1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 14 * <dgoeddel@trustedcs.com> 15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P. 16 * Paul Moore, <paul.moore@hp.com> 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License version 2, 20 * as published by the Free Software Foundation. 21 */ 22 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/errno.h> 28 #include <linux/sched.h> 29 #include <linux/security.h> 30 #include <linux/xattr.h> 31 #include <linux/capability.h> 32 #include <linux/unistd.h> 33 #include <linux/mm.h> 34 #include <linux/mman.h> 35 #include <linux/slab.h> 36 #include <linux/pagemap.h> 37 #include <linux/swap.h> 38 #include <linux/smp_lock.h> 39 #include <linux/spinlock.h> 40 #include <linux/syscalls.h> 41 #include <linux/file.h> 42 #include <linux/namei.h> 43 #include <linux/mount.h> 44 #include <linux/ext2_fs.h> 45 #include <linux/proc_fs.h> 46 #include <linux/kd.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for sysctl_local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <asm/uaccess.h> 54 #include <asm/ioctls.h> 55 #include <linux/bitops.h> 56 #include <linux/interrupt.h> 57 #include <linux/netdevice.h> /* for network interface checks */ 58 #include <linux/netlink.h> 59 #include <linux/tcp.h> 60 #include <linux/udp.h> 61 #include <linux/dccp.h> 62 #include <linux/quota.h> 63 #include <linux/un.h> /* for Unix socket types */ 64 #include <net/af_unix.h> /* for Unix socket types */ 65 #include <linux/parser.h> 66 #include <linux/nfs_mount.h> 67 #include <net/ipv6.h> 68 #include <linux/hugetlb.h> 69 #include <linux/personality.h> 70 #include <linux/sysctl.h> 71 #include <linux/audit.h> 72 #include <linux/string.h> 73 #include <linux/selinux.h> 74 #include <linux/mutex.h> 75 76 #include "avc.h" 77 #include "objsec.h" 78 #include "netif.h" 79 #include "xfrm.h" 80 #include "selinux_netlabel.h" 81 82 #define XATTR_SELINUX_SUFFIX "selinux" 83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 84 85 extern unsigned int policydb_loaded_version; 86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 87 extern int selinux_compat_net; 88 89 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 90 int selinux_enforcing = 0; 91 92 static int __init enforcing_setup(char *str) 93 { 94 selinux_enforcing = simple_strtol(str,NULL,0); 95 return 1; 96 } 97 __setup("enforcing=", enforcing_setup); 98 #endif 99 100 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 101 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 102 103 static int __init selinux_enabled_setup(char *str) 104 { 105 selinux_enabled = simple_strtol(str, NULL, 0); 106 return 1; 107 } 108 __setup("selinux=", selinux_enabled_setup); 109 #else 110 int selinux_enabled = 1; 111 #endif 112 113 /* Original (dummy) security module. */ 114 static struct security_operations *original_ops = NULL; 115 116 /* Minimal support for a secondary security module, 117 just to allow the use of the dummy or capability modules. 118 The owlsm module can alternatively be used as a secondary 119 module as long as CONFIG_OWLSM_FD is not enabled. */ 120 static struct security_operations *secondary_ops = NULL; 121 122 /* Lists of inode and superblock security structures initialized 123 before the policy was loaded. */ 124 static LIST_HEAD(superblock_security_head); 125 static DEFINE_SPINLOCK(sb_security_lock); 126 127 static struct kmem_cache *sel_inode_cache; 128 129 /* Return security context for a given sid or just the context 130 length if the buffer is null or length is 0 */ 131 static int selinux_getsecurity(u32 sid, void *buffer, size_t size) 132 { 133 char *context; 134 unsigned len; 135 int rc; 136 137 rc = security_sid_to_context(sid, &context, &len); 138 if (rc) 139 return rc; 140 141 if (!buffer || !size) 142 goto getsecurity_exit; 143 144 if (size < len) { 145 len = -ERANGE; 146 goto getsecurity_exit; 147 } 148 memcpy(buffer, context, len); 149 150 getsecurity_exit: 151 kfree(context); 152 return len; 153 } 154 155 /* Allocate and free functions for each kind of security blob. */ 156 157 static int task_alloc_security(struct task_struct *task) 158 { 159 struct task_security_struct *tsec; 160 161 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 162 if (!tsec) 163 return -ENOMEM; 164 165 tsec->task = task; 166 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED; 167 task->security = tsec; 168 169 return 0; 170 } 171 172 static void task_free_security(struct task_struct *task) 173 { 174 struct task_security_struct *tsec = task->security; 175 task->security = NULL; 176 kfree(tsec); 177 } 178 179 static int inode_alloc_security(struct inode *inode) 180 { 181 struct task_security_struct *tsec = current->security; 182 struct inode_security_struct *isec; 183 184 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL); 185 if (!isec) 186 return -ENOMEM; 187 188 mutex_init(&isec->lock); 189 INIT_LIST_HEAD(&isec->list); 190 isec->inode = inode; 191 isec->sid = SECINITSID_UNLABELED; 192 isec->sclass = SECCLASS_FILE; 193 isec->task_sid = tsec->sid; 194 inode->i_security = isec; 195 196 return 0; 197 } 198 199 static void inode_free_security(struct inode *inode) 200 { 201 struct inode_security_struct *isec = inode->i_security; 202 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 203 204 spin_lock(&sbsec->isec_lock); 205 if (!list_empty(&isec->list)) 206 list_del_init(&isec->list); 207 spin_unlock(&sbsec->isec_lock); 208 209 inode->i_security = NULL; 210 kmem_cache_free(sel_inode_cache, isec); 211 } 212 213 static int file_alloc_security(struct file *file) 214 { 215 struct task_security_struct *tsec = current->security; 216 struct file_security_struct *fsec; 217 218 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 219 if (!fsec) 220 return -ENOMEM; 221 222 fsec->file = file; 223 fsec->sid = tsec->sid; 224 fsec->fown_sid = tsec->sid; 225 file->f_security = fsec; 226 227 return 0; 228 } 229 230 static void file_free_security(struct file *file) 231 { 232 struct file_security_struct *fsec = file->f_security; 233 file->f_security = NULL; 234 kfree(fsec); 235 } 236 237 static int superblock_alloc_security(struct super_block *sb) 238 { 239 struct superblock_security_struct *sbsec; 240 241 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 242 if (!sbsec) 243 return -ENOMEM; 244 245 mutex_init(&sbsec->lock); 246 INIT_LIST_HEAD(&sbsec->list); 247 INIT_LIST_HEAD(&sbsec->isec_head); 248 spin_lock_init(&sbsec->isec_lock); 249 sbsec->sb = sb; 250 sbsec->sid = SECINITSID_UNLABELED; 251 sbsec->def_sid = SECINITSID_FILE; 252 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 253 sb->s_security = sbsec; 254 255 return 0; 256 } 257 258 static void superblock_free_security(struct super_block *sb) 259 { 260 struct superblock_security_struct *sbsec = sb->s_security; 261 262 spin_lock(&sb_security_lock); 263 if (!list_empty(&sbsec->list)) 264 list_del_init(&sbsec->list); 265 spin_unlock(&sb_security_lock); 266 267 sb->s_security = NULL; 268 kfree(sbsec); 269 } 270 271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 272 { 273 struct sk_security_struct *ssec; 274 275 ssec = kzalloc(sizeof(*ssec), priority); 276 if (!ssec) 277 return -ENOMEM; 278 279 ssec->sk = sk; 280 ssec->peer_sid = SECINITSID_UNLABELED; 281 ssec->sid = SECINITSID_UNLABELED; 282 sk->sk_security = ssec; 283 284 selinux_netlbl_sk_security_init(ssec, family); 285 286 return 0; 287 } 288 289 static void sk_free_security(struct sock *sk) 290 { 291 struct sk_security_struct *ssec = sk->sk_security; 292 293 sk->sk_security = NULL; 294 kfree(ssec); 295 } 296 297 /* The security server must be initialized before 298 any labeling or access decisions can be provided. */ 299 extern int ss_initialized; 300 301 /* The file system's label must be initialized prior to use. */ 302 303 static char *labeling_behaviors[6] = { 304 "uses xattr", 305 "uses transition SIDs", 306 "uses task SIDs", 307 "uses genfs_contexts", 308 "not configured for labeling", 309 "uses mountpoint labeling", 310 }; 311 312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 313 314 static inline int inode_doinit(struct inode *inode) 315 { 316 return inode_doinit_with_dentry(inode, NULL); 317 } 318 319 enum { 320 Opt_context = 1, 321 Opt_fscontext = 2, 322 Opt_defcontext = 4, 323 Opt_rootcontext = 8, 324 }; 325 326 static match_table_t tokens = { 327 {Opt_context, "context=%s"}, 328 {Opt_fscontext, "fscontext=%s"}, 329 {Opt_defcontext, "defcontext=%s"}, 330 {Opt_rootcontext, "rootcontext=%s"}, 331 }; 332 333 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 334 335 static int may_context_mount_sb_relabel(u32 sid, 336 struct superblock_security_struct *sbsec, 337 struct task_security_struct *tsec) 338 { 339 int rc; 340 341 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 342 FILESYSTEM__RELABELFROM, NULL); 343 if (rc) 344 return rc; 345 346 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 347 FILESYSTEM__RELABELTO, NULL); 348 return rc; 349 } 350 351 static int may_context_mount_inode_relabel(u32 sid, 352 struct superblock_security_struct *sbsec, 353 struct task_security_struct *tsec) 354 { 355 int rc; 356 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 357 FILESYSTEM__RELABELFROM, NULL); 358 if (rc) 359 return rc; 360 361 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 362 FILESYSTEM__ASSOCIATE, NULL); 363 return rc; 364 } 365 366 static int try_context_mount(struct super_block *sb, void *data) 367 { 368 char *context = NULL, *defcontext = NULL; 369 char *fscontext = NULL, *rootcontext = NULL; 370 const char *name; 371 u32 sid; 372 int alloc = 0, rc = 0, seen = 0; 373 struct task_security_struct *tsec = current->security; 374 struct superblock_security_struct *sbsec = sb->s_security; 375 376 if (!data) 377 goto out; 378 379 name = sb->s_type->name; 380 381 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) { 382 383 /* NFS we understand. */ 384 if (!strcmp(name, "nfs")) { 385 struct nfs_mount_data *d = data; 386 387 if (d->version < NFS_MOUNT_VERSION) 388 goto out; 389 390 if (d->context[0]) { 391 context = d->context; 392 seen |= Opt_context; 393 } 394 } else 395 goto out; 396 397 } else { 398 /* Standard string-based options. */ 399 char *p, *options = data; 400 401 while ((p = strsep(&options, "|")) != NULL) { 402 int token; 403 substring_t args[MAX_OPT_ARGS]; 404 405 if (!*p) 406 continue; 407 408 token = match_token(p, tokens, args); 409 410 switch (token) { 411 case Opt_context: 412 if (seen & (Opt_context|Opt_defcontext)) { 413 rc = -EINVAL; 414 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 415 goto out_free; 416 } 417 context = match_strdup(&args[0]); 418 if (!context) { 419 rc = -ENOMEM; 420 goto out_free; 421 } 422 if (!alloc) 423 alloc = 1; 424 seen |= Opt_context; 425 break; 426 427 case Opt_fscontext: 428 if (seen & Opt_fscontext) { 429 rc = -EINVAL; 430 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 431 goto out_free; 432 } 433 fscontext = match_strdup(&args[0]); 434 if (!fscontext) { 435 rc = -ENOMEM; 436 goto out_free; 437 } 438 if (!alloc) 439 alloc = 1; 440 seen |= Opt_fscontext; 441 break; 442 443 case Opt_rootcontext: 444 if (seen & Opt_rootcontext) { 445 rc = -EINVAL; 446 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 447 goto out_free; 448 } 449 rootcontext = match_strdup(&args[0]); 450 if (!rootcontext) { 451 rc = -ENOMEM; 452 goto out_free; 453 } 454 if (!alloc) 455 alloc = 1; 456 seen |= Opt_rootcontext; 457 break; 458 459 case Opt_defcontext: 460 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 461 rc = -EINVAL; 462 printk(KERN_WARNING "SELinux: " 463 "defcontext option is invalid " 464 "for this filesystem type\n"); 465 goto out_free; 466 } 467 if (seen & (Opt_context|Opt_defcontext)) { 468 rc = -EINVAL; 469 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 470 goto out_free; 471 } 472 defcontext = match_strdup(&args[0]); 473 if (!defcontext) { 474 rc = -ENOMEM; 475 goto out_free; 476 } 477 if (!alloc) 478 alloc = 1; 479 seen |= Opt_defcontext; 480 break; 481 482 default: 483 rc = -EINVAL; 484 printk(KERN_WARNING "SELinux: unknown mount " 485 "option\n"); 486 goto out_free; 487 488 } 489 } 490 } 491 492 if (!seen) 493 goto out; 494 495 /* sets the context of the superblock for the fs being mounted. */ 496 if (fscontext) { 497 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid); 498 if (rc) { 499 printk(KERN_WARNING "SELinux: security_context_to_sid" 500 "(%s) failed for (dev %s, type %s) errno=%d\n", 501 fscontext, sb->s_id, name, rc); 502 goto out_free; 503 } 504 505 rc = may_context_mount_sb_relabel(sid, sbsec, tsec); 506 if (rc) 507 goto out_free; 508 509 sbsec->sid = sid; 510 } 511 512 /* 513 * Switch to using mount point labeling behavior. 