	if (peerlbl_active) {
4558 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4559 					       peer_sid, &ad);
4560 		if (err) {
4561 			selinux_netlbl_err(skb, err, 1);
4562 			return NF_DROP;
4563 		}
4564 	}
4565 
4566 	if (secmark_active)
4567 		if (avc_has_perm(peer_sid, skb->secmark,
4568 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4569 			return NF_DROP;
4570 
4571 	if (netlbl_active)
4572 		/* we do this in the FORWARD path and not the POST_ROUTING
4573 		 * path because we want to make sure we apply the necessary
4574 		 * labeling before IPsec is applied so we can leverage AH
4575 		 * protection */
4576 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4577 			return NF_DROP;
4578 
4579 	return NF_ACCEPT;
4580 }
4581 
4582 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4583 					 struct sk_buff *skb,
4584 					 const struct net_device *in,
4585 					 const struct net_device *out,
4586 					 int (*okfn)(struct sk_buff *))
4587 {
4588 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4589 }
4590 
4591 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4592 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4593 					 struct sk_buff *skb,
4594 					 const struct net_device *in,
4595 					 const struct net_device *out,
4596 					 int (*okfn)(struct sk_buff *))
4597 {
4598 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4599 }
4600 #endif	/* IPV6 */
4601 
4602 static unsigned int selinux_ip_output(struct sk_buff *skb,
4603 				      u16 family)
4604 {
4605 	u32 sid;
4606 
4607 	if (!netlbl_enabled())
4608 		return NF_ACCEPT;
4609 
4610 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4611 	 * because we want to make sure we apply the necessary labeling
4612 	 * before IPsec is applied so we can leverage AH protection */
4613 	if (skb->sk) {
4614 		struct sk_security_struct *sksec = skb->sk->sk_security;
4615 		sid = sksec->sid;
4616 	} else
4617 		sid = SECINITSID_KERNEL;
4618 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4619 		return NF_DROP;
4620 
4621 	return NF_ACCEPT;
4622 }
4623 
4624 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4625 					struct sk_buff *skb,
4626 					const struct net_device *in,
4627 					const struct net_device *out,
4628 					int (*okfn)(struct sk_buff *))
4629 {
4630 	return selinux_ip_output(skb, PF_INET);
4631 }
4632 
4633 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4634 						int ifindex,
4635 						u16 family)
4636 {
4637 	struct sock *sk = skb->sk;
4638 	struct sk_security_struct *sksec;
4639 	struct common_audit_data ad;
4640 	struct lsm_network_audit net = {0,};
4641 	char *addrp;
4642 	u8 proto;
4643 
4644 	if (sk == NULL)
4645 		return NF_ACCEPT;
4646 	sksec = sk->sk_security;
4647 
4648 	ad.type = LSM_AUDIT_DATA_NET;
4649 	ad.u.net = &net;
4650 	ad.u.net->netif = ifindex;
4651 	ad.u.net->family = family;
4652 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4653 		return NF_DROP;
4654 
4655 	if (selinux_secmark_enabled())
4656 		if (avc_has_perm(sksec->sid, skb->secmark,
4657 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4658 			return NF_DROP_ERR(-ECONNREFUSED);
4659 
4660 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4661 		return NF_DROP_ERR(-ECONNREFUSED);
4662 
4663 	return NF_ACCEPT;
4664 }
4665 
4666 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4667 					 u16 family)
4668 {
4669 	u32 secmark_perm;
4670 	u32 peer_sid;
4671 	struct sock *sk;
4672 	struct common_audit_data ad;
4673 	struct lsm_network_audit net = {0,};
4674 	char *addrp;
4675 	u8 secmark_active;
4676 	u8 peerlbl_active;
4677 
4678 	/* If any sort of compatibility mode is enabled then handoff processing
4679 	 * to the selinux_ip_postroute_compat() function to deal with the
4680 	 * special handling.  We do this in an attempt to keep this function
4681 	 * as fast and as clean as possible. */
4682 	if (!selinux_policycap_netpeer)
4683 		return selinux_ip_postroute_compat(skb, ifindex, family);
4684 #ifdef CONFIG_XFRM
4685 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4686 	 * packet transformation so allow the packet to pass without any checks
4687 	 * since we'll have another chance to perform access control checks
4688 	 * when the packet is on it's final way out.
