1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * NSA Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/tracehook.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <linux/bpf.h> 89 #include <linux/kernfs.h> 90 #include <linux/stringhash.h> /* for hashlen_string() */ 91 #include <uapi/linux/mount.h> 92 #include <linux/fsnotify.h> 93 #include <linux/fanotify.h> 94 95 #include "avc.h" 96 #include "objsec.h" 97 #include "netif.h" 98 #include "netnode.h" 99 #include "netport.h" 100 #include "ibpkey.h" 101 #include "xfrm.h" 102 #include "netlabel.h" 103 #include "audit.h" 104 #include "avc_ss.h" 105 106 struct selinux_state selinux_state; 107 108 /* SECMARK reference count */ 109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 110 111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 112 static int selinux_enforcing_boot __initdata; 113 114 static int __init enforcing_setup(char *str) 115 { 116 unsigned long enforcing; 117 if (!kstrtoul(str, 0, &enforcing)) 118 selinux_enforcing_boot = enforcing ? 1 : 0; 119 return 1; 120 } 121 __setup("enforcing=", enforcing_setup); 122 #else 123 #define selinux_enforcing_boot 1 124 #endif 125 126 int selinux_enabled_boot __initdata = 1; 127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 128 static int __init selinux_enabled_setup(char *str) 129 { 130 unsigned long enabled; 131 if (!kstrtoul(str, 0, &enabled)) 132 selinux_enabled_boot = enabled ? 1 : 0; 133 return 1; 134 } 135 __setup("selinux=", selinux_enabled_setup); 136 #endif 137 138 static unsigned int selinux_checkreqprot_boot = 139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE; 140 141 static int __init checkreqprot_setup(char *str) 142 { 143 unsigned long checkreqprot; 144 145 if (!kstrtoul(str, 0, &checkreqprot)) 146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0; 147 return 1; 148 } 149 __setup("checkreqprot=", checkreqprot_setup); 150 151 /** 152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 153 * 154 * Description: 155 * This function checks the SECMARK reference counter to see if any SECMARK 156 * targets are currently configured, if the reference counter is greater than 157 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 158 * enabled, false (0) if SECMARK is disabled. If the always_check_network 159 * policy capability is enabled, SECMARK is always considered enabled. 160 * 161 */ 162 static int selinux_secmark_enabled(void) 163 { 164 return (selinux_policycap_alwaysnetwork() || 165 atomic_read(&selinux_secmark_refcount)); 166 } 167 168 /** 169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 170 * 171 * Description: 172 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 173 * (1) if any are enabled or false (0) if neither are enabled. If the 174 * always_check_network policy capability is enabled, peer labeling 175 * is always considered enabled. 176 * 177 */ 178 static int selinux_peerlbl_enabled(void) 179 { 180 return (selinux_policycap_alwaysnetwork() || 181 netlbl_enabled() || selinux_xfrm_enabled()); 182 } 183 184 static int selinux_netcache_avc_callback(u32 event) 185 { 186 if (event == AVC_CALLBACK_RESET) { 187 sel_netif_flush(); 188 sel_netnode_flush(); 189 sel_netport_flush(); 190 synchronize_net(); 191 } 192 return 0; 193 } 194 195 static int selinux_lsm_notifier_avc_callback(u32 event) 196 { 197 if (event == AVC_CALLBACK_RESET) { 198 sel_ib_pkey_flush(); 199 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 200 } 201 202 return 0; 203 } 204 205 /* 206 * initialise the security for the init task 207 */ 208 static void cred_init_security(void) 209 { 210 struct cred *cred = (struct cred *) current->real_cred; 211 struct task_security_struct *tsec; 212 213 tsec = selinux_cred(cred); 214 tsec->osid = tsec->sid = SECINITSID_KERNEL; 215 } 216 217 /* 218 * get the security ID of a set of credentials 219 */ 220 static inline u32 cred_sid(const struct cred *cred) 221 { 222 const struct task_security_struct *tsec; 223 224 tsec = selinux_cred(cred); 225 return tsec->sid; 226 } 227 228 /* 229 * get the objective security ID of a task 230 */ 231 static inline u32 task_sid(const struct task_struct *task) 232 { 233 u32 sid; 234 235 rcu_read_lock(); 236 sid = cred_sid(__task_cred(task)); 237 rcu_read_unlock(); 238 return sid; 239 } 240 241 /* Allocate and free functions for each kind of security blob. */ 242 243 static int inode_alloc_security(struct inode *inode) 244 { 245 struct inode_security_struct *isec = selinux_inode(inode); 246 u32 sid = current_sid(); 247 248 spin_lock_init(&isec->lock); 249 INIT_LIST_HEAD(&isec->list); 250 isec->inode = inode; 251 isec->sid = SECINITSID_UNLABELED; 252 isec->sclass = SECCLASS_FILE; 253 isec->task_sid = sid; 254 isec->initialized = LABEL_INVALID; 255 256 return 0; 257 } 258 259 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 260 261 /* 262 * Try reloading inode security labels that have been marked as invalid. The 263 * @may_sleep parameter indicates when sleeping and thus reloading labels is 264 * allowed; when set to false, returns -ECHILD when the label is 265 * invalid. The @dentry parameter should be set to a dentry of the inode. 266 */ 267 static int __inode_security_revalidate(struct inode *inode, 268 struct dentry *dentry, 269 bool may_sleep) 270 { 271 struct inode_security_struct *isec = selinux_inode(inode); 272 273 might_sleep_if(may_sleep); 274 275 if (selinux_initialized(&selinux_state) && 276 isec->initialized != LABEL_INITIALIZED) { 277 if (!may_sleep) 278 return -ECHILD; 279 280 /* 281 * Try reloading the inode security label. This will fail if 282 * @opt_dentry is NULL and no dentry for this inode can be 283 * found; in that case, continue using the old label. 284 */ 285 inode_doinit_with_dentry(inode, dentry); 286 } 287 return 0; 288 } 289 290 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 291 { 292 return selinux_inode(inode); 293 } 294 295 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 296 { 297 int error; 298 299 error = __inode_security_revalidate(inode, NULL, !rcu); 300 if (error) 301 return ERR_PTR(error); 302 return selinux_inode(inode); 303 } 304 305 /* 306 * Get the security label of an inode. 307 */ 308 static struct inode_security_struct *inode_security(struct inode *inode) 309 { 310 __inode_security_revalidate(inode, NULL, true); 311 return selinux_inode(inode); 312 } 313 314 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 315 { 316 struct inode *inode = d_backing_inode(dentry); 317 318 return selinux_inode(inode); 319 } 320 321 /* 322 * Get the security label of a dentry's backing inode. 323 */ 324 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 325 { 326 struct inode *inode = d_backing_inode(dentry); 327 328 __inode_security_revalidate(inode, dentry, true); 329 return selinux_inode(inode); 330 } 331 332 static void inode_free_security(struct inode *inode) 333 { 334 struct inode_security_struct *isec = selinux_inode(inode); 335 struct superblock_security_struct *sbsec; 336 337 if (!isec) 338 return; 339 sbsec = inode->i_sb->s_security; 340 /* 341 * As not all inode security structures are in a list, we check for 342 * empty list outside of the lock to make sure that we won't waste 343 * time taking a lock doing nothing. 344 * 345 * The list_del_init() function can be safely called more than once. 346 * It should not be possible for this function to be called with 347 * concurrent list_add(), but for better safety against future changes 348 * in the code, we use list_empty_careful() here. 349 */ 350 if (!list_empty_careful(&isec->list)) { 351 spin_lock(&sbsec->isec_lock); 352 list_del_init(&isec->list); 353 spin_unlock(&sbsec->isec_lock); 354 } 355 } 356 357 static int file_alloc_security(struct file *file) 358 { 359 struct file_security_struct *fsec = selinux_file(file); 360 u32 sid = current_sid(); 361 362 fsec->sid = sid; 363 fsec->fown_sid = sid; 364 365 return 0; 366 } 367 368 static int superblock_alloc_security(struct super_block *sb) 369 { 370 struct superblock_security_struct *sbsec; 371 372 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 373 if (!sbsec) 374 return -ENOMEM; 375 376 mutex_init(&sbsec->lock); 377 INIT_LIST_HEAD(&sbsec->isec_head); 378 spin_lock_init(&sbsec->isec_lock); 379 sbsec->sb = sb; 380 sbsec->sid = SECINITSID_UNLABELED; 381 sbsec->def_sid = SECINITSID_FILE; 382 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 383 sb->s_security = sbsec; 384 385 return 0; 386 } 387 388 static void superblock_free_security(struct super_block *sb) 389 { 390 struct superblock_security_struct *sbsec = sb->s_security; 391 sb->s_security = NULL; 392 kfree(sbsec); 393 } 394 395 struct selinux_mnt_opts { 396 const char *fscontext, *context, *rootcontext, *defcontext; 397 }; 398 399 static void selinux_free_mnt_opts(void *mnt_opts) 400 { 401 struct selinux_mnt_opts *opts = mnt_opts; 402 kfree(opts->fscontext); 403 kfree(opts->context); 404 kfree(opts->rootcontext); 405 kfree(opts->defcontext); 406 kfree(opts); 407 } 408 409 static inline int inode_doinit(struct inode *inode) 410 { 411 return inode_doinit_with_dentry(inode, NULL); 412 } 413 414 enum { 415 Opt_error = -1, 416 Opt_context = 0, 417 Opt_defcontext = 1, 418 Opt_fscontext = 2, 419 Opt_rootcontext = 3, 420 Opt_seclabel = 4, 421 }; 422 423 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 424 static struct { 425 const char *name; 426 int len; 427 int opt; 428 bool has_arg; 429 } tokens[] = { 430 A(context, true), 431 A(fscontext, true), 432 A(defcontext, true), 433 A(rootcontext, true), 434 A(seclabel, false), 435 }; 436 #undef A 437 438 static int match_opt_prefix(char *s, int l, char **arg) 439 { 440 int i; 441 442 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 443 size_t len = tokens[i].len; 444 if (len > l || memcmp(s, tokens[i].name, len)) 445 continue; 446 if (tokens[i].has_arg) { 447 if (len == l || s[len] != '=') 448 continue; 449 *arg = s + len + 1; 450 } else if (len != l) 451 continue; 452 return tokens[i].opt; 453 } 454 return Opt_error; 455 } 456 457 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 458 459 static int may_context_mount_sb_relabel(u32 sid, 460 struct superblock_security_struct *sbsec, 461 const struct cred *cred) 462 { 463 const struct task_security_struct *tsec = selinux_cred(cred); 464 int rc; 465 466 rc = avc_has_perm(&selinux_state, 467 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 468 FILESYSTEM__RELABELFROM, NULL); 469 if (rc) 470 return rc; 471 472 rc = avc_has_perm(&selinux_state, 473 tsec->sid, sid, SECCLASS_FILESYSTEM, 474 FILESYSTEM__RELABELTO, NULL); 475 return rc; 476 } 477 478 static int may_context_mount_inode_relabel(u32 sid, 479 struct superblock_security_struct *sbsec, 480 const struct cred *cred) 481 { 482 const struct task_security_struct *tsec = selinux_cred(cred); 483 int rc; 484 rc = avc_has_perm(&selinux_state, 485 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 486 FILESYSTEM__RELABELFROM, NULL); 487 if (rc) 488 return rc; 489 490 rc = avc_has_perm(&selinux_state, 491 sid, sbsec->sid, SECCLASS_FILESYSTEM, 492 FILESYSTEM__ASSOCIATE, NULL); 493 return rc; 494 } 495 496 static int selinux_is_genfs_special_handling(struct super_block *sb) 497 { 498 /* Special handling. Genfs but also in-core setxattr handler */ 499 return !strcmp(sb->s_type->name, "sysfs") || 500 !strcmp(sb->s_type->name, "pstore") || 501 !strcmp(sb->s_type->name, "debugfs") || 502 !strcmp(sb->s_type->name, "tracefs") || 503 !strcmp(sb->s_type->name, "rootfs") || 504 (selinux_policycap_cgroupseclabel() && 505 (!strcmp(sb->s_type->name, "cgroup") || 506 !strcmp(sb->s_type->name, "cgroup2"))); 507 } 508 509 static int selinux_is_sblabel_mnt(struct super_block *sb) 510 { 511 struct superblock_security_struct *sbsec = sb->s_security; 512 513 /* 514 * IMPORTANT: Double-check logic in this function when adding a new 515 * SECURITY_FS_USE_* definition! 516 */ 517 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 518 519 switch (sbsec->behavior) { 520 case SECURITY_FS_USE_XATTR: 521 case SECURITY_FS_USE_TRANS: 522 case SECURITY_FS_USE_TASK: 523 case SECURITY_FS_USE_NATIVE: 524 return 1; 525 526 case SECURITY_FS_USE_GENFS: 527 return selinux_is_genfs_special_handling(sb); 528 529 /* Never allow relabeling on context mounts */ 530 case SECURITY_FS_USE_MNTPOINT: 531 case SECURITY_FS_USE_NONE: 532 default: 533 return 0; 534 } 535 } 536 537 static int sb_finish_set_opts(struct super_block *sb) 538 { 539 struct superblock_security_struct *sbsec = sb->s_security; 540 struct dentry *root = sb->s_root; 541 struct inode *root_inode = d_backing_inode(root); 542 int rc = 0; 543 544 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 545 /* Make sure that the xattr handler exists and that no 546 error other than -ENODATA is returned by getxattr on 547 the root directory. -ENODATA is ok, as this may be 548 the first boot of the SELinux kernel before we have 549 assigned xattr values to the filesystem. */ 550 if (!(root_inode->i_opflags & IOP_XATTR)) { 551 pr_warn("SELinux: (dev %s, type %s) has no " 552 "xattr support\n", sb->s_id, sb->s_type->name); 553 rc = -EOPNOTSUPP; 554 goto out; 555 } 556 557 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 558 if (rc < 0 && rc != -ENODATA) { 559 if (rc == -EOPNOTSUPP) 560 pr_warn("SELinux: (dev %s, type " 561 "%s) has no security xattr handler\n", 562 sb->s_id, sb->s_type->name); 563 else 564 pr_warn("SELinux: (dev %s, type " 565 "%s) getxattr errno %d\n", sb->s_id, 566 sb->s_type->name, -rc); 567 goto out; 568 } 569 } 570 571 sbsec->flags |= SE_SBINITIALIZED; 572 573 /* 574 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 575 * leave the flag untouched because sb_clone_mnt_opts might be handing 576 * us a superblock that needs the flag to be cleared. 577 */ 578 if (selinux_is_sblabel_mnt(sb)) 579 sbsec->flags |= SBLABEL_MNT; 580 else 581 sbsec->flags &= ~SBLABEL_MNT; 582 583 /* Initialize the root inode. */ 584 rc = inode_doinit_with_dentry(root_inode, root); 585 586 /* Initialize any other inodes associated with the superblock, e.g. 587 inodes created prior to initial policy load or inodes created 588 during get_sb by a pseudo filesystem that directly 589 populates itself. */ 590 spin_lock(&sbsec->isec_lock); 591 while (!list_empty(&sbsec->isec_head)) { 592 struct inode_security_struct *isec = 593 list_first_entry(&sbsec->isec_head, 594 struct inode_security_struct, list); 595 struct inode *inode = isec->inode; 596 list_del_init(&isec->list); 597 spin_unlock(&sbsec->isec_lock); 598 inode = igrab(inode); 599 if (inode) { 600 if (!IS_PRIVATE(inode)) 601 inode_doinit(inode); 602 iput(inode); 603 } 604 spin_lock(&sbsec->isec_lock); 605 } 606 spin_unlock(&sbsec->isec_lock); 607 out: 608 return rc; 609 } 610 611 static int bad_option(struct superblock_security_struct *sbsec, char flag, 612 u32 old_sid, u32 new_sid) 613 { 614 char mnt_flags = sbsec->flags & SE_MNTMASK; 615 616 /* check if the old mount command had the same options */ 617 if (sbsec->flags & SE_SBINITIALIZED) 618 if (!(sbsec->flags & flag) || 619 (old_sid != new_sid)) 620 return 1; 621 622 /* check if we were passed the same options twice, 623 * aka someone passed context=a,context=b 624 */ 625 if (!(sbsec->flags & SE_SBINITIALIZED)) 626 if (mnt_flags & flag) 627 return 1; 628 return 0; 629 } 630 631 static int parse_sid(struct super_block *sb, const char *s, u32 *sid) 632 { 633 int rc = security_context_str_to_sid(&selinux_state, s, 634 sid, GFP_KERNEL); 635 if (rc) 636 pr_warn("SELinux: security_context_str_to_sid" 637 "(%s) failed for (dev %s, type %s) errno=%d\n", 638 s, sb->s_id, sb->s_type->name, rc); 639 return rc; 640 } 641 642 /* 643 * Allow filesystems with binary mount data to explicitly set mount point 644 * labeling information. 645 */ 646 static int selinux_set_mnt_opts(struct super_block *sb, 647 void *mnt_opts, 648 unsigned long kern_flags, 649 unsigned long *set_kern_flags) 650 { 651 const struct cred *cred = current_cred(); 652 struct superblock_security_struct *sbsec = sb->s_security; 653 struct dentry *root = sbsec->sb->s_root; 654 struct selinux_mnt_opts *opts = mnt_opts; 655 struct inode_security_struct *root_isec; 656 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 657 u32 defcontext_sid = 0; 658 int rc = 0; 659 660 mutex_lock(&sbsec->lock); 661 662 if (!selinux_initialized(&selinux_state)) { 663 if (!opts) { 664 /* Defer initialization until selinux_complete_init, 665 after the initial policy is loaded and the security 666 server is ready to handle calls. */ 667 goto out; 668 } 669 rc = -EINVAL; 670 pr_warn("SELinux: Unable to set superblock options " 671 "before the security server is initialized\n"); 672 goto out; 673 } 674 if (kern_flags && !set_kern_flags) { 675 /* Specifying internal flags without providing a place to 676 * place the results is not allowed */ 677 rc = -EINVAL; 678 goto out; 679 } 680 681 /* 682 * Binary mount data FS will come through this function twice. Once 683 * from an explicit call and once from the generic calls from the vfs. 684 * Since the generic VFS calls will not contain any security mount data 685 * we need to skip the double mount verification. 686 * 687 * This does open a hole in which we will not notice if the first 688 * mount using this sb set explict options and a second mount using 689 * this sb does not set any security options. (The first options 690 * will be used for both mounts) 691 */ 692 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 693 && !opts) 694 goto out; 695 696 root_isec = backing_inode_security_novalidate(root); 697 698 /* 699 * parse the mount options, check if they are valid sids. 700 * also check if someone is trying to mount the same sb more 701 * than once with different security options. 702 */ 703 if (opts) { 704 if (opts->fscontext) { 705 rc = parse_sid(sb, opts->fscontext, &fscontext_sid); 706 if (rc) 707 goto out; 708 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 709 fscontext_sid)) 710 goto out_double_mount; 711 sbsec->flags |= FSCONTEXT_MNT; 712 } 713 if (opts->context) { 714 rc = parse_sid(sb, opts->context, &context_sid); 715 if (rc) 716 goto out; 717 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 718 context_sid)) 719 goto out_double_mount; 720 sbsec->flags |= CONTEXT_MNT; 721 } 722 if (opts->rootcontext) { 723 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid); 724 if (rc) 725 goto out; 726 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 727 rootcontext_sid)) 728 goto out_double_mount; 729 sbsec->flags |= ROOTCONTEXT_MNT; 730 } 731 if (opts->defcontext) { 732 rc = parse_sid(sb, opts->defcontext, &defcontext_sid); 733 if (rc) 734 goto out; 735 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 736 defcontext_sid)) 737 goto out_double_mount; 738 sbsec->flags |= DEFCONTEXT_MNT; 739 } 740 } 741 742 if (sbsec->flags & SE_SBINITIALIZED) { 743 /* previously mounted with options, but not on this attempt? */ 744 if ((sbsec->flags & SE_MNTMASK) && !opts) 745 goto out_double_mount; 746 rc = 0; 747 goto out; 748 } 749 750 if (strcmp(sb->s_type->name, "proc") == 0) 751 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 752 753 if (!strcmp(sb->s_type->name, "debugfs") || 754 !strcmp(sb->s_type->name, "tracefs") || 755 !strcmp(sb->s_type->name, "binderfs") || 756 !strcmp(sb->s_type->name, "pstore")) 757 sbsec->flags |= SE_SBGENFS; 758 759 if (!strcmp(sb->s_type->name, "sysfs") || 760 !strcmp(sb->s_type->name, "cgroup") || 761 !strcmp(sb->s_type->name, "cgroup2")) 762 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 763 764 if (!sbsec->behavior) { 765 /* 766 * Determine the labeling behavior to use for this 767 * filesystem type. 768 */ 769 rc = security_fs_use(&selinux_state, sb); 770 if (rc) { 771 pr_warn("%s: security_fs_use(%s) returned %d\n", 772 __func__, sb->s_type->name, rc); 773 goto out; 774 } 775 } 776 777 /* 778 * If this is a user namespace mount and the filesystem type is not 779 * explicitly whitelisted, then no contexts are allowed on the command 780 * line and security labels must be ignored. 781 */ 782 if (sb->s_user_ns != &init_user_ns && 783 strcmp(sb->s_type->name, "tmpfs") && 784 strcmp(sb->s_type->name, "ramfs") && 785 strcmp(sb->s_type->name, "devpts")) { 786 if (context_sid || fscontext_sid || rootcontext_sid || 787 defcontext_sid) { 788 rc = -EACCES; 789 goto out; 790 } 791 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 792 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 793 rc = security_transition_sid(&selinux_state, 794 current_sid(), 795 current_sid(), 796 SECCLASS_FILE, NULL, 797 &sbsec->mntpoint_sid); 798 if (rc) 799 goto out; 800 } 801 goto out_set_opts; 802 } 803 804 /* sets the context of the superblock for the fs being mounted. */ 805 if (fscontext_sid) { 806 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 807 if (rc) 808 goto out; 809 810 sbsec->sid = fscontext_sid; 811 } 812 813 /* 814 * Switch to using mount point labeling behavior. 815 * sets the label used on all file below the mountpoint, and will set 816 * the superblock context if not already set. 817 */ 818 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 819 sbsec->behavior = SECURITY_FS_USE_NATIVE; 820 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 821 } 822 823 if (context_sid) { 824 if (!fscontext_sid) { 825 rc = may_context_mount_sb_relabel(context_sid, sbsec, 826 cred); 827 if (rc) 828 goto out; 829 sbsec->sid = context_sid; 830 } else { 831 rc = may_context_mount_inode_relabel(context_sid, sbsec, 832 cred); 833 if (rc) 834 goto out; 835 } 836 if (!rootcontext_sid) 837 rootcontext_sid = context_sid; 838 839 sbsec->mntpoint_sid = context_sid; 840 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 841 } 842 843 if (rootcontext_sid) { 844 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 845 cred); 846 if (rc) 847 goto out; 848 849 root_isec->sid = rootcontext_sid; 850 root_isec->initialized = LABEL_INITIALIZED; 851 } 852 853 if (defcontext_sid) { 854 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 855 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 856 rc = -EINVAL; 857 pr_warn("SELinux: defcontext option is " 858 "invalid for this filesystem type\n"); 859 goto out; 860 } 861 862 if (defcontext_sid != sbsec->def_sid) { 863 rc = may_context_mount_inode_relabel(defcontext_sid, 864 sbsec, cred); 865 if (rc) 866 goto out; 867 } 868 869 sbsec->def_sid = defcontext_sid; 870 } 871 872 out_set_opts: 873 rc = sb_finish_set_opts(sb); 874 out: 875 mutex_unlock(&sbsec->lock); 876 return rc; 877 out_double_mount: 878 rc = -EINVAL; 879 pr_warn("SELinux: mount invalid. Same superblock, different " 880 "security settings for (dev %s, type %s)\n", sb->s_id, 881 sb->s_type->name); 882 goto out; 883 } 884 885 static int selinux_cmp_sb_context(const struct super_block *oldsb, 886 const struct super_block *newsb) 887 { 888 struct superblock_security_struct *old = oldsb->s_security; 889 struct superblock_security_struct *new = newsb->s_security; 890 char oldflags = old->flags & SE_MNTMASK; 891 char newflags = new->flags & SE_MNTMASK; 892 893 if (oldflags != newflags) 894 goto mismatch; 895 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 896 goto mismatch; 897 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 898 goto mismatch; 899 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 900 goto mismatch; 901 if (oldflags & ROOTCONTEXT_MNT) { 902 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 903 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 904 if (oldroot->sid != newroot->sid) 905 goto mismatch; 906 } 907 return 0; 908 mismatch: 909 pr_warn("SELinux: mount invalid. Same superblock, " 910 "different security settings for (dev %s, " 911 "type %s)\n", newsb->s_id, newsb->s_type->name); 912 return -EBUSY; 913 } 914 915 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 916 struct super_block *newsb, 917 unsigned long kern_flags, 918 unsigned long *set_kern_flags) 919 { 920 int rc = 0; 921 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 922 struct superblock_security_struct *newsbsec = newsb->s_security; 923 924 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 925 int set_context = (oldsbsec->flags & CONTEXT_MNT); 926 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 927 928 /* 929 * if the parent was able to be mounted it clearly had no special lsm 930 * mount options. thus we can safely deal with this superblock later 931 */ 932 if (!selinux_initialized(&selinux_state)) 933 return 0; 934 935 /* 936 * Specifying internal flags without providing a place to 937 * place the results is not allowed. 