514 * sets the label used on all file below the mountpoint, and will set 515 * the superblock context if not already set. 516 */ 517 if (context) { 518 rc = security_context_to_sid(context, strlen(context), &sid); 519 if (rc) { 520 printk(KERN_WARNING "SELinux: security_context_to_sid" 521 "(%s) failed for (dev %s, type %s) errno=%d\n", 522 context, sb->s_id, name, rc); 523 goto out_free; 524 } 525 526 if (!fscontext) { 527 rc = may_context_mount_sb_relabel(sid, sbsec, tsec); 528 if (rc) 529 goto out_free; 530 sbsec->sid = sid; 531 } else { 532 rc = may_context_mount_inode_relabel(sid, sbsec, tsec); 533 if (rc) 534 goto out_free; 535 } 536 sbsec->mntpoint_sid = sid; 537 538 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 539 } 540 541 if (rootcontext) { 542 struct inode *inode = sb->s_root->d_inode; 543 struct inode_security_struct *isec = inode->i_security; 544 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid); 545 if (rc) { 546 printk(KERN_WARNING "SELinux: security_context_to_sid" 547 "(%s) failed for (dev %s, type %s) errno=%d\n", 548 rootcontext, sb->s_id, name, rc); 549 goto out_free; 550 } 551 552 rc = may_context_mount_inode_relabel(sid, sbsec, tsec); 553 if (rc) 554 goto out_free; 555 556 isec->sid = sid; 557 isec->initialized = 1; 558 } 559 560 if (defcontext) { 561 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid); 562 if (rc) { 563 printk(KERN_WARNING "SELinux: security_context_to_sid" 564 "(%s) failed for (dev %s, type %s) errno=%d\n", 565 defcontext, sb->s_id, name, rc); 566 goto out_free; 567 } 568 569 if (sid == sbsec->def_sid) 570 goto out_free; 571 572 rc = may_context_mount_inode_relabel(sid, sbsec, tsec); 573 if (rc) 574 goto out_free; 575 576 sbsec->def_sid = sid; 577 } 578 579 out_free: 580 if (alloc) { 581 kfree(context); 582 kfree(defcontext); 583 kfree(fscontext); 584 kfree(rootcontext); 585 } 586 out: 587 return rc; 588 } 589 590 static int superblock_doinit(struct super_block *sb, void *data) 591 { 592 struct superblock_security_struct *sbsec = sb->s_security; 593 struct dentry *root = sb->s_root; 594 struct inode *inode = root->d_inode; 595 int rc = 0; 596 597 mutex_lock(&sbsec->lock); 598 if (sbsec->initialized) 599 goto out; 600 601 if (!ss_initialized) { 602 /* Defer initialization until selinux_complete_init, 603 after the initial policy is loaded and the security 604 server is ready to handle calls. */ 605 spin_lock(&sb_security_lock); 606 if (list_empty(&sbsec->list)) 607 list_add(&sbsec->list, &superblock_security_head); 608 spin_unlock(&sb_security_lock); 609 goto out; 610 } 611 612 /* Determine the labeling behavior to use for this filesystem type. */ 613 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid); 614 if (rc) { 615 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 616 __FUNCTION__, sb->s_type->name, rc); 617 goto out; 618 } 619 620 rc = try_context_mount(sb, data); 621 if (rc) 622 goto out; 623 624 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 625 /* Make sure that the xattr handler exists and that no 626 error other than -ENODATA is returned by getxattr on 627 the root directory. -ENODATA is ok, as this may be 628 the first boot of the SELinux kernel before we have 629 assigned xattr values to the filesystem. */ 630 if (!inode->i_op->getxattr) { 631 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 632 "xattr support\n", sb->s_id, sb->s_type->name); 633 rc = -EOPNOTSUPP; 634 goto out; 635 } 636 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 637 if (rc < 0 && rc != -ENODATA) { 638 if (rc == -EOPNOTSUPP) 639 printk(KERN_WARNING "SELinux: (dev %s, type " 640 "%s) has no security xattr handler\n", 641 sb->s_id, sb->s_type->name); 642 else 643 printk(KERN_WARNING "SELinux: (dev %s, type " 644 "%s) getxattr errno %d\n", sb->s_id, 645 sb->s_type->name, -rc); 646 goto out; 647 } 648 } 649 650 if (strcmp(sb->s_type->name, "proc") == 0) 651 sbsec->proc = 1; 652 653 sbsec->initialized = 1; 654 655 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) { 656 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n", 657 sb->s_id, sb->s_type->name); 658 } 659 else { 660 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n", 661 sb->s_id, sb->s_type->name, 662 labeling_behaviors[sbsec->behavior-1]); 663 } 664 665 /* Initialize the root inode. */ 666 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root); 667 668 /* Initialize any other inodes associated with the superblock, e.g. 669 inodes created prior to initial policy load or inodes created 670 during get_sb by a pseudo filesystem that directly 671 populates itself. */ 672 spin_lock(&sbsec->isec_lock); 673 next_inode: 674 if (!list_empty(&sbsec->isec_head)) { 675 struct inode_security_struct *isec = 676 list_entry(sbsec->isec_head.next, 677 struct inode_security_struct, list); 678 struct inode *inode = isec->inode; 679 spin_unlock(&sbsec->isec_lock); 680 inode = igrab(inode); 681 if (inode) { 682 if (!IS_PRIVATE (inode)) 683 inode_doinit(inode); 684 iput(inode); 685 } 686 spin_lock(&sbsec->isec_lock); 687 list_del_init(&isec->list); 688 goto next_inode; 689 } 690 spin_unlock(&sbsec->isec_lock); 691 out: 692 mutex_unlock(&sbsec->lock); 693 return rc; 694 } 695 696 static inline u16 inode_mode_to_security_class(umode_t mode) 697 { 698 switch (mode & S_IFMT) { 699 case S_IFSOCK: 700 return SECCLASS_SOCK_FILE; 701 case S_IFLNK: 702 return SECCLASS_LNK_FILE; 703 case S_IFREG: 704 return SECCLASS_FILE; 705 case S_IFBLK: 706 return SECCLASS_BLK_FILE; 707 case S_IFDIR: 708 return SECCLASS_DIR; 709 case S_IFCHR: 710 return SECCLASS_CHR_FILE; 711 case S_IFIFO: 712 return SECCLASS_FIFO_FILE; 713 714 } 715 716 return SECCLASS_FILE; 717 } 718 719 static inline int default_protocol_stream(int protocol) 720 { 721 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 722 } 723 724 static inline int default_protocol_dgram(int protocol) 725 { 726 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 727 } 728 729 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 730 { 731 switch (family) { 732 case PF_UNIX: 733 switch (type) { 734 case SOCK_STREAM: 735 case SOCK_SEQPACKET: 736 return SECCLASS_UNIX_STREAM_SOCKET; 737 case SOCK_DGRAM: 738 return SECCLASS_UNIX_DGRAM_SOCKET; 739 } 740 break; 741 case PF_INET: 742 case PF_INET6: 743 switch (type) { 744 case SOCK_STREAM: 745 if (default_protocol_stream(protocol)) 746 return SECCLASS_TCP_SOCKET; 747 else 748 return SECCLASS_RAWIP_SOCKET; 749 case SOCK_DGRAM: 750 if (default_protocol_dgram(protocol)) 751 return SECCLASS_UDP_SOCKET; 752 else 753 return SECCLASS_RAWIP_SOCKET; 754 case SOCK_DCCP: 755 return SECCLASS_DCCP_SOCKET; 756 default: 757 return SECCLASS_RAWIP_SOCKET; 758 } 759 break; 760 case PF_NETLINK: 761 switch (protocol) { 762 case NETLINK_ROUTE: 763 return SECCLASS_NETLINK_ROUTE_SOCKET; 764 case NETLINK_FIREWALL: 765 return SECCLASS_NETLINK_FIREWALL_SOCKET; 766 case NETLINK_INET_DIAG: 767 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 768 case NETLINK_NFLOG: 769 return SECCLASS_NETLINK_NFLOG_SOCKET; 770 case NETLINK_XFRM: 771 return SECCLASS_NETLINK_XFRM_SOCKET; 772 case NETLINK_SELINUX: 773 return SECCLASS_NETLINK_SELINUX_SOCKET; 774 case NETLINK_AUDIT: 775 return SECCLASS_NETLINK_AUDIT_SOCKET; 776 case NETLINK_IP6_FW: 777 return SECCLASS_NETLINK_IP6FW_SOCKET; 778 case NETLINK_DNRTMSG: 779 return SECCLASS_NETLINK_DNRT_SOCKET; 780 case NETLINK_KOBJECT_UEVENT: 781 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 782 default: 783 return SECCLASS_NETLINK_SOCKET; 784 } 785 case PF_PACKET: 786 return SECCLASS_PACKET_SOCKET; 787 case PF_KEY: 788 return SECCLASS_KEY_SOCKET; 789 case PF_APPLETALK: 790 return SECCLASS_APPLETALK_SOCKET; 791 } 792 793 return SECCLASS_SOCKET; 794 } 795 796 #ifdef CONFIG_PROC_FS 797 static int selinux_proc_get_sid(struct proc_dir_entry *de, 798 u16 tclass, 799 u32 *sid) 800 { 801 int buflen, rc; 802 char *buffer, *path, *end; 803 804 buffer = (char*)__get_free_page(GFP_KERNEL); 805 if (!buffer) 806 return -ENOMEM; 807 808 buflen = PAGE_SIZE; 809 end = buffer+buflen; 810 *--end = '\0'; 811 buflen--; 812 path = end-1; 813 *path = '/'; 814 while (de && de != de->parent) { 815 buflen -= de->namelen + 1; 816 if (buflen < 0) 817 break; 818 end -= de->namelen; 819 memcpy(end, de->name, de->namelen); 820 *--end = '/'; 821 path = end; 822 de = de->parent; 823 } 824 rc = security_genfs_sid("proc", path, tclass, sid); 825 free_page((unsigned long)buffer); 826 return rc; 827 } 828 #else 829 static int selinux_proc_get_sid(struct proc_dir_entry *de, 830 u16 tclass, 831 u32 *sid) 832 { 833 return -EINVAL; 834 } 835 #endif 836 837 /* The inode's security attributes must be initialized before first use. */ 838 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 839 { 840 struct superblock_security_struct *sbsec = NULL; 841 struct inode_security_struct *isec = inode->i_security; 842 u32 sid; 843 struct dentry *dentry; 844 #define INITCONTEXTLEN 255 845 char *context = NULL; 846 unsigned len = 0; 847 int rc = 0; 848 849 if (isec->initialized) 850 goto out; 851 852 mutex_lock(&isec->lock); 853 if (isec->initialized) 854 goto out_unlock; 855 856 sbsec = inode->i_sb->s_security; 857 if (!sbsec->initialized) { 858 /* Defer initialization until selinux_complete_init, 859 after the initial policy is loaded and the security 860 server is ready to handle calls. */ 861 spin_lock(&sbsec->isec_lock); 862 if (list_empty(&isec->list)) 863 list_add(&isec->list, &sbsec->isec_head); 864 spin_unlock(&sbsec->isec_lock); 865 goto out_unlock; 866 } 867 868 switch (sbsec->behavior) { 869 case SECURITY_FS_USE_XATTR: 870 if (!inode->i_op->getxattr) { 871 isec->sid = sbsec->def_sid; 872 break; 873 } 874 875 /* Need a dentry, since the xattr API requires one. 876 Life would be simpler if we could just pass the inode. */ 877 if (opt_dentry) { 878 /* Called from d_instantiate or d_splice_alias. */ 879 dentry = dget(opt_dentry); 880 } else { 881 /* Called from selinux_complete_init, try to find a dentry. */ 882 dentry = d_find_alias(inode); 883 } 884 if (!dentry) { 885 printk(KERN_WARNING "%s: no dentry for dev=%s " 886 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id, 887 inode->i_ino); 888 goto out_unlock; 889 } 890 891 len = INITCONTEXTLEN; 892 context = kmalloc(len, GFP_KERNEL); 893 if (!context) { 894 rc = -ENOMEM; 895 dput(dentry); 896 goto out_unlock; 897 } 898 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 899 context, len); 900 if (rc == -ERANGE) { 901 /* Need a larger buffer. Query for the right size. */ 902 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 903 NULL, 0); 904 if (rc < 0) { 905 dput(dentry); 906 goto out_unlock; 907 } 908 kfree(context); 909 len = rc; 910 context = kmalloc(len, GFP_KERNEL); 911 if (!context) { 912 rc = -ENOMEM; 913 dput(dentry); 914 goto out_unlock; 915 } 916 rc = inode->i_op->getxattr(dentry, 917 XATTR_NAME_SELINUX, 918 context, len); 919 } 920 dput(dentry); 921 if (rc < 0) { 922 if (rc != -ENODATA) { 923 printk(KERN_WARNING "%s: getxattr returned " 924 "%d for dev=%s ino=%ld\n", __FUNCTION__, 925 -rc, inode->i_sb->s_id, inode->i_ino); 926 kfree(context); 927 goto out_unlock; 928 } 929 /* Map ENODATA to the default file SID */ 930 sid = sbsec->def_sid; 931 rc = 0; 932 } else { 933 rc = security_context_to_sid_default(context, rc, &sid, 934 sbsec->def_sid); 935 if (rc) { 936 printk(KERN_WARNING "%s: context_to_sid(%s) " 937 "returned %d for dev=%s ino=%ld\n", 938 __FUNCTION__, context, -rc, 939 inode->i_sb->s_id, inode->i_ino); 940 kfree(context); 941 /* Leave with the unlabeled SID */ 942 rc = 0; 943 break; 944 } 945 } 946 kfree(context); 947 isec->sid = sid; 948 break; 949 case SECURITY_FS_USE_TASK: 950 isec->sid = isec->task_sid; 951 break; 952 case SECURITY_FS_USE_TRANS: 953 /* Default to the fs SID. */ 954 isec->sid = sbsec->sid; 955 956 /* Try to obtain a transition SID. */ 957 isec->sclass = inode_mode_to_security_class(inode->i_mode); 958 rc = security_transition_sid(isec->task_sid, 959 sbsec->sid, 960 isec->sclass, 961 &sid); 962 if (rc) 963 goto out_unlock; 964 isec->sid = sid; 965 break; 966 case SECURITY_FS_USE_MNTPOINT: 967 isec->sid = sbsec->mntpoint_sid; 968 break; 969 default: 970 /* Default to the fs superblock SID. */ 971 isec->sid = sbsec->sid; 972 973 if (sbsec->proc) { 974 struct proc_inode *proci = PROC_I(inode); 975 if (proci->pde) { 976 isec->sclass = inode_mode_to_security_class(inode->i_mode); 977 rc = selinux_proc_get_sid(proci->pde, 978 isec->sclass, 979 &sid); 980 if (rc) 981 goto out_unlock; 982 isec->sid = sid; 983 } 984 } 985 break; 986 } 987 988 isec->initialized = 1; 989 990 out_unlock: 991 mutex_unlock(&isec->lock); 992 out: 993 if (isec->sclass == SECCLASS_FILE) 994 isec->sclass = inode_mode_to_security_class(inode->i_mode); 995 return rc; 996 } 997 998 /* Convert a Linux signal to an access vector. */ 999 static inline u32 signal_to_av(int sig) 1000 { 1001 u32 perm = 0; 1002 1003 switch (sig) { 1004 case SIGCHLD: 1005 /* Commonly granted from child to parent. */ 1006 perm = PROCESS__SIGCHLD; 1007 break; 1008 case SIGKILL: 1009 /* Cannot be caught or ignored */ 1010 perm = PROCESS__SIGKILL; 1011 break; 1012 case SIGSTOP: 1013 /* Cannot be caught or ignored */ 1014 perm = PROCESS__SIGSTOP; 1015 break; 1016 default: 1017 /* All other signals. */ 1018 perm = PROCESS__SIGNAL; 1019 break; 1020 } 1021 1022 return perm; 1023 } 1024 1025 /* Check permission betweeen a pair of tasks, e.g. signal checks, 1026 fork check, ptrace check, etc. */ 1027 static int task_has_perm(struct task_struct *tsk1, 1028 struct task_struct *tsk2, 1029 u32 perms) 1030 { 1031 struct task_security_struct *tsec1, *tsec2; 1032 1033 tsec1 = tsk1->security; 1034 tsec2 = tsk2->security; 1035 return avc_has_perm(tsec1->sid, tsec2->sid, 1036 SECCLASS_PROCESS, perms, NULL); 1037 } 1038 1039 /* Check whether a task is allowed to use a capability. */ 1040 static int task_has_capability(struct task_struct *tsk, 1041 int cap) 1042 { 1043 struct task_security_struct *tsec; 1044 struct avc_audit_data ad; 1045 1046 tsec = tsk->security; 1047 1048 AVC_AUDIT_DATA_INIT(&ad,CAP); 1049 ad.tsk = tsk; 1050 ad.u.cap = cap; 1051 1052 return avc_has_perm(tsec->sid, tsec->sid, 1053 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad); 1054 } 1055 1056 /* Check whether a task is allowed to use a system operation. */ 1057 static int task_has_system(struct task_struct *tsk, 1058 u32 perms) 1059 { 1060 struct task_security_struct *tsec; 1061 1062 tsec = tsk->security; 1063 1064 return avc_has_perm(tsec->sid, SECINITSID_KERNEL, 1065 SECCLASS_SYSTEM, perms, NULL); 1066 } 1067 1068 /* Check whether a task has a particular permission to an inode. 1069 The 'adp' parameter is optional and allows other audit 1070 data to be passed (e.g. the dentry). */ 1071 static int inode_has_perm(struct task_struct *tsk, 1072 struct inode *inode, 1073 u32 perms, 1074 struct avc_audit_data *adp) 1075 { 1076 struct task_security_struct *tsec; 1077 struct inode_security_struct *isec; 1078 struct avc_audit_data ad; 1079 1080 tsec = tsk->security; 1081 isec = inode->i_security; 1082 1083 if (!adp) { 1084 adp = &ad; 1085 AVC_AUDIT_DATA_INIT(&ad, FS); 1086 ad.u.fs.inode = inode; 1087 } 1088 1089 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp); 1090 } 1091 1092 /* Same as inode_has_perm, but pass explicit audit data containing 1093 the dentry to help the auditing code to more easily generate the 1094 pathname if needed. */ 1095 static inline int dentry_has_perm(struct task_struct *tsk, 1096 struct vfsmount *mnt, 1097 struct dentry *dentry, 1098 u32 av) 1099 { 1100 struct inode *inode = dentry->d_inode; 1101 struct avc_audit_data ad; 1102 AVC_AUDIT_DATA_INIT(&ad,FS); 1103 ad.u.fs.mnt = mnt; 1104 ad.u.fs.dentry = dentry; 1105 return inode_has_perm(tsk, inode, av, &ad); 1106 } 1107 1108 /* Check whether a task can use an open file descriptor to 1109 access an inode in a given way. Check access to the 1110 descriptor itself, and then use dentry_has_perm to 1111 check a particular permission to the file. 1112 Access to the descriptor is implicitly granted if it 1113 has the same SID as the process. If av is zero, then 1114 access to the file is not checked, e.g. for cases 1115 where only the descriptor is affected like seek. */ 1116 static int file_has_perm(struct task_struct *tsk, 1117 struct file *file, 1118 u32 av) 1119 { 1120 struct task_security_struct *tsec = tsk->security; 1121 struct file_security_struct *fsec = file->f_security; 1122 struct vfsmount *mnt = file->f_path.mnt; 1123 struct dentry *dentry = file->f_path.dentry; 1124 struct inode *inode = dentry->d_inode; 1125 struct avc_audit_data ad; 1126 int rc; 1127 1128 AVC_AUDIT_DATA_INIT(&ad, FS); 1129 ad.u.fs.mnt = mnt; 1130 ad.u.fs.dentry = dentry; 1131 1132 if (tsec->sid != fsec->sid) { 1133 rc = avc_has_perm(tsec->sid, fsec->sid, 1134 SECCLASS_FD, 1135 FD__USE, 1136 &ad); 1137 if (rc) 1138 return rc; 1139 } 1140 1141 /* av is zero if only checking access to the descriptor. */ 1142 if (av) 1143 return inode_has_perm(tsk, inode, av, &ad); 1144 1145 return 0; 1146 } 1147 1148 /* Check whether a task can create a file. */ 1149 static int may_create(struct inode *dir, 1150 struct dentry *dentry, 