xref: /openbmc/linux/security/selinux/hooks.c (revision c76a2f9ecdcb44cdcdb2de82e90d84283736aeb2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/tracehook.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h>	/* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94 
95 #include "avc.h"
96 #include "objsec.h"
97 #include "netif.h"
98 #include "netnode.h"
99 #include "netport.h"
100 #include "ibpkey.h"
101 #include "xfrm.h"
102 #include "netlabel.h"
103 #include "audit.h"
104 #include "avc_ss.h"
105 
106 struct selinux_state selinux_state;
107 
108 /* SECMARK reference count */
109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110 
111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112 static int selinux_enforcing_boot __initdata;
113 
114 static int __init enforcing_setup(char *str)
115 {
116 	unsigned long enforcing;
117 	if (!kstrtoul(str, 0, &enforcing))
118 		selinux_enforcing_boot = enforcing ? 1 : 0;
119 	return 1;
120 }
121 __setup("enforcing=", enforcing_setup);
122 #else
123 #define selinux_enforcing_boot 1
124 #endif
125 
126 int selinux_enabled_boot __initdata = 1;
127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128 static int __init selinux_enabled_setup(char *str)
129 {
130 	unsigned long enabled;
131 	if (!kstrtoul(str, 0, &enabled))
132 		selinux_enabled_boot = enabled ? 1 : 0;
133 	return 1;
134 }
135 __setup("selinux=", selinux_enabled_setup);
136 #endif
137 
138 static unsigned int selinux_checkreqprot_boot =
139 	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140 
141 static int __init checkreqprot_setup(char *str)
142 {
143 	unsigned long checkreqprot;
144 
145 	if (!kstrtoul(str, 0, &checkreqprot)) {
146 		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 		if (checkreqprot)
148 			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
149 	}
150 	return 1;
151 }
152 __setup("checkreqprot=", checkreqprot_setup);
153 
154 /**
155  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156  *
157  * Description:
158  * This function checks the SECMARK reference counter to see if any SECMARK
159  * targets are currently configured, if the reference counter is greater than
160  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
161  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
162  * policy capability is enabled, SECMARK is always considered enabled.
163  *
164  */
165 static int selinux_secmark_enabled(void)
166 {
167 	return (selinux_policycap_alwaysnetwork() ||
168 		atomic_read(&selinux_secmark_refcount));
169 }
170 
171 /**
172  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173  *
174  * Description:
175  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
176  * (1) if any are enabled or false (0) if neither are enabled.  If the
177  * always_check_network policy capability is enabled, peer labeling
178  * is always considered enabled.
179  *
180  */
181 static int selinux_peerlbl_enabled(void)
182 {
183 	return (selinux_policycap_alwaysnetwork() ||
184 		netlbl_enabled() || selinux_xfrm_enabled());
185 }
186 
187 static int selinux_netcache_avc_callback(u32 event)
188 {
189 	if (event == AVC_CALLBACK_RESET) {
190 		sel_netif_flush();
191 		sel_netnode_flush();
192 		sel_netport_flush();
193 		synchronize_net();
194 	}
195 	return 0;
196 }
197 
198 static int selinux_lsm_notifier_avc_callback(u32 event)
199 {
200 	if (event == AVC_CALLBACK_RESET) {
201 		sel_ib_pkey_flush();
202 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 	}
204 
205 	return 0;
206 }
207 
208 /*
209  * initialise the security for the init task
210  */
211 static void cred_init_security(void)
212 {
213 	struct cred *cred = (struct cred *) current->real_cred;
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(cred);
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 /*
232  * get the objective security ID of a task
233  */
234 static inline u32 task_sid(const struct task_struct *task)
235 {
236 	u32 sid;
237 
238 	rcu_read_lock();
239 	sid = cred_sid(__task_cred(task));
240 	rcu_read_unlock();
241 	return sid;
242 }
243 
244 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
245 
246 /*
247  * Try reloading inode security labels that have been marked as invalid.  The
248  * @may_sleep parameter indicates when sleeping and thus reloading labels is
249  * allowed; when set to false, returns -ECHILD when the label is
250  * invalid.  The @dentry parameter should be set to a dentry of the inode.
251  */
252 static int __inode_security_revalidate(struct inode *inode,
253 				       struct dentry *dentry,
254 				       bool may_sleep)
255 {
256 	struct inode_security_struct *isec = selinux_inode(inode);
257 
258 	might_sleep_if(may_sleep);
259 
260 	if (selinux_initialized(&selinux_state) &&
261 	    isec->initialized != LABEL_INITIALIZED) {
262 		if (!may_sleep)
263 			return -ECHILD;
264 
265 		/*
266 		 * Try reloading the inode security label.  This will fail if
267 		 * @opt_dentry is NULL and no dentry for this inode can be
268 		 * found; in that case, continue using the old label.
269 		 */
270 		inode_doinit_with_dentry(inode, dentry);
271 	}
272 	return 0;
273 }
274 
275 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
276 {
277 	return selinux_inode(inode);
278 }
279 
280 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
281 {
282 	int error;
283 
284 	error = __inode_security_revalidate(inode, NULL, !rcu);
285 	if (error)
286 		return ERR_PTR(error);
287 	return selinux_inode(inode);
288 }
289 
290 /*
291  * Get the security label of an inode.
292  */
293 static struct inode_security_struct *inode_security(struct inode *inode)
294 {
295 	__inode_security_revalidate(inode, NULL, true);
296 	return selinux_inode(inode);
297 }
298 
299 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
300 {
301 	struct inode *inode = d_backing_inode(dentry);
302 
303 	return selinux_inode(inode);
304 }
305 
306 /*
307  * Get the security label of a dentry's backing inode.
308  */
309 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
310 {
311 	struct inode *inode = d_backing_inode(dentry);
312 
313 	__inode_security_revalidate(inode, dentry, true);
314 	return selinux_inode(inode);
315 }
316 
317 static void inode_free_security(struct inode *inode)
318 {
319 	struct inode_security_struct *isec = selinux_inode(inode);
320 	struct superblock_security_struct *sbsec;
321 
322 	if (!isec)
323 		return;
324 	sbsec = inode->i_sb->s_security;
325 	/*
326 	 * As not all inode security structures are in a list, we check for
327 	 * empty list outside of the lock to make sure that we won't waste
328 	 * time taking a lock doing nothing.
329 	 *
330 	 * The list_del_init() function can be safely called more than once.
331 	 * It should not be possible for this function to be called with
332 	 * concurrent list_add(), but for better safety against future changes
333 	 * in the code, we use list_empty_careful() here.
334 	 */
335 	if (!list_empty_careful(&isec->list)) {
336 		spin_lock(&sbsec->isec_lock);
337 		list_del_init(&isec->list);
338 		spin_unlock(&sbsec->isec_lock);
339 	}
340 }
341 
342 static void superblock_free_security(struct super_block *sb)
343 {
344 	struct superblock_security_struct *sbsec = sb->s_security;
345 	sb->s_security = NULL;
346 	kfree(sbsec);
347 }
348 
349 struct selinux_mnt_opts {
350 	const char *fscontext, *context, *rootcontext, *defcontext;
351 };
352 
353 static void selinux_free_mnt_opts(void *mnt_opts)
354 {
355 	struct selinux_mnt_opts *opts = mnt_opts;
356 	kfree(opts->fscontext);
357 	kfree(opts->context);
358 	kfree(opts->rootcontext);
359 	kfree(opts->defcontext);
360 	kfree(opts);
361 }
362 
363 enum {
364 	Opt_error = -1,
365 	Opt_context = 0,
366 	Opt_defcontext = 1,
367 	Opt_fscontext = 2,
368 	Opt_rootcontext = 3,
369 	Opt_seclabel = 4,
370 };
371 
372 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
373 static struct {
374 	const char *name;
375 	int len;
376 	int opt;
377 	bool has_arg;
378 } tokens[] = {
379 	A(context, true),
380 	A(fscontext, true),
381 	A(defcontext, true),
382 	A(rootcontext, true),
383 	A(seclabel, false),
384 };
385 #undef A
386 
387 static int match_opt_prefix(char *s, int l, char **arg)
388 {
389 	int i;
390 
391 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
392 		size_t len = tokens[i].len;
393 		if (len > l || memcmp(s, tokens[i].name, len))
394 			continue;
395 		if (tokens[i].has_arg) {
396 			if (len == l || s[len] != '=')
397 				continue;
398 			*arg = s + len + 1;
399 		} else if (len != l)
400 			continue;
401 		return tokens[i].opt;
402 	}
403 	return Opt_error;
404 }
405 
406 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
407 
408 static int may_context_mount_sb_relabel(u32 sid,
409 			struct superblock_security_struct *sbsec,
410 			const struct cred *cred)
411 {
412 	const struct task_security_struct *tsec = selinux_cred(cred);
413 	int rc;
414 
415 	rc = avc_has_perm(&selinux_state,
416 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
417 			  FILESYSTEM__RELABELFROM, NULL);
418 	if (rc)
419 		return rc;
420 
421 	rc = avc_has_perm(&selinux_state,
422 			  tsec->sid, sid, SECCLASS_FILESYSTEM,
423 			  FILESYSTEM__RELABELTO, NULL);
424 	return rc;
425 }
426 
427 static int may_context_mount_inode_relabel(u32 sid,
428 			struct superblock_security_struct *sbsec,
429 			const struct cred *cred)
430 {
431 	const struct task_security_struct *tsec = selinux_cred(cred);
432 	int rc;
433 	rc = avc_has_perm(&selinux_state,
434 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
435 			  FILESYSTEM__RELABELFROM, NULL);
436 	if (rc)
437 		return rc;
438 
439 	rc = avc_has_perm(&selinux_state,
440 			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
441 			  FILESYSTEM__ASSOCIATE, NULL);
442 	return rc;
443 }
444 
445 static int selinux_is_genfs_special_handling(struct super_block *sb)
446 {
447 	/* Special handling. Genfs but also in-core setxattr handler */
448 	return	!strcmp(sb->s_type->name, "sysfs") ||
449 		!strcmp(sb->s_type->name, "pstore") ||
450 		!strcmp(sb->s_type->name, "debugfs") ||
451 		!strcmp(sb->s_type->name, "tracefs") ||
452 		!strcmp(sb->s_type->name, "rootfs") ||
453 		(selinux_policycap_cgroupseclabel() &&
454 		 (!strcmp(sb->s_type->name, "cgroup") ||
455 		  !strcmp(sb->s_type->name, "cgroup2")));
456 }
457 
458 static int selinux_is_sblabel_mnt(struct super_block *sb)
459 {
460 	struct superblock_security_struct *sbsec = sb->s_security;
461 
462 	/*
463 	 * IMPORTANT: Double-check logic in this function when adding a new
464 	 * SECURITY_FS_USE_* definition!
465 	 */
466 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
467 
468 	switch (sbsec->behavior) {
469 	case SECURITY_FS_USE_XATTR:
470 	case SECURITY_FS_USE_TRANS:
471 	case SECURITY_FS_USE_TASK:
472 	case SECURITY_FS_USE_NATIVE:
473 		return 1;
474 
475 	case SECURITY_FS_USE_GENFS:
476 		return selinux_is_genfs_special_handling(sb);
477 
478 	/* Never allow relabeling on context mounts */
479 	case SECURITY_FS_USE_MNTPOINT:
480 	case SECURITY_FS_USE_NONE:
481 	default:
482 		return 0;
483 	}
484 }
485 
486 static int sb_finish_set_opts(struct super_block *sb)
487 {
488 	struct superblock_security_struct *sbsec = sb->s_security;
489 	struct dentry *root = sb->s_root;
490 	struct inode *root_inode = d_backing_inode(root);
491 	int rc = 0;
492 
493 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
494 		/* Make sure that the xattr handler exists and that no
495 		   error other than -ENODATA is returned by getxattr on
496 		   the root directory.  -ENODATA is ok, as this may be
497 		   the first boot of the SELinux kernel before we have
498 		   assigned xattr values to the filesystem. */
499 		if (!(root_inode->i_opflags & IOP_XATTR)) {
500 			pr_warn("SELinux: (dev %s, type %s) has no "
501 			       "xattr support\n", sb->s_id, sb->s_type->name);
502 			rc = -EOPNOTSUPP;
503 			goto out;
504 		}
505 
506 		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
507 		if (rc < 0 && rc != -ENODATA) {
508 			if (rc == -EOPNOTSUPP)
509 				pr_warn("SELinux: (dev %s, type "
510 				       "%s) has no security xattr handler\n",
511 				       sb->s_id, sb->s_type->name);
512 			else
513 				pr_warn("SELinux: (dev %s, type "
514 				       "%s) getxattr errno %d\n", sb->s_id,
515 				       sb->s_type->name, -rc);
516 			goto out;
517 		}
518 	}
519 
520 	sbsec->flags |= SE_SBINITIALIZED;
521 
522 	/*
523 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
524 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
525 	 * us a superblock that needs the flag to be cleared.
526 	 */
527 	if (selinux_is_sblabel_mnt(sb))
528 		sbsec->flags |= SBLABEL_MNT;
529 	else
530 		sbsec->flags &= ~SBLABEL_MNT;
531 
532 	/* Initialize the root inode. */
533 	rc = inode_doinit_with_dentry(root_inode, root);
534 
535 	/* Initialize any other inodes associated with the superblock, e.g.
536 	   inodes created prior to initial policy load or inodes created
537 	   during get_sb by a pseudo filesystem that directly
538 	   populates itself. */
539 	spin_lock(&sbsec->isec_lock);
540 	while (!list_empty(&sbsec->isec_head)) {
541 		struct inode_security_struct *isec =
542 				list_first_entry(&sbsec->isec_head,
543 					   struct inode_security_struct, list);
544 		struct inode *inode = isec->inode;
545 		list_del_init(&isec->list);
546 		spin_unlock(&sbsec->isec_lock);
547 		inode = igrab(inode);
548 		if (inode) {
549 			if (!IS_PRIVATE(inode))
550 				inode_doinit_with_dentry(inode, NULL);
551 			iput(inode);
552 		}
553 		spin_lock(&sbsec->isec_lock);
554 	}
555 	spin_unlock(&sbsec->isec_lock);
556 out:
557 	return rc;
558 }
559 
560 static int bad_option(struct superblock_security_struct *sbsec, char flag,
561 		      u32 old_sid, u32 new_sid)
562 {
563 	char mnt_flags = sbsec->flags & SE_MNTMASK;
564 
565 	/* check if the old mount command had the same options */
566 	if (sbsec->flags & SE_SBINITIALIZED)
567 		if (!(sbsec->flags & flag) ||
568 		    (old_sid != new_sid))
569 			return 1;
570 
571 	/* check if we were passed the same options twice,
572 	 * aka someone passed context=a,context=b
573 	 */
574 	if (!(sbsec->flags & SE_SBINITIALIZED))
575 		if (mnt_flags & flag)
576 			return 1;
577 	return 0;
578 }
579 
580 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
581 {
582 	int rc = security_context_str_to_sid(&selinux_state, s,
583 					     sid, GFP_KERNEL);
584 	if (rc)
585 		pr_warn("SELinux: security_context_str_to_sid"
586 		       "(%s) failed for (dev %s, type %s) errno=%d\n",
587 		       s, sb->s_id, sb->s_type->name, rc);
588 	return rc;
589 }
590 
591 /*
592  * Allow filesystems with binary mount data to explicitly set mount point
593  * labeling information.
594  */
595 static int selinux_set_mnt_opts(struct super_block *sb,
596 				void *mnt_opts,
597 				unsigned long kern_flags,
598 				unsigned long *set_kern_flags)
599 {
600 	const struct cred *cred = current_cred();
601 	struct superblock_security_struct *sbsec = sb->s_security;
602 	struct dentry *root = sbsec->sb->s_root;
603 	struct selinux_mnt_opts *opts = mnt_opts;
604 	struct inode_security_struct *root_isec;
605 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606 	u32 defcontext_sid = 0;
607 	int rc = 0;
608 
609 	mutex_lock(&sbsec->lock);
610 
611 	if (!selinux_initialized(&selinux_state)) {
612 		if (!opts) {
613 			/* Defer initialization until selinux_complete_init,
614 			   after the initial policy is loaded and the security
615 			   server is ready to handle calls. */
616 			goto out;
617 		}
618 		rc = -EINVAL;
619 		pr_warn("SELinux: Unable to set superblock options "
620 			"before the security server is initialized\n");
621 		goto out;
622 	}
623 	if (kern_flags && !set_kern_flags) {
624 		/* Specifying internal flags without providing a place to
625 		 * place the results is not allowed */
626 		rc = -EINVAL;
627 		goto out;
628 	}
629 
630 	/*
631 	 * Binary mount data FS will come through this function twice.  Once
632 	 * from an explicit call and once from the generic calls from the vfs.
633 	 * Since the generic VFS calls will not contain any security mount data
634 	 * we need to skip the double mount verification.
635 	 *
636 	 * This does open a hole in which we will not notice if the first
637 	 * mount using this sb set explict options and a second mount using
638 	 * this sb does not set any security options.  (The first options
639 	 * will be used for both mounts)
640 	 */
641 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642 	    && !opts)
643 		goto out;
644 
645 	root_isec = backing_inode_security_novalidate(root);
646 
647 	/*
648 	 * parse the mount options, check if they are valid sids.
649 	 * also check if someone is trying to mount the same sb more
650 	 * than once with different security options.
651 	 */
652 	if (opts) {
653 		if (opts->fscontext) {
654 			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
655 			if (rc)
656 				goto out;
657 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
658 					fscontext_sid))
659 				goto out_double_mount;
660 			sbsec->flags |= FSCONTEXT_MNT;
661 		}
662 		if (opts->context) {
663 			rc = parse_sid(sb, opts->context, &context_sid);
664 			if (rc)
665 				goto out;
666 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
667 					context_sid))
668 				goto out_double_mount;
669 			sbsec->flags |= CONTEXT_MNT;
670 		}
671 		if (opts->rootcontext) {
672 			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
673 			if (rc)
674 				goto out;
675 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
676 					rootcontext_sid))
677 				goto out_double_mount;
678 			sbsec->flags |= ROOTCONTEXT_MNT;
679 		}
680 		if (opts->defcontext) {
681 			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
682 			if (rc)
683 				goto out;
684 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
685 					defcontext_sid))
686 				goto out_double_mount;
687 			sbsec->flags |= DEFCONTEXT_MNT;
688 		}
689 	}
690 
691 	if (sbsec->flags & SE_SBINITIALIZED) {
692 		/* previously mounted with options, but not on this attempt? */
693 		if ((sbsec->flags & SE_MNTMASK) && !opts)
694 			goto out_double_mount;
695 		rc = 0;
696 		goto out;
697 	}
698 
699 	if (strcmp(sb->s_type->name, "proc") == 0)
700 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
701 
702 	if (!strcmp(sb->s_type->name, "debugfs") ||
703 	    !strcmp(sb->s_type->name, "tracefs") ||
704 	    !strcmp(sb->s_type->name, "binder") ||
705 	    !strcmp(sb->s_type->name, "bpf") ||
706 	    !strcmp(sb->s_type->name, "pstore"))
707 		sbsec->flags |= SE_SBGENFS;
708 
709 	if (!strcmp(sb->s_type->name, "sysfs") ||
710 	    !strcmp(sb->s_type->name, "cgroup") ||
711 	    !strcmp(sb->s_type->name, "cgroup2"))
712 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
713 
714 	if (!sbsec->behavior) {
715 		/*
716 		 * Determine the labeling behavior to use for this
717 		 * filesystem type.
718 		 */
719 		rc = security_fs_use(&selinux_state, sb);
720 		if (rc) {
721 			pr_warn("%s: security_fs_use(%s) returned %d\n",
722 					__func__, sb->s_type->name, rc);
723 			goto out;
724 		}
725 	}
726 
727 	/*
728 	 * If this is a user namespace mount and the filesystem type is not
729 	 * explicitly whitelisted, then no contexts are allowed on the command
730 	 * line and security labels must be ignored.
731 	 */
732 	if (sb->s_user_ns != &init_user_ns &&
733 	    strcmp(sb->s_type->name, "tmpfs") &&
734 	    strcmp(sb->s_type->name, "ramfs") &&
735 	    strcmp(sb->s_type->name, "devpts")) {
736 		if (context_sid || fscontext_sid || rootcontext_sid ||
737 		    defcontext_sid) {
738 			rc = -EACCES;
739 			goto out;
740 		}
741 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
742 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
743 			rc = security_transition_sid(&selinux_state,
744 						     current_sid(),
745 						     current_sid(),
746 						     SECCLASS_FILE, NULL,
747 						     &sbsec->mntpoint_sid);
748 			if (rc)
749 				goto out;
750 		}
751 		goto out_set_opts;
752 	}
753 
754 	/* sets the context of the superblock for the fs being mounted. */
755 	if (fscontext_sid) {
756 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
757 		if (rc)
758 			goto out;
759 
760 		sbsec->sid = fscontext_sid;
761 	}
762 
763 	/*
764 	 * Switch to using mount point labeling behavior.
765 	 * sets the label used on all file below the mountpoint, and will set
766 	 * the superblock context if not already set.
767 	 */
768 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
769 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
770 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
771 	}
772 
773 	if (context_sid) {
774 		if (!fscontext_sid) {
775 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
776 							  cred);
777 			if (rc)
778 				goto out;
779 			sbsec->sid = context_sid;
780 		} else {
781 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
782 							     cred);
783 			if (rc)
784 				goto out;
785 		}
786 		if (!rootcontext_sid)
787 			rootcontext_sid = context_sid;
788 
789 		sbsec->mntpoint_sid = context_sid;
790 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
791 	}
792 
793 	if (rootcontext_sid) {
794 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
795 						     cred);
796 		if (rc)
797 			goto out;
798 
799 		root_isec->sid = rootcontext_sid;
800 		root_isec->initialized = LABEL_INITIALIZED;
801 	}
802 
803 	if (defcontext_sid) {
804 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
805 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
806 			rc = -EINVAL;
807 			pr_warn("SELinux: defcontext option is "
808 			       "invalid for this filesystem type\n");
809 			goto out;
810 		}
811 
812 		if (defcontext_sid != sbsec->def_sid) {
813 			rc = may_context_mount_inode_relabel(defcontext_sid,
814 							     sbsec, cred);
815 			if (rc)
816 				goto out;
817 		}
818 
819 		sbsec->def_sid = defcontext_sid;
820 	}
821 
822 out_set_opts:
823 	rc = sb_finish_set_opts(sb);
824 out:
825 	mutex_unlock(&sbsec->lock);
826 	return rc;
827 out_double_mount:
828 	rc = -EINVAL;
829 	pr_warn("SELinux: mount invalid.  Same superblock, different "
830 	       "security settings for (dev %s, type %s)\n", sb->s_id,
831 	       sb->s_type->name);
832 	goto out;
833 }
834 
835 static int selinux_cmp_sb_context(const struct super_block *oldsb,
836 				    const struct super_block *newsb)
837 {
838 	struct superblock_security_struct *old = oldsb->s_security;
839 	struct superblock_security_struct *new = newsb->s_security;
840 	char oldflags = old->flags & SE_MNTMASK;
841 	char newflags = new->flags & SE_MNTMASK;
842 
843 	if (oldflags != newflags)
844 		goto mismatch;
845 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
846 		goto mismatch;
847 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
848 		goto mismatch;
849 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
850 		goto mismatch;
851 	if (oldflags & ROOTCONTEXT_MNT) {
852 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
853 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
854 		if (oldroot->sid != newroot->sid)
855 			goto mismatch;
856 	}
857 	return 0;
858 mismatch:
859 	pr_warn("SELinux: mount invalid.  Same superblock, "
860 			    "different security settings for (dev %s, "
861 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
862 	return -EBUSY;
863 }
864 
865 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
866 					struct super_block *newsb,
867 					unsigned long kern_flags,
868 					unsigned long *set_kern_flags)
869 {
870 	int rc = 0;
871 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
872 	struct superblock_security_struct *newsbsec = newsb->s_security;
873 
874 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
875 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
876 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
877 
878 	/*
879 	 * if the parent was able to be mounted it clearly had no special lsm
880 	 * mount options.  thus we can safely deal with this superblock later
881 	 */
882 	if (!selinux_initialized(&selinux_state))
883 		return 0;
884 
885 	/*
886 	 * Specifying internal flags without providing a place to
887 	 * place the results is not allowed.