4689 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4690 	 *       is NULL, in this case go ahead and apply access control. */
4691 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4692 		return NF_ACCEPT;
4693 #endif
4694 	secmark_active = selinux_secmark_enabled();
4695 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4696 	if (!secmark_active && !peerlbl_active)
4697 		return NF_ACCEPT;
4698 
4699 	/* if the packet is being forwarded then get the peer label from the
4700 	 * packet itself; otherwise check to see if it is from a local
4701 	 * application or the kernel, if from an application get the peer label
4702 	 * from the sending socket, otherwise use the kernel's sid */
4703 	sk = skb->sk;
4704 	if (sk == NULL) {
4705 		if (skb->skb_iif) {
4706 			secmark_perm = PACKET__FORWARD_OUT;
4707 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4708 				return NF_DROP;
4709 		} else {
4710 			secmark_perm = PACKET__SEND;
4711 			peer_sid = SECINITSID_KERNEL;
4712 		}
4713 	} else {
4714 		struct sk_security_struct *sksec = sk->sk_security;
4715 		peer_sid = sksec->sid;
4716 		secmark_perm = PACKET__SEND;
4717 	}
4718 
4719 	ad.type = LSM_AUDIT_DATA_NET;
4720 	ad.u.net = &net;
4721 	ad.u.net->netif = ifindex;
4722 	ad.u.net->family = family;
4723 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4724 		return NF_DROP;
4725 
4726 	if (secmark_active)
4727 		if (avc_has_perm(peer_sid, skb->secmark,
4728 				 SECCLASS_PACKET, secmark_perm, &ad))
4729 			return NF_DROP_ERR(-ECONNREFUSED);
4730 
4731 	if (peerlbl_active) {
4732 		u32 if_sid;
4733 		u32 node_sid;
4734 
4735 		if (sel_netif_sid(ifindex, &if_sid))
4736 			return NF_DROP;
4737 		if (avc_has_perm(peer_sid, if_sid,
4738 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4739 			return NF_DROP_ERR(-ECONNREFUSED);
4740 
4741 		if (sel_netnode_sid(addrp, family, &node_sid))
4742 			return NF_DROP;
4743 		if (avc_has_perm(peer_sid, node_sid,
4744 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4745 			return NF_DROP_ERR(-ECONNREFUSED);
4746 	}
4747 
4748 	return NF_ACCEPT;
4749 }
4750 
4751 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4752 					   struct sk_buff *skb,
4753 					   const struct net_device *in,
4754 					   const struct net_device *out,
4755 					   int (*okfn)(struct sk_buff *))
4756 {
4757 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4758 }
4759 
4760 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4761 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4762 					   struct sk_buff *skb,
4763 					   const struct net_device *in,
4764 					   const struct net_device *out,
4765 					   int (*okfn)(struct sk_buff *))
4766 {
4767 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4768 }
4769 #endif	/* IPV6 */
4770 
4771 #endif	/* CONFIG_NETFILTER */
4772 
4773 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4774 {
4775 	int err;
4776 
4777 	err = cap_netlink_send(sk, skb);
4778 	if (err)
4779 		return err;
4780 
4781 	return selinux_nlmsg_perm(sk, skb);
4782 }
4783 
4784 static int ipc_alloc_security(struct task_struct *task,
4785 			      struct kern_ipc_perm *perm,
4786 			      u16 sclass)
4787 {
4788 	struct ipc_security_struct *isec;
4789 	u32 sid;
4790 
4791 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4792 	if (!isec)
4793 		return -ENOMEM;
4794 
4795 	sid = task_sid(task);
4796 	isec->sclass = sclass;
4797 	isec->sid = sid;
4798 	perm->security = isec;
4799 
4800 	return 0;
4801 }
4802 
4803 static void ipc_free_security(struct kern_ipc_perm *perm)
4804 {
4805 	struct ipc_security_struct *isec = perm->security;
4806 	perm->security = NULL;
4807 	kfree(isec);
4808 }
4809 
4810 static int msg_msg_alloc_security(struct msg_msg *msg)
4811 {
4812 	struct msg_security_struct *msec;
4813 
4814 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4815 	if (!msec)
4816 		return -ENOMEM;
4817 
4818 	msec->sid = SECINITSID_UNLABELED;
4819 	msg->security = msec;
4820 
4821 	return 0;
4822 }
4823 
4824 static void msg_msg_free_security(struct msg_msg *msg)
4825 {
4826 	struct msg_security_struct *msec = msg->security;
4827 
4828 	msg->security = NULL;
4829 	kfree(msec);
4830 }
4831 
4832 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4833 			u32 perms)
4834 {
4835 	struct ipc_security_struct *isec;
4836 	struct common_audit_data ad;
4837 	u32 sid = current_sid();
4838 
4839 	isec = ipc_perms->security;
4840 
4841 	ad.type = LSM_AUDIT_DATA_IPC;
4842 	ad.u.ipc_id = ipc_perms->key;
4843 
4844 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4845 }
4846 
4847 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4848 {
4849 	return msg_msg_alloc_security(msg);
4850 }
4851 
4852 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4853 {
4854 	msg_msg_free_security(msg);
4855 }
4856 
4857 /* message queue security operations */
4858 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4859 {
4860 	struct ipc_security_struct *isec;
4861 	struct common_audit_data ad;
4862 	u32 sid = current_sid();
4863 	int rc;
4864 
4865 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4866 	if (rc)
4867 		return rc;
4868 
4869 	isec = msq->q_perm.security;
4870 
4871 	ad.type = LSM_AUDIT_DATA_IPC;