1151 u16 tclass) 1152 { 1153 struct task_security_struct *tsec; 1154 struct inode_security_struct *dsec; 1155 struct superblock_security_struct *sbsec; 1156 u32 newsid; 1157 struct avc_audit_data ad; 1158 int rc; 1159 1160 tsec = current->security; 1161 dsec = dir->i_security; 1162 sbsec = dir->i_sb->s_security; 1163 1164 AVC_AUDIT_DATA_INIT(&ad, FS); 1165 ad.u.fs.dentry = dentry; 1166 1167 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, 1168 DIR__ADD_NAME | DIR__SEARCH, 1169 &ad); 1170 if (rc) 1171 return rc; 1172 1173 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1174 newsid = tsec->create_sid; 1175 } else { 1176 rc = security_transition_sid(tsec->sid, dsec->sid, tclass, 1177 &newsid); 1178 if (rc) 1179 return rc; 1180 } 1181 1182 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad); 1183 if (rc) 1184 return rc; 1185 1186 return avc_has_perm(newsid, sbsec->sid, 1187 SECCLASS_FILESYSTEM, 1188 FILESYSTEM__ASSOCIATE, &ad); 1189 } 1190 1191 /* Check whether a task can create a key. */ 1192 static int may_create_key(u32 ksid, 1193 struct task_struct *ctx) 1194 { 1195 struct task_security_struct *tsec; 1196 1197 tsec = ctx->security; 1198 1199 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1200 } 1201 1202 #define MAY_LINK 0 1203 #define MAY_UNLINK 1 1204 #define MAY_RMDIR 2 1205 1206 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1207 static int may_link(struct inode *dir, 1208 struct dentry *dentry, 1209 int kind) 1210 1211 { 1212 struct task_security_struct *tsec; 1213 struct inode_security_struct *dsec, *isec; 1214 struct avc_audit_data ad; 1215 u32 av; 1216 int rc; 1217 1218 tsec = current->security; 1219 dsec = dir->i_security; 1220 isec = dentry->d_inode->i_security; 1221 1222 AVC_AUDIT_DATA_INIT(&ad, FS); 1223 ad.u.fs.dentry = dentry; 1224 1225 av = DIR__SEARCH; 1226 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1227 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad); 1228 if (rc) 1229 return rc; 1230 1231 switch (kind) { 1232 case MAY_LINK: 1233 av = FILE__LINK; 1234 break; 1235 case MAY_UNLINK: 1236 av = FILE__UNLINK; 1237 break; 1238 case MAY_RMDIR: 1239 av = DIR__RMDIR; 1240 break; 1241 default: 1242 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind); 1243 return 0; 1244 } 1245 1246 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad); 1247 return rc; 1248 } 1249 1250 static inline int may_rename(struct inode *old_dir, 1251 struct dentry *old_dentry, 1252 struct inode *new_dir, 1253 struct dentry *new_dentry) 1254 { 1255 struct task_security_struct *tsec; 1256 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1257 struct avc_audit_data ad; 1258 u32 av; 1259 int old_is_dir, new_is_dir; 1260 int rc; 1261 1262 tsec = current->security; 1263 old_dsec = old_dir->i_security; 1264 old_isec = old_dentry->d_inode->i_security; 1265 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1266 new_dsec = new_dir->i_security; 1267 1268 AVC_AUDIT_DATA_INIT(&ad, FS); 1269 1270 ad.u.fs.dentry = old_dentry; 1271 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR, 1272 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1273 if (rc) 1274 return rc; 1275 rc = avc_has_perm(tsec->sid, old_isec->sid, 1276 old_isec->sclass, FILE__RENAME, &ad); 1277 if (rc) 1278 return rc; 1279 if (old_is_dir && new_dir != old_dir) { 1280 rc = avc_has_perm(tsec->sid, old_isec->sid, 1281 old_isec->sclass, DIR__REPARENT, &ad); 1282 if (rc) 1283 return rc; 1284 } 1285 1286 ad.u.fs.dentry = new_dentry; 1287 av = DIR__ADD_NAME | DIR__SEARCH; 1288 if (new_dentry->d_inode) 1289 av |= DIR__REMOVE_NAME; 1290 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1291 if (rc) 1292 return rc; 1293 if (new_dentry->d_inode) { 1294 new_isec = new_dentry->d_inode->i_security; 1295 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1296 rc = avc_has_perm(tsec->sid, new_isec->sid, 1297 new_isec->sclass, 1298 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1299 if (rc) 1300 return rc; 1301 } 1302 1303 return 0; 1304 } 1305 1306 /* Check whether a task can perform a filesystem operation. */ 1307 static int superblock_has_perm(struct task_struct *tsk, 1308 struct super_block *sb, 1309 u32 perms, 1310 struct avc_audit_data *ad) 1311 { 1312 struct task_security_struct *tsec; 1313 struct superblock_security_struct *sbsec; 1314 1315 tsec = tsk->security; 1316 sbsec = sb->s_security; 1317 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 1318 perms, ad); 1319 } 1320 1321 /* Convert a Linux mode and permission mask to an access vector. */ 1322 static inline u32 file_mask_to_av(int mode, int mask) 1323 { 1324 u32 av = 0; 1325 1326 if ((mode & S_IFMT) != S_IFDIR) { 1327 if (mask & MAY_EXEC) 1328 av |= FILE__EXECUTE; 1329 if (mask & MAY_READ) 1330 av |= FILE__READ; 1331 1332 if (mask & MAY_APPEND) 1333 av |= FILE__APPEND; 1334 else if (mask & MAY_WRITE) 1335 av |= FILE__WRITE; 1336 1337 } else { 1338 if (mask & MAY_EXEC) 1339 av |= DIR__SEARCH; 1340 if (mask & MAY_WRITE) 1341 av |= DIR__WRITE; 1342 if (mask & MAY_READ) 1343 av |= DIR__READ; 1344 } 1345 1346 return av; 1347 } 1348 1349 /* Convert a Linux file to an access vector. */ 1350 static inline u32 file_to_av(struct file *file) 1351 { 1352 u32 av = 0; 1353 1354 if (file->f_mode & FMODE_READ) 1355 av |= FILE__READ; 1356 if (file->f_mode & FMODE_WRITE) { 1357 if (file->f_flags & O_APPEND) 1358 av |= FILE__APPEND; 1359 else 1360 av |= FILE__WRITE; 1361 } 1362 1363 return av; 1364 } 1365 1366 /* Hook functions begin here. */ 1367 1368 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child) 1369 { 1370 struct task_security_struct *psec = parent->security; 1371 struct task_security_struct *csec = child->security; 1372 int rc; 1373 1374 rc = secondary_ops->ptrace(parent,child); 1375 if (rc) 1376 return rc; 1377 1378 rc = task_has_perm(parent, child, PROCESS__PTRACE); 1379 /* Save the SID of the tracing process for later use in apply_creds. */ 1380 if (!(child->ptrace & PT_PTRACED) && !rc) 1381 csec->ptrace_sid = psec->sid; 1382 return rc; 1383 } 1384 1385 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1386 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1387 { 1388 int error; 1389 1390 error = task_has_perm(current, target, PROCESS__GETCAP); 1391 if (error) 1392 return error; 1393 1394 return secondary_ops->capget(target, effective, inheritable, permitted); 1395 } 1396 1397 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective, 1398 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1399 { 1400 int error; 1401 1402 error = secondary_ops->capset_check(target, effective, inheritable, permitted); 1403 if (error) 1404 return error; 1405 1406 return task_has_perm(current, target, PROCESS__SETCAP); 1407 } 1408 1409 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective, 1410 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1411 { 1412 secondary_ops->capset_set(target, effective, inheritable, permitted); 1413 } 1414 1415 static int selinux_capable(struct task_struct *tsk, int cap) 1416 { 1417 int rc; 1418 1419 rc = secondary_ops->capable(tsk, cap); 1420 if (rc) 1421 return rc; 1422 1423 return task_has_capability(tsk,cap); 1424 } 1425 1426 static int selinux_sysctl(ctl_table *table, int op) 1427 { 1428 int error = 0; 1429 u32 av; 1430 struct task_security_struct *tsec; 1431 u32 tsid; 1432 int rc; 1433 1434 rc = secondary_ops->sysctl(table, op); 1435 if (rc) 1436 return rc; 1437 1438 tsec = current->security; 1439 1440 rc = selinux_proc_get_sid(table->de, (op == 001) ? 1441 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1442 if (rc) { 1443 /* Default to the well-defined sysctl SID. */ 1444 tsid = SECINITSID_SYSCTL; 1445 } 1446 1447 /* The op values are "defined" in sysctl.c, thereby creating 1448 * a bad coupling between this module and sysctl.c */ 1449 if(op == 001) { 1450 error = avc_has_perm(tsec->sid, tsid, 1451 SECCLASS_DIR, DIR__SEARCH, NULL); 1452 } else { 1453 av = 0; 1454 if (op & 004) 1455 av |= FILE__READ; 1456 if (op & 002) 1457 av |= FILE__WRITE; 1458 if (av) 1459 error = avc_has_perm(tsec->sid, tsid, 1460 SECCLASS_FILE, av, NULL); 1461 } 1462 1463 return error; 1464 } 1465 1466 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1467 { 1468 int rc = 0; 1469 1470 if (!sb) 1471 return 0; 1472 1473 switch (cmds) { 1474 case Q_SYNC: 1475 case Q_QUOTAON: 1476 case Q_QUOTAOFF: 1477 case Q_SETINFO: 1478 case Q_SETQUOTA: 1479 rc = superblock_has_perm(current, 1480 sb, 1481 FILESYSTEM__QUOTAMOD, NULL); 1482 break; 1483 case Q_GETFMT: 1484 case Q_GETINFO: 1485 case Q_GETQUOTA: 1486 rc = superblock_has_perm(current, 1487 sb, 1488 FILESYSTEM__QUOTAGET, NULL); 1489 break; 1490 default: 1491 rc = 0; /* let the kernel handle invalid cmds */ 1492 break; 1493 } 1494 return rc; 1495 } 1496 1497 static int selinux_quota_on(struct dentry *dentry) 1498 { 1499 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON); 1500 } 1501 1502 static int selinux_syslog(int type) 1503 { 1504 int rc; 1505 1506 rc = secondary_ops->syslog(type); 1507 if (rc) 1508 return rc; 1509 1510 switch (type) { 1511 case 3: /* Read last kernel messages */ 1512 case 10: /* Return size of the log buffer */ 1513 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1514 break; 1515 case 6: /* Disable logging to console */ 1516 case 7: /* Enable logging to console */ 1517 case 8: /* Set level of messages printed to console */ 1518 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1519 break; 1520 case 0: /* Close log */ 1521 case 1: /* Open log */ 1522 case 2: /* Read from log */ 1523 case 4: /* Read/clear last kernel messages */ 1524 case 5: /* Clear ring buffer */ 1525 default: 1526 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1527 break; 1528 } 1529 return rc; 1530 } 1531 1532 /* 1533 * Check that a process has enough memory to allocate a new virtual 1534 * mapping. 0 means there is enough memory for the allocation to 1535 * succeed and -ENOMEM implies there is not. 1536 * 1537 * Note that secondary_ops->capable and task_has_perm_noaudit return 0 1538 * if the capability is granted, but __vm_enough_memory requires 1 if 1539 * the capability is granted. 1540 * 1541 * Do not audit the selinux permission check, as this is applied to all 1542 * processes that allocate mappings. 1543 */ 1544 static int selinux_vm_enough_memory(long pages) 1545 { 1546 int rc, cap_sys_admin = 0; 1547 struct task_security_struct *tsec = current->security; 1548 1549 rc = secondary_ops->capable(current, CAP_SYS_ADMIN); 1550 if (rc == 0) 1551 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, 1552 SECCLASS_CAPABILITY, 1553 CAP_TO_MASK(CAP_SYS_ADMIN), 1554 NULL); 1555 1556 if (rc == 0) 1557 cap_sys_admin = 1; 1558 1559 return __vm_enough_memory(pages, cap_sys_admin); 1560 } 1561 1562 /* binprm security operations */ 1563 1564 static int selinux_bprm_alloc_security(struct linux_binprm *bprm) 1565 { 1566 struct bprm_security_struct *bsec; 1567 1568 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL); 1569 if (!bsec) 1570 return -ENOMEM; 1571 1572 bsec->bprm = bprm; 1573 bsec->sid = SECINITSID_UNLABELED; 1574 bsec->set = 0; 1575 1576 bprm->security = bsec; 1577 return 0; 1578 } 1579 1580 static int selinux_bprm_set_security(struct linux_binprm *bprm) 1581 { 1582 struct task_security_struct *tsec; 1583 struct inode *inode = bprm->file->f_path.dentry->d_inode; 1584 struct inode_security_struct *isec; 1585 struct bprm_security_struct *bsec; 1586 u32 newsid; 1587 struct avc_audit_data ad; 1588 int rc; 1589 1590 rc = secondary_ops->bprm_set_security(bprm); 1591 if (rc) 1592 return rc; 1593 1594 bsec = bprm->security; 1595 1596 if (bsec->set) 1597 return 0; 1598 1599 tsec = current->security; 1600 isec = inode->i_security; 1601 1602 /* Default to the current task SID. */ 1603 bsec->sid = tsec->sid; 1604 1605 /* Reset fs, key, and sock SIDs on execve. */ 1606 tsec->create_sid = 0; 1607 tsec->keycreate_sid = 0; 1608 tsec->sockcreate_sid = 0; 1609 1610 if (tsec->exec_sid) { 1611 newsid = tsec->exec_sid; 1612 /* Reset exec SID on execve. */ 1613 tsec->exec_sid = 0; 1614 } else { 1615 /* Check for a default transition on this program. */ 1616 rc = security_transition_sid(tsec->sid, isec->sid, 1617 SECCLASS_PROCESS, &newsid); 1618 if (rc) 1619 return rc; 1620 } 1621 1622 AVC_AUDIT_DATA_INIT(&ad, FS); 1623 ad.u.fs.mnt = bprm->file->f_path.mnt; 1624 ad.u.fs.dentry = bprm->file->f_path.dentry; 1625 1626 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 1627 newsid = tsec->sid; 1628 1629 if (tsec->sid == newsid) { 1630 rc = avc_has_perm(tsec->sid, isec->sid, 1631 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 1632 if (rc) 1633 return rc; 1634 } else { 1635 /* Check permissions for the transition. */ 1636 rc = avc_has_perm(tsec->sid, newsid, 1637 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 1638 if (rc) 1639 return rc; 1640 1641 rc = avc_has_perm(newsid, isec->sid, 1642 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 1643 if (rc) 1644 return rc; 1645 1646 /* Clear any possibly unsafe personality bits on exec: */ 1647 current->personality &= ~PER_CLEAR_ON_SETID; 1648 1649 /* Set the security field to the new SID. */ 1650 bsec->sid = newsid; 1651 } 1652 1653 bsec->set = 1; 1654 return 0; 1655 } 1656 1657 static int selinux_bprm_check_security (struct linux_binprm *bprm) 1658 { 1659 return secondary_ops->bprm_check_security(bprm); 1660 } 1661 1662 1663 static int selinux_bprm_secureexec (struct linux_binprm *bprm) 1664 { 1665 struct task_security_struct *tsec = current->security; 1666 int atsecure = 0; 1667 1668 if (tsec->osid != tsec->sid) { 1669 /* Enable secure mode for SIDs transitions unless 1670 the noatsecure permission is granted between 1671 the two SIDs, i.e. ahp returns 0. */ 1672 atsecure = avc_has_perm(tsec->osid, tsec->sid, 1673 SECCLASS_PROCESS, 1674 PROCESS__NOATSECURE, NULL); 1675 } 1676 1677 return (atsecure || secondary_ops->bprm_secureexec(bprm)); 1678 } 1679 1680 static void selinux_bprm_free_security(struct linux_binprm *bprm) 1681 { 1682 kfree(bprm->security); 1683 bprm->security = NULL; 1684 } 1685 1686 extern struct vfsmount *selinuxfs_mount; 1687 extern struct dentry *selinux_null; 1688 1689 /* Derived from fs/exec.c:flush_old_files. */ 1690 static inline void flush_unauthorized_files(struct files_struct * files) 1691 { 1692 struct avc_audit_data ad; 1693 struct file *file, *devnull = NULL; 1694 struct tty_struct *tty; 1695 struct fdtable *fdt; 1696 long j = -1; 1697 int drop_tty = 0; 1698 1699 mutex_lock(&tty_mutex); 1700 tty = get_current_tty(); 1701 if (tty) { 1702 file_list_lock(); 1703 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list); 1704 if (file) { 1705 /* Revalidate access to controlling tty. 1706 Use inode_has_perm on the tty inode directly rather 1707 than using file_has_perm, as this particular open 1708 file may belong to another process and we are only 1709 interested in the inode-based check here. */ 1710 struct inode *inode = file->f_path.dentry->d_inode; 1711 if (inode_has_perm(current, inode, 1712 FILE__READ | FILE__WRITE, NULL)) { 1713 drop_tty = 1; 1714 } 1715 } 1716 file_list_unlock(); 1717 1718 /* Reset controlling tty. */ 1719 if (drop_tty) 1720 proc_set_tty(current, NULL); 1721 } 1722 mutex_unlock(&tty_mutex); 1723 1724 /* Revalidate access to inherited open files. */ 1725 1726 AVC_AUDIT_DATA_INIT(&ad,FS); 1727 1728 spin_lock(&files->file_lock); 1729 for (;;) { 1730 unsigned long set, i; 1731 int fd; 1732 1733 j++; 1734 i = j * __NFDBITS; 1735 fdt = files_fdtable(files); 1736 if (i >= fdt->max_fds) 1737 break; 1738 set = fdt->open_fds->fds_bits[j]; 1739 if (!set) 1740 continue; 1741 spin_unlock(&files->file_lock); 1742 for ( ; set ; i++,set >>= 1) { 1743 if (set & 1) { 1744 file = fget(i); 1745 if (!file) 1746 continue; 1747 if (file_has_perm(current, 1748 file, 1749 file_to_av(file))) { 1750 sys_close(i); 1751 fd = get_unused_fd(); 1752 if (fd != i) { 1753 if (fd >= 0) 1754 put_unused_fd(fd); 1755 fput(file); 1756 continue; 1757 } 1758 if (devnull) { 1759 get_file(devnull); 1760 } else { 1761 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR); 1762 if (IS_ERR(devnull)) { 1763 devnull = NULL; 1764 put_unused_fd(fd); 1765 fput(file); 1766 continue; 1767 } 1768 } 1769 fd_install(fd, devnull); 1770 } 1771 fput(file); 1772 } 1773 } 1774 spin_lock(&files->file_lock); 1775 1776 } 1777 spin_unlock(&files->file_lock); 1778 } 1779 1780 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 1781 { 1782 struct task_security_struct *tsec; 1783 struct bprm_security_struct *bsec; 1784 u32 sid; 1785 int rc; 1786 1787 secondary_ops->bprm_apply_creds(bprm, unsafe); 1788 1789 tsec = current->security; 1790 1791 bsec = bprm->security; 1792 sid = bsec->sid; 1793 1794 tsec->osid = tsec->sid; 1795 bsec->unsafe = 0; 1796 if (tsec->sid != sid) { 1797 /* Check for shared state. If not ok, leave SID 1798 unchanged and kill. */ 1799 if (unsafe & LSM_UNSAFE_SHARE) { 1800 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 1801 PROCESS__SHARE, NULL); 1802 if (rc) { 1803 bsec->unsafe = 1; 1804 return; 1805 } 1806 } 1807 1808 /* Check for ptracing, and update the task SID if ok. 1809 Otherwise, leave SID unchanged and kill. */ 1810 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 1811 rc = avc_has_perm(tsec->ptrace_sid, sid, 1812 SECCLASS_PROCESS, PROCESS__PTRACE, 1813 NULL); 1814 if (rc) { 1815 bsec->unsafe = 1; 1816 return; 1817 } 1818 } 1819 tsec->sid = sid; 1820 } 1821 } 1822 1823 /* 1824 * called after apply_creds without the task lock held 1825 */ 1826 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm) 1827 { 1828 struct task_security_struct *tsec; 1829 struct rlimit *rlim, *initrlim; 1830 struct itimerval itimer; 1831 struct bprm_security_struct *bsec; 1832 int rc, i; 1833 1834 tsec = current->security; 1835 bsec = bprm->security; 1836 1837 if (bsec->unsafe) { 1838 force_sig_specific(SIGKILL, current); 1839 return; 1840 } 1841 if (tsec->osid == tsec->sid) 1842 return; 1843 1844 /* Close files for which the new task SID is not authorized. */ 1845 flush_unauthorized_files(current->files); 1846 1847 /* Check whether the new SID can inherit signal state 1848 from the old SID. If not, clear itimers to avoid 1849 subsequent signal generation and flush and unblock 1850 signals. This must occur _after_ the task SID has 1851 been updated so that any kill done after the flush 1852 will be checked against the new SID. */ 1853 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 1854 PROCESS__SIGINH, NULL); 1855 if (rc) { 1856 memset(&itimer, 0, sizeof itimer); 1857 for (i = 0; i < 3; i++) 1858 do_setitimer(i, &itimer, NULL); 1859 flush_signals(current); 1860 spin_lock_irq(¤t->sighand->siglock); 1861 flush_signal_handlers(current, 1); 1862 sigemptyset(¤t->blocked); 1863 recalc_sigpending(); 1864 spin_unlock_irq(¤t->sighand->siglock); 1865 } 1866 1867 /* Check whether the new SID can inherit resource limits 1868 from the old SID. If not, reset all soft limits to 1869 the lower of the current task's hard limit and the init 1870 task's soft limit. Note that the setting of hard limits 1871 (even to lower them) can be controlled by the setrlimit 1872 check. The inclusion of the init task's soft limit into 1873 the computation is to avoid resetting soft limits higher 1874 than the default soft limit for cases where the default 1875 is lower than the hard limit, e.g. RLIMIT_CORE or 1876 RLIMIT_STACK.*/ 1877 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 1878 PROCESS__RLIMITINH, NULL); 1879 if (rc) { 1880 for (i = 0; i < RLIM_NLIMITS; i++) { 1881 rlim = current->signal->rlim + i; 1882 initrlim = init_task.signal->rlim+i; 1883 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur); 1884 } 1885 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 1886 /* 1887 * This will cause RLIMIT_CPU calculations 1888 * to be refigured. 1889 */ 1890 current->it_prof_expires = jiffies_to_cputime(1); 1891 } 1892 } 1893 1894 /* Wake up the parent if it is waiting so that it can 1895 recheck wait permission to the new task SID. */ 1896 wake_up_interruptible(¤t->parent->signal->wait_chldexit); 1897 } 1898 1899 /* superblock security operations */ 1900 1901 static int selinux_sb_alloc_security(struct super_block *sb) 1902 { 1903 return superblock_alloc_security(sb); 1904 } 1905 1906 static void selinux_sb_free_security(struct super_block *sb) 1907 { 1908 superblock_free_security(sb); 1909 } 1910 1911 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 1912 { 1913 if (plen > olen) 1914 return 0; 1915 1916 return !memcmp(prefix, option, plen); 1917 } 1918 1919 static inline int selinux_option(char *option, int len) 1920 { 1921 return (match_prefix("context=", sizeof("context=")-1, option, len) || 1922 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) || 1923 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) || 1924 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len)); 1925 } 1926 1927 static inline void take_option(char **to, char *from, int *first, int len) 1928 { 1929 if (!*first) { 1930 **to = ','; 1931 *to += 1; 1932 } else 1933 *first = 0; 1934 memcpy(*to, from, len); 1935 *to += len; 1936 } 1937 1938 static inline void take_selinux_option(char **to, char *from, int *first, 1939 int len) 1940 { 1941 int current_size = 0; 1942 1943 if (!*first) { 1944 **to = '|'; 1945 *to += 1; 1946 } 1947 else 1948 *first = 0; 1949 1950 while (current_size < len) { 1951 if (*from != '"') { 1952 **to = *from; 1953 *to += 1; 1954 } 1955 from += 1; 1956 current_size += 1; 1957 } 1958 } 1959 1960 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy) 1961 { 1962 int fnosec, fsec, rc = 0; 1963 char *in_save, *in_curr, *in_end; 1964 char *sec_curr, *nosec_save, *nosec; 1965 int open_quote = 0; 1966 1967 in_curr = orig; 1968 sec_curr = copy; 1969 1970 /* Binary mount data: just copy */ 1971 if (type->fs_flags & FS_BINARY_MOUNTDATA) { 1972 copy_page(sec_curr, in_curr); 1973 goto out; 1974 } 1975 1976 nosec = (char *)get_zeroed_page(GFP_KERNEL); 1977 if (!nosec) { 1978 rc = -ENOMEM; 1979 goto out; 1980 } 1981 1982 nosec_save = nosec; 1983 fnosec = fsec = 1; 1984 in_save = in_end = orig; 1985 1986 do { 1987 if (*in_end == '"') 1988 open_quote = !open_quote; 1989 if ((*in_end == ',' && open_quote == 0) || 1990 *in_end == '\0') { 1991 int len = in_end - in_curr; 1992 1993 if (selinux_option(in_curr, len)) 1994 take_selinux_option(&sec_curr, in_curr, &fsec, len); 1995 else 1996 take_option(&nosec, in_curr, &fnosec, len); 1997 1998 in_curr = in_end + 1; 1999 } 2000 } while (*in_end++); 2001 2002 strcpy(in_save, nosec_save); 2003 free_page((unsigned long)nosec_save); 2004 out: 2005 return rc; 2006 } 2007 2008 static int selinux_sb_kern_mount(struct super_block *sb, void *data) 2009 { 2010 struct avc_audit_data ad; 2011 int rc; 2012 2013 rc = superblock_doinit(sb, data); 2014 if (rc) 2015 return rc; 2016 2017 AVC_AUDIT_DATA_INIT(&ad,FS); 2018 ad.u.fs.dentry = sb->s_root; 2019 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad); 2020 } 2021 2022 static int selinux_sb_statfs(struct dentry *dentry) 2023 { 2024 struct avc_audit_data ad; 2025 2026 AVC_AUDIT_DATA_INIT(&ad,FS); 2027 ad.u.fs.dentry = dentry->d_sb->s_root; 2028 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2029 } 2030 2031 static int selinux_mount(char * dev_name, 2032 struct nameidata *nd, 2033 char * type, 2034 unsigned long flags, 2035 void * data) 2036 { 2037 int rc; 2038 2039 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data); 2040 if (rc) 2041 return rc; 2042 2043 if (flags & MS_REMOUNT) 2044 return superblock_has_perm(current, nd->mnt->mnt_sb, 2045 FILESYSTEM__REMOUNT, NULL); 2046 else 2047 return dentry_has_perm(current, nd->mnt, nd->dentry, 2048 FILE__MOUNTON); 2049 } 2050 2051 static int selinux_umount(struct vfsmount *mnt, int flags) 2052 { 2053 int rc; 2054 2055 rc = secondary_ops->sb_umount(mnt, flags); 2056 if (rc) 2057 return rc; 2058 2059 return superblock_has_perm(current,mnt->mnt_sb, 2060 FILESYSTEM__UNMOUNT,NULL); 2061 } 2062 2063 /* inode security operations */ 2064 2065 static int selinux_inode_alloc_security(struct inode *inode) 2066 { 2067 return inode_alloc_security(inode); 2068 } 2069 2070 static void selinux_inode_free_security(struct inode *inode) 2071 { 2072 inode_free_security(inode); 2073 } 2074 2075 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2076 char **name, void **value, 2077 size_t *len) 2078 { 2079 struct task_security_struct *tsec; 2080 struct inode_security_struct *dsec; 2081 struct superblock_security_struct *sbsec; 2082 u32 newsid, clen; 2083 int rc; 2084 char *namep = NULL, *context; 2085 2086 tsec = current->security; 2087 dsec = dir->i_security; 2088 sbsec = dir->i_sb->s_security; 2089 2090 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2091 newsid = tsec->create_sid; 2092 } else { 2093 rc = security_transition_sid(tsec->sid, dsec->sid, 2094 inode_mode_to_security_class(inode->i_mode), 2095 &newsid); 2096 if (rc) { 2097 printk(KERN_WARNING "%s: " 2098 "security_transition_sid failed, rc=%d (dev=%s " 2099 "ino=%ld)\n", 2100 __FUNCTION__, 2101 -rc, inode->i_sb->s_id, inode->i_ino); 2102 return rc; 2103 } 2104 } 2105 2106 /* Possibly defer initialization to selinux_complete_init. */ 2107 if (sbsec->initialized) { 2108 struct inode_security_struct *isec = inode->i_security; 2109 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2110 isec->sid = newsid; 2111 isec->initialized = 1; 2112 } 2113 2114 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2115 return -EOPNOTSUPP; 2116 2117 if (name) { 2118 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL); 2119 if (!namep) 2120 return -ENOMEM; 2121 *name = namep; 2122 } 2123 2124 if (value && len) { 2125 rc = security_sid_to_context(newsid, &context, &clen); 2126 if (rc) { 2127 kfree(namep); 2128 return rc; 2129 } 2130 *value = context; 2131 *len = clen; 2132 } 2133 2134 return 0; 2135 } 2136 2137 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2138 { 2139 return may_create(dir, dentry, SECCLASS_FILE); 2140 } 2141 2142 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2143 { 2144 int rc; 2145 2146 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry); 2147 if (rc) 2148 return rc; 2149 return may_link(dir, old_dentry, MAY_LINK); 2150 } 2151 2152 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2153 { 2154 int rc; 2155 2156 rc = secondary_ops->inode_unlink(dir, dentry); 2157 if (rc) 2158 return rc; 2159 return may_link(dir, dentry, MAY_UNLINK); 2160 } 2161 2162 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2163 { 2164 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2165 } 2166 2167 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2168 { 2169 return may_create(dir, dentry, SECCLASS_DIR); 2170 } 2171 2172 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2173 { 2174 return may_link(dir, dentry, MAY_RMDIR); 2175 } 2176 2177 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2178 { 2179 int rc; 2180 2181 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev); 2182 if (rc) 2183 return rc; 2184 2185 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2186 } 2187 2188 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2189 struct inode *new_inode, struct dentry *new_dentry) 2190 { 2191 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2192 } 2193 2194 static int selinux_inode_readlink(struct dentry *dentry) 2195 { 2196 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2197 } 2198 2199 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2200 { 2201 int rc; 2202 2203 rc = secondary_ops->inode_follow_link(dentry,nameidata); 2204 if (rc) 2205 return rc; 2206 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2207 } 2208 2209 static int selinux_inode_permission(struct inode *inode, int mask, 2210 struct nameidata *nd) 2211 { 2212 int rc; 2213 2214 rc = secondary_ops->inode_permission(inode, mask, nd); 2215 if (rc) 2216 return rc; 2217 2218 if (!mask) { 2219 /* No permission to check. Existence test. */ 2220 return 0; 2221 } 2222 2223 return inode_has_perm(current, inode, 2224 file_mask_to_av(inode->i_mode, mask), NULL); 2225 } 2226 2227 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2228 { 2229 int rc; 2230 2231 rc = secondary_ops->inode_setattr(dentry, iattr); 2232 if (rc) 2233 return rc; 2234 2235 if (iattr->ia_valid & ATTR_FORCE) 2236 return 0; 2237 2238 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2239 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2240 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2241 2242 return dentry_has_perm(current, NULL, dentry, FILE__WRITE); 2243 } 2244 2245 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2246 { 2247 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR); 2248 } 2249 2250 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags) 2251 { 2252 struct task_security_struct *tsec = current->security; 2253 struct inode *inode = dentry->d_inode; 2254 struct inode_security_struct *isec = inode->i_security; 2255 struct superblock_security_struct *sbsec; 2256 struct avc_audit_data ad; 2257 u32 newsid; 2258 int rc = 0; 2259 2260 if (strcmp(name, XATTR_NAME_SELINUX)) { 2261 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2262 sizeof XATTR_SECURITY_PREFIX - 1) && 2263 !capable(CAP_SYS_ADMIN)) { 2264 /* A different attribute in the security namespace. 