888 	 */
889 	if (kern_flags && !set_kern_flags)
890 		return -EINVAL;
891 
892 	/* how can we clone if the old one wasn't set up?? */
893 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
894 
895 	/* if fs is reusing a sb, make sure that the contexts match */
896 	if (newsbsec->flags & SE_SBINITIALIZED) {
897 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
898 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
899 		return selinux_cmp_sb_context(oldsb, newsb);
900 	}
901 
902 	mutex_lock(&newsbsec->lock);
903 
904 	newsbsec->flags = oldsbsec->flags;
905 
906 	newsbsec->sid = oldsbsec->sid;
907 	newsbsec->def_sid = oldsbsec->def_sid;
908 	newsbsec->behavior = oldsbsec->behavior;
909 
910 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
911 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
912 		rc = security_fs_use(&selinux_state, newsb);
913 		if (rc)
914 			goto out;
915 	}
916 
917 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
918 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
919 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
920 	}
921 
922 	if (set_context) {
923 		u32 sid = oldsbsec->mntpoint_sid;
924 
925 		if (!set_fscontext)
926 			newsbsec->sid = sid;
927 		if (!set_rootcontext) {
928 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
929 			newisec->sid = sid;
930 		}
931 		newsbsec->mntpoint_sid = sid;
932 	}
933 	if (set_rootcontext) {
934 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
935 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
936 
937 		newisec->sid = oldisec->sid;
938 	}
939 
940 	sb_finish_set_opts(newsb);
941 out:
942 	mutex_unlock(&newsbsec->lock);
943 	return rc;
944 }
945 
946 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
947 {
948 	struct selinux_mnt_opts *opts = *mnt_opts;
949 
950 	if (token == Opt_seclabel)	/* eaten and completely ignored */
951 		return 0;
952 
953 	if (!opts) {
954 		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
955 		if (!opts)
956 			return -ENOMEM;
957 		*mnt_opts = opts;
958 	}
959 	if (!s)
960 		return -ENOMEM;
961 	switch (token) {
962 	case Opt_context:
963 		if (opts->context || opts->defcontext)
964 			goto Einval;
965 		opts->context = s;
966 		break;
967 	case Opt_fscontext:
968 		if (opts->fscontext)
969 			goto Einval;
970 		opts->fscontext = s;
971 		break;
972 	case Opt_rootcontext:
973 		if (opts->rootcontext)
974 			goto Einval;
975 		opts->rootcontext = s;
976 		break;
977 	case Opt_defcontext:
978 		if (opts->context || opts->defcontext)
979 			goto Einval;
980 		opts->defcontext = s;
981 		break;
982 	}
983 	return 0;
984 Einval:
985 	pr_warn(SEL_MOUNT_FAIL_MSG);
986 	return -EINVAL;
987 }
988 
989 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
990 			       void **mnt_opts)
991 {
992 	int token = Opt_error;
993 	int rc, i;
994 
995 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
996 		if (strcmp(option, tokens[i].name) == 0) {
997 			token = tokens[i].opt;
998 			break;
999 		}
1000 	}
1001 
1002 	if (token == Opt_error)
1003 		return -EINVAL;
1004 
1005 	if (token != Opt_seclabel) {
1006 		val = kmemdup_nul(val, len, GFP_KERNEL);
1007 		if (!val) {
1008 			rc = -ENOMEM;
1009 			goto free_opt;
1010 		}
1011 	}
1012 	rc = selinux_add_opt(token, val, mnt_opts);
1013 	if (unlikely(rc)) {
1014 		kfree(val);
1015 		goto free_opt;
1016 	}
1017 	return rc;
1018 
1019 free_opt:
1020 	if (*mnt_opts) {
1021 		selinux_free_mnt_opts(*mnt_opts);
1022 		*mnt_opts = NULL;
1023 	}
1024 	return rc;
1025 }
1026 
1027 static int show_sid(struct seq_file *m, u32 sid)
1028 {
1029 	char *context = NULL;
1030 	u32 len;
1031 	int rc;
1032 
1033 	rc = security_sid_to_context(&selinux_state, sid,
1034 					     &context, &len);
1035 	if (!rc) {
1036 		bool has_comma = context && strchr(context, ',');
1037 
1038 		seq_putc(m, '=');
1039 		if (has_comma)
1040 			seq_putc(m, '\"');
1041 		seq_escape(m, context, "\"\n\\");
1042 		if (has_comma)
1043 			seq_putc(m, '\"');
1044 	}
1045 	kfree(context);
1046 	return rc;
1047 }
1048 
1049 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1050 {
1051 	struct superblock_security_struct *sbsec = sb->s_security;
1052 	int rc;
1053 
1054 	if (!(sbsec->flags & SE_SBINITIALIZED))
1055 		return 0;
1056 
1057 	if (!selinux_initialized(&selinux_state))
1058 		return 0;
1059 
1060 	if (sbsec->flags & FSCONTEXT_MNT) {
1061 		seq_putc(m, ',');
1062 		seq_puts(m, FSCONTEXT_STR);
1063 		rc = show_sid(m, sbsec->sid);
1064 		if (rc)
1065 			return rc;
1066 	}
1067 	if (sbsec->flags & CONTEXT_MNT) {
1068 		seq_putc(m, ',');
1069 		seq_puts(m, CONTEXT_STR);
1070 		rc = show_sid(m, sbsec->mntpoint_sid);
1071 		if (rc)
1072 			return rc;
1073 	}
1074 	if (sbsec->flags & DEFCONTEXT_MNT) {
1075 		seq_putc(m, ',');
1076 		seq_puts(m, DEFCONTEXT_STR);
1077 		rc = show_sid(m, sbsec->def_sid);
1078 		if (rc)
1079 			return rc;
1080 	}
1081 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1082 		struct dentry *root = sbsec->sb->s_root;
1083 		struct inode_security_struct *isec = backing_inode_security(root);
1084 		seq_putc(m, ',');
1085 		seq_puts(m, ROOTCONTEXT_STR);
1086 		rc = show_sid(m, isec->sid);
1087 		if (rc)
1088 			return rc;
1089 	}
1090 	if (sbsec->flags & SBLABEL_MNT) {
1091 		seq_putc(m, ',');
1092 		seq_puts(m, SECLABEL_STR);
1093 	}
1094 	return 0;
1095 }
1096 
1097 static inline u16 inode_mode_to_security_class(umode_t mode)
1098 {
1099 	switch (mode & S_IFMT) {
1100 	case S_IFSOCK:
1101 		return SECCLASS_SOCK_FILE;
1102 	case S_IFLNK:
1103 		return SECCLASS_LNK_FILE;
1104 	case S_IFREG:
1105 		return SECCLASS_FILE;
1106 	case S_IFBLK:
1107 		return SECCLASS_BLK_FILE;
1108 	case S_IFDIR:
1109 		return SECCLASS_DIR;
1110 	case S_IFCHR:
1111 		return SECCLASS_CHR_FILE;
1112 	case S_IFIFO:
1113 		return SECCLASS_FIFO_FILE;
1114 
1115 	}
1116 
1117 	return SECCLASS_FILE;
1118 }
1119 
1120 static inline int default_protocol_stream(int protocol)
1121 {
1122 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1123 }
1124 
1125 static inline int default_protocol_dgram(int protocol)
1126 {
1127 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1128 }
1129 
1130 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1131 {
1132 	int extsockclass = selinux_policycap_extsockclass();
1133 
1134 	switch (family) {
1135 	case PF_UNIX:
1136 		switch (type) {
1137 		case SOCK_STREAM:
1138 		case SOCK_SEQPACKET:
1139 			return SECCLASS_UNIX_STREAM_SOCKET;
1140 		case SOCK_DGRAM:
1141 		case SOCK_RAW:
1142 			return SECCLASS_UNIX_DGRAM_SOCKET;
1143 		}
1144 		break;
1145 	case PF_INET:
1146 	case PF_INET6:
1147 		switch (type) {
1148 		case SOCK_STREAM:
1149 		case SOCK_SEQPACKET:
1150 			if (default_protocol_stream(protocol))
1151 				return SECCLASS_TCP_SOCKET;
1152 			else if (extsockclass && protocol == IPPROTO_SCTP)
1153 				return SECCLASS_SCTP_SOCKET;
1154 			else
1155 				return SECCLASS_RAWIP_SOCKET;
1156 		case SOCK_DGRAM:
1157 			if (default_protocol_dgram(protocol))
1158 				return SECCLASS_UDP_SOCKET;
1159 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1160 						  protocol == IPPROTO_ICMPV6))
1161 				return SECCLASS_ICMP_SOCKET;
1162 			else
1163 				return SECCLASS_RAWIP_SOCKET;
1164 		case SOCK_DCCP:
1165 			return SECCLASS_DCCP_SOCKET;
1166 		default:
1167 			return SECCLASS_RAWIP_SOCKET;
1168 		}
1169 		break;
1170 	case PF_NETLINK:
1171 		switch (protocol) {
1172 		case NETLINK_ROUTE:
1173 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1174 		case NETLINK_SOCK_DIAG:
1175 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1176 		case NETLINK_NFLOG:
1177 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1178 		case NETLINK_XFRM:
1179 			return SECCLASS_NETLINK_XFRM_SOCKET;
1180 		case NETLINK_SELINUX:
1181 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1182 		case NETLINK_ISCSI:
1183 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1184 		case NETLINK_AUDIT:
1185 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1186 		case NETLINK_FIB_LOOKUP:
1187 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1188 		case NETLINK_CONNECTOR:
1189 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1190 		case NETLINK_NETFILTER:
1191 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1192 		case NETLINK_DNRTMSG:
1193 			return SECCLASS_NETLINK_DNRT_SOCKET;
1194 		case NETLINK_KOBJECT_UEVENT:
1195 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1196 		case NETLINK_GENERIC:
1197 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1198 		case NETLINK_SCSITRANSPORT:
1199 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1200 		case NETLINK_RDMA:
1201 			return SECCLASS_NETLINK_RDMA_SOCKET;
1202 		case NETLINK_CRYPTO:
1203 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1204 		default:
1205 			return SECCLASS_NETLINK_SOCKET;
1206 		}
1207 	case PF_PACKET:
1208 		return SECCLASS_PACKET_SOCKET;
1209 	case PF_KEY:
1210 		return SECCLASS_KEY_SOCKET;
1211 	case PF_APPLETALK:
1212 		return SECCLASS_APPLETALK_SOCKET;
1213 	}
1214 
1215 	if (extsockclass) {
1216 		switch (family) {
1217 		case PF_AX25:
1218 			return SECCLASS_AX25_SOCKET;
1219 		case PF_IPX:
1220 			return SECCLASS_IPX_SOCKET;
1221 		case PF_NETROM:
1222 			return SECCLASS_NETROM_SOCKET;
1223 		case PF_ATMPVC:
1224 			return SECCLASS_ATMPVC_SOCKET;
1225 		case PF_X25:
1226 			return SECCLASS_X25_SOCKET;
1227 		case PF_ROSE:
1228 			return SECCLASS_ROSE_SOCKET;
1229 		case PF_DECnet:
1230 			return SECCLASS_DECNET_SOCKET;
1231 		case PF_ATMSVC:
1232 			return SECCLASS_ATMSVC_SOCKET;
1233 		case PF_RDS:
1234 			return SECCLASS_RDS_SOCKET;
1235 		case PF_IRDA:
1236 			return SECCLASS_IRDA_SOCKET;
1237 		case PF_PPPOX:
1238 			return SECCLASS_PPPOX_SOCKET;
1239 		case PF_LLC:
1240 			return SECCLASS_LLC_SOCKET;
1241 		case PF_CAN:
1242 			return SECCLASS_CAN_SOCKET;
1243 		case PF_TIPC:
1244 			return SECCLASS_TIPC_SOCKET;
1245 		case PF_BLUETOOTH:
1246 			return SECCLASS_BLUETOOTH_SOCKET;
1247 		case PF_IUCV:
1248 			return SECCLASS_IUCV_SOCKET;
1249 		case PF_RXRPC:
1250 			return SECCLASS_RXRPC_SOCKET;
1251 		case PF_ISDN:
1252 			return SECCLASS_ISDN_SOCKET;
1253 		case PF_PHONET:
1254 			return SECCLASS_PHONET_SOCKET;
1255 		case PF_IEEE802154:
1256 			return SECCLASS_IEEE802154_SOCKET;
1257 		case PF_CAIF:
1258 			return SECCLASS_CAIF_SOCKET;
1259 		case PF_ALG:
1260 			return SECCLASS_ALG_SOCKET;
1261 		case PF_NFC:
1262 			return SECCLASS_NFC_SOCKET;
1263 		case PF_VSOCK:
1264 			return SECCLASS_VSOCK_SOCKET;
1265 		case PF_KCM:
1266 			return SECCLASS_KCM_SOCKET;
1267 		case PF_QIPCRTR:
1268 			return SECCLASS_QIPCRTR_SOCKET;
1269 		case PF_SMC:
1270 			return SECCLASS_SMC_SOCKET;
1271 		case PF_XDP:
1272 			return SECCLASS_XDP_SOCKET;
1273 #if PF_MAX > 45
1274 #error New address family defined, please update this function.
1275 #endif
1276 		}
1277 	}
1278 
1279 	return SECCLASS_SOCKET;
1280 }
1281 
1282 static int selinux_genfs_get_sid(struct dentry *dentry,
1283 				 u16 tclass,
1284 				 u16 flags,
1285 				 u32 *sid)
1286 {
1287 	int rc;
1288 	struct super_block *sb = dentry->d_sb;
1289 	char *buffer, *path;
1290 
1291 	buffer = (char *)__get_free_page(GFP_KERNEL);
1292 	if (!buffer)
1293 		return -ENOMEM;
1294 
1295 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1296 	if (IS_ERR(path))
1297 		rc = PTR_ERR(path);
1298 	else {
1299 		if (flags & SE_SBPROC) {
1300 			/* each process gets a /proc/PID/ entry. Strip off the
1301 			 * PID part to get a valid selinux labeling.
1302 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1303 			while (path[1] >= '0' && path[1] <= '9') {
1304 				path[1] = '/';
1305 				path++;
1306 			}
1307 		}
1308 		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1309 					path, tclass, sid);
1310 		if (rc == -ENOENT) {
1311 			/* No match in policy, mark as unlabeled. */
1312 			*sid = SECINITSID_UNLABELED;
1313 			rc = 0;
1314 		}
1315 	}
1316 	free_page((unsigned long)buffer);
1317 	return rc;
1318 }
1319 
1320 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1321 				  u32 def_sid, u32 *sid)
1322 {
1323 #define INITCONTEXTLEN 255
1324 	char *context;
1325 	unsigned int len;
1326 	int rc;
1327 
1328 	len = INITCONTEXTLEN;
1329 	context = kmalloc(len + 1, GFP_NOFS);
1330 	if (!context)
1331 		return -ENOMEM;
1332 
1333 	context[len] = '\0';
1334 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1335 	if (rc == -ERANGE) {
1336 		kfree(context);
1337 
1338 		/* Need a larger buffer.  Query for the right size. */
1339 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1340 		if (rc < 0)
1341 			return rc;
1342 
1343 		len = rc;
1344 		context = kmalloc(len + 1, GFP_NOFS);
1345 		if (!context)
1346 			return -ENOMEM;
1347 
1348 		context[len] = '\0';
1349 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1350 				    context, len);
1351 	}
1352 	if (rc < 0) {
1353 		kfree(context);
1354 		if (rc != -ENODATA) {
1355 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1356 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1357 			return rc;
1358 		}
1359 		*sid = def_sid;
1360 		return 0;
1361 	}
1362 
1363 	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1364 					     def_sid, GFP_NOFS);
1365 	if (rc) {
1366 		char *dev = inode->i_sb->s_id;
1367 		unsigned long ino = inode->i_ino;
1368 
1369 		if (rc == -EINVAL) {
1370 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1371 					      ino, dev, context);
1372 		} else {
1373 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1374 				__func__, context, -rc, dev, ino);
1375 		}
1376 	}
1377 	kfree(context);
1378 	return 0;
1379 }
1380 
1381 /* The inode's security attributes must be initialized before first use. */
1382 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1383 {
1384 	struct superblock_security_struct *sbsec = NULL;
1385 	struct inode_security_struct *isec = selinux_inode(inode);
1386 	u32 task_sid, sid = 0;
1387 	u16 sclass;
1388 	struct dentry *dentry;
1389 	int rc = 0;
1390 
1391 	if (isec->initialized == LABEL_INITIALIZED)
1392 		return 0;
1393 
1394 	spin_lock(&isec->lock);
1395 	if (isec->initialized == LABEL_INITIALIZED)
1396 		goto out_unlock;
1397 
1398 	if (isec->sclass == SECCLASS_FILE)
1399 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1400 
1401 	sbsec = inode->i_sb->s_security;
1402 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1403 		/* Defer initialization until selinux_complete_init,
1404 		   after the initial policy is loaded and the security
1405 		   server is ready to handle calls. */
1406 		spin_lock(&sbsec->isec_lock);
1407 		if (list_empty(&isec->list))
1408 			list_add(&isec->list, &sbsec->isec_head);
1409 		spin_unlock(&sbsec->isec_lock);
1410 		goto out_unlock;
1411 	}
1412 
1413 	sclass = isec->sclass;
1414 	task_sid = isec->task_sid;
1415 	sid = isec->sid;
1416 	isec->initialized = LABEL_PENDING;
1417 	spin_unlock(&isec->lock);
1418 
1419 	switch (sbsec->behavior) {
1420 	case SECURITY_FS_USE_NATIVE:
1421 		break;
1422 	case SECURITY_FS_USE_XATTR:
1423 		if (!(inode->i_opflags & IOP_XATTR)) {
1424 			sid = sbsec->def_sid;
1425 			break;
1426 		}
1427 		/* Need a dentry, since the xattr API requires one.
1428 		   Life would be simpler if we could just pass the inode. */
1429 		if (opt_dentry) {
1430 			/* Called from d_instantiate or d_splice_alias. */
1431 			dentry = dget(opt_dentry);
1432 		} else {
1433 			/*
1434 			 * Called from selinux_complete_init, try to find a dentry.
1435 			 * Some filesystems really want a connected one, so try
1436 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1437 			 * two, depending upon that...
1438 			 */
1439 			dentry = d_find_alias(inode);
1440 			if (!dentry)
1441 				dentry = d_find_any_alias(inode);
1442 		}
1443 		if (!dentry) {
1444 			/*
1445 			 * this is can be hit on boot when a file is accessed
1446 			 * before the policy is loaded.  When we load policy we
1447 			 * may find inodes that have no dentry on the
1448 			 * sbsec->isec_head list.  No reason to complain as these
1449 			 * will get fixed up the next time we go through
1450 			 * inode_doinit with a dentry, before these inodes could
1451 			 * be used again by userspace.
1452 			 */
1453 			goto out;
1454 		}
1455 
1456 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1457 					    &sid);
1458 		dput(dentry);
1459 		if (rc)
1460 			goto out;
1461 		break;
1462 	case SECURITY_FS_USE_TASK:
1463 		sid = task_sid;
1464 		break;
1465 	case SECURITY_FS_USE_TRANS:
1466 		/* Default to the fs SID. */
1467 		sid = sbsec->sid;
1468 
1469 		/* Try to obtain a transition SID. */
1470 		rc = security_transition_sid(&selinux_state, task_sid, sid,
1471 					     sclass, NULL, &sid);
1472 		if (rc)
1473 			goto out;
1474 		break;
1475 	case SECURITY_FS_USE_MNTPOINT:
1476 		sid = sbsec->mntpoint_sid;
1477 		break;
1478 	default:
1479 		/* Default to the fs superblock SID. */
1480 		sid = sbsec->sid;
1481 
1482 		if ((sbsec->flags & SE_SBGENFS) &&
1483 		     (!S_ISLNK(inode->i_mode) ||
1484 		      selinux_policycap_genfs_seclabel_symlinks())) {
1485 			/* We must have a dentry to determine the label on
1486 			 * procfs inodes */
1487 			if (opt_dentry) {
1488 				/* Called from d_instantiate or
1489 				 * d_splice_alias. */
1490 				dentry = dget(opt_dentry);
1491 			} else {
1492 				/* Called from selinux_complete_init, try to
1493 				 * find a dentry.  Some filesystems really want
1494 				 * a connected one, so try that first.
1495 				 */
1496 				dentry = d_find_alias(inode);
1497 				if (!dentry)
1498 					dentry = d_find_any_alias(inode);
1499 			}
1500 			/*
1501 			 * This can be hit on boot when a file is accessed
1502 			 * before the policy is loaded.  When we load policy we
1503 			 * may find inodes that have no dentry on the
1504 			 * sbsec->isec_head list.  No reason to complain as
1505 			 * these will get fixed up the next time we go through
1506 			 * inode_doinit() with a dentry, before these inodes
1507 			 * could be used again by userspace.
1508 			 */
1509 			if (!dentry)
1510 				goto out;
1511 			rc = selinux_genfs_get_sid(dentry, sclass,
1512 						   sbsec->flags, &sid);
1513 			if (rc) {
1514 				dput(dentry);
1515 				goto out;
1516 			}
1517 
1518 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1519 			    (inode->i_opflags & IOP_XATTR)) {
1520 				rc = inode_doinit_use_xattr(inode, dentry,
1521 							    sid, &sid);
1522 				if (rc) {
1523 					dput(dentry);
1524 					goto out;
1525 				}
1526 			}
1527 			dput(dentry);
1528 		}
1529 		break;
1530 	}
1531 
1532 out:
1533 	spin_lock(&isec->lock);
1534 	if (isec->initialized == LABEL_PENDING) {
1535 		if (!sid || rc) {
1536 			isec->initialized = LABEL_INVALID;
1537 			goto out_unlock;
1538 		}
1539 
1540 		isec->initialized = LABEL_INITIALIZED;
1541 		isec->sid = sid;
1542 	}
1543 
1544 out_unlock:
1545 	spin_unlock(&isec->lock);
1546 	return rc;
1547 }
1548 
1549 /* Convert a Linux signal to an access vector. */
1550 static inline u32 signal_to_av(int sig)
1551 {
1552 	u32 perm = 0;
1553 
1554 	switch (sig) {
1555 	case SIGCHLD:
1556 		/* Commonly granted from child to parent. */
1557 		perm = PROCESS__SIGCHLD;
1558 		break;
1559 	case SIGKILL:
1560 		/* Cannot be caught or ignored */
1561 		perm = PROCESS__SIGKILL;
1562 		break;
1563 	case SIGSTOP:
1564 		/* Cannot be caught or ignored */
1565 		perm = PROCESS__SIGSTOP;
1566 		break;
1567 	default:
1568 		/* All other signals. */
1569 		perm = PROCESS__SIGNAL;
1570 		break;
1571 	}
1572 
1573 	return perm;
1574 }
1575 
1576 #if CAP_LAST_CAP > 63
1577 #error Fix SELinux to handle capabilities > 63.
1578 #endif
1579 
1580 /* Check whether a task is allowed to use a capability. */
1581 static int cred_has_capability(const struct cred *cred,
1582 			       int cap, unsigned int opts, bool initns)
1583 {
1584 	struct common_audit_data ad;
1585 	struct av_decision avd;
1586 	u16 sclass;
1587 	u32 sid = cred_sid(cred);
1588 	u32 av = CAP_TO_MASK(cap);
1589 	int rc;
1590 
1591 	ad.type = LSM_AUDIT_DATA_CAP;
1592 	ad.u.cap = cap;
1593 
1594 	switch (CAP_TO_INDEX(cap)) {
1595 	case 0:
1596 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1597 		break;
1598 	case 1:
1599 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1600 		break;
1601 	default:
1602 		pr_err("SELinux:  out of range capability %d\n", cap);
1603 		BUG();
1604 		return -EINVAL;
1605 	}
1606 
1607 	rc = avc_has_perm_noaudit(&selinux_state,
1608 				  sid, sid, sclass, av, 0, &avd);
1609 	if (!(opts & CAP_OPT_NOAUDIT)) {
1610 		int rc2 = avc_audit(&selinux_state,
1611 				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1612 		if (rc2)
1613 			return rc2;
1614 	}
1615 	return rc;
1616 }
1617 
1618 /* Check whether a task has a particular permission to an inode.
1619    The 'adp' parameter is optional and allows other audit
1620    data to be passed (e.g. the dentry). */
1621 static int inode_has_perm(const struct cred *cred,
1622 			  struct inode *inode,
1623 			  u32 perms,
1624 			  struct common_audit_data *adp)
1625 {
1626 	struct inode_security_struct *isec;
1627 	u32 sid;
1628 
1629 	validate_creds(cred);
1630 
1631 	if (unlikely(IS_PRIVATE(inode)))
1632 		return 0;
1633 
1634 	sid = cred_sid(cred);
1635 	isec = selinux_inode(inode);
1636 
1637 	return avc_has_perm(&selinux_state,
1638 			    sid, isec->sid, isec->sclass, perms, adp);
1639 }
1640 
1641 /* Same as inode_has_perm, but pass explicit audit data containing
1642    the dentry to help the auditing code to more easily generate the
1643    pathname if needed. */
1644 static inline int dentry_has_perm(const struct cred *cred,
1645 				  struct dentry *dentry,
1646 				  u32 av)
1647 {
1648 	struct inode *inode = d_backing_inode(dentry);
1649 	struct common_audit_data ad;
1650 
1651 	ad.type = LSM_AUDIT_DATA_DENTRY;
1652 	ad.u.dentry = dentry;
1653 	__inode_security_revalidate(inode, dentry, true);
1654 	return inode_has_perm(cred, inode, av, &ad);
1655 }
1656 
1657 /* Same as inode_has_perm, but pass explicit audit data containing
1658    the path to help the auditing code to more easily generate the
1659    pathname if needed. */
1660 static inline int path_has_perm(const struct cred *cred,
1661 				const struct path *path,
1662 				u32 av)
1663 {
1664 	struct inode *inode = d_backing_inode(path->dentry);
1665 	struct common_audit_data ad;
1666 
1667 	ad.type = LSM_AUDIT_DATA_PATH;
1668 	ad.u.path = *path;
1669 	__inode_security_revalidate(inode, path->dentry, true);
1670 	return inode_has_perm(cred, inode, av, &ad);
1671 }
1672 
1673 /* Same as path_has_perm, but uses the inode from the file struct. */
1674 static inline int file_path_has_perm(const struct cred *cred,
1675 				     struct file *file,
1676 				     u32 av)
1677 {
1678 	struct common_audit_data ad;
1679 
1680 	ad.type = LSM_AUDIT_DATA_FILE;
1681 	ad.u.file = file;
1682 	return inode_has_perm(cred, file_inode(file), av, &ad);
1683 }
1684 
1685 #ifdef CONFIG_BPF_SYSCALL
1686 static int bpf_fd_pass(struct file *file, u32 sid);
1687 #endif
1688 
1689 /* Check whether a task can use an open file descriptor to
1690    access an inode in a given way.  Check access to the
1691    descriptor itself, and then use dentry_has_perm to
1692    check a particular permission to the file.
1693    Access to the descriptor is implicitly granted if it
1694    has the same SID as the process.  If av is zero, then
1695    access to the file is not checked, e.g. for cases
1696    where only the descriptor is affected like seek. */
1697 static int file_has_perm(const struct cred *cred,
1698 			 struct file *file,
1699 			 u32 av)
1700 {
1701 	struct file_security_struct *fsec = selinux_file(file);
1702 	struct inode *inode = file_inode(file);
1703 	struct common_audit_data ad;
1704 	u32 sid = cred_sid(cred);
1705 	int rc;
1706 
1707 	ad.type = LSM_AUDIT_DATA_FILE;
1708 	ad.u.file = file;
1709 
1710 	if (sid != fsec->sid) {
1711 		rc = avc_has_perm(&selinux_state,
1712 				  sid, fsec->sid,
1713 				  SECCLASS_FD,
1714 				  FD__USE,
1715 				  &ad);
1716 		if (rc)
1717 			goto out;
1718 	}
1719 
1720 #ifdef CONFIG_BPF_SYSCALL
1721 	rc = bpf_fd_pass(file, cred_sid(cred));
1722 	if (rc)
1723 		return rc;
1724 #endif
1725 
1726 	/* av is zero if only checking access to the descriptor. */
1727 	rc = 0;
1728 	if (av)
1729 		rc = inode_has_perm(cred, inode, av, &ad);
1730 
1731 out:
1732 	return rc;
1733 }
1734 
1735 /*
1736  * Determine the label for an inode that might be unioned.
