1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 #include <linux/posix-timers.h> 79 #include <linux/syslog.h> 80 81 #include "avc.h" 82 #include "objsec.h" 83 #include "netif.h" 84 #include "netnode.h" 85 #include "netport.h" 86 #include "xfrm.h" 87 #include "netlabel.h" 88 #include "audit.h" 89 90 #define XATTR_SELINUX_SUFFIX "selinux" 91 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 92 93 #define NUM_SEL_MNT_OPTS 5 94 95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 96 extern struct security_operations *security_ops; 97 98 /* SECMARK reference count */ 99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 100 101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 102 int selinux_enforcing; 103 104 static int __init enforcing_setup(char *str) 105 { 106 unsigned long enforcing; 107 if (!strict_strtoul(str, 0, &enforcing)) 108 selinux_enforcing = enforcing ? 1 : 0; 109 return 1; 110 } 111 __setup("enforcing=", enforcing_setup); 112 #endif 113 114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 116 117 static int __init selinux_enabled_setup(char *str) 118 { 119 unsigned long enabled; 120 if (!strict_strtoul(str, 0, &enabled)) 121 selinux_enabled = enabled ? 1 : 0; 122 return 1; 123 } 124 __setup("selinux=", selinux_enabled_setup); 125 #else 126 int selinux_enabled = 1; 127 #endif 128 129 static struct kmem_cache *sel_inode_cache; 130 131 /** 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 133 * 134 * Description: 135 * This function checks the SECMARK reference counter to see if any SECMARK 136 * targets are currently configured, if the reference counter is greater than 137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 138 * enabled, false (0) if SECMARK is disabled. 139 * 140 */ 141 static int selinux_secmark_enabled(void) 142 { 143 return (atomic_read(&selinux_secmark_refcount) > 0); 144 } 145 146 /* 147 * initialise the security for the init task 148 */ 149 static void cred_init_security(void) 150 { 151 struct cred *cred = (struct cred *) current->real_cred; 152 struct task_security_struct *tsec; 153 154 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 155 if (!tsec) 156 panic("SELinux: Failed to initialize initial task.\n"); 157 158 tsec->osid = tsec->sid = SECINITSID_KERNEL; 159 cred->security = tsec; 160 } 161 162 /* 163 * get the security ID of a set of credentials 164 */ 165 static inline u32 cred_sid(const struct cred *cred) 166 { 167 const struct task_security_struct *tsec; 168 169 tsec = cred->security; 170 return tsec->sid; 171 } 172 173 /* 174 * get the objective security ID of a task 175 */ 176 static inline u32 task_sid(const struct task_struct *task) 177 { 178 u32 sid; 179 180 rcu_read_lock(); 181 sid = cred_sid(__task_cred(task)); 182 rcu_read_unlock(); 183 return sid; 184 } 185 186 /* 187 * get the subjective security ID of the current task 188 */ 189 static inline u32 current_sid(void) 190 { 191 const struct task_security_struct *tsec = current_cred()->security; 192 193 return tsec->sid; 194 } 195 196 /* Allocate and free functions for each kind of security blob. */ 197 198 static int inode_alloc_security(struct inode *inode) 199 { 200 struct inode_security_struct *isec; 201 u32 sid = current_sid(); 202 203 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 204 if (!isec) 205 return -ENOMEM; 206 207 mutex_init(&isec->lock); 208 INIT_LIST_HEAD(&isec->list); 209 isec->inode = inode; 210 isec->sid = SECINITSID_UNLABELED; 211 isec->sclass = SECCLASS_FILE; 212 isec->task_sid = sid; 213 inode->i_security = isec; 214 215 return 0; 216 } 217 218 static void inode_free_security(struct inode *inode) 219 { 220 struct inode_security_struct *isec = inode->i_security; 221 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 222 223 spin_lock(&sbsec->isec_lock); 224 if (!list_empty(&isec->list)) 225 list_del_init(&isec->list); 226 spin_unlock(&sbsec->isec_lock); 227 228 inode->i_security = NULL; 229 kmem_cache_free(sel_inode_cache, isec); 230 } 231 232 static int file_alloc_security(struct file *file) 233 { 234 struct file_security_struct *fsec; 235 u32 sid = current_sid(); 236 237 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 238 if (!fsec) 239 return -ENOMEM; 240 241 fsec->sid = sid; 242 fsec->fown_sid = sid; 243 file->f_security = fsec; 244 245 return 0; 246 } 247 248 static void file_free_security(struct file *file) 249 { 250 struct file_security_struct *fsec = file->f_security; 251 file->f_security = NULL; 252 kfree(fsec); 253 } 254 255 static int superblock_alloc_security(struct super_block *sb) 256 { 257 struct superblock_security_struct *sbsec; 258 259 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 260 if (!sbsec) 261 return -ENOMEM; 262 263 mutex_init(&sbsec->lock); 264 INIT_LIST_HEAD(&sbsec->isec_head); 265 spin_lock_init(&sbsec->isec_lock); 266 sbsec->sb = sb; 267 sbsec->sid = SECINITSID_UNLABELED; 268 sbsec->def_sid = SECINITSID_FILE; 269 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 270 sb->s_security = sbsec; 271 272 return 0; 273 } 274 275 static void superblock_free_security(struct super_block *sb) 276 { 277 struct superblock_security_struct *sbsec = sb->s_security; 278 sb->s_security = NULL; 279 kfree(sbsec); 280 } 281 282 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 283 { 284 struct sk_security_struct *sksec; 285 286 sksec = kzalloc(sizeof(*sksec), priority); 287 if (!sksec) 288 return -ENOMEM; 289 290 sksec->peer_sid = SECINITSID_UNLABELED; 291 sksec->sid = SECINITSID_UNLABELED; 292 sk->sk_security = sksec; 293 294 selinux_netlbl_sk_security_reset(sksec); 295 296 return 0; 297 } 298 299 static void sk_free_security(struct sock *sk) 300 { 301 struct sk_security_struct *sksec = sk->sk_security; 302 303 sk->sk_security = NULL; 304 selinux_netlbl_sk_security_free(sksec); 305 kfree(sksec); 306 } 307 308 /* The security server must be initialized before 309 any labeling or access decisions can be provided. */ 310 extern int ss_initialized; 311 312 /* The file system's label must be initialized prior to use. */ 313 314 static const char *labeling_behaviors[6] = { 315 "uses xattr", 316 "uses transition SIDs", 317 "uses task SIDs", 318 "uses genfs_contexts", 319 "not configured for labeling", 320 "uses mountpoint labeling", 321 }; 322 323 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 324 325 static inline int inode_doinit(struct inode *inode) 326 { 327 return inode_doinit_with_dentry(inode, NULL); 328 } 329 330 enum { 331 Opt_error = -1, 332 Opt_context = 1, 333 Opt_fscontext = 2, 334 Opt_defcontext = 3, 335 Opt_rootcontext = 4, 336 Opt_labelsupport = 5, 337 }; 338 339 static const match_table_t tokens = { 340 {Opt_context, CONTEXT_STR "%s"}, 341 {Opt_fscontext, FSCONTEXT_STR "%s"}, 342 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 343 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 344 {Opt_labelsupport, LABELSUPP_STR}, 345 {Opt_error, NULL}, 346 }; 347 348 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 349 350 static int may_context_mount_sb_relabel(u32 sid, 351 struct superblock_security_struct *sbsec, 352 const struct cred *cred) 353 { 354 const struct task_security_struct *tsec = cred->security; 355 int rc; 356 357 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 358 FILESYSTEM__RELABELFROM, NULL); 359 if (rc) 360 return rc; 361 362 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 363 FILESYSTEM__RELABELTO, NULL); 364 return rc; 365 } 366 367 static int may_context_mount_inode_relabel(u32 sid, 368 struct superblock_security_struct *sbsec, 369 const struct cred *cred) 370 { 371 const struct task_security_struct *tsec = cred->security; 372 int rc; 373 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 374 FILESYSTEM__RELABELFROM, NULL); 375 if (rc) 376 return rc; 377 378 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 379 FILESYSTEM__ASSOCIATE, NULL); 380 return rc; 381 } 382 383 static int sb_finish_set_opts(struct super_block *sb) 384 { 385 struct superblock_security_struct *sbsec = sb->s_security; 386 struct dentry *root = sb->s_root; 387 struct inode *root_inode = root->d_inode; 388 int rc = 0; 389 390 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 391 /* Make sure that the xattr handler exists and that no 392 error other than -ENODATA is returned by getxattr on 393 the root directory. -ENODATA is ok, as this may be 394 the first boot of the SELinux kernel before we have 395 assigned xattr values to the filesystem. */ 396 if (!root_inode->i_op->getxattr) { 397 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 398 "xattr support\n", sb->s_id, sb->s_type->name); 399 rc = -EOPNOTSUPP; 400 goto out; 401 } 402 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 403 if (rc < 0 && rc != -ENODATA) { 404 if (rc == -EOPNOTSUPP) 405 printk(KERN_WARNING "SELinux: (dev %s, type " 406 "%s) has no security xattr handler\n", 407 sb->s_id, sb->s_type->name); 408 else 409 printk(KERN_WARNING "SELinux: (dev %s, type " 410 "%s) getxattr errno %d\n", sb->s_id, 411 sb->s_type->name, -rc); 412 goto out; 413 } 414 } 415 416 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP); 417 418 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 419 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 420 sb->s_id, sb->s_type->name); 421 else 422 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 423 sb->s_id, sb->s_type->name, 424 labeling_behaviors[sbsec->behavior-1]); 425 426 if (sbsec->behavior == SECURITY_FS_USE_GENFS || 427 sbsec->behavior == SECURITY_FS_USE_MNTPOINT || 428 sbsec->behavior == SECURITY_FS_USE_NONE || 429 sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 430 sbsec->flags &= ~SE_SBLABELSUPP; 431 432 /* Special handling for sysfs. Is genfs but also has setxattr handler*/ 433 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0) 434 sbsec->flags |= SE_SBLABELSUPP; 435 436 /* Initialize the root inode. */ 437 rc = inode_doinit_with_dentry(root_inode, root); 438 439 /* Initialize any other inodes associated with the superblock, e.g. 440 inodes created prior to initial policy load or inodes created 441 during get_sb by a pseudo filesystem that directly 442 populates itself. */ 443 spin_lock(&sbsec->isec_lock); 444 next_inode: 445 if (!list_empty(&sbsec->isec_head)) { 446 struct inode_security_struct *isec = 447 list_entry(sbsec->isec_head.next, 448 struct inode_security_struct, list); 449 struct inode *inode = isec->inode; 450 spin_unlock(&sbsec->isec_lock); 451 inode = igrab(inode); 452 if (inode) { 453 if (!IS_PRIVATE(inode)) 454 inode_doinit(inode); 455 iput(inode); 456 } 457 spin_lock(&sbsec->isec_lock); 458 list_del_init(&isec->list); 459 goto next_inode; 460 } 461 spin_unlock(&sbsec->isec_lock); 462 out: 463 return rc; 464 } 465 466 /* 467 * This function should allow an FS to ask what it's mount security 468 * options were so it can use those later for submounts, displaying 469 * mount options, or whatever. 470 */ 471 static int selinux_get_mnt_opts(const struct super_block *sb, 472 struct security_mnt_opts *opts) 473 { 474 int rc = 0, i; 475 struct superblock_security_struct *sbsec = sb->s_security; 476 char *context = NULL; 477 u32 len; 478 char tmp; 479 480 security_init_mnt_opts(opts); 481 482 if (!(sbsec->flags & SE_SBINITIALIZED)) 483 return -EINVAL; 484 485 if (!ss_initialized) 486 return -EINVAL; 487 488 tmp = sbsec->flags & SE_MNTMASK; 489 /* count the number of mount options for this sb */ 490 for (i = 0; i < 8; i++) { 491 if (tmp & 0x01) 492 opts->num_mnt_opts++; 493 tmp >>= 1; 494 } 495 /* Check if the Label support flag is set */ 496 if (sbsec->flags & SE_SBLABELSUPP) 497 opts->num_mnt_opts++; 498 499 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 500 if (!opts->mnt_opts) { 501 rc = -ENOMEM; 502 goto out_free; 503 } 504 505 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 506 if (!opts->mnt_opts_flags) { 507 rc = -ENOMEM; 508 goto out_free; 509 } 510 511 i = 0; 512 if (sbsec->flags & FSCONTEXT_MNT) { 513 rc = security_sid_to_context(sbsec->sid, &context, &len); 514 if (rc) 515 goto out_free; 516 opts->mnt_opts[i] = context; 517 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 518 } 519 if (sbsec->flags & CONTEXT_MNT) { 520 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 521 if (rc) 522 goto out_free; 523 opts->mnt_opts[i] = context; 524 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 525 } 526 if (sbsec->flags & DEFCONTEXT_MNT) { 527 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 528 if (rc) 529 goto out_free; 530 opts->mnt_opts[i] = context; 531 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 532 } 533 if (sbsec->flags & ROOTCONTEXT_MNT) { 534 struct inode *root = sbsec->sb->s_root->d_inode; 535 struct inode_security_struct *isec = root->i_security; 536 537 rc = security_sid_to_context(isec->sid, &context, &len); 538 if (rc) 539 goto out_free; 540 opts->mnt_opts[i] = context; 541 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 542 } 543 if (sbsec->flags & SE_SBLABELSUPP) { 544 opts->mnt_opts[i] = NULL; 545 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP; 546 } 547 548 BUG_ON(i != opts->num_mnt_opts); 549 550 return 0; 551 552 out_free: 553 security_free_mnt_opts(opts); 554 return rc; 555 } 556 557 static int bad_option(struct superblock_security_struct *sbsec, char flag, 558 u32 old_sid, u32 new_sid) 559 { 560 char mnt_flags = sbsec->flags & SE_MNTMASK; 561 562 /* check if the old mount command had the same options */ 563 if (sbsec->flags & SE_SBINITIALIZED) 564 if (!(sbsec->flags & flag) || 565 (old_sid != new_sid)) 566 return 1; 567 568 /* check if we were passed the same options twice, 569 * aka someone passed context=a,context=b 570 */ 571 if (!(sbsec->flags & SE_SBINITIALIZED)) 572 if (mnt_flags & flag) 573 return 1; 574 return 0; 575 } 576 577 /* 578 * Allow filesystems with binary mount data to explicitly set mount point 579 * labeling information. 580 */ 581 static int selinux_set_mnt_opts(struct super_block *sb, 582 struct security_mnt_opts *opts) 583 { 584 const struct cred *cred = current_cred(); 585 int rc = 0, i; 586 struct superblock_security_struct *sbsec = sb->s_security; 587 const char *name = sb->s_type->name; 588 struct inode *inode = sbsec->sb->s_root->d_inode; 589 struct inode_security_struct *root_isec = inode->i_security; 590 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 591 u32 defcontext_sid = 0; 592 char **mount_options = opts->mnt_opts; 593 int *flags = opts->mnt_opts_flags; 594 int num_opts = opts->num_mnt_opts; 595 596 mutex_lock(&sbsec->lock); 597 598 if (!ss_initialized) { 599 if (!num_opts) { 600 /* Defer initialization until selinux_complete_init, 601 after the initial policy is loaded and the security 602 server is ready to handle calls. */ 603 goto out; 604 } 605 rc = -EINVAL; 606 printk(KERN_WARNING "SELinux: Unable to set superblock options " 607 "before the security server is initialized\n"); 608 goto out; 609 } 610 611 /* 612 * Binary mount data FS will come through this function twice. Once 613 * from an explicit call and once from the generic calls from the vfs. 614 * Since the generic VFS calls will not contain any security mount data 615 * we need to skip the double mount verification. 616 * 617 * This does open a hole in which we will not notice if the first 618 * mount using this sb set explict options and a second mount using 619 * this sb does not set any security options. (The first options 620 * will be used for both mounts) 621 */ 622 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 623 && (num_opts == 0)) 624 goto out; 625 626 /* 627 * parse the mount options, check if they are valid sids. 628 * also check if someone is trying to mount the same sb more 629 * than once with different security options. 630 */ 631 for (i = 0; i < num_opts; i++) { 632 u32 sid; 633 634 if (flags[i] == SE_SBLABELSUPP) 635 continue; 636 rc = security_context_to_sid(mount_options[i], 637 strlen(mount_options[i]), &sid); 638 if (rc) { 639 printk(KERN_WARNING "SELinux: security_context_to_sid" 640 "(%s) failed for (dev %s, type %s) errno=%d\n", 641 mount_options[i], sb->s_id, name, rc); 642 goto out; 643 } 644 switch (flags[i]) { 645 case FSCONTEXT_MNT: 646 fscontext_sid = sid; 647 648 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 649 fscontext_sid)) 650 goto out_double_mount; 651 652 sbsec->flags |= FSCONTEXT_MNT; 653 break; 654 case CONTEXT_MNT: 655 context_sid = sid; 656 657 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 658 context_sid)) 659 goto out_double_mount; 660 661 sbsec->flags |= CONTEXT_MNT; 662 break; 663 case ROOTCONTEXT_MNT: 664 rootcontext_sid = sid; 665 666 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 667 rootcontext_sid)) 668 goto out_double_mount; 669 670 sbsec->flags |= ROOTCONTEXT_MNT; 671 672 break; 673 case DEFCONTEXT_MNT: 674 defcontext_sid = sid; 675 676 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 677 defcontext_sid)) 678 goto out_double_mount; 679 680 sbsec->flags |= DEFCONTEXT_MNT; 681 682 break; 683 default: 684 rc = -EINVAL; 685 goto out; 686 } 687 } 688 689 if (sbsec->flags & SE_SBINITIALIZED) { 690 /* previously mounted with options, but not on this attempt? */ 691 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 692 goto out_double_mount; 693 rc = 0; 694 goto out; 695 } 696 697 if (strcmp(sb->s_type->name, "proc") == 0) 698 sbsec->flags |= SE_SBPROC; 699 700 /* Determine the labeling behavior to use for this filesystem type. */ 701 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid); 702 if (rc) { 703 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 704 __func__, sb->s_type->name, rc); 705 goto out; 706 } 707 708 /* sets the context of the superblock for the fs being mounted. */ 709 if (fscontext_sid) { 710 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 711 if (rc) 712 goto out; 713 714 sbsec->sid = fscontext_sid; 715 } 716 717 /* 718 * Switch to using mount point labeling behavior. 