938 */ 939 if (kern_flags && !set_kern_flags) 940 return -EINVAL; 941 942 /* how can we clone if the old one wasn't set up?? */ 943 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 944 945 /* if fs is reusing a sb, make sure that the contexts match */ 946 if (newsbsec->flags & SE_SBINITIALIZED) { 947 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 948 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 949 return selinux_cmp_sb_context(oldsb, newsb); 950 } 951 952 mutex_lock(&newsbsec->lock); 953 954 newsbsec->flags = oldsbsec->flags; 955 956 newsbsec->sid = oldsbsec->sid; 957 newsbsec->def_sid = oldsbsec->def_sid; 958 newsbsec->behavior = oldsbsec->behavior; 959 960 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 961 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 962 rc = security_fs_use(&selinux_state, newsb); 963 if (rc) 964 goto out; 965 } 966 967 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 968 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 969 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 970 } 971 972 if (set_context) { 973 u32 sid = oldsbsec->mntpoint_sid; 974 975 if (!set_fscontext) 976 newsbsec->sid = sid; 977 if (!set_rootcontext) { 978 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 979 newisec->sid = sid; 980 } 981 newsbsec->mntpoint_sid = sid; 982 } 983 if (set_rootcontext) { 984 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 985 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 986 987 newisec->sid = oldisec->sid; 988 } 989 990 sb_finish_set_opts(newsb); 991 out: 992 mutex_unlock(&newsbsec->lock); 993 return rc; 994 } 995 996 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 997 { 998 struct selinux_mnt_opts *opts = *mnt_opts; 999 1000 if (token == Opt_seclabel) /* eaten and completely ignored */ 1001 return 0; 1002 1003 if (!opts) { 1004 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 1005 if (!opts) 1006 return -ENOMEM; 1007 *mnt_opts = opts; 1008 } 1009 if (!s) 1010 return -ENOMEM; 1011 switch (token) { 1012 case Opt_context: 1013 if (opts->context || opts->defcontext) 1014 goto Einval; 1015 opts->context = s; 1016 break; 1017 case Opt_fscontext: 1018 if (opts->fscontext) 1019 goto Einval; 1020 opts->fscontext = s; 1021 break; 1022 case Opt_rootcontext: 1023 if (opts->rootcontext) 1024 goto Einval; 1025 opts->rootcontext = s; 1026 break; 1027 case Opt_defcontext: 1028 if (opts->context || opts->defcontext) 1029 goto Einval; 1030 opts->defcontext = s; 1031 break; 1032 } 1033 return 0; 1034 Einval: 1035 pr_warn(SEL_MOUNT_FAIL_MSG); 1036 return -EINVAL; 1037 } 1038 1039 static int selinux_add_mnt_opt(const char *option, const char *val, int len, 1040 void **mnt_opts) 1041 { 1042 int token = Opt_error; 1043 int rc, i; 1044 1045 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 1046 if (strcmp(option, tokens[i].name) == 0) { 1047 token = tokens[i].opt; 1048 break; 1049 } 1050 } 1051 1052 if (token == Opt_error) 1053 return -EINVAL; 1054 1055 if (token != Opt_seclabel) { 1056 val = kmemdup_nul(val, len, GFP_KERNEL); 1057 if (!val) { 1058 rc = -ENOMEM; 1059 goto free_opt; 1060 } 1061 } 1062 rc = selinux_add_opt(token, val, mnt_opts); 1063 if (unlikely(rc)) { 1064 kfree(val); 1065 goto free_opt; 1066 } 1067 return rc; 1068 1069 free_opt: 1070 if (*mnt_opts) { 1071 selinux_free_mnt_opts(*mnt_opts); 1072 *mnt_opts = NULL; 1073 } 1074 return rc; 1075 } 1076 1077 static int show_sid(struct seq_file *m, u32 sid) 1078 { 1079 char *context = NULL; 1080 u32 len; 1081 int rc; 1082 1083 rc = security_sid_to_context(&selinux_state, sid, 1084 &context, &len); 1085 if (!rc) { 1086 bool has_comma = context && strchr(context, ','); 1087 1088 seq_putc(m, '='); 1089 if (has_comma) 1090 seq_putc(m, '\"'); 1091 seq_escape(m, context, "\"\n\\"); 1092 if (has_comma) 1093 seq_putc(m, '\"'); 1094 } 1095 kfree(context); 1096 return rc; 1097 } 1098 1099 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1100 { 1101 struct superblock_security_struct *sbsec = sb->s_security; 1102 int rc; 1103 1104 if (!(sbsec->flags & SE_SBINITIALIZED)) 1105 return 0; 1106 1107 if (!selinux_initialized(&selinux_state)) 1108 return 0; 1109 1110 if (sbsec->flags & FSCONTEXT_MNT) { 1111 seq_putc(m, ','); 1112 seq_puts(m, FSCONTEXT_STR); 1113 rc = show_sid(m, sbsec->sid); 1114 if (rc) 1115 return rc; 1116 } 1117 if (sbsec->flags & CONTEXT_MNT) { 1118 seq_putc(m, ','); 1119 seq_puts(m, CONTEXT_STR); 1120 rc = show_sid(m, sbsec->mntpoint_sid); 1121 if (rc) 1122 return rc; 1123 } 1124 if (sbsec->flags & DEFCONTEXT_MNT) { 1125 seq_putc(m, ','); 1126 seq_puts(m, DEFCONTEXT_STR); 1127 rc = show_sid(m, sbsec->def_sid); 1128 if (rc) 1129 return rc; 1130 } 1131 if (sbsec->flags & ROOTCONTEXT_MNT) { 1132 struct dentry *root = sbsec->sb->s_root; 1133 struct inode_security_struct *isec = backing_inode_security(root); 1134 seq_putc(m, ','); 1135 seq_puts(m, ROOTCONTEXT_STR); 1136 rc = show_sid(m, isec->sid); 1137 if (rc) 1138 return rc; 1139 } 1140 if (sbsec->flags & SBLABEL_MNT) { 1141 seq_putc(m, ','); 1142 seq_puts(m, SECLABEL_STR); 1143 } 1144 return 0; 1145 } 1146 1147 static inline u16 inode_mode_to_security_class(umode_t mode) 1148 { 1149 switch (mode & S_IFMT) { 1150 case S_IFSOCK: 1151 return SECCLASS_SOCK_FILE; 1152 case S_IFLNK: 1153 return SECCLASS_LNK_FILE; 1154 case S_IFREG: 1155 return SECCLASS_FILE; 1156 case S_IFBLK: 1157 return SECCLASS_BLK_FILE; 1158 case S_IFDIR: 1159 return SECCLASS_DIR; 1160 case S_IFCHR: 1161 return SECCLASS_CHR_FILE; 1162 case S_IFIFO: 1163 return SECCLASS_FIFO_FILE; 1164 1165 } 1166 1167 return SECCLASS_FILE; 1168 } 1169 1170 static inline int default_protocol_stream(int protocol) 1171 { 1172 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1173 } 1174 1175 static inline int default_protocol_dgram(int protocol) 1176 { 1177 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1178 } 1179 1180 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1181 { 1182 int extsockclass = selinux_policycap_extsockclass(); 1183 1184 switch (family) { 1185 case PF_UNIX: 1186 switch (type) { 1187 case SOCK_STREAM: 1188 case SOCK_SEQPACKET: 1189 return SECCLASS_UNIX_STREAM_SOCKET; 1190 case SOCK_DGRAM: 1191 case SOCK_RAW: 1192 return SECCLASS_UNIX_DGRAM_SOCKET; 1193 } 1194 break; 1195 case PF_INET: 1196 case PF_INET6: 1197 switch (type) { 1198 case SOCK_STREAM: 1199 case SOCK_SEQPACKET: 1200 if (default_protocol_stream(protocol)) 1201 return SECCLASS_TCP_SOCKET; 1202 else if (extsockclass && protocol == IPPROTO_SCTP) 1203 return SECCLASS_SCTP_SOCKET; 1204 else 1205 return SECCLASS_RAWIP_SOCKET; 1206 case SOCK_DGRAM: 1207 if (default_protocol_dgram(protocol)) 1208 return SECCLASS_UDP_SOCKET; 1209 else if (extsockclass && (protocol == IPPROTO_ICMP || 1210 protocol == IPPROTO_ICMPV6)) 1211 return SECCLASS_ICMP_SOCKET; 1212 else 1213 return SECCLASS_RAWIP_SOCKET; 1214 case SOCK_DCCP: 1215 return SECCLASS_DCCP_SOCKET; 1216 default: 1217 return SECCLASS_RAWIP_SOCKET; 1218 } 1219 break; 1220 case PF_NETLINK: 1221 switch (protocol) { 1222 case NETLINK_ROUTE: 1223 return SECCLASS_NETLINK_ROUTE_SOCKET; 1224 case NETLINK_SOCK_DIAG: 1225 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1226 case NETLINK_NFLOG: 1227 return SECCLASS_NETLINK_NFLOG_SOCKET; 1228 case NETLINK_XFRM: 1229 return SECCLASS_NETLINK_XFRM_SOCKET; 1230 case NETLINK_SELINUX: 1231 return SECCLASS_NETLINK_SELINUX_SOCKET; 1232 case NETLINK_ISCSI: 1233 return SECCLASS_NETLINK_ISCSI_SOCKET; 1234 case NETLINK_AUDIT: 1235 return SECCLASS_NETLINK_AUDIT_SOCKET; 1236 case NETLINK_FIB_LOOKUP: 1237 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1238 case NETLINK_CONNECTOR: 1239 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1240 case NETLINK_NETFILTER: 1241 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1242 case NETLINK_DNRTMSG: 1243 return SECCLASS_NETLINK_DNRT_SOCKET; 1244 case NETLINK_KOBJECT_UEVENT: 1245 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1246 case NETLINK_GENERIC: 1247 return SECCLASS_NETLINK_GENERIC_SOCKET; 1248 case NETLINK_SCSITRANSPORT: 1249 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1250 case NETLINK_RDMA: 1251 return SECCLASS_NETLINK_RDMA_SOCKET; 1252 case NETLINK_CRYPTO: 1253 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1254 default: 1255 return SECCLASS_NETLINK_SOCKET; 1256 } 1257 case PF_PACKET: 1258 return SECCLASS_PACKET_SOCKET; 1259 case PF_KEY: 1260 return SECCLASS_KEY_SOCKET; 1261 case PF_APPLETALK: 1262 return SECCLASS_APPLETALK_SOCKET; 1263 } 1264 1265 if (extsockclass) { 1266 switch (family) { 1267 case PF_AX25: 1268 return SECCLASS_AX25_SOCKET; 1269 case PF_IPX: 1270 return SECCLASS_IPX_SOCKET; 1271 case PF_NETROM: 1272 return SECCLASS_NETROM_SOCKET; 1273 case PF_ATMPVC: 1274 return SECCLASS_ATMPVC_SOCKET; 1275 case PF_X25: 1276 return SECCLASS_X25_SOCKET; 1277 case PF_ROSE: 1278 return SECCLASS_ROSE_SOCKET; 1279 case PF_DECnet: 1280 return SECCLASS_DECNET_SOCKET; 1281 case PF_ATMSVC: 1282 return SECCLASS_ATMSVC_SOCKET; 1283 case PF_RDS: 1284 return SECCLASS_RDS_SOCKET; 1285 case PF_IRDA: 1286 return SECCLASS_IRDA_SOCKET; 1287 case PF_PPPOX: 1288 return SECCLASS_PPPOX_SOCKET; 1289 case PF_LLC: 1290 return SECCLASS_LLC_SOCKET; 1291 case PF_CAN: 1292 return SECCLASS_CAN_SOCKET; 1293 case PF_TIPC: 1294 return SECCLASS_TIPC_SOCKET; 1295 case PF_BLUETOOTH: 1296 return SECCLASS_BLUETOOTH_SOCKET; 1297 case PF_IUCV: 1298 return SECCLASS_IUCV_SOCKET; 1299 case PF_RXRPC: 1300 return SECCLASS_RXRPC_SOCKET; 1301 case PF_ISDN: 1302 return SECCLASS_ISDN_SOCKET; 1303 case PF_PHONET: 1304 return SECCLASS_PHONET_SOCKET; 1305 case PF_IEEE802154: 1306 return SECCLASS_IEEE802154_SOCKET; 1307 case PF_CAIF: 1308 return SECCLASS_CAIF_SOCKET; 1309 case PF_ALG: 1310 return SECCLASS_ALG_SOCKET; 1311 case PF_NFC: 1312 return SECCLASS_NFC_SOCKET; 1313 case PF_VSOCK: 1314 return SECCLASS_VSOCK_SOCKET; 1315 case PF_KCM: 1316 return SECCLASS_KCM_SOCKET; 1317 case PF_QIPCRTR: 1318 return SECCLASS_QIPCRTR_SOCKET; 1319 case PF_SMC: 1320 return SECCLASS_SMC_SOCKET; 1321 case PF_XDP: 1322 return SECCLASS_XDP_SOCKET; 1323 #if PF_MAX > 45 1324 #error New address family defined, please update this function. 1325 #endif 1326 } 1327 } 1328 1329 return SECCLASS_SOCKET; 1330 } 1331 1332 static int selinux_genfs_get_sid(struct dentry *dentry, 1333 u16 tclass, 1334 u16 flags, 1335 u32 *sid) 1336 { 1337 int rc; 1338 struct super_block *sb = dentry->d_sb; 1339 char *buffer, *path; 1340 1341 buffer = (char *)__get_free_page(GFP_KERNEL); 1342 if (!buffer) 1343 return -ENOMEM; 1344 1345 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1346 if (IS_ERR(path)) 1347 rc = PTR_ERR(path); 1348 else { 1349 if (flags & SE_SBPROC) { 1350 /* each process gets a /proc/PID/ entry. Strip off the 1351 * PID part to get a valid selinux labeling. 1352 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1353 while (path[1] >= '0' && path[1] <= '9') { 1354 path[1] = '/'; 1355 path++; 1356 } 1357 } 1358 rc = security_genfs_sid(&selinux_state, sb->s_type->name, 1359 path, tclass, sid); 1360 if (rc == -ENOENT) { 1361 /* No match in policy, mark as unlabeled. */ 1362 *sid = SECINITSID_UNLABELED; 1363 rc = 0; 1364 } 1365 } 1366 free_page((unsigned long)buffer); 1367 return rc; 1368 } 1369 1370 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1371 u32 def_sid, u32 *sid) 1372 { 1373 #define INITCONTEXTLEN 255 1374 char *context; 1375 unsigned int len; 1376 int rc; 1377 1378 len = INITCONTEXTLEN; 1379 context = kmalloc(len + 1, GFP_NOFS); 1380 if (!context) 1381 return -ENOMEM; 1382 1383 context[len] = '\0'; 1384 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1385 if (rc == -ERANGE) { 1386 kfree(context); 1387 1388 /* Need a larger buffer. Query for the right size. */ 1389 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1390 if (rc < 0) 1391 return rc; 1392 1393 len = rc; 1394 context = kmalloc(len + 1, GFP_NOFS); 1395 if (!context) 1396 return -ENOMEM; 1397 1398 context[len] = '\0'; 1399 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1400 context, len); 1401 } 1402 if (rc < 0) { 1403 kfree(context); 1404 if (rc != -ENODATA) { 1405 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1406 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1407 return rc; 1408 } 1409 *sid = def_sid; 1410 return 0; 1411 } 1412 1413 rc = security_context_to_sid_default(&selinux_state, context, rc, sid, 1414 def_sid, GFP_NOFS); 1415 if (rc) { 1416 char *dev = inode->i_sb->s_id; 1417 unsigned long ino = inode->i_ino; 1418 1419 if (rc == -EINVAL) { 1420 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1421 ino, dev, context); 1422 } else { 1423 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1424 __func__, context, -rc, dev, ino); 1425 } 1426 } 1427 kfree(context); 1428 return 0; 1429 } 1430 1431 /* The inode's security attributes must be initialized before first use. */ 1432 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1433 { 1434 struct superblock_security_struct *sbsec = NULL; 1435 struct inode_security_struct *isec = selinux_inode(inode); 1436 u32 task_sid, sid = 0; 1437 u16 sclass; 1438 struct dentry *dentry; 1439 int rc = 0; 1440 1441 if (isec->initialized == LABEL_INITIALIZED) 1442 return 0; 1443 1444 spin_lock(&isec->lock); 1445 if (isec->initialized == LABEL_INITIALIZED) 1446 goto out_unlock; 1447 1448 if (isec->sclass == SECCLASS_FILE) 1449 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1450 1451 sbsec = inode->i_sb->s_security; 1452 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1453 /* Defer initialization until selinux_complete_init, 1454 after the initial policy is loaded and the security 1455 server is ready to handle calls. */ 1456 spin_lock(&sbsec->isec_lock); 1457 if (list_empty(&isec->list)) 1458 list_add(&isec->list, &sbsec->isec_head); 1459 spin_unlock(&sbsec->isec_lock); 1460 goto out_unlock; 1461 } 1462 1463 sclass = isec->sclass; 1464 task_sid = isec->task_sid; 1465 sid = isec->sid; 1466 isec->initialized = LABEL_PENDING; 1467 spin_unlock(&isec->lock); 1468 1469 switch (sbsec->behavior) { 1470 case SECURITY_FS_USE_NATIVE: 1471 break; 1472 case SECURITY_FS_USE_XATTR: 1473 if (!(inode->i_opflags & IOP_XATTR)) { 1474 sid = sbsec->def_sid; 1475 break; 1476 } 1477 /* Need a dentry, since the xattr API requires one. 1478 Life would be simpler if we could just pass the inode. */ 1479 if (opt_dentry) { 1480 /* Called from d_instantiate or d_splice_alias. */ 1481 dentry = dget(opt_dentry); 1482 } else { 1483 /* 1484 * Called from selinux_complete_init, try to find a dentry. 1485 * Some filesystems really want a connected one, so try 1486 * that first. We could split SECURITY_FS_USE_XATTR in 1487 * two, depending upon that... 1488 */ 1489 dentry = d_find_alias(inode); 1490 if (!dentry) 1491 dentry = d_find_any_alias(inode); 1492 } 1493 if (!dentry) { 1494 /* 1495 * this is can be hit on boot when a file is accessed 1496 * before the policy is loaded. When we load policy we 1497 * may find inodes that have no dentry on the 1498 * sbsec->isec_head list. No reason to complain as these 1499 * will get fixed up the next time we go through 1500 * inode_doinit with a dentry, before these inodes could 1501 * be used again by userspace. 1502 */ 1503 goto out; 1504 } 1505 1506 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1507 &sid); 1508 dput(dentry); 1509 if (rc) 1510 goto out; 1511 break; 1512 case SECURITY_FS_USE_TASK: 1513 sid = task_sid; 1514 break; 1515 case SECURITY_FS_USE_TRANS: 1516 /* Default to the fs SID. */ 1517 sid = sbsec->sid; 1518 1519 /* Try to obtain a transition SID. */ 1520 rc = security_transition_sid(&selinux_state, task_sid, sid, 1521 sclass, NULL, &sid); 1522 if (rc) 1523 goto out; 1524 break; 1525 case SECURITY_FS_USE_MNTPOINT: 1526 sid = sbsec->mntpoint_sid; 1527 break; 1528 default: 1529 /* Default to the fs superblock SID. */ 1530 sid = sbsec->sid; 1531 1532 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) { 1533 /* We must have a dentry to determine the label on 1534 * procfs inodes */ 1535 if (opt_dentry) { 1536 /* Called from d_instantiate or 1537 * d_splice_alias. */ 1538 dentry = dget(opt_dentry); 1539 } else { 1540 /* Called from selinux_complete_init, try to 1541 * find a dentry. Some filesystems really want 1542 * a connected one, so try that first. 1543 */ 1544 dentry = d_find_alias(inode); 1545 if (!dentry) 1546 dentry = d_find_any_alias(inode); 1547 } 1548 /* 1549 * This can be hit on boot when a file is accessed 1550 * before the policy is loaded. When we load policy we 1551 * may find inodes that have no dentry on the 1552 * sbsec->isec_head list. No reason to complain as 1553 * these will get fixed up the next time we go through 1554 * inode_doinit() with a dentry, before these inodes 1555 * could be used again by userspace. 1556 */ 1557 if (!dentry) 1558 goto out; 1559 rc = selinux_genfs_get_sid(dentry, sclass, 1560 sbsec->flags, &sid); 1561 if (rc) { 1562 dput(dentry); 1563 goto out; 1564 } 1565 1566 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1567 (inode->i_opflags & IOP_XATTR)) { 1568 rc = inode_doinit_use_xattr(inode, dentry, 1569 sid, &sid); 1570 if (rc) { 1571 dput(dentry); 1572 goto out; 1573 } 1574 } 1575 dput(dentry); 1576 } 1577 break; 1578 } 1579 1580 out: 1581 spin_lock(&isec->lock); 1582 if (isec->initialized == LABEL_PENDING) { 1583 if (!sid || rc) { 1584 isec->initialized = LABEL_INVALID; 1585 goto out_unlock; 1586 } 1587 1588 isec->initialized = LABEL_INITIALIZED; 1589 isec->sid = sid; 1590 } 1591 1592 out_unlock: 1593 spin_unlock(&isec->lock); 1594 return rc; 1595 } 1596 1597 /* Convert a Linux signal to an access vector. */ 1598 static inline u32 signal_to_av(int sig) 1599 { 1600 u32 perm = 0; 1601 1602 switch (sig) { 1603 case SIGCHLD: 1604 /* Commonly granted from child to parent. */ 1605 perm = PROCESS__SIGCHLD; 1606 break; 1607 case SIGKILL: 1608 /* Cannot be caught or ignored */ 1609 perm = PROCESS__SIGKILL; 1610 break; 1611 case SIGSTOP: 1612 /* Cannot be caught or ignored */ 1613 perm = PROCESS__SIGSTOP; 1614 break; 1615 default: 1616 /* All other signals. */ 1617 perm = PROCESS__SIGNAL; 1618 break; 1619 } 1620 1621 return perm; 1622 } 1623 1624 #if CAP_LAST_CAP > 63 1625 #error Fix SELinux to handle capabilities > 63. 1626 #endif 1627 1628 /* Check whether a task is allowed to use a capability. */ 1629 static int cred_has_capability(const struct cred *cred, 1630 int cap, unsigned int opts, bool initns) 1631 { 1632 struct common_audit_data ad; 1633 struct av_decision avd; 1634 u16 sclass; 1635 u32 sid = cred_sid(cred); 1636 u32 av = CAP_TO_MASK(cap); 1637 int rc; 1638 1639 ad.type = LSM_AUDIT_DATA_CAP; 1640 ad.u.cap = cap; 1641 1642 switch (CAP_TO_INDEX(cap)) { 1643 case 0: 1644 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1645 break; 1646 case 1: 1647 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1648 break; 1649 default: 1650 pr_err("SELinux: out of range capability %d\n", cap); 1651 BUG(); 1652 return -EINVAL; 1653 } 1654 1655 rc = avc_has_perm_noaudit(&selinux_state, 1656 sid, sid, sclass, av, 0, &avd); 1657 if (!(opts & CAP_OPT_NOAUDIT)) { 1658 int rc2 = avc_audit(&selinux_state, 1659 sid, sid, sclass, av, &avd, rc, &ad, 0); 1660 if (rc2) 1661 return rc2; 1662 } 1663 return rc; 1664 } 1665 1666 /* Check whether a task has a particular permission to an inode. 1667 The 'adp' parameter is optional and allows other audit 1668 data to be passed (e.g. the dentry). */ 1669 static int inode_has_perm(const struct cred *cred, 1670 struct inode *inode, 1671 u32 perms, 1672 struct common_audit_data *adp) 1673 { 1674 struct inode_security_struct *isec; 1675 u32 sid; 1676 1677 validate_creds(cred); 1678 1679 if (unlikely(IS_PRIVATE(inode))) 1680 return 0; 1681 1682 sid = cred_sid(cred); 1683 isec = selinux_inode(inode); 1684 1685 return avc_has_perm(&selinux_state, 1686 sid, isec->sid, isec->sclass, perms, adp); 1687 } 1688 1689 /* Same as inode_has_perm, but pass explicit audit data containing 1690 the dentry to help the auditing code to more easily generate the 1691 pathname if needed. */ 1692 static inline int dentry_has_perm(const struct cred *cred, 1693 struct dentry *dentry, 1694 u32 av) 1695 { 1696 struct inode *inode = d_backing_inode(dentry); 1697 struct common_audit_data ad; 1698 1699 ad.type = LSM_AUDIT_DATA_DENTRY; 1700 ad.u.dentry = dentry; 1701 __inode_security_revalidate(inode, dentry, true); 1702 return inode_has_perm(cred, inode, av, &ad); 1703 } 1704 1705 /* Same as inode_has_perm, but pass explicit audit data containing 1706 the path to help the auditing code to more easily generate the 1707 pathname if needed. */ 1708 static inline int path_has_perm(const struct cred *cred, 1709 const struct path *path, 1710 u32 av) 1711 { 1712 struct inode *inode = d_backing_inode(path->dentry); 1713 struct common_audit_data ad; 1714 1715 ad.type = LSM_AUDIT_DATA_PATH; 1716 ad.u.path = *path; 1717 __inode_security_revalidate(inode, path->dentry, true); 1718 return inode_has_perm(cred, inode, av, &ad); 1719 } 1720 1721 /* Same as path_has_perm, but uses the inode from the file struct. */ 1722 static inline int file_path_has_perm(const struct cred *cred, 1723 struct file *file, 1724 u32 av) 1725 { 1726 struct common_audit_data ad; 1727 1728 ad.type = LSM_AUDIT_DATA_FILE; 1729 ad.u.file = file; 1730 return inode_has_perm(cred, file_inode(file), av, &ad); 1731 } 1732 1733 #ifdef CONFIG_BPF_SYSCALL 1734 static int bpf_fd_pass(struct file *file, u32 sid); 1735 #endif 1736 1737 /* Check whether a task can use an open file descriptor to 1738 access an inode in a given way. Check access to the 1739 descriptor itself, and then use dentry_has_perm to 1740 check a particular permission to the file. 1741 Access to the descriptor is implicitly granted if it 1742 has the same SID as the process. If av is zero, then 1743 access to the file is not checked, e.g. for cases 1744 where only the descriptor is affected like seek. */ 1745 static int file_has_perm(const struct cred *cred, 1746 struct file *file, 1747 u32 av) 1748 { 1749 struct file_security_struct *fsec = selinux_file(file); 1750 struct inode *inode = file_inode(file); 1751 struct common_audit_data ad; 1752 u32 sid = cred_sid(cred); 1753 int rc; 1754 1755 ad.type = LSM_AUDIT_DATA_FILE; 1756 ad.u.file = file; 1757 1758 if (sid != fsec->sid) { 1759 rc = avc_has_perm(&selinux_state, 1760 sid, fsec->sid, 1761 SECCLASS_FD, 1762 FD__USE, 1763 &ad); 1764 if (rc) 1765 goto out; 1766 } 1767 1768 #ifdef CONFIG_BPF_SYSCALL 1769 rc = bpf_fd_pass(file, cred_sid(cred)); 1770 if (rc) 1771 return rc; 1772 #endif 1773 1774 /* av is zero if only checking access to the descriptor. */ 1775 rc = 0; 1776 if (av) 1777 rc = inode_has_perm(cred, inode, av, &ad); 1778 1779 out: 1780 return rc; 1781 } 1782 1783 /* 1784 * Determine the label for an inode that might be unioned. 1785 */ 1786 static int 1787 selinux_determine_inode_label(const struct task_security_struct *tsec, 1788 struct inode *dir, 1789 const struct qstr *name, u16 tclass, 1790 u32 *_new_isid) 1791 { 1792 const struct superblock_security_struct *sbsec = dir->i_sb->s_security; 1793 1794 if ((sbsec->flags & SE_SBINITIALIZED) && 1795 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1796 *_new_isid = sbsec->mntpoint_sid; 1797 } else if ((sbsec->flags & SBLABEL_MNT) && 1798 tsec->create_sid) { 1799 *_new_isid = tsec->create_sid; 1800 } else { 1801 const struct inode_security_struct *dsec = inode_security(dir); 1802 return security_transition_sid(&selinux_state, tsec->sid, 1803 dsec->sid, tclass, 1804 name, _new_isid); 1805 } 1806 1807 return 0; 1808 } 1809 1810 /* Check whether a task can create a file. */ 1811 static int may_create(struct inode *dir, 1812 struct dentry *dentry, 1813 u16 tclass) 1814 { 1815 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1816 struct inode_security_struct *dsec; 1817 struct superblock_security_struct *sbsec; 1818 u32 sid, newsid; 1819 struct common_audit_data ad; 1820 int rc; 1821 1822 dsec = inode_security(dir); 1823 sbsec = dir->i_sb->s_security; 1824 1825 sid = tsec->sid; 1826 1827 ad.type = LSM_AUDIT_DATA_DENTRY; 1828 ad.u.dentry = dentry; 1829 1830 rc = avc_has_perm(&selinux_state, 1831 sid, dsec->sid, SECCLASS_DIR, 1832 DIR__ADD_NAME | DIR__SEARCH, 1833 &ad); 1834 if (rc) 1835 return rc; 1836 1837 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1838 &newsid); 1839 if (rc) 1840 return rc; 1841 1842 rc = avc_has_perm(&selinux_state, 1843 sid, newsid, tclass, FILE__CREATE, &ad); 1844 if (rc) 1845 return rc; 1846 1847 return avc_has_perm(&selinux_state, 1848 newsid, sbsec->sid, 1849 SECCLASS_FILESYSTEM, 1850 FILESYSTEM__ASSOCIATE, &ad); 1851 } 1852 1853 #define MAY_LINK 0 1854 #define MAY_UNLINK 1 1855 #define MAY_RMDIR 2 1856 1857 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1858 static int may_link(struct inode *dir, 1859 struct dentry *dentry, 1860 int kind) 1861 1862 { 1863 struct inode_security_struct *dsec, *isec; 1864 struct common_audit_data ad; 1865 u32 sid = current_sid(); 1866 u32 av; 1867 int rc; 1868 1869 dsec = inode_security(dir); 1870 isec = backing_inode_security(dentry); 1871 1872 ad.type = LSM_AUDIT_DATA_DENTRY; 1873 ad.u.dentry = dentry; 1874 1875 av = DIR__SEARCH; 1876 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1877 rc = avc_has_perm(&selinux_state, 1878 sid, dsec->sid, SECCLASS_DIR, av, &ad); 1879 if (rc) 1880 return rc; 1881 1882 switch (kind) { 1883 case MAY_LINK: 1884 av = FILE__LINK; 1885 break; 1886 case MAY_UNLINK: 1887 av = FILE__UNLINK; 1888 break; 1889 case MAY_RMDIR: 1890 av = DIR__RMDIR; 1891 break; 1892 default: 1893 pr_warn("SELinux: %s: unrecognized kind %d\n", 1894 __func__, kind); 1895 return 0; 1896 } 1897 1898 rc = avc_has_perm(&selinux_state, 1899 sid, isec->sid, isec->sclass, av, &ad); 1900 return rc; 1901 } 1902 1903 static inline int may_rename(struct inode *old_dir, 1904 struct dentry *old_dentry, 1905 struct inode *new_dir, 1906 struct dentry *new_dentry) 1907 { 1908 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1909 struct common_audit_data ad; 1910 u32 sid = current_sid(); 1911 u32 av; 1912 int old_is_dir, new_is_dir; 1913 int rc; 1914 1915 old_dsec = inode_security(old_dir); 1916 old_isec = backing_inode_security(old_dentry); 1917 old_is_dir = d_is_dir(old_dentry); 1918 new_dsec = inode_security(new_dir); 1919 1920 ad.type = LSM_AUDIT_DATA_DENTRY; 1921 1922 ad.u.dentry = old_dentry; 1923 rc = avc_has_perm(&selinux_state, 1924 sid, old_dsec->sid, SECCLASS_DIR, 1925 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1926 if (rc) 1927 return rc; 1928 rc = avc_has_perm(&selinux_state, 1929 sid, old_isec->sid, 1930 old_isec->sclass, FILE__RENAME, &ad); 1931 if (rc) 1932 return rc; 1933 if (old_is_dir && new_dir != old_dir) { 1934 rc = avc_has_perm(&selinux_state, 1935 sid, old_isec->sid, 1936 old_isec->sclass, DIR__REPARENT, &ad); 1937 if (rc) 1938 return rc; 1939 } 1940 1941 ad.u.dentry = new_dentry; 1942 av = DIR__ADD_NAME | DIR__SEARCH; 1943 if (d_is_positive(new_dentry)) 1944 av |= DIR__REMOVE_NAME; 1945 rc = avc_has_perm(&selinux_state, 1946 sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1947 if (rc) 1948 return rc; 1949 if (d_is_positive(new_dentry)) { 1950 new_isec = backing_inode_security(new_dentry); 1951 new_is_dir = d_is_dir(new_dentry); 1952 rc = avc_has_perm(&selinux_state, 1953 sid, new_isec->sid, 1954 new_isec->sclass, 1955 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1956 if (rc) 1957 return rc; 1958 } 1959 1960 return 0; 1961 } 1962 1963 /* Check whether a task can perform a filesystem operation. */ 1964 static int superblock_has_perm(const struct cred *cred, 1965 struct super_block *sb, 1966 u32 perms, 1967 struct common_audit_data *ad) 1968 { 1969 struct superblock_security_struct *sbsec; 1970 u32 sid = cred_sid(cred); 1971 1972 sbsec = sb->s_security; 1973 return avc_has_perm(&selinux_state, 1974 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1975 } 1976 1977 /* Convert a Linux mode and permission mask to an access vector. */ 1978 static inline u32 file_mask_to_av(int mode, int mask) 1979 { 1980 u32 av = 0; 1981 1982 if (!S_ISDIR(mode)) { 1983 if (mask & MAY_EXEC) 1984 av |= FILE__EXECUTE; 1985 if (mask & MAY_READ) 1986 av |= FILE__READ; 1987 1988 if (mask & MAY_APPEND) 1989 av |= FILE__APPEND; 1990 else if (mask & MAY_WRITE) 1991 av |= FILE__WRITE; 1992 1993 } else { 1994 if (mask & MAY_EXEC) 1995 av |= DIR__SEARCH; 1996 if (mask & MAY_WRITE) 1997 av |= DIR__WRITE; 1998 if (mask & MAY_READ) 1999 av |= DIR__READ; 2000 } 2001 2002 return av; 2003 } 2004 2005 /* Convert a Linux file to an access vector. */ 2006 static inline u32 file_to_av(struct file *file) 2007 { 2008 u32 av = 0; 2009 2010 if (file->f_mode & FMODE_READ) 2011 av |= FILE__READ; 2012 if (file->f_mode & FMODE_WRITE) { 2013 if (file->f_flags & O_APPEND) 2014 av |= FILE__APPEND; 2015 else 2016 av |= FILE__WRITE; 2017 } 2018 if (!av) { 2019 /* 2020 * Special file opened with flags 3 for ioctl-only use. 2021 */ 2022 av = FILE__IOCTL; 2023 } 2024 2025 return av; 2026 } 2027 2028 /* 2029 * Convert a file to an access vector and include the correct open 2030 * open permission. 