4872 	ad.u.ipc_id = msq->q_perm.key;
4873 
4874 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4875 			  MSGQ__CREATE, &ad);
4876 	if (rc) {
4877 		ipc_free_security(&msq->q_perm);
4878 		return rc;
4879 	}
4880 	return 0;
4881 }
4882 
4883 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4884 {
4885 	ipc_free_security(&msq->q_perm);
4886 }
4887 
4888 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4889 {
4890 	struct ipc_security_struct *isec;
4891 	struct common_audit_data ad;
4892 	u32 sid = current_sid();
4893 
4894 	isec = msq->q_perm.security;
4895 
4896 	ad.type = LSM_AUDIT_DATA_IPC;
4897 	ad.u.ipc_id = msq->q_perm.key;
4898 
4899 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4900 			    MSGQ__ASSOCIATE, &ad);
4901 }
4902 
4903 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4904 {
4905 	int err;
4906 	int perms;
4907 
4908 	switch (cmd) {
4909 	case IPC_INFO:
4910 	case MSG_INFO:
4911 		/* No specific object, just general system-wide information. */
4912 		return task_has_system(current, SYSTEM__IPC_INFO);
4913 	case IPC_STAT:
4914 	case MSG_STAT:
4915 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4916 		break;
4917 	case IPC_SET:
4918 		perms = MSGQ__SETATTR;
4919 		break;
4920 	case IPC_RMID:
4921 		perms = MSGQ__DESTROY;
4922 		break;
4923 	default:
4924 		return 0;
4925 	}
4926 
4927 	err = ipc_has_perm(&msq->q_perm, perms);
4928 	return err;
4929 }
4930 
4931 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4932 {
4933 	struct ipc_security_struct *isec;
4934 	struct msg_security_struct *msec;
4935 	struct common_audit_data ad;
4936 	u32 sid = current_sid();
4937 	int rc;
4938 
4939 	isec = msq->q_perm.security;
4940 	msec = msg->security;
4941 
4942 	/*
4943 	 * First time through, need to assign label to the message
4944 	 */
4945 	if (msec->sid == SECINITSID_UNLABELED) {
4946 		/*
4947 		 * Compute new sid based on current process and
4948 		 * message queue this message will be stored in
4949 		 */
4950 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4951 					     NULL, &msec->sid);
4952 		if (rc)
4953 			return rc;
4954 	}
4955 
4956 	ad.type = LSM_AUDIT_DATA_IPC;
4957 	ad.u.ipc_id = msq->q_perm.key;
4958 
4959 	/* Can this process write to the queue? */
4960 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4961 			  MSGQ__WRITE, &ad);
4962 	if (!rc)
4963 		/* Can this process send the message */
4964 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4965 				  MSG__SEND, &ad);
4966 	if (!rc)
4967 		/* Can the message be put in the queue? */
4968 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4969 				  MSGQ__ENQUEUE, &ad);
4970 
4971 	return rc;
4972 }
4973 
4974 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4975 				    struct task_struct *target,
4976 				    long type, int mode)
4977 {
4978 	struct ipc_security_struct *isec;
4979 	struct msg_security_struct *msec;
4980 	struct common_audit_data ad;
4981 	u32 sid = task_sid(target);
4982 	int rc;
4983 
4984 	isec = msq->q_perm.security;
4985 	msec = msg->security;
4986 
4987 	ad.type = LSM_AUDIT_DATA_IPC;
4988 	ad.u.ipc_id = msq->q_perm.key;
4989 
4990 	rc = avc_has_perm(sid, isec->sid,
4991 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4992 	if (!rc)
4993 		rc = avc_has_perm(sid, msec->sid,
4994 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4995 	return rc;
4996 }
4997 
4998 /* Shared Memory security operations */
4999 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5000 {
5001 	struct ipc_security_struct *isec;
5002 	struct common_audit_data ad;
5003 	u32 sid = current_sid();
5004 	int rc;
5005 
5006 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5007 	if (rc)
5008 		return rc;
5009 
5010 	isec = shp->shm_perm.security;
5011 
5012 	ad.type = LSM_AUDIT_DATA_IPC;
5013 	ad.u.ipc_id = shp->shm_perm.key;
5014 
5015 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5016 			  SHM__CREATE, &ad);
5017 	if (rc) {
5018 		ipc_free_security(&shp->shm_perm);
5019 		return rc;
5020 	}
5021 	return 0;
5022 }
5023 
5024 static void selinux_shm_free_security(struct shmid_kernel *shp)
5025 {
5026 	ipc_free_security(&shp->shm_perm);
5027 }
5028 
5029 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5030 {
5031 	struct ipc_security_struct *isec;
5032 	struct common_audit_data ad;
5033 	u32 sid = current_sid();
5034 
5035 	isec = shp->shm_perm.security;
5036 
5037 	ad.type = LSM_AUDIT_DATA_IPC;
5038 	ad.u.ipc_id = shp->shm_perm.key;
5039 
5040 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5041 			    SHM__ASSOCIATE, &ad);
5042 }
5043 
5044 /* Note, at this point, shp is locked down */
5045 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5046 {
5047 	int perms;
5048 	int err;
5049 
5050 	switch (cmd) {
5051 	case IPC_INFO:
5052 	case SHM_INFO:
5053 		/* No specific object, just general system-wide information. */
5054 		return task_has_system(current, SYSTEM__IPC_INFO);
5055 	case IPC_STAT:
5056 	case SHM_STAT:
5057 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5058 		break;
5059 	case IPC_SET:
5060 		perms = SHM__SETATTR;
5061 		break;
5062 	case SHM_LOCK:
5063 	case SHM_UNLOCK:
5064 		perms = SHM__LOCK;
5065 		break;
5066 	case IPC_RMID:
5067 		perms = SHM__DESTROY;