1737  */
1738 static int
1739 selinux_determine_inode_label(const struct task_security_struct *tsec,
1740 				 struct inode *dir,
1741 				 const struct qstr *name, u16 tclass,
1742 				 u32 *_new_isid)
1743 {
1744 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1745 
1746 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1747 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1748 		*_new_isid = sbsec->mntpoint_sid;
1749 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1750 		   tsec->create_sid) {
1751 		*_new_isid = tsec->create_sid;
1752 	} else {
1753 		const struct inode_security_struct *dsec = inode_security(dir);
1754 		return security_transition_sid(&selinux_state, tsec->sid,
1755 					       dsec->sid, tclass,
1756 					       name, _new_isid);
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 /* Check whether a task can create a file. */
1763 static int may_create(struct inode *dir,
1764 		      struct dentry *dentry,
1765 		      u16 tclass)
1766 {
1767 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1768 	struct inode_security_struct *dsec;
1769 	struct superblock_security_struct *sbsec;
1770 	u32 sid, newsid;
1771 	struct common_audit_data ad;
1772 	int rc;
1773 
1774 	dsec = inode_security(dir);
1775 	sbsec = dir->i_sb->s_security;
1776 
1777 	sid = tsec->sid;
1778 
1779 	ad.type = LSM_AUDIT_DATA_DENTRY;
1780 	ad.u.dentry = dentry;
1781 
1782 	rc = avc_has_perm(&selinux_state,
1783 			  sid, dsec->sid, SECCLASS_DIR,
1784 			  DIR__ADD_NAME | DIR__SEARCH,
1785 			  &ad);
1786 	if (rc)
1787 		return rc;
1788 
1789 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1790 					   &newsid);
1791 	if (rc)
1792 		return rc;
1793 
1794 	rc = avc_has_perm(&selinux_state,
1795 			  sid, newsid, tclass, FILE__CREATE, &ad);
1796 	if (rc)
1797 		return rc;
1798 
1799 	return avc_has_perm(&selinux_state,
1800 			    newsid, sbsec->sid,
1801 			    SECCLASS_FILESYSTEM,
1802 			    FILESYSTEM__ASSOCIATE, &ad);
1803 }
1804 
1805 #define MAY_LINK	0
1806 #define MAY_UNLINK	1
1807 #define MAY_RMDIR	2
1808 
1809 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1810 static int may_link(struct inode *dir,
1811 		    struct dentry *dentry,
1812 		    int kind)
1813 
1814 {
1815 	struct inode_security_struct *dsec, *isec;
1816 	struct common_audit_data ad;
1817 	u32 sid = current_sid();
1818 	u32 av;
1819 	int rc;
1820 
1821 	dsec = inode_security(dir);
1822 	isec = backing_inode_security(dentry);
1823 
1824 	ad.type = LSM_AUDIT_DATA_DENTRY;
1825 	ad.u.dentry = dentry;
1826 
1827 	av = DIR__SEARCH;
1828 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1829 	rc = avc_has_perm(&selinux_state,
1830 			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1831 	if (rc)
1832 		return rc;
1833 
1834 	switch (kind) {
1835 	case MAY_LINK:
1836 		av = FILE__LINK;
1837 		break;
1838 	case MAY_UNLINK:
1839 		av = FILE__UNLINK;
1840 		break;
1841 	case MAY_RMDIR:
1842 		av = DIR__RMDIR;
1843 		break;
1844 	default:
1845 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1846 			__func__, kind);
1847 		return 0;
1848 	}
1849 
1850 	rc = avc_has_perm(&selinux_state,
1851 			  sid, isec->sid, isec->sclass, av, &ad);
1852 	return rc;
1853 }
1854 
1855 static inline int may_rename(struct inode *old_dir,
1856 			     struct dentry *old_dentry,
1857 			     struct inode *new_dir,
1858 			     struct dentry *new_dentry)
1859 {
1860 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1861 	struct common_audit_data ad;
1862 	u32 sid = current_sid();
1863 	u32 av;
1864 	int old_is_dir, new_is_dir;
1865 	int rc;
1866 
1867 	old_dsec = inode_security(old_dir);
1868 	old_isec = backing_inode_security(old_dentry);
1869 	old_is_dir = d_is_dir(old_dentry);
1870 	new_dsec = inode_security(new_dir);
1871 
1872 	ad.type = LSM_AUDIT_DATA_DENTRY;
1873 
1874 	ad.u.dentry = old_dentry;
1875 	rc = avc_has_perm(&selinux_state,
1876 			  sid, old_dsec->sid, SECCLASS_DIR,
1877 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1878 	if (rc)
1879 		return rc;
1880 	rc = avc_has_perm(&selinux_state,
1881 			  sid, old_isec->sid,
1882 			  old_isec->sclass, FILE__RENAME, &ad);
1883 	if (rc)
1884 		return rc;
1885 	if (old_is_dir && new_dir != old_dir) {
1886 		rc = avc_has_perm(&selinux_state,
1887 				  sid, old_isec->sid,
1888 				  old_isec->sclass, DIR__REPARENT, &ad);
1889 		if (rc)
1890 			return rc;
1891 	}
1892 
1893 	ad.u.dentry = new_dentry;
1894 	av = DIR__ADD_NAME | DIR__SEARCH;
1895 	if (d_is_positive(new_dentry))
1896 		av |= DIR__REMOVE_NAME;
1897 	rc = avc_has_perm(&selinux_state,
1898 			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1899 	if (rc)
1900 		return rc;
1901 	if (d_is_positive(new_dentry)) {
1902 		new_isec = backing_inode_security(new_dentry);
1903 		new_is_dir = d_is_dir(new_dentry);
1904 		rc = avc_has_perm(&selinux_state,
1905 				  sid, new_isec->sid,
1906 				  new_isec->sclass,
1907 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1908 		if (rc)
1909 			return rc;
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 /* Check whether a task can perform a filesystem operation. */
1916 static int superblock_has_perm(const struct cred *cred,
1917 			       struct super_block *sb,
1918 			       u32 perms,
1919 			       struct common_audit_data *ad)
1920 {
1921 	struct superblock_security_struct *sbsec;
1922 	u32 sid = cred_sid(cred);
1923 
1924 	sbsec = sb->s_security;
1925 	return avc_has_perm(&selinux_state,
1926 			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1927 }
1928 
1929 /* Convert a Linux mode and permission mask to an access vector. */
1930 static inline u32 file_mask_to_av(int mode, int mask)
1931 {
1932 	u32 av = 0;
1933 
1934 	if (!S_ISDIR(mode)) {
1935 		if (mask & MAY_EXEC)
1936 			av |= FILE__EXECUTE;
1937 		if (mask & MAY_READ)
1938 			av |= FILE__READ;
1939 
1940 		if (mask & MAY_APPEND)
1941 			av |= FILE__APPEND;
1942 		else if (mask & MAY_WRITE)
1943 			av |= FILE__WRITE;
1944 
1945 	} else {
1946 		if (mask & MAY_EXEC)
1947 			av |= DIR__SEARCH;
1948 		if (mask & MAY_WRITE)
1949 			av |= DIR__WRITE;
1950 		if (mask & MAY_READ)
1951 			av |= DIR__READ;
1952 	}
1953 
1954 	return av;
1955 }
1956 
1957 /* Convert a Linux file to an access vector. */
1958 static inline u32 file_to_av(struct file *file)
1959 {
1960 	u32 av = 0;
1961 
1962 	if (file->f_mode & FMODE_READ)
1963 		av |= FILE__READ;
1964 	if (file->f_mode & FMODE_WRITE) {
1965 		if (file->f_flags & O_APPEND)
1966 			av |= FILE__APPEND;
1967 		else
1968 			av |= FILE__WRITE;
1969 	}
1970 	if (!av) {
1971 		/*
1972 		 * Special file opened with flags 3 for ioctl-only use.
1973 		 */
1974 		av = FILE__IOCTL;
1975 	}
1976 
1977 	return av;
1978 }
1979 
1980 /*
1981  * Convert a file to an access vector and include the correct
1982  * open permission.
1983  */
1984 static inline u32 open_file_to_av(struct file *file)
1985 {
1986 	u32 av = file_to_av(file);
1987 	struct inode *inode = file_inode(file);
1988 
1989 	if (selinux_policycap_openperm() &&
1990 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
1991 		av |= FILE__OPEN;
1992 
1993 	return av;
1994 }
1995 
1996 /* Hook functions begin here. */
1997 
1998 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1999 {
2000 	u32 mysid = current_sid();
2001 	u32 mgrsid = task_sid(mgr);
2002 
2003 	return avc_has_perm(&selinux_state,
2004 			    mysid, mgrsid, SECCLASS_BINDER,
2005 			    BINDER__SET_CONTEXT_MGR, NULL);
2006 }
2007 
2008 static int selinux_binder_transaction(struct task_struct *from,
2009 				      struct task_struct *to)
2010 {
2011 	u32 mysid = current_sid();
2012 	u32 fromsid = task_sid(from);
2013 	u32 tosid = task_sid(to);
2014 	int rc;
2015 
2016 	if (mysid != fromsid) {
2017 		rc = avc_has_perm(&selinux_state,
2018 				  mysid, fromsid, SECCLASS_BINDER,
2019 				  BINDER__IMPERSONATE, NULL);
2020 		if (rc)
2021 			return rc;
2022 	}
2023 
2024 	return avc_has_perm(&selinux_state,
2025 			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2026 			    NULL);
2027 }
2028 
2029 static int selinux_binder_transfer_binder(struct task_struct *from,
2030 					  struct task_struct *to)
2031 {
2032 	u32 fromsid = task_sid(from);
2033 	u32 tosid = task_sid(to);
2034 
2035 	return avc_has_perm(&selinux_state,
2036 			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2037 			    NULL);
2038 }
2039 
2040 static int selinux_binder_transfer_file(struct task_struct *from,
2041 					struct task_struct *to,
2042 					struct file *file)
2043 {
2044 	u32 sid = task_sid(to);
2045 	struct file_security_struct *fsec = selinux_file(file);
2046 	struct dentry *dentry = file->f_path.dentry;
2047 	struct inode_security_struct *isec;
2048 	struct common_audit_data ad;
2049 	int rc;
2050 
2051 	ad.type = LSM_AUDIT_DATA_PATH;
2052 	ad.u.path = file->f_path;
2053 
2054 	if (sid != fsec->sid) {
2055 		rc = avc_has_perm(&selinux_state,
2056 				  sid, fsec->sid,
2057 				  SECCLASS_FD,
2058 				  FD__USE,
2059 				  &ad);
2060 		if (rc)
2061 			return rc;
2062 	}
2063 
2064 #ifdef CONFIG_BPF_SYSCALL
2065 	rc = bpf_fd_pass(file, sid);
2066 	if (rc)
2067 		return rc;
2068 #endif
2069 
2070 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2071 		return 0;
2072 
2073 	isec = backing_inode_security(dentry);
2074 	return avc_has_perm(&selinux_state,
2075 			    sid, isec->sid, isec->sclass, file_to_av(file),
2076 			    &ad);
2077 }
2078 
2079 static int selinux_ptrace_access_check(struct task_struct *child,
2080 				     unsigned int mode)
2081 {
2082 	u32 sid = current_sid();
2083 	u32 csid = task_sid(child);
2084 
2085 	if (mode & PTRACE_MODE_READ)
2086 		return avc_has_perm(&selinux_state,
2087 				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2088 
2089 	return avc_has_perm(&selinux_state,
2090 			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2091 }
2092 
2093 static int selinux_ptrace_traceme(struct task_struct *parent)
2094 {
2095 	return avc_has_perm(&selinux_state,
2096 			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2097 			    PROCESS__PTRACE, NULL);
2098 }
2099 
2100 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2101 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2102 {
2103 	return avc_has_perm(&selinux_state,
2104 			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2105 			    PROCESS__GETCAP, NULL);
2106 }
2107 
2108 static int selinux_capset(struct cred *new, const struct cred *old,
2109 			  const kernel_cap_t *effective,
2110 			  const kernel_cap_t *inheritable,
2111 			  const kernel_cap_t *permitted)
2112 {
2113 	return avc_has_perm(&selinux_state,
2114 			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2115 			    PROCESS__SETCAP, NULL);
2116 }
2117 
2118 /*
2119  * (This comment used to live with the selinux_task_setuid hook,
2120  * which was removed).
2121  *
2122  * Since setuid only affects the current process, and since the SELinux
2123  * controls are not based on the Linux identity attributes, SELinux does not
2124  * need to control this operation.  However, SELinux does control the use of
2125  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2126  */
2127 
2128 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2129 			   int cap, unsigned int opts)
2130 {
2131 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2132 }
2133 
2134 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2135 {
2136 	const struct cred *cred = current_cred();
2137 	int rc = 0;
2138 
2139 	if (!sb)
2140 		return 0;
2141 
2142 	switch (cmds) {
2143 	case Q_SYNC:
2144 	case Q_QUOTAON:
2145 	case Q_QUOTAOFF:
2146 	case Q_SETINFO:
2147 	case Q_SETQUOTA:
2148 	case Q_XQUOTAOFF:
2149 	case Q_XQUOTAON:
2150 	case Q_XSETQLIM:
2151 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2152 		break;
2153 	case Q_GETFMT:
2154 	case Q_GETINFO:
2155 	case Q_GETQUOTA:
2156 	case Q_XGETQUOTA:
2157 	case Q_XGETQSTAT:
2158 	case Q_XGETQSTATV:
2159 	case Q_XGETNEXTQUOTA:
2160 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2161 		break;
2162 	default:
2163 		rc = 0;  /* let the kernel handle invalid cmds */
2164 		break;
2165 	}
2166 	return rc;
2167 }
2168 
2169 static int selinux_quota_on(struct dentry *dentry)
2170 {
2171 	const struct cred *cred = current_cred();
2172 
2173 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2174 }
2175 
2176 static int selinux_syslog(int type)
2177 {
2178 	switch (type) {
2179 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2180 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2181 		return avc_has_perm(&selinux_state,
2182 				    current_sid(), SECINITSID_KERNEL,
2183 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2184 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2185 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2186 	/* Set level of messages printed to console */
2187 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2188 		return avc_has_perm(&selinux_state,
2189 				    current_sid(), SECINITSID_KERNEL,
2190 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2191 				    NULL);
2192 	}
2193 	/* All other syslog types */
2194 	return avc_has_perm(&selinux_state,
2195 			    current_sid(), SECINITSID_KERNEL,
2196 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2197 }
2198 
2199 /*
2200  * Check that a process has enough memory to allocate a new virtual
2201  * mapping. 0 means there is enough memory for the allocation to
2202  * succeed and -ENOMEM implies there is not.
2203  *
2204  * Do not audit the selinux permission check, as this is applied to all
2205  * processes that allocate mappings.
2206  */
2207 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2208 {
2209 	int rc, cap_sys_admin = 0;
2210 
2211 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2212 				 CAP_OPT_NOAUDIT, true);
2213 	if (rc == 0)
2214 		cap_sys_admin = 1;
2215 
2216 	return cap_sys_admin;
2217 }
2218 
2219 /* binprm security operations */
2220 
2221 static u32 ptrace_parent_sid(void)
2222 {
2223 	u32 sid = 0;
2224 	struct task_struct *tracer;
2225 
2226 	rcu_read_lock();
2227 	tracer = ptrace_parent(current);
2228 	if (tracer)
2229 		sid = task_sid(tracer);
2230 	rcu_read_unlock();
2231 
2232 	return sid;
2233 }
2234 
2235 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2236 			    const struct task_security_struct *old_tsec,
2237 			    const struct task_security_struct *new_tsec)
2238 {
2239 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2240 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2241 	int rc;
2242 	u32 av;
2243 
2244 	if (!nnp && !nosuid)
2245 		return 0; /* neither NNP nor nosuid */
2246 
2247 	if (new_tsec->sid == old_tsec->sid)
2248 		return 0; /* No change in credentials */
2249 
2250 	/*
2251 	 * If the policy enables the nnp_nosuid_transition policy capability,
2252 	 * then we permit transitions under NNP or nosuid if the
2253 	 * policy allows the corresponding permission between
2254 	 * the old and new contexts.
2255 	 */
2256 	if (selinux_policycap_nnp_nosuid_transition()) {
2257 		av = 0;
2258 		if (nnp)
2259 			av |= PROCESS2__NNP_TRANSITION;
2260 		if (nosuid)
2261 			av |= PROCESS2__NOSUID_TRANSITION;
2262 		rc = avc_has_perm(&selinux_state,
2263 				  old_tsec->sid, new_tsec->sid,
2264 				  SECCLASS_PROCESS2, av, NULL);
2265 		if (!rc)
2266 			return 0;
2267 	}
2268 
2269 	/*
2270 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2271 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2272 	 * of the permissions of the current SID.
2273 	 */
2274 	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2275 					 new_tsec->sid);
2276 	if (!rc)
2277 		return 0;
2278 
2279 	/*
2280 	 * On failure, preserve the errno values for NNP vs nosuid.
2281 	 * NNP:  Operation not permitted for caller.
2282 	 * nosuid:  Permission denied to file.
2283 	 */
2284 	if (nnp)
2285 		return -EPERM;
2286 	return -EACCES;
2287 }
2288 
2289 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2290 {
2291 	const struct task_security_struct *old_tsec;
2292 	struct task_security_struct *new_tsec;
2293 	struct inode_security_struct *isec;
2294 	struct common_audit_data ad;
2295 	struct inode *inode = file_inode(bprm->file);
2296 	int rc;
2297 
2298 	/* SELinux context only depends on initial program or script and not
2299 	 * the script interpreter */
2300 
2301 	old_tsec = selinux_cred(current_cred());
2302 	new_tsec = selinux_cred(bprm->cred);
2303 	isec = inode_security(inode);
2304 
2305 	/* Default to the current task SID. */
2306 	new_tsec->sid = old_tsec->sid;
2307 	new_tsec->osid = old_tsec->sid;
2308 
2309 	/* Reset fs, key, and sock SIDs on execve. */
2310 	new_tsec->create_sid = 0;
2311 	new_tsec->keycreate_sid = 0;
2312 	new_tsec->sockcreate_sid = 0;
2313 
2314 	if (old_tsec->exec_sid) {
2315 		new_tsec->sid = old_tsec->exec_sid;
2316 		/* Reset exec SID on execve. */
2317 		new_tsec->exec_sid = 0;
2318 
2319 		/* Fail on NNP or nosuid if not an allowed transition. */
2320 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2321 		if (rc)
2322 			return rc;
2323 	} else {
2324 		/* Check for a default transition on this program. */
2325 		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2326 					     isec->sid, SECCLASS_PROCESS, NULL,
2327 					     &new_tsec->sid);
2328 		if (rc)
2329 			return rc;
2330 
2331 		/*
2332 		 * Fallback to old SID on NNP or nosuid if not an allowed
2333 		 * transition.
2334 		 */
2335 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336 		if (rc)
2337 			new_tsec->sid = old_tsec->sid;
2338 	}
2339 
2340 	ad.type = LSM_AUDIT_DATA_FILE;
2341 	ad.u.file = bprm->file;
2342 
2343 	if (new_tsec->sid == old_tsec->sid) {
2344 		rc = avc_has_perm(&selinux_state,
2345 				  old_tsec->sid, isec->sid,
2346 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2347 		if (rc)
2348 			return rc;
2349 	} else {
2350 		/* Check permissions for the transition. */
2351 		rc = avc_has_perm(&selinux_state,
2352 				  old_tsec->sid, new_tsec->sid,
2353 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2354 		if (rc)
2355 			return rc;
2356 
2357 		rc = avc_has_perm(&selinux_state,
2358 				  new_tsec->sid, isec->sid,
2359 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2360 		if (rc)
2361 			return rc;
2362 
2363 		/* Check for shared state */
2364 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2365 			rc = avc_has_perm(&selinux_state,
2366 					  old_tsec->sid, new_tsec->sid,
2367 					  SECCLASS_PROCESS, PROCESS__SHARE,
2368 					  NULL);
2369 			if (rc)
2370 				return -EPERM;
2371 		}
2372 
2373 		/* Make sure that anyone attempting to ptrace over a task that
2374 		 * changes its SID has the appropriate permit */
2375 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2376 			u32 ptsid = ptrace_parent_sid();
2377 			if (ptsid != 0) {
2378 				rc = avc_has_perm(&selinux_state,
2379 						  ptsid, new_tsec->sid,
2380 						  SECCLASS_PROCESS,
2381 						  PROCESS__PTRACE, NULL);
2382 				if (rc)
2383 					return -EPERM;
2384 			}
2385 		}
2386 
2387 		/* Clear any possibly unsafe personality bits on exec: */
2388 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2389 
2390 		/* Enable secure mode for SIDs transitions unless
2391 		   the noatsecure permission is granted between
2392 		   the two SIDs, i.e. ahp returns 0. */
2393 		rc = avc_has_perm(&selinux_state,
2394 				  old_tsec->sid, new_tsec->sid,
2395 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2396 				  NULL);
2397 		bprm->secureexec |= !!rc;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
2403 static int match_file(const void *p, struct file *file, unsigned fd)
2404 {
2405 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2406 }
2407 
2408 /* Derived from fs/exec.c:flush_old_files. */
2409 static inline void flush_unauthorized_files(const struct cred *cred,
2410 					    struct files_struct *files)
2411 {
2412 	struct file *file, *devnull = NULL;
2413 	struct tty_struct *tty;
2414 	int drop_tty = 0;
2415 	unsigned n;
2416 
2417 	tty = get_current_tty();
2418 	if (tty) {
2419 		spin_lock(&tty->files_lock);
2420 		if (!list_empty(&tty->tty_files)) {
2421 			struct tty_file_private *file_priv;
2422 
2423 			/* Revalidate access to controlling tty.
2424 			   Use file_path_has_perm on the tty path directly
2425 			   rather than using file_has_perm, as this particular
2426 			   open file may belong to another process and we are
2427 			   only interested in the inode-based check here. */
2428 			file_priv = list_first_entry(&tty->tty_files,
2429 						struct tty_file_private, list);
2430 			file = file_priv->file;
2431 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2432 				drop_tty = 1;
2433 		}
2434 		spin_unlock(&tty->files_lock);
2435 		tty_kref_put(tty);
2436 	}
2437 	/* Reset controlling tty. */
2438 	if (drop_tty)
2439 		no_tty();
2440 
2441 	/* Revalidate access to inherited open files. */
2442 	n = iterate_fd(files, 0, match_file, cred);
2443 	if (!n) /* none found? */
2444 		return;
2445 
2446 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2447 	if (IS_ERR(devnull))
2448 		devnull = NULL;
2449 	/* replace all the matching ones with this */
2450 	do {
2451 		replace_fd(n - 1, devnull, 0);
2452 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2453 	if (devnull)
2454 		fput(devnull);
2455 }
2456 
2457 /*
2458  * Prepare a process for imminent new credential changes due to exec
2459  */
2460 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2461 {
2462 	struct task_security_struct *new_tsec;
2463 	struct rlimit *rlim, *initrlim;
2464 	int rc, i;
2465 
2466 	new_tsec = selinux_cred(bprm->cred);
2467 	if (new_tsec->sid == new_tsec->osid)
2468 		return;
2469 
2470 	/* Close files for which the new task SID is not authorized. */
2471 	flush_unauthorized_files(bprm->cred, current->files);
2472 
2473 	/* Always clear parent death signal on SID transitions. */
2474 	current->pdeath_signal = 0;
2475 
2476 	/* Check whether the new SID can inherit resource limits from the old
2477 	 * SID.  If not, reset all soft limits to the lower of the current
2478 	 * task's hard limit and the init task's soft limit.
2479 	 *
2480 	 * Note that the setting of hard limits (even to lower them) can be
2481 	 * controlled by the setrlimit check.  The inclusion of the init task's
2482 	 * soft limit into the computation is to avoid resetting soft limits
2483 	 * higher than the default soft limit for cases where the default is
2484 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2485 	 */
2486 	rc = avc_has_perm(&selinux_state,
2487 			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2488 			  PROCESS__RLIMITINH, NULL);
2489 	if (rc) {
2490 		/* protect against do_prlimit() */
2491 		task_lock(current);
2492 		for (i = 0; i < RLIM_NLIMITS; i++) {
2493 			rlim = current->signal->rlim + i;
2494 			initrlim = init_task.signal->rlim + i;
2495 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2496 		}
2497 		task_unlock(current);
2498 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2499 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2500 	}
2501 }
2502 
2503 /*
2504  * Clean up the process immediately after the installation of new credentials
2505  * due to exec
2506  */
2507 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2508 {
2509 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2510 	u32 osid, sid;
2511 	int rc;
2512 
2513 	osid = tsec->osid;
2514 	sid = tsec->sid;
2515 
2516 	if (sid == osid)
2517 		return;
2518 
2519 	/* Check whether the new SID can inherit signal state from the old SID.
2520 	 * If not, clear itimers to avoid subsequent signal generation and
2521 	 * flush and unblock signals.
2522 	 *
2523 	 * This must occur _after_ the task SID has been updated so that any
2524 	 * kill done after the flush will be checked against the new SID.