2031 */ 2032 static inline u32 open_file_to_av(struct file *file) 2033 { 2034 u32 av = file_to_av(file); 2035 struct inode *inode = file_inode(file); 2036 2037 if (selinux_policycap_openperm() && 2038 inode->i_sb->s_magic != SOCKFS_MAGIC) 2039 av |= FILE__OPEN; 2040 2041 return av; 2042 } 2043 2044 /* Hook functions begin here. */ 2045 2046 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 2047 { 2048 u32 mysid = current_sid(); 2049 u32 mgrsid = task_sid(mgr); 2050 2051 return avc_has_perm(&selinux_state, 2052 mysid, mgrsid, SECCLASS_BINDER, 2053 BINDER__SET_CONTEXT_MGR, NULL); 2054 } 2055 2056 static int selinux_binder_transaction(struct task_struct *from, 2057 struct task_struct *to) 2058 { 2059 u32 mysid = current_sid(); 2060 u32 fromsid = task_sid(from); 2061 u32 tosid = task_sid(to); 2062 int rc; 2063 2064 if (mysid != fromsid) { 2065 rc = avc_has_perm(&selinux_state, 2066 mysid, fromsid, SECCLASS_BINDER, 2067 BINDER__IMPERSONATE, NULL); 2068 if (rc) 2069 return rc; 2070 } 2071 2072 return avc_has_perm(&selinux_state, 2073 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 2074 NULL); 2075 } 2076 2077 static int selinux_binder_transfer_binder(struct task_struct *from, 2078 struct task_struct *to) 2079 { 2080 u32 fromsid = task_sid(from); 2081 u32 tosid = task_sid(to); 2082 2083 return avc_has_perm(&selinux_state, 2084 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 2085 NULL); 2086 } 2087 2088 static int selinux_binder_transfer_file(struct task_struct *from, 2089 struct task_struct *to, 2090 struct file *file) 2091 { 2092 u32 sid = task_sid(to); 2093 struct file_security_struct *fsec = selinux_file(file); 2094 struct dentry *dentry = file->f_path.dentry; 2095 struct inode_security_struct *isec; 2096 struct common_audit_data ad; 2097 int rc; 2098 2099 ad.type = LSM_AUDIT_DATA_PATH; 2100 ad.u.path = file->f_path; 2101 2102 if (sid != fsec->sid) { 2103 rc = avc_has_perm(&selinux_state, 2104 sid, fsec->sid, 2105 SECCLASS_FD, 2106 FD__USE, 2107 &ad); 2108 if (rc) 2109 return rc; 2110 } 2111 2112 #ifdef CONFIG_BPF_SYSCALL 2113 rc = bpf_fd_pass(file, sid); 2114 if (rc) 2115 return rc; 2116 #endif 2117 2118 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2119 return 0; 2120 2121 isec = backing_inode_security(dentry); 2122 return avc_has_perm(&selinux_state, 2123 sid, isec->sid, isec->sclass, file_to_av(file), 2124 &ad); 2125 } 2126 2127 static int selinux_ptrace_access_check(struct task_struct *child, 2128 unsigned int mode) 2129 { 2130 u32 sid = current_sid(); 2131 u32 csid = task_sid(child); 2132 2133 if (mode & PTRACE_MODE_READ) 2134 return avc_has_perm(&selinux_state, 2135 sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2136 2137 return avc_has_perm(&selinux_state, 2138 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2139 } 2140 2141 static int selinux_ptrace_traceme(struct task_struct *parent) 2142 { 2143 return avc_has_perm(&selinux_state, 2144 task_sid(parent), current_sid(), SECCLASS_PROCESS, 2145 PROCESS__PTRACE, NULL); 2146 } 2147 2148 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2149 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2150 { 2151 return avc_has_perm(&selinux_state, 2152 current_sid(), task_sid(target), SECCLASS_PROCESS, 2153 PROCESS__GETCAP, NULL); 2154 } 2155 2156 static int selinux_capset(struct cred *new, const struct cred *old, 2157 const kernel_cap_t *effective, 2158 const kernel_cap_t *inheritable, 2159 const kernel_cap_t *permitted) 2160 { 2161 return avc_has_perm(&selinux_state, 2162 cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2163 PROCESS__SETCAP, NULL); 2164 } 2165 2166 /* 2167 * (This comment used to live with the selinux_task_setuid hook, 2168 * which was removed). 2169 * 2170 * Since setuid only affects the current process, and since the SELinux 2171 * controls are not based on the Linux identity attributes, SELinux does not 2172 * need to control this operation. However, SELinux does control the use of 2173 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2174 */ 2175 2176 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2177 int cap, unsigned int opts) 2178 { 2179 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2180 } 2181 2182 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2183 { 2184 const struct cred *cred = current_cred(); 2185 int rc = 0; 2186 2187 if (!sb) 2188 return 0; 2189 2190 switch (cmds) { 2191 case Q_SYNC: 2192 case Q_QUOTAON: 2193 case Q_QUOTAOFF: 2194 case Q_SETINFO: 2195 case Q_SETQUOTA: 2196 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2197 break; 2198 case Q_GETFMT: 2199 case Q_GETINFO: 2200 case Q_GETQUOTA: 2201 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2202 break; 2203 default: 2204 rc = 0; /* let the kernel handle invalid cmds */ 2205 break; 2206 } 2207 return rc; 2208 } 2209 2210 static int selinux_quota_on(struct dentry *dentry) 2211 { 2212 const struct cred *cred = current_cred(); 2213 2214 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2215 } 2216 2217 static int selinux_syslog(int type) 2218 { 2219 switch (type) { 2220 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2221 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2222 return avc_has_perm(&selinux_state, 2223 current_sid(), SECINITSID_KERNEL, 2224 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2225 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2226 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2227 /* Set level of messages printed to console */ 2228 case SYSLOG_ACTION_CONSOLE_LEVEL: 2229 return avc_has_perm(&selinux_state, 2230 current_sid(), SECINITSID_KERNEL, 2231 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2232 NULL); 2233 } 2234 /* All other syslog types */ 2235 return avc_has_perm(&selinux_state, 2236 current_sid(), SECINITSID_KERNEL, 2237 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2238 } 2239 2240 /* 2241 * Check that a process has enough memory to allocate a new virtual 2242 * mapping. 0 means there is enough memory for the allocation to 2243 * succeed and -ENOMEM implies there is not. 2244 * 2245 * Do not audit the selinux permission check, as this is applied to all 2246 * processes that allocate mappings. 2247 */ 2248 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2249 { 2250 int rc, cap_sys_admin = 0; 2251 2252 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2253 CAP_OPT_NOAUDIT, true); 2254 if (rc == 0) 2255 cap_sys_admin = 1; 2256 2257 return cap_sys_admin; 2258 } 2259 2260 /* binprm security operations */ 2261 2262 static u32 ptrace_parent_sid(void) 2263 { 2264 u32 sid = 0; 2265 struct task_struct *tracer; 2266 2267 rcu_read_lock(); 2268 tracer = ptrace_parent(current); 2269 if (tracer) 2270 sid = task_sid(tracer); 2271 rcu_read_unlock(); 2272 2273 return sid; 2274 } 2275 2276 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2277 const struct task_security_struct *old_tsec, 2278 const struct task_security_struct *new_tsec) 2279 { 2280 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2281 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2282 int rc; 2283 u32 av; 2284 2285 if (!nnp && !nosuid) 2286 return 0; /* neither NNP nor nosuid */ 2287 2288 if (new_tsec->sid == old_tsec->sid) 2289 return 0; /* No change in credentials */ 2290 2291 /* 2292 * If the policy enables the nnp_nosuid_transition policy capability, 2293 * then we permit transitions under NNP or nosuid if the 2294 * policy allows the corresponding permission between 2295 * the old and new contexts. 2296 */ 2297 if (selinux_policycap_nnp_nosuid_transition()) { 2298 av = 0; 2299 if (nnp) 2300 av |= PROCESS2__NNP_TRANSITION; 2301 if (nosuid) 2302 av |= PROCESS2__NOSUID_TRANSITION; 2303 rc = avc_has_perm(&selinux_state, 2304 old_tsec->sid, new_tsec->sid, 2305 SECCLASS_PROCESS2, av, NULL); 2306 if (!rc) 2307 return 0; 2308 } 2309 2310 /* 2311 * We also permit NNP or nosuid transitions to bounded SIDs, 2312 * i.e. SIDs that are guaranteed to only be allowed a subset 2313 * of the permissions of the current SID. 2314 */ 2315 rc = security_bounded_transition(&selinux_state, old_tsec->sid, 2316 new_tsec->sid); 2317 if (!rc) 2318 return 0; 2319 2320 /* 2321 * On failure, preserve the errno values for NNP vs nosuid. 2322 * NNP: Operation not permitted for caller. 2323 * nosuid: Permission denied to file. 2324 */ 2325 if (nnp) 2326 return -EPERM; 2327 return -EACCES; 2328 } 2329 2330 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2331 { 2332 const struct task_security_struct *old_tsec; 2333 struct task_security_struct *new_tsec; 2334 struct inode_security_struct *isec; 2335 struct common_audit_data ad; 2336 struct inode *inode = file_inode(bprm->file); 2337 int rc; 2338 2339 /* SELinux context only depends on initial program or script and not 2340 * the script interpreter */ 2341 if (bprm->called_set_creds) 2342 return 0; 2343 2344 old_tsec = selinux_cred(current_cred()); 2345 new_tsec = selinux_cred(bprm->cred); 2346 isec = inode_security(inode); 2347 2348 /* Default to the current task SID. */ 2349 new_tsec->sid = old_tsec->sid; 2350 new_tsec->osid = old_tsec->sid; 2351 2352 /* Reset fs, key, and sock SIDs on execve. */ 2353 new_tsec->create_sid = 0; 2354 new_tsec->keycreate_sid = 0; 2355 new_tsec->sockcreate_sid = 0; 2356 2357 if (old_tsec->exec_sid) { 2358 new_tsec->sid = old_tsec->exec_sid; 2359 /* Reset exec SID on execve. */ 2360 new_tsec->exec_sid = 0; 2361 2362 /* Fail on NNP or nosuid if not an allowed transition. */ 2363 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2364 if (rc) 2365 return rc; 2366 } else { 2367 /* Check for a default transition on this program. */ 2368 rc = security_transition_sid(&selinux_state, old_tsec->sid, 2369 isec->sid, SECCLASS_PROCESS, NULL, 2370 &new_tsec->sid); 2371 if (rc) 2372 return rc; 2373 2374 /* 2375 * Fallback to old SID on NNP or nosuid if not an allowed 2376 * transition. 2377 */ 2378 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2379 if (rc) 2380 new_tsec->sid = old_tsec->sid; 2381 } 2382 2383 ad.type = LSM_AUDIT_DATA_FILE; 2384 ad.u.file = bprm->file; 2385 2386 if (new_tsec->sid == old_tsec->sid) { 2387 rc = avc_has_perm(&selinux_state, 2388 old_tsec->sid, isec->sid, 2389 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2390 if (rc) 2391 return rc; 2392 } else { 2393 /* Check permissions for the transition. */ 2394 rc = avc_has_perm(&selinux_state, 2395 old_tsec->sid, new_tsec->sid, 2396 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2397 if (rc) 2398 return rc; 2399 2400 rc = avc_has_perm(&selinux_state, 2401 new_tsec->sid, isec->sid, 2402 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2403 if (rc) 2404 return rc; 2405 2406 /* Check for shared state */ 2407 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2408 rc = avc_has_perm(&selinux_state, 2409 old_tsec->sid, new_tsec->sid, 2410 SECCLASS_PROCESS, PROCESS__SHARE, 2411 NULL); 2412 if (rc) 2413 return -EPERM; 2414 } 2415 2416 /* Make sure that anyone attempting to ptrace over a task that 2417 * changes its SID has the appropriate permit */ 2418 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2419 u32 ptsid = ptrace_parent_sid(); 2420 if (ptsid != 0) { 2421 rc = avc_has_perm(&selinux_state, 2422 ptsid, new_tsec->sid, 2423 SECCLASS_PROCESS, 2424 PROCESS__PTRACE, NULL); 2425 if (rc) 2426 return -EPERM; 2427 } 2428 } 2429 2430 /* Clear any possibly unsafe personality bits on exec: */ 2431 bprm->per_clear |= PER_CLEAR_ON_SETID; 2432 2433 /* Enable secure mode for SIDs transitions unless 2434 the noatsecure permission is granted between 2435 the two SIDs, i.e. ahp returns 0. */ 2436 rc = avc_has_perm(&selinux_state, 2437 old_tsec->sid, new_tsec->sid, 2438 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2439 NULL); 2440 bprm->secureexec |= !!rc; 2441 } 2442 2443 return 0; 2444 } 2445 2446 static int match_file(const void *p, struct file *file, unsigned fd) 2447 { 2448 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2449 } 2450 2451 /* Derived from fs/exec.c:flush_old_files. */ 2452 static inline void flush_unauthorized_files(const struct cred *cred, 2453 struct files_struct *files) 2454 { 2455 struct file *file, *devnull = NULL; 2456 struct tty_struct *tty; 2457 int drop_tty = 0; 2458 unsigned n; 2459 2460 tty = get_current_tty(); 2461 if (tty) { 2462 spin_lock(&tty->files_lock); 2463 if (!list_empty(&tty->tty_files)) { 2464 struct tty_file_private *file_priv; 2465 2466 /* Revalidate access to controlling tty. 2467 Use file_path_has_perm on the tty path directly 2468 rather than using file_has_perm, as this particular 2469 open file may belong to another process and we are 2470 only interested in the inode-based check here. */ 2471 file_priv = list_first_entry(&tty->tty_files, 2472 struct tty_file_private, list); 2473 file = file_priv->file; 2474 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2475 drop_tty = 1; 2476 } 2477 spin_unlock(&tty->files_lock); 2478 tty_kref_put(tty); 2479 } 2480 /* Reset controlling tty. */ 2481 if (drop_tty) 2482 no_tty(); 2483 2484 /* Revalidate access to inherited open files. */ 2485 n = iterate_fd(files, 0, match_file, cred); 2486 if (!n) /* none found? */ 2487 return; 2488 2489 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2490 if (IS_ERR(devnull)) 2491 devnull = NULL; 2492 /* replace all the matching ones with this */ 2493 do { 2494 replace_fd(n - 1, devnull, 0); 2495 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2496 if (devnull) 2497 fput(devnull); 2498 } 2499 2500 /* 2501 * Prepare a process for imminent new credential changes due to exec 2502 */ 2503 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2504 { 2505 struct task_security_struct *new_tsec; 2506 struct rlimit *rlim, *initrlim; 2507 int rc, i; 2508 2509 new_tsec = selinux_cred(bprm->cred); 2510 if (new_tsec->sid == new_tsec->osid) 2511 return; 2512 2513 /* Close files for which the new task SID is not authorized. */ 2514 flush_unauthorized_files(bprm->cred, current->files); 2515 2516 /* Always clear parent death signal on SID transitions. */ 2517 current->pdeath_signal = 0; 2518 2519 /* Check whether the new SID can inherit resource limits from the old 2520 * SID. If not, reset all soft limits to the lower of the current 2521 * task's hard limit and the init task's soft limit. 2522 * 2523 * Note that the setting of hard limits (even to lower them) can be 2524 * controlled by the setrlimit check. The inclusion of the init task's 2525 * soft limit into the computation is to avoid resetting soft limits 2526 * higher than the default soft limit for cases where the default is 2527 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2528 */ 2529 rc = avc_has_perm(&selinux_state, 2530 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2531 PROCESS__RLIMITINH, NULL); 2532 if (rc) { 2533 /* protect against do_prlimit() */ 2534 task_lock(current); 2535 for (i = 0; i < RLIM_NLIMITS; i++) { 2536 rlim = current->signal->rlim + i; 2537 initrlim = init_task.signal->rlim + i; 2538 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2539 } 2540 task_unlock(current); 2541 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2542 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2543 } 2544 } 2545 2546 /* 2547 * Clean up the process immediately after the installation of new credentials 2548 * due to exec 2549 */ 2550 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2551 { 2552 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2553 u32 osid, sid; 2554 int rc; 2555 2556 osid = tsec->osid; 2557 sid = tsec->sid; 2558 2559 if (sid == osid) 2560 return; 2561 2562 /* Check whether the new SID can inherit signal state from the old SID. 2563 * If not, clear itimers to avoid subsequent signal generation and 2564 * flush and unblock signals. 2565 * 2566 * This must occur _after_ the task SID has been updated so that any 2567 * kill done after the flush will be checked against the new SID. 2568 */ 2569 rc = avc_has_perm(&selinux_state, 2570 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2571 if (rc) { 2572 clear_itimer(); 2573 2574 spin_lock_irq(¤t->sighand->siglock); 2575 if (!fatal_signal_pending(current)) { 2576 flush_sigqueue(¤t->pending); 2577 flush_sigqueue(¤t->signal->shared_pending); 2578 flush_signal_handlers(current, 1); 2579 sigemptyset(¤t->blocked); 2580 recalc_sigpending(); 2581 } 2582 spin_unlock_irq(¤t->sighand->siglock); 2583 } 2584 2585 /* Wake up the parent if it is waiting so that it can recheck 2586 * wait permission to the new task SID. */ 2587 read_lock(&tasklist_lock); 2588 __wake_up_parent(current, current->real_parent); 2589 read_unlock(&tasklist_lock); 2590 } 2591 2592 /* superblock security operations */ 2593 2594 static int selinux_sb_alloc_security(struct super_block *sb) 2595 { 2596 return superblock_alloc_security(sb); 2597 } 2598 2599 static void selinux_sb_free_security(struct super_block *sb) 2600 { 2601 superblock_free_security(sb); 2602 } 2603 2604 static inline int opt_len(const char *s) 2605 { 2606 bool open_quote = false; 2607 int len; 2608 char c; 2609 2610 for (len = 0; (c = s[len]) != '\0'; len++) { 2611 if (c == '"') 2612 open_quote = !open_quote; 2613 if (c == ',' && !open_quote) 2614 break; 2615 } 2616 return len; 2617 } 2618 2619 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2620 { 2621 char *from = options; 2622 char *to = options; 2623 bool first = true; 2624 int rc; 2625 2626 while (1) { 2627 int len = opt_len(from); 2628 int token; 2629 char *arg = NULL; 2630 2631 token = match_opt_prefix(from, len, &arg); 2632 2633 if (token != Opt_error) { 2634 char *p, *q; 2635 2636 /* strip quotes */ 2637 if (arg) { 2638 for (p = q = arg; p < from + len; p++) { 2639 char c = *p; 2640 if (c != '"') 2641 *q++ = c; 2642 } 2643 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2644 if (!arg) { 2645 rc = -ENOMEM; 2646 goto free_opt; 2647 } 2648 } 2649 rc = selinux_add_opt(token, arg, mnt_opts); 2650 if (unlikely(rc)) { 2651 kfree(arg); 2652 goto free_opt; 2653 } 2654 } else { 2655 if (!first) { // copy with preceding comma 2656 from--; 2657 len++; 2658 } 2659 if (to != from) 2660 memmove(to, from, len); 2661 to += len; 2662 first = false; 2663 } 2664 if (!from[len]) 2665 break; 2666 from += len + 1; 2667 } 2668 *to = '\0'; 2669 return 0; 2670 2671 free_opt: 2672 if (*mnt_opts) { 2673 selinux_free_mnt_opts(*mnt_opts); 2674 *mnt_opts = NULL; 2675 } 2676 return rc; 2677 } 2678 2679 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2680 { 2681 struct selinux_mnt_opts *opts = mnt_opts; 2682 struct superblock_security_struct *sbsec = sb->s_security; 2683 u32 sid; 2684 int rc; 2685 2686 if (!(sbsec->flags & SE_SBINITIALIZED)) 2687 return 0; 2688 2689 if (!opts) 2690 return 0; 2691 2692 if (opts->fscontext) { 2693 rc = parse_sid(sb, opts->fscontext, &sid); 2694 if (rc) 2695 return rc; 2696 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2697 goto out_bad_option; 2698 } 2699 if (opts->context) { 2700 rc = parse_sid(sb, opts->context, &sid); 2701 if (rc) 2702 return rc; 2703 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2704 goto out_bad_option; 2705 } 2706 if (opts->rootcontext) { 2707 struct inode_security_struct *root_isec; 2708 root_isec = backing_inode_security(sb->s_root); 2709 rc = parse_sid(sb, opts->rootcontext, &sid); 2710 if (rc) 2711 return rc; 2712 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2713 goto out_bad_option; 2714 } 2715 if (opts->defcontext) { 2716 rc = parse_sid(sb, opts->defcontext, &sid); 2717 if (rc) 2718 return rc; 2719 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2720 goto out_bad_option; 2721 } 2722 return 0; 2723 2724 out_bad_option: 2725 pr_warn("SELinux: unable to change security options " 2726 "during remount (dev %s, type=%s)\n", sb->s_id, 2727 sb->s_type->name); 2728 return -EINVAL; 2729 } 2730 2731 static int selinux_sb_kern_mount(struct super_block *sb) 2732 { 2733 const struct cred *cred = current_cred(); 2734 struct common_audit_data ad; 2735 2736 ad.type = LSM_AUDIT_DATA_DENTRY; 2737 ad.u.dentry = sb->s_root; 2738 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2739 } 2740 2741 static int selinux_sb_statfs(struct dentry *dentry) 2742 { 2743 const struct cred *cred = current_cred(); 2744 struct common_audit_data ad; 2745 2746 ad.type = LSM_AUDIT_DATA_DENTRY; 2747 ad.u.dentry = dentry->d_sb->s_root; 2748 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2749 } 2750 2751 static int selinux_mount(const char *dev_name, 2752 const struct path *path, 2753 const char *type, 2754 unsigned long flags, 2755 void *data) 2756 { 2757 const struct cred *cred = current_cred(); 2758 2759 if (flags & MS_REMOUNT) 2760 return superblock_has_perm(cred, path->dentry->d_sb, 2761 FILESYSTEM__REMOUNT, NULL); 2762 else 2763 return path_has_perm(cred, path, FILE__MOUNTON); 2764 } 2765 2766 static int selinux_umount(struct vfsmount *mnt, int flags) 2767 { 2768 const struct cred *cred = current_cred(); 2769 2770 return superblock_has_perm(cred, mnt->mnt_sb, 2771 FILESYSTEM__UNMOUNT, NULL); 2772 } 2773 2774 static int selinux_fs_context_dup(struct fs_context *fc, 2775 struct fs_context *src_fc) 2776 { 2777 const struct selinux_mnt_opts *src = src_fc->security; 2778 struct selinux_mnt_opts *opts; 2779 2780 if (!src) 2781 return 0; 2782 2783 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 2784 if (!fc->security) 2785 return -ENOMEM; 2786 2787 opts = fc->security; 2788 2789 if (src->fscontext) { 2790 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL); 2791 if (!opts->fscontext) 2792 return -ENOMEM; 2793 } 2794 if (src->context) { 2795 opts->context = kstrdup(src->context, GFP_KERNEL); 2796 if (!opts->context) 2797 return -ENOMEM; 2798 } 2799 if (src->rootcontext) { 2800 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL); 2801 if (!opts->rootcontext) 2802 return -ENOMEM; 2803 } 2804 if (src->defcontext) { 2805 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL); 2806 if (!opts->defcontext) 2807 return -ENOMEM; 2808 } 2809 return 0; 2810 } 2811 2812 static const struct fs_parameter_spec selinux_param_specs[] = { 2813 fsparam_string(CONTEXT_STR, Opt_context), 2814 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2815 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2816 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2817 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2818 {} 2819 }; 2820 2821 static const struct fs_parameter_description selinux_fs_parameters = { 2822 .name = "SELinux", 2823 .specs = selinux_param_specs, 2824 }; 2825 2826 static int selinux_fs_context_parse_param(struct fs_context *fc, 2827 struct fs_parameter *param) 2828 { 2829 struct fs_parse_result result; 2830 int opt, rc; 2831 2832 opt = fs_parse(fc, &selinux_fs_parameters, param, &result); 2833 if (opt < 0) 2834 return opt; 2835 2836 rc = selinux_add_opt(opt, param->string, &fc->security); 2837 if (!rc) { 2838 param->string = NULL; 2839 rc = 1; 2840 } 2841 return rc; 2842 } 2843 2844 /* inode security operations */ 2845 2846 static int selinux_inode_alloc_security(struct inode *inode) 2847 { 2848 return inode_alloc_security(inode); 2849 } 2850 2851 static void selinux_inode_free_security(struct inode *inode) 2852 { 2853 inode_free_security(inode); 2854 } 2855 2856 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2857 const struct qstr *name, void **ctx, 2858 u32 *ctxlen) 2859 { 2860 u32 newsid; 2861 int rc; 2862 2863 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2864 d_inode(dentry->d_parent), name, 2865 inode_mode_to_security_class(mode), 2866 &newsid); 2867 if (rc) 2868 return rc; 2869 2870 return security_sid_to_context(&selinux_state, newsid, (char **)ctx, 2871 ctxlen); 2872 } 2873 2874 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2875 struct qstr *name, 2876 const struct cred *old, 2877 struct cred *new) 2878 { 2879 u32 newsid; 2880 int rc; 2881 struct task_security_struct *tsec; 2882 2883 rc = selinux_determine_inode_label(selinux_cred(old), 2884 d_inode(dentry->d_parent), name, 2885 inode_mode_to_security_class(mode), 2886 &newsid); 2887 if (rc) 2888 return rc; 2889 2890 tsec = selinux_cred(new); 2891 tsec->create_sid = newsid; 2892 return 0; 2893 } 2894 2895 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2896 const struct qstr *qstr, 2897 const char **name, 2898 void **value, size_t *len) 2899 { 2900 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2901 struct superblock_security_struct *sbsec; 2902 u32 newsid, clen; 2903 int rc; 2904 char *context; 2905 2906 sbsec = dir->i_sb->s_security; 2907 2908 newsid = tsec->create_sid; 2909 2910 rc = selinux_determine_inode_label(tsec, dir, qstr, 2911 inode_mode_to_security_class(inode->i_mode), 2912 &newsid); 2913 if (rc) 2914 return rc; 2915 2916 /* Possibly defer initialization to selinux_complete_init. */ 2917 if (sbsec->flags & SE_SBINITIALIZED) { 2918 struct inode_security_struct *isec = selinux_inode(inode); 2919 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2920 isec->sid = newsid; 2921 isec->initialized = LABEL_INITIALIZED; 2922 } 2923 2924 if (!selinux_initialized(&selinux_state) || 2925 !