719 * sets the label used on all file below the mountpoint, and will set 720 * the superblock context if not already set. 721 */ 722 if (context_sid) { 723 if (!fscontext_sid) { 724 rc = may_context_mount_sb_relabel(context_sid, sbsec, 725 cred); 726 if (rc) 727 goto out; 728 sbsec->sid = context_sid; 729 } else { 730 rc = may_context_mount_inode_relabel(context_sid, sbsec, 731 cred); 732 if (rc) 733 goto out; 734 } 735 if (!rootcontext_sid) 736 rootcontext_sid = context_sid; 737 738 sbsec->mntpoint_sid = context_sid; 739 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 740 } 741 742 if (rootcontext_sid) { 743 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 744 cred); 745 if (rc) 746 goto out; 747 748 root_isec->sid = rootcontext_sid; 749 root_isec->initialized = 1; 750 } 751 752 if (defcontext_sid) { 753 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 754 rc = -EINVAL; 755 printk(KERN_WARNING "SELinux: defcontext option is " 756 "invalid for this filesystem type\n"); 757 goto out; 758 } 759 760 if (defcontext_sid != sbsec->def_sid) { 761 rc = may_context_mount_inode_relabel(defcontext_sid, 762 sbsec, cred); 763 if (rc) 764 goto out; 765 } 766 767 sbsec->def_sid = defcontext_sid; 768 } 769 770 rc = sb_finish_set_opts(sb); 771 out: 772 mutex_unlock(&sbsec->lock); 773 return rc; 774 out_double_mount: 775 rc = -EINVAL; 776 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 777 "security settings for (dev %s, type %s)\n", sb->s_id, name); 778 goto out; 779 } 780 781 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 782 struct super_block *newsb) 783 { 784 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 785 struct superblock_security_struct *newsbsec = newsb->s_security; 786 787 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 788 int set_context = (oldsbsec->flags & CONTEXT_MNT); 789 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 790 791 /* 792 * if the parent was able to be mounted it clearly had no special lsm 793 * mount options. thus we can safely deal with this superblock later 794 */ 795 if (!ss_initialized) 796 return; 797 798 /* how can we clone if the old one wasn't set up?? */ 799 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 800 801 /* if fs is reusing a sb, just let its options stand... */ 802 if (newsbsec->flags & SE_SBINITIALIZED) 803 return; 804 805 mutex_lock(&newsbsec->lock); 806 807 newsbsec->flags = oldsbsec->flags; 808 809 newsbsec->sid = oldsbsec->sid; 810 newsbsec->def_sid = oldsbsec->def_sid; 811 newsbsec->behavior = oldsbsec->behavior; 812 813 if (set_context) { 814 u32 sid = oldsbsec->mntpoint_sid; 815 816 if (!set_fscontext) 817 newsbsec->sid = sid; 818 if (!set_rootcontext) { 819 struct inode *newinode = newsb->s_root->d_inode; 820 struct inode_security_struct *newisec = newinode->i_security; 821 newisec->sid = sid; 822 } 823 newsbsec->mntpoint_sid = sid; 824 } 825 if (set_rootcontext) { 826 const struct inode *oldinode = oldsb->s_root->d_inode; 827 const struct inode_security_struct *oldisec = oldinode->i_security; 828 struct inode *newinode = newsb->s_root->d_inode; 829 struct inode_security_struct *newisec = newinode->i_security; 830 831 newisec->sid = oldisec->sid; 832 } 833 834 sb_finish_set_opts(newsb); 835 mutex_unlock(&newsbsec->lock); 836 } 837 838 static int selinux_parse_opts_str(char *options, 839 struct security_mnt_opts *opts) 840 { 841 char *p; 842 char *context = NULL, *defcontext = NULL; 843 char *fscontext = NULL, *rootcontext = NULL; 844 int rc, num_mnt_opts = 0; 845 846 opts->num_mnt_opts = 0; 847 848 /* Standard string-based options. */ 849 while ((p = strsep(&options, "|")) != NULL) { 850 int token; 851 substring_t args[MAX_OPT_ARGS]; 852 853 if (!*p) 854 continue; 855 856 token = match_token(p, tokens, args); 857 858 switch (token) { 859 case Opt_context: 860 if (context || defcontext) { 861 rc = -EINVAL; 862 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 863 goto out_err; 864 } 865 context = match_strdup(&args[0]); 866 if (!context) { 867 rc = -ENOMEM; 868 goto out_err; 869 } 870 break; 871 872 case Opt_fscontext: 873 if (fscontext) { 874 rc = -EINVAL; 875 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 876 goto out_err; 877 } 878 fscontext = match_strdup(&args[0]); 879 if (!fscontext) { 880 rc = -ENOMEM; 881 goto out_err; 882 } 883 break; 884 885 case Opt_rootcontext: 886 if (rootcontext) { 887 rc = -EINVAL; 888 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 889 goto out_err; 890 } 891 rootcontext = match_strdup(&args[0]); 892 if (!rootcontext) { 893 rc = -ENOMEM; 894 goto out_err; 895 } 896 break; 897 898 case Opt_defcontext: 899 if (context || defcontext) { 900 rc = -EINVAL; 901 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 902 goto out_err; 903 } 904 defcontext = match_strdup(&args[0]); 905 if (!defcontext) { 906 rc = -ENOMEM; 907 goto out_err; 908 } 909 break; 910 case Opt_labelsupport: 911 break; 912 default: 913 rc = -EINVAL; 914 printk(KERN_WARNING "SELinux: unknown mount option\n"); 915 goto out_err; 916 917 } 918 } 919 920 rc = -ENOMEM; 921 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 922 if (!opts->mnt_opts) 923 goto out_err; 924 925 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 926 if (!opts->mnt_opts_flags) { 927 kfree(opts->mnt_opts); 928 goto out_err; 929 } 930 931 if (fscontext) { 932 opts->mnt_opts[num_mnt_opts] = fscontext; 933 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 934 } 935 if (context) { 936 opts->mnt_opts[num_mnt_opts] = context; 937 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 938 } 939 if (rootcontext) { 940 opts->mnt_opts[num_mnt_opts] = rootcontext; 941 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 942 } 943 if (defcontext) { 944 opts->mnt_opts[num_mnt_opts] = defcontext; 945 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 946 } 947 948 opts->num_mnt_opts = num_mnt_opts; 949 return 0; 950 951 out_err: 952 kfree(context); 953 kfree(defcontext); 954 kfree(fscontext); 955 kfree(rootcontext); 956 return rc; 957 } 958 /* 959 * string mount options parsing and call set the sbsec 960 */ 961 static int superblock_doinit(struct super_block *sb, void *data) 962 { 963 int rc = 0; 964 char *options = data; 965 struct security_mnt_opts opts; 966 967 security_init_mnt_opts(&opts); 968 969 if (!data) 970 goto out; 971 972 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 973 974 rc = selinux_parse_opts_str(options, &opts); 975 if (rc) 976 goto out_err; 977 978 out: 979 rc = selinux_set_mnt_opts(sb, &opts); 980 981 out_err: 982 security_free_mnt_opts(&opts); 983 return rc; 984 } 985 986 static void selinux_write_opts(struct seq_file *m, 987 struct security_mnt_opts *opts) 988 { 989 int i; 990 char *prefix; 991 992 for (i = 0; i < opts->num_mnt_opts; i++) { 993 char *has_comma; 994 995 if (opts->mnt_opts[i]) 996 has_comma = strchr(opts->mnt_opts[i], ','); 997 else 998 has_comma = NULL; 999 1000 switch (opts->mnt_opts_flags[i]) { 1001 case CONTEXT_MNT: 1002 prefix = CONTEXT_STR; 1003 break; 1004 case FSCONTEXT_MNT: 1005 prefix = FSCONTEXT_STR; 1006 break; 1007 case ROOTCONTEXT_MNT: 1008 prefix = ROOTCONTEXT_STR; 1009 break; 1010 case DEFCONTEXT_MNT: 1011 prefix = DEFCONTEXT_STR; 1012 break; 1013 case SE_SBLABELSUPP: 1014 seq_putc(m, ','); 1015 seq_puts(m, LABELSUPP_STR); 1016 continue; 1017 default: 1018 BUG(); 1019 }; 1020 /* we need a comma before each option */ 1021 seq_putc(m, ','); 1022 seq_puts(m, prefix); 1023 if (has_comma) 1024 seq_putc(m, '\"'); 1025 seq_puts(m, opts->mnt_opts[i]); 1026 if (has_comma) 1027 seq_putc(m, '\"'); 1028 } 1029 } 1030 1031 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1032 { 1033 struct security_mnt_opts opts; 1034 int rc; 1035 1036 rc = selinux_get_mnt_opts(sb, &opts); 1037 if (rc) { 1038 /* before policy load we may get EINVAL, don't show anything */ 1039 if (rc == -EINVAL) 1040 rc = 0; 1041 return rc; 1042 } 1043 1044 selinux_write_opts(m, &opts); 1045 1046 security_free_mnt_opts(&opts); 1047 1048 return rc; 1049 } 1050 1051 static inline u16 inode_mode_to_security_class(umode_t mode) 1052 { 1053 switch (mode & S_IFMT) { 1054 case S_IFSOCK: 1055 return SECCLASS_SOCK_FILE; 1056 case S_IFLNK: 1057 return SECCLASS_LNK_FILE; 1058 case S_IFREG: 1059 return SECCLASS_FILE; 1060 case S_IFBLK: 1061 return SECCLASS_BLK_FILE; 1062 case S_IFDIR: 1063 return SECCLASS_DIR; 1064 case S_IFCHR: 1065 return SECCLASS_CHR_FILE; 1066 case S_IFIFO: 1067 return SECCLASS_FIFO_FILE; 1068 1069 } 1070 1071 return SECCLASS_FILE; 1072 } 1073 1074 static inline int default_protocol_stream(int protocol) 1075 { 1076 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1077 } 1078 1079 static inline int default_protocol_dgram(int protocol) 1080 { 1081 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1082 } 1083 1084 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1085 { 1086 switch (family) { 1087 case PF_UNIX: 1088 switch (type) { 1089 case SOCK_STREAM: 1090 case SOCK_SEQPACKET: 1091 return SECCLASS_UNIX_STREAM_SOCKET; 1092 case SOCK_DGRAM: 1093 return SECCLASS_UNIX_DGRAM_SOCKET; 1094 } 1095 break; 1096 case PF_INET: 1097 case PF_INET6: 1098 switch (type) { 1099 case SOCK_STREAM: 1100 if (default_protocol_stream(protocol)) 1101 return SECCLASS_TCP_SOCKET; 1102 else 1103 return SECCLASS_RAWIP_SOCKET; 1104 case SOCK_DGRAM: 1105 if (default_protocol_dgram(protocol)) 1106 return SECCLASS_UDP_SOCKET; 1107 else 1108 return SECCLASS_RAWIP_SOCKET; 1109 case SOCK_DCCP: 1110 return SECCLASS_DCCP_SOCKET; 1111 default: 1112 return SECCLASS_RAWIP_SOCKET; 1113 } 1114 break; 1115 case PF_NETLINK: 1116 switch (protocol) { 1117 case NETLINK_ROUTE: 1118 return SECCLASS_NETLINK_ROUTE_SOCKET; 1119 case NETLINK_FIREWALL: 1120 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1121 case NETLINK_INET_DIAG: 1122 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1123 case NETLINK_NFLOG: 1124 return SECCLASS_NETLINK_NFLOG_SOCKET; 1125 case NETLINK_XFRM: 1126 return SECCLASS_NETLINK_XFRM_SOCKET; 1127 case NETLINK_SELINUX: 1128 return SECCLASS_NETLINK_SELINUX_SOCKET; 1129 case NETLINK_AUDIT: 1130 return SECCLASS_NETLINK_AUDIT_SOCKET; 1131 case NETLINK_IP6_FW: 1132 return SECCLASS_NETLINK_IP6FW_SOCKET; 1133 case NETLINK_DNRTMSG: 1134 return SECCLASS_NETLINK_DNRT_SOCKET; 1135 case NETLINK_KOBJECT_UEVENT: 1136 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1137 default: 1138 return SECCLASS_NETLINK_SOCKET; 1139 } 1140 case PF_PACKET: 1141 return SECCLASS_PACKET_SOCKET; 1142 case PF_KEY: 1143 return SECCLASS_KEY_SOCKET; 1144 case PF_APPLETALK: 1145 return SECCLASS_APPLETALK_SOCKET; 1146 } 1147 1148 return SECCLASS_SOCKET; 1149 } 1150 1151 #ifdef CONFIG_PROC_FS 1152 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1153 u16 tclass, 1154 u32 *sid) 1155 { 1156 int buflen, rc; 1157 char *buffer, *path, *end; 1158 1159 buffer = (char *)__get_free_page(GFP_KERNEL); 1160 if (!buffer) 1161 return -ENOMEM; 1162 1163 buflen = PAGE_SIZE; 1164 end = buffer+buflen; 1165 *--end = '\0'; 1166 buflen--; 1167 path = end-1; 1168 *path = '/'; 1169 while (de && de != de->parent) { 1170 buflen -= de->namelen + 1; 1171 if (buflen < 0) 1172 break; 1173 end -= de->namelen; 1174 memcpy(end, de->name, de->namelen); 1175 *--end = '/'; 1176 path = end; 1177 de = de->parent; 1178 } 1179 rc = security_genfs_sid("proc", path, tclass, sid); 1180 free_page((unsigned long)buffer); 1181 return rc; 1182 } 1183 #else 1184 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1185 u16 tclass, 1186 u32 *sid) 1187 { 1188 return -EINVAL; 1189 } 1190 #endif 1191 1192 /* The inode's security attributes must be initialized before first use. */ 1193 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1194 { 1195 struct superblock_security_struct *sbsec = NULL; 1196 struct inode_security_struct *isec = inode->i_security; 1197 u32 sid; 1198 struct dentry *dentry; 1199 #define INITCONTEXTLEN 255 1200 char *context = NULL; 1201 unsigned len = 0; 1202 int rc = 0; 1203 1204 if (isec->initialized) 1205 goto out; 1206 1207 mutex_lock(&isec->lock); 1208 if (isec->initialized) 1209 goto out_unlock; 1210 1211 sbsec = inode->i_sb->s_security; 1212 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1213 /* Defer initialization until selinux_complete_init, 1214 after the initial policy is loaded and the security 1215 server is ready to handle calls. */ 1216 spin_lock(&sbsec->isec_lock); 1217 if (list_empty(&isec->list)) 1218 list_add(&isec->list, &sbsec->isec_head); 1219 spin_unlock(&sbsec->isec_lock); 1220 goto out_unlock; 1221 } 1222 1223 switch (sbsec->behavior) { 1224 case SECURITY_FS_USE_XATTR: 1225 if (!inode->i_op->getxattr) { 1226 isec->sid = sbsec->def_sid; 1227 break; 1228 } 1229 1230 /* Need a dentry, since the xattr API requires one. 1231 Life would be simpler if we could just pass the inode. */ 1232 if (opt_dentry) { 1233 /* Called from d_instantiate or d_splice_alias. */ 1234 dentry = dget(opt_dentry); 1235 } else { 1236 /* Called from selinux_complete_init, try to find a dentry. */ 1237 dentry = d_find_alias(inode); 1238 } 1239 if (!dentry) { 1240 /* 1241 * this is can be hit on boot when a file is accessed 1242 * before the policy is loaded. When we load policy we 1243 * may find inodes that have no dentry on the 1244 * sbsec->isec_head list. No reason to complain as these 1245 * will get fixed up the next time we go through 1246 * inode_doinit with a dentry, before these inodes could 1247 * be used again by userspace. 1248 */ 1249 goto out_unlock; 1250 } 1251 1252 len = INITCONTEXTLEN; 1253 context = kmalloc(len+1, GFP_NOFS); 1254 if (!context) { 1255 rc = -ENOMEM; 1256 dput(dentry); 1257 goto out_unlock; 1258 } 1259 context[len] = '\0'; 1260 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1261 context, len); 1262 if (rc == -ERANGE) { 1263 kfree(context); 1264 1265 /* Need a larger buffer. Query for the right size. */ 1266 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1267 NULL, 0); 1268 if (rc < 0) { 1269 dput(dentry); 1270 goto out_unlock; 1271 } 1272 len = rc; 1273 context = kmalloc(len+1, GFP_NOFS); 1274 if (!context) { 1275 rc = -ENOMEM; 1276 dput(dentry); 1277 goto out_unlock; 1278 } 1279 context[len] = '\0'; 1280 rc = inode->i_op->getxattr(dentry, 1281 XATTR_NAME_SELINUX, 1282 context, len); 1283 } 1284 dput(dentry); 1285 if (rc < 0) { 1286 if (rc != -ENODATA) { 1287 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1288 "%d for dev=%s ino=%ld\n", __func__, 1289 -rc, inode->i_sb->s_id, inode->i_ino); 1290 kfree(context); 1291 goto out_unlock; 1292 } 1293 /* Map ENODATA to the default file SID */ 1294 sid = sbsec->def_sid; 1295 rc = 0; 1296 } else { 1297 rc = security_context_to_sid_default(context, rc, &sid, 1298 sbsec->def_sid, 1299 GFP_NOFS); 1300 if (rc) { 1301 char *dev = inode->i_sb->s_id; 1302 unsigned long ino = inode->i_ino; 1303 1304 if (rc == -EINVAL) { 1305 if (printk_ratelimit()) 1306 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1307 "context=%s. This indicates you may need to relabel the inode or the " 1308 "filesystem in question.\n", ino, dev, context); 1309 } else { 1310 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1311 "returned %d for dev=%s ino=%ld\n", 1312 __func__, context, -rc, dev, ino); 1313 } 1314 kfree(context); 1315 /* Leave with the unlabeled SID */ 1316 rc = 0; 1317 break; 1318 } 1319 } 1320 kfree(context); 1321 isec->sid = sid; 1322 break; 1323 case SECURITY_FS_USE_TASK: 1324 isec->sid = isec->task_sid; 1325 break; 1326 case SECURITY_FS_USE_TRANS: 1327 /* Default to the fs SID. */ 1328 isec->sid = sbsec->sid; 1329 1330 /* Try to obtain a transition SID. */ 1331 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1332 rc = security_transition_sid(isec->task_sid, 1333 sbsec->sid, 1334 isec->sclass, 1335 &sid); 1336 if (rc) 1337 goto out_unlock; 1338 isec->sid = sid; 1339 break; 1340 case SECURITY_FS_USE_MNTPOINT: 1341 isec->sid = sbsec->mntpoint_sid; 1342 break; 1343 default: 1344 /* Default to the fs superblock SID. */ 1345 isec->sid = sbsec->sid; 1346 1347 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1348 struct proc_inode *proci = PROC_I(inode); 1349 if (proci->pde) { 1350 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1351 rc = selinux_proc_get_sid(proci->pde, 1352 isec->sclass, 1353 &sid); 1354 if (rc) 1355 goto out_unlock; 1356 isec->sid = sid; 1357 } 1358 } 1359 break; 1360 } 1361 1362 isec->initialized = 1; 1363 1364 out_unlock: 1365 mutex_unlock(&isec->lock); 1366 out: 1367 if (isec->sclass == SECCLASS_FILE) 1368 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1369 return rc; 1370 } 1371 1372 /* Convert a Linux signal to an access vector. */ 1373 static inline u32 signal_to_av(int sig) 1374 { 1375 u32 perm = 0; 1376 1377 switch (sig) { 1378 case SIGCHLD: 1379 /* Commonly granted from child to parent. */ 1380 perm = PROCESS__SIGCHLD; 1381 break; 1382 case SIGKILL: 1383 /* Cannot be caught or ignored */ 1384 perm = PROCESS__SIGKILL; 1385 break; 1386 case SIGSTOP: 1387 /* Cannot be caught or ignored */ 1388 perm = PROCESS__SIGSTOP; 1389 break; 1390 default: 1391 /* All other signals. */ 1392 perm = PROCESS__SIGNAL; 1393 break; 1394 } 1395 1396 return perm; 1397 } 1398 1399 /* 1400 * Check permission between a pair of credentials 1401 * fork check, ptrace check, etc. 1402 */ 1403 static int cred_has_perm(const struct cred *actor, 1404 const struct cred *target, 1405 u32 perms) 1406 { 1407 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1408 1409 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1410 } 1411 1412 /* 1413 * Check permission between a pair of tasks, e.g. signal checks, 1414 * fork check, ptrace check, etc. 1415 * tsk1 is the actor and tsk2 is the target 1416 * - this uses the default subjective creds of tsk1 1417 */ 1418 static int task_has_perm(const struct task_struct *tsk1, 1419 const struct task_struct *tsk2, 1420 u32 perms) 1421 { 1422 const struct task_security_struct *__tsec1, *__tsec2; 1423 u32 sid1, sid2; 1424 1425 rcu_read_lock(); 1426 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1427 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1428 rcu_read_unlock(); 1429 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1430 } 1431 1432 /* 1433 * Check permission between current and another task, e.g. signal checks, 1434 * fork check, ptrace check, etc. 1435 * current is the actor and tsk2 is the target 1436 * - this uses current's subjective creds 1437 */ 1438 static int current_has_perm(const struct task_struct *tsk, 1439 u32 perms) 1440 { 1441 u32 sid, tsid; 1442 1443 sid = current_sid(); 1444 tsid = task_sid(tsk); 1445 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1446 } 1447 1448 #if CAP_LAST_CAP > 63 1449 #error Fix SELinux to handle capabilities > 63. 1450 #endif 1451 1452 /* Check whether a task is allowed to use a capability. */ 1453 static int task_has_capability(struct task_struct *tsk, 1454 const struct cred *cred, 1455 int cap, int audit) 1456 { 1457 struct common_audit_data ad; 1458 struct av_decision avd; 1459 u16 sclass; 1460 u32 sid = cred_sid(cred); 1461 u32 av = CAP_TO_MASK(cap); 1462 int rc; 1463 1464 COMMON_AUDIT_DATA_INIT(&ad, CAP); 1465 ad.tsk = tsk; 1466 ad.u.cap = cap; 1467 1468 switch (CAP_TO_INDEX(cap)) { 1469 case 0: 1470 sclass = SECCLASS_CAPABILITY; 1471 break; 1472 case 1: 1473 sclass = SECCLASS_CAPABILITY2; 1474 break; 1475 default: 1476 printk(KERN_ERR 1477 "SELinux: out of range capability %d\n", cap); 1478 BUG(); 1479 } 1480 1481 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1482 if (audit == SECURITY_CAP_AUDIT) 1483 avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1484 return rc; 1485 } 1486 1487 /* Check whether a task is allowed to use a system operation. */ 1488 static int task_has_system(struct task_struct *tsk, 1489 u32 perms) 1490 { 1491 u32 sid = task_sid(tsk); 1492 1493 return avc_has_perm(sid, SECINITSID_KERNEL, 1494 SECCLASS_SYSTEM, perms, NULL); 1495 } 1496 1497 /* Check whether a task has a particular permission to an inode. 