2525 	 */
2526 	rc = avc_has_perm(&selinux_state,
2527 			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2528 	if (rc) {
2529 		clear_itimer();
2530 
2531 		spin_lock_irq(&current->sighand->siglock);
2532 		if (!fatal_signal_pending(current)) {
2533 			flush_sigqueue(&current->pending);
2534 			flush_sigqueue(&current->signal->shared_pending);
2535 			flush_signal_handlers(current, 1);
2536 			sigemptyset(&current->blocked);
2537 			recalc_sigpending();
2538 		}
2539 		spin_unlock_irq(&current->sighand->siglock);
2540 	}
2541 
2542 	/* Wake up the parent if it is waiting so that it can recheck
2543 	 * wait permission to the new task SID. */
2544 	read_lock(&tasklist_lock);
2545 	__wake_up_parent(current, current->real_parent);
2546 	read_unlock(&tasklist_lock);
2547 }
2548 
2549 /* superblock security operations */
2550 
2551 static int selinux_sb_alloc_security(struct super_block *sb)
2552 {
2553 	struct superblock_security_struct *sbsec;
2554 
2555 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
2556 	if (!sbsec)
2557 		return -ENOMEM;
2558 
2559 	mutex_init(&sbsec->lock);
2560 	INIT_LIST_HEAD(&sbsec->isec_head);
2561 	spin_lock_init(&sbsec->isec_lock);
2562 	sbsec->sb = sb;
2563 	sbsec->sid = SECINITSID_UNLABELED;
2564 	sbsec->def_sid = SECINITSID_FILE;
2565 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2566 	sb->s_security = sbsec;
2567 
2568 	return 0;
2569 }
2570 
2571 static void selinux_sb_free_security(struct super_block *sb)
2572 {
2573 	superblock_free_security(sb);
2574 }
2575 
2576 static inline int opt_len(const char *s)
2577 {
2578 	bool open_quote = false;
2579 	int len;
2580 	char c;
2581 
2582 	for (len = 0; (c = s[len]) != '\0'; len++) {
2583 		if (c == '"')
2584 			open_quote = !open_quote;
2585 		if (c == ',' && !open_quote)
2586 			break;
2587 	}
2588 	return len;
2589 }
2590 
2591 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2592 {
2593 	char *from = options;
2594 	char *to = options;
2595 	bool first = true;
2596 	int rc;
2597 
2598 	while (1) {
2599 		int len = opt_len(from);
2600 		int token;
2601 		char *arg = NULL;
2602 
2603 		token = match_opt_prefix(from, len, &arg);
2604 
2605 		if (token != Opt_error) {
2606 			char *p, *q;
2607 
2608 			/* strip quotes */
2609 			if (arg) {
2610 				for (p = q = arg; p < from + len; p++) {
2611 					char c = *p;
2612 					if (c != '"')
2613 						*q++ = c;
2614 				}
2615 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2616 				if (!arg) {
2617 					rc = -ENOMEM;
2618 					goto free_opt;
2619 				}
2620 			}
2621 			rc = selinux_add_opt(token, arg, mnt_opts);
2622 			if (unlikely(rc)) {
2623 				kfree(arg);
2624 				goto free_opt;
2625 			}
2626 		} else {
2627 			if (!first) {	// copy with preceding comma
2628 				from--;
2629 				len++;
2630 			}
2631 			if (to != from)
2632 				memmove(to, from, len);
2633 			to += len;
2634 			first = false;
2635 		}
2636 		if (!from[len])
2637 			break;
2638 		from += len + 1;
2639 	}
2640 	*to = '\0';
2641 	return 0;
2642 
2643 free_opt:
2644 	if (*mnt_opts) {
2645 		selinux_free_mnt_opts(*mnt_opts);
2646 		*mnt_opts = NULL;
2647 	}
2648 	return rc;
2649 }
2650 
2651 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2652 {
2653 	struct selinux_mnt_opts *opts = mnt_opts;
2654 	struct superblock_security_struct *sbsec = sb->s_security;
2655 	u32 sid;
2656 	int rc;
2657 
2658 	if (!(sbsec->flags & SE_SBINITIALIZED))
2659 		return 0;
2660 
2661 	if (!opts)
2662 		return 0;
2663 
2664 	if (opts->fscontext) {
2665 		rc = parse_sid(sb, opts->fscontext, &sid);
2666 		if (rc)
2667 			return rc;
2668 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2669 			goto out_bad_option;
2670 	}
2671 	if (opts->context) {
2672 		rc = parse_sid(sb, opts->context, &sid);
2673 		if (rc)
2674 			return rc;
2675 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2676 			goto out_bad_option;
2677 	}
2678 	if (opts->rootcontext) {
2679 		struct inode_security_struct *root_isec;
2680 		root_isec = backing_inode_security(sb->s_root);
2681 		rc = parse_sid(sb, opts->rootcontext, &sid);
2682 		if (rc)
2683 			return rc;
2684 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2685 			goto out_bad_option;
2686 	}
2687 	if (opts->defcontext) {
2688 		rc = parse_sid(sb, opts->defcontext, &sid);
2689 		if (rc)
2690 			return rc;
2691 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2692 			goto out_bad_option;
2693 	}
2694 	return 0;
2695 
2696 out_bad_option:
2697 	pr_warn("SELinux: unable to change security options "
2698 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2699 	       sb->s_type->name);
2700 	return -EINVAL;
2701 }
2702 
2703 static int selinux_sb_kern_mount(struct super_block *sb)
2704 {
2705 	const struct cred *cred = current_cred();
2706 	struct common_audit_data ad;
2707 
2708 	ad.type = LSM_AUDIT_DATA_DENTRY;
2709 	ad.u.dentry = sb->s_root;
2710 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2711 }
2712 
2713 static int selinux_sb_statfs(struct dentry *dentry)
2714 {
2715 	const struct cred *cred = current_cred();
2716 	struct common_audit_data ad;
2717 
2718 	ad.type = LSM_AUDIT_DATA_DENTRY;
2719 	ad.u.dentry = dentry->d_sb->s_root;
2720 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2721 }
2722 
2723 static int selinux_mount(const char *dev_name,
2724 			 const struct path *path,
2725 			 const char *type,
2726 			 unsigned long flags,
2727 			 void *data)
2728 {
2729 	const struct cred *cred = current_cred();
2730 
2731 	if (flags & MS_REMOUNT)
2732 		return superblock_has_perm(cred, path->dentry->d_sb,
2733 					   FILESYSTEM__REMOUNT, NULL);
2734 	else
2735 		return path_has_perm(cred, path, FILE__MOUNTON);
2736 }
2737 
2738 static int selinux_move_mount(const struct path *from_path,
2739 			      const struct path *to_path)
2740 {
2741 	const struct cred *cred = current_cred();
2742 
2743 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2744 }
2745 
2746 static int selinux_umount(struct vfsmount *mnt, int flags)
2747 {
2748 	const struct cred *cred = current_cred();
2749 
2750 	return superblock_has_perm(cred, mnt->mnt_sb,
2751 				   FILESYSTEM__UNMOUNT, NULL);
2752 }
2753 
2754 static int selinux_fs_context_dup(struct fs_context *fc,
2755 				  struct fs_context *src_fc)
2756 {
2757 	const struct selinux_mnt_opts *src = src_fc->security;
2758 	struct selinux_mnt_opts *opts;
2759 
2760 	if (!src)
2761 		return 0;
2762 
2763 	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2764 	if (!fc->security)
2765 		return -ENOMEM;
2766 
2767 	opts = fc->security;
2768 
2769 	if (src->fscontext) {
2770 		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2771 		if (!opts->fscontext)
2772 			return -ENOMEM;
2773 	}
2774 	if (src->context) {
2775 		opts->context = kstrdup(src->context, GFP_KERNEL);
2776 		if (!opts->context)
2777 			return -ENOMEM;
2778 	}
2779 	if (src->rootcontext) {
2780 		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2781 		if (!opts->rootcontext)
2782 			return -ENOMEM;
2783 	}
2784 	if (src->defcontext) {
2785 		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2786 		if (!opts->defcontext)
2787 			return -ENOMEM;
2788 	}
2789 	return 0;
2790 }
2791 
2792 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2793 	fsparam_string(CONTEXT_STR,	Opt_context),
2794 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2795 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2796 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2797 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2798 	{}
2799 };
2800 
2801 static int selinux_fs_context_parse_param(struct fs_context *fc,
2802 					  struct fs_parameter *param)
2803 {
2804 	struct fs_parse_result result;
2805 	int opt, rc;
2806 
2807 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2808 	if (opt < 0)
2809 		return opt;
2810 
2811 	rc = selinux_add_opt(opt, param->string, &fc->security);
2812 	if (!rc) {
2813 		param->string = NULL;
2814 		rc = 1;
2815 	}
2816 	return rc;
2817 }
2818 
2819 /* inode security operations */
2820 
2821 static int selinux_inode_alloc_security(struct inode *inode)
2822 {
2823 	struct inode_security_struct *isec = selinux_inode(inode);
2824 	u32 sid = current_sid();
2825 
2826 	spin_lock_init(&isec->lock);
2827 	INIT_LIST_HEAD(&isec->list);
2828 	isec->inode = inode;
2829 	isec->sid = SECINITSID_UNLABELED;
2830 	isec->sclass = SECCLASS_FILE;
2831 	isec->task_sid = sid;
2832 	isec->initialized = LABEL_INVALID;
2833 
2834 	return 0;
2835 }
2836 
2837 static void selinux_inode_free_security(struct inode *inode)
2838 {
2839 	inode_free_security(inode);
2840 }
2841 
2842 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2843 					const struct qstr *name, void **ctx,
2844 					u32 *ctxlen)
2845 {
2846 	u32 newsid;
2847 	int rc;
2848 
2849 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2850 					   d_inode(dentry->d_parent), name,
2851 					   inode_mode_to_security_class(mode),
2852 					   &newsid);
2853 	if (rc)
2854 		return rc;
2855 
2856 	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2857 				       ctxlen);
2858 }
2859 
2860 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2861 					  struct qstr *name,
2862 					  const struct cred *old,
2863 					  struct cred *new)
2864 {
2865 	u32 newsid;
2866 	int rc;
2867 	struct task_security_struct *tsec;
2868 
2869 	rc = selinux_determine_inode_label(selinux_cred(old),
2870 					   d_inode(dentry->d_parent), name,
2871 					   inode_mode_to_security_class(mode),
2872 					   &newsid);
2873 	if (rc)
2874 		return rc;
2875 
2876 	tsec = selinux_cred(new);
2877 	tsec->create_sid = newsid;
2878 	return 0;
2879 }
2880 
2881 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2882 				       const struct qstr *qstr,
2883 				       const char **name,
2884 				       void **value, size_t *len)
2885 {
2886 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2887 	struct superblock_security_struct *sbsec;
2888 	u32 newsid, clen;
2889 	int rc;
2890 	char *context;
2891 
2892 	sbsec = dir->i_sb->s_security;
2893 
2894 	newsid = tsec->create_sid;
2895 
2896 	rc = selinux_determine_inode_label(tsec, dir, qstr,
2897 		inode_mode_to_security_class(inode->i_mode),
2898 		&newsid);
2899 	if (rc)
2900 		return rc;
2901 
2902 	/* Possibly defer initialization to selinux_complete_init. */
2903 	if (sbsec->flags & SE_SBINITIALIZED) {
2904 		struct inode_security_struct *isec = selinux_inode(inode);
2905 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2906 		isec->sid = newsid;
2907 		isec->initialized = LABEL_INITIALIZED;
2908 	}
2909 
2910 	if (!selinux_initialized(&selinux_state) ||
2911 	    !(sbsec->flags & SBLABEL_MNT))
2912 		return -EOPNOTSUPP;
2913 
2914 	if (name)
2915 		*name = XATTR_SELINUX_SUFFIX;
2916 
2917 	if (value && len) {
2918 		rc = security_sid_to_context_force(&selinux_state, newsid,
2919 						   &context, &clen);
2920 		if (rc)
2921 			return rc;
2922 		*value = context;
2923 		*len = clen;
2924 	}
2925 
2926 	return 0;
2927 }
2928 
2929 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2930 {
2931 	return may_create(dir, dentry, SECCLASS_FILE);
2932 }
2933 
2934 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2935 {
2936 	return may_link(dir, old_dentry, MAY_LINK);
2937 }
2938 
2939 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2940 {
2941 	return may_link(dir, dentry, MAY_UNLINK);
2942 }
2943 
2944 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2945 {
2946 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2947 }
2948 
2949 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2950 {
2951 	return may_create(dir, dentry, SECCLASS_DIR);
2952 }
2953 
2954 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2955 {
2956 	return may_link(dir, dentry, MAY_RMDIR);
2957 }
2958 
2959 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2960 {
2961 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2962 }
2963 
2964 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2965 				struct inode *new_inode, struct dentry *new_dentry)
2966 {
2967 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2968 }
2969 
2970 static int selinux_inode_readlink(struct dentry *dentry)
2971 {
2972 	const struct cred *cred = current_cred();
2973 
2974 	return dentry_has_perm(cred, dentry, FILE__READ);
2975 }
2976 
2977 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2978 				     bool rcu)
2979 {
2980 	const struct cred *cred = current_cred();
2981 	struct common_audit_data ad;
2982 	struct inode_security_struct *isec;
2983 	u32 sid;
2984 
2985 	validate_creds(cred);
2986 
2987 	ad.type = LSM_AUDIT_DATA_DENTRY;
2988 	ad.u.dentry = dentry;
2989 	sid = cred_sid(cred);
2990 	isec = inode_security_rcu(inode, rcu);
2991 	if (IS_ERR(isec))
2992 		return PTR_ERR(isec);
2993 
2994 	return avc_has_perm_flags(&selinux_state,
2995 				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
2996 				  rcu ? MAY_NOT_BLOCK : 0);
2997 }
2998 
2999 static noinline int audit_inode_permission(struct inode *inode,
3000 					   u32 perms, u32 audited, u32 denied,
3001 					   int result)
3002 {
3003 	struct common_audit_data ad;
3004 	struct inode_security_struct *isec = selinux_inode(inode);
3005 	int rc;
3006 
3007 	ad.type = LSM_AUDIT_DATA_INODE;
3008 	ad.u.inode = inode;
3009 
3010 	rc = slow_avc_audit(&selinux_state,
3011 			    current_sid(), isec->sid, isec->sclass, perms,
3012 			    audited, denied, result, &ad);
3013 	if (rc)
3014 		return rc;
3015 	return 0;
3016 }
3017 
3018 static int selinux_inode_permission(struct inode *inode, int mask)
3019 {
3020 	const struct cred *cred = current_cred();
3021 	u32 perms;
3022 	bool from_access;
3023 	bool no_block = mask & MAY_NOT_BLOCK;
3024 	struct inode_security_struct *isec;
3025 	u32 sid;
3026 	struct av_decision avd;
3027 	int rc, rc2;
3028 	u32 audited, denied;
3029 
3030 	from_access = mask & MAY_ACCESS;
3031 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3032 
3033 	/* No permission to check.  Existence test. */
3034 	if (!mask)
3035 		return 0;
3036 
3037 	validate_creds(cred);
3038 
3039 	if (unlikely(IS_PRIVATE(inode)))
3040 		return 0;
3041 
3042 	perms = file_mask_to_av(inode->i_mode, mask);
3043 
3044 	sid = cred_sid(cred);
3045 	isec = inode_security_rcu(inode, no_block);
3046 	if (IS_ERR(isec))
3047 		return PTR_ERR(isec);
3048 
3049 	rc = avc_has_perm_noaudit(&selinux_state,
3050 				  sid, isec->sid, isec->sclass, perms,
3051 				  no_block ? AVC_NONBLOCKING : 0,
3052 				  &avd);
3053 	audited = avc_audit_required(perms, &avd, rc,
3054 				     from_access ? FILE__AUDIT_ACCESS : 0,
3055 				     &denied);
3056 	if (likely(!audited))
3057 		return rc;
3058 
3059 	/* fall back to ref-walk if we have to generate audit */
3060 	if (no_block)
3061 		return -ECHILD;
3062 
3063 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3064 	if (rc2)
3065 		return rc2;
3066 	return rc;
3067 }
3068 
3069 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3070 {
3071 	const struct cred *cred = current_cred();
3072 	struct inode *inode = d_backing_inode(dentry);
3073 	unsigned int ia_valid = iattr->ia_valid;
3074 	__u32 av = FILE__WRITE;
3075 
3076 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3077 	if (ia_valid & ATTR_FORCE) {
3078 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3079 			      ATTR_FORCE);
3080 		if (!ia_valid)
3081 			return 0;
3082 	}
3083 
3084 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3085 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3086 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3087 
3088 	if (selinux_policycap_openperm() &&
3089 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3090 	    (ia_valid & ATTR_SIZE) &&
3091 	    !(ia_valid & ATTR_FILE))
3092 		av |= FILE__OPEN;
3093 
3094 	return dentry_has_perm(cred, dentry, av);
3095 }
3096 
3097 static int selinux_inode_getattr(const struct path *path)
3098 {
3099 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3100 }
3101 
3102 static bool has_cap_mac_admin(bool audit)
3103 {
3104 	const struct cred *cred = current_cred();
3105 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3106 
3107 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3108 		return false;
3109 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3110 		return false;
3111 	return true;
3112 }
3113 
3114 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115 				  const void *value, size_t size, int flags)
3116 {
3117 	struct inode *inode = d_backing_inode(dentry);
3118 	struct inode_security_struct *isec;
3119 	struct superblock_security_struct *sbsec;
3120 	struct common_audit_data ad;
3121 	u32 newsid, sid = current_sid();
3122 	int rc = 0;
3123 
3124 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3125 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3126 		if (rc)
3127 			return rc;
3128 
3129 		/* Not an attribute we recognize, so just check the
3130 		   ordinary setattr permission. */
3131 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3132 	}
3133 
3134 	if (!selinux_initialized(&selinux_state))
3135 		return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3136 
3137 	sbsec = inode->i_sb->s_security;
3138 	if (!(sbsec->flags & SBLABEL_MNT))
3139 		return -EOPNOTSUPP;
3140 
3141 	if (!inode_owner_or_capable(inode))
3142 		return -EPERM;
3143 
3144 	ad.type = LSM_AUDIT_DATA_DENTRY;
3145 	ad.u.dentry = dentry;
3146 
3147 	isec = backing_inode_security(dentry);
3148 	rc = avc_has_perm(&selinux_state,
3149 			  sid, isec->sid, isec->sclass,
3150 			  FILE__RELABELFROM, &ad);
3151 	if (rc)
3152 		return rc;
3153 
3154 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3155 				     GFP_KERNEL);
3156 	if (rc == -EINVAL) {
3157 		if (!has_cap_mac_admin(true)) {
3158 			struct audit_buffer *ab;
3159 			size_t audit_size;
3160 
3161 			/* We strip a nul only if it is at the end, otherwise the
3162 			 * context contains a nul and we should audit that */
3163 			if (value) {
3164 				const char *str = value;
3165 
3166 				if (str[size - 1] == '\0')
3167 					audit_size = size - 1;
3168 				else
3169 					audit_size = size;
3170 			} else {
3171 				audit_size = 0;
3172 			}
3173 			ab = audit_log_start(audit_context(),
3174 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3175 			audit_log_format(ab, "op=setxattr invalid_context=");
3176 			audit_log_n_untrustedstring(ab, value, audit_size);
3177 			audit_log_end(ab);
3178 
3179 			return rc;
3180 		}
3181 		rc = security_context_to_sid_force(&selinux_state, value,
3182 						   size, &newsid);
3183 	}
3184 	if (rc)
3185 		return rc;
3186 
3187 	rc = avc_has_perm(&selinux_state,
3188 			  sid, newsid, isec->sclass,
3189 			  FILE__RELABELTO, &ad);
3190 	if (rc)
3191 		return rc;
3192 
3193 	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3194 					  sid, isec->sclass);
3195 	if (rc)
3196 		return rc;
3197 
3198 	return avc_has_perm(&selinux_state,
3199 			    newsid,
3200 			    sbsec->sid,
3201 			    SECCLASS_FILESYSTEM,
3202 			    FILESYSTEM__ASSOCIATE,
3203 			    &ad);
3204 }
3205 
3206 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3207 					const void *value, size_t size,
3208 					int flags)
3209 {
3210 	struct inode *inode = d_backing_inode(dentry);
3211 	struct inode_security_struct *isec;
3212 	u32 newsid;
3213 	int rc;
3214 
3215 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3216 		/* Not an attribute we recognize, so nothing to do. */
3217 		return;
3218 	}
3219 
3220 	if (!selinux_initialized(&selinux_state)) {
3221 		/* If we haven't even been initialized, then we can't validate
3222 		 * against a policy, so leave the label as invalid. It may
3223 		 * resolve to a valid label on the next revalidation try if
3224 		 * we've since initialized.
3225 		 */
3226 		return;
3227 	}
3228 
3229 	rc = security_context_to_sid_force(&selinux_state, value, size,
3230 					   &newsid);
3231 	if (rc) {
3232 		pr_err("SELinux:  unable to map context to SID"
3233 		       "for (%s, %lu), rc=%d\n",
3234 		       inode->i_sb->s_id, inode->i_ino, -rc);
3235 		return;
3236 	}
3237 
3238 	isec = backing_inode_security(dentry);
3239 	spin_lock(&isec->lock);
3240 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3241 	isec->sid = newsid;
3242 	isec->initialized = LABEL_INITIALIZED;
3243 	spin_unlock(&isec->lock);
3244 
3245 	return;
3246 }
3247 
3248 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3249 {
3250 	const struct cred *cred = current_cred();
3251 
3252 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3253 }
3254 
3255 static int selinux_inode_listxattr(struct dentry *dentry)
3256 {
3257 	const struct cred *cred = current_cred();
3258 
3259 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3260 }
3261 
3262 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3263 {
3264 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3265 		int rc = cap_inode_removexattr(dentry, name);
3266 		if (rc)
3267 			return rc;
3268 
3269 		/* Not an attribute we recognize, so just check the
3270 		   ordinary setattr permission. */
3271 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3272 	}
3273 
3274 	if (!selinux_initialized(&selinux_state))
3275 		return 0;
3276 
3277 	/* No one is allowed to remove a SELinux security label.
3278 	   You can change the label, but all data must be labeled. */
3279 	return -EACCES;
3280 }
3281 
3282 static int selinux_path_notify(const struct path *path, u64 mask,
3283 						unsigned int obj_type)
3284 {
3285 	int ret;
3286 	u32 perm;
3287 
3288 	struct common_audit_data ad;
3289 
3290 	ad.type = LSM_AUDIT_DATA_PATH;
3291 	ad.u.path = *path;
3292 
3293 	/*
3294 	 * Set permission needed based on the type of mark being set.
3295 	 * Performs an additional check for sb watches.
3296 	 */
3297 	switch (obj_type) {
3298 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3299 		perm = FILE__WATCH_MOUNT;
3300 		break;
3301 	case FSNOTIFY_OBJ_TYPE_SB:
3302 		perm = FILE__WATCH_SB;
3303 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3304 						FILESYSTEM__WATCH, &ad);
3305 		if (ret)
3306 			return ret;
3307 		break;
3308 	case FSNOTIFY_OBJ_TYPE_INODE:
3309 		perm = FILE__WATCH;
3310 		break;
3311 	default:
3312 		return -EINVAL;
3313 	}
3314 
3315 	/* blocking watches require the file:watch_with_perm permission */
3316 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3317 		perm |= FILE__WATCH_WITH_PERM;
3318 
3319 	/* watches on read-like events need the file:watch_reads permission */
3320 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3321 		perm |= FILE__WATCH_READS;
3322 
3323 	return path_has_perm(current_cred(), path, perm);
3324 }
3325 
3326 /*
3327  * Copy the inode security context value to the user.
3328  *
3329  * Permission check is handled by selinux_inode_getxattr hook.
3330  */
3331 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3332 {
3333 	u32 size;
3334 	int error;
3335 	char *context = NULL;
3336 	struct inode_security_struct *isec;
3337 
3338 	/*
3339 	 * If we're not initialized yet, then we can't validate contexts, so
3340 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3341 	 */
3342 	if (!selinux_initialized(&selinux_state) ||
3343 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3344 		return -EOPNOTSUPP;
3345 
3346 	/*
3347 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3348 	 * value even if it is not defined by current policy; otherwise,
3349 	 * use the in-core value under current policy.
3350 	 * Use the non-auditing forms of the permission checks since
3351 	 * getxattr may be called by unprivileged processes commonly
3352 	 * and lack of permission just means that we fall back to the
3353 	 * in-core context value, not a denial.
3354 	 */
3355 	isec = inode_security(inode);
3356 	if (has_cap_mac_admin(false))
3357 		error = security_sid_to_context_force(&selinux_state,
3358 						      isec->sid, &context,
3359 						      &size);
3360 	else
3361 		error = security_sid_to_context(&selinux_state, isec->sid,
3362 						&context, &size);
3363 	if (error)
3364 		return error;
3365 	error = size;
3366 	if (alloc) {
3367 		*buffer = context;
3368 		goto out_nofree;
3369 	}
3370 	kfree(context);
3371 out_nofree:
3372 	return error;
3373 }
3374 
3375 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3376 				     const void *value, size_t size, int flags)
3377 {
3378 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3379 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3380 	u32 newsid;
3381 	int rc;
3382 
3383 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3384 		return -EOPNOTSUPP;
3385 
3386 	if (!(sbsec->flags & SBLABEL_MNT))
3387 		return -EOPNOTSUPP;
3388 
3389 	if (!value || !size)
3390 		return -EACCES;
3391 
3392 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3393 				     GFP_KERNEL);
3394 	if (rc)
3395 		return rc;
3396 
3397 	spin_lock(&isec->lock);
3398 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3399 	isec->sid = newsid;
3400 	isec->initialized = LABEL_INITIALIZED;
3401 	spin_unlock(&isec->lock);
3402 	return 0;
3403 }
3404 
3405 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3406 {
3407 	const int len = sizeof(XATTR_NAME_SELINUX);
3408 	if (buffer && len <= buffer_size)
3409 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3410 	return len;
3411 }
3412 
3413 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3414 {
3415 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3416 	*secid = isec->sid;
3417 }
3418 
3419 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3420 {
3421 	u32 sid;
3422 	struct task_security_struct *tsec;
3423 	struct cred *new_creds = *new;
3424 
3425 	if (new_creds == NULL) {
3426 		new_creds = prepare_creds();
3427 		if (!new_creds)
3428 			return -ENOMEM;
3429 	}
3430 
3431 	tsec = selinux_cred(new_creds);
3432 	/* Get label from overlay inode and set it in create_sid */
3433 	selinux_inode_getsecid(d_inode(src), &sid);
3434 	tsec->create_sid = sid;
3435 	*new = new_creds;
3436 	return 0;
3437 }
3438 
3439 static int selinux_inode_copy_up_xattr(const char *name)
3440 {
3441 	/* The copy_up hook above sets the initial context on an inode, but we
3442 	 * don't then want to overwrite it by blindly copying all the lower
3443 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3444 	 */
3445 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3446 		return 1; /* Discard */
3447 	/*
3448 	 * Any other attribute apart from SELINUX is not claimed, supported
3449 	 * by selinux.
3450 	 */
3451 	return -EOPNOTSUPP;
3452 }
3453 
3454 /* kernfs node operations */
3455 
3456 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3457 					struct kernfs_node *kn)
3458 {
3459 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3460 	u32 parent_sid, newsid, clen;
3461 	int rc;
3462 	char *context;
3463 
3464 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3465 	if (rc == -ENODATA)
3466 		return 0;
3467 	else if (rc < 0)
3468 		return rc;
3469 
3470 	clen = (u32)rc;
3471 	context = kmalloc(clen, GFP_KERNEL);
3472 	if (!context)
3473 		return -ENOMEM;
3474 
3475 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3476 	if (rc < 0) {
3477 		kfree(context);
3478 		return rc;
3479 	}
3480 
3481 	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3482 				     GFP_KERNEL);
3483 	kfree(context);
3484 	if (rc)
3485 		return rc;
3486 
3487 	if (tsec->create_sid) {
3488 		newsid = tsec->create_sid;
3489 	} else {
3490 		u16 secclass = inode_mode_to_security_class(kn->mode);
3491 		struct qstr q;
3492 
3493 		q.name = kn->name;
3494 		q.hash_len = hashlen_string(kn_dir, kn->name);
3495 
3496 		rc = security_transition_sid(&selinux_state, tsec->sid,
3497 					     parent_sid, secclass, &q,
3498 					     &newsid);
3499 		if (rc)
3500 			return rc;
3501 	}
3502 
3503 	rc = security_sid_to_context_force(&selinux_state, newsid,
3504 					   &context, &clen);
3505 	if (rc)
3506 		return rc;
3507 
3508 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3509 			      XATTR_CREATE);
3510 	kfree(context);
3511 	return rc;
3512 }
3513 
3514 
3515 /* file security operations */
3516 
3517 static int selinux_revalidate_file_permission(struct file *file, int mask)
3518 {
3519 	const struct cred *cred = current_cred();
3520 	struct inode *inode = file_inode(file);
3521 
3522 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3523 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3524 		mask |= MAY_APPEND;
3525 
3526 	return file_has_perm(cred, file,
3527 			     file_mask_to_av(inode->i_mode, mask));
3528 }
3529 
3530 static int selinux_file_permission(struct file *file, int mask)
3531 {
3532 	struct inode *inode = file_inode(file);
3533 	struct file_security_struct *fsec = selinux_file(file);
3534 	struct inode_security_struct *isec;
3535 	u32 sid = current_sid();
3536 
3537 	if (!mask)
3538 		/* No permission to check.  Existence test. */
3539 		return 0;
3540 
3541 	isec = inode_security(inode);
3542 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3543 	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3544 		/* No change since file_open check. */
3545 		return 0;
3546 
3547 	return selinux_revalidate_file_permission(file, mask);
3548 }
3549 
3550 static int selinux_file_alloc_security(struct file *file)
3551 {
3552 	struct file_security_struct *fsec = selinux_file(file);
3553 	u32 sid = current_sid();
3554 
3555 	fsec->sid = sid;
3556 	fsec->fown_sid = sid;
3557 
3558 	return 0;
3559 }
3560 
3561 /*
3562  * Check whether a task has the ioctl permission and cmd
3563  * operation to an inode.
3564  */
3565 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3566 		u32 requested, u16 cmd)
3567 {
3568 	struct common_audit_data ad;
3569 	struct file_security_struct *fsec = selinux_file(file);
3570 	struct inode *inode = file_inode(file);
3571 	struct inode_security_struct *isec;
3572 	struct lsm_ioctlop_audit ioctl;
3573 	u32 ssid = cred_sid(cred);
3574 	int rc;
3575 	u8 driver = cmd >> 8;
3576 	u8 xperm = cmd & 0xff;
3577 
3578 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3579 	ad.u.op = &ioctl;
3580 	ad.u.op->cmd = cmd;
3581 	ad.u.op->path = file->f_path;
3582 
3583 	if (ssid != fsec->sid) {
3584 		rc = avc_has_perm(&selinux_state,
3585 				  ssid, fsec->sid,
3586 				SECCLASS_FD,
3587 				FD__USE,
3588 				&ad);
3589 		if (rc)
3590 			goto out;
3591 	}
3592 
3593 	if (unlikely(IS_PRIVATE(inode)))
3594 		return 0;
3595 
3596 	isec = inode_security(inode);
3597 	rc = avc_has_extended_perms(&selinux_state,
3598 				    ssid, isec->sid, isec->sclass,
3599 				    requested, driver, xperm, &ad);
3600 out:
3601 	return rc;
3602 }
3603 
3604 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3605 			      unsigned long arg)
3606 {
3607 	const struct cred *cred = current_cred();
3608 	int error = 0;
3609 
3610 	switch (cmd) {
3611 	case FIONREAD:
3612 	/* fall through */
3613 	case FIBMAP:
3614 	/* fall through */
3615 	case FIGETBSZ:
3616 	/* fall through */
3617 	case FS_IOC_GETFLAGS:
3618 	/* fall through */
3619 	case FS_IOC_GETVERSION:
3620 		error = file_has_perm(cred, file, FILE__GETATTR);
3621 		break;
3622 
3623 	case FS_IOC_SETFLAGS:
3624 	/* fall through */
3625 	case FS_IOC_SETVERSION:
3626 		error = file_has_perm(cred, file, FILE__SETATTR);
3627 		break;
3628 
3629 	/* sys_ioctl() checks */
3630 	case FIONBIO:
3631 	/* fall through */
3632 	case FIOASYNC:
3633 		error = file_has_perm(cred, file, 0);
3634 		break;
3635 
3636 	case KDSKBENT:
3637 	case KDSKBSENT:
3638 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3639 					    CAP_OPT_NONE, true);
3640 		break;
3641 
3642 	/* default case assumes that the command will go
3643 	 * to the file's ioctl() function.
3644 	 */
3645 	default:
3646 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3647 	}
3648 	return error;
3649 }
3650 
3651 static int default_noexec __ro_after_init;
3652 
3653 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3654 {
3655 	const struct cred *cred = current_cred();
3656 	u32 sid = cred_sid(cred);
3657 	int rc = 0;
3658 
3659 	if (default_noexec &&
3660 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3661 				   (!shared && (prot & PROT_WRITE)))) {
3662 		/*
3663 		 * We are making executable an anonymous mapping or a
3664 		 * private file mapping that will also be writable.
3665 		 * This has an additional check.