5068 		break;
5069 	default:
5070 		return 0;
5071 	}
5072 
5073 	err = ipc_has_perm(&shp->shm_perm, perms);
5074 	return err;
5075 }
5076 
5077 static int selinux_shm_shmat(struct shmid_kernel *shp,
5078 			     char __user *shmaddr, int shmflg)
5079 {
5080 	u32 perms;
5081 
5082 	if (shmflg & SHM_RDONLY)
5083 		perms = SHM__READ;
5084 	else
5085 		perms = SHM__READ | SHM__WRITE;
5086 
5087 	return ipc_has_perm(&shp->shm_perm, perms);
5088 }
5089 
5090 /* Semaphore security operations */
5091 static int selinux_sem_alloc_security(struct sem_array *sma)
5092 {
5093 	struct ipc_security_struct *isec;
5094 	struct common_audit_data ad;
5095 	u32 sid = current_sid();
5096 	int rc;
5097 
5098 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5099 	if (rc)
5100 		return rc;
5101 
5102 	isec = sma->sem_perm.security;
5103 
5104 	ad.type = LSM_AUDIT_DATA_IPC;
5105 	ad.u.ipc_id = sma->sem_perm.key;
5106 
5107 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5108 			  SEM__CREATE, &ad);
5109 	if (rc) {
5110 		ipc_free_security(&sma->sem_perm);
5111 		return rc;
5112 	}
5113 	return 0;
5114 }
5115 
5116 static void selinux_sem_free_security(struct sem_array *sma)
5117 {
5118 	ipc_free_security(&sma->sem_perm);
5119 }
5120 
5121 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5122 {
5123 	struct ipc_security_struct *isec;
5124 	struct common_audit_data ad;
5125 	u32 sid = current_sid();
5126 
5127 	isec = sma->sem_perm.security;
5128 
5129 	ad.type = LSM_AUDIT_DATA_IPC;
5130 	ad.u.ipc_id = sma->sem_perm.key;
5131 
5132 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5133 			    SEM__ASSOCIATE, &ad);
5134 }
5135 
5136 /* Note, at this point, sma is locked down */
5137 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5138 {
5139 	int err;
5140 	u32 perms;
5141 
5142 	switch (cmd) {
5143 	case IPC_INFO:
5144 	case SEM_INFO:
5145 		/* No specific object, just general system-wide information. */
5146 		return task_has_system(current, SYSTEM__IPC_INFO);
5147 	case GETPID:
5148 	case GETNCNT:
5149 	case GETZCNT:
5150 		perms = SEM__GETATTR;
5151 		break;
5152 	case GETVAL:
5153 	case GETALL:
5154 		perms = SEM__READ;
5155 		break;
5156 	case SETVAL:
5157 	case SETALL:
5158 		perms = SEM__WRITE;
5159 		break;
5160 	case IPC_RMID:
5161 		perms = SEM__DESTROY;
5162 		break;
5163 	case IPC_SET:
5164 		perms = SEM__SETATTR;
5165 		break;
5166 	case IPC_STAT:
5167 	case SEM_STAT:
5168 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5169 		break;
5170 	default:
5171 		return 0;
5172 	}
5173 
5174 	err = ipc_has_perm(&sma->sem_perm, perms);
5175 	return err;
5176 }
5177 
5178 static int selinux_sem_semop(struct sem_array *sma,
5179 			     struct sembuf *sops, unsigned nsops, int alter)
5180 {
5181 	u32 perms;
5182 
5183 	if (alter)
5184 		perms = SEM__READ | SEM__WRITE;
5185 	else
5186 		perms = SEM__READ;
5187 
5188 	return ipc_has_perm(&sma->sem_perm, perms);
5189 }
5190 
5191 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5192 {
5193 	u32 av = 0;
5194 
5195 	av = 0;
5196 	if (flag & S_IRUGO)
5197 		av |= IPC__UNIX_READ;
5198 	if (flag & S_IWUGO)
5199 		av |= IPC__UNIX_WRITE;
5200 
5201 	if (av == 0)
5202 		return 0;
5203 
5204 	return ipc_has_perm(ipcp, av);
5205 }
5206 
5207 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5208 {
5209 	struct ipc_security_struct *isec = ipcp->security;
5210 	*secid = isec->sid;
5211 }
5212 
5213 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5214 {
5215 	if (inode)
5216 		inode_doinit_with_dentry(inode, dentry);
5217 }
5218 
5219 static int selinux_getprocattr(struct task_struct *p,
5220 			       char *name, char **value)
5221 {
5222 	const struct task_security_struct *__tsec;
5223 	u32 sid;
5224 	int error;
5225 	unsigned len;
5226 
5227 	if (current != p) {
5228 		error = current_has_perm(p, PROCESS__GETATTR);
5229 		if (error)
5230 			return error;
5231 	}
5232 
5233 	rcu_read_lock();
5234 	__tsec = __task_cred(p)->security;
5235 
5236 	if (!strcmp(name, "current"))
5237 		sid = __tsec->sid;
5238 	else if (!strcmp(name, "prev"))
5239 		sid = __tsec->osid;
5240 	else if (!strcmp(name, "exec"))
5241 		sid = __tsec->exec_sid;
5242 	else if (!strcmp(name, "fscreate"))
5243 		sid = __tsec->create_sid;
5244 	else if (!strcmp(name, "keycreate"))
5245 		sid = __tsec->keycreate_sid;
5246 	else if (!strcmp(name, "sockcreate"))
5247 		sid = __tsec->sockcreate_sid;
5248 	else
5249 		goto invalid;
5250 	rcu_read_unlock();
5251 
5252 	if (!sid)
5253 		return 0;
5254 
5255 	error = security_sid_to_context(sid, value, &len);
5256 	if (error)
5257 		return error;
5258 	return len;
5259 
5260 invalid:
5261 	rcu_read_unlock();
5262 	return -EINVAL;
5263 }
5264 
5265 static int selinux_setprocattr(struct task_struct *p,
5266 			       char *name, void *value, size_t size)
5267 {
5268 	struct task_security_struct *tsec;
5269 	struct task_struct *tracer;
5270 	struct cred *new;
5271 	u32 sid = 0, ptsid;
5272 	int error;
5273 	char *str = value;
5274 
5275 	if (current != p) {
5276 		/* SELinux only allows a process to change its own
5277 		   security attributes. */
5278 		return -EACCES;
5279 	}
5280 
5281 	/*
5282 	 * Basic control over ability to set these attributes at all.