(sbsec->flags & SBLABEL_MNT)) 2926 return -EOPNOTSUPP; 2927 2928 if (name) 2929 *name = XATTR_SELINUX_SUFFIX; 2930 2931 if (value && len) { 2932 rc = security_sid_to_context_force(&selinux_state, newsid, 2933 &context, &clen); 2934 if (rc) 2935 return rc; 2936 *value = context; 2937 *len = clen; 2938 } 2939 2940 return 0; 2941 } 2942 2943 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2944 { 2945 return may_create(dir, dentry, SECCLASS_FILE); 2946 } 2947 2948 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2949 { 2950 return may_link(dir, old_dentry, MAY_LINK); 2951 } 2952 2953 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2954 { 2955 return may_link(dir, dentry, MAY_UNLINK); 2956 } 2957 2958 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2959 { 2960 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2961 } 2962 2963 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2964 { 2965 return may_create(dir, dentry, SECCLASS_DIR); 2966 } 2967 2968 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2969 { 2970 return may_link(dir, dentry, MAY_RMDIR); 2971 } 2972 2973 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2974 { 2975 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2976 } 2977 2978 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2979 struct inode *new_inode, struct dentry *new_dentry) 2980 { 2981 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2982 } 2983 2984 static int selinux_inode_readlink(struct dentry *dentry) 2985 { 2986 const struct cred *cred = current_cred(); 2987 2988 return dentry_has_perm(cred, dentry, FILE__READ); 2989 } 2990 2991 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 2992 bool rcu) 2993 { 2994 const struct cred *cred = current_cred(); 2995 struct common_audit_data ad; 2996 struct inode_security_struct *isec; 2997 u32 sid; 2998 2999 validate_creds(cred); 3000 3001 ad.type = LSM_AUDIT_DATA_DENTRY; 3002 ad.u.dentry = dentry; 3003 sid = cred_sid(cred); 3004 isec = inode_security_rcu(inode, rcu); 3005 if (IS_ERR(isec)) 3006 return PTR_ERR(isec); 3007 3008 return avc_has_perm_flags(&selinux_state, 3009 sid, isec->sid, isec->sclass, FILE__READ, &ad, 3010 rcu ? MAY_NOT_BLOCK : 0); 3011 } 3012 3013 static noinline int audit_inode_permission(struct inode *inode, 3014 u32 perms, u32 audited, u32 denied, 3015 int result) 3016 { 3017 struct common_audit_data ad; 3018 struct inode_security_struct *isec = selinux_inode(inode); 3019 int rc; 3020 3021 ad.type = LSM_AUDIT_DATA_INODE; 3022 ad.u.inode = inode; 3023 3024 rc = slow_avc_audit(&selinux_state, 3025 current_sid(), isec->sid, isec->sclass, perms, 3026 audited, denied, result, &ad); 3027 if (rc) 3028 return rc; 3029 return 0; 3030 } 3031 3032 static int selinux_inode_permission(struct inode *inode, int mask) 3033 { 3034 const struct cred *cred = current_cred(); 3035 u32 perms; 3036 bool from_access; 3037 bool no_block = mask & MAY_NOT_BLOCK; 3038 struct inode_security_struct *isec; 3039 u32 sid; 3040 struct av_decision avd; 3041 int rc, rc2; 3042 u32 audited, denied; 3043 3044 from_access = mask & MAY_ACCESS; 3045 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3046 3047 /* No permission to check. Existence test. */ 3048 if (!mask) 3049 return 0; 3050 3051 validate_creds(cred); 3052 3053 if (unlikely(IS_PRIVATE(inode))) 3054 return 0; 3055 3056 perms = file_mask_to_av(inode->i_mode, mask); 3057 3058 sid = cred_sid(cred); 3059 isec = inode_security_rcu(inode, no_block); 3060 if (IS_ERR(isec)) 3061 return PTR_ERR(isec); 3062 3063 rc = avc_has_perm_noaudit(&selinux_state, 3064 sid, isec->sid, isec->sclass, perms, 3065 no_block ? AVC_NONBLOCKING : 0, 3066 &avd); 3067 audited = avc_audit_required(perms, &avd, rc, 3068 from_access ? FILE__AUDIT_ACCESS : 0, 3069 &denied); 3070 if (likely(!audited)) 3071 return rc; 3072 3073 /* fall back to ref-walk if we have to generate audit */ 3074 if (no_block) 3075 return -ECHILD; 3076 3077 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3078 if (rc2) 3079 return rc2; 3080 return rc; 3081 } 3082 3083 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3084 { 3085 const struct cred *cred = current_cred(); 3086 struct inode *inode = d_backing_inode(dentry); 3087 unsigned int ia_valid = iattr->ia_valid; 3088 __u32 av = FILE__WRITE; 3089 3090 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3091 if (ia_valid & ATTR_FORCE) { 3092 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3093 ATTR_FORCE); 3094 if (!ia_valid) 3095 return 0; 3096 } 3097 3098 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3099 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3100 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3101 3102 if (selinux_policycap_openperm() && 3103 inode->i_sb->s_magic != SOCKFS_MAGIC && 3104 (ia_valid & ATTR_SIZE) && 3105 !(ia_valid & ATTR_FILE)) 3106 av |= FILE__OPEN; 3107 3108 return dentry_has_perm(cred, dentry, av); 3109 } 3110 3111 static int selinux_inode_getattr(const struct path *path) 3112 { 3113 return path_has_perm(current_cred(), path, FILE__GETATTR); 3114 } 3115 3116 static bool has_cap_mac_admin(bool audit) 3117 { 3118 const struct cred *cred = current_cred(); 3119 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3120 3121 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3122 return false; 3123 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3124 return false; 3125 return true; 3126 } 3127 3128 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 3129 const void *value, size_t size, int flags) 3130 { 3131 struct inode *inode = d_backing_inode(dentry); 3132 struct inode_security_struct *isec; 3133 struct superblock_security_struct *sbsec; 3134 struct common_audit_data ad; 3135 u32 newsid, sid = current_sid(); 3136 int rc = 0; 3137 3138 if (strcmp(name, XATTR_NAME_SELINUX)) { 3139 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3140 if (rc) 3141 return rc; 3142 3143 /* Not an attribute we recognize, so just check the 3144 ordinary setattr permission. */ 3145 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3146 } 3147 3148 if (!selinux_initialized(&selinux_state)) 3149 return (inode_owner_or_capable(inode) ? 0 : -EPERM); 3150 3151 sbsec = inode->i_sb->s_security; 3152 if (!(sbsec->flags & SBLABEL_MNT)) 3153 return -EOPNOTSUPP; 3154 3155 if (!inode_owner_or_capable(inode)) 3156 return -EPERM; 3157 3158 ad.type = LSM_AUDIT_DATA_DENTRY; 3159 ad.u.dentry = dentry; 3160 3161 isec = backing_inode_security(dentry); 3162 rc = avc_has_perm(&selinux_state, 3163 sid, isec->sid, isec->sclass, 3164 FILE__RELABELFROM, &ad); 3165 if (rc) 3166 return rc; 3167 3168 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3169 GFP_KERNEL); 3170 if (rc == -EINVAL) { 3171 if (!has_cap_mac_admin(true)) { 3172 struct audit_buffer *ab; 3173 size_t audit_size; 3174 3175 /* We strip a nul only if it is at the end, otherwise the 3176 * context contains a nul and we should audit that */ 3177 if (value) { 3178 const char *str = value; 3179 3180 if (str[size - 1] == '\0') 3181 audit_size = size - 1; 3182 else 3183 audit_size = size; 3184 } else { 3185 audit_size = 0; 3186 } 3187 ab = audit_log_start(audit_context(), 3188 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3189 audit_log_format(ab, "op=setxattr invalid_context="); 3190 audit_log_n_untrustedstring(ab, value, audit_size); 3191 audit_log_end(ab); 3192 3193 return rc; 3194 } 3195 rc = security_context_to_sid_force(&selinux_state, value, 3196 size, &newsid); 3197 } 3198 if (rc) 3199 return rc; 3200 3201 rc = avc_has_perm(&selinux_state, 3202 sid, newsid, isec->sclass, 3203 FILE__RELABELTO, &ad); 3204 if (rc) 3205 return rc; 3206 3207 rc = security_validate_transition(&selinux_state, isec->sid, newsid, 3208 sid, isec->sclass); 3209 if (rc) 3210 return rc; 3211 3212 return avc_has_perm(&selinux_state, 3213 newsid, 3214 sbsec->sid, 3215 SECCLASS_FILESYSTEM, 3216 FILESYSTEM__ASSOCIATE, 3217 &ad); 3218 } 3219 3220 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3221 const void *value, size_t size, 3222 int flags) 3223 { 3224 struct inode *inode = d_backing_inode(dentry); 3225 struct inode_security_struct *isec; 3226 u32 newsid; 3227 int rc; 3228 3229 if (strcmp(name, XATTR_NAME_SELINUX)) { 3230 /* Not an attribute we recognize, so nothing to do. */ 3231 return; 3232 } 3233 3234 if (!selinux_initialized(&selinux_state)) { 3235 /* If we haven't even been initialized, then we can't validate 3236 * against a policy, so leave the label as invalid. It may 3237 * resolve to a valid label on the next revalidation try if 3238 * we've since initialized. 3239 */ 3240 return; 3241 } 3242 3243 rc = security_context_to_sid_force(&selinux_state, value, size, 3244 &newsid); 3245 if (rc) { 3246 pr_err("SELinux: unable to map context to SID" 3247 "for (%s, %lu), rc=%d\n", 3248 inode->i_sb->s_id, inode->i_ino, -rc); 3249 return; 3250 } 3251 3252 isec = backing_inode_security(dentry); 3253 spin_lock(&isec->lock); 3254 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3255 isec->sid = newsid; 3256 isec->initialized = LABEL_INITIALIZED; 3257 spin_unlock(&isec->lock); 3258 3259 return; 3260 } 3261 3262 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3263 { 3264 const struct cred *cred = current_cred(); 3265 3266 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3267 } 3268 3269 static int selinux_inode_listxattr(struct dentry *dentry) 3270 { 3271 const struct cred *cred = current_cred(); 3272 3273 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3274 } 3275 3276 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3277 { 3278 if (strcmp(name, XATTR_NAME_SELINUX)) { 3279 int rc = cap_inode_removexattr(dentry, name); 3280 if (rc) 3281 return rc; 3282 3283 /* Not an attribute we recognize, so just check the 3284 ordinary setattr permission. */ 3285 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3286 } 3287 3288 /* No one is allowed to remove a SELinux security label. 3289 You can change the label, but all data must be labeled. */ 3290 return -EACCES; 3291 } 3292 3293 static int selinux_path_notify(const struct path *path, u64 mask, 3294 unsigned int obj_type) 3295 { 3296 int ret; 3297 u32 perm; 3298 3299 struct common_audit_data ad; 3300 3301 ad.type = LSM_AUDIT_DATA_PATH; 3302 ad.u.path = *path; 3303 3304 /* 3305 * Set permission needed based on the type of mark being set. 3306 * Performs an additional check for sb watches. 3307 */ 3308 switch (obj_type) { 3309 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3310 perm = FILE__WATCH_MOUNT; 3311 break; 3312 case FSNOTIFY_OBJ_TYPE_SB: 3313 perm = FILE__WATCH_SB; 3314 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3315 FILESYSTEM__WATCH, &ad); 3316 if (ret) 3317 return ret; 3318 break; 3319 case FSNOTIFY_OBJ_TYPE_INODE: 3320 perm = FILE__WATCH; 3321 break; 3322 default: 3323 return -EINVAL; 3324 } 3325 3326 /* blocking watches require the file:watch_with_perm permission */ 3327 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3328 perm |= FILE__WATCH_WITH_PERM; 3329 3330 /* watches on read-like events need the file:watch_reads permission */ 3331 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3332 perm |= FILE__WATCH_READS; 3333 3334 return path_has_perm(current_cred(), path, perm); 3335 } 3336 3337 /* 3338 * Copy the inode security context value to the user. 3339 * 3340 * Permission check is handled by selinux_inode_getxattr hook. 3341 */ 3342 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 3343 { 3344 u32 size; 3345 int error; 3346 char *context = NULL; 3347 struct inode_security_struct *isec; 3348 3349 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3350 return -EOPNOTSUPP; 3351 3352 /* 3353 * If the caller has CAP_MAC_ADMIN, then get the raw context 3354 * value even if it is not defined by current policy; otherwise, 3355 * use the in-core value under current policy. 3356 * Use the non-auditing forms of the permission checks since 3357 * getxattr may be called by unprivileged processes commonly 3358 * and lack of permission just means that we fall back to the 3359 * in-core context value, not a denial. 3360 */ 3361 isec = inode_security(inode); 3362 if (has_cap_mac_admin(false)) 3363 error = security_sid_to_context_force(&selinux_state, 3364 isec->sid, &context, 3365 &size); 3366 else 3367 error = security_sid_to_context(&selinux_state, isec->sid, 3368 &context, &size); 3369 if (error) 3370 return error; 3371 error = size; 3372 if (alloc) { 3373 *buffer = context; 3374 goto out_nofree; 3375 } 3376 kfree(context); 3377 out_nofree: 3378 return error; 3379 } 3380 3381 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3382 const void *value, size_t size, int flags) 3383 { 3384 struct inode_security_struct *isec = inode_security_novalidate(inode); 3385 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 3386 u32 newsid; 3387 int rc; 3388 3389 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3390 return -EOPNOTSUPP; 3391 3392 if (!(sbsec->flags & SBLABEL_MNT)) 3393 return -EOPNOTSUPP; 3394 3395 if (!value || !size) 3396 return -EACCES; 3397 3398 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3399 GFP_KERNEL); 3400 if (rc) 3401 return rc; 3402 3403 spin_lock(&isec->lock); 3404 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3405 isec->sid = newsid; 3406 isec->initialized = LABEL_INITIALIZED; 3407 spin_unlock(&isec->lock); 3408 return 0; 3409 } 3410 3411 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3412 { 3413 const int len = sizeof(XATTR_NAME_SELINUX); 3414 if (buffer && len <= buffer_size) 3415 memcpy(buffer, XATTR_NAME_SELINUX, len); 3416 return len; 3417 } 3418 3419 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3420 { 3421 struct inode_security_struct *isec = inode_security_novalidate(inode); 3422 *secid = isec->sid; 3423 } 3424 3425 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3426 { 3427 u32 sid; 3428 struct task_security_struct *tsec; 3429 struct cred *new_creds = *new; 3430 3431 if (new_creds == NULL) { 3432 new_creds = prepare_creds(); 3433 if (!new_creds) 3434 return -ENOMEM; 3435 } 3436 3437 tsec = selinux_cred(new_creds); 3438 /* Get label from overlay inode and set it in create_sid */ 3439 selinux_inode_getsecid(d_inode(src), &sid); 3440 tsec->create_sid = sid; 3441 *new = new_creds; 3442 return 0; 3443 } 3444 3445 static int selinux_inode_copy_up_xattr(const char *name) 3446 { 3447 /* The copy_up hook above sets the initial context on an inode, but we 3448 * don't then want to overwrite it by blindly copying all the lower 3449 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3450 */ 3451 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3452 return 1; /* Discard */ 3453 /* 3454 * Any other attribute apart from SELINUX is not claimed, supported 3455 * by selinux. 3456 */ 3457 return -EOPNOTSUPP; 3458 } 3459 3460 /* kernfs node operations */ 3461 3462 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3463 struct kernfs_node *kn) 3464 { 3465 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3466 u32 parent_sid, newsid, clen; 3467 int rc; 3468 char *context; 3469 3470 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3471 if (rc == -ENODATA) 3472 return 0; 3473 else if (rc < 0) 3474 return rc; 3475 3476 clen = (u32)rc; 3477 context = kmalloc(clen, GFP_KERNEL); 3478 if (!context) 3479 return -ENOMEM; 3480 3481 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3482 if (rc < 0) { 3483 kfree(context); 3484 return rc; 3485 } 3486 3487 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid, 3488 GFP_KERNEL); 3489 kfree(context); 3490 if (rc) 3491 return rc; 3492 3493 if (tsec->create_sid) { 3494 newsid = tsec->create_sid; 3495 } else { 3496 u16 secclass = inode_mode_to_security_class(kn->mode); 3497 struct qstr q; 3498 3499 q.name = kn->name; 3500 q.hash_len = hashlen_string(kn_dir, kn->name); 3501 3502 rc = security_transition_sid(&selinux_state, tsec->sid, 3503 parent_sid, secclass, &q, 3504 &newsid); 3505 if (rc) 3506 return rc; 3507 } 3508 3509 rc = security_sid_to_context_force(&selinux_state, newsid, 3510 &context, &clen); 3511 if (rc) 3512 return rc; 3513 3514 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3515 XATTR_CREATE); 3516 kfree(context); 3517 return rc; 3518 } 3519 3520 3521 /* file security operations */ 3522 3523 static int selinux_revalidate_file_permission(struct file *file, int mask) 3524 { 3525 const struct cred *cred = current_cred(); 3526 struct inode *inode = file_inode(file); 3527 3528 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3529 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3530 mask |= MAY_APPEND; 3531 3532 return file_has_perm(cred, file, 3533 file_mask_to_av(inode->i_mode, mask)); 3534 } 3535 3536 static int selinux_file_permission(struct file *file, int mask) 3537 { 3538 struct inode *inode = file_inode(file); 3539 struct file_security_struct *fsec = selinux_file(file); 3540 struct inode_security_struct *isec; 3541 u32 sid = current_sid(); 3542 3543 if (!mask) 3544 /* No permission to check. Existence test. */ 3545 return 0; 3546 3547 isec = inode_security(inode); 3548 if (sid == fsec->sid && fsec->isid == isec->sid && 3549 fsec->pseqno == avc_policy_seqno(&selinux_state)) 3550 /* No change since file_open check. */ 3551 return 0; 3552 3553 return selinux_revalidate_file_permission(file, mask); 3554 } 3555 3556 static int selinux_file_alloc_security(struct file *file) 3557 { 3558 return file_alloc_security(file); 3559 } 3560 3561 /* 3562 * Check whether a task has the ioctl permission and cmd 3563 * operation to an inode. 3564 */ 3565 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3566 u32 requested, u16 cmd) 3567 { 3568 struct common_audit_data ad; 3569 struct file_security_struct *fsec = selinux_file(file); 3570 struct inode *inode = file_inode(file); 3571 struct inode_security_struct *isec; 3572 struct lsm_ioctlop_audit ioctl; 3573 u32 ssid = cred_sid(cred); 3574 int rc; 3575 u8 driver = cmd >> 8; 3576 u8 xperm = cmd & 0xff; 3577 3578 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3579 ad.u.op = &ioctl; 3580 ad.u.op->cmd = cmd; 3581 ad.u.op->path = file->f_path; 3582 3583 if (ssid != fsec->sid) { 3584 rc = avc_has_perm(&selinux_state, 3585 ssid, fsec->sid, 3586 SECCLASS_FD, 3587 FD__USE, 3588 &ad); 3589 if (rc) 3590 goto out; 3591 } 3592 3593 if (unlikely(IS_PRIVATE(inode))) 3594 return 0; 3595 3596 isec = inode_security(inode); 3597 rc = avc_has_extended_perms(&selinux_state, 3598 ssid, isec->sid, isec->sclass, 3599 requested, driver, xperm, &ad); 3600 out: 3601 return rc; 3602 } 3603 3604 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3605 unsigned long arg) 3606 { 3607 const struct cred *cred = current_cred(); 3608 int error = 0; 3609 3610 switch (cmd) { 3611 case FIONREAD: 3612 /* fall through */ 3613 case FIBMAP: 3614 /* fall through */ 3615 case FIGETBSZ: 3616 /* fall through */ 3617 case FS_IOC_GETFLAGS: 3618 /* fall through */ 3619 case FS_IOC_GETVERSION: 3620 error = file_has_perm(cred, file, FILE__GETATTR); 3621 break; 3622 3623 case FS_IOC_SETFLAGS: 3624 /* fall through */ 3625 case FS_IOC_SETVERSION: 3626 error = file_has_perm(cred, file, FILE__SETATTR); 3627 break; 3628 3629 /* sys_ioctl() checks */ 3630 case FIONBIO: 3631 /* fall through */ 3632 case FIOASYNC: 3633 error = file_has_perm(cred, file, 0); 3634 break; 3635 3636 case KDSKBENT: 3637 case KDSKBSENT: 3638 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3639 CAP_OPT_NONE, true); 3640 break; 3641 3642 /* default case assumes that the command will go 3643 * to the file's ioctl() function. 3644 */ 3645 default: 3646 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3647 } 3648 return error; 3649 } 3650 3651 static int default_noexec __ro_after_init; 3652 3653 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3654 { 3655 const struct cred *cred = current_cred(); 3656 u32 sid = cred_sid(cred); 3657 int rc = 0; 3658 3659 if (default_noexec && 3660 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3661 (!shared && (prot & PROT_WRITE)))) { 3662 /* 3663 * We are making executable an anonymous mapping or a 3664 * private file mapping that will also be writable. 3665 * This has an additional check. 3666 */ 3667 rc = avc_has_perm(&selinux_state, 3668 sid, sid, SECCLASS_PROCESS, 3669 PROCESS__EXECMEM, NULL); 3670 if (rc) 3671 goto error; 3672 } 3673 3674 if (file) { 3675 /* read access is always possible with a mapping */ 3676 u32 av = FILE__READ; 3677 3678 /* write access only matters if the mapping is shared */ 3679 if (shared && (prot & PROT_WRITE)) 3680 av |= FILE__WRITE; 3681 3682 if (prot & PROT_EXEC) 3683 av |= FILE__EXECUTE; 3684 3685 return file_has_perm(cred, file, av); 3686 } 3687 3688 error: 3689 return rc; 3690 } 3691 3692 static int selinux_mmap_addr(unsigned long addr) 3693 { 3694 int rc = 0; 3695 3696 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3697 u32 sid = current_sid(); 3698 rc = avc_has_perm(&selinux_state, 3699 sid, sid, SECCLASS_MEMPROTECT, 3700 MEMPROTECT__MMAP_ZERO, NULL); 3701 } 3702 3703 return rc; 3704 } 3705 3706 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3707 unsigned long prot, unsigned long flags) 3708 { 3709 struct common_audit_data ad; 3710 int rc; 3711 3712 if (file) { 3713 ad.type = LSM_AUDIT_DATA_FILE; 3714 ad.u.file = file; 3715 rc = inode_has_perm(current_cred(), file_inode(file), 3716 FILE__MAP, &ad); 3717 if (rc) 3718 return rc; 3719 } 3720 3721 if (selinux_state.checkreqprot) 3722 prot = reqprot; 3723 3724 return file_map_prot_check(file, prot, 3725 (flags & MAP_TYPE) == MAP_SHARED); 3726 } 3727 3728 static int selinux_file_mprotect(struct vm_area_struct *vma, 3729 unsigned long reqprot, 3730 unsigned long prot) 3731 { 3732 const struct cred *cred = current_cred(); 3733 u32 sid = cred_sid(cred); 3734 3735 if (selinux_state.checkreqprot) 3736 prot = reqprot; 3737 3738 if (default_noexec && 3739 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3740 int rc = 0; 3741 if (vma->vm_start >= vma->vm_mm->start_brk && 3742 vma->vm_end <= vma->vm_mm->brk) { 3743 rc = avc_has_perm(&selinux_state, 3744 sid, sid, SECCLASS_PROCESS, 3745 PROCESS__EXECHEAP, NULL); 3746 } else if (!vma->vm_file && 3747 ((vma->vm_start <= vma->vm_mm->start_stack && 3748 vma->vm_end >= vma->vm_mm->start_stack) || 3749 vma_is_stack_for_current(vma))) { 3750 rc = avc_has_perm(&selinux_state, 3751 sid, sid, SECCLASS_PROCESS, 3752 PROCESS__EXECSTACK, NULL); 3753 } else if (vma->vm_file && vma->anon_vma) { 3754 /* 3755 * We are making executable a file mapping that has 3756 * had some COW done. Since pages might have been 3757 * written, check ability to execute the possibly 3758 * modified content. This typically should only 3759 * occur for text relocations. 3760 */ 3761 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3762 } 3763 if (rc) 3764 return rc; 3765 } 3766 3767 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3768 } 3769 3770 static int selinux_file_lock(struct file *file, unsigned int cmd) 3771 { 3772 const struct cred *cred = current_cred(); 3773 3774 return file_has_perm(cred, file, FILE__LOCK); 3775 } 3776 3777 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3778 unsigned long arg) 3779 { 3780 const struct cred *cred = current_cred(); 3781 int err = 0; 3782 3783 switch (cmd) { 3784 case F_SETFL: 3785 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3786 err = file_has_perm(cred, file, FILE__WRITE); 3787 break; 3788 } 3789 /* fall through */ 3790 case F_SETOWN: 3791 case F_SETSIG: 3792 case F_GETFL: 3793 case F_GETOWN: 3794 case F_GETSIG: 3795 case F_GETOWNER_UIDS: 3796 /* Just check FD__USE permission */ 3797 err = file_has_perm(cred, file, 0); 3798 break; 3799 case F_GETLK: 3800 case F_SETLK: 3801 case F_SETLKW: 3802 case F_OFD_GETLK: 3803 case F_OFD_SETLK: 3804 case F_OFD_SETLKW: 3805 #if BITS_PER_LONG == 32 3806 case F_GETLK64: 3807 case F_SETLK64: 3808 case F_SETLKW64: 3809 #endif 3810 err = file_has_perm(cred, file, FILE__LOCK); 3811 break; 3812 } 3813 3814 return err; 3815 } 3816 3817 static void selinux_file_set_fowner(struct file *file) 3818 { 3819 struct file_security_struct *fsec; 3820 3821 fsec = selinux_file(file); 3822 fsec->fown_sid = current_sid(); 3823 } 3824 3825 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3826 struct fown_struct *fown, int signum) 3827 { 3828 struct file *file; 3829 u32 sid = task_sid(tsk); 3830 u32 perm; 3831 struct file_security_struct *fsec; 3832 3833 /* struct fown_struct is never outside the context of a struct file */ 3834 file = container_of(fown, struct file, f_owner); 3835 3836 fsec = selinux_file(file); 3837 3838 if (!signum) 3839 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3840 else 3841 perm = signal_to_av(signum); 3842 3843 return avc_has_perm(&selinux_state, 3844 fsec->fown_sid, sid, 3845 SECCLASS_PROCESS, perm, NULL); 3846 } 3847 3848 static int selinux_file_receive(struct file *file) 3849 { 3850 const struct cred *cred = current_cred(); 3851 3852 return file_has_perm(cred, file, file_to_av(file)); 3853 } 3854 3855 static int selinux_file_open(struct file *file) 3856 { 3857 struct file_security_struct *fsec; 3858 struct inode_security_struct *isec; 3859 3860 fsec = selinux_file(file); 3861 isec = inode_security(file_inode(file)); 3862 /* 3863 * Save inode label and policy sequence number 3864 * at open-time so that selinux_file_permission 3865 * can determine whether revalidation is necessary. 