3666 		 */
3667 		rc = avc_has_perm(&selinux_state,
3668 				  sid, sid, SECCLASS_PROCESS,
3669 				  PROCESS__EXECMEM, NULL);
3670 		if (rc)
3671 			goto error;
3672 	}
3673 
3674 	if (file) {
3675 		/* read access is always possible with a mapping */
3676 		u32 av = FILE__READ;
3677 
3678 		/* write access only matters if the mapping is shared */
3679 		if (shared && (prot & PROT_WRITE))
3680 			av |= FILE__WRITE;
3681 
3682 		if (prot & PROT_EXEC)
3683 			av |= FILE__EXECUTE;
3684 
3685 		return file_has_perm(cred, file, av);
3686 	}
3687 
3688 error:
3689 	return rc;
3690 }
3691 
3692 static int selinux_mmap_addr(unsigned long addr)
3693 {
3694 	int rc = 0;
3695 
3696 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3697 		u32 sid = current_sid();
3698 		rc = avc_has_perm(&selinux_state,
3699 				  sid, sid, SECCLASS_MEMPROTECT,
3700 				  MEMPROTECT__MMAP_ZERO, NULL);
3701 	}
3702 
3703 	return rc;
3704 }
3705 
3706 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3707 			     unsigned long prot, unsigned long flags)
3708 {
3709 	struct common_audit_data ad;
3710 	int rc;
3711 
3712 	if (file) {
3713 		ad.type = LSM_AUDIT_DATA_FILE;
3714 		ad.u.file = file;
3715 		rc = inode_has_perm(current_cred(), file_inode(file),
3716 				    FILE__MAP, &ad);
3717 		if (rc)
3718 			return rc;
3719 	}
3720 
3721 	if (selinux_state.checkreqprot)
3722 		prot = reqprot;
3723 
3724 	return file_map_prot_check(file, prot,
3725 				   (flags & MAP_TYPE) == MAP_SHARED);
3726 }
3727 
3728 static int selinux_file_mprotect(struct vm_area_struct *vma,
3729 				 unsigned long reqprot,
3730 				 unsigned long prot)
3731 {
3732 	const struct cred *cred = current_cred();
3733 	u32 sid = cred_sid(cred);
3734 
3735 	if (selinux_state.checkreqprot)
3736 		prot = reqprot;
3737 
3738 	if (default_noexec &&
3739 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3740 		int rc = 0;
3741 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3742 		    vma->vm_end <= vma->vm_mm->brk) {
3743 			rc = avc_has_perm(&selinux_state,
3744 					  sid, sid, SECCLASS_PROCESS,
3745 					  PROCESS__EXECHEAP, NULL);
3746 		} else if (!vma->vm_file &&
3747 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3748 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3749 			    vma_is_stack_for_current(vma))) {
3750 			rc = avc_has_perm(&selinux_state,
3751 					  sid, sid, SECCLASS_PROCESS,
3752 					  PROCESS__EXECSTACK, NULL);
3753 		} else if (vma->vm_file && vma->anon_vma) {
3754 			/*
3755 			 * We are making executable a file mapping that has
3756 			 * had some COW done. Since pages might have been
3757 			 * written, check ability to execute the possibly
3758 			 * modified content.  This typically should only
3759 			 * occur for text relocations.
3760 			 */
3761 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3762 		}
3763 		if (rc)
3764 			return rc;
3765 	}
3766 
3767 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3768 }
3769 
3770 static int selinux_file_lock(struct file *file, unsigned int cmd)
3771 {
3772 	const struct cred *cred = current_cred();
3773 
3774 	return file_has_perm(cred, file, FILE__LOCK);
3775 }
3776 
3777 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3778 			      unsigned long arg)
3779 {
3780 	const struct cred *cred = current_cred();
3781 	int err = 0;
3782 
3783 	switch (cmd) {
3784 	case F_SETFL:
3785 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3786 			err = file_has_perm(cred, file, FILE__WRITE);
3787 			break;
3788 		}
3789 		/* fall through */
3790 	case F_SETOWN:
3791 	case F_SETSIG:
3792 	case F_GETFL:
3793 	case F_GETOWN:
3794 	case F_GETSIG:
3795 	case F_GETOWNER_UIDS:
3796 		/* Just check FD__USE permission */
3797 		err = file_has_perm(cred, file, 0);
3798 		break;
3799 	case F_GETLK:
3800 	case F_SETLK:
3801 	case F_SETLKW:
3802 	case F_OFD_GETLK:
3803 	case F_OFD_SETLK:
3804 	case F_OFD_SETLKW:
3805 #if BITS_PER_LONG == 32
3806 	case F_GETLK64:
3807 	case F_SETLK64:
3808 	case F_SETLKW64:
3809 #endif
3810 		err = file_has_perm(cred, file, FILE__LOCK);
3811 		break;
3812 	}
3813 
3814 	return err;
3815 }
3816 
3817 static void selinux_file_set_fowner(struct file *file)
3818 {
3819 	struct file_security_struct *fsec;
3820 
3821 	fsec = selinux_file(file);
3822 	fsec->fown_sid = current_sid();
3823 }
3824 
3825 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3826 				       struct fown_struct *fown, int signum)
3827 {
3828 	struct file *file;
3829 	u32 sid = task_sid(tsk);
3830 	u32 perm;
3831 	struct file_security_struct *fsec;
3832 
3833 	/* struct fown_struct is never outside the context of a struct file */
3834 	file = container_of(fown, struct file, f_owner);
3835 
3836 	fsec = selinux_file(file);
3837 
3838 	if (!signum)
3839 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3840 	else
3841 		perm = signal_to_av(signum);
3842 
3843 	return avc_has_perm(&selinux_state,
3844 			    fsec->fown_sid, sid,
3845 			    SECCLASS_PROCESS, perm, NULL);
3846 }
3847 
3848 static int selinux_file_receive(struct file *file)
3849 {
3850 	const struct cred *cred = current_cred();
3851 
3852 	return file_has_perm(cred, file, file_to_av(file));
3853 }
3854 
3855 static int selinux_file_open(struct file *file)
3856 {
3857 	struct file_security_struct *fsec;
3858 	struct inode_security_struct *isec;
3859 
3860 	fsec = selinux_file(file);
3861 	isec = inode_security(file_inode(file));
3862 	/*
3863 	 * Save inode label and policy sequence number
3864 	 * at open-time so that selinux_file_permission
3865 	 * can determine whether revalidation is necessary.
3866 	 * Task label is already saved in the file security
3867 	 * struct as its SID.
3868 	 */
3869 	fsec->isid = isec->sid;
3870 	fsec->pseqno = avc_policy_seqno(&selinux_state);
3871 	/*
3872 	 * Since the inode label or policy seqno may have changed
3873 	 * between the selinux_inode_permission check and the saving
3874 	 * of state above, recheck that access is still permitted.
3875 	 * Otherwise, access might never be revalidated against the
3876 	 * new inode label or new policy.
3877 	 * This check is not redundant - do not remove.
3878 	 */
3879 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3880 }
3881 
3882 /* task security operations */
3883 
3884 static int selinux_task_alloc(struct task_struct *task,
3885 			      unsigned long clone_flags)
3886 {
3887 	u32 sid = current_sid();
3888 
3889 	return avc_has_perm(&selinux_state,
3890 			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3891 }
3892 
3893 /*
3894  * prepare a new set of credentials for modification
3895  */
3896 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3897 				gfp_t gfp)
3898 {
3899 	const struct task_security_struct *old_tsec = selinux_cred(old);
3900 	struct task_security_struct *tsec = selinux_cred(new);
3901 
3902 	*tsec = *old_tsec;
3903 	return 0;
3904 }
3905 
3906 /*
3907  * transfer the SELinux data to a blank set of creds
3908  */
3909 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3910 {
3911 	const struct task_security_struct *old_tsec = selinux_cred(old);
3912 	struct task_security_struct *tsec = selinux_cred(new);
3913 
3914 	*tsec = *old_tsec;
3915 }
3916 
3917 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3918 {
3919 	*secid = cred_sid(c);
3920 }
3921 
3922 /*
3923  * set the security data for a kernel service
3924  * - all the creation contexts are set to unlabelled
3925  */
3926 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3927 {
3928 	struct task_security_struct *tsec = selinux_cred(new);
3929 	u32 sid = current_sid();
3930 	int ret;
3931 
3932 	ret = avc_has_perm(&selinux_state,
3933 			   sid, secid,
3934 			   SECCLASS_KERNEL_SERVICE,
3935 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3936 			   NULL);
3937 	if (ret == 0) {
3938 		tsec->sid = secid;
3939 		tsec->create_sid = 0;
3940 		tsec->keycreate_sid = 0;
3941 		tsec->sockcreate_sid = 0;
3942 	}
3943 	return ret;
3944 }
3945 
3946 /*
3947  * set the file creation context in a security record to the same as the
3948  * objective context of the specified inode
3949  */
3950 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3951 {
3952 	struct inode_security_struct *isec = inode_security(inode);
3953 	struct task_security_struct *tsec = selinux_cred(new);
3954 	u32 sid = current_sid();
3955 	int ret;
3956 
3957 	ret = avc_has_perm(&selinux_state,
3958 			   sid, isec->sid,
3959 			   SECCLASS_KERNEL_SERVICE,
3960 			   KERNEL_SERVICE__CREATE_FILES_AS,
3961 			   NULL);
3962 
3963 	if (ret == 0)
3964 		tsec->create_sid = isec->sid;
3965 	return ret;
3966 }
3967 
3968 static int selinux_kernel_module_request(char *kmod_name)
3969 {
3970 	struct common_audit_data ad;
3971 
3972 	ad.type = LSM_AUDIT_DATA_KMOD;
3973 	ad.u.kmod_name = kmod_name;
3974 
3975 	return avc_has_perm(&selinux_state,
3976 			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3977 			    SYSTEM__MODULE_REQUEST, &ad);
3978 }
3979 
3980 static int selinux_kernel_module_from_file(struct file *file)
3981 {
3982 	struct common_audit_data ad;
3983 	struct inode_security_struct *isec;
3984 	struct file_security_struct *fsec;
3985 	u32 sid = current_sid();
3986 	int rc;
3987 
3988 	/* init_module */
3989 	if (file == NULL)
3990 		return avc_has_perm(&selinux_state,
3991 				    sid, sid, SECCLASS_SYSTEM,
3992 					SYSTEM__MODULE_LOAD, NULL);
3993 
3994 	/* finit_module */
3995 
3996 	ad.type = LSM_AUDIT_DATA_FILE;
3997 	ad.u.file = file;
3998 
3999 	fsec = selinux_file(file);
4000 	if (sid != fsec->sid) {
4001 		rc = avc_has_perm(&selinux_state,
4002 				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4003 		if (rc)
4004 			return rc;
4005 	}
4006 
4007 	isec = inode_security(file_inode(file));
4008 	return avc_has_perm(&selinux_state,
4009 			    sid, isec->sid, SECCLASS_SYSTEM,
4010 				SYSTEM__MODULE_LOAD, &ad);
4011 }
4012 
4013 static int selinux_kernel_read_file(struct file *file,
4014 				    enum kernel_read_file_id id)
4015 {
4016 	int rc = 0;
4017 
4018 	switch (id) {
4019 	case READING_MODULE:
4020 		rc = selinux_kernel_module_from_file(file);
4021 		break;
4022 	default:
4023 		break;
4024 	}
4025 
4026 	return rc;
4027 }
4028 
4029 static int selinux_kernel_load_data(enum kernel_load_data_id id)
4030 {
4031 	int rc = 0;
4032 
4033 	switch (id) {
4034 	case LOADING_MODULE:
4035 		rc = selinux_kernel_module_from_file(NULL);
4036 	default:
4037 		break;
4038 	}
4039 
4040 	return rc;
4041 }
4042 
4043 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4044 {
4045 	return avc_has_perm(&selinux_state,
4046 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4047 			    PROCESS__SETPGID, NULL);
4048 }
4049 
4050 static int selinux_task_getpgid(struct task_struct *p)
4051 {
4052 	return avc_has_perm(&selinux_state,
4053 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4054 			    PROCESS__GETPGID, NULL);
4055 }
4056 
4057 static int selinux_task_getsid(struct task_struct *p)
4058 {
4059 	return avc_has_perm(&selinux_state,
4060 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4061 			    PROCESS__GETSESSION, NULL);
4062 }
4063 
4064 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4065 {
4066 	*secid = task_sid(p);
4067 }
4068 
4069 static int selinux_task_setnice(struct task_struct *p, int nice)
4070 {
4071 	return avc_has_perm(&selinux_state,
4072 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4073 			    PROCESS__SETSCHED, NULL);
4074 }
4075 
4076 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4077 {
4078 	return avc_has_perm(&selinux_state,
4079 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4080 			    PROCESS__SETSCHED, NULL);
4081 }
4082 
4083 static int selinux_task_getioprio(struct task_struct *p)
4084 {
4085 	return avc_has_perm(&selinux_state,
4086 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4087 			    PROCESS__GETSCHED, NULL);
4088 }
4089 
4090 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4091 				unsigned int flags)
4092 {
4093 	u32 av = 0;
4094 
4095 	if (!flags)
4096 		return 0;
4097 	if (flags & LSM_PRLIMIT_WRITE)
4098 		av |= PROCESS__SETRLIMIT;
4099 	if (flags & LSM_PRLIMIT_READ)
4100 		av |= PROCESS__GETRLIMIT;
4101 	return avc_has_perm(&selinux_state,
4102 			    cred_sid(cred), cred_sid(tcred),
4103 			    SECCLASS_PROCESS, av, NULL);
4104 }
4105 
4106 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4107 		struct rlimit *new_rlim)
4108 {
4109 	struct rlimit *old_rlim = p->signal->rlim + resource;
4110 
4111 	/* Control the ability to change the hard limit (whether
4112 	   lowering or raising it), so that the hard limit can
4113 	   later be used as a safe reset point for the soft limit
4114 	   upon context transitions.  See selinux_bprm_committing_creds. */
4115 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4116 		return avc_has_perm(&selinux_state,
4117 				    current_sid(), task_sid(p),
4118 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4119 
4120 	return 0;
4121 }
4122 
4123 static int selinux_task_setscheduler(struct task_struct *p)
4124 {
4125 	return avc_has_perm(&selinux_state,
4126 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4127 			    PROCESS__SETSCHED, NULL);
4128 }
4129 
4130 static int selinux_task_getscheduler(struct task_struct *p)
4131 {
4132 	return avc_has_perm(&selinux_state,
4133 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4134 			    PROCESS__GETSCHED, NULL);
4135 }
4136 
4137 static int selinux_task_movememory(struct task_struct *p)
4138 {
4139 	return avc_has_perm(&selinux_state,
4140 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4141 			    PROCESS__SETSCHED, NULL);
4142 }
4143 
4144 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4145 				int sig, const struct cred *cred)
4146 {
4147 	u32 secid;
4148 	u32 perm;
4149 
4150 	if (!sig)
4151 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4152 	else
4153 		perm = signal_to_av(sig);
4154 	if (!cred)
4155 		secid = current_sid();
4156 	else
4157 		secid = cred_sid(cred);
4158 	return avc_has_perm(&selinux_state,
4159 			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4160 }
4161 
4162 static void selinux_task_to_inode(struct task_struct *p,
4163 				  struct inode *inode)
4164 {
4165 	struct inode_security_struct *isec = selinux_inode(inode);
4166 	u32 sid = task_sid(p);
4167 
4168 	spin_lock(&isec->lock);
4169 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4170 	isec->sid = sid;
4171 	isec->initialized = LABEL_INITIALIZED;
4172 	spin_unlock(&isec->lock);
4173 }
4174 
4175 /* Returns error only if unable to parse addresses */
4176 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4177 			struct common_audit_data *ad, u8 *proto)
4178 {
4179 	int offset, ihlen, ret = -EINVAL;
4180 	struct iphdr _iph, *ih;
4181 
4182 	offset = skb_network_offset(skb);
4183 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4184 	if (ih == NULL)
4185 		goto out;
4186 
4187 	ihlen = ih->ihl * 4;
4188 	if (ihlen < sizeof(_iph))
4189 		goto out;
4190 
4191 	ad->u.net->v4info.saddr = ih->saddr;
4192 	ad->u.net->v4info.daddr = ih->daddr;
4193 	ret = 0;
4194 
4195 	if (proto)
4196 		*proto = ih->protocol;
4197 
4198 	switch (ih->protocol) {
4199 	case IPPROTO_TCP: {
4200 		struct tcphdr _tcph, *th;
4201 
4202 		if (ntohs(ih->frag_off) & IP_OFFSET)
4203 			break;
4204 
4205 		offset += ihlen;
4206 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4207 		if (th == NULL)
4208 			break;
4209 
4210 		ad->u.net->sport = th->source;
4211 		ad->u.net->dport = th->dest;
4212 		break;
4213 	}
4214 
4215 	case IPPROTO_UDP: {
4216 		struct udphdr _udph, *uh;
4217 
4218 		if (ntohs(ih->frag_off) & IP_OFFSET)
4219 			break;
4220 
4221 		offset += ihlen;
4222 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4223 		if (uh == NULL)
4224 			break;
4225 
4226 		ad->u.net->sport = uh->source;
4227 		ad->u.net->dport = uh->dest;
4228 		break;
4229 	}
4230 
4231 	case IPPROTO_DCCP: {
4232 		struct dccp_hdr _dccph, *dh;
4233 
4234 		if (ntohs(ih->frag_off) & IP_OFFSET)
4235 			break;
4236 
4237 		offset += ihlen;
4238 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4239 		if (dh == NULL)
4240 			break;
4241 
4242 		ad->u.net->sport = dh->dccph_sport;
4243 		ad->u.net->dport = dh->dccph_dport;
4244 		break;
4245 	}
4246 
4247 #if IS_ENABLED(CONFIG_IP_SCTP)
4248 	case IPPROTO_SCTP: {
4249 		struct sctphdr _sctph, *sh;
4250 
4251 		if (ntohs(ih->frag_off) & IP_OFFSET)
4252 			break;
4253 
4254 		offset += ihlen;
4255 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4256 		if (sh == NULL)
4257 			break;
4258 
4259 		ad->u.net->sport = sh->source;
4260 		ad->u.net->dport = sh->dest;
4261 		break;
4262 	}
4263 #endif
4264 	default:
4265 		break;
4266 	}
4267 out:
4268 	return ret;
4269 }
4270 
4271 #if IS_ENABLED(CONFIG_IPV6)
4272 
4273 /* Returns error only if unable to parse addresses */
4274 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4275 			struct common_audit_data *ad, u8 *proto)
4276 {
4277 	u8 nexthdr;
4278 	int ret = -EINVAL, offset;
4279 	struct ipv6hdr _ipv6h, *ip6;
4280 	__be16 frag_off;
4281 
4282 	offset = skb_network_offset(skb);
4283 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4284 	if (ip6 == NULL)
4285 		goto out;
4286 
4287 	ad->u.net->v6info.saddr = ip6->saddr;
4288 	ad->u.net->v6info.daddr = ip6->daddr;
4289 	ret = 0;
4290 
4291 	nexthdr = ip6->nexthdr;
4292 	offset += sizeof(_ipv6h);
4293 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4294 	if (offset < 0)
4295 		goto out;
4296 
4297 	if (proto)
4298 		*proto = nexthdr;
4299 
4300 	switch (nexthdr) {
4301 	case IPPROTO_TCP: {
4302 		struct tcphdr _tcph, *th;
4303 
4304 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4305 		if (th == NULL)
4306 			break;
4307 
4308 		ad->u.net->sport = th->source;
4309 		ad->u.net->dport = th->dest;
4310 		break;
4311 	}
4312 
4313 	case IPPROTO_UDP: {
4314 		struct udphdr _udph, *uh;
4315 
4316 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4317 		if (uh == NULL)
4318 			break;
4319 
4320 		ad->u.net->sport = uh->source;
4321 		ad->u.net->dport = uh->dest;
4322 		break;
4323 	}
4324 
4325 	case IPPROTO_DCCP: {
4326 		struct dccp_hdr _dccph, *dh;
4327 
4328 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4329 		if (dh == NULL)
4330 			break;
4331 
4332 		ad->u.net->sport = dh->dccph_sport;
4333 		ad->u.net->dport = dh->dccph_dport;
4334 		break;
4335 	}
4336 
4337 #if IS_ENABLED(CONFIG_IP_SCTP)
4338 	case IPPROTO_SCTP: {
4339 		struct sctphdr _sctph, *sh;
4340 
4341 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4342 		if (sh == NULL)
4343 			break;
4344 
4345 		ad->u.net->sport = sh->source;
4346 		ad->u.net->dport = sh->dest;
4347 		break;
4348 	}
4349 #endif
4350 	/* includes fragments */
4351 	default:
4352 		break;
4353 	}
4354 out:
4355 	return ret;
4356 }
4357 
4358 #endif /* IPV6 */
4359 
4360 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4361 			     char **_addrp, int src, u8 *proto)
4362 {
4363 	char *addrp;
4364 	int ret;
4365 
4366 	switch (ad->u.net->family) {
4367 	case PF_INET:
4368 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4369 		if (ret)
4370 			goto parse_error;
4371 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4372 				       &ad->u.net->v4info.daddr);
4373 		goto okay;
4374 
4375 #if IS_ENABLED(CONFIG_IPV6)
4376 	case PF_INET6:
4377 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4378 		if (ret)
4379 			goto parse_error;
4380 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4381 				       &ad->u.net->v6info.daddr);
4382 		goto okay;
4383 #endif	/* IPV6 */
4384 	default:
4385 		addrp = NULL;
4386 		goto okay;
4387 	}
4388 
4389 parse_error:
4390 	pr_warn(
4391 	       "SELinux: failure in selinux_parse_skb(),"
4392 	       " unable to parse packet\n");
4393 	return ret;
4394 
4395 okay:
4396 	if (_addrp)
4397 		*_addrp = addrp;
4398 	return 0;
4399 }
4400 
4401 /**
4402  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4403  * @skb: the packet
4404  * @family: protocol family
4405  * @sid: the packet's peer label SID
4406  *
4407  * Description:
4408  * Check the various different forms of network peer labeling and determine
4409  * the peer label/SID for the packet; most of the magic actually occurs in
4410  * the security server function security_net_peersid_cmp().  The function
4411  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4412  * or -EACCES if @sid is invalid due to inconsistencies with the different
4413  * peer labels.
4414  *
4415  */
4416 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4417 {
4418 	int err;
4419 	u32 xfrm_sid;
4420 	u32 nlbl_sid;
4421 	u32 nlbl_type;
4422 
4423 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4424 	if (unlikely(err))
4425 		return -EACCES;
4426 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4427 	if (unlikely(err))
4428 		return -EACCES;
4429 
4430 	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4431 					   nlbl_type, xfrm_sid, sid);
4432 	if (unlikely(err)) {
4433 		pr_warn(
4434 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4435 		       " unable to determine packet's peer label\n");
4436 		return -EACCES;
4437 	}
4438 
4439 	return 0;
4440 }
4441 
4442 /**
4443  * selinux_conn_sid - Determine the child socket label for a connection
4444  * @sk_sid: the parent socket's SID
4445  * @skb_sid: the packet's SID
4446  * @conn_sid: the resulting connection SID
4447  *
4448  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4449  * combined with the MLS information from @skb_sid in order to create
4450  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4451  * of @sk_sid.  Returns zero on success, negative values on failure.
4452  *
4453  */
4454 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4455 {
4456 	int err = 0;
4457 
4458 	if (skb_sid != SECSID_NULL)
4459 		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4460 					    conn_sid);
4461 	else
4462 		*conn_sid = sk_sid;
4463 
4464 	return err;
4465 }
4466 
4467 /* socket security operations */
4468 
4469 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4470 				 u16 secclass, u32 *socksid)
4471 {
4472 	if (tsec->sockcreate_sid > SECSID_NULL) {
4473 		*socksid = tsec->sockcreate_sid;
4474 		return 0;
4475 	}
4476 
4477 	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4478 				       secclass, NULL, socksid);
4479 }
4480 
4481 static int sock_has_perm(struct sock *sk, u32 perms)
4482 {
4483 	struct sk_security_struct *sksec = sk->sk_security;
4484 	struct common_audit_data ad;
4485 	struct lsm_network_audit net = {0,};
4486 
4487 	if (sksec->sid == SECINITSID_KERNEL)
4488 		return 0;
4489 
4490 	ad.type = LSM_AUDIT_DATA_NET;
4491 	ad.u.net = &net;
4492 	ad.u.net->sk = sk;
4493 
4494 	return avc_has_perm(&selinux_state,
4495 			    current_sid(), sksec->sid, sksec->sclass, perms,
4496 			    &ad);
4497 }
4498 
4499 static int selinux_socket_create(int family, int type,
4500 				 int protocol, int kern)
4501 {
4502 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4503 	u32 newsid;
4504 	u16 secclass;
4505 	int rc;
4506 
4507 	if (kern)
4508 		return 0;
4509 
4510 	secclass = socket_type_to_security_class(family, type, protocol);
4511 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4512 	if (rc)
4513 		return rc;
4514 
4515 	return avc_has_perm(&selinux_state,
4516 			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4517 }
4518 
4519 static int selinux_socket_post_create(struct socket *sock, int family,
4520 				      int type, int protocol, int kern)
4521 {
4522 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4523 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4524 	struct sk_security_struct *sksec;
4525 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4526 	u32 sid = SECINITSID_KERNEL;
4527 	int err = 0;
4528 
4529 	if (!kern) {
4530 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4531 		if (err)
4532 			return err;
4533 	}
4534 
4535 	isec->sclass = sclass;
4536 	isec->sid = sid;
4537 	isec->initialized = LABEL_INITIALIZED;
4538 
4539 	if (sock->sk) {
4540 		sksec = sock->sk->sk_security;
4541 		sksec->sclass = sclass;
4542 		sksec->sid = sid;
4543 		/* Allows detection of the first association on this socket */
4544 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4545 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4546 
4547 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4548 	}
4549 
4550 	return err;
4551 }
4552 
4553 static int selinux_socket_socketpair(struct socket *socka,
4554 				     struct socket *sockb)
4555 {
4556 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4557 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4558 
4559 	sksec_a->peer_sid = sksec_b->sid;
4560 	sksec_b->peer_sid = sksec_a->sid;
4561 
4562 	return 0;
4563 }
4564 
4565 /* Range of port numbers used to automatically bind.