2265 Restrict to administrator. */ 2266 return -EPERM; 2267 } 2268 2269 /* Not an attribute we recognize, so just check the 2270 ordinary setattr permission. */ 2271 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2272 } 2273 2274 sbsec = inode->i_sb->s_security; 2275 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2276 return -EOPNOTSUPP; 2277 2278 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER)) 2279 return -EPERM; 2280 2281 AVC_AUDIT_DATA_INIT(&ad,FS); 2282 ad.u.fs.dentry = dentry; 2283 2284 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, 2285 FILE__RELABELFROM, &ad); 2286 if (rc) 2287 return rc; 2288 2289 rc = security_context_to_sid(value, size, &newsid); 2290 if (rc) 2291 return rc; 2292 2293 rc = avc_has_perm(tsec->sid, newsid, isec->sclass, 2294 FILE__RELABELTO, &ad); 2295 if (rc) 2296 return rc; 2297 2298 rc = security_validate_transition(isec->sid, newsid, tsec->sid, 2299 isec->sclass); 2300 if (rc) 2301 return rc; 2302 2303 return avc_has_perm(newsid, 2304 sbsec->sid, 2305 SECCLASS_FILESYSTEM, 2306 FILESYSTEM__ASSOCIATE, 2307 &ad); 2308 } 2309 2310 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name, 2311 void *value, size_t size, int flags) 2312 { 2313 struct inode *inode = dentry->d_inode; 2314 struct inode_security_struct *isec = inode->i_security; 2315 u32 newsid; 2316 int rc; 2317 2318 if (strcmp(name, XATTR_NAME_SELINUX)) { 2319 /* Not an attribute we recognize, so nothing to do. */ 2320 return; 2321 } 2322 2323 rc = security_context_to_sid(value, size, &newsid); 2324 if (rc) { 2325 printk(KERN_WARNING "%s: unable to obtain SID for context " 2326 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc); 2327 return; 2328 } 2329 2330 isec->sid = newsid; 2331 return; 2332 } 2333 2334 static int selinux_inode_getxattr (struct dentry *dentry, char *name) 2335 { 2336 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2337 } 2338 2339 static int selinux_inode_listxattr (struct dentry *dentry) 2340 { 2341 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2342 } 2343 2344 static int selinux_inode_removexattr (struct dentry *dentry, char *name) 2345 { 2346 if (strcmp(name, XATTR_NAME_SELINUX)) { 2347 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2348 sizeof XATTR_SECURITY_PREFIX - 1) && 2349 !capable(CAP_SYS_ADMIN)) { 2350 /* A different attribute in the security namespace. 2351 Restrict to administrator. */ 2352 return -EPERM; 2353 } 2354 2355 /* Not an attribute we recognize, so just check the 2356 ordinary setattr permission. Might want a separate 2357 permission for removexattr. */ 2358 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2359 } 2360 2361 /* No one is allowed to remove a SELinux security label. 2362 You can change the label, but all data must be labeled. */ 2363 return -EACCES; 2364 } 2365 2366 static const char *selinux_inode_xattr_getsuffix(void) 2367 { 2368 return XATTR_SELINUX_SUFFIX; 2369 } 2370 2371 /* 2372 * Copy the in-core inode security context value to the user. If the 2373 * getxattr() prior to this succeeded, check to see if we need to 2374 * canonicalize the value to be finally returned to the user. 2375 * 2376 * Permission check is handled by selinux_inode_getxattr hook. 2377 */ 2378 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2379 { 2380 struct inode_security_struct *isec = inode->i_security; 2381 2382 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2383 return -EOPNOTSUPP; 2384 2385 return selinux_getsecurity(isec->sid, buffer, size); 2386 } 2387 2388 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2389 const void *value, size_t size, int flags) 2390 { 2391 struct inode_security_struct *isec = inode->i_security; 2392 u32 newsid; 2393 int rc; 2394 2395 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2396 return -EOPNOTSUPP; 2397 2398 if (!value || !size) 2399 return -EACCES; 2400 2401 rc = security_context_to_sid((void*)value, size, &newsid); 2402 if (rc) 2403 return rc; 2404 2405 isec->sid = newsid; 2406 return 0; 2407 } 2408 2409 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2410 { 2411 const int len = sizeof(XATTR_NAME_SELINUX); 2412 if (buffer && len <= buffer_size) 2413 memcpy(buffer, XATTR_NAME_SELINUX, len); 2414 return len; 2415 } 2416 2417 /* file security operations */ 2418 2419 static int selinux_file_permission(struct file *file, int mask) 2420 { 2421 int rc; 2422 struct inode *inode = file->f_path.dentry->d_inode; 2423 2424 if (!mask) { 2425 /* No permission to check. Existence test. */ 2426 return 0; 2427 } 2428 2429 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2430 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2431 mask |= MAY_APPEND; 2432 2433 rc = file_has_perm(current, file, 2434 file_mask_to_av(inode->i_mode, mask)); 2435 if (rc) 2436 return rc; 2437 2438 return selinux_netlbl_inode_permission(inode, mask); 2439 } 2440 2441 static int selinux_file_alloc_security(struct file *file) 2442 { 2443 return file_alloc_security(file); 2444 } 2445 2446 static void selinux_file_free_security(struct file *file) 2447 { 2448 file_free_security(file); 2449 } 2450 2451 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2452 unsigned long arg) 2453 { 2454 int error = 0; 2455 2456 switch (cmd) { 2457 case FIONREAD: 2458 /* fall through */ 2459 case FIBMAP: 2460 /* fall through */ 2461 case FIGETBSZ: 2462 /* fall through */ 2463 case EXT2_IOC_GETFLAGS: 2464 /* fall through */ 2465 case EXT2_IOC_GETVERSION: 2466 error = file_has_perm(current, file, FILE__GETATTR); 2467 break; 2468 2469 case EXT2_IOC_SETFLAGS: 2470 /* fall through */ 2471 case EXT2_IOC_SETVERSION: 2472 error = file_has_perm(current, file, FILE__SETATTR); 2473 break; 2474 2475 /* sys_ioctl() checks */ 2476 case FIONBIO: 2477 /* fall through */ 2478 case FIOASYNC: 2479 error = file_has_perm(current, file, 0); 2480 break; 2481 2482 case KDSKBENT: 2483 case KDSKBSENT: 2484 error = task_has_capability(current,CAP_SYS_TTY_CONFIG); 2485 break; 2486 2487 /* default case assumes that the command will go 2488 * to the file's ioctl() function. 2489 */ 2490 default: 2491 error = file_has_perm(current, file, FILE__IOCTL); 2492 2493 } 2494 return error; 2495 } 2496 2497 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2498 { 2499 #ifndef CONFIG_PPC32 2500 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2501 /* 2502 * We are making executable an anonymous mapping or a 2503 * private file mapping that will also be writable. 2504 * This has an additional check. 2505 */ 2506 int rc = task_has_perm(current, current, PROCESS__EXECMEM); 2507 if (rc) 2508 return rc; 2509 } 2510 #endif 2511 2512 if (file) { 2513 /* read access is always possible with a mapping */ 2514 u32 av = FILE__READ; 2515 2516 /* write access only matters if the mapping is shared */ 2517 if (shared && (prot & PROT_WRITE)) 2518 av |= FILE__WRITE; 2519 2520 if (prot & PROT_EXEC) 2521 av |= FILE__EXECUTE; 2522 2523 return file_has_perm(current, file, av); 2524 } 2525 return 0; 2526 } 2527 2528 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2529 unsigned long prot, unsigned long flags) 2530 { 2531 int rc; 2532 2533 rc = secondary_ops->file_mmap(file, reqprot, prot, flags); 2534 if (rc) 2535 return rc; 2536 2537 if (selinux_checkreqprot) 2538 prot = reqprot; 2539 2540 return file_map_prot_check(file, prot, 2541 (flags & MAP_TYPE) == MAP_SHARED); 2542 } 2543 2544 static int selinux_file_mprotect(struct vm_area_struct *vma, 2545 unsigned long reqprot, 2546 unsigned long prot) 2547 { 2548 int rc; 2549 2550 rc = secondary_ops->file_mprotect(vma, reqprot, prot); 2551 if (rc) 2552 return rc; 2553 2554 if (selinux_checkreqprot) 2555 prot = reqprot; 2556 2557 #ifndef CONFIG_PPC32 2558 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 2559 rc = 0; 2560 if (vma->vm_start >= vma->vm_mm->start_brk && 2561 vma->vm_end <= vma->vm_mm->brk) { 2562 rc = task_has_perm(current, current, 2563 PROCESS__EXECHEAP); 2564 } else if (!vma->vm_file && 2565 vma->vm_start <= vma->vm_mm->start_stack && 2566 vma->vm_end >= vma->vm_mm->start_stack) { 2567 rc = task_has_perm(current, current, PROCESS__EXECSTACK); 2568 } else if (vma->vm_file && vma->anon_vma) { 2569 /* 2570 * We are making executable a file mapping that has 2571 * had some COW done. Since pages might have been 2572 * written, check ability to execute the possibly 2573 * modified content. This typically should only 2574 * occur for text relocations. 2575 */ 2576 rc = file_has_perm(current, vma->vm_file, 2577 FILE__EXECMOD); 2578 } 2579 if (rc) 2580 return rc; 2581 } 2582 #endif 2583 2584 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 2585 } 2586 2587 static int selinux_file_lock(struct file *file, unsigned int cmd) 2588 { 2589 return file_has_perm(current, file, FILE__LOCK); 2590 } 2591 2592 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 2593 unsigned long arg) 2594 { 2595 int err = 0; 2596 2597 switch (cmd) { 2598 case F_SETFL: 2599 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 2600 err = -EINVAL; 2601 break; 2602 } 2603 2604 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 2605 err = file_has_perm(current, file,FILE__WRITE); 2606 break; 2607 } 2608 /* fall through */ 2609 case F_SETOWN: 2610 case F_SETSIG: 2611 case F_GETFL: 2612 case F_GETOWN: 2613 case F_GETSIG: 2614 /* Just check FD__USE permission */ 2615 err = file_has_perm(current, file, 0); 2616 break; 2617 case F_GETLK: 2618 case F_SETLK: 2619 case F_SETLKW: 2620 #if BITS_PER_LONG == 32 2621 case F_GETLK64: 2622 case F_SETLK64: 2623 case F_SETLKW64: 2624 #endif 2625 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 2626 err = -EINVAL; 2627 break; 2628 } 2629 err = file_has_perm(current, file, FILE__LOCK); 2630 break; 2631 } 2632 2633 return err; 2634 } 2635 2636 static int selinux_file_set_fowner(struct file *file) 2637 { 2638 struct task_security_struct *tsec; 2639 struct file_security_struct *fsec; 2640 2641 tsec = current->security; 2642 fsec = file->f_security; 2643 fsec->fown_sid = tsec->sid; 2644 2645 return 0; 2646 } 2647 2648 static int selinux_file_send_sigiotask(struct task_struct *tsk, 2649 struct fown_struct *fown, int signum) 2650 { 2651 struct file *file; 2652 u32 perm; 2653 struct task_security_struct *tsec; 2654 struct file_security_struct *fsec; 2655 2656 /* struct fown_struct is never outside the context of a struct file */ 2657 file = (struct file *)((long)fown - offsetof(struct file,f_owner)); 2658 2659 tsec = tsk->security; 2660 fsec = file->f_security; 2661 2662 if (!signum) 2663 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 2664 else 2665 perm = signal_to_av(signum); 2666 2667 return avc_has_perm(fsec->fown_sid, tsec->sid, 2668 SECCLASS_PROCESS, perm, NULL); 2669 } 2670 2671 static int selinux_file_receive(struct file *file) 2672 { 2673 return file_has_perm(current, file, file_to_av(file)); 2674 } 2675 2676 /* task security operations */ 2677 2678 static int selinux_task_create(unsigned long clone_flags) 2679 { 2680 int rc; 2681 2682 rc = secondary_ops->task_create(clone_flags); 2683 if (rc) 2684 return rc; 2685 2686 return task_has_perm(current, current, PROCESS__FORK); 2687 } 2688 2689 static int selinux_task_alloc_security(struct task_struct *tsk) 2690 { 2691 struct task_security_struct *tsec1, *tsec2; 2692 int rc; 2693 2694 tsec1 = current->security; 2695 2696 rc = task_alloc_security(tsk); 2697 if (rc) 2698 return rc; 2699 tsec2 = tsk->security; 2700 2701 tsec2->osid = tsec1->osid; 2702 tsec2->sid = tsec1->sid; 2703 2704 /* Retain the exec, fs, key, and sock SIDs across fork */ 2705 tsec2->exec_sid = tsec1->exec_sid; 2706 tsec2->create_sid = tsec1->create_sid; 2707 tsec2->keycreate_sid = tsec1->keycreate_sid; 2708 tsec2->sockcreate_sid = tsec1->sockcreate_sid; 2709 2710 /* Retain ptracer SID across fork, if any. 2711 This will be reset by the ptrace hook upon any 2712 subsequent ptrace_attach operations. */ 2713 tsec2->ptrace_sid = tsec1->ptrace_sid; 2714 2715 return 0; 2716 } 2717 2718 static void selinux_task_free_security(struct task_struct *tsk) 2719 { 2720 task_free_security(tsk); 2721 } 2722 2723 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 2724 { 2725 /* Since setuid only affects the current process, and 2726 since the SELinux controls are not based on the Linux 2727 identity attributes, SELinux does not need to control 2728 this operation. However, SELinux does control the use 2729 of the CAP_SETUID and CAP_SETGID capabilities using the 2730 capable hook. */ 2731 return 0; 2732 } 2733 2734 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 2735 { 2736 return secondary_ops->task_post_setuid(id0,id1,id2,flags); 2737 } 2738 2739 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 2740 { 2741 /* See the comment for setuid above. */ 2742 return 0; 2743 } 2744 2745 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 2746 { 2747 return task_has_perm(current, p, PROCESS__SETPGID); 2748 } 2749 2750 static int selinux_task_getpgid(struct task_struct *p) 2751 { 2752 return task_has_perm(current, p, PROCESS__GETPGID); 2753 } 2754 2755 static int selinux_task_getsid(struct task_struct *p) 2756 { 2757 return task_has_perm(current, p, PROCESS__GETSESSION); 2758 } 2759 2760 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 2761 { 2762 selinux_get_task_sid(p, secid); 2763 } 2764 2765 static int selinux_task_setgroups(struct group_info *group_info) 2766 { 2767 /* See the comment for setuid above. */ 2768 return 0; 2769 } 2770 2771 static int selinux_task_setnice(struct task_struct *p, int nice) 2772 { 2773 int rc; 2774 2775 rc = secondary_ops->task_setnice(p, nice); 2776 if (rc) 2777 return rc; 2778 2779 return task_has_perm(current,p, PROCESS__SETSCHED); 2780 } 2781 2782 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 2783 { 2784 return task_has_perm(current, p, PROCESS__SETSCHED); 2785 } 2786 2787 static int selinux_task_getioprio(struct task_struct *p) 2788 { 2789 return task_has_perm(current, p, PROCESS__GETSCHED); 2790 } 2791 2792 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 2793 { 2794 struct rlimit *old_rlim = current->signal->rlim + resource; 2795 int rc; 2796 2797 rc = secondary_ops->task_setrlimit(resource, new_rlim); 2798 if (rc) 2799 return rc; 2800 2801 /* Control the ability to change the hard limit (whether 2802 lowering or raising it), so that the hard limit can 2803 later be used as a safe reset point for the soft limit 2804 upon context transitions. See selinux_bprm_apply_creds. */ 2805 if (old_rlim->rlim_max != new_rlim->rlim_max) 2806 return task_has_perm(current, current, PROCESS__SETRLIMIT); 2807 2808 return 0; 2809 } 2810 2811 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 2812 { 2813 return task_has_perm(current, p, PROCESS__SETSCHED); 2814 } 2815 2816 static int selinux_task_getscheduler(struct task_struct *p) 2817 { 2818 return task_has_perm(current, p, PROCESS__GETSCHED); 2819 } 2820 2821 static int selinux_task_movememory(struct task_struct *p) 2822 { 2823 return task_has_perm(current, p, PROCESS__SETSCHED); 2824 } 2825 2826 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 2827 int sig, u32 secid) 2828 { 2829 u32 perm; 2830 int rc; 2831 struct task_security_struct *tsec; 2832 2833 rc = secondary_ops->task_kill(p, info, sig, secid); 2834 if (rc) 2835 return rc; 2836 2837 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 2838 return 0; 2839 2840 if (!sig) 2841 perm = PROCESS__SIGNULL; /* null signal; existence test */ 2842 else 2843 perm = signal_to_av(sig); 2844 tsec = p->security; 2845 if (secid) 2846 