1498 The 'adp' parameter is optional and allows other audit 1499 data to be passed (e.g. the dentry). */ 1500 static int inode_has_perm(const struct cred *cred, 1501 struct inode *inode, 1502 u32 perms, 1503 struct common_audit_data *adp) 1504 { 1505 struct inode_security_struct *isec; 1506 struct common_audit_data ad; 1507 u32 sid; 1508 1509 validate_creds(cred); 1510 1511 if (unlikely(IS_PRIVATE(inode))) 1512 return 0; 1513 1514 sid = cred_sid(cred); 1515 isec = inode->i_security; 1516 1517 if (!adp) { 1518 adp = &ad; 1519 COMMON_AUDIT_DATA_INIT(&ad, FS); 1520 ad.u.fs.inode = inode; 1521 } 1522 1523 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1524 } 1525 1526 /* Same as inode_has_perm, but pass explicit audit data containing 1527 the dentry to help the auditing code to more easily generate the 1528 pathname if needed. */ 1529 static inline int dentry_has_perm(const struct cred *cred, 1530 struct vfsmount *mnt, 1531 struct dentry *dentry, 1532 u32 av) 1533 { 1534 struct inode *inode = dentry->d_inode; 1535 struct common_audit_data ad; 1536 1537 COMMON_AUDIT_DATA_INIT(&ad, FS); 1538 ad.u.fs.path.mnt = mnt; 1539 ad.u.fs.path.dentry = dentry; 1540 return inode_has_perm(cred, inode, av, &ad); 1541 } 1542 1543 /* Check whether a task can use an open file descriptor to 1544 access an inode in a given way. Check access to the 1545 descriptor itself, and then use dentry_has_perm to 1546 check a particular permission to the file. 1547 Access to the descriptor is implicitly granted if it 1548 has the same SID as the process. If av is zero, then 1549 access to the file is not checked, e.g. for cases 1550 where only the descriptor is affected like seek. */ 1551 static int file_has_perm(const struct cred *cred, 1552 struct file *file, 1553 u32 av) 1554 { 1555 struct file_security_struct *fsec = file->f_security; 1556 struct inode *inode = file->f_path.dentry->d_inode; 1557 struct common_audit_data ad; 1558 u32 sid = cred_sid(cred); 1559 int rc; 1560 1561 COMMON_AUDIT_DATA_INIT(&ad, FS); 1562 ad.u.fs.path = file->f_path; 1563 1564 if (sid != fsec->sid) { 1565 rc = avc_has_perm(sid, fsec->sid, 1566 SECCLASS_FD, 1567 FD__USE, 1568 &ad); 1569 if (rc) 1570 goto out; 1571 } 1572 1573 /* av is zero if only checking access to the descriptor. */ 1574 rc = 0; 1575 if (av) 1576 rc = inode_has_perm(cred, inode, av, &ad); 1577 1578 out: 1579 return rc; 1580 } 1581 1582 /* Check whether a task can create a file. */ 1583 static int may_create(struct inode *dir, 1584 struct dentry *dentry, 1585 u16 tclass) 1586 { 1587 const struct cred *cred = current_cred(); 1588 const struct task_security_struct *tsec = cred->security; 1589 struct inode_security_struct *dsec; 1590 struct superblock_security_struct *sbsec; 1591 u32 sid, newsid; 1592 struct common_audit_data ad; 1593 int rc; 1594 1595 dsec = dir->i_security; 1596 sbsec = dir->i_sb->s_security; 1597 1598 sid = tsec->sid; 1599 newsid = tsec->create_sid; 1600 1601 COMMON_AUDIT_DATA_INIT(&ad, FS); 1602 ad.u.fs.path.dentry = dentry; 1603 1604 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1605 DIR__ADD_NAME | DIR__SEARCH, 1606 &ad); 1607 if (rc) 1608 return rc; 1609 1610 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 1611 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid); 1612 if (rc) 1613 return rc; 1614 } 1615 1616 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1617 if (rc) 1618 return rc; 1619 1620 return avc_has_perm(newsid, sbsec->sid, 1621 SECCLASS_FILESYSTEM, 1622 FILESYSTEM__ASSOCIATE, &ad); 1623 } 1624 1625 /* Check whether a task can create a key. */ 1626 static int may_create_key(u32 ksid, 1627 struct task_struct *ctx) 1628 { 1629 u32 sid = task_sid(ctx); 1630 1631 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1632 } 1633 1634 #define MAY_LINK 0 1635 #define MAY_UNLINK 1 1636 #define MAY_RMDIR 2 1637 1638 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1639 static int may_link(struct inode *dir, 1640 struct dentry *dentry, 1641 int kind) 1642 1643 { 1644 struct inode_security_struct *dsec, *isec; 1645 struct common_audit_data ad; 1646 u32 sid = current_sid(); 1647 u32 av; 1648 int rc; 1649 1650 dsec = dir->i_security; 1651 isec = dentry->d_inode->i_security; 1652 1653 COMMON_AUDIT_DATA_INIT(&ad, FS); 1654 ad.u.fs.path.dentry = dentry; 1655 1656 av = DIR__SEARCH; 1657 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1658 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1659 if (rc) 1660 return rc; 1661 1662 switch (kind) { 1663 case MAY_LINK: 1664 av = FILE__LINK; 1665 break; 1666 case MAY_UNLINK: 1667 av = FILE__UNLINK; 1668 break; 1669 case MAY_RMDIR: 1670 av = DIR__RMDIR; 1671 break; 1672 default: 1673 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1674 __func__, kind); 1675 return 0; 1676 } 1677 1678 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1679 return rc; 1680 } 1681 1682 static inline int may_rename(struct inode *old_dir, 1683 struct dentry *old_dentry, 1684 struct inode *new_dir, 1685 struct dentry *new_dentry) 1686 { 1687 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1688 struct common_audit_data ad; 1689 u32 sid = current_sid(); 1690 u32 av; 1691 int old_is_dir, new_is_dir; 1692 int rc; 1693 1694 old_dsec = old_dir->i_security; 1695 old_isec = old_dentry->d_inode->i_security; 1696 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1697 new_dsec = new_dir->i_security; 1698 1699 COMMON_AUDIT_DATA_INIT(&ad, FS); 1700 1701 ad.u.fs.path.dentry = old_dentry; 1702 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1703 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1704 if (rc) 1705 return rc; 1706 rc = avc_has_perm(sid, old_isec->sid, 1707 old_isec->sclass, FILE__RENAME, &ad); 1708 if (rc) 1709 return rc; 1710 if (old_is_dir && new_dir != old_dir) { 1711 rc = avc_has_perm(sid, old_isec->sid, 1712 old_isec->sclass, DIR__REPARENT, &ad); 1713 if (rc) 1714 return rc; 1715 } 1716 1717 ad.u.fs.path.dentry = new_dentry; 1718 av = DIR__ADD_NAME | DIR__SEARCH; 1719 if (new_dentry->d_inode) 1720 av |= DIR__REMOVE_NAME; 1721 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1722 if (rc) 1723 return rc; 1724 if (new_dentry->d_inode) { 1725 new_isec = new_dentry->d_inode->i_security; 1726 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1727 rc = avc_has_perm(sid, new_isec->sid, 1728 new_isec->sclass, 1729 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1730 if (rc) 1731 return rc; 1732 } 1733 1734 return 0; 1735 } 1736 1737 /* Check whether a task can perform a filesystem operation. */ 1738 static int superblock_has_perm(const struct cred *cred, 1739 struct super_block *sb, 1740 u32 perms, 1741 struct common_audit_data *ad) 1742 { 1743 struct superblock_security_struct *sbsec; 1744 u32 sid = cred_sid(cred); 1745 1746 sbsec = sb->s_security; 1747 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1748 } 1749 1750 /* Convert a Linux mode and permission mask to an access vector. */ 1751 static inline u32 file_mask_to_av(int mode, int mask) 1752 { 1753 u32 av = 0; 1754 1755 if ((mode & S_IFMT) != S_IFDIR) { 1756 if (mask & MAY_EXEC) 1757 av |= FILE__EXECUTE; 1758 if (mask & MAY_READ) 1759 av |= FILE__READ; 1760 1761 if (mask & MAY_APPEND) 1762 av |= FILE__APPEND; 1763 else if (mask & MAY_WRITE) 1764 av |= FILE__WRITE; 1765 1766 } else { 1767 if (mask & MAY_EXEC) 1768 av |= DIR__SEARCH; 1769 if (mask & MAY_WRITE) 1770 av |= DIR__WRITE; 1771 if (mask & MAY_READ) 1772 av |= DIR__READ; 1773 } 1774 1775 return av; 1776 } 1777 1778 /* Convert a Linux file to an access vector. */ 1779 static inline u32 file_to_av(struct file *file) 1780 { 1781 u32 av = 0; 1782 1783 if (file->f_mode & FMODE_READ) 1784 av |= FILE__READ; 1785 if (file->f_mode & FMODE_WRITE) { 1786 if (file->f_flags & O_APPEND) 1787 av |= FILE__APPEND; 1788 else 1789 av |= FILE__WRITE; 1790 } 1791 if (!av) { 1792 /* 1793 * Special file opened with flags 3 for ioctl-only use. 1794 */ 1795 av = FILE__IOCTL; 1796 } 1797 1798 return av; 1799 } 1800 1801 /* 1802 * Convert a file to an access vector and include the correct open 1803 * open permission. 1804 */ 1805 static inline u32 open_file_to_av(struct file *file) 1806 { 1807 u32 av = file_to_av(file); 1808 1809 if (selinux_policycap_openperm) { 1810 mode_t mode = file->f_path.dentry->d_inode->i_mode; 1811 /* 1812 * lnk files and socks do not really have an 'open' 1813 */ 1814 if (S_ISREG(mode)) 1815 av |= FILE__OPEN; 1816 else if (S_ISCHR(mode)) 1817 av |= CHR_FILE__OPEN; 1818 else if (S_ISBLK(mode)) 1819 av |= BLK_FILE__OPEN; 1820 else if (S_ISFIFO(mode)) 1821 av |= FIFO_FILE__OPEN; 1822 else if (S_ISDIR(mode)) 1823 av |= DIR__OPEN; 1824 else if (S_ISSOCK(mode)) 1825 av |= SOCK_FILE__OPEN; 1826 else 1827 printk(KERN_ERR "SELinux: WARNING: inside %s with " 1828 "unknown mode:%o\n", __func__, mode); 1829 } 1830 return av; 1831 } 1832 1833 /* Hook functions begin here. */ 1834 1835 static int selinux_ptrace_access_check(struct task_struct *child, 1836 unsigned int mode) 1837 { 1838 int rc; 1839 1840 rc = cap_ptrace_access_check(child, mode); 1841 if (rc) 1842 return rc; 1843 1844 if (mode == PTRACE_MODE_READ) { 1845 u32 sid = current_sid(); 1846 u32 csid = task_sid(child); 1847 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 1848 } 1849 1850 return current_has_perm(child, PROCESS__PTRACE); 1851 } 1852 1853 static int selinux_ptrace_traceme(struct task_struct *parent) 1854 { 1855 int rc; 1856 1857 rc = cap_ptrace_traceme(parent); 1858 if (rc) 1859 return rc; 1860 1861 return task_has_perm(parent, current, PROCESS__PTRACE); 1862 } 1863 1864 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1865 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1866 { 1867 int error; 1868 1869 error = current_has_perm(target, PROCESS__GETCAP); 1870 if (error) 1871 return error; 1872 1873 return cap_capget(target, effective, inheritable, permitted); 1874 } 1875 1876 static int selinux_capset(struct cred *new, const struct cred *old, 1877 const kernel_cap_t *effective, 1878 const kernel_cap_t *inheritable, 1879 const kernel_cap_t *permitted) 1880 { 1881 int error; 1882 1883 error = cap_capset(new, old, 1884 effective, inheritable, permitted); 1885 if (error) 1886 return error; 1887 1888 return cred_has_perm(old, new, PROCESS__SETCAP); 1889 } 1890 1891 /* 1892 * (This comment used to live with the selinux_task_setuid hook, 1893 * which was removed). 1894 * 1895 * Since setuid only affects the current process, and since the SELinux 1896 * controls are not based on the Linux identity attributes, SELinux does not 1897 * need to control this operation. However, SELinux does control the use of 1898 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 1899 */ 1900 1901 static int selinux_capable(struct task_struct *tsk, const struct cred *cred, 1902 int cap, int audit) 1903 { 1904 int rc; 1905 1906 rc = cap_capable(tsk, cred, cap, audit); 1907 if (rc) 1908 return rc; 1909 1910 return task_has_capability(tsk, cred, cap, audit); 1911 } 1912 1913 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1914 { 1915 int buflen, rc; 1916 char *buffer, *path, *end; 1917 1918 rc = -ENOMEM; 1919 buffer = (char *)__get_free_page(GFP_KERNEL); 1920 if (!buffer) 1921 goto out; 1922 1923 buflen = PAGE_SIZE; 1924 end = buffer+buflen; 1925 *--end = '\0'; 1926 buflen--; 1927 path = end-1; 1928 *path = '/'; 1929 while (table) { 1930 const char *name = table->procname; 1931 size_t namelen = strlen(name); 1932 buflen -= namelen + 1; 1933 if (buflen < 0) 1934 goto out_free; 1935 end -= namelen; 1936 memcpy(end, name, namelen); 1937 *--end = '/'; 1938 path = end; 1939 table = table->parent; 1940 } 1941 buflen -= 4; 1942 if (buflen < 0) 1943 goto out_free; 1944 end -= 4; 1945 memcpy(end, "/sys", 4); 1946 path = end; 1947 rc = security_genfs_sid("proc", path, tclass, sid); 1948 out_free: 1949 free_page((unsigned long)buffer); 1950 out: 1951 return rc; 1952 } 1953 1954 static int selinux_sysctl(ctl_table *table, int op) 1955 { 1956 int error = 0; 1957 u32 av; 1958 u32 tsid, sid; 1959 int rc; 1960 1961 sid = current_sid(); 1962 1963 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1964 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1965 if (rc) { 1966 /* Default to the well-defined sysctl SID. */ 1967 tsid = SECINITSID_SYSCTL; 1968 } 1969 1970 /* The op values are "defined" in sysctl.c, thereby creating 1971 * a bad coupling between this module and sysctl.c */ 1972 if (op == 001) { 1973 error = avc_has_perm(sid, tsid, 1974 SECCLASS_DIR, DIR__SEARCH, NULL); 1975 } else { 1976 av = 0; 1977 if (op & 004) 1978 av |= FILE__READ; 1979 if (op & 002) 1980 av |= FILE__WRITE; 1981 if (av) 1982 error = avc_has_perm(sid, tsid, 1983 SECCLASS_FILE, av, NULL); 1984 } 1985 1986 return error; 1987 } 1988 1989 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1990 { 1991 const struct cred *cred = current_cred(); 1992 int rc = 0; 1993 1994 if (!sb) 1995 return 0; 1996 1997 switch (cmds) { 1998 case Q_SYNC: 1999 case Q_QUOTAON: 2000 case Q_QUOTAOFF: 2001 case Q_SETINFO: 2002 case Q_SETQUOTA: 2003 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2004 break; 2005 case Q_GETFMT: 2006 case Q_GETINFO: 2007 case Q_GETQUOTA: 2008 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2009 break; 2010 default: 2011 rc = 0; /* let the kernel handle invalid cmds */ 2012 break; 2013 } 2014 return rc; 2015 } 2016 2017 static int selinux_quota_on(struct dentry *dentry) 2018 { 2019 const struct cred *cred = current_cred(); 2020 2021 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON); 2022 } 2023 2024 static int selinux_syslog(int type, bool from_file) 2025 { 2026 int rc; 2027 2028 rc = cap_syslog(type, from_file); 2029 if (rc) 2030 return rc; 2031 2032 switch (type) { 2033 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2034 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2035 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2036 break; 2037 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2038 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2039 /* Set level of messages printed to console */ 2040 case SYSLOG_ACTION_CONSOLE_LEVEL: 2041 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2042 break; 2043 case SYSLOG_ACTION_CLOSE: /* Close log */ 2044 case SYSLOG_ACTION_OPEN: /* Open log */ 2045 case SYSLOG_ACTION_READ: /* Read from log */ 2046 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */ 2047 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */ 2048 default: 2049 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2050 break; 2051 } 2052 return rc; 2053 } 2054 2055 /* 2056 * Check that a process has enough memory to allocate a new virtual 2057 * mapping. 0 means there is enough memory for the allocation to 2058 * succeed and -ENOMEM implies there is not. 2059 * 2060 * Do not audit the selinux permission check, as this is applied to all 2061 * processes that allocate mappings. 2062 */ 2063 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2064 { 2065 int rc, cap_sys_admin = 0; 2066 2067 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN, 2068 SECURITY_CAP_NOAUDIT); 2069 if (rc == 0) 2070 cap_sys_admin = 1; 2071 2072 return __vm_enough_memory(mm, pages, cap_sys_admin); 2073 } 2074 2075 /* binprm security operations */ 2076 2077 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2078 { 2079 const struct task_security_struct *old_tsec; 2080 struct task_security_struct *new_tsec; 2081 struct inode_security_struct *isec; 2082 struct common_audit_data ad; 2083 struct inode *inode = bprm->file->f_path.dentry->d_inode; 2084 int rc; 2085 2086 rc = cap_bprm_set_creds(bprm); 2087 if (rc) 2088 return rc; 2089 2090 /* SELinux context only depends on initial program or script and not 2091 * the script interpreter */ 2092 if (bprm->cred_prepared) 2093 return 0; 2094 2095 old_tsec = current_security(); 2096 new_tsec = bprm->cred->security; 2097 isec = inode->i_security; 2098 2099 /* Default to the current task SID. */ 2100 new_tsec->sid = old_tsec->sid; 2101 new_tsec->osid = old_tsec->sid; 2102 2103 /* Reset fs, key, and sock SIDs on execve. */ 2104 new_tsec->create_sid = 0; 2105 new_tsec->keycreate_sid = 0; 2106 new_tsec->sockcreate_sid = 0; 2107 2108 if (old_tsec->exec_sid) { 2109 new_tsec->sid = old_tsec->exec_sid; 2110 /* Reset exec SID on execve. */ 2111 new_tsec->exec_sid = 0; 2112 } else { 2113 /* Check for a default transition on this program. */ 2114 rc = security_transition_sid(old_tsec->sid, isec->sid, 2115 SECCLASS_PROCESS, &new_tsec->sid); 2116 if (rc) 2117 return rc; 2118 } 2119 2120 COMMON_AUDIT_DATA_INIT(&ad, FS); 2121 ad.u.fs.path = bprm->file->f_path; 2122 2123 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2124 new_tsec->sid = old_tsec->sid; 2125 2126 if (new_tsec->sid == old_tsec->sid) { 2127 rc = avc_has_perm(old_tsec->sid, isec->sid, 2128 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2129 if (rc) 2130 return rc; 2131 } else { 2132 /* Check permissions for the transition. */ 2133 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2134 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2135 if (rc) 2136 return rc; 2137 2138 rc = avc_has_perm(new_tsec->sid, isec->sid, 2139 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2140 if (rc) 2141 return rc; 2142 2143 /* Check for shared state */ 2144 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2145 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2146 SECCLASS_PROCESS, PROCESS__SHARE, 2147 NULL); 2148 if (rc) 2149 return -EPERM; 2150 } 2151 2152 /* Make sure that anyone attempting to ptrace over a task that 2153 * changes its SID has the appropriate permit */ 2154 if (bprm->unsafe & 2155 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2156 struct task_struct *tracer; 2157 struct task_security_struct *sec; 2158 u32 ptsid = 0; 2159 2160 rcu_read_lock(); 2161 tracer = tracehook_tracer_task(current); 2162 if (likely(tracer != NULL)) { 2163 sec = __task_cred(tracer)->security; 2164 ptsid = sec->sid; 2165 } 2166 rcu_read_unlock(); 2167 2168 if (ptsid != 0) { 2169 rc = avc_has_perm(ptsid, new_tsec->sid, 2170 SECCLASS_PROCESS, 2171 PROCESS__PTRACE, NULL); 2172 if (rc) 2173 return -EPERM; 2174 } 2175 } 2176 2177 /* Clear any possibly unsafe personality bits on exec: */ 2178 bprm->per_clear |= PER_CLEAR_ON_SETID; 2179 } 2180 2181 return 0; 2182 } 2183 2184 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2185 { 2186 const struct cred *cred = current_cred(); 2187 const struct task_security_struct *tsec = cred->security; 2188 u32 sid, osid; 2189 int atsecure = 0; 2190 2191 sid = tsec->sid; 2192 osid = tsec->osid; 2193 2194 if (osid != sid) { 2195 /* Enable secure mode for SIDs transitions unless 2196 the noatsecure permission is granted between 2197 the two SIDs, i.e. ahp returns 0. */ 2198 atsecure = avc_has_perm(osid, sid, 2199 SECCLASS_PROCESS, 2200 PROCESS__NOATSECURE, NULL); 2201 } 2202 2203 return (atsecure || cap_bprm_secureexec(bprm)); 2204 } 2205 2206 extern struct vfsmount *selinuxfs_mount; 2207 extern struct dentry *selinux_null; 2208 2209 /* Derived from fs/exec.c:flush_old_files. */ 2210 static inline void flush_unauthorized_files(const struct cred *cred, 2211 struct files_struct *files) 2212 { 2213 struct common_audit_data ad; 2214 struct file *file, *devnull = NULL; 2215 struct tty_struct *tty; 2216 struct fdtable *fdt; 2217 long j = -1; 2218 int drop_tty = 0; 2219 2220 tty = get_current_tty(); 2221 if (tty) { 2222 file_list_lock(); 2223 if (!list_empty(&tty->tty_files)) { 2224 struct inode *inode; 2225 2226 /* Revalidate access to controlling tty. 2227 Use inode_has_perm on the tty inode directly rather 2228 than using file_has_perm, as this particular open 2229 file may belong to another process and we are only 2230 interested in the inode-based check here. */ 2231 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list); 2232 inode = file->f_path.dentry->d_inode; 2233 if (inode_has_perm(cred, inode, 2234 FILE__READ | FILE__WRITE, NULL)) { 2235 drop_tty = 1; 2236 } 2237 } 2238 file_list_unlock(); 2239 tty_kref_put(tty); 2240 } 2241 /* Reset controlling tty. */ 2242 if (drop_tty) 2243 no_tty(); 2244 2245 /* Revalidate access to inherited open files. */ 2246 2247 COMMON_AUDIT_DATA_INIT(&ad, FS); 2248 2249 spin_lock(&files->file_lock); 2250 for (;;) { 2251 unsigned long set, i; 2252 int fd; 2253 2254 j++; 2255 i = j * __NFDBITS; 2256 fdt = files_fdtable(files); 2257 if (i >= fdt->max_fds) 2258 break; 2259 set = fdt->open_fds->fds_bits[j]; 2260 if (!set) 2261 continue; 2262 spin_unlock(&files->file_lock); 2263 for ( ; set ; i++, set >>= 1) { 2264 if (set & 1) { 2265 file = fget(i); 2266 if (!file) 2267 continue; 2268 if (file_has_perm(cred, 2269 file, 2270 file_to_av(file))) { 2271 sys_close(i); 2272 fd = get_unused_fd(); 2273 if (fd != i) { 2274 if (fd >= 0) 2275 put_unused_fd(fd); 2276 fput(file); 2277 continue; 2278 } 2279 if (devnull) { 2280 get_file(devnull); 2281 } else { 2282 devnull = dentry_open( 2283 dget(selinux_null), 2284 mntget(selinuxfs_mount), 2285 O_RDWR, cred); 2286 if (IS_ERR(devnull)) { 2287 devnull = NULL; 2288 put_unused_fd(fd); 2289 fput(file); 2290 continue; 2291 } 2292 } 2293 fd_install(fd, devnull); 2294 } 2295 fput(file); 2296 } 2297 } 2298 spin_lock(&files->file_lock); 2299 2300 } 2301 spin_unlock(&files->file_lock); 2302 } 2303 2304 /* 2305 * Prepare a process for imminent new credential changes due to exec 2306 */ 2307 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2308 { 2309 struct task_security_struct *new_tsec; 2310 struct rlimit *rlim, *initrlim; 2311 int rc, i; 2312 2313 new_tsec = bprm->cred->security; 2314 if (new_tsec->sid == new_tsec->osid) 2315 return; 2316 2317 /* Close files for which the new task SID is not authorized. */ 2318 flush_unauthorized_files(bprm->cred, current->files); 2319 2320 /* Always clear parent death signal on SID transitions. */ 2321 current->pdeath_signal = 0; 2322 2323 /* Check whether the new SID can inherit resource limits from the old 2324 * SID. If not, reset all soft limits to the lower of the current 2325 * task's hard limit and the init task's soft limit. 