5283 	 * current == p, but we'll pass them separately in case the
5284 	 * above restriction is ever removed.
5285 	 */
5286 	if (!strcmp(name, "exec"))
5287 		error = current_has_perm(p, PROCESS__SETEXEC);
5288 	else if (!strcmp(name, "fscreate"))
5289 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5290 	else if (!strcmp(name, "keycreate"))
5291 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5292 	else if (!strcmp(name, "sockcreate"))
5293 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5294 	else if (!strcmp(name, "current"))
5295 		error = current_has_perm(p, PROCESS__SETCURRENT);
5296 	else
5297 		error = -EINVAL;
5298 	if (error)
5299 		return error;
5300 
5301 	/* Obtain a SID for the context, if one was specified. */
5302 	if (size && str[1] && str[1] != '\n') {
5303 		if (str[size-1] == '\n') {
5304 			str[size-1] = 0;
5305 			size--;
5306 		}
5307 		error = security_context_to_sid(value, size, &sid);
5308 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5309 			if (!capable(CAP_MAC_ADMIN)) {
5310 				struct audit_buffer *ab;
5311 				size_t audit_size;
5312 
5313 				/* We strip a nul only if it is at the end, otherwise the
5314 				 * context contains a nul and we should audit that */
5315 				if (str[size - 1] == '\0')
5316 					audit_size = size - 1;
5317 				else
5318 					audit_size = size;
5319 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5320 				audit_log_format(ab, "op=fscreate invalid_context=");
5321 				audit_log_n_untrustedstring(ab, value, audit_size);
5322 				audit_log_end(ab);
5323 
5324 				return error;
5325 			}
5326 			error = security_context_to_sid_force(value, size,
5327 							      &sid);
5328 		}
5329 		if (error)
5330 			return error;
5331 	}
5332 
5333 	new = prepare_creds();
5334 	if (!new)
5335 		return -ENOMEM;
5336 
5337 	/* Permission checking based on the specified context is
5338 	   performed during the actual operation (execve,
5339 	   open/mkdir/...), when we know the full context of the
5340 	   operation.  See selinux_bprm_set_creds for the execve
5341 	   checks and may_create for the file creation checks. The
5342 	   operation will then fail if the context is not permitted. */
5343 	tsec = new->security;
5344 	if (!strcmp(name, "exec")) {
5345 		tsec->exec_sid = sid;
5346 	} else if (!strcmp(name, "fscreate")) {
5347 		tsec->create_sid = sid;
5348 	} else if (!strcmp(name, "keycreate")) {
5349 		error = may_create_key(sid, p);
5350 		if (error)
5351 			goto abort_change;
5352 		tsec->keycreate_sid = sid;
5353 	} else if (!strcmp(name, "sockcreate")) {
5354 		tsec->sockcreate_sid = sid;
5355 	} else if (!strcmp(name, "current")) {
5356 		error = -EINVAL;
5357 		if (sid == 0)
5358 			goto abort_change;
5359 
5360 		/* Only allow single threaded processes to change context */
5361 		error = -EPERM;
5362 		if (!current_is_single_threaded()) {
5363 			error = security_bounded_transition(tsec->sid, sid);
5364 			if (error)
5365 				goto abort_change;
5366 		}
5367 
5368 		/* Check permissions for the transition. */
5369 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5370 				     PROCESS__DYNTRANSITION, NULL);
5371 		if (error)
5372 			goto abort_change;
5373 
5374 		/* Check for ptracing, and update the task SID if ok.