4566    Need to determine whether we should perform a name_bind
4567    permission check between the socket and the port number. */
4568 
4569 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4570 {
4571 	struct sock *sk = sock->sk;
4572 	struct sk_security_struct *sksec = sk->sk_security;
4573 	u16 family;
4574 	int err;
4575 
4576 	err = sock_has_perm(sk, SOCKET__BIND);
4577 	if (err)
4578 		goto out;
4579 
4580 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4581 	family = sk->sk_family;
4582 	if (family == PF_INET || family == PF_INET6) {
4583 		char *addrp;
4584 		struct common_audit_data ad;
4585 		struct lsm_network_audit net = {0,};
4586 		struct sockaddr_in *addr4 = NULL;
4587 		struct sockaddr_in6 *addr6 = NULL;
4588 		u16 family_sa;
4589 		unsigned short snum;
4590 		u32 sid, node_perm;
4591 
4592 		/*
4593 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4594 		 * that validates multiple binding addresses. Because of this
4595 		 * need to check address->sa_family as it is possible to have
4596 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4597 		 */
4598 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4599 			return -EINVAL;
4600 		family_sa = address->sa_family;
4601 		switch (family_sa) {
4602 		case AF_UNSPEC:
4603 		case AF_INET:
4604 			if (addrlen < sizeof(struct sockaddr_in))
4605 				return -EINVAL;
4606 			addr4 = (struct sockaddr_in *)address;
4607 			if (family_sa == AF_UNSPEC) {
4608 				/* see __inet_bind(), we only want to allow
4609 				 * AF_UNSPEC if the address is INADDR_ANY
4610 				 */
4611 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4612 					goto err_af;
4613 				family_sa = AF_INET;
4614 			}
4615 			snum = ntohs(addr4->sin_port);
4616 			addrp = (char *)&addr4->sin_addr.s_addr;
4617 			break;
4618 		case AF_INET6:
4619 			if (addrlen < SIN6_LEN_RFC2133)
4620 				return -EINVAL;
4621 			addr6 = (struct sockaddr_in6 *)address;
4622 			snum = ntohs(addr6->sin6_port);
4623 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4624 			break;
4625 		default:
4626 			goto err_af;
4627 		}
4628 
4629 		ad.type = LSM_AUDIT_DATA_NET;
4630 		ad.u.net = &net;
4631 		ad.u.net->sport = htons(snum);
4632 		ad.u.net->family = family_sa;
4633 
4634 		if (snum) {
4635 			int low, high;
4636 
4637 			inet_get_local_port_range(sock_net(sk), &low, &high);
4638 
4639 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4640 			    snum < low || snum > high) {
4641 				err = sel_netport_sid(sk->sk_protocol,
4642 						      snum, &sid);
4643 				if (err)
4644 					goto out;
4645 				err = avc_has_perm(&selinux_state,
4646 						   sksec->sid, sid,
4647 						   sksec->sclass,
4648 						   SOCKET__NAME_BIND, &ad);
4649 				if (err)
4650 					goto out;
4651 			}
4652 		}
4653 
4654 		switch (sksec->sclass) {
4655 		case SECCLASS_TCP_SOCKET:
4656 			node_perm = TCP_SOCKET__NODE_BIND;
4657 			break;
4658 
4659 		case SECCLASS_UDP_SOCKET:
4660 			node_perm = UDP_SOCKET__NODE_BIND;
4661 			break;
4662 
4663 		case SECCLASS_DCCP_SOCKET:
4664 			node_perm = DCCP_SOCKET__NODE_BIND;
4665 			break;
4666 
4667 		case SECCLASS_SCTP_SOCKET:
4668 			node_perm = SCTP_SOCKET__NODE_BIND;
4669 			break;
4670 
4671 		default:
4672 			node_perm = RAWIP_SOCKET__NODE_BIND;
4673 			break;
4674 		}
4675 
4676 		err = sel_netnode_sid(addrp, family_sa, &sid);
4677 		if (err)
4678 			goto out;
4679 
4680 		if (family_sa == AF_INET)
4681 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4682 		else
4683 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4684 
4685 		err = avc_has_perm(&selinux_state,
4686 				   sksec->sid, sid,
4687 				   sksec->sclass, node_perm, &ad);
4688 		if (err)
4689 			goto out;
4690 	}
4691 out:
4692 	return err;
4693 err_af:
4694 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4695 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4696 		return -EINVAL;
4697 	return -EAFNOSUPPORT;
4698 }
4699 
4700 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4701  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4702  */
4703 static int selinux_socket_connect_helper(struct socket *sock,
4704 					 struct sockaddr *address, int addrlen)
4705 {
4706 	struct sock *sk = sock->sk;
4707 	struct sk_security_struct *sksec = sk->sk_security;
4708 	int err;
4709 
4710 	err = sock_has_perm(sk, SOCKET__CONNECT);
4711 	if (err)
4712 		return err;
4713 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4714 		return -EINVAL;
4715 
4716 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4717 	 * way to disconnect the socket
4718 	 */
4719 	if (address->sa_family == AF_UNSPEC)
4720 		return 0;
4721 
4722 	/*
4723 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4724 	 * for the port.
4725 	 */
4726 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4727 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4728 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4729 		struct common_audit_data ad;
4730 		struct lsm_network_audit net = {0,};
4731 		struct sockaddr_in *addr4 = NULL;
4732 		struct sockaddr_in6 *addr6 = NULL;
4733 		unsigned short snum;
4734 		u32 sid, perm;
4735 
4736 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4737 		 * that validates multiple connect addresses. Because of this
4738 		 * need to check address->sa_family as it is possible to have
4739 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4740 		 */
4741 		switch (address->sa_family) {
4742 		case AF_INET:
4743 			addr4 = (struct sockaddr_in *)address;
4744 			if (addrlen < sizeof(struct sockaddr_in))
4745 				return -EINVAL;
4746 			snum = ntohs(addr4->sin_port);
4747 			break;
4748 		case AF_INET6:
4749 			addr6 = (struct sockaddr_in6 *)address;
4750 			if (addrlen < SIN6_LEN_RFC2133)
4751 				return -EINVAL;
4752 			snum = ntohs(addr6->sin6_port);
4753 			break;
4754 		default:
4755 			/* Note that SCTP services expect -EINVAL, whereas
4756 			 * others expect -EAFNOSUPPORT.
4757 			 */
4758 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4759 				return -EINVAL;
4760 			else
4761 				return -EAFNOSUPPORT;
4762 		}
4763 
4764 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4765 		if (err)
4766 			return err;
4767 
4768 		switch (sksec->sclass) {
4769 		case SECCLASS_TCP_SOCKET:
4770 			perm = TCP_SOCKET__NAME_CONNECT;
4771 			break;
4772 		case SECCLASS_DCCP_SOCKET:
4773 			perm = DCCP_SOCKET__NAME_CONNECT;
4774 			break;
4775 		case SECCLASS_SCTP_SOCKET:
4776 			perm = SCTP_SOCKET__NAME_CONNECT;
4777 			break;
4778 		}
4779 
4780 		ad.type = LSM_AUDIT_DATA_NET;
4781 		ad.u.net = &net;
4782 		ad.u.net->dport = htons(snum);
4783 		ad.u.net->family = address->sa_family;
4784 		err = avc_has_perm(&selinux_state,
4785 				   sksec->sid, sid, sksec->sclass, perm, &ad);
4786 		if (err)
4787 			return err;
4788 	}
4789 
4790 	return 0;
4791 }
4792 
4793 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4794 static int selinux_socket_connect(struct socket *sock,
4795 				  struct sockaddr *address, int addrlen)
4796 {
4797 	int err;
4798 	struct sock *sk = sock->sk;
4799 
4800 	err = selinux_socket_connect_helper(sock, address, addrlen);
4801 	if (err)
4802 		return err;
4803 
4804 	return selinux_netlbl_socket_connect(sk, address);
4805 }
4806 
4807 static int selinux_socket_listen(struct socket *sock, int backlog)
4808 {
4809 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4810 }
4811 
4812 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4813 {
4814 	int err;
4815 	struct inode_security_struct *isec;
4816 	struct inode_security_struct *newisec;
4817 	u16 sclass;
4818 	u32 sid;
4819 
4820 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4821 	if (err)
4822 		return err;
4823 
4824 	isec = inode_security_novalidate(SOCK_INODE(sock));
4825 	spin_lock(&isec->lock);
4826 	sclass = isec->sclass;
4827 	sid = isec->sid;
4828 	spin_unlock(&isec->lock);
4829 
4830 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4831 	newisec->sclass = sclass;
4832 	newisec->sid = sid;
4833 	newisec->initialized = LABEL_INITIALIZED;
4834 
4835 	return 0;
4836 }
4837 
4838 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4839 				  int size)
4840 {
4841 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4842 }
4843 
4844 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4845 				  int size, int flags)
4846 {
4847 	return sock_has_perm(sock->sk, SOCKET__READ);
4848 }
4849 
4850 static int selinux_socket_getsockname(struct socket *sock)
4851 {
4852 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4853 }
4854 
4855 static int selinux_socket_getpeername(struct socket *sock)
4856 {
4857 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4858 }
4859 
4860 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4861 {
4862 	int err;
4863 
4864 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4865 	if (err)
4866 		return err;
4867 
4868 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4869 }
4870 
4871 static int selinux_socket_getsockopt(struct socket *sock, int level,
4872 				     int optname)
4873 {
4874 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4875 }
4876 
4877 static int selinux_socket_shutdown(struct socket *sock, int how)
4878 {
4879 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4880 }
4881 
4882 static int selinux_socket_unix_stream_connect(struct sock *sock,
4883 					      struct sock *other,
4884 					      struct sock *newsk)
4885 {
4886 	struct sk_security_struct *sksec_sock = sock->sk_security;
4887 	struct sk_security_struct *sksec_other = other->sk_security;
4888 	struct sk_security_struct *sksec_new = newsk->sk_security;
4889 	struct common_audit_data ad;
4890 	struct lsm_network_audit net = {0,};
4891 	int err;
4892 
4893 	ad.type = LSM_AUDIT_DATA_NET;
4894 	ad.u.net = &net;
4895 	ad.u.net->sk = other;
4896 
4897 	err = avc_has_perm(&selinux_state,
4898 			   sksec_sock->sid, sksec_other->sid,
4899 			   sksec_other->sclass,
4900 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4901 	if (err)
4902 		return err;
4903 
4904 	/* server child socket */
4905 	sksec_new->peer_sid = sksec_sock->sid;
4906 	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4907 				    sksec_sock->sid, &sksec_new->sid);
4908 	if (err)
4909 		return err;
4910 
4911 	/* connecting socket */
4912 	sksec_sock->peer_sid = sksec_new->sid;
4913 
4914 	return 0;
4915 }
4916 
4917 static int selinux_socket_unix_may_send(struct socket *sock,
4918 					struct socket *other)
4919 {
4920 	struct sk_security_struct *ssec = sock->sk->sk_security;
4921 	struct sk_security_struct *osec = other->sk->sk_security;
4922 	struct common_audit_data ad;
4923 	struct lsm_network_audit net = {0,};
4924 
4925 	ad.type = LSM_AUDIT_DATA_NET;
4926 	ad.u.net = &net;
4927 	ad.u.net->sk = other->sk;
4928 
4929 	return avc_has_perm(&selinux_state,
4930 			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4931 			    &ad);
4932 }
4933 
4934 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4935 				    char *addrp, u16 family, u32 peer_sid,
4936 				    struct common_audit_data *ad)
4937 {
4938 	int err;
4939 	u32 if_sid;
4940 	u32 node_sid;
4941 
4942 	err = sel_netif_sid(ns, ifindex, &if_sid);
4943 	if (err)
4944 		return err;
4945 	err = avc_has_perm(&selinux_state,
4946 			   peer_sid, if_sid,
4947 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4948 	if (err)
4949 		return err;
4950 
4951 	err = sel_netnode_sid(addrp, family, &node_sid);
4952 	if (err)
4953 		return err;
4954 	return avc_has_perm(&selinux_state,
4955 			    peer_sid, node_sid,
4956 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4957 }
4958 
4959 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4960 				       u16 family)
4961 {
4962 	int err = 0;
4963 	struct sk_security_struct *sksec = sk->sk_security;
4964 	u32 sk_sid = sksec->sid;
4965 	struct common_audit_data ad;
4966 	struct lsm_network_audit net = {0,};
4967 	char *addrp;
4968 
4969 	ad.type = LSM_AUDIT_DATA_NET;
4970 	ad.u.net = &net;
4971 	ad.u.net->netif = skb->skb_iif;
4972 	ad.u.net->family = family;
4973 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4974 	if (err)
4975 		return err;
4976 
4977 	if (selinux_secmark_enabled()) {
4978 		err = avc_has_perm(&selinux_state,
4979 				   sk_sid, skb->secmark, SECCLASS_PACKET,
4980 				   PACKET__RECV, &ad);
4981 		if (err)
4982 			return err;
4983 	}
4984 
4985 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4986 	if (err)
4987 		return err;
4988 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4989 
4990 	return err;
4991 }
4992 
4993 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4994 {
4995 	int err;
4996 	struct sk_security_struct *sksec = sk->sk_security;
4997 	u16 family = sk->sk_family;
4998 	u32 sk_sid = sksec->sid;
4999 	struct common_audit_data ad;
5000 	struct lsm_network_audit net = {0,};
5001 	char *addrp;
5002 	u8 secmark_active;
5003 	u8 peerlbl_active;
5004 
5005 	if (family != PF_INET && family != PF_INET6)
5006 		return 0;
5007 
5008 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5009 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5010 		family = PF_INET;
5011 
5012 	/* If any sort of compatibility mode is enabled then handoff processing
5013 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5014 	 * special handling.  We do this in an attempt to keep this function
5015 	 * as fast and as clean as possible. */
5016 	if (!selinux_policycap_netpeer())
5017 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5018 
5019 	secmark_active = selinux_secmark_enabled();
5020 	peerlbl_active = selinux_peerlbl_enabled();
5021 	if (!secmark_active && !peerlbl_active)
5022 		return 0;
5023 
5024 	ad.type = LSM_AUDIT_DATA_NET;
5025 	ad.u.net = &net;
5026 	ad.u.net->netif = skb->skb_iif;
5027 	ad.u.net->family = family;
5028 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5029 	if (err)
5030 		return err;
5031 
5032 	if (peerlbl_active) {
5033 		u32 peer_sid;
5034 
5035 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5036 		if (err)
5037 			return err;
5038 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5039 					       addrp, family, peer_sid, &ad);
5040 		if (err) {
5041 			selinux_netlbl_err(skb, family, err, 0);
5042 			return err;
5043 		}
5044 		err = avc_has_perm(&selinux_state,
5045 				   sk_sid, peer_sid, SECCLASS_PEER,
5046 				   PEER__RECV, &ad);
5047 		if (err) {
5048 			selinux_netlbl_err(skb, family, err, 0);
5049 			return err;
5050 		}
5051 	}
5052 
5053 	if (secmark_active) {
5054 		err = avc_has_perm(&selinux_state,
5055 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5056 				   PACKET__RECV, &ad);
5057 		if (err)
5058 			return err;
5059 	}
5060 
5061 	return err;
5062 }
5063 
5064 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5065 					    int __user *optlen, unsigned len)
5066 {
5067 	int err = 0;
5068 	char *scontext;
5069 	u32 scontext_len;
5070 	struct sk_security_struct *sksec = sock->sk->sk_security;
5071 	u32 peer_sid = SECSID_NULL;
5072 
5073 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5074 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5075 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5076 		peer_sid = sksec->peer_sid;
5077 	if (peer_sid == SECSID_NULL)
5078 		return -ENOPROTOOPT;
5079 
5080 	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5081 				      &scontext_len);
5082 	if (err)
5083 		return err;
5084 
5085 	if (scontext_len > len) {
5086 		err = -ERANGE;
5087 		goto out_len;
5088 	}
5089 
5090 	if (copy_to_user(optval, scontext, scontext_len))
5091 		err = -EFAULT;
5092 
5093 out_len:
5094 	if (put_user(scontext_len, optlen))
5095 		err = -EFAULT;
5096 	kfree(scontext);
5097 	return err;
5098 }
5099 
5100 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5101 {
5102 	u32 peer_secid = SECSID_NULL;
5103 	u16 family;
5104 	struct inode_security_struct *isec;
5105 
5106 	if (skb && skb->protocol == htons(ETH_P_IP))
5107 		family = PF_INET;
5108 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5109 		family = PF_INET6;
5110 	else if (sock)
5111 		family = sock->sk->sk_family;
5112 	else
5113 		goto out;
5114 
5115 	if (sock && family == PF_UNIX) {
5116 		isec = inode_security_novalidate(SOCK_INODE(sock));
5117 		peer_secid = isec->sid;
5118 	} else if (skb)
5119 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5120 
5121 out:
5122 	*secid = peer_secid;
5123 	if (peer_secid == SECSID_NULL)
5124 		return -EINVAL;
5125 	return 0;
5126 }
5127 
5128 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5129 {
5130 	struct sk_security_struct *sksec;
5131 
5132 	sksec = kzalloc(sizeof(*sksec), priority);
5133 	if (!sksec)
5134 		return -ENOMEM;
5135 
5136 	sksec->peer_sid = SECINITSID_UNLABELED;
5137 	sksec->sid = SECINITSID_UNLABELED;
5138 	sksec->sclass = SECCLASS_SOCKET;
5139 	selinux_netlbl_sk_security_reset(sksec);
5140 	sk->sk_security = sksec;
5141 
5142 	return 0;
5143 }
5144 
5145 static void selinux_sk_free_security(struct sock *sk)
5146 {
5147 	struct sk_security_struct *sksec = sk->sk_security;
5148 
5149 	sk->sk_security = NULL;
5150 	selinux_netlbl_sk_security_free(sksec);
5151 	kfree(sksec);
5152 }
5153 
5154 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5155 {
5156 	struct sk_security_struct *sksec = sk->sk_security;
5157 	struct sk_security_struct *newsksec = newsk->sk_security;
5158 
5159 	newsksec->sid = sksec->sid;
5160 	newsksec->peer_sid = sksec->peer_sid;
5161 	newsksec->sclass = sksec->sclass;
5162 
5163 	selinux_netlbl_sk_security_reset(newsksec);
5164 }
5165 
5166 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5167 {
5168 	if (!sk)
5169 		*secid = SECINITSID_ANY_SOCKET;
5170 	else {
5171 		struct sk_security_struct *sksec = sk->sk_security;
5172 
5173 		*secid = sksec->sid;
5174 	}
5175 }
5176 
5177 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5178 {
5179 	struct inode_security_struct *isec =
5180 		inode_security_novalidate(SOCK_INODE(parent));
5181 	struct sk_security_struct *sksec = sk->sk_security;
5182 
5183 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5184 	    sk->sk_family == PF_UNIX)
5185 		isec->sid = sksec->sid;
5186 	sksec->sclass = isec->sclass;
5187 }
5188 
5189 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5190  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5191  * already present).
5192  */
5193 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5194 				      struct sk_buff *skb)
5195 {
5196 	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5197 	struct common_audit_data ad;
5198 	struct lsm_network_audit net = {0,};
5199 	u8 peerlbl_active;
5200 	u32 peer_sid = SECINITSID_UNLABELED;
5201 	u32 conn_sid;
5202 	int err = 0;
5203 
5204 	if (!selinux_policycap_extsockclass())
5205 		return 0;
5206 
5207 	peerlbl_active = selinux_peerlbl_enabled();
5208 
5209 	if (peerlbl_active) {
5210 		/* This will return peer_sid = SECSID_NULL if there are
5211 		 * no peer labels, see security_net_peersid_resolve().
5212 		 */
5213 		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5214 					      &peer_sid);
5215 		if (err)
5216 			return err;
5217 
5218 		if (peer_sid == SECSID_NULL)
5219 			peer_sid = SECINITSID_UNLABELED;
5220 	}
5221 
5222 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5223 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5224 
5225 		/* Here as first association on socket. As the peer SID
5226 		 * was allowed by peer recv (and the netif/node checks),
5227 		 * then it is approved by policy and used as the primary
5228 		 * peer SID for getpeercon(3).
5229 		 */
5230 		sksec->peer_sid = peer_sid;
5231 	} else if  (sksec->peer_sid != peer_sid) {
5232 		/* Other association peer SIDs are checked to enforce
5233 		 * consistency among the peer SIDs.
5234 		 */
5235 		ad.type = LSM_AUDIT_DATA_NET;
5236 		ad.u.net = &net;
5237 		ad.u.net->sk = ep->base.sk;
5238 		err = avc_has_perm(&selinux_state,
5239 				   sksec->peer_sid, peer_sid, sksec->sclass,
5240 				   SCTP_SOCKET__ASSOCIATION, &ad);
5241 		if (err)
5242 			return err;
5243 	}
5244 
5245 	/* Compute the MLS component for the connection and store
5246 	 * the information in ep. This will be used by SCTP TCP type
5247 	 * sockets and peeled off connections as they cause a new
5248 	 * socket to be generated. selinux_sctp_sk_clone() will then
5249 	 * plug this into the new socket.
5250 	 */
5251 	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5252 	if (err)
5253 		return err;
5254 
5255 	ep->secid = conn_sid;
5256 	ep->peer_secid = peer_sid;
5257 
5258 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5259 	return selinux_netlbl_sctp_assoc_request(ep, skb);
5260 }
5261 
5262 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5263  * based on their @optname.
5264  */
5265 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5266 				     struct sockaddr *address,
5267 				     int addrlen)
5268 {
5269 	int len, err = 0, walk_size = 0;
5270 	void *addr_buf;
5271 	struct sockaddr *addr;
5272 	struct socket *sock;
5273 
5274 	if (!selinux_policycap_extsockclass())
5275 		return 0;
5276 
5277 	/* Process one or more addresses that may be IPv4 or IPv6 */
5278 	sock = sk->sk_socket;
5279 	addr_buf = address;
5280 
5281 	while (walk_size < addrlen) {
5282 		if (walk_size + sizeof(sa_family_t) > addrlen)
5283 			return -EINVAL;
5284 
5285 		addr = addr_buf;
5286 		switch (addr->sa_family) {
5287 		case AF_UNSPEC:
5288 		case AF_INET:
5289 			len = sizeof(struct sockaddr_in);
5290 			break;
5291 		case AF_INET6:
5292 			len = sizeof(struct sockaddr_in6);
5293 			break;
5294 		default:
5295 			return -EINVAL;
5296 		}
5297 
5298 		if (walk_size + len > addrlen)
5299 			return -EINVAL;
5300 
5301 		err = -EINVAL;
5302 		switch (optname) {
5303 		/* Bind checks */
5304 		case SCTP_PRIMARY_ADDR:
5305 		case SCTP_SET_PEER_PRIMARY_ADDR:
5306 		case SCTP_SOCKOPT_BINDX_ADD:
5307 			err = selinux_socket_bind(sock, addr, len);
5308 			break;
5309 		/* Connect checks */
5310 		case SCTP_SOCKOPT_CONNECTX:
5311 		case SCTP_PARAM_SET_PRIMARY:
5312 		case SCTP_PARAM_ADD_IP:
5313 		case SCTP_SENDMSG_CONNECT:
5314 			err = selinux_socket_connect_helper(sock, addr, len);
5315 			if (err)
5316 				return err;
5317 
5318 			/* As selinux_sctp_bind_connect() is called by the
5319 			 * SCTP protocol layer, the socket is already locked,
5320 			 * therefore selinux_netlbl_socket_connect_locked()
5321 			 * is called here. The situations handled are:
5322 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5323 			 * whenever a new IP address is added or when a new
5324 			 * primary address is selected.
5325 			 * Note that an SCTP connect(2) call happens before
5326 			 * the SCTP protocol layer and is handled via
5327 			 * selinux_socket_connect().
5328 			 */
5329 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5330 			break;
5331 		}
5332 
5333 		if (err)
5334 			return err;
5335 
5336 		addr_buf += len;
5337 		walk_size += len;
5338 	}
5339 
5340 	return 0;
5341 }
5342 
5343 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5344 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5345 				  struct sock *newsk)
5346 {
5347 	struct sk_security_struct *sksec = sk->sk_security;
5348 	struct sk_security_struct *newsksec = newsk->sk_security;
5349 
5350 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5351 	 * the non-sctp clone version.
5352 	 */
5353 	if (!selinux_policycap_extsockclass())
5354 		return selinux_sk_clone_security(sk, newsk);
5355 
5356 	newsksec->sid = ep->secid;
5357 	newsksec->peer_sid = ep->peer_secid;
5358 	newsksec->sclass = sksec->sclass;
5359 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5360 }
5361 
5362 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5363 				     struct request_sock *req)
5364 {
5365 	struct sk_security_struct *sksec = sk->sk_security;
5366 	int err;
5367 	u16 family = req->rsk_ops->family;
5368 	u32 connsid;
5369 	u32 peersid;
5370 
5371 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5372 	if (err)
5373 		return err;
5374 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5375 	if (err)
5376 		return err;
5377 	req->secid = connsid;
5378 	req->peer_secid = peersid;
5379 
5380 	return selinux_netlbl_inet_conn_request(req, family);
5381 }
5382 
5383 static void selinux_inet_csk_clone(struct sock *newsk,
5384 				   const struct request_sock *req)
5385 {
5386 	struct sk_security_struct *newsksec = newsk->sk_security;
5387 
5388 	newsksec->sid = req->secid;
5389 	newsksec->peer_sid = req->peer_secid;
5390 	/* NOTE: Ideally, we should also get the isec->sid for the
5391 	   new socket in sync, but we don't have the isec available yet.
5392 	   So we will wait until sock_graft to do it, by which
5393 	   time it will have been created and available. */
5394 
5395 	/* We don't need to take any sort of lock here as we are the only
5396 	 * thread with access to newsksec */
5397 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5398 }
5399 
5400 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5401 {
5402 	u16 family = sk->sk_family;
5403 	struct sk_security_struct *sksec = sk->sk_security;
5404 
5405 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5406 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5407 		family = PF_INET;
5408 
5409 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5410 }
5411 
5412 static int selinux_secmark_relabel_packet(u32 sid)
5413 {
5414 	const struct task_security_struct *__tsec;
5415 	u32 tsid;
5416 
5417 	__tsec = selinux_cred(current_cred());
5418 	tsid = __tsec->sid;
5419 
5420 	return avc_has_perm(&selinux_state,
5421 			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5422 			    NULL);
5423 }
5424 
5425 static void selinux_secmark_refcount_inc(void)
5426 {
5427 	atomic_inc(&selinux_secmark_refcount);
5428 }
5429 
5430 static void selinux_secmark_refcount_dec(void)
5431 {
5432 	atomic_dec(&selinux_secmark_refcount);
5433 }
5434 
5435 static void selinux_req_classify_flow(const struct request_sock *req,
5436 				      struct flowi *fl)
5437 {
5438 	fl->flowi_secid = req->secid;
5439 }
5440 
5441 static int selinux_tun_dev_alloc_security(void **security)
5442 {
5443 	struct tun_security_struct *tunsec;
5444 
5445 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5446 	if (!tunsec)
5447 		return -ENOMEM;
5448 	tunsec->sid = current_sid();
5449 
5450 	*security = tunsec;
5451 	return 0;
5452 }
5453 
5454 static void selinux_tun_dev_free_security(void *security)
5455 {
5456 	kfree(security);
5457 }
5458 
5459 static int selinux_tun_dev_create(void)
5460 {
5461 	u32 sid = current_sid();
5462 
5463 	/* we aren't taking into account the "sockcreate" SID since the socket
5464 	 * that is being created here is not a socket in the traditional sense,
5465 	 * instead it is a private sock, accessible only to the kernel, and
5466 	 * representing a wide range of network traffic spanning multiple
5467 	 * connections unlike traditional sockets - check the TUN driver to
5468 	 * get a better understanding of why this socket is special */
5469 
5470 	return avc_has_perm(&selinux_state,
5471 			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5472 			    NULL);
5473 }
5474 
5475 static int selinux_tun_dev_attach_queue(void *security)
5476 {
5477 	struct tun_security_struct *tunsec = security;
5478 
5479 	return avc_has_perm(&selinux_state,
5480 			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5481 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5482 }
5483 
5484 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5485 {
5486 	struct tun_security_struct *tunsec = security;
5487 	struct sk_security_struct *sksec = sk->sk_security;
5488 
5489 	/* we don't currently perform any NetLabel based labeling here and it
5490 	 * isn't clear that we would want to do so anyway; while we could apply
5491 	 * labeling without the support of the TUN user the resulting labeled
5492 	 * traffic from the other end of the connection would almost certainly
5493 	 * cause confusion to the TUN user that had no idea network labeling
5494 	 * protocols were being used */
5495 
5496 	sksec->sid = tunsec->sid;
5497 	sksec->sclass = SECCLASS_TUN_SOCKET;
5498 
5499 	return 0;
5500 }
5501 
5502 static int selinux_tun_dev_open(void *security)
5503 {
5504 	struct tun_security_struct *tunsec = security;
5505 	u32 sid = current_sid();
5506 	int err;
5507 
5508 	err = avc_has_perm(&selinux_state,
5509 			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5510 			   TUN_SOCKET__RELABELFROM, NULL);
5511 	if (err)
5512 		return err;
5513 	err = avc_has_perm(&selinux_state,
5514 			   sid, sid, SECCLASS_TUN_SOCKET,
5515 			   TUN_SOCKET__RELABELTO, NULL);
5516 	if (err)
5517 		return err;
5518 	tunsec->sid = sid;
5519 
5520 	return 0;
5521 }
5522 
5523 #ifdef CONFIG_NETFILTER
5524 
5525 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5526 				       const struct net_device *indev,
5527 				       u16 family)
5528 {
5529 	int err;
5530 	char *addrp;
5531 	u32 peer_sid;
5532 	struct common_audit_data ad;
5533 	struct lsm_network_audit net = {0,};
5534 	u8 secmark_active;
5535 	u8 netlbl_active;
5536 	u8 peerlbl_active;
5537 
5538 	if (!selinux_policycap_netpeer())
5539 		return NF_ACCEPT;
5540 
5541 	secmark_active = selinux_secmark_enabled();
5542 	netlbl_active = netlbl_enabled();
5543 	peerlbl_active = selinux_peerlbl_enabled();
5544 	if (!secmark_active && !peerlbl_active)
5545 		return NF_ACCEPT;
5546 
5547 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5548 		return NF_DROP;
5549 
5550 	ad.type = LSM_AUDIT_DATA_NET;
5551 	ad.u.net = &net;
5552 	ad.u.net->netif = indev->ifindex;
5553 	ad.u.net->family = family;
5554 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5555 		return NF_DROP;
5556 
5557 	if (peerlbl_active) {
5558 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5559 					       addrp, family, peer_sid, &ad);
5560 		if (err) {
5561 			selinux_netlbl_err(skb, family, err, 1);
5562 			return NF_DROP;
5563 		}
5564 	}
5565 
5566 	if (secmark_active)
5567 		if (avc_has_perm(&selinux_state,
5568 				 peer_sid, skb->secmark,
5569 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5570 			return NF_DROP;
5571 
5572 	if (netlbl_active)
5573 		/* we do this in the FORWARD path and not the POST_ROUTING
5574 		 * path because we want to make sure we apply the necessary
5575 		 * labeling before IPsec is applied so we can leverage AH
5576 		 * protection */
5577 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5578 			return NF_DROP;
5579 
5580 	return NF_ACCEPT;
5581 }
5582 
5583 static unsigned int selinux_ipv4_forward(void *priv,
5584 					 struct sk_buff *skb,
5585 					 const struct nf_hook_state *state)
5586 {
5587 	return selinux_ip_forward(skb, state->in, PF_INET);
5588 }
5589 
5590 #if IS_ENABLED(CONFIG_IPV6)
5591 static unsigned int selinux_ipv6_forward(void *priv,
5592 					 struct sk_buff *skb,
5593 					 const struct nf_hook_state *state)
5594 {
5595 	return selinux_ip_forward(skb, state->in, PF_INET6);
5596 }
5597 #endif	/* IPV6 */
5598 
5599 static unsigned int selinux_ip_output(struct sk_buff *skb,
5600 				      u16 family)
5601 {
5602 	struct sock *sk;
5603 	u32 sid;
5604 
5605 	if (!netlbl_enabled())
5606 		return NF_ACCEPT;
5607 
5608 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5609 	 * because we want to make sure we apply the necessary labeling
5610 	 * before IPsec is applied so we can leverage AH protection */
5611 	sk = skb->sk;
5612 	if (sk) {
5613 		struct sk_security_struct *sksec;
5614 
5615 		if (sk_listener(sk))
5616 			/* if the socket is the listening state then this
5617 			 * packet is a SYN-ACK packet which means it needs to
5618 			 * be labeled based on the connection/request_sock and
5619 			 * not the parent socket.  unfortunately, we can't
5620 			 * lookup the request_sock yet as it isn't queued on
5621 			 * the parent socket until after the SYN-ACK is sent.