3866 * Task label is already saved in the file security 3867 * struct as its SID. 3868 */ 3869 fsec->isid = isec->sid; 3870 fsec->pseqno = avc_policy_seqno(&selinux_state); 3871 /* 3872 * Since the inode label or policy seqno may have changed 3873 * between the selinux_inode_permission check and the saving 3874 * of state above, recheck that access is still permitted. 3875 * Otherwise, access might never be revalidated against the 3876 * new inode label or new policy. 3877 * This check is not redundant - do not remove. 3878 */ 3879 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3880 } 3881 3882 /* task security operations */ 3883 3884 static int selinux_task_alloc(struct task_struct *task, 3885 unsigned long clone_flags) 3886 { 3887 u32 sid = current_sid(); 3888 3889 return avc_has_perm(&selinux_state, 3890 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3891 } 3892 3893 /* 3894 * prepare a new set of credentials for modification 3895 */ 3896 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3897 gfp_t gfp) 3898 { 3899 const struct task_security_struct *old_tsec = selinux_cred(old); 3900 struct task_security_struct *tsec = selinux_cred(new); 3901 3902 *tsec = *old_tsec; 3903 return 0; 3904 } 3905 3906 /* 3907 * transfer the SELinux data to a blank set of creds 3908 */ 3909 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3910 { 3911 const struct task_security_struct *old_tsec = selinux_cred(old); 3912 struct task_security_struct *tsec = selinux_cred(new); 3913 3914 *tsec = *old_tsec; 3915 } 3916 3917 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 3918 { 3919 *secid = cred_sid(c); 3920 } 3921 3922 /* 3923 * set the security data for a kernel service 3924 * - all the creation contexts are set to unlabelled 3925 */ 3926 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3927 { 3928 struct task_security_struct *tsec = selinux_cred(new); 3929 u32 sid = current_sid(); 3930 int ret; 3931 3932 ret = avc_has_perm(&selinux_state, 3933 sid, secid, 3934 SECCLASS_KERNEL_SERVICE, 3935 KERNEL_SERVICE__USE_AS_OVERRIDE, 3936 NULL); 3937 if (ret == 0) { 3938 tsec->sid = secid; 3939 tsec->create_sid = 0; 3940 tsec->keycreate_sid = 0; 3941 tsec->sockcreate_sid = 0; 3942 } 3943 return ret; 3944 } 3945 3946 /* 3947 * set the file creation context in a security record to the same as the 3948 * objective context of the specified inode 3949 */ 3950 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3951 { 3952 struct inode_security_struct *isec = inode_security(inode); 3953 struct task_security_struct *tsec = selinux_cred(new); 3954 u32 sid = current_sid(); 3955 int ret; 3956 3957 ret = avc_has_perm(&selinux_state, 3958 sid, isec->sid, 3959 SECCLASS_KERNEL_SERVICE, 3960 KERNEL_SERVICE__CREATE_FILES_AS, 3961 NULL); 3962 3963 if (ret == 0) 3964 tsec->create_sid = isec->sid; 3965 return ret; 3966 } 3967 3968 static int selinux_kernel_module_request(char *kmod_name) 3969 { 3970 struct common_audit_data ad; 3971 3972 ad.type = LSM_AUDIT_DATA_KMOD; 3973 ad.u.kmod_name = kmod_name; 3974 3975 return avc_has_perm(&selinux_state, 3976 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 3977 SYSTEM__MODULE_REQUEST, &ad); 3978 } 3979 3980 static int selinux_kernel_module_from_file(struct file *file) 3981 { 3982 struct common_audit_data ad; 3983 struct inode_security_struct *isec; 3984 struct file_security_struct *fsec; 3985 u32 sid = current_sid(); 3986 int rc; 3987 3988 /* init_module */ 3989 if (file == NULL) 3990 return avc_has_perm(&selinux_state, 3991 sid, sid, SECCLASS_SYSTEM, 3992 SYSTEM__MODULE_LOAD, NULL); 3993 3994 /* finit_module */ 3995 3996 ad.type = LSM_AUDIT_DATA_FILE; 3997 ad.u.file = file; 3998 3999 fsec = selinux_file(file); 4000 if (sid != fsec->sid) { 4001 rc = avc_has_perm(&selinux_state, 4002 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 4003 if (rc) 4004 return rc; 4005 } 4006 4007 isec = inode_security(file_inode(file)); 4008 return avc_has_perm(&selinux_state, 4009 sid, isec->sid, SECCLASS_SYSTEM, 4010 SYSTEM__MODULE_LOAD, &ad); 4011 } 4012 4013 static int selinux_kernel_read_file(struct file *file, 4014 enum kernel_read_file_id id) 4015 { 4016 int rc = 0; 4017 4018 switch (id) { 4019 case READING_MODULE: 4020 rc = selinux_kernel_module_from_file(file); 4021 break; 4022 default: 4023 break; 4024 } 4025 4026 return rc; 4027 } 4028 4029 static int selinux_kernel_load_data(enum kernel_load_data_id id) 4030 { 4031 int rc = 0; 4032 4033 switch (id) { 4034 case LOADING_MODULE: 4035 rc = selinux_kernel_module_from_file(NULL); 4036 default: 4037 break; 4038 } 4039 4040 return rc; 4041 } 4042 4043 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4044 { 4045 return avc_has_perm(&selinux_state, 4046 current_sid(), task_sid(p), SECCLASS_PROCESS, 4047 PROCESS__SETPGID, NULL); 4048 } 4049 4050 static int selinux_task_getpgid(struct task_struct *p) 4051 { 4052 return avc_has_perm(&selinux_state, 4053 current_sid(), task_sid(p), SECCLASS_PROCESS, 4054 PROCESS__GETPGID, NULL); 4055 } 4056 4057 static int selinux_task_getsid(struct task_struct *p) 4058 { 4059 return avc_has_perm(&selinux_state, 4060 current_sid(), task_sid(p), SECCLASS_PROCESS, 4061 PROCESS__GETSESSION, NULL); 4062 } 4063 4064 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 4065 { 4066 *secid = task_sid(p); 4067 } 4068 4069 static int selinux_task_setnice(struct task_struct *p, int nice) 4070 { 4071 return avc_has_perm(&selinux_state, 4072 current_sid(), task_sid(p), SECCLASS_PROCESS, 4073 PROCESS__SETSCHED, NULL); 4074 } 4075 4076 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4077 { 4078 return avc_has_perm(&selinux_state, 4079 current_sid(), task_sid(p), SECCLASS_PROCESS, 4080 PROCESS__SETSCHED, NULL); 4081 } 4082 4083 static int selinux_task_getioprio(struct task_struct *p) 4084 { 4085 return avc_has_perm(&selinux_state, 4086 current_sid(), task_sid(p), SECCLASS_PROCESS, 4087 PROCESS__GETSCHED, NULL); 4088 } 4089 4090 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4091 unsigned int flags) 4092 { 4093 u32 av = 0; 4094 4095 if (!flags) 4096 return 0; 4097 if (flags & LSM_PRLIMIT_WRITE) 4098 av |= PROCESS__SETRLIMIT; 4099 if (flags & LSM_PRLIMIT_READ) 4100 av |= PROCESS__GETRLIMIT; 4101 return avc_has_perm(&selinux_state, 4102 cred_sid(cred), cred_sid(tcred), 4103 SECCLASS_PROCESS, av, NULL); 4104 } 4105 4106 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4107 struct rlimit *new_rlim) 4108 { 4109 struct rlimit *old_rlim = p->signal->rlim + resource; 4110 4111 /* Control the ability to change the hard limit (whether 4112 lowering or raising it), so that the hard limit can 4113 later be used as a safe reset point for the soft limit 4114 upon context transitions. See selinux_bprm_committing_creds. */ 4115 if (old_rlim->rlim_max != new_rlim->rlim_max) 4116 return avc_has_perm(&selinux_state, 4117 current_sid(), task_sid(p), 4118 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4119 4120 return 0; 4121 } 4122 4123 static int selinux_task_setscheduler(struct task_struct *p) 4124 { 4125 return avc_has_perm(&selinux_state, 4126 current_sid(), task_sid(p), SECCLASS_PROCESS, 4127 PROCESS__SETSCHED, NULL); 4128 } 4129 4130 static int selinux_task_getscheduler(struct task_struct *p) 4131 { 4132 return avc_has_perm(&selinux_state, 4133 current_sid(), task_sid(p), SECCLASS_PROCESS, 4134 PROCESS__GETSCHED, NULL); 4135 } 4136 4137 static int selinux_task_movememory(struct task_struct *p) 4138 { 4139 return avc_has_perm(&selinux_state, 4140 current_sid(), task_sid(p), SECCLASS_PROCESS, 4141 PROCESS__SETSCHED, NULL); 4142 } 4143 4144 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4145 int sig, const struct cred *cred) 4146 { 4147 u32 secid; 4148 u32 perm; 4149 4150 if (!sig) 4151 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4152 else 4153 perm = signal_to_av(sig); 4154 if (!cred) 4155 secid = current_sid(); 4156 else 4157 secid = cred_sid(cred); 4158 return avc_has_perm(&selinux_state, 4159 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL); 4160 } 4161 4162 static void selinux_task_to_inode(struct task_struct *p, 4163 struct inode *inode) 4164 { 4165 struct inode_security_struct *isec = selinux_inode(inode); 4166 u32 sid = task_sid(p); 4167 4168 spin_lock(&isec->lock); 4169 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4170 isec->sid = sid; 4171 isec->initialized = LABEL_INITIALIZED; 4172 spin_unlock(&isec->lock); 4173 } 4174 4175 /* Returns error only if unable to parse addresses */ 4176 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4177 struct common_audit_data *ad, u8 *proto) 4178 { 4179 int offset, ihlen, ret = -EINVAL; 4180 struct iphdr _iph, *ih; 4181 4182 offset = skb_network_offset(skb); 4183 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4184 if (ih == NULL) 4185 goto out; 4186 4187 ihlen = ih->ihl * 4; 4188 if (ihlen < sizeof(_iph)) 4189 goto out; 4190 4191 ad->u.net->v4info.saddr = ih->saddr; 4192 ad->u.net->v4info.daddr = ih->daddr; 4193 ret = 0; 4194 4195 if (proto) 4196 *proto = ih->protocol; 4197 4198 switch (ih->protocol) { 4199 case IPPROTO_TCP: { 4200 struct tcphdr _tcph, *th; 4201 4202 if (ntohs(ih->frag_off) & IP_OFFSET) 4203 break; 4204 4205 offset += ihlen; 4206 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4207 if (th == NULL) 4208 break; 4209 4210 ad->u.net->sport = th->source; 4211 ad->u.net->dport = th->dest; 4212 break; 4213 } 4214 4215 case IPPROTO_UDP: { 4216 struct udphdr _udph, *uh; 4217 4218 if (ntohs(ih->frag_off) & IP_OFFSET) 4219 break; 4220 4221 offset += ihlen; 4222 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4223 if (uh == NULL) 4224 break; 4225 4226 ad->u.net->sport = uh->source; 4227 ad->u.net->dport = uh->dest; 4228 break; 4229 } 4230 4231 case IPPROTO_DCCP: { 4232 struct dccp_hdr _dccph, *dh; 4233 4234 if (ntohs(ih->frag_off) & IP_OFFSET) 4235 break; 4236 4237 offset += ihlen; 4238 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4239 if (dh == NULL) 4240 break; 4241 4242 ad->u.net->sport = dh->dccph_sport; 4243 ad->u.net->dport = dh->dccph_dport; 4244 break; 4245 } 4246 4247 #if IS_ENABLED(CONFIG_IP_SCTP) 4248 case IPPROTO_SCTP: { 4249 struct sctphdr _sctph, *sh; 4250 4251 if (ntohs(ih->frag_off) & IP_OFFSET) 4252 break; 4253 4254 offset += ihlen; 4255 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4256 if (sh == NULL) 4257 break; 4258 4259 ad->u.net->sport = sh->source; 4260 ad->u.net->dport = sh->dest; 4261 break; 4262 } 4263 #endif 4264 default: 4265 break; 4266 } 4267 out: 4268 return ret; 4269 } 4270 4271 #if IS_ENABLED(CONFIG_IPV6) 4272 4273 /* Returns error only if unable to parse addresses */ 4274 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4275 struct common_audit_data *ad, u8 *proto) 4276 { 4277 u8 nexthdr; 4278 int ret = -EINVAL, offset; 4279 struct ipv6hdr _ipv6h, *ip6; 4280 __be16 frag_off; 4281 4282 offset = skb_network_offset(skb); 4283 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4284 if (ip6 == NULL) 4285 goto out; 4286 4287 ad->u.net->v6info.saddr = ip6->saddr; 4288 ad->u.net->v6info.daddr = ip6->daddr; 4289 ret = 0; 4290 4291 nexthdr = ip6->nexthdr; 4292 offset += sizeof(_ipv6h); 4293 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4294 if (offset < 0) 4295 goto out; 4296 4297 if (proto) 4298 *proto = nexthdr; 4299 4300 switch (nexthdr) { 4301 case IPPROTO_TCP: { 4302 struct tcphdr _tcph, *th; 4303 4304 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4305 if (th == NULL) 4306 break; 4307 4308 ad->u.net->sport = th->source; 4309 ad->u.net->dport = th->dest; 4310 break; 4311 } 4312 4313 case IPPROTO_UDP: { 4314 struct udphdr _udph, *uh; 4315 4316 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4317 if (uh == NULL) 4318 break; 4319 4320 ad->u.net->sport = uh->source; 4321 ad->u.net->dport = uh->dest; 4322 break; 4323 } 4324 4325 case IPPROTO_DCCP: { 4326 struct dccp_hdr _dccph, *dh; 4327 4328 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4329 if (dh == NULL) 4330 break; 4331 4332 ad->u.net->sport = dh->dccph_sport; 4333 ad->u.net->dport = dh->dccph_dport; 4334 break; 4335 } 4336 4337 #if IS_ENABLED(CONFIG_IP_SCTP) 4338 case IPPROTO_SCTP: { 4339 struct sctphdr _sctph, *sh; 4340 4341 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4342 if (sh == NULL) 4343 break; 4344 4345 ad->u.net->sport = sh->source; 4346 ad->u.net->dport = sh->dest; 4347 break; 4348 } 4349 #endif 4350 /* includes fragments */ 4351 default: 4352 break; 4353 } 4354 out: 4355 return ret; 4356 } 4357 4358 #endif /* IPV6 */ 4359 4360 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4361 char **_addrp, int src, u8 *proto) 4362 { 4363 char *addrp; 4364 int ret; 4365 4366 switch (ad->u.net->family) { 4367 case PF_INET: 4368 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4369 if (ret) 4370 goto parse_error; 4371 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4372 &ad->u.net->v4info.daddr); 4373 goto okay; 4374 4375 #if IS_ENABLED(CONFIG_IPV6) 4376 case PF_INET6: 4377 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4378 if (ret) 4379 goto parse_error; 4380 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4381 &ad->u.net->v6info.daddr); 4382 goto okay; 4383 #endif /* IPV6 */ 4384 default: 4385 addrp = NULL; 4386 goto okay; 4387 } 4388 4389 parse_error: 4390 pr_warn( 4391 "SELinux: failure in selinux_parse_skb()," 4392 " unable to parse packet\n"); 4393 return ret; 4394 4395 okay: 4396 if (_addrp) 4397 *_addrp = addrp; 4398 return 0; 4399 } 4400 4401 /** 4402 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4403 * @skb: the packet 4404 * @family: protocol family 4405 * @sid: the packet's peer label SID 4406 * 4407 * Description: 4408 * Check the various different forms of network peer labeling and determine 4409 * the peer label/SID for the packet; most of the magic actually occurs in 4410 * the security server function security_net_peersid_cmp(). The function 4411 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4412 * or -EACCES if @sid is invalid due to inconsistencies with the different 4413 * peer labels. 4414 * 4415 */ 4416 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4417 { 4418 int err; 4419 u32 xfrm_sid; 4420 u32 nlbl_sid; 4421 u32 nlbl_type; 4422 4423 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4424 if (unlikely(err)) 4425 return -EACCES; 4426 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4427 if (unlikely(err)) 4428 return -EACCES; 4429 4430 err = security_net_peersid_resolve(&selinux_state, nlbl_sid, 4431 nlbl_type, xfrm_sid, sid); 4432 if (unlikely(err)) { 4433 pr_warn( 4434 "SELinux: failure in selinux_skb_peerlbl_sid()," 4435 " unable to determine packet's peer label\n"); 4436 return -EACCES; 4437 } 4438 4439 return 0; 4440 } 4441 4442 /** 4443 * selinux_conn_sid - Determine the child socket label for a connection 4444 * @sk_sid: the parent socket's SID 4445 * @skb_sid: the packet's SID 4446 * @conn_sid: the resulting connection SID 4447 * 4448 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4449 * combined with the MLS information from @skb_sid in order to create 4450 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 4451 * of @sk_sid. Returns zero on success, negative values on failure. 4452 * 4453 */ 4454 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4455 { 4456 int err = 0; 4457 4458 if (skb_sid != SECSID_NULL) 4459 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid, 4460 conn_sid); 4461 else 4462 *conn_sid = sk_sid; 4463 4464 return err; 4465 } 4466 4467 /* socket security operations */ 4468 4469 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4470 u16 secclass, u32 *socksid) 4471 { 4472 if (tsec->sockcreate_sid > SECSID_NULL) { 4473 *socksid = tsec->sockcreate_sid; 4474 return 0; 4475 } 4476 4477 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid, 4478 secclass, NULL, socksid); 4479 } 4480 4481 static int sock_has_perm(struct sock *sk, u32 perms) 4482 { 4483 struct sk_security_struct *sksec = sk->sk_security; 4484 struct common_audit_data ad; 4485 struct lsm_network_audit net = {0,}; 4486 4487 if (sksec->sid == SECINITSID_KERNEL) 4488 return 0; 4489 4490 ad.type = LSM_AUDIT_DATA_NET; 4491 ad.u.net = &net; 4492 ad.u.net->sk = sk; 4493 4494 return avc_has_perm(&selinux_state, 4495 current_sid(), sksec->sid, sksec->sclass, perms, 4496 &ad); 4497 } 4498 4499 static int selinux_socket_create(int family, int type, 4500 int protocol, int kern) 4501 { 4502 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4503 u32 newsid; 4504 u16 secclass; 4505 int rc; 4506 4507 if (kern) 4508 return 0; 4509 4510 secclass = socket_type_to_security_class(family, type, protocol); 4511 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4512 if (rc) 4513 return rc; 4514 4515 return avc_has_perm(&selinux_state, 4516 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4517 } 4518 4519 static int selinux_socket_post_create(struct socket *sock, int family, 4520 int type, int protocol, int kern) 4521 { 4522 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4523 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4524 struct sk_security_struct *sksec; 4525 u16 sclass = socket_type_to_security_class(family, type, protocol); 4526 u32 sid = SECINITSID_KERNEL; 4527 int err = 0; 4528 4529 if (!kern) { 4530 err = socket_sockcreate_sid(tsec, sclass, &sid); 4531 if (err) 4532 return err; 4533 } 4534 4535 isec->sclass = sclass; 4536 isec->sid = sid; 4537 isec->initialized = LABEL_INITIALIZED; 4538 4539 if (sock->sk) { 4540 sksec = sock->sk->sk_security; 4541 sksec->sclass = sclass; 4542 sksec->sid = sid; 4543 /* Allows detection of the first association on this socket */ 4544 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4545 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4546 4547 err = selinux_netlbl_socket_post_create(sock->sk, family); 4548 } 4549 4550 return err; 4551 } 4552 4553 static int selinux_socket_socketpair(struct socket *socka, 4554 struct socket *sockb) 4555 { 4556 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4557 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4558 4559 sksec_a->peer_sid = sksec_b->sid; 4560 sksec_b->peer_sid = sksec_a->sid; 4561 4562 return 0; 4563 } 4564 4565 /* Range of port numbers used to automatically bind. 4566 Need to determine whether we should perform a name_bind 4567 permission check between the socket and the port number. */ 4568 4569 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4570 { 4571 struct sock *sk = sock->sk; 4572 struct sk_security_struct *sksec = sk->sk_security; 4573 u16 family; 4574 int err; 4575 4576 err = sock_has_perm(sk, SOCKET__BIND); 4577 if (err) 4578 goto out; 4579 4580 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4581 family = sk->sk_family; 4582 if (family == PF_INET || family == PF_INET6) { 4583 char *addrp; 4584 struct common_audit_data ad; 4585 struct lsm_network_audit net = {0,}; 4586 struct sockaddr_in *addr4 = NULL; 4587 struct sockaddr_in6 *addr6 = NULL; 4588 u16 family_sa; 4589 unsigned short snum; 4590 u32 sid, node_perm; 4591 4592 /* 4593 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4594 * that validates multiple binding addresses. Because of this 4595 * need to check address->sa_family as it is possible to have 4596 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4597 */ 4598 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4599 return -EINVAL; 4600 family_sa = address->sa_family; 4601 switch (family_sa) { 4602 case AF_UNSPEC: 4603 case AF_INET: 4604 if (addrlen < sizeof(struct sockaddr_in)) 4605 return -EINVAL; 4606 addr4 = (struct sockaddr_in *)address; 4607 if (family_sa == AF_UNSPEC) { 4608 /* see __inet_bind(), we only want to allow 4609 * AF_UNSPEC if the address is INADDR_ANY 4610 */ 4611 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4612 goto err_af; 4613 family_sa = AF_INET; 4614 } 4615 snum = ntohs(addr4->sin_port); 4616 addrp = (char *)&addr4->sin_addr.s_addr; 4617 break; 4618 case AF_INET6: 4619 if (addrlen < SIN6_LEN_RFC2133) 4620 return -EINVAL; 4621 addr6 = (struct sockaddr_in6 *)address; 4622 snum = ntohs(addr6->sin6_port); 4623 addrp = (char *)&addr6->sin6_addr.s6_addr; 4624 break; 4625 default: 4626 goto err_af; 4627 } 4628 4629 ad.type = LSM_AUDIT_DATA_NET; 4630 ad.u.net = &net; 4631 ad.u.net->sport = htons(snum); 4632 ad.u.net->family = family_sa; 4633 4634 if (snum) { 4635 int low, high; 4636 4637 inet_get_local_port_range(sock_net(sk), &low, &high); 4638 4639 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4640 snum < low || snum > high) { 4641 err = sel_netport_sid(sk->sk_protocol, 4642 snum, &sid); 4643 if (err) 4644 goto out; 4645 err = avc_has_perm(&selinux_state, 4646 sksec->sid, sid, 4647 sksec->sclass, 4648 SOCKET__NAME_BIND, &ad); 4649 if (err) 4650 goto out; 4651 } 4652 } 4653 4654 switch (sksec->sclass) { 4655 case SECCLASS_TCP_SOCKET: 4656 node_perm = TCP_SOCKET__NODE_BIND; 4657 break; 4658 4659 case SECCLASS_UDP_SOCKET: 4660 node_perm = UDP_SOCKET__NODE_BIND; 4661 break; 4662 4663 case SECCLASS_DCCP_SOCKET: 4664 node_perm = DCCP_SOCKET__NODE_BIND; 4665 break; 4666 4667 case SECCLASS_SCTP_SOCKET: 4668 node_perm = SCTP_SOCKET__NODE_BIND; 4669 break; 4670 4671 default: 4672 node_perm = RAWIP_SOCKET__NODE_BIND; 4673 break; 4674 } 4675 4676 err = sel_netnode_sid(addrp, family_sa, &sid); 4677 if (err) 4678 goto out; 4679 4680 if (family_sa == AF_INET) 4681 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4682 else 4683 ad.u.net->v6info.saddr = addr6->sin6_addr; 4684 4685 err = avc_has_perm(&selinux_state, 4686 sksec->sid, sid, 4687 sksec->sclass, node_perm, &ad); 4688 if (err) 4689 goto out; 4690 } 4691 out: 4692 return err; 4693 err_af: 4694 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4695 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4696 return -EINVAL; 4697 return -EAFNOSUPPORT; 4698 } 4699 4700 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4701 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4702 */ 4703 static int selinux_socket_connect_helper(struct socket *sock, 4704 struct sockaddr *address, int addrlen) 4705 { 4706 struct sock *sk = sock->sk; 4707 struct sk_security_struct *sksec = sk->sk_security; 4708 int err; 4709 4710 err = sock_has_perm(sk, SOCKET__CONNECT); 4711 if (err) 4712 return err; 4713 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4714 return -EINVAL; 4715 4716 /* connect(AF_UNSPEC) has special handling, as it is a documented 4717 * way to disconnect the socket 4718 */ 4719 if (address->sa_family == AF_UNSPEC) 4720 return 0; 4721 4722 /* 4723 * If a TCP, DCCP or SCTP socket, check name_connect permission 4724 * for the port. 4725 */ 4726 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4727 sksec->sclass == SECCLASS_DCCP_SOCKET || 4728 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4729 struct common_audit_data ad; 4730 struct lsm_network_audit net = {0,}; 4731 struct sockaddr_in *addr4 = NULL; 4732 struct sockaddr_in6 *addr6 = NULL; 4733 unsigned short snum; 4734 u32 sid, perm; 4735 4736 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4737 * that validates multiple connect addresses. Because of this 4738 * need to check address->sa_family as it is possible to have 4739 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4740 */ 4741 switch (address->sa_family) { 4742 case AF_INET: 4743 addr4 = (struct sockaddr_in *)address; 4744 if (addrlen < sizeof(struct sockaddr_in)) 4745 return -EINVAL; 4746 snum = ntohs(addr4->sin_port); 4747 break; 4748 case AF_INET6: 4749 addr6 = (struct sockaddr_in6 *)address; 4750 if (addrlen < SIN6_LEN_RFC2133) 4751 return -EINVAL; 4752 snum = ntohs(addr6->sin6_port); 4753 break; 4754 default: 4755 /* Note that SCTP services expect -EINVAL, whereas 4756 * others expect -EAFNOSUPPORT. 