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL); 2847 else 2848 rc = task_has_perm(current, p, perm); 2849 return rc; 2850 } 2851 2852 static int selinux_task_prctl(int option, 2853 unsigned long arg2, 2854 unsigned long arg3, 2855 unsigned long arg4, 2856 unsigned long arg5) 2857 { 2858 /* The current prctl operations do not appear to require 2859 any SELinux controls since they merely observe or modify 2860 the state of the current process. */ 2861 return 0; 2862 } 2863 2864 static int selinux_task_wait(struct task_struct *p) 2865 { 2866 u32 perm; 2867 2868 perm = signal_to_av(p->exit_signal); 2869 2870 return task_has_perm(p, current, perm); 2871 } 2872 2873 static void selinux_task_reparent_to_init(struct task_struct *p) 2874 { 2875 struct task_security_struct *tsec; 2876 2877 secondary_ops->task_reparent_to_init(p); 2878 2879 tsec = p->security; 2880 tsec->osid = tsec->sid; 2881 tsec->sid = SECINITSID_KERNEL; 2882 return; 2883 } 2884 2885 static void selinux_task_to_inode(struct task_struct *p, 2886 struct inode *inode) 2887 { 2888 struct task_security_struct *tsec = p->security; 2889 struct inode_security_struct *isec = inode->i_security; 2890 2891 isec->sid = tsec->sid; 2892 isec->initialized = 1; 2893 return; 2894 } 2895 2896 /* Returns error only if unable to parse addresses */ 2897 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 2898 struct avc_audit_data *ad, u8 *proto) 2899 { 2900 int offset, ihlen, ret = -EINVAL; 2901 struct iphdr _iph, *ih; 2902 2903 offset = skb->nh.raw - skb->data; 2904 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 2905 if (ih == NULL) 2906 goto out; 2907 2908 ihlen = ih->ihl * 4; 2909 if (ihlen < sizeof(_iph)) 2910 goto out; 2911 2912 ad->u.net.v4info.saddr = ih->saddr; 2913 ad->u.net.v4info.daddr = ih->daddr; 2914 ret = 0; 2915 2916 if (proto) 2917 *proto = ih->protocol; 2918 2919 switch (ih->protocol) { 2920 case IPPROTO_TCP: { 2921 struct tcphdr _tcph, *th; 2922 2923 if (ntohs(ih->frag_off) & IP_OFFSET) 2924 break; 2925 2926 offset += ihlen; 2927 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 2928 if (th == NULL) 2929 break; 2930 2931 ad->u.net.sport = th->source; 2932 ad->u.net.dport = th->dest; 2933 break; 2934 } 2935 2936 case IPPROTO_UDP: { 2937 struct udphdr _udph, *uh; 2938 2939 if (ntohs(ih->frag_off) & IP_OFFSET) 2940 break; 2941 2942 offset += ihlen; 2943 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 2944 if (uh == NULL) 2945 break; 2946 2947 ad->u.net.sport = uh->source; 2948 ad->u.net.dport = uh->dest; 2949 break; 2950 } 2951 2952 case IPPROTO_DCCP: { 2953 struct dccp_hdr _dccph, *dh; 2954 2955 if (ntohs(ih->frag_off) & IP_OFFSET) 2956 break; 2957 2958 offset += ihlen; 2959 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 2960 if (dh == NULL) 2961 break; 2962 2963 ad->u.net.sport = dh->dccph_sport; 2964 ad->u.net.dport = dh->dccph_dport; 2965 break; 2966 } 2967 2968 default: 2969 break; 2970 } 2971 out: 2972 return ret; 2973 } 2974 2975 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2976 2977 /* Returns error only if unable to parse addresses */ 2978 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 2979 struct avc_audit_data *ad, u8 *proto) 2980 { 2981 u8 nexthdr; 2982 int ret = -EINVAL, offset; 2983 struct ipv6hdr _ipv6h, *ip6; 2984 2985 offset = skb->nh.raw - skb->data; 2986 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 2987 if (ip6 == NULL) 2988 goto out; 2989 2990 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 2991 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 2992 ret = 0; 2993 2994 nexthdr = ip6->nexthdr; 2995 offset += sizeof(_ipv6h); 2996 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 2997 if (offset < 0) 2998 goto out; 2999 3000 if (proto) 3001 *proto = nexthdr; 3002 3003 switch (nexthdr) { 3004 case IPPROTO_TCP: { 3005 struct tcphdr _tcph, *th; 3006 3007 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3008 if (th == NULL) 3009 break; 3010 3011 ad->u.net.sport = th->source; 3012 ad->u.net.dport = th->dest; 3013 break; 3014 } 3015 3016 case IPPROTO_UDP: { 3017 struct udphdr _udph, *uh; 3018 3019 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3020 if (uh == NULL) 3021 break; 3022 3023 ad->u.net.sport = uh->source; 3024 ad->u.net.dport = uh->dest; 3025 break; 3026 } 3027 3028 case IPPROTO_DCCP: { 3029 struct dccp_hdr _dccph, *dh; 3030 3031 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3032 if (dh == NULL) 3033 break; 3034 3035 ad->u.net.sport = dh->dccph_sport; 3036 ad->u.net.dport = dh->dccph_dport; 3037 break; 3038 } 3039 3040 /* includes fragments */ 3041 default: 3042 break; 3043 } 3044 out: 3045 return ret; 3046 } 3047 3048 #endif /* IPV6 */ 3049 3050 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3051 char **addrp, int *len, int src, u8 *proto) 3052 { 3053 int ret = 0; 3054 3055 switch (ad->u.net.family) { 3056 case PF_INET: 3057 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3058 if (ret || !addrp) 3059 break; 3060 *len = 4; 3061 *addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3062 &ad->u.net.v4info.daddr); 3063 break; 3064 3065 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3066 case PF_INET6: 3067 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3068 if (ret || !addrp) 3069 break; 3070 *len = 16; 3071 *addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3072 &ad->u.net.v6info.daddr); 3073 break; 3074 #endif /* IPV6 */ 3075 default: 3076 break; 3077 } 3078 3079 return ret; 3080 } 3081 3082 /* socket security operations */ 3083 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3084 u32 perms) 3085 { 3086 struct inode_security_struct *isec; 3087 struct task_security_struct *tsec; 3088 struct avc_audit_data ad; 3089 int err = 0; 3090 3091 tsec = task->security; 3092 isec = SOCK_INODE(sock)->i_security; 3093 3094 if (isec->sid == SECINITSID_KERNEL) 3095 goto out; 3096 3097 AVC_AUDIT_DATA_INIT(&ad,NET); 3098 ad.u.net.sk = sock->sk; 3099 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 3100 3101 out: 3102 return err; 3103 } 3104 3105 static int selinux_socket_create(int family, int type, 3106 int protocol, int kern) 3107 { 3108 int err = 0; 3109 struct task_security_struct *tsec; 3110 u32 newsid; 3111 3112 if (kern) 3113 goto out; 3114 3115 tsec = current->security; 3116 newsid = tsec->sockcreate_sid ? : tsec->sid; 3117 err = avc_has_perm(tsec->sid, newsid, 3118 socket_type_to_security_class(family, type, 3119 protocol), SOCKET__CREATE, NULL); 3120 3121 out: 3122 return err; 3123 } 3124 3125 static int selinux_socket_post_create(struct socket *sock, int family, 3126 int type, int protocol, int kern) 3127 { 3128 int err = 0; 3129 struct inode_security_struct *isec; 3130 struct task_security_struct *tsec; 3131 struct sk_security_struct *sksec; 3132 u32 newsid; 3133 3134 isec = SOCK_INODE(sock)->i_security; 3135 3136 tsec = current->security; 3137 newsid = tsec->sockcreate_sid ? : tsec->sid; 3138 isec->sclass = socket_type_to_security_class(family, type, protocol); 3139 isec->sid = kern ? SECINITSID_KERNEL : newsid; 3140 isec->initialized = 1; 3141 3142 if (sock->sk) { 3143 sksec = sock->sk->sk_security; 3144 sksec->sid = isec->sid; 3145 err = selinux_netlbl_socket_post_create(sock); 3146 } 3147 3148 return err; 3149 } 3150 3151 /* Range of port numbers used to automatically bind. 3152 Need to determine whether we should perform a name_bind 3153 permission check between the socket and the port number. */ 3154 #define ip_local_port_range_0 sysctl_local_port_range[0] 3155 #define ip_local_port_range_1 sysctl_local_port_range[1] 3156 3157 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3158 { 3159 u16 family; 3160 int err; 3161 3162 err = socket_has_perm(current, sock, SOCKET__BIND); 3163 if (err) 3164 goto out; 3165 3166 /* 3167 * If PF_INET or PF_INET6, check name_bind permission for the port. 3168 * Multiple address binding for SCTP is not supported yet: we just 3169 * check the first address now. 3170 */ 3171 family = sock->sk->sk_family; 3172 if (family == PF_INET || family == PF_INET6) { 3173 char *addrp; 3174 struct inode_security_struct *isec; 3175 struct task_security_struct *tsec; 3176 struct avc_audit_data ad; 3177 struct sockaddr_in *addr4 = NULL; 3178 struct sockaddr_in6 *addr6 = NULL; 3179 unsigned short snum; 3180 struct sock *sk = sock->sk; 3181 u32 sid, node_perm, addrlen; 3182 3183 tsec = current->security; 3184 isec = SOCK_INODE(sock)->i_security; 3185 3186 if (family == PF_INET) { 3187 addr4 = (struct sockaddr_in *)address; 3188 snum = ntohs(addr4->sin_port); 3189 addrlen = sizeof(addr4->sin_addr.s_addr); 3190 addrp = (char *)&addr4->sin_addr.s_addr; 3191 } else { 3192 addr6 = (struct sockaddr_in6 *)address; 3193 snum = ntohs(addr6->sin6_port); 3194 addrlen = sizeof(addr6->sin6_addr.s6_addr); 3195 addrp = (char *)&addr6->sin6_addr.s6_addr; 3196 } 3197 3198 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) || 3199 snum > ip_local_port_range_1)) { 3200 err = security_port_sid(sk->sk_family, sk->sk_type, 3201 sk->sk_protocol, snum, &sid); 3202 if (err) 3203 goto out; 3204 AVC_AUDIT_DATA_INIT(&ad,NET); 3205 ad.u.net.sport = htons(snum); 3206 ad.u.net.family = family; 3207 err = avc_has_perm(isec->sid, sid, 3208 isec->sclass, 3209 SOCKET__NAME_BIND, &ad); 3210 if (err) 3211 goto out; 3212 } 3213 3214 switch(isec->sclass) { 3215 case SECCLASS_TCP_SOCKET: 3216 node_perm = TCP_SOCKET__NODE_BIND; 3217 break; 3218 3219 case SECCLASS_UDP_SOCKET: 3220 node_perm = UDP_SOCKET__NODE_BIND; 3221 break; 3222 3223 case SECCLASS_DCCP_SOCKET: 3224 node_perm = DCCP_SOCKET__NODE_BIND; 3225 break; 3226 3227 default: 3228 node_perm = RAWIP_SOCKET__NODE_BIND; 3229 break; 3230 } 3231 3232 err = security_node_sid(family, addrp, addrlen, &sid); 3233 if (err) 3234 goto out; 3235 3236 AVC_AUDIT_DATA_INIT(&ad,NET); 3237 ad.u.net.sport = htons(snum); 3238 ad.u.net.family = family; 3239 3240 if (family == PF_INET) 3241 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3242 else 3243 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3244 3245 err = avc_has_perm(isec->sid, sid, 3246 isec->sclass, node_perm, &ad); 3247 if (err) 3248 goto out; 3249 } 3250 out: 3251 return err; 3252 } 3253 3254 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3255 { 3256 struct inode_security_struct *isec; 3257 int err; 3258 3259 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3260 if (err) 3261 return err; 3262 3263 /* 3264 * If a TCP or DCCP socket, check name_connect permission for the port. 3265 */ 3266 isec = SOCK_INODE(sock)->i_security; 3267 if (isec->sclass == SECCLASS_TCP_SOCKET || 3268 isec->sclass == SECCLASS_DCCP_SOCKET) { 3269 struct sock *sk = sock->sk; 3270 struct avc_audit_data ad; 3271 struct sockaddr_in *addr4 = NULL; 3272 struct sockaddr_in6 *addr6 = NULL; 3273 unsigned short snum; 3274 u32 sid, perm; 3275 3276 if (sk->sk_family == PF_INET) { 3277 addr4 = (struct sockaddr_in *)address; 3278 if (addrlen < sizeof(struct sockaddr_in)) 3279 return -EINVAL; 3280 snum = ntohs(addr4->sin_port); 3281 } else { 3282 addr6 = (struct sockaddr_in6 *)address; 3283 if (addrlen < SIN6_LEN_RFC2133) 3284 return -EINVAL; 3285 snum = ntohs(addr6->sin6_port); 3286 } 3287 3288 err = security_port_sid(sk->sk_family, sk->sk_type, 3289 sk->sk_protocol, snum, &sid); 3290 if (err) 3291 goto out; 3292 3293 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3294 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3295 3296 AVC_AUDIT_DATA_INIT(&ad,NET); 3297 ad.u.net.dport = htons(snum); 3298 ad.u.net.family = sk->sk_family; 3299 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3300 if (err) 3301 goto out; 3302 } 3303 3304 out: 3305 return err; 3306 } 3307 3308 static int selinux_socket_listen(struct socket *sock, int backlog) 3309 { 3310 return socket_has_perm(current, sock, SOCKET__LISTEN); 3311 } 3312 3313 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3314 { 3315 int err; 3316 struct inode_security_struct *isec; 3317 struct inode_security_struct *newisec; 3318 3319 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3320 if (err) 3321 return err; 3322 3323 newisec = SOCK_INODE(newsock)->i_security; 3324 3325 isec = SOCK_INODE(sock)->i_security; 3326 newisec->sclass = isec->sclass; 3327 newisec->sid = isec->sid; 3328 newisec->initialized = 1; 3329 3330 return 0; 3331 } 3332 3333 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3334 int size) 3335 { 3336 int rc; 3337 3338 rc = socket_has_perm(current, sock, SOCKET__WRITE); 3339 if (rc) 3340 return rc; 3341 3342 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE); 3343 } 3344 3345 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3346 int size, int flags) 3347 { 3348 return socket_has_perm(current, sock, SOCKET__READ); 3349 } 3350 3351 static int selinux_socket_getsockname(struct socket *sock) 3352 { 3353 return socket_has_perm(current, sock, SOCKET__GETATTR); 3354 } 3355 3356 static int selinux_socket_getpeername(struct socket *sock) 3357 { 3358 return socket_has_perm(current, sock, SOCKET__GETATTR); 3359 } 3360 3361 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname) 3362 { 3363 int err; 3364 3365 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3366 if (err) 3367 return err; 3368 3369 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3370 } 3371 3372 static int selinux_socket_getsockopt(struct socket *sock, int level, 3373 int optname) 3374 { 3375 return socket_has_perm(current, sock, SOCKET__GETOPT); 3376 } 3377 3378 static int selinux_socket_shutdown(struct socket *sock, int how) 3379 { 3380 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3381 } 3382 3383 static int selinux_socket_unix_stream_connect(struct socket *sock, 3384 struct socket *other, 3385 struct sock *newsk) 3386 { 3387 struct sk_security_struct *ssec; 3388 struct inode_security_struct *isec; 3389 struct inode_security_struct *other_isec; 3390 struct avc_audit_data ad; 3391 int err; 3392 3393 err = secondary_ops->unix_stream_connect(sock, other, newsk); 3394 if (err) 3395 return err; 3396 3397 isec = SOCK_INODE(sock)->i_security; 3398 other_isec = SOCK_INODE(other)->i_security; 3399 3400 AVC_AUDIT_DATA_INIT(&ad,NET); 3401 ad.u.net.sk = other->sk; 3402 3403 err = avc_has_perm(isec->sid, other_isec->sid, 3404 isec->sclass, 3405 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3406 if (err) 3407 return err; 3408 3409 /* connecting socket */ 3410 ssec = sock->sk->sk_security; 3411 ssec->peer_sid = other_isec->sid; 3412 3413 /* server child socket */ 3414 ssec = newsk->sk_security; 3415 ssec->peer_sid = isec->sid; 3416 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3417 3418 return err; 3419 } 3420 3421 static int selinux_socket_unix_may_send(struct socket *sock, 3422 struct socket *other) 3423 { 3424 struct inode_security_struct *isec; 3425 struct inode_security_struct *other_isec; 3426 struct avc_audit_data ad; 3427 int err; 3428 3429 isec = SOCK_INODE(sock)->i_security; 3430 other_isec = SOCK_INODE(other)->i_security; 