5375 		   Otherwise, leave SID unchanged and fail. */
5376 		ptsid = 0;
5377 		task_lock(p);
5378 		tracer = ptrace_parent(p);
5379 		if (tracer)
5380 			ptsid = task_sid(tracer);
5381 		task_unlock(p);
5382 
5383 		if (tracer) {
5384 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5385 					     PROCESS__PTRACE, NULL);
5386 			if (error)
5387 				goto abort_change;
5388 		}
5389 
5390 		tsec->sid = sid;
5391 	} else {
5392 		error = -EINVAL;
5393 		goto abort_change;
5394 	}
5395 
5396 	commit_creds(new);
5397 	return size;
5398 
5399 abort_change:
5400 	abort_creds(new);
5401 	return error;
5402 }
5403 
5404 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5405 {
5406 	return security_sid_to_context(secid, secdata, seclen);
5407 }
5408 
5409 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5410 {
5411 	return security_context_to_sid(secdata, seclen, secid);
5412 }
5413 
5414 static void selinux_release_secctx(char *secdata, u32 seclen)
5415 {
5416 	kfree(secdata);
5417 }
5418 
5419 /*
5420  *	called with inode->i_mutex locked
5421  */
5422 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5423 {
5424 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5425 }
5426 
5427 /*
5428  *	called with inode->i_mutex locked
5429  */
5430 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5431 {
5432 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5433 }
5434 
5435 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5436 {
5437 	int len = 0;
5438 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5439 						ctx, true);
5440 	if (len < 0)
5441 		return len;
5442 	*ctxlen = len;
5443 	return 0;
5444 }
5445 #ifdef CONFIG_KEYS
5446 
5447 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5448 			     unsigned long flags)
5449 {
5450 	const struct task_security_struct *tsec;
5451 	struct key_security_struct *ksec;
5452 
5453 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5454 	if (!ksec)
5455 		return -ENOMEM;
5456 
5457 	tsec = cred->security;
5458 	if (tsec->keycreate_sid)
5459 		ksec->sid = tsec->keycreate_sid;
5460 	else
5461 		ksec->sid = tsec->sid;
5462 
5463 	k->security = ksec;
5464 	return 0;
5465 }
5466 
5467 static void selinux_key_free(struct key *k)
5468 {
5469 	struct key_security_struct *ksec = k->security;
5470 
5471 	k->security = NULL;
5472 	kfree(ksec);
5473 }
5474 
5475 static int selinux_key_permission(key_ref_t key_ref,
5476 				  const struct cred *cred,
5477 				  key_perm_t perm)
5478 {
5479 	struct key *key;
5480 	struct key_security_struct *ksec;
5481 	u32 sid;
5482 
5483 	/* if no specific permissions are requested, we skip the
5484 	   permission check. No serious, additional covert channels
5485 	   appear to be created. */
5486 	if (perm == 0)
5487 		return 0;
5488 
5489 	sid = cred_sid(cred);
5490 
5491 	key = key_ref_to_ptr(key_ref);
5492 	ksec = key->security;
5493 
5494 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5495 }
5496 
5497 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5498 {
5499 	struct key_security_struct *ksec = key->security;
5500 	char *context = NULL;
5501 	unsigned len;
5502 	int rc;
5503 
5504 	rc = security_sid_to_context(ksec->sid, &context, &len);
5505 	if (!rc)
5506 		rc = len;
5507 	*_buffer = context;
5508 	return rc;
5509 }
5510 
5511 #endif
5512 
5513 static struct security_operations selinux_ops = {
5514 	.name =				"selinux",
5515 
5516 	.ptrace_access_check =		selinux_ptrace_access_check,
5517 	.ptrace_traceme =		selinux_ptrace_traceme,
5518 	.capget =			selinux_capget,
5519 	.capset =			selinux_capset,
5520 	.capable =			selinux_capable,
5521 	.quotactl =			selinux_quotactl,
5522 	.quota_on =			selinux_quota_on,
5523 	.syslog =			selinux_syslog,
5524 	.vm_enough_memory =		selinux_vm_enough_memory,
5525 
5526 	.netlink_send =			selinux_netlink_send,
5527 
5528 	.bprm_set_creds =		selinux_bprm_set_creds,
5529 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5530 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5531 	.bprm_secureexec =		selinux_bprm_secureexec,
5532 
5533 	.sb_alloc_security =		selinux_sb_alloc_security,
5534 	.sb_free_security =		selinux_sb_free_security,
5535 	.sb_copy_data =			selinux_sb_copy_data,
5536 	.sb_remount =			selinux_sb_remount,
5537 	.sb_kern_mount =		selinux_sb_kern_mount,
5538 	.sb_show_options =		selinux_sb_show_options,
5539 	.sb_statfs =			selinux_sb_statfs,
5540 	.sb_mount =			selinux_mount,
5541 	.sb_umount =			selinux_umount,
5542 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5543 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5544 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5545 
5546 
5547 	.inode_alloc_security =		selinux_inode_alloc_security,
5548 	.inode_free_security =		selinux_inode_free_security,
5549 	.inode_init_security =		selinux_inode_init_security,
5550 	.inode_create =			selinux_inode_create,
5551 	.inode_link =			selinux_inode_link,
5552 	.inode_unlink =			selinux_inode_unlink,
5553 	.inode_symlink =		selinux_inode_symlink,
5554 	.inode_mkdir =			selinux_inode_mkdir,
5555 	.inode_rmdir =			selinux_inode_rmdir,
5556 	.inode_mknod =			selinux_inode_mknod,
5557 	.inode_rename =			selinux_inode_rename,
5558 	.inode_readlink =		selinux_inode_readlink,
5559 	.inode_follow_link =		selinux_inode_follow_link,
5560 	.inode_permission =		selinux_inode_permission,
5561 	.inode_setattr =		selinux_inode_setattr,
5562 	.inode_getattr =		selinux_inode_getattr,
5563 	.inode_setxattr =		selinux_inode_setxattr,
5564 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5565 	.inode_getxattr =		selinux_inode_getxattr,
5566 	.inode_listxattr =		selinux_inode_listxattr,