2326 * 2327 * Note that the setting of hard limits (even to lower them) can be 2328 * controlled by the setrlimit check. The inclusion of the init task's 2329 * soft limit into the computation is to avoid resetting soft limits 2330 * higher than the default soft limit for cases where the default is 2331 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2332 */ 2333 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2334 PROCESS__RLIMITINH, NULL); 2335 if (rc) { 2336 for (i = 0; i < RLIM_NLIMITS; i++) { 2337 rlim = current->signal->rlim + i; 2338 initrlim = init_task.signal->rlim + i; 2339 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2340 } 2341 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur); 2342 } 2343 } 2344 2345 /* 2346 * Clean up the process immediately after the installation of new credentials 2347 * due to exec 2348 */ 2349 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2350 { 2351 const struct task_security_struct *tsec = current_security(); 2352 struct itimerval itimer; 2353 u32 osid, sid; 2354 int rc, i; 2355 2356 osid = tsec->osid; 2357 sid = tsec->sid; 2358 2359 if (sid == osid) 2360 return; 2361 2362 /* Check whether the new SID can inherit signal state from the old SID. 2363 * If not, clear itimers to avoid subsequent signal generation and 2364 * flush and unblock signals. 2365 * 2366 * This must occur _after_ the task SID has been updated so that any 2367 * kill done after the flush will be checked against the new SID. 2368 */ 2369 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2370 if (rc) { 2371 memset(&itimer, 0, sizeof itimer); 2372 for (i = 0; i < 3; i++) 2373 do_setitimer(i, &itimer, NULL); 2374 spin_lock_irq(¤t->sighand->siglock); 2375 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2376 __flush_signals(current); 2377 flush_signal_handlers(current, 1); 2378 sigemptyset(¤t->blocked); 2379 } 2380 spin_unlock_irq(¤t->sighand->siglock); 2381 } 2382 2383 /* Wake up the parent if it is waiting so that it can recheck 2384 * wait permission to the new task SID. */ 2385 read_lock(&tasklist_lock); 2386 __wake_up_parent(current, current->real_parent); 2387 read_unlock(&tasklist_lock); 2388 } 2389 2390 /* superblock security operations */ 2391 2392 static int selinux_sb_alloc_security(struct super_block *sb) 2393 { 2394 return superblock_alloc_security(sb); 2395 } 2396 2397 static void selinux_sb_free_security(struct super_block *sb) 2398 { 2399 superblock_free_security(sb); 2400 } 2401 2402 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2403 { 2404 if (plen > olen) 2405 return 0; 2406 2407 return !memcmp(prefix, option, plen); 2408 } 2409 2410 static inline int selinux_option(char *option, int len) 2411 { 2412 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2413 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2414 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2415 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2416 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2417 } 2418 2419 static inline void take_option(char **to, char *from, int *first, int len) 2420 { 2421 if (!*first) { 2422 **to = ','; 2423 *to += 1; 2424 } else 2425 *first = 0; 2426 memcpy(*to, from, len); 2427 *to += len; 2428 } 2429 2430 static inline void take_selinux_option(char **to, char *from, int *first, 2431 int len) 2432 { 2433 int current_size = 0; 2434 2435 if (!*first) { 2436 **to = '|'; 2437 *to += 1; 2438 } else 2439 *first = 0; 2440 2441 while (current_size < len) { 2442 if (*from != '"') { 2443 **to = *from; 2444 *to += 1; 2445 } 2446 from += 1; 2447 current_size += 1; 2448 } 2449 } 2450 2451 static int selinux_sb_copy_data(char *orig, char *copy) 2452 { 2453 int fnosec, fsec, rc = 0; 2454 char *in_save, *in_curr, *in_end; 2455 char *sec_curr, *nosec_save, *nosec; 2456 int open_quote = 0; 2457 2458 in_curr = orig; 2459 sec_curr = copy; 2460 2461 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2462 if (!nosec) { 2463 rc = -ENOMEM; 2464 goto out; 2465 } 2466 2467 nosec_save = nosec; 2468 fnosec = fsec = 1; 2469 in_save = in_end = orig; 2470 2471 do { 2472 if (*in_end == '"') 2473 open_quote = !open_quote; 2474 if ((*in_end == ',' && open_quote == 0) || 2475 *in_end == '\0') { 2476 int len = in_end - in_curr; 2477 2478 if (selinux_option(in_curr, len)) 2479 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2480 else 2481 take_option(&nosec, in_curr, &fnosec, len); 2482 2483 in_curr = in_end + 1; 2484 } 2485 } while (*in_end++); 2486 2487 strcpy(in_save, nosec_save); 2488 free_page((unsigned long)nosec_save); 2489 out: 2490 return rc; 2491 } 2492 2493 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2494 { 2495 const struct cred *cred = current_cred(); 2496 struct common_audit_data ad; 2497 int rc; 2498 2499 rc = superblock_doinit(sb, data); 2500 if (rc) 2501 return rc; 2502 2503 /* Allow all mounts performed by the kernel */ 2504 if (flags & MS_KERNMOUNT) 2505 return 0; 2506 2507 COMMON_AUDIT_DATA_INIT(&ad, FS); 2508 ad.u.fs.path.dentry = sb->s_root; 2509 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2510 } 2511 2512 static int selinux_sb_statfs(struct dentry *dentry) 2513 { 2514 const struct cred *cred = current_cred(); 2515 struct common_audit_data ad; 2516 2517 COMMON_AUDIT_DATA_INIT(&ad, FS); 2518 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2519 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2520 } 2521 2522 static int selinux_mount(char *dev_name, 2523 struct path *path, 2524 char *type, 2525 unsigned long flags, 2526 void *data) 2527 { 2528 const struct cred *cred = current_cred(); 2529 2530 if (flags & MS_REMOUNT) 2531 return superblock_has_perm(cred, path->mnt->mnt_sb, 2532 FILESYSTEM__REMOUNT, NULL); 2533 else 2534 return dentry_has_perm(cred, path->mnt, path->dentry, 2535 FILE__MOUNTON); 2536 } 2537 2538 static int selinux_umount(struct vfsmount *mnt, int flags) 2539 { 2540 const struct cred *cred = current_cred(); 2541 2542 return superblock_has_perm(cred, mnt->mnt_sb, 2543 FILESYSTEM__UNMOUNT, NULL); 2544 } 2545 2546 /* inode security operations */ 2547 2548 static int selinux_inode_alloc_security(struct inode *inode) 2549 { 2550 return inode_alloc_security(inode); 2551 } 2552 2553 static void selinux_inode_free_security(struct inode *inode) 2554 { 2555 inode_free_security(inode); 2556 } 2557 2558 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2559 char **name, void **value, 2560 size_t *len) 2561 { 2562 const struct cred *cred = current_cred(); 2563 const struct task_security_struct *tsec = cred->security; 2564 struct inode_security_struct *dsec; 2565 struct superblock_security_struct *sbsec; 2566 u32 sid, newsid, clen; 2567 int rc; 2568 char *namep = NULL, *context; 2569 2570 dsec = dir->i_security; 2571 sbsec = dir->i_sb->s_security; 2572 2573 sid = tsec->sid; 2574 newsid = tsec->create_sid; 2575 2576 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 2577 rc = security_transition_sid(sid, dsec->sid, 2578 inode_mode_to_security_class(inode->i_mode), 2579 &newsid); 2580 if (rc) { 2581 printk(KERN_WARNING "%s: " 2582 "security_transition_sid failed, rc=%d (dev=%s " 2583 "ino=%ld)\n", 2584 __func__, 2585 -rc, inode->i_sb->s_id, inode->i_ino); 2586 return rc; 2587 } 2588 } 2589 2590 /* Possibly defer initialization to selinux_complete_init. */ 2591 if (sbsec->flags & SE_SBINITIALIZED) { 2592 struct inode_security_struct *isec = inode->i_security; 2593 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2594 isec->sid = newsid; 2595 isec->initialized = 1; 2596 } 2597 2598 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP)) 2599 return -EOPNOTSUPP; 2600 2601 if (name) { 2602 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2603 if (!namep) 2604 return -ENOMEM; 2605 *name = namep; 2606 } 2607 2608 if (value && len) { 2609 rc = security_sid_to_context_force(newsid, &context, &clen); 2610 if (rc) { 2611 kfree(namep); 2612 return rc; 2613 } 2614 *value = context; 2615 *len = clen; 2616 } 2617 2618 return 0; 2619 } 2620 2621 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2622 { 2623 return may_create(dir, dentry, SECCLASS_FILE); 2624 } 2625 2626 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2627 { 2628 return may_link(dir, old_dentry, MAY_LINK); 2629 } 2630 2631 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2632 { 2633 return may_link(dir, dentry, MAY_UNLINK); 2634 } 2635 2636 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2637 { 2638 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2639 } 2640 2641 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2642 { 2643 return may_create(dir, dentry, SECCLASS_DIR); 2644 } 2645 2646 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2647 { 2648 return may_link(dir, dentry, MAY_RMDIR); 2649 } 2650 2651 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2652 { 2653 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2654 } 2655 2656 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2657 struct inode *new_inode, struct dentry *new_dentry) 2658 { 2659 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2660 } 2661 2662 static int selinux_inode_readlink(struct dentry *dentry) 2663 { 2664 const struct cred *cred = current_cred(); 2665 2666 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2667 } 2668 2669 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2670 { 2671 const struct cred *cred = current_cred(); 2672 2673 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2674 } 2675 2676 static int selinux_inode_permission(struct inode *inode, int mask) 2677 { 2678 const struct cred *cred = current_cred(); 2679 2680 if (!mask) { 2681 /* No permission to check. Existence test. */ 2682 return 0; 2683 } 2684 2685 return inode_has_perm(cred, inode, 2686 file_mask_to_av(inode->i_mode, mask), NULL); 2687 } 2688 2689 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2690 { 2691 const struct cred *cred = current_cred(); 2692 unsigned int ia_valid = iattr->ia_valid; 2693 2694 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2695 if (ia_valid & ATTR_FORCE) { 2696 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2697 ATTR_FORCE); 2698 if (!ia_valid) 2699 return 0; 2700 } 2701 2702 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2703 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2704 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2705 2706 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE); 2707 } 2708 2709 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2710 { 2711 const struct cred *cred = current_cred(); 2712 2713 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR); 2714 } 2715 2716 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2717 { 2718 const struct cred *cred = current_cred(); 2719 2720 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2721 sizeof XATTR_SECURITY_PREFIX - 1)) { 2722 if (!strcmp(name, XATTR_NAME_CAPS)) { 2723 if (!capable(CAP_SETFCAP)) 2724 return -EPERM; 2725 } else if (!capable(CAP_SYS_ADMIN)) { 2726 /* A different attribute in the security namespace. 2727 Restrict to administrator. */ 2728 return -EPERM; 2729 } 2730 } 2731 2732 /* Not an attribute we recognize, so just check the 2733 ordinary setattr permission. */ 2734 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2735 } 2736 2737 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2738 const void *value, size_t size, int flags) 2739 { 2740 struct inode *inode = dentry->d_inode; 2741 struct inode_security_struct *isec = inode->i_security; 2742 struct superblock_security_struct *sbsec; 2743 struct common_audit_data ad; 2744 u32 newsid, sid = current_sid(); 2745 int rc = 0; 2746 2747 if (strcmp(name, XATTR_NAME_SELINUX)) 2748 return selinux_inode_setotherxattr(dentry, name); 2749 2750 sbsec = inode->i_sb->s_security; 2751 if (!(sbsec->flags & SE_SBLABELSUPP)) 2752 return -EOPNOTSUPP; 2753 2754 if (!is_owner_or_cap(inode)) 2755 return -EPERM; 2756 2757 COMMON_AUDIT_DATA_INIT(&ad, FS); 2758 ad.u.fs.path.dentry = dentry; 2759 2760 rc = avc_has_perm(sid, isec->sid, isec->sclass, 2761 FILE__RELABELFROM, &ad); 2762 if (rc) 2763 return rc; 2764 2765 rc = security_context_to_sid(value, size, &newsid); 2766 if (rc == -EINVAL) { 2767 if (!capable(CAP_MAC_ADMIN)) 2768 return rc; 2769 rc = security_context_to_sid_force(value, size, &newsid); 2770 } 2771 if (rc) 2772 return rc; 2773 2774 rc = avc_has_perm(sid, newsid, isec->sclass, 2775 FILE__RELABELTO, &ad); 2776 if (rc) 2777 return rc; 2778 2779 rc = security_validate_transition(isec->sid, newsid, sid, 2780 isec->sclass); 2781 if (rc) 2782 return rc; 2783 2784 return avc_has_perm(newsid, 2785 sbsec->sid, 2786 SECCLASS_FILESYSTEM, 2787 FILESYSTEM__ASSOCIATE, 2788 &ad); 2789 } 2790 2791 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2792 const void *value, size_t size, 2793 int flags) 2794 { 2795 struct inode *inode = dentry->d_inode; 2796 struct inode_security_struct *isec = inode->i_security; 2797 u32 newsid; 2798 int rc; 2799 2800 if (strcmp(name, XATTR_NAME_SELINUX)) { 2801 /* Not an attribute we recognize, so nothing to do. */ 2802 return; 2803 } 2804 2805 rc = security_context_to_sid_force(value, size, &newsid); 2806 if (rc) { 2807 printk(KERN_ERR "SELinux: unable to map context to SID" 2808 "for (%s, %lu), rc=%d\n", 2809 inode->i_sb->s_id, inode->i_ino, -rc); 2810 return; 2811 } 2812 2813 isec->sid = newsid; 2814 return; 2815 } 2816 2817 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2818 { 2819 const struct cred *cred = current_cred(); 2820 2821 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2822 } 2823 2824 static int selinux_inode_listxattr(struct dentry *dentry) 2825 { 2826 const struct cred *cred = current_cred(); 2827 2828 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2829 } 2830 2831 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2832 { 2833 if (strcmp(name, XATTR_NAME_SELINUX)) 2834 return selinux_inode_setotherxattr(dentry, name); 2835 2836 /* No one is allowed to remove a SELinux security label. 2837 You can change the label, but all data must be labeled. */ 2838 return -EACCES; 2839 } 2840 2841 /* 2842 * Copy the inode security context value to the user. 2843 * 2844 * Permission check is handled by selinux_inode_getxattr hook. 2845 */ 2846 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2847 { 2848 u32 size; 2849 int error; 2850 char *context = NULL; 2851 struct inode_security_struct *isec = inode->i_security; 2852 2853 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2854 return -EOPNOTSUPP; 2855 2856 /* 2857 * If the caller has CAP_MAC_ADMIN, then get the raw context 2858 * value even if it is not defined by current policy; otherwise, 2859 * use the in-core value under current policy. 2860 * Use the non-auditing forms of the permission checks since 2861 * getxattr may be called by unprivileged processes commonly 2862 * and lack of permission just means that we fall back to the 2863 * in-core context value, not a denial. 2864 */ 2865 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN, 2866 SECURITY_CAP_NOAUDIT); 2867 if (!error) 2868 error = security_sid_to_context_force(isec->sid, &context, 2869 &size); 2870 else 2871 error = security_sid_to_context(isec->sid, &context, &size); 2872 if (error) 2873 return error; 2874 error = size; 2875 if (alloc) { 2876 *buffer = context; 2877 goto out_nofree; 2878 } 2879 kfree(context); 2880 out_nofree: 2881 return error; 2882 } 2883 2884 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2885 const void *value, size_t size, int flags) 2886 { 2887 struct inode_security_struct *isec = inode->i_security; 2888 u32 newsid; 2889 int rc; 2890 2891 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2892 return -EOPNOTSUPP; 2893 2894 if (!value || !size) 2895 return -EACCES; 2896 2897 rc = security_context_to_sid((void *)value, size, &newsid); 2898 if (rc) 2899 return rc; 2900 2901 isec->sid = newsid; 2902 isec->initialized = 1; 2903 return 0; 2904 } 2905 2906 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2907 { 2908 const int len = sizeof(XATTR_NAME_SELINUX); 2909 if (buffer && len <= buffer_size) 2910 memcpy(buffer, XATTR_NAME_SELINUX, len); 2911 return len; 2912 } 2913 2914 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2915 { 2916 struct inode_security_struct *isec = inode->i_security; 2917 *secid = isec->sid; 2918 } 2919 2920 /* file security operations */ 2921 2922 static int selinux_revalidate_file_permission(struct file *file, int mask) 2923 { 2924 const struct cred *cred = current_cred(); 2925 struct inode *inode = file->f_path.dentry->d_inode; 2926 2927 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2928 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2929 mask |= MAY_APPEND; 2930 2931 return file_has_perm(cred, file, 2932 file_mask_to_av(inode->i_mode, mask)); 2933 } 2934 2935 static int selinux_file_permission(struct file *file, int mask) 2936 { 2937 struct inode *inode = file->f_path.dentry->d_inode; 2938 struct file_security_struct *fsec = file->f_security; 2939 struct inode_security_struct *isec = inode->i_security; 2940 u32 sid = current_sid(); 2941 2942 if (!mask) 2943 /* No permission to check. Existence test. */ 2944 return 0; 2945 2946 if (sid == fsec->sid && fsec->isid == isec->sid && 2947 fsec->pseqno == avc_policy_seqno()) 2948 /* No change since dentry_open check. */ 2949 return 0; 2950 2951 return selinux_revalidate_file_permission(file, mask); 2952 } 2953 2954 static int selinux_file_alloc_security(struct file *file) 2955 { 2956 return file_alloc_security(file); 2957 } 2958 2959 static void selinux_file_free_security(struct file *file) 2960 { 2961 file_free_security(file); 2962 } 2963 2964 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2965 unsigned long arg) 2966 { 2967 const struct cred *cred = current_cred(); 2968 u32 av = 0; 2969 2970 if (_IOC_DIR(cmd) & _IOC_WRITE) 2971 av |= FILE__WRITE; 2972 if (_IOC_DIR(cmd) & _IOC_READ) 2973 av |= FILE__READ; 2974 if (!av) 2975 av = FILE__IOCTL; 2976 2977 return file_has_perm(cred, file, av); 2978 } 2979 2980 static int default_noexec; 2981 2982 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2983 { 2984 const struct cred *cred = current_cred(); 2985 int rc = 0; 2986 2987 if (default_noexec && 2988 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2989 /* 2990 * We are making executable an anonymous mapping or a 2991 * private file mapping that will also be writable. 