5622 			 * the "solution" is to simply pass the packet as-is
5623 			 * as any IP option based labeling should be copied
5624 			 * from the initial connection request (in the IP
5625 			 * layer).  it is far from ideal, but until we get a
5626 			 * security label in the packet itself this is the
5627 			 * best we can do. */
5628 			return NF_ACCEPT;
5629 
5630 		/* standard practice, label using the parent socket */
5631 		sksec = sk->sk_security;
5632 		sid = sksec->sid;
5633 	} else
5634 		sid = SECINITSID_KERNEL;
5635 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5636 		return NF_DROP;
5637 
5638 	return NF_ACCEPT;
5639 }
5640 
5641 static unsigned int selinux_ipv4_output(void *priv,
5642 					struct sk_buff *skb,
5643 					const struct nf_hook_state *state)
5644 {
5645 	return selinux_ip_output(skb, PF_INET);
5646 }
5647 
5648 #if IS_ENABLED(CONFIG_IPV6)
5649 static unsigned int selinux_ipv6_output(void *priv,
5650 					struct sk_buff *skb,
5651 					const struct nf_hook_state *state)
5652 {
5653 	return selinux_ip_output(skb, PF_INET6);
5654 }
5655 #endif	/* IPV6 */
5656 
5657 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5658 						int ifindex,
5659 						u16 family)
5660 {
5661 	struct sock *sk = skb_to_full_sk(skb);
5662 	struct sk_security_struct *sksec;
5663 	struct common_audit_data ad;
5664 	struct lsm_network_audit net = {0,};
5665 	char *addrp;
5666 	u8 proto;
5667 
5668 	if (sk == NULL)
5669 		return NF_ACCEPT;
5670 	sksec = sk->sk_security;
5671 
5672 	ad.type = LSM_AUDIT_DATA_NET;
5673 	ad.u.net = &net;
5674 	ad.u.net->netif = ifindex;
5675 	ad.u.net->family = family;
5676 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5677 		return NF_DROP;
5678 
5679 	if (selinux_secmark_enabled())
5680 		if (avc_has_perm(&selinux_state,
5681 				 sksec->sid, skb->secmark,
5682 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5683 			return NF_DROP_ERR(-ECONNREFUSED);
5684 
5685 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5686 		return NF_DROP_ERR(-ECONNREFUSED);
5687 
5688 	return NF_ACCEPT;
5689 }
5690 
5691 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5692 					 const struct net_device *outdev,
5693 					 u16 family)
5694 {
5695 	u32 secmark_perm;
5696 	u32 peer_sid;
5697 	int ifindex = outdev->ifindex;
5698 	struct sock *sk;
5699 	struct common_audit_data ad;
5700 	struct lsm_network_audit net = {0,};
5701 	char *addrp;
5702 	u8 secmark_active;
5703 	u8 peerlbl_active;
5704 
5705 	/* If any sort of compatibility mode is enabled then handoff processing
5706 	 * to the selinux_ip_postroute_compat() function to deal with the
5707 	 * special handling.  We do this in an attempt to keep this function
5708 	 * as fast and as clean as possible. */
5709 	if (!selinux_policycap_netpeer())
5710 		return selinux_ip_postroute_compat(skb, ifindex, family);
5711 
5712 	secmark_active = selinux_secmark_enabled();
5713 	peerlbl_active = selinux_peerlbl_enabled();
5714 	if (!secmark_active && !peerlbl_active)
5715 		return NF_ACCEPT;
5716 
5717 	sk = skb_to_full_sk(skb);
5718 
5719 #ifdef CONFIG_XFRM
5720 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5721 	 * packet transformation so allow the packet to pass without any checks
5722 	 * since we'll have another chance to perform access control checks
5723 	 * when the packet is on it's final way out.
5724 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5725 	 *       is NULL, in this case go ahead and apply access control.
5726 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5727 	 *       TCP listening state we cannot wait until the XFRM processing
5728 	 *       is done as we will miss out on the SA label if we do;
5729 	 *       unfortunately, this means more work, but it is only once per
5730 	 *       connection. */
5731 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5732 	    !(sk && sk_listener(sk)))
5733 		return NF_ACCEPT;
5734 #endif
5735 
5736 	if (sk == NULL) {
5737 		/* Without an associated socket the packet is either coming
5738 		 * from the kernel or it is being forwarded; check the packet
5739 		 * to determine which and if the packet is being forwarded
5740 		 * query the packet directly to determine the security label. */
5741 		if (skb->skb_iif) {
5742 			secmark_perm = PACKET__FORWARD_OUT;
5743 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5744 				return NF_DROP;
5745 		} else {
5746 			secmark_perm = PACKET__SEND;
5747 			peer_sid = SECINITSID_KERNEL;
5748 		}
5749 	} else if (sk_listener(sk)) {
5750 		/* Locally generated packet but the associated socket is in the
5751 		 * listening state which means this is a SYN-ACK packet.  In
5752 		 * this particular case the correct security label is assigned
5753 		 * to the connection/request_sock but unfortunately we can't
5754 		 * query the request_sock as it isn't queued on the parent
5755 		 * socket until after the SYN-ACK packet is sent; the only
5756 		 * viable choice is to regenerate the label like we do in
5757 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5758 		 * for similar problems. */
5759 		u32 skb_sid;
5760 		struct sk_security_struct *sksec;
5761 
5762 		sksec = sk->sk_security;
5763 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5764 			return NF_DROP;
5765 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5766 		 * and the packet has been through at least one XFRM
5767 		 * transformation then we must be dealing with the "final"
5768 		 * form of labeled IPsec packet; since we've already applied
5769 		 * all of our access controls on this packet we can safely
5770 		 * pass the packet. */
5771 		if (skb_sid == SECSID_NULL) {
5772 			switch (family) {
5773 			case PF_INET:
5774 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5775 					return NF_ACCEPT;
5776 				break;
5777 			case PF_INET6:
5778 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5779 					return NF_ACCEPT;
5780 				break;
5781 			default:
5782 				return NF_DROP_ERR(-ECONNREFUSED);
5783 			}
5784 		}
5785 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5786 			return NF_DROP;
5787 		secmark_perm = PACKET__SEND;
5788 	} else {
5789 		/* Locally generated packet, fetch the security label from the
5790 		 * associated socket. */
5791 		struct sk_security_struct *sksec = sk->sk_security;
5792 		peer_sid = sksec->sid;
5793 		secmark_perm = PACKET__SEND;
5794 	}
5795 
5796 	ad.type = LSM_AUDIT_DATA_NET;
5797 	ad.u.net = &net;
5798 	ad.u.net->netif = ifindex;
5799 	ad.u.net->family = family;
5800 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5801 		return NF_DROP;
5802 
5803 	if (secmark_active)
5804 		if (avc_has_perm(&selinux_state,
5805 				 peer_sid, skb->secmark,
5806 				 SECCLASS_PACKET, secmark_perm, &ad))
5807 			return NF_DROP_ERR(-ECONNREFUSED);
5808 
5809 	if (peerlbl_active) {
5810 		u32 if_sid;
5811 		u32 node_sid;
5812 
5813 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5814 			return NF_DROP;
5815 		if (avc_has_perm(&selinux_state,
5816 				 peer_sid, if_sid,
5817 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5818 			return NF_DROP_ERR(-ECONNREFUSED);
5819 
5820 		if (sel_netnode_sid(addrp, family, &node_sid))
5821 			return NF_DROP;
5822 		if (avc_has_perm(&selinux_state,
5823 				 peer_sid, node_sid,
5824 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5825 			return NF_DROP_ERR(-ECONNREFUSED);
5826 	}
5827 
5828 	return NF_ACCEPT;
5829 }
5830 
5831 static unsigned int selinux_ipv4_postroute(void *priv,
5832 					   struct sk_buff *skb,
5833 					   const struct nf_hook_state *state)
5834 {
5835 	return selinux_ip_postroute(skb, state->out, PF_INET);
5836 }
5837 
5838 #if IS_ENABLED(CONFIG_IPV6)
5839 static unsigned int selinux_ipv6_postroute(void *priv,
5840 					   struct sk_buff *skb,
5841 					   const struct nf_hook_state *state)
5842 {
5843 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5844 }
5845 #endif	/* IPV6 */
5846 
5847 #endif	/* CONFIG_NETFILTER */
5848 
5849 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5850 {
5851 	int rc = 0;
5852 	unsigned int msg_len;
5853 	unsigned int data_len = skb->len;
5854 	unsigned char *data = skb->data;
5855 	struct nlmsghdr *nlh;
5856 	struct sk_security_struct *sksec = sk->sk_security;
5857 	u16 sclass = sksec->sclass;
5858 	u32 perm;
5859 
5860 	while (data_len >= nlmsg_total_size(0)) {
5861 		nlh = (struct nlmsghdr *)data;
5862 
5863 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5864 		 *       users which means we can't reject skb's with bogus
5865 		 *       length fields; our solution is to follow what
5866 		 *       netlink_rcv_skb() does and simply skip processing at
5867 		 *       messages with length fields that are clearly junk
5868 		 */
5869 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5870 			return 0;
5871 
5872 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5873 		if (rc == 0) {
5874 			rc = sock_has_perm(sk, perm);
5875 			if (rc)
5876 				return rc;
5877 		} else if (rc == -EINVAL) {
5878 			/* -EINVAL is a missing msg/perm mapping */
5879 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5880 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5881 				" pid=%d comm=%s\n",
5882 				sk->sk_protocol, nlh->nlmsg_type,
5883 				secclass_map[sclass - 1].name,
5884 				task_pid_nr(current), current->comm);
5885 			if (enforcing_enabled(&selinux_state) &&
5886 			    !security_get_allow_unknown(&selinux_state))
5887 				return rc;
5888 			rc = 0;
5889 		} else if (rc == -ENOENT) {
5890 			/* -ENOENT is a missing socket/class mapping, ignore */
5891 			rc = 0;
5892 		} else {
5893 			return rc;
5894 		}
5895 
5896 		/* move to the next message after applying netlink padding */
5897 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5898 		if (msg_len >= data_len)
5899 			return 0;
5900 		data_len -= msg_len;
5901 		data += msg_len;
5902 	}
5903 
5904 	return rc;
5905 }
5906 
5907 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5908 {
5909 	isec->sclass = sclass;
5910 	isec->sid = current_sid();
5911 }
5912 
5913 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5914 			u32 perms)
5915 {
5916 	struct ipc_security_struct *isec;
5917 	struct common_audit_data ad;
5918 	u32 sid = current_sid();
5919 
5920 	isec = selinux_ipc(ipc_perms);
5921 
5922 	ad.type = LSM_AUDIT_DATA_IPC;
5923 	ad.u.ipc_id = ipc_perms->key;
5924 
5925 	return avc_has_perm(&selinux_state,
5926 			    sid, isec->sid, isec->sclass, perms, &ad);
5927 }
5928 
5929 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5930 {
5931 	struct msg_security_struct *msec;
5932 
5933 	msec = selinux_msg_msg(msg);
5934 	msec->sid = SECINITSID_UNLABELED;
5935 
5936 	return 0;
5937 }
5938 
5939 /* message queue security operations */
5940 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5941 {
5942 	struct ipc_security_struct *isec;
5943 	struct common_audit_data ad;
5944 	u32 sid = current_sid();
5945 	int rc;
5946 
5947 	isec = selinux_ipc(msq);
5948 	ipc_init_security(isec, SECCLASS_MSGQ);
5949 
5950 	ad.type = LSM_AUDIT_DATA_IPC;
5951 	ad.u.ipc_id = msq->key;
5952 
5953 	rc = avc_has_perm(&selinux_state,
5954 			  sid, isec->sid, SECCLASS_MSGQ,
5955 			  MSGQ__CREATE, &ad);
5956 	return rc;
5957 }
5958 
5959 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5960 {
5961 	struct ipc_security_struct *isec;
5962 	struct common_audit_data ad;
5963 	u32 sid = current_sid();
5964 
5965 	isec = selinux_ipc(msq);
5966 
5967 	ad.type = LSM_AUDIT_DATA_IPC;
5968 	ad.u.ipc_id = msq->key;
5969 
5970 	return avc_has_perm(&selinux_state,
5971 			    sid, isec->sid, SECCLASS_MSGQ,
5972 			    MSGQ__ASSOCIATE, &ad);
5973 }
5974 
5975 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5976 {
5977 	int err;
5978 	int perms;
5979 
5980 	switch (cmd) {
5981 	case IPC_INFO:
5982 	case MSG_INFO:
5983 		/* No specific object, just general system-wide information. */
5984 		return avc_has_perm(&selinux_state,
5985 				    current_sid(), SECINITSID_KERNEL,
5986 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5987 	case IPC_STAT:
5988 	case MSG_STAT:
5989 	case MSG_STAT_ANY:
5990 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5991 		break;
5992 	case IPC_SET:
5993 		perms = MSGQ__SETATTR;
5994 		break;
5995 	case IPC_RMID:
5996 		perms = MSGQ__DESTROY;
5997 		break;
5998 	default:
5999 		return 0;
6000 	}
6001 
6002 	err = ipc_has_perm(msq, perms);
6003 	return err;
6004 }
6005 
6006 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6007 {
6008 	struct ipc_security_struct *isec;
6009 	struct msg_security_struct *msec;
6010 	struct common_audit_data ad;
6011 	u32 sid = current_sid();
6012 	int rc;
6013 
6014 	isec = selinux_ipc(msq);
6015 	msec = selinux_msg_msg(msg);
6016 
6017 	/*
6018 	 * First time through, need to assign label to the message
6019 	 */
6020 	if (msec->sid == SECINITSID_UNLABELED) {
6021 		/*
6022 		 * Compute new sid based on current process and
6023 		 * message queue this message will be stored in
6024 		 */
6025 		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6026 					     SECCLASS_MSG, NULL, &msec->sid);
6027 		if (rc)
6028 			return rc;
6029 	}
6030 
6031 	ad.type = LSM_AUDIT_DATA_IPC;
6032 	ad.u.ipc_id = msq->key;
6033 
6034 	/* Can this process write to the queue? */
6035 	rc = avc_has_perm(&selinux_state,
6036 			  sid, isec->sid, SECCLASS_MSGQ,
6037 			  MSGQ__WRITE, &ad);
6038 	if (!rc)
6039 		/* Can this process send the message */
6040 		rc = avc_has_perm(&selinux_state,
6041 				  sid, msec->sid, SECCLASS_MSG,
6042 				  MSG__SEND, &ad);
6043 	if (!rc)
6044 		/* Can the message be put in the queue? */
6045 		rc = avc_has_perm(&selinux_state,
6046 				  msec->sid, isec->sid, SECCLASS_MSGQ,
6047 				  MSGQ__ENQUEUE, &ad);
6048 
6049 	return rc;
6050 }
6051 
6052 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6053 				    struct task_struct *target,
6054 				    long type, int mode)
6055 {
6056 	struct ipc_security_struct *isec;
6057 	struct msg_security_struct *msec;
6058 	struct common_audit_data ad;
6059 	u32 sid = task_sid(target);
6060 	int rc;
6061 
6062 	isec = selinux_ipc(msq);
6063 	msec = selinux_msg_msg(msg);
6064 
6065 	ad.type = LSM_AUDIT_DATA_IPC;
6066 	ad.u.ipc_id = msq->key;
6067 
6068 	rc = avc_has_perm(&selinux_state,
6069 			  sid, isec->sid,
6070 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6071 	if (!rc)
6072 		rc = avc_has_perm(&selinux_state,
6073 				  sid, msec->sid,
6074 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6075 	return rc;
6076 }
6077 
6078 /* Shared Memory security operations */
6079 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6080 {
6081 	struct ipc_security_struct *isec;
6082 	struct common_audit_data ad;
6083 	u32 sid = current_sid();
6084 	int rc;
6085 
6086 	isec = selinux_ipc(shp);
6087 	ipc_init_security(isec, SECCLASS_SHM);
6088 
6089 	ad.type = LSM_AUDIT_DATA_IPC;
6090 	ad.u.ipc_id = shp->key;
6091 
6092 	rc = avc_has_perm(&selinux_state,
6093 			  sid, isec->sid, SECCLASS_SHM,
6094 			  SHM__CREATE, &ad);
6095 	return rc;
6096 }
6097 
6098 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6099 {
6100 	struct ipc_security_struct *isec;
6101 	struct common_audit_data ad;
6102 	u32 sid = current_sid();
6103 
6104 	isec = selinux_ipc(shp);
6105 
6106 	ad.type = LSM_AUDIT_DATA_IPC;
6107 	ad.u.ipc_id = shp->key;
6108 
6109 	return avc_has_perm(&selinux_state,
6110 			    sid, isec->sid, SECCLASS_SHM,
6111 			    SHM__ASSOCIATE, &ad);
6112 }
6113 
6114 /* Note, at this point, shp is locked down */
6115 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6116 {
6117 	int perms;
6118 	int err;
6119 
6120 	switch (cmd) {
6121 	case IPC_INFO:
6122 	case SHM_INFO:
6123 		/* No specific object, just general system-wide information. */
6124 		return avc_has_perm(&selinux_state,
6125 				    current_sid(), SECINITSID_KERNEL,
6126 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6127 	case IPC_STAT:
6128 	case SHM_STAT:
6129 	case SHM_STAT_ANY:
6130 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6131 		break;
6132 	case IPC_SET:
6133 		perms = SHM__SETATTR;
6134 		break;
6135 	case SHM_LOCK:
6136 	case SHM_UNLOCK:
6137 		perms = SHM__LOCK;
6138 		break;
6139 	case IPC_RMID:
6140 		perms = SHM__DESTROY;
6141 		break;
6142 	default:
6143 		return 0;
6144 	}
6145 
6146 	err = ipc_has_perm(shp, perms);
6147 	return err;
6148 }
6149 
6150 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6151 			     char __user *shmaddr, int shmflg)
6152 {
6153 	u32 perms;
6154 
6155 	if (shmflg & SHM_RDONLY)
6156 		perms = SHM__READ;
6157 	else
6158 		perms = SHM__READ | SHM__WRITE;
6159 
6160 	return ipc_has_perm(shp, perms);
6161 }
6162 
6163 /* Semaphore security operations */
6164 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6165 {
6166 	struct ipc_security_struct *isec;
6167 	struct common_audit_data ad;
6168 	u32 sid = current_sid();
6169 	int rc;
6170 
6171 	isec = selinux_ipc(sma);
6172 	ipc_init_security(isec, SECCLASS_SEM);
6173 
6174 	ad.type = LSM_AUDIT_DATA_IPC;
6175 	ad.u.ipc_id = sma->key;
6176 
6177 	rc = avc_has_perm(&selinux_state,
6178 			  sid, isec->sid, SECCLASS_SEM,
6179 			  SEM__CREATE, &ad);
6180 	return rc;
6181 }
6182 
6183 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6184 {
6185 	struct ipc_security_struct *isec;
6186 	struct common_audit_data ad;
6187 	u32 sid = current_sid();
6188 
6189 	isec = selinux_ipc(sma);
6190 
6191 	ad.type = LSM_AUDIT_DATA_IPC;
6192 	ad.u.ipc_id = sma->key;
6193 
6194 	return avc_has_perm(&selinux_state,
6195 			    sid, isec->sid, SECCLASS_SEM,
6196 			    SEM__ASSOCIATE, &ad);
6197 }
6198 
6199 /* Note, at this point, sma is locked down */
6200 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6201 {
6202 	int err;
6203 	u32 perms;
6204 
6205 	switch (cmd) {
6206 	case IPC_INFO:
6207 	case SEM_INFO:
6208 		/* No specific object, just general system-wide information. */
6209 		return avc_has_perm(&selinux_state,
6210 				    current_sid(), SECINITSID_KERNEL,
6211 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6212 	case GETPID:
6213 	case GETNCNT:
6214 	case GETZCNT:
6215 		perms = SEM__GETATTR;
6216 		break;
6217 	case GETVAL:
6218 	case GETALL:
6219 		perms = SEM__READ;
6220 		break;
6221 	case SETVAL:
6222 	case SETALL:
6223 		perms = SEM__WRITE;
6224 		break;
6225 	case IPC_RMID:
6226 		perms = SEM__DESTROY;
6227 		break;
6228 	case IPC_SET:
6229 		perms = SEM__SETATTR;
6230 		break;
6231 	case IPC_STAT:
6232 	case SEM_STAT:
6233 	case SEM_STAT_ANY:
6234 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6235 		break;
6236 	default:
6237 		return 0;
6238 	}
6239 
6240 	err = ipc_has_perm(sma, perms);
6241 	return err;
6242 }
6243 
6244 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6245 			     struct sembuf *sops, unsigned nsops, int alter)
6246 {
6247 	u32 perms;
6248 
6249 	if (alter)
6250 		perms = SEM__READ | SEM__WRITE;
6251 	else
6252 		perms = SEM__READ;
6253 
6254 	return ipc_has_perm(sma, perms);
6255 }
6256 
6257 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6258 {
6259 	u32 av = 0;
6260 
6261 	av = 0;
6262 	if (flag & S_IRUGO)
6263 		av |= IPC__UNIX_READ;
6264 	if (flag & S_IWUGO)
6265 		av |= IPC__UNIX_WRITE;
6266 
6267 	if (av == 0)
6268 		return 0;
6269 
6270 	return ipc_has_perm(ipcp, av);
6271 }
6272 
6273 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6274 {
6275 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6276 	*secid = isec->sid;
6277 }
6278 
6279 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6280 {
6281 	if (inode)
6282 		inode_doinit_with_dentry(inode, dentry);
6283 }
6284 
6285 static int selinux_getprocattr(struct task_struct *p,
6286 			       char *name, char **value)
6287 {
6288 	const struct task_security_struct *__tsec;
6289 	u32 sid;
6290 	int error;
6291 	unsigned len;
6292 
6293 	rcu_read_lock();
6294 	__tsec = selinux_cred(__task_cred(p));
6295 
6296 	if (current != p) {
6297 		error = avc_has_perm(&selinux_state,
6298 				     current_sid(), __tsec->sid,
6299 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6300 		if (error)
6301 			goto bad;
6302 	}
6303 
6304 	if (!strcmp(name, "current"))
6305 		sid = __tsec->sid;
6306 	else if (!strcmp(name, "prev"))
6307 		sid = __tsec->osid;
6308 	else if (!strcmp(name, "exec"))
6309 		sid = __tsec->exec_sid;
6310 	else if (!strcmp(name, "fscreate"))
6311 		sid = __tsec->create_sid;
6312 	else if (!strcmp(name, "keycreate"))
6313 		sid = __tsec->keycreate_sid;
6314 	else if (!strcmp(name, "sockcreate"))
6315 		sid = __tsec->sockcreate_sid;
6316 	else {
6317 		error = -EINVAL;
6318 		goto bad;
6319 	}
6320 	rcu_read_unlock();
6321 
6322 	if (!sid)
6323 		return 0;
6324 
6325 	error = security_sid_to_context(&selinux_state, sid, value, &len);
6326 	if (error)
6327 		return error;
6328 	return len;
6329 
6330 bad:
6331 	rcu_read_unlock();
6332 	return error;
6333 }
6334 
6335 static int selinux_setprocattr(const char *name, void *value, size_t size)
6336 {
6337 	struct task_security_struct *tsec;
6338 	struct cred *new;
6339 	u32 mysid = current_sid(), sid = 0, ptsid;
6340 	int error;
6341 	char *str = value;
6342 
6343 	/*
6344 	 * Basic control over ability to set these attributes at all.