4757 */ 4758 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4759 return -EINVAL; 4760 else 4761 return -EAFNOSUPPORT; 4762 } 4763 4764 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4765 if (err) 4766 return err; 4767 4768 switch (sksec->sclass) { 4769 case SECCLASS_TCP_SOCKET: 4770 perm = TCP_SOCKET__NAME_CONNECT; 4771 break; 4772 case SECCLASS_DCCP_SOCKET: 4773 perm = DCCP_SOCKET__NAME_CONNECT; 4774 break; 4775 case SECCLASS_SCTP_SOCKET: 4776 perm = SCTP_SOCKET__NAME_CONNECT; 4777 break; 4778 } 4779 4780 ad.type = LSM_AUDIT_DATA_NET; 4781 ad.u.net = &net; 4782 ad.u.net->dport = htons(snum); 4783 ad.u.net->family = address->sa_family; 4784 err = avc_has_perm(&selinux_state, 4785 sksec->sid, sid, sksec->sclass, perm, &ad); 4786 if (err) 4787 return err; 4788 } 4789 4790 return 0; 4791 } 4792 4793 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4794 static int selinux_socket_connect(struct socket *sock, 4795 struct sockaddr *address, int addrlen) 4796 { 4797 int err; 4798 struct sock *sk = sock->sk; 4799 4800 err = selinux_socket_connect_helper(sock, address, addrlen); 4801 if (err) 4802 return err; 4803 4804 return selinux_netlbl_socket_connect(sk, address); 4805 } 4806 4807 static int selinux_socket_listen(struct socket *sock, int backlog) 4808 { 4809 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4810 } 4811 4812 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4813 { 4814 int err; 4815 struct inode_security_struct *isec; 4816 struct inode_security_struct *newisec; 4817 u16 sclass; 4818 u32 sid; 4819 4820 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4821 if (err) 4822 return err; 4823 4824 isec = inode_security_novalidate(SOCK_INODE(sock)); 4825 spin_lock(&isec->lock); 4826 sclass = isec->sclass; 4827 sid = isec->sid; 4828 spin_unlock(&isec->lock); 4829 4830 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4831 newisec->sclass = sclass; 4832 newisec->sid = sid; 4833 newisec->initialized = LABEL_INITIALIZED; 4834 4835 return 0; 4836 } 4837 4838 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4839 int size) 4840 { 4841 return sock_has_perm(sock->sk, SOCKET__WRITE); 4842 } 4843 4844 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4845 int size, int flags) 4846 { 4847 return sock_has_perm(sock->sk, SOCKET__READ); 4848 } 4849 4850 static int selinux_socket_getsockname(struct socket *sock) 4851 { 4852 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4853 } 4854 4855 static int selinux_socket_getpeername(struct socket *sock) 4856 { 4857 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4858 } 4859 4860 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4861 { 4862 int err; 4863 4864 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4865 if (err) 4866 return err; 4867 4868 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4869 } 4870 4871 static int selinux_socket_getsockopt(struct socket *sock, int level, 4872 int optname) 4873 { 4874 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4875 } 4876 4877 static int selinux_socket_shutdown(struct socket *sock, int how) 4878 { 4879 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4880 } 4881 4882 static int selinux_socket_unix_stream_connect(struct sock *sock, 4883 struct sock *other, 4884 struct sock *newsk) 4885 { 4886 struct sk_security_struct *sksec_sock = sock->sk_security; 4887 struct sk_security_struct *sksec_other = other->sk_security; 4888 struct sk_security_struct *sksec_new = newsk->sk_security; 4889 struct common_audit_data ad; 4890 struct lsm_network_audit net = {0,}; 4891 int err; 4892 4893 ad.type = LSM_AUDIT_DATA_NET; 4894 ad.u.net = &net; 4895 ad.u.net->sk = other; 4896 4897 err = avc_has_perm(&selinux_state, 4898 sksec_sock->sid, sksec_other->sid, 4899 sksec_other->sclass, 4900 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4901 if (err) 4902 return err; 4903 4904 /* server child socket */ 4905 sksec_new->peer_sid = sksec_sock->sid; 4906 err = security_sid_mls_copy(&selinux_state, sksec_other->sid, 4907 sksec_sock->sid, &sksec_new->sid); 4908 if (err) 4909 return err; 4910 4911 /* connecting socket */ 4912 sksec_sock->peer_sid = sksec_new->sid; 4913 4914 return 0; 4915 } 4916 4917 static int selinux_socket_unix_may_send(struct socket *sock, 4918 struct socket *other) 4919 { 4920 struct sk_security_struct *ssec = sock->sk->sk_security; 4921 struct sk_security_struct *osec = other->sk->sk_security; 4922 struct common_audit_data ad; 4923 struct lsm_network_audit net = {0,}; 4924 4925 ad.type = LSM_AUDIT_DATA_NET; 4926 ad.u.net = &net; 4927 ad.u.net->sk = other->sk; 4928 4929 return avc_has_perm(&selinux_state, 4930 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4931 &ad); 4932 } 4933 4934 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4935 char *addrp, u16 family, u32 peer_sid, 4936 struct common_audit_data *ad) 4937 { 4938 int err; 4939 u32 if_sid; 4940 u32 node_sid; 4941 4942 err = sel_netif_sid(ns, ifindex, &if_sid); 4943 if (err) 4944 return err; 4945 err = avc_has_perm(&selinux_state, 4946 peer_sid, if_sid, 4947 SECCLASS_NETIF, NETIF__INGRESS, ad); 4948 if (err) 4949 return err; 4950 4951 err = sel_netnode_sid(addrp, family, &node_sid); 4952 if (err) 4953 return err; 4954 return avc_has_perm(&selinux_state, 4955 peer_sid, node_sid, 4956 SECCLASS_NODE, NODE__RECVFROM, ad); 4957 } 4958 4959 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4960 u16 family) 4961 { 4962 int err = 0; 4963 struct sk_security_struct *sksec = sk->sk_security; 4964 u32 sk_sid = sksec->sid; 4965 struct common_audit_data ad; 4966 struct lsm_network_audit net = {0,}; 4967 char *addrp; 4968 4969 ad.type = LSM_AUDIT_DATA_NET; 4970 ad.u.net = &net; 4971 ad.u.net->netif = skb->skb_iif; 4972 ad.u.net->family = family; 4973 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4974 if (err) 4975 return err; 4976 4977 if (selinux_secmark_enabled()) { 4978 err = avc_has_perm(&selinux_state, 4979 sk_sid, skb->secmark, SECCLASS_PACKET, 4980 PACKET__RECV, &ad); 4981 if (err) 4982 return err; 4983 } 4984 4985 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4986 if (err) 4987 return err; 4988 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4989 4990 return err; 4991 } 4992 4993 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4994 { 4995 int err; 4996 struct sk_security_struct *sksec = sk->sk_security; 4997 u16 family = sk->sk_family; 4998 u32 sk_sid = sksec->sid; 4999 struct common_audit_data ad; 5000 struct lsm_network_audit net = {0,}; 5001 char *addrp; 5002 u8 secmark_active; 5003 u8 peerlbl_active; 5004 5005 if (family != PF_INET && family != PF_INET6) 5006 return 0; 5007 5008 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 5009 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5010 family = PF_INET; 5011 5012 /* If any sort of compatibility mode is enabled then handoff processing 5013 * to the selinux_sock_rcv_skb_compat() function to deal with the 5014 * special handling. We do this in an attempt to keep this function 5015 * as fast and as clean as possible. */ 5016 if (!selinux_policycap_netpeer()) 5017 return selinux_sock_rcv_skb_compat(sk, skb, family); 5018 5019 secmark_active = selinux_secmark_enabled(); 5020 peerlbl_active = selinux_peerlbl_enabled(); 5021 if (!secmark_active && !peerlbl_active) 5022 return 0; 5023 5024 ad.type = LSM_AUDIT_DATA_NET; 5025 ad.u.net = &net; 5026 ad.u.net->netif = skb->skb_iif; 5027 ad.u.net->family = family; 5028 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5029 if (err) 5030 return err; 5031 5032 if (peerlbl_active) { 5033 u32 peer_sid; 5034 5035 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5036 if (err) 5037 return err; 5038 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5039 addrp, family, peer_sid, &ad); 5040 if (err) { 5041 selinux_netlbl_err(skb, family, err, 0); 5042 return err; 5043 } 5044 err = avc_has_perm(&selinux_state, 5045 sk_sid, peer_sid, SECCLASS_PEER, 5046 PEER__RECV, &ad); 5047 if (err) { 5048 selinux_netlbl_err(skb, family, err, 0); 5049 return err; 5050 } 5051 } 5052 5053 if (secmark_active) { 5054 err = avc_has_perm(&selinux_state, 5055 sk_sid, skb->secmark, SECCLASS_PACKET, 5056 PACKET__RECV, &ad); 5057 if (err) 5058 return err; 5059 } 5060 5061 return err; 5062 } 5063 5064 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 5065 int __user *optlen, unsigned len) 5066 { 5067 int err = 0; 5068 char *scontext; 5069 u32 scontext_len; 5070 struct sk_security_struct *sksec = sock->sk->sk_security; 5071 u32 peer_sid = SECSID_NULL; 5072 5073 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5074 sksec->sclass == SECCLASS_TCP_SOCKET || 5075 sksec->sclass == SECCLASS_SCTP_SOCKET) 5076 peer_sid = sksec->peer_sid; 5077 if (peer_sid == SECSID_NULL) 5078 return -ENOPROTOOPT; 5079 5080 err = security_sid_to_context(&selinux_state, peer_sid, &scontext, 5081 &scontext_len); 5082 if (err) 5083 return err; 5084 5085 if (scontext_len > len) { 5086 err = -ERANGE; 5087 goto out_len; 5088 } 5089 5090 if (copy_to_user(optval, scontext, scontext_len)) 5091 err = -EFAULT; 5092 5093 out_len: 5094 if (put_user(scontext_len, optlen)) 5095 err = -EFAULT; 5096 kfree(scontext); 5097 return err; 5098 } 5099 5100 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 5101 { 5102 u32 peer_secid = SECSID_NULL; 5103 u16 family; 5104 struct inode_security_struct *isec; 5105 5106 if (skb && skb->protocol == htons(ETH_P_IP)) 5107 family = PF_INET; 5108 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5109 family = PF_INET6; 5110 else if (sock) 5111 family = sock->sk->sk_family; 5112 else 5113 goto out; 5114 5115 if (sock && family == PF_UNIX) { 5116 isec = inode_security_novalidate(SOCK_INODE(sock)); 5117 peer_secid = isec->sid; 5118 } else if (skb) 5119 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5120 5121 out: 5122 *secid = peer_secid; 5123 if (peer_secid == SECSID_NULL) 5124 return -EINVAL; 5125 return 0; 5126 } 5127 5128 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5129 { 5130 struct sk_security_struct *sksec; 5131 5132 sksec = kzalloc(sizeof(*sksec), priority); 5133 if (!sksec) 5134 return -ENOMEM; 5135 5136 sksec->peer_sid = SECINITSID_UNLABELED; 5137 sksec->sid = SECINITSID_UNLABELED; 5138 sksec->sclass = SECCLASS_SOCKET; 5139 selinux_netlbl_sk_security_reset(sksec); 5140 sk->sk_security = sksec; 5141 5142 return 0; 5143 } 5144 5145 static void selinux_sk_free_security(struct sock *sk) 5146 { 5147 struct sk_security_struct *sksec = sk->sk_security; 5148 5149 sk->sk_security = NULL; 5150 selinux_netlbl_sk_security_free(sksec); 5151 kfree(sksec); 5152 } 5153 5154 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5155 { 5156 struct sk_security_struct *sksec = sk->sk_security; 5157 struct sk_security_struct *newsksec = newsk->sk_security; 5158 5159 newsksec->sid = sksec->sid; 5160 newsksec->peer_sid = sksec->peer_sid; 5161 newsksec->sclass = sksec->sclass; 5162 5163 selinux_netlbl_sk_security_reset(newsksec); 5164 } 5165 5166 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 5167 { 5168 if (!sk) 5169 *secid = SECINITSID_ANY_SOCKET; 5170 else { 5171 struct sk_security_struct *sksec = sk->sk_security; 5172 5173 *secid = sksec->sid; 5174 } 5175 } 5176 5177 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5178 { 5179 struct inode_security_struct *isec = 5180 inode_security_novalidate(SOCK_INODE(parent)); 5181 struct sk_security_struct *sksec = sk->sk_security; 5182 5183 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5184 sk->sk_family == PF_UNIX) 5185 isec->sid = sksec->sid; 5186 sksec->sclass = isec->sclass; 5187 } 5188 5189 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming 5190 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association 5191 * already present). 5192 */ 5193 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep, 5194 struct sk_buff *skb) 5195 { 5196 struct sk_security_struct *sksec = ep->base.sk->sk_security; 5197 struct common_audit_data ad; 5198 struct lsm_network_audit net = {0,}; 5199 u8 peerlbl_active; 5200 u32 peer_sid = SECINITSID_UNLABELED; 5201 u32 conn_sid; 5202 int err = 0; 5203 5204 if (!selinux_policycap_extsockclass()) 5205 return 0; 5206 5207 peerlbl_active = selinux_peerlbl_enabled(); 5208 5209 if (peerlbl_active) { 5210 /* This will return peer_sid = SECSID_NULL if there are 5211 * no peer labels, see security_net_peersid_resolve(). 5212 */ 5213 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family, 5214 &peer_sid); 5215 if (err) 5216 return err; 5217 5218 if (peer_sid == SECSID_NULL) 5219 peer_sid = SECINITSID_UNLABELED; 5220 } 5221 5222 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5223 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5224 5225 /* Here as first association on socket. As the peer SID 5226 * was allowed by peer recv (and the netif/node checks), 5227 * then it is approved by policy and used as the primary 5228 * peer SID for getpeercon(3). 5229 */ 5230 sksec->peer_sid = peer_sid; 5231 } else if (sksec->peer_sid != peer_sid) { 5232 /* Other association peer SIDs are checked to enforce 5233 * consistency among the peer SIDs. 5234 */ 5235 ad.type = LSM_AUDIT_DATA_NET; 5236 ad.u.net = &net; 5237 ad.u.net->sk = ep->base.sk; 5238 err = avc_has_perm(&selinux_state, 5239 sksec->peer_sid, peer_sid, sksec->sclass, 5240 SCTP_SOCKET__ASSOCIATION, &ad); 5241 if (err) 5242 return err; 5243 } 5244 5245 /* Compute the MLS component for the connection and store 5246 * the information in ep. This will be used by SCTP TCP type 5247 * sockets and peeled off connections as they cause a new 5248 * socket to be generated. selinux_sctp_sk_clone() will then 5249 * plug this into the new socket. 5250 */ 5251 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid); 5252 if (err) 5253 return err; 5254 5255 ep->secid = conn_sid; 5256 ep->peer_secid = peer_sid; 5257 5258 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5259 return selinux_netlbl_sctp_assoc_request(ep, skb); 5260 } 5261 5262 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5263 * based on their @optname. 5264 */ 5265 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5266 struct sockaddr *address, 5267 int addrlen) 5268 { 5269 int len, err = 0, walk_size = 0; 5270 void *addr_buf; 5271 struct sockaddr *addr; 5272 struct socket *sock; 5273 5274 if (!selinux_policycap_extsockclass()) 5275 return 0; 5276 5277 /* Process one or more addresses that may be IPv4 or IPv6 */ 5278 sock = sk->sk_socket; 5279 addr_buf = address; 5280 5281 while (walk_size < addrlen) { 5282 if (walk_size + sizeof(sa_family_t) > addrlen) 5283 return -EINVAL; 5284 5285 addr = addr_buf; 5286 switch (addr->sa_family) { 5287 case AF_UNSPEC: 5288 case AF_INET: 5289 len = sizeof(struct sockaddr_in); 5290 break; 5291 case AF_INET6: 5292 len = sizeof(struct sockaddr_in6); 5293 break; 5294 default: 5295 return -EINVAL; 5296 } 5297 5298 if (walk_size + len > addrlen) 5299 return -EINVAL; 5300 5301 err = -EINVAL; 5302 switch (optname) { 5303 /* Bind checks */ 5304 case SCTP_PRIMARY_ADDR: 5305 case SCTP_SET_PEER_PRIMARY_ADDR: 5306 case SCTP_SOCKOPT_BINDX_ADD: 5307 err = selinux_socket_bind(sock, addr, len); 5308 break; 5309 /* Connect checks */ 5310 case SCTP_SOCKOPT_CONNECTX: 5311 case SCTP_PARAM_SET_PRIMARY: 5312 case SCTP_PARAM_ADD_IP: 5313 case SCTP_SENDMSG_CONNECT: 5314 err = selinux_socket_connect_helper(sock, addr, len); 5315 if (err) 5316 return err; 5317 5318 /* As selinux_sctp_bind_connect() is called by the 5319 * SCTP protocol layer, the socket is already locked, 5320 * therefore selinux_netlbl_socket_connect_locked() is 5321 * is called here. The situations handled are: 5322 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5323 * whenever a new IP address is added or when a new 5324 * primary address is selected. 5325 * Note that an SCTP connect(2) call happens before 5326 * the SCTP protocol layer and is handled via 5327 * selinux_socket_connect(). 5328 */ 5329 err = selinux_netlbl_socket_connect_locked(sk, addr); 5330 break; 5331 } 5332 5333 if (err) 5334 return err; 5335 5336 addr_buf += len; 5337 walk_size += len; 5338 } 5339 5340 return 0; 5341 } 5342 5343 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5344 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 5345 struct sock *newsk) 5346 { 5347 struct sk_security_struct *sksec = sk->sk_security; 5348 struct sk_security_struct *newsksec = newsk->sk_security; 5349 5350 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5351 * the non-sctp clone version. 5352 */ 5353 if (!selinux_policycap_extsockclass()) 5354 return selinux_sk_clone_security(sk, newsk); 5355 5356 newsksec->sid = ep->secid; 5357 newsksec->peer_sid = ep->peer_secid; 5358 newsksec->sclass = sksec->sclass; 5359 selinux_netlbl_sctp_sk_clone(sk, newsk); 5360 } 5361 5362 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 5363 struct request_sock *req) 5364 { 5365 struct sk_security_struct *sksec = sk->sk_security; 5366 int err; 5367 u16 family = req->rsk_ops->family; 5368 u32 connsid; 5369 u32 peersid; 5370 5371 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5372 if (err) 5373 return err; 5374 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5375 if (err) 5376 return err; 5377 req->secid = connsid; 5378 req->peer_secid = peersid; 5379 5380 return selinux_netlbl_inet_conn_request(req, family); 5381 } 5382 5383 static void selinux_inet_csk_clone(struct sock *newsk, 5384 const struct request_sock *req) 5385 { 5386 struct sk_security_struct *newsksec = newsk->sk_security; 5387 5388 newsksec->sid = req->secid; 5389 newsksec->peer_sid = req->peer_secid; 5390 /* NOTE: Ideally, we should also get the isec->sid for the 5391 new socket in sync, but we don't have the isec available yet. 5392 So we will wait until sock_graft to do it, by which 5393 time it will have been created and available. */ 5394 5395 /* We don't need to take any sort of lock here as we are the only 5396 * thread with access to newsksec */ 5397 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5398 } 5399 5400 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5401 { 5402 u16 family = sk->sk_family; 5403 struct sk_security_struct *sksec = sk->sk_security; 5404 5405 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5406 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5407 family = PF_INET; 5408 5409 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5410 } 5411 5412 static int selinux_secmark_relabel_packet(u32 sid) 5413 { 5414 const struct task_security_struct *__tsec; 5415 u32 tsid; 5416 5417 __tsec = selinux_cred(current_cred()); 5418 tsid = __tsec->sid; 5419 5420 return avc_has_perm(&selinux_state, 5421 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, 5422 NULL); 5423 } 5424 5425 static void selinux_secmark_refcount_inc(void) 5426 { 5427 atomic_inc(&selinux_secmark_refcount); 5428 } 5429 5430 static void selinux_secmark_refcount_dec(void) 5431 { 5432 atomic_dec(&selinux_secmark_refcount); 5433 } 5434 5435 static void selinux_req_classify_flow(const struct request_sock *req, 5436 struct flowi *fl) 5437 { 5438 fl->flowi_secid = req->secid; 5439 } 5440 5441 static int selinux_tun_dev_alloc_security(void **security) 5442 { 5443 struct tun_security_struct *tunsec; 5444 5445 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5446 if (!tunsec) 5447 return -ENOMEM; 5448 tunsec->sid = current_sid(); 5449 5450 *security = tunsec; 5451 return 0; 5452 } 5453 5454 static void selinux_tun_dev_free_security(void *security) 5455 { 5456 kfree(security); 5457 } 5458 5459 static int selinux_tun_dev_create(void) 5460 { 5461 u32 sid = current_sid(); 5462 5463 /* we aren't taking into account the "sockcreate" SID since the socket 5464 * that is being created here is not a socket in the traditional sense, 5465 * instead it is a private sock, accessible only to the kernel, and 5466 * representing a wide range of network traffic spanning multiple 5467 * connections unlike traditional sockets - check the TUN driver to 5468 * get a better understanding of why this socket is special */ 5469 5470 return avc_has_perm(&selinux_state, 5471 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5472 NULL); 5473 } 5474 5475 static int selinux_tun_dev_attach_queue(void *security) 5476 { 5477 struct tun_security_struct *tunsec = security; 5478 5479 return avc_has_perm(&selinux_state, 5480 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5481 TUN_SOCKET__ATTACH_QUEUE, NULL); 5482 } 5483 5484 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5485 { 5486 struct tun_security_struct *tunsec = security; 5487 struct sk_security_struct *sksec = sk->sk_security; 5488 5489 /* we don't currently perform any NetLabel based labeling here and it 5490 * isn't clear that we would want to do so anyway; while we could apply 5491 * labeling without the support of the TUN user the resulting labeled 5492 * traffic from the other end of the connection would almost certainly 5493 * cause confusion to the TUN user that had no idea network labeling 5494 * protocols were being used */ 5495 5496 sksec->sid = tunsec->sid; 5497 sksec->sclass = SECCLASS_TUN_SOCKET; 5498 5499 return 0; 5500 } 5501 5502 static int selinux_tun_dev_open(void *security) 5503 { 5504 struct tun_security_struct *tunsec = security; 5505 u32 sid = current_sid(); 5506 int err; 5507 5508 err = avc_has_perm(&selinux_state, 5509 sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5510 TUN_SOCKET__RELABELFROM, NULL); 5511 if (err) 5512 return err; 5513 err = avc_has_perm(&selinux_state, 5514 sid, sid, SECCLASS_TUN_SOCKET, 5515 TUN_SOCKET__RELABELTO, NULL); 5516 if (err) 5517 return err; 5518 tunsec->sid = sid; 5519 5520 return 0; 5521 } 5522 5523 #ifdef CONFIG_NETFILTER 5524 5525 static unsigned int selinux_ip_forward(struct sk_buff *skb, 5526 const struct net_device *indev, 5527 u16 family) 5528 { 5529 int err; 5530 char *addrp; 5531 u32 peer_sid; 5532 struct common_audit_data ad; 5533 struct lsm_network_audit net = {0,}; 5534 u8 secmark_active; 5535 u8 netlbl_active; 5536 u8 peerlbl_active; 5537 5538 if (!selinux_policycap_netpeer()) 5539 return NF_ACCEPT; 5540 5541 secmark_active = selinux_secmark_enabled(); 5542 netlbl_active = netlbl_enabled(); 5543 peerlbl_active = selinux_peerlbl_enabled(); 5544 if (!secmark_active && !peerlbl_active) 5545 return NF_ACCEPT; 5546 5547 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5548 return NF_DROP; 5549 5550 ad.type = LSM_AUDIT_DATA_NET; 5551 ad.u.net = &net; 5552 ad.u.net->netif = indev->ifindex; 5553 ad.u.net->family = family; 5554 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5555 return NF_DROP; 5556 5557 if (peerlbl_active) { 5558 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 5559 addrp, family, peer_sid, &ad); 5560 if (err) { 5561 selinux_netlbl_err(skb, family, err, 1); 5562 return NF_DROP; 5563 } 5564 } 5565 5566 if (secmark_active) 5567 if (avc_has_perm(&selinux_state, 5568 peer_sid, skb->secmark, 5569 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5570 return NF_DROP; 5571 5572 if (netlbl_active) 5573 /* we do this in the FORWARD path and not the POST_ROUTING 5574 * path because we want to make sure we apply the necessary 5575 * labeling before IPsec is applied so we can leverage AH 5576 * protection */ 5577 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5578 return NF_DROP; 5579 5580 return NF_ACCEPT; 5581 } 5582 5583 static unsigned int selinux_ipv4_forward(void *priv, 5584 struct sk_buff *skb, 5585 const struct nf_hook_state *state) 5586 { 5587 return selinux_ip_forward(skb, state->in, PF_INET); 5588 } 5589 5590 #if IS_ENABLED(CONFIG_IPV6) 5591 static unsigned int selinux_ipv6_forward(void *priv, 5592 struct sk_buff *skb, 5593 const struct nf_hook_state *state) 5594 { 5595 return selinux_ip_forward(skb, state->in, PF_INET6); 5596 } 5597 #endif /* IPV6 */ 5598 5599 static unsigned int selinux_ip_output(struct sk_buff *skb, 5600 u16 family) 5601 { 5602 struct sock *sk; 5603 u32 sid; 5604 5605 if (!netlbl_enabled()) 5606 return NF_ACCEPT; 5607 5608 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5609 * because we want to make sure we apply the necessary labeling 5610 * before IPsec is applied so we can leverage AH protection */ 5611 sk = skb->sk; 5612 if (sk) { 5613 struct sk_security_struct *sksec; 5614 5615 if (sk_listener(sk)) 5616 /* if the socket is the listening state then this 5617 * packet is a SYN-ACK packet which means it needs to 5618 * be labeled based on the connection/request_sock and 5619 * not the parent socket. unfortunately, we can't 5620 * lookup the request_sock yet as it isn't queued on 5621 * the parent socket until after the SYN-ACK is sent. 5622 * the "solution" is to simply pass the packet as-is 5623 * as any IP option based labeling should be copied 5624 * from the initial connection request (in the IP 5625 * layer). it is far from ideal, but until we get a 5626 * security label in the packet itself this is the 5627 * best we can do. */ 5628 return NF_ACCEPT; 5629 5630 /* standard practice, label using the parent socket */ 5631 sksec = sk->sk_security; 5632 sid = sksec->sid; 5633 } else 5634 sid = SECINITSID_KERNEL; 5635 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 5636 return NF_DROP; 5637 5638 return NF_ACCEPT; 5639 } 5640 5641 static unsigned int selinux_ipv4_output(void *priv, 5642 struct sk_buff *skb, 5643 const struct nf_hook_state *state) 5644 { 5645 return selinux_ip_output(skb, PF_INET); 5646 } 5647 5648 #if IS_ENABLED(CONFIG_IPV6) 5649 static unsigned int selinux_ipv6_output(void *priv, 5650 struct sk_buff *skb, 5651 const struct nf_hook_state *state) 5652 { 5653 return selinux_ip_output(skb, PF_INET6); 5654 } 5655 #endif /* IPV6 */ 5656 5657 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5658 int ifindex, 5659 u16 family) 5660 { 5661 struct sock *sk = skb_to_full_sk(skb); 5662 struct sk_security_struct *sksec; 5663 struct common_audit_data ad; 5664 struct lsm_network_audit net = {0,}; 5665 char *addrp; 5666 u8 proto; 5667 5668 if (sk == NULL) 5669 return NF_ACCEPT; 5670 sksec = sk->sk_security; 5671 5672 ad.type = LSM_AUDIT_DATA_NET; 5673 ad.u.net = &net; 5674 ad.u.net->netif = ifindex; 5675 ad.u.net->family = family; 5676 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 5677 return NF_DROP; 5678 5679 if (selinux_secmark_enabled()) 5680 if (avc_has_perm(&selinux_state, 5681 sksec->sid, skb->secmark, 5682 SECCLASS_PACKET, PACKET__SEND, &ad)) 5683 return NF_DROP_ERR(-ECONNREFUSED); 5684 5685 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5686 return NF_DROP_ERR(-ECONNREFUSED); 5687 5688 return NF_ACCEPT; 5689 } 5690 5691 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 5692 const struct net_device *outdev, 5693 u16 family) 5694 { 5695 u32 secmark_perm; 5696 u32 peer_sid; 5697 int ifindex = outdev->ifindex; 5698 struct sock *sk; 5699 struct common_audit_data ad; 5700 struct lsm_network_audit net = {0,}; 5701 char *addrp; 5702 u8 secmark_active; 5703 u8 peerlbl_active; 5704 5705 /* If any sort of compatibility mode is enabled then handoff processing 5706 * to the selinux_ip_postroute_compat() function to deal with the 5707 * special handling. We do this in an attempt to keep this function 5708 * as fast and as clean as possible. */ 5709 if (!selinux_policycap_netpeer()) 5710 return selinux_ip_postroute_compat(skb, ifindex, family); 5711 5712 secmark_active = selinux_secmark_enabled(); 5713 peerlbl_active = selinux_peerlbl_enabled(); 5714 if (!secmark_active && !peerlbl_active) 5715 return NF_ACCEPT; 5716 5717 sk = skb_to_full_sk(skb); 5718 5719 #ifdef CONFIG_XFRM 5720 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5721 * packet transformation so allow the packet to pass without any checks 5722 * since we'll have another chance to perform access control checks 5723 * when the packet is on it's final way out. 5724 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5725 * is NULL, in this case go ahead and apply access control. 