2992 * This has an additional check. 2993 */ 2994 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 2995 if (rc) 2996 goto error; 2997 } 2998 2999 if (file) { 3000 /* read access is always possible with a mapping */ 3001 u32 av = FILE__READ; 3002 3003 /* write access only matters if the mapping is shared */ 3004 if (shared && (prot & PROT_WRITE)) 3005 av |= FILE__WRITE; 3006 3007 if (prot & PROT_EXEC) 3008 av |= FILE__EXECUTE; 3009 3010 return file_has_perm(cred, file, av); 3011 } 3012 3013 error: 3014 return rc; 3015 } 3016 3017 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 3018 unsigned long prot, unsigned long flags, 3019 unsigned long addr, unsigned long addr_only) 3020 { 3021 int rc = 0; 3022 u32 sid = current_sid(); 3023 3024 /* 3025 * notice that we are intentionally putting the SELinux check before 3026 * the secondary cap_file_mmap check. This is such a likely attempt 3027 * at bad behaviour/exploit that we always want to get the AVC, even 3028 * if DAC would have also denied the operation. 3029 */ 3030 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3031 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3032 MEMPROTECT__MMAP_ZERO, NULL); 3033 if (rc) 3034 return rc; 3035 } 3036 3037 /* do DAC check on address space usage */ 3038 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only); 3039 if (rc || addr_only) 3040 return rc; 3041 3042 if (selinux_checkreqprot) 3043 prot = reqprot; 3044 3045 return file_map_prot_check(file, prot, 3046 (flags & MAP_TYPE) == MAP_SHARED); 3047 } 3048 3049 static int selinux_file_mprotect(struct vm_area_struct *vma, 3050 unsigned long reqprot, 3051 unsigned long prot) 3052 { 3053 const struct cred *cred = current_cred(); 3054 3055 if (selinux_checkreqprot) 3056 prot = reqprot; 3057 3058 if (default_noexec && 3059 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3060 int rc = 0; 3061 if (vma->vm_start >= vma->vm_mm->start_brk && 3062 vma->vm_end <= vma->vm_mm->brk) { 3063 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3064 } else if (!vma->vm_file && 3065 vma->vm_start <= vma->vm_mm->start_stack && 3066 vma->vm_end >= vma->vm_mm->start_stack) { 3067 rc = current_has_perm(current, PROCESS__EXECSTACK); 3068 } else if (vma->vm_file && vma->anon_vma) { 3069 /* 3070 * We are making executable a file mapping that has 3071 * had some COW done. Since pages might have been 3072 * written, check ability to execute the possibly 3073 * modified content. This typically should only 3074 * occur for text relocations. 3075 */ 3076 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3077 } 3078 if (rc) 3079 return rc; 3080 } 3081 3082 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3083 } 3084 3085 static int selinux_file_lock(struct file *file, unsigned int cmd) 3086 { 3087 const struct cred *cred = current_cred(); 3088 3089 return file_has_perm(cred, file, FILE__LOCK); 3090 } 3091 3092 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3093 unsigned long arg) 3094 { 3095 const struct cred *cred = current_cred(); 3096 int err = 0; 3097 3098 switch (cmd) { 3099 case F_SETFL: 3100 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3101 err = -EINVAL; 3102 break; 3103 } 3104 3105 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3106 err = file_has_perm(cred, file, FILE__WRITE); 3107 break; 3108 } 3109 /* fall through */ 3110 case F_SETOWN: 3111 case F_SETSIG: 3112 case F_GETFL: 3113 case F_GETOWN: 3114 case F_GETSIG: 3115 /* Just check FD__USE permission */ 3116 err = file_has_perm(cred, file, 0); 3117 break; 3118 case F_GETLK: 3119 case F_SETLK: 3120 case F_SETLKW: 3121 #if BITS_PER_LONG == 32 3122 case F_GETLK64: 3123 case F_SETLK64: 3124 case F_SETLKW64: 3125 #endif 3126 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3127 err = -EINVAL; 3128 break; 3129 } 3130 err = file_has_perm(cred, file, FILE__LOCK); 3131 break; 3132 } 3133 3134 return err; 3135 } 3136 3137 static int selinux_file_set_fowner(struct file *file) 3138 { 3139 struct file_security_struct *fsec; 3140 3141 fsec = file->f_security; 3142 fsec->fown_sid = current_sid(); 3143 3144 return 0; 3145 } 3146 3147 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3148 struct fown_struct *fown, int signum) 3149 { 3150 struct file *file; 3151 u32 sid = task_sid(tsk); 3152 u32 perm; 3153 struct file_security_struct *fsec; 3154 3155 /* struct fown_struct is never outside the context of a struct file */ 3156 file = container_of(fown, struct file, f_owner); 3157 3158 fsec = file->f_security; 3159 3160 if (!signum) 3161 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3162 else 3163 perm = signal_to_av(signum); 3164 3165 return avc_has_perm(fsec->fown_sid, sid, 3166 SECCLASS_PROCESS, perm, NULL); 3167 } 3168 3169 static int selinux_file_receive(struct file *file) 3170 { 3171 const struct cred *cred = current_cred(); 3172 3173 return file_has_perm(cred, file, file_to_av(file)); 3174 } 3175 3176 static int selinux_dentry_open(struct file *file, const struct cred *cred) 3177 { 3178 struct file_security_struct *fsec; 3179 struct inode *inode; 3180 struct inode_security_struct *isec; 3181 3182 inode = file->f_path.dentry->d_inode; 3183 fsec = file->f_security; 3184 isec = inode->i_security; 3185 /* 3186 * Save inode label and policy sequence number 3187 * at open-time so that selinux_file_permission 3188 * can determine whether revalidation is necessary. 3189 * Task label is already saved in the file security 3190 * struct as its SID. 3191 */ 3192 fsec->isid = isec->sid; 3193 fsec->pseqno = avc_policy_seqno(); 3194 /* 3195 * Since the inode label or policy seqno may have changed 3196 * between the selinux_inode_permission check and the saving 3197 * of state above, recheck that access is still permitted. 3198 * Otherwise, access might never be revalidated against the 3199 * new inode label or new policy. 3200 * This check is not redundant - do not remove. 3201 */ 3202 return inode_has_perm(cred, inode, open_file_to_av(file), NULL); 3203 } 3204 3205 /* task security operations */ 3206 3207 static int selinux_task_create(unsigned long clone_flags) 3208 { 3209 return current_has_perm(current, PROCESS__FORK); 3210 } 3211 3212 /* 3213 * allocate the SELinux part of blank credentials 3214 */ 3215 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3216 { 3217 struct task_security_struct *tsec; 3218 3219 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3220 if (!tsec) 3221 return -ENOMEM; 3222 3223 cred->security = tsec; 3224 return 0; 3225 } 3226 3227 /* 3228 * detach and free the LSM part of a set of credentials 3229 */ 3230 static void selinux_cred_free(struct cred *cred) 3231 { 3232 struct task_security_struct *tsec = cred->security; 3233 3234 BUG_ON((unsigned long) cred->security < PAGE_SIZE); 3235 cred->security = (void *) 0x7UL; 3236 kfree(tsec); 3237 } 3238 3239 /* 3240 * prepare a new set of credentials for modification 3241 */ 3242 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3243 gfp_t gfp) 3244 { 3245 const struct task_security_struct *old_tsec; 3246 struct task_security_struct *tsec; 3247 3248 old_tsec = old->security; 3249 3250 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3251 if (!tsec) 3252 return -ENOMEM; 3253 3254 new->security = tsec; 3255 return 0; 3256 } 3257 3258 /* 3259 * transfer the SELinux data to a blank set of creds 3260 */ 3261 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3262 { 3263 const struct task_security_struct *old_tsec = old->security; 3264 struct task_security_struct *tsec = new->security; 3265 3266 *tsec = *old_tsec; 3267 } 3268 3269 /* 3270 * set the security data for a kernel service 3271 * - all the creation contexts are set to unlabelled 3272 */ 3273 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3274 { 3275 struct task_security_struct *tsec = new->security; 3276 u32 sid = current_sid(); 3277 int ret; 3278 3279 ret = avc_has_perm(sid, secid, 3280 SECCLASS_KERNEL_SERVICE, 3281 KERNEL_SERVICE__USE_AS_OVERRIDE, 3282 NULL); 3283 if (ret == 0) { 3284 tsec->sid = secid; 3285 tsec->create_sid = 0; 3286 tsec->keycreate_sid = 0; 3287 tsec->sockcreate_sid = 0; 3288 } 3289 return ret; 3290 } 3291 3292 /* 3293 * set the file creation context in a security record to the same as the 3294 * objective context of the specified inode 3295 */ 3296 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3297 { 3298 struct inode_security_struct *isec = inode->i_security; 3299 struct task_security_struct *tsec = new->security; 3300 u32 sid = current_sid(); 3301 int ret; 3302 3303 ret = avc_has_perm(sid, isec->sid, 3304 SECCLASS_KERNEL_SERVICE, 3305 KERNEL_SERVICE__CREATE_FILES_AS, 3306 NULL); 3307 3308 if (ret == 0) 3309 tsec->create_sid = isec->sid; 3310 return ret; 3311 } 3312 3313 static int selinux_kernel_module_request(char *kmod_name) 3314 { 3315 u32 sid; 3316 struct common_audit_data ad; 3317 3318 sid = task_sid(current); 3319 3320 COMMON_AUDIT_DATA_INIT(&ad, KMOD); 3321 ad.u.kmod_name = kmod_name; 3322 3323 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3324 SYSTEM__MODULE_REQUEST, &ad); 3325 } 3326 3327 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3328 { 3329 return current_has_perm(p, PROCESS__SETPGID); 3330 } 3331 3332 static int selinux_task_getpgid(struct task_struct *p) 3333 { 3334 return current_has_perm(p, PROCESS__GETPGID); 3335 } 3336 3337 static int selinux_task_getsid(struct task_struct *p) 3338 { 3339 return current_has_perm(p, PROCESS__GETSESSION); 3340 } 3341 3342 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3343 { 3344 *secid = task_sid(p); 3345 } 3346 3347 static int selinux_task_setnice(struct task_struct *p, int nice) 3348 { 3349 int rc; 3350 3351 rc = cap_task_setnice(p, nice); 3352 if (rc) 3353 return rc; 3354 3355 return current_has_perm(p, PROCESS__SETSCHED); 3356 } 3357 3358 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3359 { 3360 int rc; 3361 3362 rc = cap_task_setioprio(p, ioprio); 3363 if (rc) 3364 return rc; 3365 3366 return current_has_perm(p, PROCESS__SETSCHED); 3367 } 3368 3369 static int selinux_task_getioprio(struct task_struct *p) 3370 { 3371 return current_has_perm(p, PROCESS__GETSCHED); 3372 } 3373 3374 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3375 { 3376 struct rlimit *old_rlim = current->signal->rlim + resource; 3377 3378 /* Control the ability to change the hard limit (whether 3379 lowering or raising it), so that the hard limit can 3380 later be used as a safe reset point for the soft limit 3381 upon context transitions. See selinux_bprm_committing_creds. */ 3382 if (old_rlim->rlim_max != new_rlim->rlim_max) 3383 return current_has_perm(current, PROCESS__SETRLIMIT); 3384 3385 return 0; 3386 } 3387 3388 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3389 { 3390 int rc; 3391 3392 rc = cap_task_setscheduler(p, policy, lp); 3393 if (rc) 3394 return rc; 3395 3396 return current_has_perm(p, PROCESS__SETSCHED); 3397 } 3398 3399 static int selinux_task_getscheduler(struct task_struct *p) 3400 { 3401 return current_has_perm(p, PROCESS__GETSCHED); 3402 } 3403 3404 static int selinux_task_movememory(struct task_struct *p) 3405 { 3406 return current_has_perm(p, PROCESS__SETSCHED); 3407 } 3408 3409 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3410 int sig, u32 secid) 3411 { 3412 u32 perm; 3413 int rc; 3414 3415 if (!sig) 3416 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3417 else 3418 perm = signal_to_av(sig); 3419 if (secid) 3420 rc = avc_has_perm(secid, task_sid(p), 3421 SECCLASS_PROCESS, perm, NULL); 3422 else 3423 rc = current_has_perm(p, perm); 3424 return rc; 3425 } 3426 3427 static int selinux_task_wait(struct task_struct *p) 3428 { 3429 return task_has_perm(p, current, PROCESS__SIGCHLD); 3430 } 3431 3432 static void selinux_task_to_inode(struct task_struct *p, 3433 struct inode *inode) 3434 { 3435 struct inode_security_struct *isec = inode->i_security; 3436 u32 sid = task_sid(p); 3437 3438 isec->sid = sid; 3439 isec->initialized = 1; 3440 } 3441 3442 /* Returns error only if unable to parse addresses */ 3443 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3444 struct common_audit_data *ad, u8 *proto) 3445 { 3446 int offset, ihlen, ret = -EINVAL; 3447 struct iphdr _iph, *ih; 3448 3449 offset = skb_network_offset(skb); 3450 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3451 if (ih == NULL) 3452 goto out; 3453 3454 ihlen = ih->ihl * 4; 3455 if (ihlen < sizeof(_iph)) 3456 goto out; 3457 3458 ad->u.net.v4info.saddr = ih->saddr; 3459 ad->u.net.v4info.daddr = ih->daddr; 3460 ret = 0; 3461 3462 if (proto) 3463 *proto = ih->protocol; 3464 3465 switch (ih->protocol) { 3466 case IPPROTO_TCP: { 3467 struct tcphdr _tcph, *th; 3468 3469 if (ntohs(ih->frag_off) & IP_OFFSET) 3470 break; 3471 3472 offset += ihlen; 3473 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3474 if (th == NULL) 3475 break; 3476 3477 ad->u.net.sport = th->source; 3478 ad->u.net.dport = th->dest; 3479 break; 3480 } 3481 3482 case IPPROTO_UDP: { 3483 struct udphdr _udph, *uh; 3484 3485 if (ntohs(ih->frag_off) & IP_OFFSET) 3486 break; 3487 3488 offset += ihlen; 3489 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3490 if (uh == NULL) 3491 break; 3492 3493 ad->u.net.sport = uh->source; 3494 ad->u.net.dport = uh->dest; 3495 break; 3496 } 3497 3498 case IPPROTO_DCCP: { 3499 struct dccp_hdr _dccph, *dh; 3500 3501 if (ntohs(ih->frag_off) & IP_OFFSET) 3502 break; 3503 3504 offset += ihlen; 3505 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3506 if (dh == NULL) 3507 break; 3508 3509 ad->u.net.sport = dh->dccph_sport; 3510 ad->u.net.dport = dh->dccph_dport; 3511 break; 3512 } 3513 3514 default: 3515 break; 3516 } 3517 out: 3518 return ret; 3519 } 3520 3521 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3522 3523 /* Returns error only if unable to parse addresses */ 3524 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3525 struct common_audit_data *ad, u8 *proto) 3526 { 3527 u8 nexthdr; 3528 int ret = -EINVAL, offset; 3529 struct ipv6hdr _ipv6h, *ip6; 3530 3531 offset = skb_network_offset(skb); 3532 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3533 if (ip6 == NULL) 3534 goto out; 3535 3536 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3537 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3538 ret = 0; 3539 3540 nexthdr = ip6->nexthdr; 3541 offset += sizeof(_ipv6h); 3542 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3543 if (offset < 0) 3544 goto out; 3545 3546 if (proto) 3547 *proto = nexthdr; 3548 3549 switch (nexthdr) { 3550 case IPPROTO_TCP: { 3551 struct tcphdr _tcph, *th; 3552 3553 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3554 if (th == NULL) 3555 break; 3556 3557 ad->u.net.sport = th->source; 3558 ad->u.net.dport = th->dest; 3559 break; 3560 } 3561 3562 case IPPROTO_UDP: { 3563 struct udphdr _udph, *uh; 3564 3565 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3566 if (uh == NULL) 3567 break; 3568 3569 ad->u.net.sport = uh->source; 3570 ad->u.net.dport = uh->dest; 3571 break; 3572 } 3573 3574 case IPPROTO_DCCP: { 3575 struct dccp_hdr _dccph, *dh; 3576 3577 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3578 if (dh == NULL) 3579 break; 3580 3581 ad->u.net.sport = dh->dccph_sport; 3582 ad->u.net.dport = dh->dccph_dport; 3583 break; 3584 } 3585 3586 /* includes fragments */ 3587 default: 3588 break; 3589 } 3590 out: 3591 return ret; 3592 } 3593 3594 #endif /* IPV6 */ 3595 3596 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3597 char **_addrp, int src, u8 *proto) 3598 { 3599 char *addrp; 3600 int ret; 3601 3602 switch (ad->u.net.family) { 3603 case PF_INET: 3604 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3605 if (ret) 3606 goto parse_error; 3607 addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3608 &ad->u.net.v4info.daddr); 3609 goto okay; 3610 3611 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3612 case PF_INET6: 3613 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3614 if (ret) 3615 goto parse_error; 3616 addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3617 &ad->u.net.v6info.daddr); 3618 goto okay; 3619 #endif /* IPV6 */ 3620 default: 3621 addrp = NULL; 3622 goto okay; 3623 } 3624 3625 parse_error: 3626 printk(KERN_WARNING 3627 "SELinux: failure in selinux_parse_skb()," 3628 " unable to parse packet\n"); 3629 return ret; 3630 3631 okay: 3632 if (_addrp) 3633 *_addrp = addrp; 3634 return 0; 3635 } 3636 3637 /** 3638 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3639 * @skb: the packet 3640 * @family: protocol family 3641 * @sid: the packet's peer label SID 3642 * 3643 * Description: 3644 * Check the various different forms of network peer labeling and determine 3645 * the peer label/SID for the packet; most of the magic actually occurs in 3646 * the security server function security_net_peersid_cmp(). The function 3647 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3648 * or -EACCES if @sid is invalid due to inconsistencies with the different 3649 * peer labels. 