5567 	.inode_removexattr =		selinux_inode_removexattr,
5568 	.inode_getsecurity =		selinux_inode_getsecurity,
5569 	.inode_setsecurity =		selinux_inode_setsecurity,
5570 	.inode_listsecurity =		selinux_inode_listsecurity,
5571 	.inode_getsecid =		selinux_inode_getsecid,
5572 
5573 	.file_permission =		selinux_file_permission,
5574 	.file_alloc_security =		selinux_file_alloc_security,
5575 	.file_free_security =		selinux_file_free_security,
5576 	.file_ioctl =			selinux_file_ioctl,
5577 	.mmap_file =			selinux_mmap_file,
5578 	.mmap_addr =			selinux_mmap_addr,
5579 	.file_mprotect =		selinux_file_mprotect,
5580 	.file_lock =			selinux_file_lock,
5581 	.file_fcntl =			selinux_file_fcntl,
5582 	.file_set_fowner =		selinux_file_set_fowner,
5583 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5584 	.file_receive =			selinux_file_receive,
5585 
5586 	.file_open =			selinux_file_open,
5587 
5588 	.task_create =			selinux_task_create,
5589 	.cred_alloc_blank =		selinux_cred_alloc_blank,
5590 	.cred_free =			selinux_cred_free,
5591 	.cred_prepare =			selinux_cred_prepare,
5592 	.cred_transfer =		selinux_cred_transfer,
5593 	.kernel_act_as =		selinux_kernel_act_as,
5594 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5595 	.kernel_module_request =	selinux_kernel_module_request,
5596 	.task_setpgid =			selinux_task_setpgid,
5597 	.task_getpgid =			selinux_task_getpgid,
5598 	.task_getsid =			selinux_task_getsid,
5599 	.task_getsecid =		selinux_task_getsecid,
5600 	.task_setnice =			selinux_task_setnice,
5601 	.task_setioprio =		selinux_task_setioprio,
5602 	.task_getioprio =		selinux_task_getioprio,
5603 	.task_setrlimit =		selinux_task_setrlimit,
5604 	.task_setscheduler =		selinux_task_setscheduler,
5605 	.task_getscheduler =		selinux_task_getscheduler,
5606 	.task_movememory =		selinux_task_movememory,
5607 	.task_kill =			selinux_task_kill,
5608 	.task_wait =			selinux_task_wait,
5609 	.task_to_inode =		selinux_task_to_inode,
5610 
5611 	.ipc_permission =		selinux_ipc_permission,
5612 	.ipc_getsecid =			selinux_ipc_getsecid,
5613 
5614 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5615 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5616 
5617 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5618 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5619 	.msg_queue_associate =		selinux_msg_queue_associate,
5620 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5621 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5622 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5623 
5624 	.shm_alloc_security =		selinux_shm_alloc_security,
5625 	.shm_free_security =		selinux_shm_free_security,
5626 	.shm_associate =		selinux_shm_associate,
5627 	.shm_shmctl =			selinux_shm_shmctl,
5628 	.shm_shmat =			selinux_shm_shmat,
5629 
5630 	.sem_alloc_security =		selinux_sem_alloc_security,
5631 	.sem_free_security =		selinux_sem_free_security,
5632 	.sem_associate =		selinux_sem_associate,
5633 	.sem_semctl =			selinux_sem_semctl,
5634 	.sem_semop =			selinux_sem_semop,
5635 
5636 	.d_instantiate =		selinux_d_instantiate,
5637 
5638 	.getprocattr =			selinux_getprocattr,
5639 	.setprocattr =			selinux_setprocattr,
5640 
5641 	.secid_to_secctx =		selinux_secid_to_secctx,
5642 	.secctx_to_secid =		selinux_secctx_to_secid,
5643 	.release_secctx =		selinux_release_secctx,
5644 	.inode_notifysecctx =		selinux_inode_notifysecctx,
5645 	.inode_setsecctx =		selinux_inode_setsecctx,
5646 	.inode_getsecctx =		selinux_inode_getsecctx,
5647 
5648 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5649 	.unix_may_send =		selinux_socket_unix_may_send,
5650 
5651 	.socket_create =		selinux_socket_create,
5652 	.socket_post_create =		selinux_socket_post_create,
5653 	.socket_bind =			selinux_socket_bind,
5654 	.socket_connect =		selinux_socket_connect,
5655 	.socket_listen =		selinux_socket_listen,
5656 	.socket_accept =		selinux_socket_accept,
5657 	.socket_sendmsg =		selinux_socket_sendmsg,
5658 	.socket_recvmsg =		selinux_socket_recvmsg,
5659 	.socket_getsockname =		selinux_socket_getsockname,
5660 	.socket_getpeername =		selinux_socket_getpeername,
5661 	.socket_getsockopt =		selinux_socket_getsockopt,
5662 	.socket_setsockopt =		selinux_socket_setsockopt,
5663 	.socket_shutdown =		selinux_socket_shutdown,
5664 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5665 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5666 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5667 	.sk_alloc_security =		selinux_sk_alloc_security,
5668 	.sk_free_security =		selinux_sk_free_security,
5669 	.sk_clone_security =		selinux_sk_clone_security,
5670 	.sk_getsecid =			selinux_sk_getsecid,
5671 	.sock_graft =			selinux_sock_graft,
5672 	.inet_conn_request =		selinux_inet_conn_request,
5673 	.inet_csk_clone =		selinux_inet_csk_clone,
5674 	.inet_conn_established =	selinux_inet_conn_established,
5675 	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5676 	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5677 	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5678 	.req_classify_flow =		selinux_req_classify_flow,
5679 	.tun_dev_create =		selinux_tun_dev_create,
5680 	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5681 	.tun_dev_attach =		selinux_tun_dev_attach,
5682 
5683 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5684 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5685 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5686 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5687 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5688 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5689 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5690 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5691 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5692 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5693 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5694 #endif