5726 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5727 * TCP listening state we cannot wait until the XFRM processing 5728 * is done as we will miss out on the SA label if we do; 5729 * unfortunately, this means more work, but it is only once per 5730 * connection. */ 5731 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5732 !(sk && sk_listener(sk))) 5733 return NF_ACCEPT; 5734 #endif 5735 5736 if (sk == NULL) { 5737 /* Without an associated socket the packet is either coming 5738 * from the kernel or it is being forwarded; check the packet 5739 * to determine which and if the packet is being forwarded 5740 * query the packet directly to determine the security label. */ 5741 if (skb->skb_iif) { 5742 secmark_perm = PACKET__FORWARD_OUT; 5743 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5744 return NF_DROP; 5745 } else { 5746 secmark_perm = PACKET__SEND; 5747 peer_sid = SECINITSID_KERNEL; 5748 } 5749 } else if (sk_listener(sk)) { 5750 /* Locally generated packet but the associated socket is in the 5751 * listening state which means this is a SYN-ACK packet. In 5752 * this particular case the correct security label is assigned 5753 * to the connection/request_sock but unfortunately we can't 5754 * query the request_sock as it isn't queued on the parent 5755 * socket until after the SYN-ACK packet is sent; the only 5756 * viable choice is to regenerate the label like we do in 5757 * selinux_inet_conn_request(). See also selinux_ip_output() 5758 * for similar problems. */ 5759 u32 skb_sid; 5760 struct sk_security_struct *sksec; 5761 5762 sksec = sk->sk_security; 5763 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5764 return NF_DROP; 5765 /* At this point, if the returned skb peerlbl is SECSID_NULL 5766 * and the packet has been through at least one XFRM 5767 * transformation then we must be dealing with the "final" 5768 * form of labeled IPsec packet; since we've already applied 5769 * all of our access controls on this packet we can safely 5770 * pass the packet. */ 5771 if (skb_sid == SECSID_NULL) { 5772 switch (family) { 5773 case PF_INET: 5774 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5775 return NF_ACCEPT; 5776 break; 5777 case PF_INET6: 5778 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5779 return NF_ACCEPT; 5780 break; 5781 default: 5782 return NF_DROP_ERR(-ECONNREFUSED); 5783 } 5784 } 5785 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5786 return NF_DROP; 5787 secmark_perm = PACKET__SEND; 5788 } else { 5789 /* Locally generated packet, fetch the security label from the 5790 * associated socket. */ 5791 struct sk_security_struct *sksec = sk->sk_security; 5792 peer_sid = sksec->sid; 5793 secmark_perm = PACKET__SEND; 5794 } 5795 5796 ad.type = LSM_AUDIT_DATA_NET; 5797 ad.u.net = &net; 5798 ad.u.net->netif = ifindex; 5799 ad.u.net->family = family; 5800 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5801 return NF_DROP; 5802 5803 if (secmark_active) 5804 if (avc_has_perm(&selinux_state, 5805 peer_sid, skb->secmark, 5806 SECCLASS_PACKET, secmark_perm, &ad)) 5807 return NF_DROP_ERR(-ECONNREFUSED); 5808 5809 if (peerlbl_active) { 5810 u32 if_sid; 5811 u32 node_sid; 5812 5813 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5814 return NF_DROP; 5815 if (avc_has_perm(&selinux_state, 5816 peer_sid, if_sid, 5817 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5818 return NF_DROP_ERR(-ECONNREFUSED); 5819 5820 if (sel_netnode_sid(addrp, family, &node_sid)) 5821 return NF_DROP; 5822 if (avc_has_perm(&selinux_state, 5823 peer_sid, node_sid, 5824 SECCLASS_NODE, NODE__SENDTO, &ad)) 5825 return NF_DROP_ERR(-ECONNREFUSED); 5826 } 5827 5828 return NF_ACCEPT; 5829 } 5830 5831 static unsigned int selinux_ipv4_postroute(void *priv, 5832 struct sk_buff *skb, 5833 const struct nf_hook_state *state) 5834 { 5835 return selinux_ip_postroute(skb, state->out, PF_INET); 5836 } 5837 5838 #if IS_ENABLED(CONFIG_IPV6) 5839 static unsigned int selinux_ipv6_postroute(void *priv, 5840 struct sk_buff *skb, 5841 const struct nf_hook_state *state) 5842 { 5843 return selinux_ip_postroute(skb, state->out, PF_INET6); 5844 } 5845 #endif /* IPV6 */ 5846 5847 #endif /* CONFIG_NETFILTER */ 5848 5849 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5850 { 5851 int err = 0; 5852 u32 perm; 5853 struct nlmsghdr *nlh; 5854 struct sk_security_struct *sksec = sk->sk_security; 5855 5856 if (skb->len < NLMSG_HDRLEN) { 5857 err = -EINVAL; 5858 goto out; 5859 } 5860 nlh = nlmsg_hdr(skb); 5861 5862 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 5863 if (err) { 5864 if (err == -EINVAL) { 5865 pr_warn_ratelimited("SELinux: unrecognized netlink" 5866 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5867 " pid=%d comm=%s\n", 5868 sk->sk_protocol, nlh->nlmsg_type, 5869 secclass_map[sksec->sclass - 1].name, 5870 task_pid_nr(current), current->comm); 5871 if (!enforcing_enabled(&selinux_state) || 5872 security_get_allow_unknown(&selinux_state)) 5873 err = 0; 5874 } 5875 5876 /* Ignore */ 5877 if (err == -ENOENT) 5878 err = 0; 5879 goto out; 5880 } 5881 5882 err = sock_has_perm(sk, perm); 5883 out: 5884 return err; 5885 } 5886 5887 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 5888 { 5889 isec->sclass = sclass; 5890 isec->sid = current_sid(); 5891 } 5892 5893 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5894 u32 perms) 5895 { 5896 struct ipc_security_struct *isec; 5897 struct common_audit_data ad; 5898 u32 sid = current_sid(); 5899 5900 isec = selinux_ipc(ipc_perms); 5901 5902 ad.type = LSM_AUDIT_DATA_IPC; 5903 ad.u.ipc_id = ipc_perms->key; 5904 5905 return avc_has_perm(&selinux_state, 5906 sid, isec->sid, isec->sclass, perms, &ad); 5907 } 5908 5909 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5910 { 5911 struct msg_security_struct *msec; 5912 5913 msec = selinux_msg_msg(msg); 5914 msec->sid = SECINITSID_UNLABELED; 5915 5916 return 0; 5917 } 5918 5919 /* message queue security operations */ 5920 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 5921 { 5922 struct ipc_security_struct *isec; 5923 struct common_audit_data ad; 5924 u32 sid = current_sid(); 5925 int rc; 5926 5927 isec = selinux_ipc(msq); 5928 ipc_init_security(isec, SECCLASS_MSGQ); 5929 5930 ad.type = LSM_AUDIT_DATA_IPC; 5931 ad.u.ipc_id = msq->key; 5932 5933 rc = avc_has_perm(&selinux_state, 5934 sid, isec->sid, SECCLASS_MSGQ, 5935 MSGQ__CREATE, &ad); 5936 return rc; 5937 } 5938 5939 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 5940 { 5941 struct ipc_security_struct *isec; 5942 struct common_audit_data ad; 5943 u32 sid = current_sid(); 5944 5945 isec = selinux_ipc(msq); 5946 5947 ad.type = LSM_AUDIT_DATA_IPC; 5948 ad.u.ipc_id = msq->key; 5949 5950 return avc_has_perm(&selinux_state, 5951 sid, isec->sid, SECCLASS_MSGQ, 5952 MSGQ__ASSOCIATE, &ad); 5953 } 5954 5955 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 5956 { 5957 int err; 5958 int perms; 5959 5960 switch (cmd) { 5961 case IPC_INFO: 5962 case MSG_INFO: 5963 /* No specific object, just general system-wide information. */ 5964 return avc_has_perm(&selinux_state, 5965 current_sid(), SECINITSID_KERNEL, 5966 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 5967 case IPC_STAT: 5968 case MSG_STAT: 5969 case MSG_STAT_ANY: 5970 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5971 break; 5972 case IPC_SET: 5973 perms = MSGQ__SETATTR; 5974 break; 5975 case IPC_RMID: 5976 perms = MSGQ__DESTROY; 5977 break; 5978 default: 5979 return 0; 5980 } 5981 5982 err = ipc_has_perm(msq, perms); 5983 return err; 5984 } 5985 5986 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 5987 { 5988 struct ipc_security_struct *isec; 5989 struct msg_security_struct *msec; 5990 struct common_audit_data ad; 5991 u32 sid = current_sid(); 5992 int rc; 5993 5994 isec = selinux_ipc(msq); 5995 msec = selinux_msg_msg(msg); 5996 5997 /* 5998 * First time through, need to assign label to the message 5999 */ 6000 if (msec->sid == SECINITSID_UNLABELED) { 6001 /* 6002 * Compute new sid based on current process and 6003 * message queue this message will be stored in 6004 */ 6005 rc = security_transition_sid(&selinux_state, sid, isec->sid, 6006 SECCLASS_MSG, NULL, &msec->sid); 6007 if (rc) 6008 return rc; 6009 } 6010 6011 ad.type = LSM_AUDIT_DATA_IPC; 6012 ad.u.ipc_id = msq->key; 6013 6014 /* Can this process write to the queue? */ 6015 rc = avc_has_perm(&selinux_state, 6016 sid, isec->sid, SECCLASS_MSGQ, 6017 MSGQ__WRITE, &ad); 6018 if (!rc) 6019 /* Can this process send the message */ 6020 rc = avc_has_perm(&selinux_state, 6021 sid, msec->sid, SECCLASS_MSG, 6022 MSG__SEND, &ad); 6023 if (!rc) 6024 /* Can the message be put in the queue? */ 6025 rc = avc_has_perm(&selinux_state, 6026 msec->sid, isec->sid, SECCLASS_MSGQ, 6027 MSGQ__ENQUEUE, &ad); 6028 6029 return rc; 6030 } 6031 6032 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6033 struct task_struct *target, 6034 long type, int mode) 6035 { 6036 struct ipc_security_struct *isec; 6037 struct msg_security_struct *msec; 6038 struct common_audit_data ad; 6039 u32 sid = task_sid(target); 6040 int rc; 6041 6042 isec = selinux_ipc(msq); 6043 msec = selinux_msg_msg(msg); 6044 6045 ad.type = LSM_AUDIT_DATA_IPC; 6046 ad.u.ipc_id = msq->key; 6047 6048 rc = avc_has_perm(&selinux_state, 6049 sid, isec->sid, 6050 SECCLASS_MSGQ, MSGQ__READ, &ad); 6051 if (!rc) 6052 rc = avc_has_perm(&selinux_state, 6053 sid, msec->sid, 6054 SECCLASS_MSG, MSG__RECEIVE, &ad); 6055 return rc; 6056 } 6057 6058 /* Shared Memory security operations */ 6059 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6060 { 6061 struct ipc_security_struct *isec; 6062 struct common_audit_data ad; 6063 u32 sid = current_sid(); 6064 int rc; 6065 6066 isec = selinux_ipc(shp); 6067 ipc_init_security(isec, SECCLASS_SHM); 6068 6069 ad.type = LSM_AUDIT_DATA_IPC; 6070 ad.u.ipc_id = shp->key; 6071 6072 rc = avc_has_perm(&selinux_state, 6073 sid, isec->sid, SECCLASS_SHM, 6074 SHM__CREATE, &ad); 6075 return rc; 6076 } 6077 6078 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6079 { 6080 struct ipc_security_struct *isec; 6081 struct common_audit_data ad; 6082 u32 sid = current_sid(); 6083 6084 isec = selinux_ipc(shp); 6085 6086 ad.type = LSM_AUDIT_DATA_IPC; 6087 ad.u.ipc_id = shp->key; 6088 6089 return avc_has_perm(&selinux_state, 6090 sid, isec->sid, SECCLASS_SHM, 6091 SHM__ASSOCIATE, &ad); 6092 } 6093 6094 /* Note, at this point, shp is locked down */ 6095 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6096 { 6097 int perms; 6098 int err; 6099 6100 switch (cmd) { 6101 case IPC_INFO: 6102 case SHM_INFO: 6103 /* No specific object, just general system-wide information. */ 6104 return avc_has_perm(&selinux_state, 6105 current_sid(), SECINITSID_KERNEL, 6106 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6107 case IPC_STAT: 6108 case SHM_STAT: 6109 case SHM_STAT_ANY: 6110 perms = SHM__GETATTR | SHM__ASSOCIATE; 6111 break; 6112 case IPC_SET: 6113 perms = SHM__SETATTR; 6114 break; 6115 case SHM_LOCK: 6116 case SHM_UNLOCK: 6117 perms = SHM__LOCK; 6118 break; 6119 case IPC_RMID: 6120 perms = SHM__DESTROY; 6121 break; 6122 default: 6123 return 0; 6124 } 6125 6126 err = ipc_has_perm(shp, perms); 6127 return err; 6128 } 6129 6130 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6131 char __user *shmaddr, int shmflg) 6132 { 6133 u32 perms; 6134 6135 if (shmflg & SHM_RDONLY) 6136 perms = SHM__READ; 6137 else 6138 perms = SHM__READ | SHM__WRITE; 6139 6140 return ipc_has_perm(shp, perms); 6141 } 6142 6143 /* Semaphore security operations */ 6144 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6145 { 6146 struct ipc_security_struct *isec; 6147 struct common_audit_data ad; 6148 u32 sid = current_sid(); 6149 int rc; 6150 6151 isec = selinux_ipc(sma); 6152 ipc_init_security(isec, SECCLASS_SEM); 6153 6154 ad.type = LSM_AUDIT_DATA_IPC; 6155 ad.u.ipc_id = sma->key; 6156 6157 rc = avc_has_perm(&selinux_state, 6158 sid, isec->sid, SECCLASS_SEM, 6159 SEM__CREATE, &ad); 6160 return rc; 6161 } 6162 6163 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6164 { 6165 struct ipc_security_struct *isec; 6166 struct common_audit_data ad; 6167 u32 sid = current_sid(); 6168 6169 isec = selinux_ipc(sma); 6170 6171 ad.type = LSM_AUDIT_DATA_IPC; 6172 ad.u.ipc_id = sma->key; 6173 6174 return avc_has_perm(&selinux_state, 6175 sid, isec->sid, SECCLASS_SEM, 6176 SEM__ASSOCIATE, &ad); 6177 } 6178 6179 /* Note, at this point, sma is locked down */ 6180 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6181 { 6182 int err; 6183 u32 perms; 6184 6185 switch (cmd) { 6186 case IPC_INFO: 6187 case SEM_INFO: 6188 /* No specific object, just general system-wide information. */ 6189 return avc_has_perm(&selinux_state, 6190 current_sid(), SECINITSID_KERNEL, 6191 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6192 case GETPID: 6193 case GETNCNT: 6194 case GETZCNT: 6195 perms = SEM__GETATTR; 6196 break; 6197 case GETVAL: 6198 case GETALL: 6199 perms = SEM__READ; 6200 break; 6201 case SETVAL: 6202 case SETALL: 6203 perms = SEM__WRITE; 6204 break; 6205 case IPC_RMID: 6206 perms = SEM__DESTROY; 6207 break; 6208 case IPC_SET: 6209 perms = SEM__SETATTR; 6210 break; 6211 case IPC_STAT: 6212 case SEM_STAT: 6213 case SEM_STAT_ANY: 6214 perms = SEM__GETATTR | SEM__ASSOCIATE; 6215 break; 6216 default: 6217 return 0; 6218 } 6219 6220 err = ipc_has_perm(sma, perms); 6221 return err; 6222 } 6223 6224 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6225 struct sembuf *sops, unsigned nsops, int alter) 6226 { 6227 u32 perms; 6228 6229 if (alter) 6230 perms = SEM__READ | SEM__WRITE; 6231 else 6232 perms = SEM__READ; 6233 6234 return ipc_has_perm(sma, perms); 6235 } 6236 6237 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6238 { 6239 u32 av = 0; 6240 6241 av = 0; 6242 if (flag & S_IRUGO) 6243 av |= IPC__UNIX_READ; 6244 if (flag & S_IWUGO) 6245 av |= IPC__UNIX_WRITE; 6246 6247 if (av == 0) 6248 return 0; 6249 6250 return ipc_has_perm(ipcp, av); 6251 } 6252 6253 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6254 { 6255 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6256 *secid = isec->sid; 6257 } 6258 6259 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6260 { 6261 if (inode) 6262 inode_doinit_with_dentry(inode, dentry); 6263 } 6264 6265 static int selinux_getprocattr(struct task_struct *p, 6266 char *name, char **value) 6267 { 6268 const struct task_security_struct *__tsec; 6269 u32 sid; 6270 int error; 6271 unsigned len; 6272 6273 rcu_read_lock(); 6274 __tsec = selinux_cred(__task_cred(p)); 6275 6276 if (current != p) { 6277 error = avc_has_perm(&selinux_state, 6278 current_sid(), __tsec->sid, 6279 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6280 if (error) 6281 goto bad; 6282 } 6283 6284 if (!strcmp(name, "current")) 6285 sid = __tsec->sid; 6286 else if (!strcmp(name, "prev")) 6287 sid = __tsec->osid; 6288 else if (!strcmp(name, "exec")) 6289 sid = __tsec->exec_sid; 6290 else if (!strcmp(name, "fscreate")) 6291 sid = __tsec->create_sid; 6292 else if (!strcmp(name, "keycreate")) 6293 sid = __tsec->keycreate_sid; 6294 else if (!strcmp(name, "sockcreate")) 6295 sid = __tsec->sockcreate_sid; 6296 else { 6297 error = -EINVAL; 6298 goto bad; 6299 } 6300 rcu_read_unlock(); 6301 6302 if (!sid) 6303 return 0; 6304 6305 error = security_sid_to_context(&selinux_state, sid, value, &len); 6306 if (error) 6307 return error; 6308 return len; 6309 6310 bad: 6311 rcu_read_unlock(); 6312 return error; 6313 } 6314 6315 static int selinux_setprocattr(const char *name, void *value, size_t size) 6316 { 6317 struct task_security_struct *tsec; 6318 struct cred *new; 6319 u32 mysid = current_sid(), sid = 0, ptsid; 6320 int error; 6321 char *str = value; 6322 6323 /* 6324 * Basic control over ability to set these attributes at all. 6325 */ 6326 if (!strcmp(name, "exec")) 6327 error = avc_has_perm(&selinux_state, 6328 mysid, mysid, SECCLASS_PROCESS, 6329 PROCESS__SETEXEC, NULL); 6330 else if (!strcmp(name, "fscreate")) 6331 error = avc_has_perm(&selinux_state, 6332 mysid, mysid, SECCLASS_PROCESS, 6333 PROCESS__SETFSCREATE, NULL); 6334 else if (!strcmp(name, "keycreate")) 6335 error = avc_has_perm(&selinux_state, 6336 mysid, mysid, SECCLASS_PROCESS, 6337 PROCESS__SETKEYCREATE, NULL); 6338 else if (!strcmp(name, "sockcreate")) 6339 error = avc_has_perm(&selinux_state, 6340 mysid, mysid, SECCLASS_PROCESS, 6341 PROCESS__SETSOCKCREATE, NULL); 6342 else if (!strcmp(name, "current")) 6343 error = avc_has_perm(&selinux_state, 6344 mysid, mysid, SECCLASS_PROCESS, 6345 PROCESS__SETCURRENT, NULL); 6346 else 6347 error = -EINVAL; 6348 if (error) 6349 return error; 6350 6351 /* Obtain a SID for the context, if one was specified. */ 6352 if (size && str[0] && str[0] != '\n') { 6353 if (str[size-1] == '\n') { 6354 str[size-1] = 0; 6355 size--; 6356 } 6357 error = security_context_to_sid(&selinux_state, value, size, 6358 &sid, GFP_KERNEL); 6359 if (error == -EINVAL && !strcmp(name, "fscreate")) { 6360 if (!has_cap_mac_admin(true)) { 6361 struct audit_buffer *ab; 6362 size_t audit_size; 6363 6364 /* We strip a nul only if it is at the end, otherwise the 6365 * context contains a nul and we should audit that */ 6366 if (str[size - 1] == '\0') 6367 audit_size = size - 1; 6368 else 6369 audit_size = size; 6370 ab = audit_log_start(audit_context(), 6371 GFP_ATOMIC, 6372 AUDIT_SELINUX_ERR); 6373 audit_log_format(ab, "op=fscreate invalid_context="); 6374 audit_log_n_untrustedstring(ab, value, audit_size); 6375 audit_log_end(ab); 6376 6377 return error; 6378 } 6379 error = security_context_to_sid_force( 6380 &selinux_state, 6381 value, size, &sid); 6382 } 6383 if (error) 6384 return error; 6385 } 6386 6387 new = prepare_creds(); 6388 if (!new) 6389 return -ENOMEM; 6390 6391 /* Permission checking based on the specified context is 6392 performed during the actual operation (execve, 6393 open/mkdir/...), when we know the full context of the 6394 operation. See selinux_bprm_set_creds for the execve 6395 checks and may_create for the file creation checks. The 6396 operation will then fail if the context is not permitted. */ 6397 tsec = selinux_cred(new); 6398 if (!strcmp(name, "exec")) { 6399 tsec->exec_sid = sid; 6400 } else if (!strcmp(name, "fscreate")) { 6401 tsec->create_sid = sid; 6402 } else if (!strcmp(name, "keycreate")) { 6403 if (sid) { 6404 error = avc_has_perm(&selinux_state, mysid, sid, 6405 SECCLASS_KEY, KEY__CREATE, NULL); 6406 if (error) 6407 goto abort_change; 6408 } 6409 tsec->keycreate_sid = sid; 6410 } else if (!strcmp(name, "sockcreate")) { 6411 tsec->sockcreate_sid = sid; 6412 } else if (!strcmp(name, "current")) { 6413 error = -EINVAL; 6414 if (sid == 0) 6415 goto abort_change; 6416 6417 /* Only allow single threaded processes to change context */ 6418 error = -EPERM; 6419 if (!current_is_single_threaded()) { 6420 error = security_bounded_transition(&selinux_state, 6421 tsec->sid, sid); 6422 if (error) 6423 goto abort_change; 6424 } 6425 6426 /* Check permissions for the transition. */ 6427 error = avc_has_perm(&selinux_state, 6428 tsec->sid, sid, SECCLASS_PROCESS, 6429 PROCESS__DYNTRANSITION, NULL); 6430 if (error) 6431 goto abort_change; 6432 6433 /* Check for ptracing, and update the task SID if ok. 6434 Otherwise, leave SID unchanged and fail. */ 6435 ptsid = ptrace_parent_sid(); 6436 if (ptsid != 0) { 6437 error = avc_has_perm(&selinux_state, 6438 ptsid, sid, SECCLASS_PROCESS, 6439 PROCESS__PTRACE, NULL); 6440 if (error) 6441 goto abort_change; 6442 } 6443 6444 tsec->sid = sid; 6445 } else { 6446 error = -EINVAL; 6447 goto abort_change; 6448 } 6449 6450 commit_creds(new); 6451 return size; 6452 6453 abort_change: 6454 abort_creds(new); 6455 return error; 6456 } 6457 6458 static int selinux_ismaclabel(const char *name) 6459 { 6460 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6461 } 6462 6463 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6464 { 6465 return security_sid_to_context(&selinux_state, secid, 6466 secdata, seclen); 6467 } 6468 6469 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6470 { 6471 return security_context_to_sid(&selinux_state, secdata, seclen, 6472 secid, GFP_KERNEL); 6473 } 6474 6475 static void selinux_release_secctx(char *secdata, u32 seclen) 6476 { 6477 kfree(secdata); 6478 } 6479 6480 static void selinux_inode_invalidate_secctx(struct inode *inode) 6481 { 6482 struct inode_security_struct *isec = selinux_inode(inode); 6483 6484 spin_lock(&isec->lock); 6485 isec->initialized = LABEL_INVALID; 6486 spin_unlock(&isec->lock); 6487 } 6488 6489 /* 6490 * called with inode->i_mutex locked 6491 */ 6492 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6493 { 6494 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6495 ctx, ctxlen, 0); 6496 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6497 return rc == -EOPNOTSUPP ? 0 : rc; 6498 } 6499 6500 /* 6501 * called with inode->i_mutex locked 6502 */ 6503 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6504 { 6505 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 6506 } 6507 6508 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6509 { 6510 int len = 0; 6511 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 6512 ctx, true); 6513 if (len < 0) 6514 return len; 6515 *ctxlen = len; 6516 return 0; 6517 } 6518 #ifdef CONFIG_KEYS 6519 6520 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6521 unsigned long flags) 6522 { 6523 const struct task_security_struct *tsec; 6524 struct key_security_struct *ksec; 6525 6526 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6527 if (!ksec) 6528 return -ENOMEM; 6529 6530 tsec = selinux_cred(cred); 6531 if (tsec->keycreate_sid) 6532 ksec->sid = tsec->keycreate_sid; 6533 else 6534 ksec->sid = tsec->sid; 6535 6536 k->security = ksec; 6537 return 0; 6538 } 6539 6540 static void selinux_key_free(struct key *k) 6541 { 6542 struct key_security_struct *ksec = k->security; 6543 6544 k->security = NULL; 6545 kfree(ksec); 6546 } 6547 6548 static int selinux_key_permission(key_ref_t key_ref, 6549 const struct cred *cred, 6550 unsigned perm) 6551 { 6552 struct key *key; 6553 struct key_security_struct *ksec; 6554 u32 sid; 6555 6556 /* if no specific permissions are requested, we skip the 6557 permission check. No serious, additional covert channels 6558 appear to be created. */ 6559 if (perm == 0) 6560 return 0; 6561 6562 sid = cred_sid(cred); 6563 6564 key = key_ref_to_ptr(key_ref); 6565 ksec = key->security; 6566 6567 return avc_has_perm(&selinux_state, 6568 sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6569 } 6570 6571 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6572 { 6573 struct key_security_struct *ksec = key->security; 6574 char *context = NULL; 6575 unsigned len; 6576 int rc; 6577 6578 rc = security_sid_to_context(&selinux_state, ksec->sid, 6579 &context, &len); 6580 if (!rc) 6581 rc = len; 6582 *_buffer = context; 6583 return rc; 6584 } 6585 #endif 6586 6587 #ifdef CONFIG_SECURITY_INFINIBAND 6588 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6589 { 6590 struct common_audit_data ad; 6591 int err; 6592 u32 sid = 0; 6593 struct ib_security_struct *sec = ib_sec; 6594 struct lsm_ibpkey_audit ibpkey; 6595 6596 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6597 if (err) 6598 return err; 6599 6600 ad.type = LSM_AUDIT_DATA_IBPKEY; 6601 ibpkey.subnet_prefix = subnet_prefix; 6602 ibpkey.pkey = pkey_val; 6603 ad.u.ibpkey = &ibpkey; 6604 return avc_has_perm(&selinux_state, 6605 sec->sid, sid, 6606 SECCLASS_INFINIBAND_PKEY, 6607 INFINIBAND_PKEY__ACCESS, &ad); 6608 } 6609 6610 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6611 u8 port_num) 6612 { 6613 struct common_audit_data ad; 6614 int err; 6615 u32 sid = 0; 6616 struct ib_security_struct *sec = ib_sec; 6617 struct lsm_ibendport_audit ibendport; 6618 6619 err = security_ib_endport_sid(&selinux_state, dev_name, port_num, 6620 &sid); 6621 6622 if (err) 6623 return err; 6624 6625 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6626 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name)); 6627 ibendport.port = port_num; 6628 ad.u.ibendport = &ibendport; 6629 return avc_has_perm(&selinux_state, 6630 sec->sid, sid, 6631 SECCLASS_INFINIBAND_ENDPORT, 6632 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6633 } 6634 6635 static int selinux_ib_alloc_security(void **ib_sec) 6636 { 6637 struct ib_security_struct *sec; 6638 6639 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6640 if (!sec) 6641 return -ENOMEM; 6642 sec->sid = current_sid(); 6643 6644 *ib_sec = sec; 6645 return 0; 6646 } 6647 6648 static void selinux_ib_free_security(void *ib_sec) 6649 { 6650 kfree(ib_sec); 6651 } 6652 #endif 6653 6654 #ifdef CONFIG_BPF_SYSCALL 6655 static int selinux_bpf(int cmd, union bpf_attr *attr, 6656 unsigned int size) 6657 { 6658 u32 sid = current_sid(); 6659 int ret; 6660 6661 switch (cmd) { 6662 case BPF_MAP_CREATE: 6663 ret = avc_has_perm(&selinux_state, 6664 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6665 NULL); 6666 break; 6667 case BPF_PROG_LOAD: 6668 ret = avc_has_perm(&selinux_state, 6669 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6670 NULL); 6671 break; 6672 default: 6673 ret = 0; 6674 break; 6675 } 6676 6677 return ret; 6678 } 6679 6680 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6681 { 6682 u32 av = 0; 6683 6684 if (fmode & FMODE_READ) 6685 av |= BPF__MAP_READ; 6686 if (fmode & FMODE_WRITE) 6687 av |= BPF__MAP_WRITE; 6688 return av; 6689 } 6690 6691 /* This function will check the file pass through unix socket or binder to see 6692 * if it is a bpf related object. And apply correspinding checks on the bpf 6693 * object based on the type. The bpf maps and programs, not like other files and 6694 * socket, are using a shared anonymous inode inside the kernel as their inode. 