3650 * 3651 */ 3652 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3653 { 3654 int err; 3655 u32 xfrm_sid; 3656 u32 nlbl_sid; 3657 u32 nlbl_type; 3658 3659 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3660 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3661 3662 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3663 if (unlikely(err)) { 3664 printk(KERN_WARNING 3665 "SELinux: failure in selinux_skb_peerlbl_sid()," 3666 " unable to determine packet's peer label\n"); 3667 return -EACCES; 3668 } 3669 3670 return 0; 3671 } 3672 3673 /* socket security operations */ 3674 3675 static u32 socket_sockcreate_sid(const struct task_security_struct *tsec) 3676 { 3677 return tsec->sockcreate_sid ? : tsec->sid; 3678 } 3679 3680 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3681 u32 perms) 3682 { 3683 struct inode_security_struct *isec; 3684 struct common_audit_data ad; 3685 u32 sid; 3686 int err = 0; 3687 3688 isec = SOCK_INODE(sock)->i_security; 3689 3690 if (isec->sid == SECINITSID_KERNEL) 3691 goto out; 3692 sid = task_sid(task); 3693 3694 COMMON_AUDIT_DATA_INIT(&ad, NET); 3695 ad.u.net.sk = sock->sk; 3696 err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 3697 3698 out: 3699 return err; 3700 } 3701 3702 static int selinux_socket_create(int family, int type, 3703 int protocol, int kern) 3704 { 3705 const struct cred *cred = current_cred(); 3706 const struct task_security_struct *tsec = cred->security; 3707 u32 newsid; 3708 u16 secclass; 3709 3710 if (kern) 3711 return 0; 3712 3713 newsid = socket_sockcreate_sid(tsec); 3714 secclass = socket_type_to_security_class(family, type, protocol); 3715 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 3716 } 3717 3718 static int selinux_socket_post_create(struct socket *sock, int family, 3719 int type, int protocol, int kern) 3720 { 3721 const struct cred *cred = current_cred(); 3722 const struct task_security_struct *tsec = cred->security; 3723 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 3724 struct sk_security_struct *sksec; 3725 int err = 0; 3726 3727 if (kern) 3728 isec->sid = SECINITSID_KERNEL; 3729 else 3730 isec->sid = socket_sockcreate_sid(tsec); 3731 3732 isec->sclass = socket_type_to_security_class(family, type, protocol); 3733 isec->initialized = 1; 3734 3735 if (sock->sk) { 3736 sksec = sock->sk->sk_security; 3737 sksec->sid = isec->sid; 3738 sksec->sclass = isec->sclass; 3739 err = selinux_netlbl_socket_post_create(sock->sk, family); 3740 } 3741 3742 return err; 3743 } 3744 3745 /* Range of port numbers used to automatically bind. 3746 Need to determine whether we should perform a name_bind 3747 permission check between the socket and the port number. */ 3748 3749 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3750 { 3751 u16 family; 3752 int err; 3753 3754 err = socket_has_perm(current, sock, SOCKET__BIND); 3755 if (err) 3756 goto out; 3757 3758 /* 3759 * If PF_INET or PF_INET6, check name_bind permission for the port. 3760 * Multiple address binding for SCTP is not supported yet: we just 3761 * check the first address now. 3762 */ 3763 family = sock->sk->sk_family; 3764 if (family == PF_INET || family == PF_INET6) { 3765 char *addrp; 3766 struct inode_security_struct *isec; 3767 struct common_audit_data ad; 3768 struct sockaddr_in *addr4 = NULL; 3769 struct sockaddr_in6 *addr6 = NULL; 3770 unsigned short snum; 3771 struct sock *sk = sock->sk; 3772 u32 sid, node_perm; 3773 3774 isec = SOCK_INODE(sock)->i_security; 3775 3776 if (family == PF_INET) { 3777 addr4 = (struct sockaddr_in *)address; 3778 snum = ntohs(addr4->sin_port); 3779 addrp = (char *)&addr4->sin_addr.s_addr; 3780 } else { 3781 addr6 = (struct sockaddr_in6 *)address; 3782 snum = ntohs(addr6->sin6_port); 3783 addrp = (char *)&addr6->sin6_addr.s6_addr; 3784 } 3785 3786 if (snum) { 3787 int low, high; 3788 3789 inet_get_local_port_range(&low, &high); 3790 3791 if (snum < max(PROT_SOCK, low) || snum > high) { 3792 err = sel_netport_sid(sk->sk_protocol, 3793 snum, &sid); 3794 if (err) 3795 goto out; 3796 COMMON_AUDIT_DATA_INIT(&ad, NET); 3797 ad.u.net.sport = htons(snum); 3798 ad.u.net.family = family; 3799 err = avc_has_perm(isec->sid, sid, 3800 isec->sclass, 3801 SOCKET__NAME_BIND, &ad); 3802 if (err) 3803 goto out; 3804 } 3805 } 3806 3807 switch (isec->sclass) { 3808 case SECCLASS_TCP_SOCKET: 3809 node_perm = TCP_SOCKET__NODE_BIND; 3810 break; 3811 3812 case SECCLASS_UDP_SOCKET: 3813 node_perm = UDP_SOCKET__NODE_BIND; 3814 break; 3815 3816 case SECCLASS_DCCP_SOCKET: 3817 node_perm = DCCP_SOCKET__NODE_BIND; 3818 break; 3819 3820 default: 3821 node_perm = RAWIP_SOCKET__NODE_BIND; 3822 break; 3823 } 3824 3825 err = sel_netnode_sid(addrp, family, &sid); 3826 if (err) 3827 goto out; 3828 3829 COMMON_AUDIT_DATA_INIT(&ad, NET); 3830 ad.u.net.sport = htons(snum); 3831 ad.u.net.family = family; 3832 3833 if (family == PF_INET) 3834 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3835 else 3836 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3837 3838 err = avc_has_perm(isec->sid, sid, 3839 isec->sclass, node_perm, &ad); 3840 if (err) 3841 goto out; 3842 } 3843 out: 3844 return err; 3845 } 3846 3847 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3848 { 3849 struct sock *sk = sock->sk; 3850 struct inode_security_struct *isec; 3851 int err; 3852 3853 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3854 if (err) 3855 return err; 3856 3857 /* 3858 * If a TCP or DCCP socket, check name_connect permission for the port. 3859 */ 3860 isec = SOCK_INODE(sock)->i_security; 3861 if (isec->sclass == SECCLASS_TCP_SOCKET || 3862 isec->sclass == SECCLASS_DCCP_SOCKET) { 3863 struct common_audit_data ad; 3864 struct sockaddr_in *addr4 = NULL; 3865 struct sockaddr_in6 *addr6 = NULL; 3866 unsigned short snum; 3867 u32 sid, perm; 3868 3869 if (sk->sk_family == PF_INET) { 3870 addr4 = (struct sockaddr_in *)address; 3871 if (addrlen < sizeof(struct sockaddr_in)) 3872 return -EINVAL; 3873 snum = ntohs(addr4->sin_port); 3874 } else { 3875 addr6 = (struct sockaddr_in6 *)address; 3876 if (addrlen < SIN6_LEN_RFC2133) 3877 return -EINVAL; 3878 snum = ntohs(addr6->sin6_port); 3879 } 3880 3881 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3882 if (err) 3883 goto out; 3884 3885 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3886 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3887 3888 COMMON_AUDIT_DATA_INIT(&ad, NET); 3889 ad.u.net.dport = htons(snum); 3890 ad.u.net.family = sk->sk_family; 3891 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3892 if (err) 3893 goto out; 3894 } 3895 3896 err = selinux_netlbl_socket_connect(sk, address); 3897 3898 out: 3899 return err; 3900 } 3901 3902 static int selinux_socket_listen(struct socket *sock, int backlog) 3903 { 3904 return socket_has_perm(current, sock, SOCKET__LISTEN); 3905 } 3906 3907 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3908 { 3909 int err; 3910 struct inode_security_struct *isec; 3911 struct inode_security_struct *newisec; 3912 3913 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3914 if (err) 3915 return err; 3916 3917 newisec = SOCK_INODE(newsock)->i_security; 3918 3919 isec = SOCK_INODE(sock)->i_security; 3920 newisec->sclass = isec->sclass; 3921 newisec->sid = isec->sid; 3922 newisec->initialized = 1; 3923 3924 return 0; 3925 } 3926 3927 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3928 int size) 3929 { 3930 return socket_has_perm(current, sock, SOCKET__WRITE); 3931 } 3932 3933 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3934 int size, int flags) 3935 { 3936 return socket_has_perm(current, sock, SOCKET__READ); 3937 } 3938 3939 static int selinux_socket_getsockname(struct socket *sock) 3940 { 3941 return socket_has_perm(current, sock, SOCKET__GETATTR); 3942 } 3943 3944 static int selinux_socket_getpeername(struct socket *sock) 3945 { 3946 return socket_has_perm(current, sock, SOCKET__GETATTR); 3947 } 3948 3949 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3950 { 3951 int err; 3952 3953 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3954 if (err) 3955 return err; 3956 3957 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3958 } 3959 3960 static int selinux_socket_getsockopt(struct socket *sock, int level, 3961 int optname) 3962 { 3963 return socket_has_perm(current, sock, SOCKET__GETOPT); 3964 } 3965 3966 static int selinux_socket_shutdown(struct socket *sock, int how) 3967 { 3968 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3969 } 3970 3971 static int selinux_socket_unix_stream_connect(struct socket *sock, 3972 struct socket *other, 3973 struct sock *newsk) 3974 { 3975 struct sk_security_struct *sksec_sock = sock->sk->sk_security; 3976 struct sk_security_struct *sksec_other = other->sk->sk_security; 3977 struct sk_security_struct *sksec_new = newsk->sk_security; 3978 struct common_audit_data ad; 3979 int err; 3980 3981 COMMON_AUDIT_DATA_INIT(&ad, NET); 3982 ad.u.net.sk = other->sk; 3983 3984 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 3985 sksec_other->sclass, 3986 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3987 if (err) 3988 return err; 3989 3990 /* server child socket */ 3991 sksec_new->peer_sid = sksec_sock->sid; 3992 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 3993 &sksec_new->sid); 3994 if (err) 3995 return err; 3996 3997 /* connecting socket */ 3998 sksec_sock->peer_sid = sksec_new->sid; 3999 4000 return 0; 4001 } 4002 4003 static int selinux_socket_unix_may_send(struct socket *sock, 4004 struct socket *other) 4005 { 4006 struct inode_security_struct *isec; 4007 struct inode_security_struct *other_isec; 4008 struct common_audit_data ad; 4009 int err; 4010 4011 isec = SOCK_INODE(sock)->i_security; 4012 other_isec = SOCK_INODE(other)->i_security; 4013 4014 COMMON_AUDIT_DATA_INIT(&ad, NET); 4015 ad.u.net.sk = other->sk; 4016 4017 err = avc_has_perm(isec->sid, other_isec->sid, 4018 isec->sclass, SOCKET__SENDTO, &ad); 4019 if (err) 4020 return err; 4021 4022 return 0; 4023 } 4024 4025 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 4026 u32 peer_sid, 4027 struct common_audit_data *ad) 4028 { 4029 int err; 4030 u32 if_sid; 4031 u32 node_sid; 4032 4033 err = sel_netif_sid(ifindex, &if_sid); 4034 if (err) 4035 return err; 4036 err = avc_has_perm(peer_sid, if_sid, 4037 SECCLASS_NETIF, NETIF__INGRESS, ad); 4038 if (err) 4039 return err; 4040 4041 err = sel_netnode_sid(addrp, family, &node_sid); 4042 if (err) 4043 return err; 4044 return avc_has_perm(peer_sid, node_sid, 4045 SECCLASS_NODE, NODE__RECVFROM, ad); 4046 } 4047 4048 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4049 u16 family) 4050 { 4051 int err = 0; 4052 struct sk_security_struct *sksec = sk->sk_security; 4053 u32 peer_sid; 4054 u32 sk_sid = sksec->sid; 4055 struct common_audit_data ad; 4056 char *addrp; 4057 4058 COMMON_AUDIT_DATA_INIT(&ad, NET); 4059 ad.u.net.netif = skb->skb_iif; 4060 ad.u.net.family = family; 4061 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4062 if (err) 4063 return err; 4064 4065 if (selinux_secmark_enabled()) { 4066 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4067 PACKET__RECV, &ad); 4068 if (err) 4069 return err; 4070 } 4071 4072 if (selinux_policycap_netpeer) { 4073 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4074 if (err) 4075 return err; 4076 err = avc_has_perm(sk_sid, peer_sid, 4077 SECCLASS_PEER, PEER__RECV, &ad); 4078 if (err) 4079 selinux_netlbl_err(skb, err, 0); 4080 } else { 4081 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4082 if (err) 4083 return err; 4084 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4085 } 4086 4087 return err; 4088 } 4089 4090 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4091 { 4092 int err; 4093 struct sk_security_struct *sksec = sk->sk_security; 4094 u16 family = sk->sk_family; 4095 u32 sk_sid = sksec->sid; 4096 struct common_audit_data ad; 4097 char *addrp; 4098 u8 secmark_active; 4099 u8 peerlbl_active; 4100 4101 if (family != PF_INET && family != PF_INET6) 4102 return 0; 4103 4104 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4105 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4106 family = PF_INET; 4107 4108 /* If any sort of compatibility mode is enabled then handoff processing 4109 * to the selinux_sock_rcv_skb_compat() function to deal with the 4110 * special handling. We do this in an attempt to keep this function 4111 * as fast and as clean as possible. */ 4112 if (!selinux_policycap_netpeer) 4113 return selinux_sock_rcv_skb_compat(sk, skb, family); 4114 4115 secmark_active = selinux_secmark_enabled(); 4116 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4117 if (!secmark_active && !peerlbl_active) 4118 return 0; 4119 4120 COMMON_AUDIT_DATA_INIT(&ad, NET); 4121 ad.u.net.netif = skb->skb_iif; 4122 ad.u.net.family = family; 4123 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4124 if (err) 4125 return err; 4126 4127 if (peerlbl_active) { 4128 u32 peer_sid; 4129 4130 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4131 if (err) 4132 return err; 4133 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family, 4134 peer_sid, &ad); 4135 if (err) { 4136 selinux_netlbl_err(skb, err, 0); 4137 return err; 4138 } 4139 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4140 PEER__RECV, &ad); 4141 if (err) 4142 selinux_netlbl_err(skb, err, 0); 4143 } 4144 4145 if (secmark_active) { 4146 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4147 PACKET__RECV, &ad); 4148 if (err) 4149 return err; 4150 } 4151 4152 return err; 4153 } 4154 4155 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4156 int __user *optlen, unsigned len) 4157 { 4158 int err = 0; 4159 char *scontext; 4160 u32 scontext_len; 4161 struct sk_security_struct *sksec; 4162 struct inode_security_struct *isec; 4163 u32 peer_sid = SECSID_NULL; 4164 4165 isec = SOCK_INODE(sock)->i_security; 4166 4167 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4168 isec->sclass == SECCLASS_TCP_SOCKET) { 4169 sksec = sock->sk->sk_security; 4170 peer_sid = sksec->peer_sid; 4171 } 4172 if (peer_sid == SECSID_NULL) { 4173 err = -ENOPROTOOPT; 4174 goto out; 4175 } 4176 4177 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4178 4179 if (err) 4180 goto out; 4181 4182 if (scontext_len > len) { 4183 err = -ERANGE; 4184 goto out_len; 4185 } 4186 4187 if (copy_to_user(optval, scontext, scontext_len)) 4188 err = -EFAULT; 4189 4190 out_len: 4191 if (put_user(scontext_len, optlen)) 4192 err = -EFAULT; 4193 4194 kfree(scontext); 4195 out: 4196 return err; 4197 } 4198 4199 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4200 { 4201 u32 peer_secid = SECSID_NULL; 4202 u16 family; 4203 4204 if (skb && skb->protocol == htons(ETH_P_IP)) 4205 family = PF_INET; 4206 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4207 family = PF_INET6; 4208 else if (sock) 4209 family = sock->sk->sk_family; 4210 else 4211 goto out; 4212 4213 if (sock && family == PF_UNIX) 4214 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4215 else if (skb) 4216 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4217 4218 out: 4219 *secid = peer_secid; 4220 if (peer_secid == SECSID_NULL) 4221 return -EINVAL; 4222 return 0; 4223 } 4224 4225 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4226 { 4227 return sk_alloc_security(sk, family, priority); 4228 } 4229 4230 static void selinux_sk_free_security(struct sock *sk) 4231 { 4232 sk_free_security(sk); 4233 } 4234 4235 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4236 { 4237 struct sk_security_struct *sksec = sk->sk_security; 4238 struct sk_security_struct *newsksec = newsk->sk_security; 4239 4240 newsksec->sid = sksec->sid; 4241 newsksec->peer_sid = sksec->peer_sid; 4242 newsksec->sclass = sksec->sclass; 4243 4244 selinux_netlbl_sk_security_reset(newsksec); 4245 } 4246 4247 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4248 { 4249 if (!sk) 4250 *secid = SECINITSID_ANY_SOCKET; 4251 else { 4252 struct sk_security_struct *sksec = sk->sk_security; 4253 4254 *secid = sksec->sid; 4255 } 4256 } 4257 4258 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4259 { 4260 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4261 struct sk_security_struct *sksec = sk->sk_security; 4262 4263 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4264 sk->sk_family == PF_UNIX) 4265 isec->sid = sksec->sid; 4266 sksec->sclass = isec->sclass; 4267 } 4268 4269 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4270 struct request_sock *req) 4271 { 4272 struct sk_security_struct *sksec = sk->sk_security; 4273 int err; 4274 u16 family = sk->sk_family; 4275 u32 newsid; 4276 u32 peersid; 4277 4278 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4279 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4280 family = PF_INET; 4281 4282 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4283 if (err) 4284 return err; 4285 if (peersid == SECSID_NULL) { 4286 req->secid = sksec->sid; 4287 req->peer_secid = SECSID_NULL; 4288 } else { 4289 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4290 if (err) 4291 return err; 4292 req->secid = newsid; 4293 req->peer_secid = peersid; 4294 } 4295 4296 return selinux_netlbl_inet_conn_request(req, family); 4297 } 4298 4299 static void selinux_inet_csk_clone(struct sock *newsk, 4300 const struct request_sock *req) 4301 { 4302 struct sk_security_struct *newsksec = newsk->sk_security; 4303 4304 newsksec->sid = req->secid; 4305 newsksec->peer_sid = req->peer_secid; 4306 /* NOTE: Ideally, we should also get the isec->sid for the 4307 new socket in sync, but we don't have the isec available yet. 4308 So we will wait until sock_graft to do it, by which 4309 time it will have been created and available. */ 4310 4311 /* We don't need to take any sort of lock here as we are the only 4312 * thread with access to newsksec */ 4313 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4314 } 4315 4316 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4317 { 4318 u16 family = sk->sk_family; 4319 struct sk_security_struct *sksec = sk->sk_security; 4320 4321 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4322 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4323 family = PF_INET; 4324 4325 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4326 } 4327 4328 static void selinux_req_classify_flow(const struct request_sock *req, 4329 struct flowi *fl) 4330 { 4331 fl->secid = req->secid; 4332 } 4333 4334 static int selinux_tun_dev_create(void) 4335 { 4336 u32 sid = current_sid(); 4337 4338 /* we aren't taking into account the "sockcreate" SID since the socket 4339 * that is being created here is not a socket in the traditional sense, 4340 * instead it is a private sock, accessible only to the kernel, and 4341 * representing a wide range of network traffic spanning multiple 4342 * connections unlike traditional sockets - check the TUN driver to 4343 * get a better understanding of why this socket is special */ 4344 4345 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4346 NULL); 4347 } 4348 4349 static void selinux_tun_dev_post_create(struct sock *sk) 4350 { 4351 struct sk_security_struct *sksec = sk->sk_security; 4352 4353 /* we don't currently perform any NetLabel based labeling here and it 4354 * isn't clear that we would want to do so anyway; while we could apply 4355 * labeling without the support of the TUN user the resulting labeled 4356 * traffic from the other end of the connection would almost certainly 4357 * cause confusion to the TUN user that had no idea network labeling 4358 * protocols were being used */ 4359 4360 /* see the comments in selinux_tun_dev_create() about why we don't use 4361 * the sockcreate SID here */ 4362 4363 sksec->sid = current_sid(); 4364 sksec->sclass = SECCLASS_TUN_SOCKET; 4365 } 4366 4367 static int selinux_tun_dev_attach(struct sock *sk) 4368 { 4369 struct sk_security_struct *sksec = sk->sk_security; 4370 u32 sid = current_sid(); 4371 int err; 4372 4373 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET, 4374 TUN_SOCKET__RELABELFROM, NULL); 4375 if (err) 4376 return err; 4377 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4378 TUN_SOCKET__RELABELTO, NULL); 4379 if (err) 4380 return err; 4381 4382 sksec->sid = sid; 4383 4384 return 0; 4385 } 4386 4387 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4388 { 4389 int err = 0; 4390 u32 perm; 4391 struct nlmsghdr *nlh; 4392 struct socket *sock = sk->sk_socket; 4393 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4394 4395 if (skb->len < NLMSG_SPACE(0)) { 4396 err = -EINVAL; 4397 goto out; 4398 } 4399 nlh = nlmsg_hdr(skb); 4400 4401 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4402 if (err) { 4403 if (err == -EINVAL) { 4404 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4405 "SELinux: unrecognized netlink message" 4406 " type=%hu for sclass=%hu\n", 4407 nlh->nlmsg_type, isec->sclass); 4408 if (!selinux_enforcing || security_get_allow_unknown()) 4409 err = 0; 4410 } 4411 4412 /* Ignore */ 4413 if (err == -ENOENT) 4414 err = 0; 4415 goto out; 4416 } 4417 4418 err = socket_has_perm(current, sock, perm); 4419 out: 4420 return err; 4421 } 4422 4423 #ifdef CONFIG_NETFILTER 4424 4425 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4426 u16 family) 4427 { 4428 int err; 4429 char *addrp; 4430 u32 peer_sid; 4431 struct common_audit_data ad; 4432 u8 secmark_active; 4433 u8 netlbl_active; 4434 u8 peerlbl_active; 4435 4436 if (!selinux_policycap_netpeer) 4437 return NF_ACCEPT; 4438 4439 secmark_active = selinux_secmark_enabled(); 4440 netlbl_active = netlbl_enabled(); 4441 peerlbl_active = netlbl_active || selinux_xfrm_enabled(); 4442 if (!secmark_active && !peerlbl_active) 4443 return NF_ACCEPT; 4444 4445 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4446 return NF_DROP; 4447 4448 COMMON_AUDIT_DATA_INIT(&ad, NET); 4449 ad.u.net.netif = ifindex; 4450 ad.u.net.family = family; 4451 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4452 return NF_DROP; 4453 4454 if (peerlbl_active) { 4455 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4456 peer_sid, &ad); 4457 if (err) { 4458 selinux_netlbl_err(skb, err, 1); 4459 return NF_DROP; 4460 } 4461 } 4462 4463 if (secmark_active) 4464 if (avc_has_perm(peer_sid, skb->secmark, 4465 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4466 return NF_DROP; 4467 4468 if (netlbl_active) 4469 /* we do this in the FORWARD path and not the POST_ROUTING 4470 * path because we want to make sure we apply the necessary 4471 * labeling before IPsec is applied so we can leverage AH 4472 * protection */ 4473 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4474 return NF_DROP; 4475 4476 return NF_ACCEPT; 4477 } 4478 4479 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4480 struct sk_buff *skb, 4481 const struct net_device *in, 4482 const struct net_device *out, 4483 int (*okfn)(struct sk_buff *)) 4484 { 4485 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4486 } 4487 4488 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4489 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4490 struct sk_buff *skb, 4491 const struct net_device *in, 4492 const struct net_device *out, 4493 int (*okfn)(struct sk_buff *)) 4494 { 4495 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4496 } 4497 #endif /* IPV6 */ 4498 4499 static unsigned int selinux_ip_output(struct sk_buff *skb, 4500 u16 family) 4501 { 4502 u32 sid; 4503 4504 if (!netlbl_enabled()) 4505 return NF_ACCEPT; 4506 4507 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4508 * because we want to make sure we apply the necessary labeling 4509 * before IPsec is applied so we can leverage AH protection */ 4510 if (skb->sk) { 4511 struct sk_security_struct *sksec = skb->sk->sk_security; 4512 sid = sksec->sid; 4513 } else 4514 sid = SECINITSID_KERNEL; 4515 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4516 return NF_DROP; 4517 4518 return NF_ACCEPT; 4519 } 4520 4521 static unsigned int selinux_ipv4_output(unsigned int hooknum, 4522 struct sk_buff *skb, 4523 const struct net_device *in, 4524 const struct net_device *out, 4525 int (*okfn)(struct sk_buff *)) 4526 { 4527 return selinux_ip_output(skb, PF_INET); 4528 } 4529 4530 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4531 int ifindex, 4532 u16 family) 4533 { 4534 struct sock *sk = skb->sk; 4535 struct sk_security_struct *sksec; 4536 struct common_audit_data ad; 4537 char *addrp; 4538 u8 proto; 4539 4540 if (sk == NULL) 4541 return NF_ACCEPT; 4542 sksec = sk->sk_security; 4543 4544 COMMON_AUDIT_DATA_INIT(&ad, NET); 4545 ad.u.net.netif = ifindex; 4546 ad.u.net.family = family; 4547 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4548 return NF_DROP; 4549 4550 if (selinux_secmark_enabled()) 4551 if (avc_has_perm(sksec->sid, skb->secmark, 4552 SECCLASS_PACKET, PACKET__SEND, &ad)) 4553 return NF_DROP; 4554 4555 if (selinux_policycap_netpeer) 4556 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4557 return NF_DROP; 4558 4559 return NF_ACCEPT; 4560 } 4561 4562 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4563 u16 family) 4564 { 4565 u32 secmark_perm; 4566 u32 peer_sid; 4567 struct sock *sk; 4568 struct common_audit_data ad; 4569 char *addrp; 4570 u8 secmark_active; 4571 u8 peerlbl_active; 4572 4573 /* If any sort of compatibility mode is enabled then handoff processing 4574 * to the selinux_ip_postroute_compat() function to deal with the 4575 * special handling. We do this in an attempt to keep this function 4576 * as fast and as clean as possible. */ 4577 if (!selinux_policycap_netpeer) 4578 return selinux_ip_postroute_compat(skb, ifindex, family); 4579 #ifdef CONFIG_XFRM 4580 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4581 * packet transformation so allow the packet to pass without any checks 4582 * since we'll have another chance to perform access control checks 4583 * when the packet is on it's final way out. 4584 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4585 * is NULL, in this case go ahead and apply access control. */ 4586 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL) 4587 return NF_ACCEPT; 4588 #endif 4589 secmark_active = selinux_secmark_enabled(); 4590 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4591 if (!secmark_active && !peerlbl_active) 4592 return NF_ACCEPT; 4593 4594 /* if the packet is being forwarded then get the peer label from the 4595 * packet itself; otherwise check to see if it is from a local 4596 * application or the kernel, if from an application get the peer label 4597 * from the sending socket, otherwise use the kernel's sid */ 4598 sk = skb->sk; 4599 if (sk == NULL) { 4600 switch (family) { 4601 case PF_INET: 4602 if (IPCB(skb)->flags & IPSKB_FORWARDED) 4603 secmark_perm = PACKET__FORWARD_OUT; 4604 else 4605 secmark_perm = PACKET__SEND; 4606 break; 4607 case PF_INET6: 4608 if (IP6CB(skb)->flags & IP6SKB_FORWARDED) 4609 secmark_perm = PACKET__FORWARD_OUT; 4610 else 4611 secmark_perm = PACKET__SEND; 4612 break; 4613 default: 4614 return NF_DROP; 4615 } 4616 if (secmark_perm == PACKET__FORWARD_OUT) { 4617 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4618 return NF_DROP; 4619 } else 4620 peer_sid = SECINITSID_KERNEL; 4621 } else { 4622 struct sk_security_struct *sksec = sk->sk_security; 4623 peer_sid = sksec->sid; 4624 secmark_perm = PACKET__SEND; 4625 } 4626 4627 COMMON_AUDIT_DATA_INIT(&ad, NET); 4628 ad.u.net.netif = ifindex; 4629 ad.u.net.family = family; 4630 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 4631 return NF_DROP; 4632 4633 if (secmark_active) 4634 if (avc_has_perm(peer_sid, skb->secmark, 4635 SECCLASS_PACKET, secmark_perm, &ad)) 4636 return NF_DROP; 4637 4638 if (peerlbl_active) { 4639 u32 if_sid; 4640 u32 node_sid; 4641 4642 if (sel_netif_sid(ifindex, &if_sid)) 4643 return NF_DROP; 4644 if (avc_has_perm(peer_sid, if_sid, 4645 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4646 return NF_DROP; 4647 4648 if (sel_netnode_sid(addrp, family, &node_sid)) 4649 return NF_DROP; 4650 if (avc_has_perm(peer_sid, node_sid, 4651 SECCLASS_NODE, NODE__SENDTO, &ad)) 4652 return NF_DROP; 4653 } 4654 4655 return NF_ACCEPT; 4656 } 4657 4658 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4659 struct sk_buff *skb, 4660 const struct net_device *in, 4661 const struct net_device *out, 4662 int (*okfn)(struct sk_buff *)) 4663 { 4664 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4665 } 4666 4667 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4668 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4669 struct sk_buff *skb, 4670 const struct net_device *in, 4671 const struct net_device *out, 4672 int (*okfn)(struct sk_buff *)) 4673 { 4674 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4675 } 4676 #endif /* IPV6 */ 4677 4678 #endif /* CONFIG_NETFILTER */ 4679 4680 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4681 { 4682 int err; 4683 4684 err = cap_netlink_send(sk, skb); 4685 if (err) 4686 return err; 4687 4688 return selinux_nlmsg_perm(sk, skb); 4689 } 4690 4691 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4692 { 4693 int err; 4694 struct common_audit_data ad; 4695 4696 err = cap_netlink_recv(skb, capability); 4697 if (err) 4698 return err; 4699 4700 COMMON_AUDIT_DATA_INIT(&ad, CAP); 4701 ad.u.cap = capability; 4702 4703 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4704 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4705 } 4706 4707 static int ipc_alloc_security(struct task_struct *task, 4708 struct kern_ipc_perm *perm, 4709 u16 sclass) 4710 { 4711 struct ipc_security_struct *isec; 4712 u32 sid; 4713 4714 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4715 if (!isec) 4716 return -ENOMEM; 4717 4718 sid = task_sid(task); 4719 isec->sclass = sclass; 4720 isec->sid = sid; 4721 perm->security = isec; 4722 4723 return 0; 4724 } 4725 4726 static void ipc_free_security(struct kern_ipc_perm *perm) 4727 { 4728 struct ipc_security_struct *isec = perm->security; 4729 perm->security = NULL; 4730 kfree(isec); 4731 } 4732 4733 static int msg_msg_alloc_security(struct msg_msg *msg) 4734 { 4735 struct msg_security_struct *msec; 4736 4737 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4738 if (!msec) 4739 return -ENOMEM; 4740 4741 msec->sid = SECINITSID_UNLABELED; 4742 msg->security = msec; 4743 4744 return 0; 4745 } 4746 4747 static void msg_msg_free_security(struct msg_msg *msg) 4748 { 4749 struct msg_security_struct *msec = msg->security; 4750 4751 msg->security = NULL; 4752 kfree(msec); 4753 } 4754 4755 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4756 u32 perms) 4757 { 4758 struct ipc_security_struct *isec; 4759 struct common_audit_data ad; 4760 u32 sid = current_sid(); 4761 4762 isec = ipc_perms->security; 4763 4764 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4765 ad.u.ipc_id = ipc_perms->key; 4766 4767 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 4768 } 4769 4770 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4771 { 4772 return msg_msg_alloc_security(msg); 4773 } 4774 4775 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4776 { 4777 msg_msg_free_security(msg); 4778 } 4779 4780 /* message queue security operations */ 4781 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4782 { 4783 struct ipc_security_struct *isec; 4784 struct common_audit_data ad; 4785 u32 sid = current_sid(); 4786 int rc; 4787 4788 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4789 if (rc) 4790 return rc; 4791 4792 isec = msq->q_perm.security; 4793 4794 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4795 ad.u.ipc_id = msq->q_perm.key; 4796 4797 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4798 MSGQ__CREATE, &ad); 4799 if (rc) { 4800 ipc_free_security(&msq->q_perm); 4801 return rc; 4802 } 4803 return 0; 4804 } 4805 4806 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4807 { 4808 ipc_free_security(&msq->q_perm); 4809 } 4810 4811 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4812 { 4813 struct ipc_security_struct *isec; 4814 struct common_audit_data ad; 4815 u32 sid = current_sid(); 4816 4817 isec = msq->q_perm.security; 4818 4819 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4820 ad.u.ipc_id = msq->q_perm.key; 4821 4822 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4823 MSGQ__ASSOCIATE, &ad); 4824 } 4825 4826 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4827 { 4828 int err; 4829 int perms; 4830 4831 switch (cmd) { 4832 case IPC_INFO: 4833 case MSG_INFO: 4834 /* No specific object, just general system-wide information. */ 4835 return task_has_system(current, SYSTEM__IPC_INFO); 4836 case IPC_STAT: 4837 case MSG_STAT: 4838 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4839 break; 4840 case IPC_SET: 4841 perms = MSGQ__SETATTR; 4842 break; 4843 case IPC_RMID: 4844 perms = MSGQ__DESTROY; 4845 break; 4846 default: 4847 return 0; 4848 } 4849 4850 err = ipc_has_perm(&msq->q_perm, perms); 4851 return err; 4852 } 4853 4854 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4855 { 4856 struct ipc_security_struct *isec; 4857 struct msg_security_struct *msec; 4858 struct common_audit_data ad; 4859 u32 sid = current_sid(); 4860 int rc; 4861 4862 isec = msq->q_perm.security; 4863 msec = msg->security; 4864 4865 /* 4866 * First time through, need to assign label to the message 4867 */ 4868 if (msec->sid == SECINITSID_UNLABELED) { 4869 /* 4870 * Compute new sid based on current process and 4871 * message queue this message will be stored in 4872 */ 4873 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 4874 &msec->sid); 4875 if (rc) 4876 return rc; 4877 } 4878 4879 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4880 ad.u.ipc_id = msq->q_perm.key; 4881 4882 /* Can this process write to the queue? */ 4883 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4884 MSGQ__WRITE, &ad); 4885 if (!rc) 4886 /* Can this process send the message */ 4887 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 4888 MSG__SEND, &ad); 4889 if (!rc) 4890 /* Can the message be put in the queue? */ 4891 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 4892 MSGQ__ENQUEUE, &ad); 4893 4894 return rc; 4895 } 4896 4897 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4898 struct task_struct *target, 4899 long type, int mode) 4900 { 4901 struct ipc_security_struct *isec; 4902 struct msg_security_struct *msec; 4903 struct common_audit_data ad; 4904 u32 sid = task_sid(target); 4905 int rc; 4906 4907 isec = msq->q_perm.security; 4908 msec = msg->security; 4909 4910 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4911 ad.u.ipc_id = msq->q_perm.key; 4912 4913 rc = avc_has_perm(sid, isec->sid, 4914 SECCLASS_MSGQ, MSGQ__READ, &ad); 4915 if (!rc) 4916 rc = avc_has_perm(sid, msec->sid, 4917 SECCLASS_MSG, MSG__RECEIVE, &ad); 4918 return rc; 4919 } 4920 4921 /* Shared Memory security operations */ 4922 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4923 { 4924 struct ipc_security_struct *isec; 4925 struct common_audit_data ad; 4926 u32 sid = current_sid(); 4927 int rc; 4928 4929 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4930 if (rc) 4931 return rc; 4932 4933 isec = shp->shm_perm.security; 4934 4935 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4936 ad.u.ipc_id = shp->shm_perm.key; 4937 4938 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4939 SHM__CREATE, &ad); 4940 if (rc) { 4941 ipc_free_security(&shp->shm_perm); 4942 return rc; 4943 } 4944 return 0; 4945 } 4946 4947 static void selinux_shm_free_security(struct shmid_kernel *shp) 4948 { 4949 ipc_free_security(&shp->shm_perm); 4950 } 4951 4952 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4953 { 4954 struct ipc_security_struct *isec; 4955 struct common_audit_data ad; 4956 u32 sid = current_sid(); 4957 4958 isec = shp->shm_perm.security; 4959 4960 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4961 ad.u.ipc_id = shp->shm_perm.key; 4962 4963 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4964 SHM__ASSOCIATE, &ad); 4965 } 4966 4967 /* Note, at this point, shp is locked down */ 4968 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4969 { 4970 int perms; 4971 int err; 4972 4973 switch (cmd) { 4974 case IPC_INFO: 4975 case SHM_INFO: 4976 /* No specific object, just general system-wide information. */ 4977 return task_has_system(current, SYSTEM__IPC_INFO); 4978 case IPC_STAT: 4979 case SHM_STAT: 4980 perms = SHM__GETATTR | SHM__ASSOCIATE; 4981 break; 4982 case IPC_SET: 4983 perms = SHM__SETATTR; 4984 break; 4985 case SHM_LOCK: 4986 case SHM_UNLOCK: 4987 perms = SHM__LOCK; 4988 break; 4989 case IPC_RMID: 4990 perms = SHM__DESTROY; 4991 break; 4992 default: 4993 return 0; 4994 } 4995 4996 err = ipc_has_perm(&shp->shm_perm, perms); 4997 return err; 4998 } 4999 5000 static int selinux_shm_shmat(struct shmid_kernel *shp, 5001 char __user *shmaddr, int shmflg) 5002 { 5003 u32 perms; 5004 5005 if (shmflg & SHM_RDONLY) 5006 perms = SHM__READ; 5007 else 5008 perms = SHM__READ | SHM__WRITE; 5009 5010 return ipc_has_perm(&shp->shm_perm, perms); 5011 } 5012 5013 /* Semaphore security operations */ 5014 static int selinux_sem_alloc_security(struct sem_array *sma) 5015 { 5016 struct ipc_security_struct *isec; 5017 struct common_audit_data ad; 5018 u32 sid = current_sid(); 5019 int rc; 5020 5021 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5022 if (rc) 5023 return rc; 5024 5025 isec = sma->sem_perm.security; 5026 5027 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5028 ad.u.ipc_id = sma->sem_perm.key; 5029 5030 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5031 SEM__CREATE, &ad); 5032 if (rc) { 5033 ipc_free_security(&sma->sem_perm); 5034 return rc; 5035 } 5036 return 0; 5037 } 5038 5039 static void selinux_sem_free_security(struct sem_array *sma) 5040 { 5041 ipc_free_security(&sma->sem_perm); 5042 } 5043 5044 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5045 { 5046 struct ipc_security_struct *isec; 5047 struct common_audit_data ad; 5048 u32 sid = current_sid(); 5049 5050 isec = sma->sem_perm.security; 5051 5052 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5053 ad.u.ipc_id = sma->sem_perm.key; 5054 5055 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5056 SEM__ASSOCIATE, &ad); 5057 } 5058 5059 /* Note, at this point, sma is locked down */ 5060 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5061 { 5062 int err; 5063 u32 perms; 5064 5065 switch (cmd) { 5066 case IPC_INFO: 5067 case SEM_INFO: 5068 /* No specific object, just general system-wide information. */ 5069 return task_has_system(current, SYSTEM__IPC_INFO); 5070 case GETPID: 5071 case GETNCNT: 5072 case GETZCNT: 5073 perms = SEM__GETATTR; 5074 break; 5075 case GETVAL: 5076 case GETALL: 5077 perms = SEM__READ; 5078 break; 5079 case SETVAL: 5080 case SETALL: 5081 perms = SEM__WRITE; 5082 break; 5083 case IPC_RMID: 5084 perms = SEM__DESTROY; 5085 break; 5086 case IPC_SET: 5087 perms = SEM__SETATTR; 5088 break; 5089 case IPC_STAT: 5090 case SEM_STAT: 5091 perms = SEM__GETATTR | SEM__ASSOCIATE; 5092 break; 5093 default: 5094 return 0; 5095 } 5096 5097 err = ipc_has_perm(&sma->sem_perm, perms); 5098 return err; 5099 } 5100 5101 static int selinux_sem_semop(struct sem_array *sma, 5102 struct sembuf *sops, unsigned nsops, int alter) 5103 { 5104 u32 perms; 5105 5106 if (alter) 5107 perms = SEM__READ | SEM__WRITE; 5108 else 5109 perms = SEM__READ; 5110 5111 return ipc_has_perm(&sma->sem_perm, perms); 5112 } 5113 5114 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5115 { 5116 u32 av = 0; 5117 5118 av = 0; 5119 if (flag & S_IRUGO) 5120 av |= IPC__UNIX_READ; 5121 if (flag & S_IWUGO) 5122 av |= IPC__UNIX_WRITE; 5123 5124 if (av == 0) 5125 return 0; 5126 5127 return ipc_has_perm(ipcp, av); 5128 } 5129 5130 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5131 { 5132 struct ipc_security_struct *isec = ipcp->security; 5133 *secid = isec->sid; 5134 } 5135 5136 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5137 { 5138 if (inode) 5139 inode_doinit_with_dentry(inode, dentry); 5140 } 5141 5142 static int selinux_getprocattr(struct task_struct *p, 5143 char *name, char **value) 5144 { 5145 const struct task_security_struct *__tsec; 5146 u32 sid; 5147 int error; 5148 unsigned len; 5149 5150 if (current != p) { 5151 error = current_has_perm(p, PROCESS__GETATTR); 5152 if (error) 5153 return error; 5154 } 5155 5156 rcu_read_lock(); 5157 __tsec = __task_cred(p)->security; 5158 5159 if (!strcmp(name, "current")) 5160 sid = __tsec->sid; 5161 else if (!strcmp(name, "prev")) 5162 sid = __tsec->osid; 5163 else if (!strcmp(name, "exec")) 5164 sid = __tsec->exec_sid; 5165 else if (!strcmp(name, "fscreate")) 5166 sid = __tsec->create_sid; 5167 else if (!strcmp(name, "keycreate")) 5168 sid = __tsec->keycreate_sid; 5169 else if (!strcmp(name, "sockcreate")) 5170 sid = __tsec->sockcreate_sid; 5171 else 5172 goto invalid; 5173 rcu_read_unlock(); 5174 5175 if (!sid) 5176 return 0; 5177 5178 error = security_sid_to_context(sid, value, &len); 5179 if (error) 5180 return error; 5181 return len; 5182 5183 invalid: 5184 rcu_read_unlock(); 5185 return -EINVAL; 5186 } 5187 5188 static int selinux_setprocattr(struct task_struct *p, 5189 char *name, void *value, size_t size) 5190 { 5191 struct task_security_struct *tsec; 5192 struct task_struct *tracer; 5193 struct cred *new; 5194 u32 sid = 0, ptsid; 5195 int error; 5196 char *str = value; 5197 5198 if (current != p) { 5199 /* SELinux only allows a process to change its own 5200 security attributes. */ 5201 return -EACCES; 5202 } 5203 5204 /* 5205 * Basic control over ability to set these attributes at all. 5206 * current == p, but we'll pass them separately in case the 5207 * above restriction is ever removed. 