3431 3432 AVC_AUDIT_DATA_INIT(&ad,NET); 3433 ad.u.net.sk = other->sk; 3434 3435 err = avc_has_perm(isec->sid, other_isec->sid, 3436 isec->sclass, SOCKET__SENDTO, &ad); 3437 if (err) 3438 return err; 3439 3440 return 0; 3441 } 3442 3443 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 3444 struct avc_audit_data *ad, u16 family, char *addrp, int len) 3445 { 3446 int err = 0; 3447 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0; 3448 struct socket *sock; 3449 u16 sock_class = 0; 3450 u32 sock_sid = 0; 3451 3452 read_lock_bh(&sk->sk_callback_lock); 3453 sock = sk->sk_socket; 3454 if (sock) { 3455 struct inode *inode; 3456 inode = SOCK_INODE(sock); 3457 if (inode) { 3458 struct inode_security_struct *isec; 3459 isec = inode->i_security; 3460 sock_sid = isec->sid; 3461 sock_class = isec->sclass; 3462 } 3463 } 3464 read_unlock_bh(&sk->sk_callback_lock); 3465 if (!sock_sid) 3466 goto out; 3467 3468 if (!skb->dev) 3469 goto out; 3470 3471 err = sel_netif_sids(skb->dev, &if_sid, NULL); 3472 if (err) 3473 goto out; 3474 3475 switch (sock_class) { 3476 case SECCLASS_UDP_SOCKET: 3477 netif_perm = NETIF__UDP_RECV; 3478 node_perm = NODE__UDP_RECV; 3479 recv_perm = UDP_SOCKET__RECV_MSG; 3480 break; 3481 3482 case SECCLASS_TCP_SOCKET: 3483 netif_perm = NETIF__TCP_RECV; 3484 node_perm = NODE__TCP_RECV; 3485 recv_perm = TCP_SOCKET__RECV_MSG; 3486 break; 3487 3488 case SECCLASS_DCCP_SOCKET: 3489 netif_perm = NETIF__DCCP_RECV; 3490 node_perm = NODE__DCCP_RECV; 3491 recv_perm = DCCP_SOCKET__RECV_MSG; 3492 break; 3493 3494 default: 3495 netif_perm = NETIF__RAWIP_RECV; 3496 node_perm = NODE__RAWIP_RECV; 3497 break; 3498 } 3499 3500 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 3501 if (err) 3502 goto out; 3503 3504 err = security_node_sid(family, addrp, len, &node_sid); 3505 if (err) 3506 goto out; 3507 3508 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad); 3509 if (err) 3510 goto out; 3511 3512 if (recv_perm) { 3513 u32 port_sid; 3514 3515 err = security_port_sid(sk->sk_family, sk->sk_type, 3516 sk->sk_protocol, ntohs(ad->u.net.sport), 3517 &port_sid); 3518 if (err) 3519 goto out; 3520 3521 err = avc_has_perm(sock_sid, port_sid, 3522 sock_class, recv_perm, ad); 3523 } 3524 3525 out: 3526 return err; 3527 } 3528 3529 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 3530 { 3531 u16 family; 3532 char *addrp; 3533 int len, err = 0; 3534 struct avc_audit_data ad; 3535 struct sk_security_struct *sksec = sk->sk_security; 3536 3537 family = sk->sk_family; 3538 if (family != PF_INET && family != PF_INET6) 3539 goto out; 3540 3541 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 3542 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 3543 family = PF_INET; 3544 3545 AVC_AUDIT_DATA_INIT(&ad, NET); 3546 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]"; 3547 ad.u.net.family = family; 3548 3549 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL); 3550 if (err) 3551 goto out; 3552 3553 if (selinux_compat_net) 3554 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family, 3555 addrp, len); 3556 else 3557 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET, 3558 PACKET__RECV, &ad); 3559 if (err) 3560 goto out; 3561 3562 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad); 3563 if (err) 3564 goto out; 3565 3566 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 3567 out: 3568 return err; 3569 } 3570 3571 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 3572 int __user *optlen, unsigned len) 3573 { 3574 int err = 0; 3575 char *scontext; 3576 u32 scontext_len; 3577 struct sk_security_struct *ssec; 3578 struct inode_security_struct *isec; 3579 u32 peer_sid = SECSID_NULL; 3580 3581 isec = SOCK_INODE(sock)->i_security; 3582 3583 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 3584 isec->sclass == SECCLASS_TCP_SOCKET) { 3585 ssec = sock->sk->sk_security; 3586 peer_sid = ssec->peer_sid; 3587 } 3588 if (peer_sid == SECSID_NULL) { 3589 err = -ENOPROTOOPT; 3590 goto out; 3591 } 3592 3593 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 3594 3595 if (err) 3596 goto out; 3597 3598 if (scontext_len > len) { 3599 err = -ERANGE; 3600 goto out_len; 3601 } 3602 3603 if (copy_to_user(optval, scontext, scontext_len)) 3604 err = -EFAULT; 3605 3606 out_len: 3607 if (put_user(scontext_len, optlen)) 3608 err = -EFAULT; 3609 3610 kfree(scontext); 3611 out: 3612 return err; 3613 } 3614 3615 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 3616 { 3617 u32 peer_secid = SECSID_NULL; 3618 int err = 0; 3619 3620 if (sock && sock->sk->sk_family == PF_UNIX) 3621 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid); 3622 else if (skb) 3623 security_skb_extlbl_sid(skb, 3624 SECINITSID_UNLABELED, 3625 &peer_secid); 3626 3627 if (peer_secid == SECSID_NULL) 3628 err = -EINVAL; 3629 *secid = peer_secid; 3630 3631 return err; 3632 } 3633 3634 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 3635 { 3636 return sk_alloc_security(sk, family, priority); 3637 } 3638 3639 static void selinux_sk_free_security(struct sock *sk) 3640 { 3641 sk_free_security(sk); 3642 } 3643 3644 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 3645 { 3646 struct sk_security_struct *ssec = sk->sk_security; 3647 struct sk_security_struct *newssec = newsk->sk_security; 3648 3649 newssec->sid = ssec->sid; 3650 newssec->peer_sid = ssec->peer_sid; 3651 3652 selinux_netlbl_sk_security_clone(ssec, newssec); 3653 } 3654 3655 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 3656 { 3657 if (!sk) 3658 *secid = SECINITSID_ANY_SOCKET; 3659 else { 3660 struct sk_security_struct *sksec = sk->sk_security; 3661 3662 *secid = sksec->sid; 3663 } 3664 } 3665 3666 static void selinux_sock_graft(struct sock* sk, struct socket *parent) 3667 { 3668 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 3669 struct sk_security_struct *sksec = sk->sk_security; 3670 3671 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 3672 sk->sk_family == PF_UNIX) 3673 isec->sid = sksec->sid; 3674 3675 selinux_netlbl_sock_graft(sk, parent); 3676 } 3677 3678 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 3679 struct request_sock *req) 3680 { 3681 struct sk_security_struct *sksec = sk->sk_security; 3682 int err; 3683 u32 newsid; 3684 u32 peersid; 3685 3686 security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid); 3687 if (peersid == SECSID_NULL) { 3688 req->secid = sksec->sid; 3689 req->peer_secid = SECSID_NULL; 3690 return 0; 3691 } 3692 3693 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 3694 if (err) 3695 return err; 3696 3697 req->secid = newsid; 3698 req->peer_secid = peersid; 3699 return 0; 3700 } 3701 3702 static void selinux_inet_csk_clone(struct sock *newsk, 3703 const struct request_sock *req) 3704 { 3705 struct sk_security_struct *newsksec = newsk->sk_security; 3706 3707 newsksec->sid = req->secid; 3708 newsksec->peer_sid = req->peer_secid; 3709 /* NOTE: Ideally, we should also get the isec->sid for the 3710 new socket in sync, but we don't have the isec available yet. 3711 So we will wait until sock_graft to do it, by which 3712 time it will have been created and available. */ 3713 3714 /* We don't need to take any sort of lock here as we are the only 3715 * thread with access to newsksec */ 3716 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family); 3717 } 3718 3719 static void selinux_inet_conn_established(struct sock *sk, 3720 struct sk_buff *skb) 3721 { 3722 struct sk_security_struct *sksec = sk->sk_security; 3723 3724 security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid); 3725 } 3726 3727 static void selinux_req_classify_flow(const struct request_sock *req, 3728 struct flowi *fl) 3729 { 3730 fl->secid = req->secid; 3731 } 3732 3733 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 3734 { 3735 int err = 0; 3736 u32 perm; 3737 struct nlmsghdr *nlh; 3738 struct socket *sock = sk->sk_socket; 3739 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 3740 3741 if (skb->len < NLMSG_SPACE(0)) { 3742 err = -EINVAL; 3743 goto out; 3744 } 3745 nlh = (struct nlmsghdr *)skb->data; 3746 3747 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 3748 if (err) { 3749 if (err == -EINVAL) { 3750 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 3751 "SELinux: unrecognized netlink message" 3752 " type=%hu for sclass=%hu\n", 3753 nlh->nlmsg_type, isec->sclass); 3754 if (!selinux_enforcing) 3755 err = 0; 3756 } 3757 3758 /* Ignore */ 3759 if (err == -ENOENT) 3760 err = 0; 3761 goto out; 3762 } 3763 3764 err = socket_has_perm(current, sock, perm); 3765 out: 3766 return err; 3767 } 3768 3769 #ifdef CONFIG_NETFILTER 3770 3771 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev, 3772 struct avc_audit_data *ad, 3773 u16 family, char *addrp, int len) 3774 { 3775 int err = 0; 3776 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0; 3777 struct socket *sock; 3778 struct inode *inode; 3779 struct inode_security_struct *isec; 3780 3781 sock = sk->sk_socket; 3782 if (!sock) 3783 goto out; 3784 3785 inode = SOCK_INODE(sock); 3786 if (!inode) 3787 goto out; 3788 3789 isec = inode->i_security; 3790 3791 err = sel_netif_sids(dev, &if_sid, NULL); 3792 if (err) 3793 goto out; 3794 3795 switch (isec->sclass) { 3796 case SECCLASS_UDP_SOCKET: 3797 netif_perm = NETIF__UDP_SEND; 3798 node_perm = NODE__UDP_SEND; 3799 send_perm = UDP_SOCKET__SEND_MSG; 3800 break; 3801 3802 case SECCLASS_TCP_SOCKET: 3803 netif_perm = NETIF__TCP_SEND; 3804 node_perm = NODE__TCP_SEND; 3805 send_perm = TCP_SOCKET__SEND_MSG; 3806 break; 3807 3808 case SECCLASS_DCCP_SOCKET: 3809 netif_perm = NETIF__DCCP_SEND; 3810 node_perm = NODE__DCCP_SEND; 3811 send_perm = DCCP_SOCKET__SEND_MSG; 3812 break; 3813 3814 default: 3815 netif_perm = NETIF__RAWIP_SEND; 3816 node_perm = NODE__RAWIP_SEND; 3817 break; 3818 } 3819 3820 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 3821 if (err) 3822 goto out; 3823 3824 err = security_node_sid(family, addrp, len, &node_sid); 3825 if (err) 3826 goto out; 3827 3828 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad); 3829 if (err) 3830 goto out; 3831 3832 if (send_perm) { 3833 u32 port_sid; 3834 3835 err = security_port_sid(sk->sk_family, 3836 sk->sk_type, 3837 sk->sk_protocol, 3838 ntohs(ad->u.net.dport), 3839 &port_sid); 3840 if (err) 3841 goto out; 3842 3843 err = avc_has_perm(isec->sid, port_sid, isec->sclass, 3844 send_perm, ad); 3845 } 3846 out: 3847 return err; 3848 } 3849 3850 static unsigned int selinux_ip_postroute_last(unsigned int hooknum, 3851 struct sk_buff **pskb, 3852 const struct net_device *in, 3853 const struct net_device *out, 3854 int (*okfn)(struct sk_buff *), 3855 u16 family) 3856 { 3857 char *addrp; 3858 int len, err = 0; 3859 struct sock *sk; 3860 struct sk_buff *skb = *pskb; 3861 struct avc_audit_data ad; 3862 struct net_device *dev = (struct net_device *)out; 3863 struct sk_security_struct *sksec; 3864 u8 proto; 3865 3866 sk = skb->sk; 3867 if (!sk) 3868 goto out; 3869 3870 sksec = sk->sk_security; 3871 3872 AVC_AUDIT_DATA_INIT(&ad, NET); 3873 ad.u.net.netif = dev->name; 3874 ad.u.net.family = family; 3875 3876 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto); 3877 if (err) 3878 goto out; 3879 3880 if (selinux_compat_net) 3881 err = selinux_ip_postroute_last_compat(sk, dev, &ad, 3882 family, addrp, len); 3883 else 3884 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET, 3885 PACKET__SEND, &ad); 3886 3887 if (err) 3888 goto out; 3889 3890 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto); 3891 out: 3892 return err ? NF_DROP : NF_ACCEPT; 3893 } 3894 3895 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum, 3896 struct sk_buff **pskb, 3897 const struct net_device *in, 3898 const struct net_device *out, 3899 int (*okfn)(struct sk_buff *)) 3900 { 3901 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET); 3902 } 3903 3904 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3905 3906 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum, 3907 struct sk_buff **pskb, 3908 const struct net_device *in, 3909 const struct net_device *out, 3910 int (*okfn)(struct sk_buff *)) 3911 { 3912 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6); 3913 } 3914 3915 #endif /* IPV6 */ 3916 3917 #endif /* CONFIG_NETFILTER */ 3918 3919 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 3920 { 3921 int err; 3922 3923 err = secondary_ops->netlink_send(sk, skb); 3924 if (err) 3925 return err; 3926 3927 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 3928 err = selinux_nlmsg_perm(sk, skb); 3929 3930 return err; 3931 } 3932 3933 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 3934 { 3935 int err; 3936 struct avc_audit_data ad; 3937 3938 err = secondary_ops->netlink_recv(skb, capability); 3939 if (err) 3940 return err; 3941 3942 AVC_AUDIT_DATA_INIT(&ad, CAP); 3943 ad.u.cap = capability; 3944 3945 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 3946 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 3947 } 3948 3949 static int ipc_alloc_security(struct task_struct *task, 3950 struct kern_ipc_perm *perm, 3951 u16 sclass) 3952 { 3953 struct task_security_struct *tsec = task->security; 3954 struct ipc_security_struct *isec; 3955 3956 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 3957 if (!isec) 3958 return -ENOMEM; 3959 3960 isec->sclass = sclass; 3961 isec->ipc_perm = perm; 3962 isec->sid = tsec->sid; 3963 perm->security = isec; 3964 3965 return 0; 3966 } 3967 3968 static void ipc_free_security(struct kern_ipc_perm *perm) 3969 { 3970 struct ipc_security_struct *isec = perm->security; 3971 perm->security = NULL; 3972 kfree(isec); 3973 } 3974 3975 static int msg_msg_alloc_security(struct msg_msg *msg) 3976 { 3977 struct msg_security_struct *msec; 3978 3979 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 3980 if (!msec) 3981 return -ENOMEM; 3982 3983 msec->msg = msg; 3984 msec->sid = SECINITSID_UNLABELED; 3985 msg->security = msec; 3986 3987 return 0; 3988 } 3989 3990 static void msg_msg_free_security(struct msg_msg *msg) 3991 { 3992 struct msg_security_struct *msec = msg->security; 3993 3994 msg->security = NULL; 3995 kfree(msec); 3996 } 3997 3998 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 3999 u32 perms) 4000 { 4001 struct task_security_struct *tsec; 4002 struct ipc_security_struct *isec; 4003 struct avc_audit_data ad; 4004 4005 tsec = current->security; 4006 isec = ipc_perms->security; 4007 4008 AVC_AUDIT_DATA_INIT(&ad, IPC); 4009 ad.u.ipc_id = ipc_perms->key; 4010 4011 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 4012 } 4013 4014 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4015 { 4016 return msg_msg_alloc_security(msg); 4017 } 4018 4019 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4020 { 4021 msg_msg_free_security(msg); 4022 } 4023 4024 /* message queue security operations */ 4025 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4026 { 4027 struct task_security_struct *tsec; 4028 struct ipc_security_struct *isec; 4029 struct