6695 * So checking that inode cannot identify if the process have privilege to 6696 * access the bpf object and that's why we have to add this additional check in 6697 * selinux_file_receive and selinux_binder_transfer_files. 6698 */ 6699 static int bpf_fd_pass(struct file *file, u32 sid) 6700 { 6701 struct bpf_security_struct *bpfsec; 6702 struct bpf_prog *prog; 6703 struct bpf_map *map; 6704 int ret; 6705 6706 if (file->f_op == &bpf_map_fops) { 6707 map = file->private_data; 6708 bpfsec = map->security; 6709 ret = avc_has_perm(&selinux_state, 6710 sid, bpfsec->sid, SECCLASS_BPF, 6711 bpf_map_fmode_to_av(file->f_mode), NULL); 6712 if (ret) 6713 return ret; 6714 } else if (file->f_op == &bpf_prog_fops) { 6715 prog = file->private_data; 6716 bpfsec = prog->aux->security; 6717 ret = avc_has_perm(&selinux_state, 6718 sid, bpfsec->sid, SECCLASS_BPF, 6719 BPF__PROG_RUN, NULL); 6720 if (ret) 6721 return ret; 6722 } 6723 return 0; 6724 } 6725 6726 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6727 { 6728 u32 sid = current_sid(); 6729 struct bpf_security_struct *bpfsec; 6730 6731 bpfsec = map->security; 6732 return avc_has_perm(&selinux_state, 6733 sid, bpfsec->sid, SECCLASS_BPF, 6734 bpf_map_fmode_to_av(fmode), NULL); 6735 } 6736 6737 static int selinux_bpf_prog(struct bpf_prog *prog) 6738 { 6739 u32 sid = current_sid(); 6740 struct bpf_security_struct *bpfsec; 6741 6742 bpfsec = prog->aux->security; 6743 return avc_has_perm(&selinux_state, 6744 sid, bpfsec->sid, SECCLASS_BPF, 6745 BPF__PROG_RUN, NULL); 6746 } 6747 6748 static int selinux_bpf_map_alloc(struct bpf_map *map) 6749 { 6750 struct bpf_security_struct *bpfsec; 6751 6752 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6753 if (!bpfsec) 6754 return -ENOMEM; 6755 6756 bpfsec->sid = current_sid(); 6757 map->security = bpfsec; 6758 6759 return 0; 6760 } 6761 6762 static void selinux_bpf_map_free(struct bpf_map *map) 6763 { 6764 struct bpf_security_struct *bpfsec = map->security; 6765 6766 map->security = NULL; 6767 kfree(bpfsec); 6768 } 6769 6770 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) 6771 { 6772 struct bpf_security_struct *bpfsec; 6773 6774 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6775 if (!bpfsec) 6776 return -ENOMEM; 6777 6778 bpfsec->sid = current_sid(); 6779 aux->security = bpfsec; 6780 6781 return 0; 6782 } 6783 6784 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) 6785 { 6786 struct bpf_security_struct *bpfsec = aux->security; 6787 6788 aux->security = NULL; 6789 kfree(bpfsec); 6790 } 6791 #endif 6792 6793 static int selinux_lockdown(enum lockdown_reason what) 6794 { 6795 struct common_audit_data ad; 6796 u32 sid = current_sid(); 6797 int invalid_reason = (what <= LOCKDOWN_NONE) || 6798 (what == LOCKDOWN_INTEGRITY_MAX) || 6799 (what >= LOCKDOWN_CONFIDENTIALITY_MAX); 6800 6801 if (WARN(invalid_reason, "Invalid lockdown reason")) { 6802 audit_log(audit_context(), 6803 GFP_ATOMIC, AUDIT_SELINUX_ERR, 6804 "lockdown_reason=invalid"); 6805 return -EINVAL; 6806 } 6807 6808 ad.type = LSM_AUDIT_DATA_LOCKDOWN; 6809 ad.u.reason = what; 6810 6811 if (what <= LOCKDOWN_INTEGRITY_MAX) 6812 return avc_has_perm(&selinux_state, 6813 sid, sid, SECCLASS_LOCKDOWN, 6814 LOCKDOWN__INTEGRITY, &ad); 6815 else 6816 return avc_has_perm(&selinux_state, 6817 sid, sid, SECCLASS_LOCKDOWN, 6818 LOCKDOWN__CONFIDENTIALITY, &ad); 6819 } 6820 6821 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = { 6822 .lbs_cred = sizeof(struct task_security_struct), 6823 .lbs_file = sizeof(struct file_security_struct), 6824 .lbs_inode = sizeof(struct inode_security_struct), 6825 .lbs_ipc = sizeof(struct ipc_security_struct), 6826 .lbs_msg_msg = sizeof(struct msg_security_struct), 6827 }; 6828 6829 #ifdef CONFIG_PERF_EVENTS 6830 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 6831 { 6832 u32 requested, sid = current_sid(); 6833 6834 if (type == PERF_SECURITY_OPEN) 6835 requested = PERF_EVENT__OPEN; 6836 else if (type == PERF_SECURITY_CPU) 6837 requested = PERF_EVENT__CPU; 6838 else if (type == PERF_SECURITY_KERNEL) 6839 requested = PERF_EVENT__KERNEL; 6840 else if (type == PERF_SECURITY_TRACEPOINT) 6841 requested = PERF_EVENT__TRACEPOINT; 6842 else 6843 return -EINVAL; 6844 6845 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT, 6846 requested, NULL); 6847 } 6848 6849 static int selinux_perf_event_alloc(struct perf_event *event) 6850 { 6851 struct perf_event_security_struct *perfsec; 6852 6853 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); 6854 if (!perfsec) 6855 return -ENOMEM; 6856 6857 perfsec->sid = current_sid(); 6858 event->security = perfsec; 6859 6860 return 0; 6861 } 6862 6863 static void selinux_perf_event_free(struct perf_event *event) 6864 { 6865 struct perf_event_security_struct *perfsec = event->security; 6866 6867 event->security = NULL; 6868 kfree(perfsec); 6869 } 6870 6871 static int selinux_perf_event_read(struct perf_event *event) 6872 { 6873 struct perf_event_security_struct *perfsec = event->security; 6874 u32 sid = current_sid(); 6875 6876 return avc_has_perm(&selinux_state, sid, perfsec->sid, 6877 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 6878 } 6879 6880 static int selinux_perf_event_write(struct perf_event *event) 6881 { 6882 struct perf_event_security_struct *perfsec = event->security; 6883 u32 sid = current_sid(); 6884 6885 return avc_has_perm(&selinux_state, sid, perfsec->sid, 6886 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 6887 } 6888 #endif 6889 6890 /* 6891 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 6892 * 1. any hooks that don't belong to (2.) or (3.) below, 6893 * 2. hooks that both access structures allocated by other hooks, and allocate 6894 * structures that can be later accessed by other hooks (mostly "cloning" 6895 * hooks), 6896 * 3. hooks that only allocate structures that can be later accessed by other 6897 * hooks ("allocating" hooks). 6898 * 6899 * Please follow block comment delimiters in the list to keep this order. 6900 * 6901 * This ordering is needed for SELinux runtime disable to work at least somewhat 6902 * safely. Breaking the ordering rules above might lead to NULL pointer derefs 6903 * when disabling SELinux at runtime. 6904 */ 6905 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = { 6906 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 6907 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 6908 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 6909 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 6910 6911 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 6912 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 6913 LSM_HOOK_INIT(capget, selinux_capget), 6914 LSM_HOOK_INIT(capset, selinux_capset), 6915 LSM_HOOK_INIT(capable, selinux_capable), 6916 LSM_HOOK_INIT(quotactl, selinux_quotactl), 6917 LSM_HOOK_INIT(quota_on, selinux_quota_on), 6918 LSM_HOOK_INIT(syslog, selinux_syslog), 6919 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 6920 6921 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 6922 6923 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds), 6924 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 6925 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 6926 6927 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), 6928 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 6929 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 6930 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 6931 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 6932 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 6933 LSM_HOOK_INIT(sb_mount, selinux_mount), 6934 LSM_HOOK_INIT(sb_umount, selinux_umount), 6935 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 6936 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 6937 6938 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 6939 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 6940 6941 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 6942 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 6943 LSM_HOOK_INIT(inode_create, selinux_inode_create), 6944 LSM_HOOK_INIT(inode_link, selinux_inode_link), 6945 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 6946 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 6947 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 6948 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 6949 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 6950 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 6951 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 6952 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 6953 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 6954 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 6955 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 6956 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 6957 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 6958 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 6959 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 6960 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 6961 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 6962 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 6963 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 6964 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 6965 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 6966 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 6967 LSM_HOOK_INIT(path_notify, selinux_path_notify), 6968 6969 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 6970 6971 LSM_HOOK_INIT(file_permission, selinux_file_permission), 6972 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 6973 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 6974 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 6975 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 6976 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 6977 LSM_HOOK_INIT(file_lock, selinux_file_lock), 6978 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 6979 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 6980 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 6981 LSM_HOOK_INIT(file_receive, selinux_file_receive), 6982 6983 LSM_HOOK_INIT(file_open, selinux_file_open), 6984 6985 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 6986 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 6987 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 6988 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 6989 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 6990 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 6991 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 6992 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 6993 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 6994 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 6995 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 6996 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 6997 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), 6998 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 6999 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 7000 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 7001 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 7002 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 7003 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 7004 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 7005 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 7006 LSM_HOOK_INIT(task_kill, selinux_task_kill), 7007 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 7008 7009 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 7010 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 7011 7012 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7013 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7014 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7015 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7016 7017 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7018 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7019 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7020 7021 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7022 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7023 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7024 7025 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7026 7027 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7028 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7029 7030 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7031 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7032 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7033 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7034 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7035 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7036 7037 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7038 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7039 7040 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7041 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7042 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7043 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7044 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7045 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7046 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7047 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7048 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7049 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7050 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7051 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7052 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7053 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7054 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7055 LSM_HOOK_INIT(socket_getpeersec_stream, 7056 selinux_socket_getpeersec_stream), 7057 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7058 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7059 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7060 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7061 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7062 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7063 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7064 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7065 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7066 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7067 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7068 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7069 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7070 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7071 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7072 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7073 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7074 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7075 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7076 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7077 #ifdef CONFIG_SECURITY_INFINIBAND 7078 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7079 LSM_HOOK_INIT(ib_endport_manage_subnet, 7080 selinux_ib_endport_manage_subnet), 7081 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7082 #endif 7083 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7084 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7085 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7086 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7087 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7088 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7089 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7090 selinux_xfrm_state_pol_flow_match), 7091 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7092 #endif 7093 7094 #ifdef CONFIG_KEYS 7095 LSM_HOOK_INIT(key_free, selinux_key_free), 7096 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7097 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7098 #endif 7099 7100 #ifdef CONFIG_AUDIT 7101 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7102 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7103 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7104 #endif 7105 7106 #ifdef CONFIG_BPF_SYSCALL 7107 LSM_HOOK_INIT(bpf, selinux_bpf), 7108 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7109 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7110 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), 7111 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), 7112 #endif 7113 7114 #ifdef CONFIG_PERF_EVENTS 7115 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7116 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), 7117 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7118 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7119 #endif 7120 7121 LSM_HOOK_INIT(locked_down, selinux_lockdown), 7122 7123 /* 7124 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7125 */ 7126 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7127 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7128 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7129 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt), 7130 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7131 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7132 #endif 7133 7134 /* 7135 * PUT "ALLOCATING" HOOKS HERE 7136 */ 7137 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7138 LSM_HOOK_INIT(msg_queue_alloc_security, 7139 selinux_msg_queue_alloc_security), 7140 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7141 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7142 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7143 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7144 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7145 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7146 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7147 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7148 #ifdef CONFIG_SECURITY_INFINIBAND 7149 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7150 #endif 7151 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7152 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7153 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7154 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7155 selinux_xfrm_state_alloc_acquire), 7156 #endif 7157 #ifdef CONFIG_KEYS 7158 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7159 #endif 7160 #ifdef CONFIG_AUDIT 7161 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7162 #endif 7163 #ifdef CONFIG_BPF_SYSCALL 7164 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), 7165 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), 7166 #endif 7167 #ifdef CONFIG_PERF_EVENTS 7168 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7169 #endif 7170 }; 7171 7172 static __init int selinux_init(void) 7173 { 7174 pr_info("SELinux: Initializing.\n"); 7175 7176 memset(&selinux_state, 0, sizeof(selinux_state)); 7177 enforcing_set(&selinux_state, selinux_enforcing_boot); 7178 selinux_state.checkreqprot = selinux_checkreqprot_boot; 7179 selinux_ss_init(&selinux_state.ss); 7180 selinux_avc_init(&selinux_state.avc); 7181 7182 /* Set the security state for the initial task. */ 7183 cred_init_security(); 7184 7185 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7186 7187 avc_init(); 7188 7189 avtab_cache_init(); 7190 7191 ebitmap_cache_init(); 7192 7193 hashtab_cache_init(); 7194 7195 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); 7196 7197 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7198 panic("SELinux: Unable to register AVC netcache callback\n"); 7199 7200 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7201 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7202 7203 if (selinux_enforcing_boot) 7204 pr_debug("SELinux: Starting in enforcing mode\n"); 7205 else 7206 pr_debug("SELinux: Starting in permissive mode\n"); 7207 7208 fs_validate_description(&selinux_fs_parameters); 7209 7210 return 0; 7211 } 7212 7213 static void delayed_superblock_init(struct super_block *sb, void *unused) 7214 { 7215 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7216 } 7217 7218 void selinux_complete_init(void) 7219 { 7220 pr_debug("SELinux: Completing initialization.\n"); 7221 7222 /* Set up any superblocks initialized prior to the policy load. */ 7223 pr_debug("SELinux: Setting up existing superblocks.\n"); 7224 iterate_supers(delayed_superblock_init, NULL); 7225 } 7226 7227 /* SELinux requires early initialization in order to label 7228 all processes and objects when they are created. */ 7229 DEFINE_LSM(selinux) = { 7230 .name = "selinux", 7231 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7232 .enabled = &selinux_enabled_boot, 7233 .blobs = &selinux_blob_sizes, 7234 .init = selinux_init, 7235 }; 7236 7237 #if defined(CONFIG_NETFILTER) 7238 7239 static const struct nf_hook_ops selinux_nf_ops[] = { 7240 { 7241 .hook = selinux_ipv4_postroute, 7242 .pf = NFPROTO_IPV4, 7243 .hooknum = NF_INET_POST_ROUTING, 7244 .priority = NF_IP_PRI_SELINUX_LAST, 7245 }, 7246 { 7247 .hook = selinux_ipv4_forward, 7248 .pf = NFPROTO_IPV4, 7249 .hooknum = NF_INET_FORWARD, 7250 .priority = NF_IP_PRI_SELINUX_FIRST, 7251 }, 7252 { 7253 .hook = selinux_ipv4_output, 7254 .pf = NFPROTO_IPV4, 7255 .hooknum = NF_INET_LOCAL_OUT, 7256 .priority = NF_IP_PRI_SELINUX_FIRST, 7257 }, 7258 #if IS_ENABLED(CONFIG_IPV6) 7259 { 7260 .hook = selinux_ipv6_postroute, 7261 .pf = NFPROTO_IPV6, 7262 .hooknum = NF_INET_POST_ROUTING, 7263 .priority = NF_IP6_PRI_SELINUX_LAST, 7264 }, 7265 { 7266 .hook = selinux_ipv6_forward, 7267 .pf = NFPROTO_IPV6, 7268 .hooknum = NF_INET_FORWARD, 7269 .priority = NF_IP6_PRI_SELINUX_FIRST, 7270 }, 7271 { 7272 .hook = selinux_ipv6_output, 7273 .pf = NFPROTO_IPV6, 7274 .hooknum = NF_INET_LOCAL_OUT, 7275 .priority = NF_IP6_PRI_SELINUX_FIRST, 7276 }, 7277 #endif /* IPV6 */ 7278 }; 7279 7280 static int __net_init selinux_nf_register(struct net *net) 7281 { 7282 return nf_register_net_hooks(net, selinux_nf_ops, 7283 ARRAY_SIZE(selinux_nf_ops)); 7284 } 7285 7286 static void __net_exit selinux_nf_unregister(struct net *net) 7287 { 7288 nf_unregister_net_hooks(net, selinux_nf_ops, 7289 ARRAY_SIZE(selinux_nf_ops)); 7290 } 7291 7292 static struct pernet_operations selinux_net_ops = { 7293 .init = selinux_nf_register, 7294 .exit = selinux_nf_unregister, 7295 }; 7296 7297 static int __init selinux_nf_ip_init(void) 7298 { 7299 int err; 7300 7301 if (!selinux_enabled_boot) 7302 return 0; 7303 7304 pr_debug("SELinux: Registering netfilter hooks\n"); 7305 7306 err = register_pernet_subsys(&selinux_net_ops); 7307 if (err) 7308 panic("SELinux: register_pernet_subsys: error %d\n", err); 7309 7310 return 0; 7311 } 7312 __initcall(selinux_nf_ip_init); 7313 7314 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7315 static void selinux_nf_ip_exit(void) 7316 { 7317 pr_debug("SELinux: Unregistering netfilter hooks\n"); 7318 7319 unregister_pernet_subsys(&selinux_net_ops); 7320 } 7321 #endif 7322 7323 #else /* CONFIG_NETFILTER */ 7324 7325 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7326 #define selinux_nf_ip_exit() 7327 #endif 7328 7329 #endif /* CONFIG_NETFILTER */ 7330 7331 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7332 int selinux_disable(struct selinux_state *state) 7333 { 7334 if (selinux_initialized(state)) { 7335 /* Not permitted after initial policy load. */ 7336 return -EINVAL; 7337 } 7338 7339 if (selinux_disabled(state)) { 7340 /* Only do this once. */ 7341 return -EINVAL; 7342 } 7343 7344 selinux_mark_disabled(state); 7345 7346 pr_info("SELinux: Disabled at runtime.\n"); 7347 7348 /* 7349 * Unregister netfilter hooks. 7350 * Must be done before security_delete_hooks() to avoid breaking 7351 * runtime disable. 7352 */ 7353 selinux_nf_ip_exit(); 7354 7355 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 7356 7357 /* Try to destroy the avc node cache */ 7358 avc_disable(); 7359 7360 /* Unregister selinuxfs. */ 7361 exit_sel_fs(); 7362 7363 return 0; 7364 } 7365 #endif 7366