5695 
5696 #ifdef CONFIG_KEYS
5697 	.key_alloc =			selinux_key_alloc,
5698 	.key_free =			selinux_key_free,
5699 	.key_permission =		selinux_key_permission,
5700 	.key_getsecurity =		selinux_key_getsecurity,
5701 #endif
5702 
5703 #ifdef CONFIG_AUDIT
5704 	.audit_rule_init =		selinux_audit_rule_init,
5705 	.audit_rule_known =		selinux_audit_rule_known,
5706 	.audit_rule_match =		selinux_audit_rule_match,
5707 	.audit_rule_free =		selinux_audit_rule_free,
5708 #endif
5709 };
5710 
5711 static __init int selinux_init(void)
5712 {
5713 	if (!security_module_enable(&selinux_ops)) {
5714 		selinux_enabled = 0;
5715 		return 0;
5716 	}
5717 
5718 	if (!selinux_enabled) {
5719 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5720 		return 0;
5721 	}
5722 
5723 	printk(KERN_INFO "SELinux:  Initializing.\n");
5724 
5725 	/* Set the security state for the initial task. */
5726 	cred_init_security();
5727 
5728 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5729 
5730 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5731 					    sizeof(struct inode_security_struct),
5732 					    0, SLAB_PANIC, NULL);
5733 	avc_init();
5734 
5735 	if (register_security(&selinux_ops))
5736 		panic("SELinux: Unable to register with kernel.\n");
5737 
5738 	if (selinux_enforcing)
5739 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5740 	else
5741 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5742 
5743 	return 0;
5744 }
5745 
5746 static void delayed_superblock_init(struct super_block *sb, void *unused)
5747 {
5748 	superblock_doinit(sb, NULL);
5749 }
5750 
5751 void selinux_complete_init(void)
5752 {
5753 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5754 
5755 	/* Set up any superblocks initialized prior to the policy load. */
5756 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5757 	iterate_supers(delayed_superblock_init, NULL);
5758 }
5759 
5760 /* SELinux requires early initialization in order to label
5761    all processes and objects when they are created. */
5762 security_initcall(selinux_init);
5763 
5764 #if defined(CONFIG_NETFILTER)
5765 
5766 static struct nf_hook_ops selinux_ipv4_ops[] = {
5767 	{
5768 		.hook =		selinux_ipv4_postroute,
5769 		.owner =	THIS_MODULE,
5770 		.pf =		NFPROTO_IPV4,
5771 		.hooknum =	NF_INET_POST_ROUTING,
5772 		.priority =	NF_IP_PRI_SELINUX_LAST,
5773 	},
5774 	{
5775 		.hook =		selinux_ipv4_forward,
5776 		.owner =	THIS_MODULE,
5777 		.pf =		NFPROTO_IPV4,
5778 		.hooknum =	NF_INET_FORWARD,
5779 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5780 	},
5781 	{
5782 		.hook =		selinux_ipv4_output,
5783 		.owner =	THIS_MODULE,
5784 		.pf =		NFPROTO_IPV4,
5785 		.hooknum =	NF_INET_LOCAL_OUT,
5786 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5787 	}
5788 };
5789 
5790 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5791 
5792 static struct nf_hook_ops selinux_ipv6_ops[] = {
5793 	{
5794 		.hook =		selinux_ipv6_postroute,
5795 		.owner =	THIS_MODULE,
5796 		.pf =		NFPROTO_IPV6,
5797 		.hooknum =	NF_INET_POST_ROUTING,
5798 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5799 	},
5800 	{
5801 		.hook =		selinux_ipv6_forward,
5802 		.owner =	THIS_MODULE,
5803 		.pf =		NFPROTO_IPV6,
5804 		.hooknum =	NF_INET_FORWARD,
5805 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5806 	}
5807 };
5808 
5809 #endif	/* IPV6 */
5810 
5811 static int __init selinux_nf_ip_init(void)
5812 {
5813 	int err = 0;
5814 
5815 	if (!selinux_enabled)
5816 		goto out;
5817 
5818 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5819 
5820 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5821 	if (err)
5822 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5823 
5824 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5825 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5826 	if (err)
5827 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5828 #endif	/* IPV6 */
5829 
5830 out:
5831 	return err;
5832 }
5833 
5834 __initcall(selinux_nf_ip_init);
5835 
5836 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5837 static void selinux_nf_ip_exit(void)
5838 {
5839 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5840 
5841 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5842 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5843 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5844 #endif	/* IPV6 */
5845 }
5846 #endif
5847 
5848 #else /* CONFIG_NETFILTER */
5849 
5850 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5851 #define selinux_nf_ip_exit()
5852 #endif
5853 
5854 #endif /* CONFIG_NETFILTER */
5855 
5856 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5857 static int selinux_disabled;
5858 
5859 int selinux_disable(void)
5860 {
5861 	if (ss_initialized) {
5862 		/* Not permitted after initial policy load. */
5863 		return -EINVAL;
5864 	}
5865 
5866 	if (selinux_disabled) {
5867 		/* Only do this once. */
5868 		return -EINVAL;
5869 	}
5870 
5871 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5872 
5873 	selinux_disabled = 1;
5874 	selinux_enabled = 0;
5875 
5876 	reset_security_ops();
5877 
5878 	/* Try to destroy the avc node cache */
5879 	avc_disable();
5880 
5881 	/* Unregister netfilter hooks. */
5882 	selinux_nf_ip_exit();
5883 
5884 	/* Unregister selinuxfs. */
5885 	exit_sel_fs();
5886 
5887 	return 0;
5888 }
5889 #endif
5890