6345 	 */
6346 	if (!strcmp(name, "exec"))
6347 		error = avc_has_perm(&selinux_state,
6348 				     mysid, mysid, SECCLASS_PROCESS,
6349 				     PROCESS__SETEXEC, NULL);
6350 	else if (!strcmp(name, "fscreate"))
6351 		error = avc_has_perm(&selinux_state,
6352 				     mysid, mysid, SECCLASS_PROCESS,
6353 				     PROCESS__SETFSCREATE, NULL);
6354 	else if (!strcmp(name, "keycreate"))
6355 		error = avc_has_perm(&selinux_state,
6356 				     mysid, mysid, SECCLASS_PROCESS,
6357 				     PROCESS__SETKEYCREATE, NULL);
6358 	else if (!strcmp(name, "sockcreate"))
6359 		error = avc_has_perm(&selinux_state,
6360 				     mysid, mysid, SECCLASS_PROCESS,
6361 				     PROCESS__SETSOCKCREATE, NULL);
6362 	else if (!strcmp(name, "current"))
6363 		error = avc_has_perm(&selinux_state,
6364 				     mysid, mysid, SECCLASS_PROCESS,
6365 				     PROCESS__SETCURRENT, NULL);
6366 	else
6367 		error = -EINVAL;
6368 	if (error)
6369 		return error;
6370 
6371 	/* Obtain a SID for the context, if one was specified. */
6372 	if (size && str[0] && str[0] != '\n') {
6373 		if (str[size-1] == '\n') {
6374 			str[size-1] = 0;
6375 			size--;
6376 		}
6377 		error = security_context_to_sid(&selinux_state, value, size,
6378 						&sid, GFP_KERNEL);
6379 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6380 			if (!has_cap_mac_admin(true)) {
6381 				struct audit_buffer *ab;
6382 				size_t audit_size;
6383 
6384 				/* We strip a nul only if it is at the end, otherwise the
6385 				 * context contains a nul and we should audit that */
6386 				if (str[size - 1] == '\0')
6387 					audit_size = size - 1;
6388 				else
6389 					audit_size = size;
6390 				ab = audit_log_start(audit_context(),
6391 						     GFP_ATOMIC,
6392 						     AUDIT_SELINUX_ERR);
6393 				audit_log_format(ab, "op=fscreate invalid_context=");
6394 				audit_log_n_untrustedstring(ab, value, audit_size);
6395 				audit_log_end(ab);
6396 
6397 				return error;
6398 			}
6399 			error = security_context_to_sid_force(
6400 						      &selinux_state,
6401 						      value, size, &sid);
6402 		}
6403 		if (error)
6404 			return error;
6405 	}
6406 
6407 	new = prepare_creds();
6408 	if (!new)
6409 		return -ENOMEM;
6410 
6411 	/* Permission checking based on the specified context is
6412 	   performed during the actual operation (execve,
6413 	   open/mkdir/...), when we know the full context of the
6414 	   operation.  See selinux_bprm_creds_for_exec for the execve
6415 	   checks and may_create for the file creation checks. The
6416 	   operation will then fail if the context is not permitted. */
6417 	tsec = selinux_cred(new);
6418 	if (!strcmp(name, "exec")) {
6419 		tsec->exec_sid = sid;
6420 	} else if (!strcmp(name, "fscreate")) {
6421 		tsec->create_sid = sid;
6422 	} else if (!strcmp(name, "keycreate")) {
6423 		if (sid) {
6424 			error = avc_has_perm(&selinux_state, mysid, sid,
6425 					     SECCLASS_KEY, KEY__CREATE, NULL);
6426 			if (error)
6427 				goto abort_change;
6428 		}
6429 		tsec->keycreate_sid = sid;
6430 	} else if (!strcmp(name, "sockcreate")) {
6431 		tsec->sockcreate_sid = sid;
6432 	} else if (!strcmp(name, "current")) {
6433 		error = -EINVAL;
6434 		if (sid == 0)
6435 			goto abort_change;
6436 
6437 		/* Only allow single threaded processes to change context */
6438 		error = -EPERM;
6439 		if (!current_is_single_threaded()) {
6440 			error = security_bounded_transition(&selinux_state,
6441 							    tsec->sid, sid);
6442 			if (error)
6443 				goto abort_change;
6444 		}
6445 
6446 		/* Check permissions for the transition. */
6447 		error = avc_has_perm(&selinux_state,
6448 				     tsec->sid, sid, SECCLASS_PROCESS,
6449 				     PROCESS__DYNTRANSITION, NULL);
6450 		if (error)
6451 			goto abort_change;
6452 
6453 		/* Check for ptracing, and update the task SID if ok.
6454 		   Otherwise, leave SID unchanged and fail. */
6455 		ptsid = ptrace_parent_sid();
6456 		if (ptsid != 0) {
6457 			error = avc_has_perm(&selinux_state,
6458 					     ptsid, sid, SECCLASS_PROCESS,
6459 					     PROCESS__PTRACE, NULL);
6460 			if (error)
6461 				goto abort_change;
6462 		}
6463 
6464 		tsec->sid = sid;
6465 	} else {
6466 		error = -EINVAL;
6467 		goto abort_change;
6468 	}
6469 
6470 	commit_creds(new);
6471 	return size;
6472 
6473 abort_change:
6474 	abort_creds(new);
6475 	return error;
6476 }
6477 
6478 static int selinux_ismaclabel(const char *name)
6479 {
6480 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6481 }
6482 
6483 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6484 {
6485 	return security_sid_to_context(&selinux_state, secid,
6486 				       secdata, seclen);
6487 }
6488 
6489 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6490 {
6491 	return security_context_to_sid(&selinux_state, secdata, seclen,
6492 				       secid, GFP_KERNEL);
6493 }
6494 
6495 static void selinux_release_secctx(char *secdata, u32 seclen)
6496 {
6497 	kfree(secdata);
6498 }
6499 
6500 static void selinux_inode_invalidate_secctx(struct inode *inode)
6501 {
6502 	struct inode_security_struct *isec = selinux_inode(inode);
6503 
6504 	spin_lock(&isec->lock);
6505 	isec->initialized = LABEL_INVALID;
6506 	spin_unlock(&isec->lock);
6507 }
6508 
6509 /*
6510  *	called with inode->i_mutex locked
6511  */
6512 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6513 {
6514 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6515 					   ctx, ctxlen, 0);
6516 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6517 	return rc == -EOPNOTSUPP ? 0 : rc;
6518 }
6519 
6520 /*
6521  *	called with inode->i_mutex locked
6522  */
6523 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6524 {
6525 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6526 }
6527 
6528 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6529 {
6530 	int len = 0;
6531 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6532 						ctx, true);
6533 	if (len < 0)
6534 		return len;
6535 	*ctxlen = len;
6536 	return 0;
6537 }
6538 #ifdef CONFIG_KEYS
6539 
6540 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6541 			     unsigned long flags)
6542 {
6543 	const struct task_security_struct *tsec;
6544 	struct key_security_struct *ksec;
6545 
6546 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6547 	if (!ksec)
6548 		return -ENOMEM;
6549 
6550 	tsec = selinux_cred(cred);
6551 	if (tsec->keycreate_sid)
6552 		ksec->sid = tsec->keycreate_sid;
6553 	else
6554 		ksec->sid = tsec->sid;
6555 
6556 	k->security = ksec;
6557 	return 0;
6558 }
6559 
6560 static void selinux_key_free(struct key *k)
6561 {
6562 	struct key_security_struct *ksec = k->security;
6563 
6564 	k->security = NULL;
6565 	kfree(ksec);
6566 }
6567 
6568 static int selinux_key_permission(key_ref_t key_ref,
6569 				  const struct cred *cred,
6570 				  enum key_need_perm need_perm)
6571 {
6572 	struct key *key;
6573 	struct key_security_struct *ksec;
6574 	u32 perm, sid;
6575 
6576 	switch (need_perm) {
6577 	case KEY_NEED_VIEW:
6578 		perm = KEY__VIEW;
6579 		break;
6580 	case KEY_NEED_READ:
6581 		perm = KEY__READ;
6582 		break;
6583 	case KEY_NEED_WRITE:
6584 		perm = KEY__WRITE;
6585 		break;
6586 	case KEY_NEED_SEARCH:
6587 		perm = KEY__SEARCH;
6588 		break;
6589 	case KEY_NEED_LINK:
6590 		perm = KEY__LINK;
6591 		break;
6592 	case KEY_NEED_SETATTR:
6593 		perm = KEY__SETATTR;
6594 		break;
6595 	case KEY_NEED_UNLINK:
6596 	case KEY_SYSADMIN_OVERRIDE:
6597 	case KEY_AUTHTOKEN_OVERRIDE:
6598 	case KEY_DEFER_PERM_CHECK:
6599 		return 0;
6600 	default:
6601 		WARN_ON(1);
6602 		return -EPERM;
6603 
6604 	}
6605 
6606 	sid = cred_sid(cred);
6607 	key = key_ref_to_ptr(key_ref);
6608 	ksec = key->security;
6609 
6610 	return avc_has_perm(&selinux_state,
6611 			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6612 }
6613 
6614 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6615 {
6616 	struct key_security_struct *ksec = key->security;
6617 	char *context = NULL;
6618 	unsigned len;
6619 	int rc;
6620 
6621 	rc = security_sid_to_context(&selinux_state, ksec->sid,
6622 				     &context, &len);
6623 	if (!rc)
6624 		rc = len;
6625 	*_buffer = context;
6626 	return rc;
6627 }
6628 
6629 #ifdef CONFIG_KEY_NOTIFICATIONS
6630 static int selinux_watch_key(struct key *key)
6631 {
6632 	struct key_security_struct *ksec = key->security;
6633 	u32 sid = current_sid();
6634 
6635 	return avc_has_perm(&selinux_state,
6636 			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6637 }
6638 #endif
6639 #endif
6640 
6641 #ifdef CONFIG_SECURITY_INFINIBAND
6642 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6643 {
6644 	struct common_audit_data ad;
6645 	int err;
6646 	u32 sid = 0;
6647 	struct ib_security_struct *sec = ib_sec;
6648 	struct lsm_ibpkey_audit ibpkey;
6649 
6650 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6651 	if (err)
6652 		return err;
6653 
6654 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6655 	ibpkey.subnet_prefix = subnet_prefix;
6656 	ibpkey.pkey = pkey_val;
6657 	ad.u.ibpkey = &ibpkey;
6658 	return avc_has_perm(&selinux_state,
6659 			    sec->sid, sid,
6660 			    SECCLASS_INFINIBAND_PKEY,
6661 			    INFINIBAND_PKEY__ACCESS, &ad);
6662 }
6663 
6664 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6665 					    u8 port_num)
6666 {
6667 	struct common_audit_data ad;
6668 	int err;
6669 	u32 sid = 0;
6670 	struct ib_security_struct *sec = ib_sec;
6671 	struct lsm_ibendport_audit ibendport;
6672 
6673 	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6674 				      &sid);
6675 
6676 	if (err)
6677 		return err;
6678 
6679 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6680 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6681 	ibendport.port = port_num;
6682 	ad.u.ibendport = &ibendport;
6683 	return avc_has_perm(&selinux_state,
6684 			    sec->sid, sid,
6685 			    SECCLASS_INFINIBAND_ENDPORT,
6686 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6687 }
6688 
6689 static int selinux_ib_alloc_security(void **ib_sec)
6690 {
6691 	struct ib_security_struct *sec;
6692 
6693 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6694 	if (!sec)
6695 		return -ENOMEM;
6696 	sec->sid = current_sid();
6697 
6698 	*ib_sec = sec;
6699 	return 0;
6700 }
6701 
6702 static void selinux_ib_free_security(void *ib_sec)
6703 {
6704 	kfree(ib_sec);
6705 }
6706 #endif
6707 
6708 #ifdef CONFIG_BPF_SYSCALL
6709 static int selinux_bpf(int cmd, union bpf_attr *attr,
6710 				     unsigned int size)
6711 {
6712 	u32 sid = current_sid();
6713 	int ret;
6714 
6715 	switch (cmd) {
6716 	case BPF_MAP_CREATE:
6717 		ret = avc_has_perm(&selinux_state,
6718 				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6719 				   NULL);
6720 		break;
6721 	case BPF_PROG_LOAD:
6722 		ret = avc_has_perm(&selinux_state,
6723 				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6724 				   NULL);
6725 		break;
6726 	default:
6727 		ret = 0;
6728 		break;
6729 	}
6730 
6731 	return ret;
6732 }
6733 
6734 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6735 {
6736 	u32 av = 0;
6737 
6738 	if (fmode & FMODE_READ)
6739 		av |= BPF__MAP_READ;
6740 	if (fmode & FMODE_WRITE)
6741 		av |= BPF__MAP_WRITE;
6742 	return av;
6743 }
6744 
6745 /* This function will check the file pass through unix socket or binder to see
6746  * if it is a bpf related object. And apply correspinding checks on the bpf
6747  * object based on the type. The bpf maps and programs, not like other files and
6748  * socket, are using a shared anonymous inode inside the kernel as their inode.
6749  * So checking that inode cannot identify if the process have privilege to
6750  * access the bpf object and that's why we have to add this additional check in
6751  * selinux_file_receive and selinux_binder_transfer_files.
6752  */
6753 static int bpf_fd_pass(struct file *file, u32 sid)
6754 {
6755 	struct bpf_security_struct *bpfsec;
6756 	struct bpf_prog *prog;
6757 	struct bpf_map *map;
6758 	int ret;
6759 
6760 	if (file->f_op == &bpf_map_fops) {
6761 		map = file->private_data;
6762 		bpfsec = map->security;
6763 		ret = avc_has_perm(&selinux_state,
6764 				   sid, bpfsec->sid, SECCLASS_BPF,
6765 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6766 		if (ret)
6767 			return ret;
6768 	} else if (file->f_op == &bpf_prog_fops) {
6769 		prog = file->private_data;
6770 		bpfsec = prog->aux->security;
6771 		ret = avc_has_perm(&selinux_state,
6772 				   sid, bpfsec->sid, SECCLASS_BPF,
6773 				   BPF__PROG_RUN, NULL);
6774 		if (ret)
6775 			return ret;
6776 	}
6777 	return 0;
6778 }
6779 
6780 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6781 {
6782 	u32 sid = current_sid();
6783 	struct bpf_security_struct *bpfsec;
6784 
6785 	bpfsec = map->security;
6786 	return avc_has_perm(&selinux_state,
6787 			    sid, bpfsec->sid, SECCLASS_BPF,
6788 			    bpf_map_fmode_to_av(fmode), NULL);
6789 }
6790 
6791 static int selinux_bpf_prog(struct bpf_prog *prog)
6792 {
6793 	u32 sid = current_sid();
6794 	struct bpf_security_struct *bpfsec;
6795 
6796 	bpfsec = prog->aux->security;
6797 	return avc_has_perm(&selinux_state,
6798 			    sid, bpfsec->sid, SECCLASS_BPF,
6799 			    BPF__PROG_RUN, NULL);
6800 }
6801 
6802 static int selinux_bpf_map_alloc(struct bpf_map *map)
6803 {
6804 	struct bpf_security_struct *bpfsec;
6805 
6806 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6807 	if (!bpfsec)
6808 		return -ENOMEM;
6809 
6810 	bpfsec->sid = current_sid();
6811 	map->security = bpfsec;
6812 
6813 	return 0;
6814 }
6815 
6816 static void selinux_bpf_map_free(struct bpf_map *map)
6817 {
6818 	struct bpf_security_struct *bpfsec = map->security;
6819 
6820 	map->security = NULL;
6821 	kfree(bpfsec);
6822 }
6823 
6824 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6825 {
6826 	struct bpf_security_struct *bpfsec;
6827 
6828 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6829 	if (!bpfsec)
6830 		return -ENOMEM;
6831 
6832 	bpfsec->sid = current_sid();
6833 	aux->security = bpfsec;
6834 
6835 	return 0;
6836 }
6837 
6838 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6839 {
6840 	struct bpf_security_struct *bpfsec = aux->security;
6841 
6842 	aux->security = NULL;
6843 	kfree(bpfsec);
6844 }
6845 #endif
6846 
6847 static int selinux_lockdown(enum lockdown_reason what)
6848 {
6849 	struct common_audit_data ad;
6850 	u32 sid = current_sid();
6851 	int invalid_reason = (what <= LOCKDOWN_NONE) ||
6852 			     (what == LOCKDOWN_INTEGRITY_MAX) ||
6853 			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6854 
6855 	if (WARN(invalid_reason, "Invalid lockdown reason")) {
6856 		audit_log(audit_context(),
6857 			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
6858 			  "lockdown_reason=invalid");
6859 		return -EINVAL;
6860 	}
6861 
6862 	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6863 	ad.u.reason = what;
6864 
6865 	if (what <= LOCKDOWN_INTEGRITY_MAX)
6866 		return avc_has_perm(&selinux_state,
6867 				    sid, sid, SECCLASS_LOCKDOWN,
6868 				    LOCKDOWN__INTEGRITY, &ad);
6869 	else
6870 		return avc_has_perm(&selinux_state,
6871 				    sid, sid, SECCLASS_LOCKDOWN,
6872 				    LOCKDOWN__CONFIDENTIALITY, &ad);
6873 }
6874 
6875 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6876 	.lbs_cred = sizeof(struct task_security_struct),
6877 	.lbs_file = sizeof(struct file_security_struct),
6878 	.lbs_inode = sizeof(struct inode_security_struct),
6879 	.lbs_ipc = sizeof(struct ipc_security_struct),
6880 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6881 };
6882 
6883 #ifdef CONFIG_PERF_EVENTS
6884 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6885 {
6886 	u32 requested, sid = current_sid();
6887 
6888 	if (type == PERF_SECURITY_OPEN)
6889 		requested = PERF_EVENT__OPEN;
6890 	else if (type == PERF_SECURITY_CPU)
6891 		requested = PERF_EVENT__CPU;
6892 	else if (type == PERF_SECURITY_KERNEL)
6893 		requested = PERF_EVENT__KERNEL;
6894 	else if (type == PERF_SECURITY_TRACEPOINT)
6895 		requested = PERF_EVENT__TRACEPOINT;
6896 	else
6897 		return -EINVAL;
6898 
6899 	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6900 			    requested, NULL);
6901 }
6902 
6903 static int selinux_perf_event_alloc(struct perf_event *event)
6904 {
6905 	struct perf_event_security_struct *perfsec;
6906 
6907 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6908 	if (!perfsec)
6909 		return -ENOMEM;
6910 
6911 	perfsec->sid = current_sid();
6912 	event->security = perfsec;
6913 
6914 	return 0;
6915 }
6916 
6917 static void selinux_perf_event_free(struct perf_event *event)
6918 {
6919 	struct perf_event_security_struct *perfsec = event->security;
6920 
6921 	event->security = NULL;
6922 	kfree(perfsec);
6923 }
6924 
6925 static int selinux_perf_event_read(struct perf_event *event)
6926 {
6927 	struct perf_event_security_struct *perfsec = event->security;
6928 	u32 sid = current_sid();
6929 
6930 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6931 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6932 }
6933 
6934 static int selinux_perf_event_write(struct perf_event *event)
6935 {
6936 	struct perf_event_security_struct *perfsec = event->security;
6937 	u32 sid = current_sid();
6938 
6939 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6940 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6941 }
6942 #endif
6943 
6944 /*
6945  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6946  * 1. any hooks that don't belong to (2.) or (3.) below,
6947  * 2. hooks that both access structures allocated by other hooks, and allocate
6948  *    structures that can be later accessed by other hooks (mostly "cloning"
6949  *    hooks),
6950  * 3. hooks that only allocate structures that can be later accessed by other
6951  *    hooks ("allocating" hooks).
6952  *
6953  * Please follow block comment delimiters in the list to keep this order.
6954  *
6955  * This ordering is needed for SELinux runtime disable to work at least somewhat
6956  * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6957  * when disabling SELinux at runtime.
6958  */
6959 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6960 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6961 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6962 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6963 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6964 
6965 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6966 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6967 	LSM_HOOK_INIT(capget, selinux_capget),
6968 	LSM_HOOK_INIT(capset, selinux_capset),
6969 	LSM_HOOK_INIT(capable, selinux_capable),
6970 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6971 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6972 	LSM_HOOK_INIT(syslog, selinux_syslog),
6973 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6974 
6975 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6976 
6977 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
6978 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6979 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6980 
6981 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6982 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6983 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6984 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6985 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6986 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6987 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6988 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6989 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6990 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6991 
6992 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
6993 
6994 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6995 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6996 
6997 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6998 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6999 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7000 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7001 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7002 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7003 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7004 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7005 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7006 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7007 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7008 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7009 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7010 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7011 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7012 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7013 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7014 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7015 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7016 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7017 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7018 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7019 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7020 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7021 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7022 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7023 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7024 
7025 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7026 
7027 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7028 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7029 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7030 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7031 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7032 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7033 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7034 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7035 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7036 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7037 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7038 
7039 	LSM_HOOK_INIT(file_open, selinux_file_open),
7040 
7041 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7042 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7043 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7044 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7045 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7046 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7047 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7048 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7049 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7050 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7051 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7052 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7053 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
7054 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7055 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7056 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7057 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7058 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7059 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7060 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7061 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7062 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7063 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7064 
7065 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7066 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7067 
7068 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7069 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7070 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7071 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7072 
7073 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7074 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7075 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7076 
7077 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7078 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7079 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7080 
7081 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7082 
7083 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7084 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7085 
7086 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7087 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7088 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7089 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7090 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7091 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7092 
7093 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7094 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7095 
7096 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7097 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7098 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7099 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7100 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7101 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7102 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7103 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7104 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7105 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7106 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7107 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7108 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7109 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7110 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7111 	LSM_HOOK_INIT(socket_getpeersec_stream,
7112 			selinux_socket_getpeersec_stream),
7113 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7114 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7115 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7116 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7117 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7118 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7119 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7120 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7121 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7122 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7123 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7124 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7125 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7126 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7127 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7128 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7129 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7130 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7131 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7132 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7133 #ifdef CONFIG_SECURITY_INFINIBAND
7134 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7135 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7136 		      selinux_ib_endport_manage_subnet),
7137 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7138 #endif
7139 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7140 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7141 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7142 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7143 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7144 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7145 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7146 			selinux_xfrm_state_pol_flow_match),
7147 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7148 #endif
7149 
7150 #ifdef CONFIG_KEYS
7151 	LSM_HOOK_INIT(key_free, selinux_key_free),
7152 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7153 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7154 #ifdef CONFIG_KEY_NOTIFICATIONS
7155 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7156 #endif
7157 #endif
7158 
7159 #ifdef CONFIG_AUDIT
7160 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7161 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7162 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7163 #endif
7164 
7165 #ifdef CONFIG_BPF_SYSCALL
7166 	LSM_HOOK_INIT(bpf, selinux_bpf),
7167 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7168 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7169 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7170 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7171 #endif
7172 
7173 #ifdef CONFIG_PERF_EVENTS
7174 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7175 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7176 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7177 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7178 #endif
7179 
7180 	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7181 
7182 	/*
7183 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7184 	 */
7185 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7186 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7187 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7188 	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7189 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7190 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7191 #endif
7192 
7193 	/*
7194 	 * PUT "ALLOCATING" HOOKS HERE
7195 	 */
7196 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7197 	LSM_HOOK_INIT(msg_queue_alloc_security,
7198 		      selinux_msg_queue_alloc_security),
7199 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7200 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7201 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7202 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7203 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7204 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7205 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7206 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7207 #ifdef CONFIG_SECURITY_INFINIBAND
7208 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7209 #endif
7210 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7211 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7212 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7213 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7214 		      selinux_xfrm_state_alloc_acquire),
7215 #endif
7216 #ifdef CONFIG_KEYS
7217 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7218 #endif
7219 #ifdef CONFIG_AUDIT
7220 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7221 #endif
7222 #ifdef CONFIG_BPF_SYSCALL
7223 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7224 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7225 #endif
7226 #ifdef CONFIG_PERF_EVENTS
7227 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7228 #endif
7229 };
7230 
7231 static __init int selinux_init(void)
7232 {
7233 	pr_info("SELinux:  Initializing.\n");
7234 
7235 	memset(&selinux_state, 0, sizeof(selinux_state));
7236 	enforcing_set(&selinux_state, selinux_enforcing_boot);
7237 	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7238 	selinux_ss_init(&selinux_state.ss);
7239 	selinux_avc_init(&selinux_state.avc);
7240 	mutex_init(&selinux_state.status_lock);
7241 
7242 	/* Set the security state for the initial task. */
7243 	cred_init_security();
7244 
7245 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7246 
7247 	avc_init();
7248 
7249 	avtab_cache_init();
7250 
7251 	ebitmap_cache_init();
7252 
7253 	hashtab_cache_init();
7254 
7255 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7256 
7257 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7258 		panic("SELinux: Unable to register AVC netcache callback\n");
7259 
7260 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7261 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7262 
7263 	if (selinux_enforcing_boot)
7264 		pr_debug("SELinux:  Starting in enforcing mode\n");
7265 	else
7266 		pr_debug("SELinux:  Starting in permissive mode\n");
7267 
7268 	fs_validate_description("selinux", selinux_fs_parameters);
7269 
7270 	return 0;
7271 }
7272 
7273 static void delayed_superblock_init(struct super_block *sb, void *unused)
7274 {
7275 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7276 }
7277 
7278 void selinux_complete_init(void)
7279 {
7280 	pr_debug("SELinux:  Completing initialization.\n");
7281 
7282 	/* Set up any superblocks initialized prior to the policy load. */
7283 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7284 	iterate_supers(delayed_superblock_init, NULL);
7285 }
7286 
7287 /* SELinux requires early initialization in order to label
7288    all processes and objects when they are created. */
7289 DEFINE_LSM(selinux) = {
7290 	.name = "selinux",
7291 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7292 	.enabled = &selinux_enabled_boot,
7293 	.blobs = &selinux_blob_sizes,
7294 	.init = selinux_init,
7295 };
7296 
7297 #if defined(CONFIG_NETFILTER)
7298 
7299 static const struct nf_hook_ops selinux_nf_ops[] = {
7300 	{
7301 		.hook =		selinux_ipv4_postroute,
7302 		.pf =		NFPROTO_IPV4,
7303 		.hooknum =	NF_INET_POST_ROUTING,
7304 		.priority =	NF_IP_PRI_SELINUX_LAST,
7305 	},
7306 	{
7307 		.hook =		selinux_ipv4_forward,
7308 		.pf =		NFPROTO_IPV4,
7309 		.hooknum =	NF_INET_FORWARD,
7310 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7311 	},
7312 	{
7313 		.hook =		selinux_ipv4_output,
7314 		.pf =		NFPROTO_IPV4,
7315 		.hooknum =	NF_INET_LOCAL_OUT,
7316 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7317 	},
7318 #if IS_ENABLED(CONFIG_IPV6)
7319 	{
7320 		.hook =		selinux_ipv6_postroute,
7321 		.pf =		NFPROTO_IPV6,
7322 		.hooknum =	NF_INET_POST_ROUTING,
7323 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7324 	},
7325 	{
7326 		.hook =		selinux_ipv6_forward,
7327 		.pf =		NFPROTO_IPV6,
7328 		.hooknum =	NF_INET_FORWARD,
7329 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7330 	},
7331 	{
7332 		.hook =		selinux_ipv6_output,
7333 		.pf =		NFPROTO_IPV6,
7334 		.hooknum =	NF_INET_LOCAL_OUT,
7335 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7336 	},
7337 #endif	/* IPV6 */
7338 };
7339 
7340 static int __net_init selinux_nf_register(struct net *net)
7341 {
7342 	return nf_register_net_hooks(net, selinux_nf_ops,
7343 				     ARRAY_SIZE(selinux_nf_ops));
7344 }
7345 
7346 static void __net_exit selinux_nf_unregister(struct net *net)
7347 {
7348 	nf_unregister_net_hooks(net, selinux_nf_ops,
7349 				ARRAY_SIZE(selinux_nf_ops));
7350 }
7351 
7352 static struct pernet_operations selinux_net_ops = {
7353 	.init = selinux_nf_register,
7354 	.exit = selinux_nf_unregister,
7355 };
7356 
7357 static int __init selinux_nf_ip_init(void)
7358 {
7359 	int err;
7360 
7361 	if (!selinux_enabled_boot)
7362 		return 0;
7363 
7364 	pr_debug("SELinux:  Registering netfilter hooks\n");
7365 
7366 	err = register_pernet_subsys(&selinux_net_ops);
7367 	if (err)
7368 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7369 
7370 	return 0;
7371 }
7372 __initcall(selinux_nf_ip_init);
7373 
7374 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7375 static void selinux_nf_ip_exit(void)
7376 {
7377 	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7378 
7379 	unregister_pernet_subsys(&selinux_net_ops);
7380 }
7381 #endif
7382 
7383 #else /* CONFIG_NETFILTER */
7384 
7385 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7386 #define selinux_nf_ip_exit()
7387 #endif
7388 
7389 #endif /* CONFIG_NETFILTER */
7390 
7391 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7392 int selinux_disable(struct selinux_state *state)
7393 {
7394 	if (selinux_initialized(state)) {
7395 		/* Not permitted after initial policy load. */
7396 		return -EINVAL;
7397 	}
7398 
7399 	if (selinux_disabled(state)) {
7400 		/* Only do this once. */
7401 		return -EINVAL;
7402 	}
7403 
7404 	selinux_mark_disabled(state);
7405 
7406 	pr_info("SELinux:  Disabled at runtime.\n");
7407 
7408 	/*
7409 	 * Unregister netfilter hooks.
7410 	 * Must be done before security_delete_hooks() to avoid breaking
7411 	 * runtime disable.
7412 	 */
7413 	selinux_nf_ip_exit();
7414 
7415 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7416 
7417 	/* Try to destroy the avc node cache */
7418 	avc_disable();
7419 
7420 	/* Unregister selinuxfs. */
7421 	exit_sel_fs();
7422 
7423 	return 0;
7424 }
7425 #endif
7426