5208 */ 5209 if (!strcmp(name, "exec")) 5210 error = current_has_perm(p, PROCESS__SETEXEC); 5211 else if (!strcmp(name, "fscreate")) 5212 error = current_has_perm(p, PROCESS__SETFSCREATE); 5213 else if (!strcmp(name, "keycreate")) 5214 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5215 else if (!strcmp(name, "sockcreate")) 5216 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5217 else if (!strcmp(name, "current")) 5218 error = current_has_perm(p, PROCESS__SETCURRENT); 5219 else 5220 error = -EINVAL; 5221 if (error) 5222 return error; 5223 5224 /* Obtain a SID for the context, if one was specified. */ 5225 if (size && str[1] && str[1] != '\n') { 5226 if (str[size-1] == '\n') { 5227 str[size-1] = 0; 5228 size--; 5229 } 5230 error = security_context_to_sid(value, size, &sid); 5231 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5232 if (!capable(CAP_MAC_ADMIN)) 5233 return error; 5234 error = security_context_to_sid_force(value, size, 5235 &sid); 5236 } 5237 if (error) 5238 return error; 5239 } 5240 5241 new = prepare_creds(); 5242 if (!new) 5243 return -ENOMEM; 5244 5245 /* Permission checking based on the specified context is 5246 performed during the actual operation (execve, 5247 open/mkdir/...), when we know the full context of the 5248 operation. See selinux_bprm_set_creds for the execve 5249 checks and may_create for the file creation checks. The 5250 operation will then fail if the context is not permitted. */ 5251 tsec = new->security; 5252 if (!strcmp(name, "exec")) { 5253 tsec->exec_sid = sid; 5254 } else if (!strcmp(name, "fscreate")) { 5255 tsec->create_sid = sid; 5256 } else if (!strcmp(name, "keycreate")) { 5257 error = may_create_key(sid, p); 5258 if (error) 5259 goto abort_change; 5260 tsec->keycreate_sid = sid; 5261 } else if (!strcmp(name, "sockcreate")) { 5262 tsec->sockcreate_sid = sid; 5263 } else if (!strcmp(name, "current")) { 5264 error = -EINVAL; 5265 if (sid == 0) 5266 goto abort_change; 5267 5268 /* Only allow single threaded processes to change context */ 5269 error = -EPERM; 5270 if (!current_is_single_threaded()) { 5271 error = security_bounded_transition(tsec->sid, sid); 5272 if (error) 5273 goto abort_change; 5274 } 5275 5276 /* Check permissions for the transition. */ 5277 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5278 PROCESS__DYNTRANSITION, NULL); 5279 if (error) 5280 goto abort_change; 5281 5282 /* Check for ptracing, and update the task SID if ok. 5283 Otherwise, leave SID unchanged and fail. */ 5284 ptsid = 0; 5285 task_lock(p); 5286 tracer = tracehook_tracer_task(p); 5287 if (tracer) 5288 ptsid = task_sid(tracer); 5289 task_unlock(p); 5290 5291 if (tracer) { 5292 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5293 PROCESS__PTRACE, NULL); 5294 if (error) 5295 goto abort_change; 5296 } 5297 5298 tsec->sid = sid; 5299 } else { 5300 error = -EINVAL; 5301 goto abort_change; 5302 } 5303 5304 commit_creds(new); 5305 return size; 5306 5307 abort_change: 5308 abort_creds(new); 5309 return error; 5310 } 5311 5312 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5313 { 5314 return security_sid_to_context(secid, secdata, seclen); 5315 } 5316 5317 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5318 { 5319 return security_context_to_sid(secdata, seclen, secid); 5320 } 5321 5322 static void selinux_release_secctx(char *secdata, u32 seclen) 5323 { 5324 kfree(secdata); 5325 } 5326 5327 /* 5328 * called with inode->i_mutex locked 5329 */ 5330 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5331 { 5332 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5333 } 5334 5335 /* 5336 * called with inode->i_mutex locked 5337 */ 5338 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5339 { 5340 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5341 } 5342 5343 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5344 { 5345 int len = 0; 5346 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5347 ctx, true); 5348 if (len < 0) 5349 return len; 5350 *ctxlen = len; 5351 return 0; 5352 } 5353 #ifdef CONFIG_KEYS 5354 5355 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5356 unsigned long flags) 5357 { 5358 const struct task_security_struct *tsec; 5359 struct key_security_struct *ksec; 5360 5361 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5362 if (!ksec) 5363 return -ENOMEM; 5364 5365 tsec = cred->security; 5366 if (tsec->keycreate_sid) 5367 ksec->sid = tsec->keycreate_sid; 5368 else 5369 ksec->sid = tsec->sid; 5370 5371 k->security = ksec; 5372 return 0; 5373 } 5374 5375 static void selinux_key_free(struct key *k) 5376 { 5377 struct key_security_struct *ksec = k->security; 5378 5379 k->security = NULL; 5380 kfree(ksec); 5381 } 5382 5383 static int selinux_key_permission(key_ref_t key_ref, 5384 const struct cred *cred, 5385 key_perm_t perm) 5386 { 5387 struct key *key; 5388 struct key_security_struct *ksec; 5389 u32 sid; 5390 5391 /* if no specific permissions are requested, we skip the 5392 permission check. No serious, additional covert channels 5393 appear to be created. */ 5394 if (perm == 0) 5395 return 0; 5396 5397 sid = cred_sid(cred); 5398 5399 key = key_ref_to_ptr(key_ref); 5400 ksec = key->security; 5401 5402 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5403 } 5404 5405 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5406 { 5407 struct key_security_struct *ksec = key->security; 5408 char *context = NULL; 5409 unsigned len; 5410 int rc; 5411 5412 rc = security_sid_to_context(ksec->sid, &context, &len); 5413 if (!rc) 5414 rc = len; 5415 *_buffer = context; 5416 return rc; 5417 } 5418 5419 #endif 5420 5421 static struct security_operations selinux_ops = { 5422 .name = "selinux", 5423 5424 .ptrace_access_check = selinux_ptrace_access_check, 5425 .ptrace_traceme = selinux_ptrace_traceme, 5426 .capget = selinux_capget, 5427 .capset = selinux_capset, 5428 .sysctl = selinux_sysctl, 5429 .capable = selinux_capable, 5430 .quotactl = selinux_quotactl, 5431 .quota_on = selinux_quota_on, 5432 .syslog = selinux_syslog, 5433 .vm_enough_memory = selinux_vm_enough_memory, 5434 5435 .netlink_send = selinux_netlink_send, 5436 .netlink_recv = selinux_netlink_recv, 5437 5438 .bprm_set_creds = selinux_bprm_set_creds, 5439 .bprm_committing_creds = selinux_bprm_committing_creds, 5440 .bprm_committed_creds = selinux_bprm_committed_creds, 5441 .bprm_secureexec = selinux_bprm_secureexec, 5442 5443 .sb_alloc_security = selinux_sb_alloc_security, 5444 .sb_free_security = selinux_sb_free_security, 5445 .sb_copy_data = selinux_sb_copy_data, 5446 .sb_kern_mount = selinux_sb_kern_mount, 5447 .sb_show_options = selinux_sb_show_options, 5448 .sb_statfs = selinux_sb_statfs, 5449 .sb_mount = selinux_mount, 5450 .sb_umount = selinux_umount, 5451 .sb_set_mnt_opts = selinux_set_mnt_opts, 5452 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5453 .sb_parse_opts_str = selinux_parse_opts_str, 5454 5455 5456 .inode_alloc_security = selinux_inode_alloc_security, 5457 .inode_free_security = selinux_inode_free_security, 5458 .inode_init_security = selinux_inode_init_security, 5459 .inode_create = selinux_inode_create, 5460 .inode_link = selinux_inode_link, 5461 .inode_unlink = selinux_inode_unlink, 5462 .inode_symlink = selinux_inode_symlink, 5463 .inode_mkdir = selinux_inode_mkdir, 5464 .inode_rmdir = selinux_inode_rmdir, 5465 .inode_mknod = selinux_inode_mknod, 5466 .inode_rename = selinux_inode_rename, 5467 .inode_readlink = selinux_inode_readlink, 5468 .inode_follow_link = selinux_inode_follow_link, 5469 .inode_permission = selinux_inode_permission, 5470 .inode_setattr = selinux_inode_setattr, 5471 .inode_getattr = selinux_inode_getattr, 5472 .inode_setxattr = selinux_inode_setxattr, 5473 .inode_post_setxattr = selinux_inode_post_setxattr, 5474 .inode_getxattr = selinux_inode_getxattr, 5475 .inode_listxattr = selinux_inode_listxattr, 5476 .inode_removexattr = selinux_inode_removexattr, 5477 .inode_getsecurity = selinux_inode_getsecurity, 5478 .inode_setsecurity = selinux_inode_setsecurity, 5479 .inode_listsecurity = selinux_inode_listsecurity, 5480 .inode_getsecid = selinux_inode_getsecid, 5481 5482 .file_permission = selinux_file_permission, 5483 .file_alloc_security = selinux_file_alloc_security, 5484 .file_free_security = selinux_file_free_security, 5485 .file_ioctl = selinux_file_ioctl, 5486 .file_mmap = selinux_file_mmap, 5487 .file_mprotect = selinux_file_mprotect, 5488 .file_lock = selinux_file_lock, 5489 .file_fcntl = selinux_file_fcntl, 5490 .file_set_fowner = selinux_file_set_fowner, 5491 .file_send_sigiotask = selinux_file_send_sigiotask, 5492 .file_receive = selinux_file_receive, 5493 5494 .dentry_open = selinux_dentry_open, 5495 5496 .task_create = selinux_task_create, 5497 .cred_alloc_blank = selinux_cred_alloc_blank, 5498 .cred_free = selinux_cred_free, 5499 .cred_prepare = selinux_cred_prepare, 5500 .cred_transfer = selinux_cred_transfer, 5501 .kernel_act_as = selinux_kernel_act_as, 5502 .kernel_create_files_as = selinux_kernel_create_files_as, 5503 .kernel_module_request = selinux_kernel_module_request, 5504 .task_setpgid = selinux_task_setpgid, 5505 .task_getpgid = selinux_task_getpgid, 5506 .task_getsid = selinux_task_getsid, 5507 .task_getsecid = selinux_task_getsecid, 5508 .task_setnice = selinux_task_setnice, 5509 .task_setioprio = selinux_task_setioprio, 5510 .task_getioprio = selinux_task_getioprio, 5511 .task_setrlimit = selinux_task_setrlimit, 5512 .task_setscheduler = selinux_task_setscheduler, 5513 .task_getscheduler = selinux_task_getscheduler, 5514 .task_movememory = selinux_task_movememory, 5515 .task_kill = selinux_task_kill, 5516 .task_wait = selinux_task_wait, 5517 .task_to_inode = selinux_task_to_inode, 5518 5519 .ipc_permission = selinux_ipc_permission, 5520 .ipc_getsecid = selinux_ipc_getsecid, 5521 5522 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5523 .msg_msg_free_security = selinux_msg_msg_free_security, 5524 5525 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5526 .msg_queue_free_security = selinux_msg_queue_free_security, 5527 .msg_queue_associate = selinux_msg_queue_associate, 5528 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5529 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5530 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5531 5532 .shm_alloc_security = selinux_shm_alloc_security, 5533 .shm_free_security = selinux_shm_free_security, 5534 .shm_associate = selinux_shm_associate, 5535 .shm_shmctl = selinux_shm_shmctl, 5536 .shm_shmat = selinux_shm_shmat, 5537 5538 .sem_alloc_security = selinux_sem_alloc_security, 5539 .sem_free_security = selinux_sem_free_security, 5540 .sem_associate = selinux_sem_associate, 5541 .sem_semctl = selinux_sem_semctl, 5542 .sem_semop = selinux_sem_semop, 5543 5544 .d_instantiate = selinux_d_instantiate, 5545 5546 .getprocattr = selinux_getprocattr, 5547 .setprocattr = selinux_setprocattr, 5548 5549 .secid_to_secctx = selinux_secid_to_secctx, 5550 .secctx_to_secid = selinux_secctx_to_secid, 5551 .release_secctx = selinux_release_secctx, 5552 .inode_notifysecctx = selinux_inode_notifysecctx, 5553 .inode_setsecctx = selinux_inode_setsecctx, 5554 .inode_getsecctx = selinux_inode_getsecctx, 5555 5556 .unix_stream_connect = selinux_socket_unix_stream_connect, 5557 .unix_may_send = selinux_socket_unix_may_send, 5558 5559 .socket_create = selinux_socket_create, 5560 .socket_post_create = selinux_socket_post_create, 5561 .socket_bind = selinux_socket_bind, 5562 .socket_connect = selinux_socket_connect, 5563 .socket_listen = selinux_socket_listen, 5564 .socket_accept = selinux_socket_accept, 5565 .socket_sendmsg = selinux_socket_sendmsg, 5566 .socket_recvmsg = selinux_socket_recvmsg, 5567 .socket_getsockname = selinux_socket_getsockname, 5568 .socket_getpeername = selinux_socket_getpeername, 5569 .socket_getsockopt = selinux_socket_getsockopt, 5570 .socket_setsockopt = selinux_socket_setsockopt, 5571 .socket_shutdown = selinux_socket_shutdown, 5572 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5573 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5574 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5575 .sk_alloc_security = selinux_sk_alloc_security, 5576 .sk_free_security = selinux_sk_free_security, 5577 .sk_clone_security = selinux_sk_clone_security, 5578 .sk_getsecid = selinux_sk_getsecid, 5579 .sock_graft = selinux_sock_graft, 5580 .inet_conn_request = selinux_inet_conn_request, 5581 .inet_csk_clone = selinux_inet_csk_clone, 5582 .inet_conn_established = selinux_inet_conn_established, 5583 .req_classify_flow = selinux_req_classify_flow, 5584 .tun_dev_create = selinux_tun_dev_create, 5585 .tun_dev_post_create = selinux_tun_dev_post_create, 5586 .tun_dev_attach = selinux_tun_dev_attach, 5587 5588 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5589 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5590 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5591 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5592 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5593 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5594 .xfrm_state_free_security = selinux_xfrm_state_free, 5595 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5596 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5597 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5598 .xfrm_decode_session = selinux_xfrm_decode_session, 5599 #endif 5600 5601 #ifdef CONFIG_KEYS 5602 .key_alloc = selinux_key_alloc, 5603 .key_free = selinux_key_free, 5604 .key_permission = selinux_key_permission, 5605 .key_getsecurity = selinux_key_getsecurity, 5606 #endif 5607 5608 #ifdef CONFIG_AUDIT 5609 .audit_rule_init = selinux_audit_rule_init, 5610 .audit_rule_known = selinux_audit_rule_known, 5611 .audit_rule_match = selinux_audit_rule_match, 5612 .audit_rule_free = selinux_audit_rule_free, 5613 #endif 5614 }; 5615 5616 static __init int selinux_init(void) 5617 { 5618 if (!security_module_enable(&selinux_ops)) { 5619 selinux_enabled = 0; 5620 return 0; 5621 } 5622 5623 if (!selinux_enabled) { 5624 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5625 return 0; 5626 } 5627 5628 printk(KERN_INFO "SELinux: Initializing.\n"); 5629 5630 /* Set the security state for the initial task. */ 5631 cred_init_security(); 5632 5633 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 5634 5635 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5636 sizeof(struct inode_security_struct), 5637 0, SLAB_PANIC, NULL); 5638 avc_init(); 5639 5640 if (register_security(&selinux_ops)) 5641 panic("SELinux: Unable to register with kernel.\n"); 5642 5643 if (selinux_enforcing) 5644 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5645 else 5646 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5647 5648 return 0; 5649 } 5650 5651 static void delayed_superblock_init(struct super_block *sb, void *unused) 5652 { 5653 superblock_doinit(sb, NULL); 5654 } 5655 5656 void selinux_complete_init(void) 5657 { 5658 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5659 5660 /* Set up any superblocks initialized prior to the policy load. */ 5661 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5662 iterate_supers(delayed_superblock_init, NULL); 5663 } 5664 5665 /* SELinux requires early initialization in order to label 5666 all processes and objects when they are created. */ 5667 security_initcall(selinux_init); 5668 5669 #if defined(CONFIG_NETFILTER) 5670 5671 static struct nf_hook_ops selinux_ipv4_ops[] = { 5672 { 5673 .hook = selinux_ipv4_postroute, 5674 .owner = THIS_MODULE, 5675 .pf = PF_INET, 5676 .hooknum = NF_INET_POST_ROUTING, 5677 .priority = NF_IP_PRI_SELINUX_LAST, 5678 }, 5679 { 5680 .hook = selinux_ipv4_forward, 5681 .owner = THIS_MODULE, 5682 .pf = PF_INET, 5683 .hooknum = NF_INET_FORWARD, 5684 .priority = NF_IP_PRI_SELINUX_FIRST, 5685 }, 5686 { 5687 .hook = selinux_ipv4_output, 5688 .owner = THIS_MODULE, 5689 .pf = PF_INET, 5690 .hooknum = NF_INET_LOCAL_OUT, 5691 .priority = NF_IP_PRI_SELINUX_FIRST, 5692 } 5693 }; 5694 5695 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5696 5697 static struct nf_hook_ops selinux_ipv6_ops[] = { 5698 { 5699 .hook = selinux_ipv6_postroute, 5700 .owner = THIS_MODULE, 5701 .pf = PF_INET6, 5702 .hooknum = NF_INET_POST_ROUTING, 5703 .priority = NF_IP6_PRI_SELINUX_LAST, 5704 }, 5705 { 5706 .hook = selinux_ipv6_forward, 5707 .owner = THIS_MODULE, 5708 .pf = PF_INET6, 5709 .hooknum = NF_INET_FORWARD, 5710 .priority = NF_IP6_PRI_SELINUX_FIRST, 5711 } 5712 }; 5713 5714 #endif /* IPV6 */ 5715 5716 static int __init selinux_nf_ip_init(void) 5717 { 5718 int err = 0; 5719 5720 if (!selinux_enabled) 5721 goto out; 5722 5723 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5724 5725 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5726 if (err) 5727 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5728 5729 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5730 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5731 if (err) 5732 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5733 #endif /* IPV6 */ 5734 5735 out: 5736 return err; 5737 } 5738 5739 __initcall(selinux_nf_ip_init); 5740 5741 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5742 static void selinux_nf_ip_exit(void) 5743 { 5744 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5745 5746 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5747 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5748 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5749 #endif /* IPV6 */ 5750 } 5751 #endif 5752 5753 #else /* CONFIG_NETFILTER */ 5754 5755 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5756 #define selinux_nf_ip_exit() 5757 #endif 5758 5759 #endif /* CONFIG_NETFILTER */ 5760 5761 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5762 static int selinux_disabled; 5763 5764 int selinux_disable(void) 5765 { 5766 extern void exit_sel_fs(void); 5767 5768 if (ss_initialized) { 5769 /* Not permitted after initial policy load. */ 5770 return -EINVAL; 5771 } 5772 5773 if (selinux_disabled) { 5774 /* Only do this once. */ 5775 return -EINVAL; 5776 } 5777 5778 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5779 5780 selinux_disabled = 1; 5781 selinux_enabled = 0; 5782 5783 reset_security_ops(); 5784 5785 /* Try to destroy the avc node cache */ 5786 avc_disable(); 5787 5788 /* Unregister netfilter hooks. */ 5789 selinux_nf_ip_exit(); 5790 5791 /* Unregister selinuxfs. */ 5792 exit_sel_fs(); 5793 5794 return 0; 5795 } 5796 #endif 5797