avc_audit_data ad; 4030 int rc; 4031 4032 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4033 if (rc) 4034 return rc; 4035 4036 tsec = current->security; 4037 isec = msq->q_perm.security; 4038 4039 AVC_AUDIT_DATA_INIT(&ad, IPC); 4040 ad.u.ipc_id = msq->q_perm.key; 4041 4042 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4043 MSGQ__CREATE, &ad); 4044 if (rc) { 4045 ipc_free_security(&msq->q_perm); 4046 return rc; 4047 } 4048 return 0; 4049 } 4050 4051 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4052 { 4053 ipc_free_security(&msq->q_perm); 4054 } 4055 4056 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4057 { 4058 struct task_security_struct *tsec; 4059 struct ipc_security_struct *isec; 4060 struct avc_audit_data ad; 4061 4062 tsec = current->security; 4063 isec = msq->q_perm.security; 4064 4065 AVC_AUDIT_DATA_INIT(&ad, IPC); 4066 ad.u.ipc_id = msq->q_perm.key; 4067 4068 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4069 MSGQ__ASSOCIATE, &ad); 4070 } 4071 4072 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4073 { 4074 int err; 4075 int perms; 4076 4077 switch(cmd) { 4078 case IPC_INFO: 4079 case MSG_INFO: 4080 /* No specific object, just general system-wide information. */ 4081 return task_has_system(current, SYSTEM__IPC_INFO); 4082 case IPC_STAT: 4083 case MSG_STAT: 4084 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4085 break; 4086 case IPC_SET: 4087 perms = MSGQ__SETATTR; 4088 break; 4089 case IPC_RMID: 4090 perms = MSGQ__DESTROY; 4091 break; 4092 default: 4093 return 0; 4094 } 4095 4096 err = ipc_has_perm(&msq->q_perm, perms); 4097 return err; 4098 } 4099 4100 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4101 { 4102 struct task_security_struct *tsec; 4103 struct ipc_security_struct *isec; 4104 struct msg_security_struct *msec; 4105 struct avc_audit_data ad; 4106 int rc; 4107 4108 tsec = current->security; 4109 isec = msq->q_perm.security; 4110 msec = msg->security; 4111 4112 /* 4113 * First time through, need to assign label to the message 4114 */ 4115 if (msec->sid == SECINITSID_UNLABELED) { 4116 /* 4117 * Compute new sid based on current process and 4118 * message queue this message will be stored in 4119 */ 4120 rc = security_transition_sid(tsec->sid, 4121 isec->sid, 4122 SECCLASS_MSG, 4123 &msec->sid); 4124 if (rc) 4125 return rc; 4126 } 4127 4128 AVC_AUDIT_DATA_INIT(&ad, IPC); 4129 ad.u.ipc_id = msq->q_perm.key; 4130 4131 /* Can this process write to the queue? */ 4132 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4133 MSGQ__WRITE, &ad); 4134 if (!rc) 4135 /* Can this process send the message */ 4136 rc = avc_has_perm(tsec->sid, msec->sid, 4137 SECCLASS_MSG, MSG__SEND, &ad); 4138 if (!rc) 4139 /* Can the message be put in the queue? */ 4140 rc = avc_has_perm(msec->sid, isec->sid, 4141 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); 4142 4143 return rc; 4144 } 4145 4146 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4147 struct task_struct *target, 4148 long type, int mode) 4149 { 4150 struct task_security_struct *tsec; 4151 struct ipc_security_struct *isec; 4152 struct msg_security_struct *msec; 4153 struct avc_audit_data ad; 4154 int rc; 4155 4156 tsec = target->security; 4157 isec = msq->q_perm.security; 4158 msec = msg->security; 4159 4160 AVC_AUDIT_DATA_INIT(&ad, IPC); 4161 ad.u.ipc_id = msq->q_perm.key; 4162 4163 rc = avc_has_perm(tsec->sid, isec->sid, 4164 SECCLASS_MSGQ, MSGQ__READ, &ad); 4165 if (!rc) 4166 rc = avc_has_perm(tsec->sid, msec->sid, 4167 SECCLASS_MSG, MSG__RECEIVE, &ad); 4168 return rc; 4169 } 4170 4171 /* Shared Memory security operations */ 4172 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4173 { 4174 struct task_security_struct *tsec; 4175 struct ipc_security_struct *isec; 4176 struct avc_audit_data ad; 4177 int rc; 4178 4179 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4180 if (rc) 4181 return rc; 4182 4183 tsec = current->security; 4184 isec = shp->shm_perm.security; 4185 4186 AVC_AUDIT_DATA_INIT(&ad, IPC); 4187 ad.u.ipc_id = shp->shm_perm.key; 4188 4189 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4190 SHM__CREATE, &ad); 4191 if (rc) { 4192 ipc_free_security(&shp->shm_perm); 4193 return rc; 4194 } 4195 return 0; 4196 } 4197 4198 static void selinux_shm_free_security(struct shmid_kernel *shp) 4199 { 4200 ipc_free_security(&shp->shm_perm); 4201 } 4202 4203 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4204 { 4205 struct task_security_struct *tsec; 4206 struct ipc_security_struct *isec; 4207 struct avc_audit_data ad; 4208 4209 tsec = current->security; 4210 isec = shp->shm_perm.security; 4211 4212 AVC_AUDIT_DATA_INIT(&ad, IPC); 4213 ad.u.ipc_id = shp->shm_perm.key; 4214 4215 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4216 SHM__ASSOCIATE, &ad); 4217 } 4218 4219 /* Note, at this point, shp is locked down */ 4220 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4221 { 4222 int perms; 4223 int err; 4224 4225 switch(cmd) { 4226 case IPC_INFO: 4227 case SHM_INFO: 4228 /* No specific object, just general system-wide information. */ 4229 return task_has_system(current, SYSTEM__IPC_INFO); 4230 case IPC_STAT: 4231 case SHM_STAT: 4232 perms = SHM__GETATTR | SHM__ASSOCIATE; 4233 break; 4234 case IPC_SET: 4235 perms = SHM__SETATTR; 4236 break; 4237 case SHM_LOCK: 4238 case SHM_UNLOCK: 4239 perms = SHM__LOCK; 4240 break; 4241 case IPC_RMID: 4242 perms = SHM__DESTROY; 4243 break; 4244 default: 4245 return 0; 4246 } 4247 4248 err = ipc_has_perm(&shp->shm_perm, perms); 4249 return err; 4250 } 4251 4252 static int selinux_shm_shmat(struct shmid_kernel *shp, 4253 char __user *shmaddr, int shmflg) 4254 { 4255 u32 perms; 4256 int rc; 4257 4258 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg); 4259 if (rc) 4260 return rc; 4261 4262 if (shmflg & SHM_RDONLY) 4263 perms = SHM__READ; 4264 else 4265 perms = SHM__READ | SHM__WRITE; 4266 4267 return ipc_has_perm(&shp->shm_perm, perms); 4268 } 4269 4270 /* Semaphore security operations */ 4271 static int selinux_sem_alloc_security(struct sem_array *sma) 4272 { 4273 struct task_security_struct *tsec; 4274 struct ipc_security_struct *isec; 4275 struct avc_audit_data ad; 4276 int rc; 4277 4278 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4279 if (rc) 4280 return rc; 4281 4282 tsec = current->security; 4283 isec = sma->sem_perm.security; 4284 4285 AVC_AUDIT_DATA_INIT(&ad, IPC); 4286 ad.u.ipc_id = sma->sem_perm.key; 4287 4288 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4289 SEM__CREATE, &ad); 4290 if (rc) { 4291 ipc_free_security(&sma->sem_perm); 4292 return rc; 4293 } 4294 return 0; 4295 } 4296 4297 static void selinux_sem_free_security(struct sem_array *sma) 4298 { 4299 ipc_free_security(&sma->sem_perm); 4300 } 4301 4302 static int selinux_sem_associate(struct sem_array *sma, int semflg) 4303 { 4304 struct task_security_struct *tsec; 4305 struct ipc_security_struct *isec; 4306 struct avc_audit_data ad; 4307 4308 tsec = current->security; 4309 isec = sma->sem_perm.security; 4310 4311 AVC_AUDIT_DATA_INIT(&ad, IPC); 4312 ad.u.ipc_id = sma->sem_perm.key; 4313 4314 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4315 SEM__ASSOCIATE, &ad); 4316 } 4317 4318 /* Note, at this point, sma is locked down */ 4319 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 4320 { 4321 int err; 4322 u32 perms; 4323 4324 switch(cmd) { 4325 case IPC_INFO: 4326 case SEM_INFO: 4327 /* No specific object, just general system-wide information. */ 4328 return task_has_system(current, SYSTEM__IPC_INFO); 4329 case GETPID: 4330 case GETNCNT: 4331 case GETZCNT: 4332 perms = SEM__GETATTR; 4333 break; 4334 case GETVAL: 4335 case GETALL: 4336 perms = SEM__READ; 4337 break; 4338 case SETVAL: 4339 case SETALL: 4340 perms = SEM__WRITE; 4341 break; 4342 case IPC_RMID: 4343 perms = SEM__DESTROY; 4344 break; 4345 case IPC_SET: 4346 perms = SEM__SETATTR; 4347 break; 4348 case IPC_STAT: 4349 case SEM_STAT: 4350 perms = SEM__GETATTR | SEM__ASSOCIATE; 4351 break; 4352 default: 4353 return 0; 4354 } 4355 4356 err = ipc_has_perm(&sma->sem_perm, perms); 4357 return err; 4358 } 4359 4360 static int selinux_sem_semop(struct sem_array *sma, 4361 struct sembuf *sops, unsigned nsops, int alter) 4362 { 4363 u32 perms; 4364 4365 if (alter) 4366 perms = SEM__READ | SEM__WRITE; 4367 else 4368 perms = SEM__READ; 4369 4370 return ipc_has_perm(&sma->sem_perm, perms); 4371 } 4372 4373 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 4374 { 4375 u32 av = 0; 4376 4377 av = 0; 4378 if (flag & S_IRUGO) 4379 av |= IPC__UNIX_READ; 4380 if (flag & S_IWUGO) 4381 av |= IPC__UNIX_WRITE; 4382 4383 if (av == 0) 4384 return 0; 4385 4386 return ipc_has_perm(ipcp, av); 4387 } 4388 4389 /* module stacking operations */ 4390 static int selinux_register_security (const char *name, struct security_operations *ops) 4391 { 4392 if (secondary_ops != original_ops) { 4393 printk(KERN_INFO "%s: There is already a secondary security " 4394 "module registered.\n", __FUNCTION__); 4395 return -EINVAL; 4396 } 4397 4398 secondary_ops = ops; 4399 4400 printk(KERN_INFO "%s: Registering secondary module %s\n", 4401 __FUNCTION__, 4402 name); 4403 4404 return 0; 4405 } 4406 4407 static int selinux_unregister_security (const char *name, struct security_operations *ops) 4408 { 4409 if (ops != secondary_ops) { 4410 printk (KERN_INFO "%s: trying to unregister a security module " 4411 "that is not registered.\n", __FUNCTION__); 4412 return -EINVAL; 4413 } 4414 4415 secondary_ops = original_ops; 4416 4417 return 0; 4418 } 4419 4420 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode) 4421 { 4422 if (inode) 4423 inode_doinit_with_dentry(inode, dentry); 4424 } 4425 4426 static int selinux_getprocattr(struct task_struct *p, 4427 char *name, void *value, size_t size) 4428 { 4429 struct task_security_struct *tsec; 4430 u32 sid; 4431 int error; 4432 4433 if (current != p) { 4434 error = task_has_perm(current, p, PROCESS__GETATTR); 4435 if (error) 4436 return error; 4437 } 4438 4439 tsec = p->security; 4440 4441 if (!strcmp(name, "current")) 4442 sid = tsec->sid; 4443 else if (!strcmp(name, "prev")) 4444 sid = tsec->osid; 4445 else if (!strcmp(name, "exec")) 4446 sid = tsec->exec_sid; 4447 else if (!strcmp(name, "fscreate")) 4448 sid = tsec->create_sid; 4449 else if (!strcmp(name, "keycreate")) 4450 sid = tsec->keycreate_sid; 4451 else if (!strcmp(name, "sockcreate")) 4452 sid = tsec->sockcreate_sid; 4453 else 4454 return -EINVAL; 4455 4456 if (!sid) 4457 return 0; 4458 4459 return selinux_getsecurity(sid, value, size); 4460 } 4461 4462 static int selinux_setprocattr(struct task_struct *p, 4463 char *name, void *value, size_t size) 4464 { 4465 struct task_security_struct *tsec; 4466 u32 sid = 0; 4467 int error; 4468 char *str = value; 4469 4470 if (current != p) { 4471 /* SELinux only allows a process to change its own 4472 security attributes. */ 4473 return -EACCES; 4474 } 4475 4476 /* 4477 * Basic control over ability to set these attributes at all. 4478 * current == p, but we'll pass them separately in case the 4479 * above restriction is ever removed. 4480 */ 4481 if (!strcmp(name, "exec")) 4482 error = task_has_perm(current, p, PROCESS__SETEXEC); 4483 else if (!strcmp(name, "fscreate")) 4484 error = task_has_perm(current, p, PROCESS__SETFSCREATE); 4485 else if (!strcmp(name, "keycreate")) 4486 error = task_has_perm(current, p, PROCESS__SETKEYCREATE); 4487 else if (!strcmp(name, "sockcreate")) 4488 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE); 4489 else if (!strcmp(name, "current")) 4490 error = task_has_perm(current, p, PROCESS__SETCURRENT); 4491 else 4492 error = -EINVAL; 4493 if (error) 4494 return error; 4495 4496 /* Obtain a SID for the context, if one was specified. */ 4497 if (size && str[1] && str[1] != '\n') { 4498 if (str[size-1] == '\n') { 4499 str[size-1] = 0; 4500 size--; 4501 } 4502 error = security_context_to_sid(value, size, &sid); 4503 if (error) 4504 return error; 4505 } 4506 4507 /* Permission checking based on the specified context is 4508 performed during the actual operation (execve, 4509 open/mkdir/...), when we know the full context of the 4510 operation. See selinux_bprm_set_security for the execve 4511 checks and may_create for the file creation checks. The 4512 operation will then fail if the context is not permitted. */ 4513 tsec = p->security; 4514 if (!strcmp(name, "exec")) 4515 tsec->exec_sid = sid; 4516 else if (!strcmp(name, "fscreate")) 4517 tsec->create_sid = sid; 4518 else if (!strcmp(name, "keycreate")) { 4519 error = may_create_key(sid, p); 4520 if (error) 4521 return error; 4522 tsec->keycreate_sid = sid; 4523 } else if (!strcmp(name, "sockcreate")) 4524 tsec->sockcreate_sid = sid; 4525 else if (!strcmp(name, "current")) { 4526 struct av_decision avd; 4527 4528 if (sid == 0) 4529 return -EINVAL; 4530 4531 /* Only allow single threaded processes to change context */ 4532 if (atomic_read(&p->mm->mm_users) != 1) { 4533 struct task_struct *g, *t; 4534 struct mm_struct *mm = p->mm; 4535 read_lock(&tasklist_lock); 4536 do_each_thread(g, t) 4537 if (t->mm == mm && t != p) { 4538 read_unlock(&tasklist_lock); 4539 return -EPERM; 4540 } 4541 while_each_thread(g, t); 4542 read_unlock(&tasklist_lock); 4543 } 4544 4545 /* Check permissions for the transition. */ 4546 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 4547 PROCESS__DYNTRANSITION, NULL); 4548 if (error) 4549 return error; 4550 4551 /* Check for ptracing, and update the task SID if ok. 4552 Otherwise, leave SID unchanged and fail. */ 4553 task_lock(p); 4554 if (p->ptrace & PT_PTRACED) { 4555 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid, 4556 SECCLASS_PROCESS, 4557 PROCESS__PTRACE, &avd); 4558 if (!error) 4559 tsec->sid = sid; 4560 task_unlock(p); 4561 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS, 4562 PROCESS__PTRACE, &avd, error, NULL); 4563 if (error) 4564 return error; 4565 } else { 4566 tsec->sid = sid; 4567 task_unlock(p); 4568 } 4569 } 4570 else 4571 return -EINVAL; 4572 4573 return size; 4574 } 4575 4576 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4577 { 4578 return security_sid_to_context(secid, secdata, seclen); 4579 } 4580 4581 static void selinux_release_secctx(char *secdata, u32 seclen) 4582 { 4583 if (secdata) 4584 kfree(secdata); 4585 } 4586 4587 #ifdef CONFIG_KEYS 4588 4589 static int selinux_key_alloc(struct key *k, struct task_struct *tsk, 4590 unsigned long flags) 4591 { 4592 struct task_security_struct *tsec = tsk->security; 4593 struct key_security_struct *ksec; 4594 4595 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 4596 if (!ksec) 4597 return -ENOMEM; 4598 4599 ksec->obj = k; 4600 if (tsec->keycreate_sid) 4601 ksec->sid = tsec->keycreate_sid; 4602 else 4603 ksec->sid = tsec->sid; 4604 k->security = ksec; 4605 4606 return 0; 4607 } 4608 4609 static void selinux_key_free(struct key *k) 4610 { 4611 struct key_security_struct *ksec = k->security; 4612 4613 k->security = NULL; 4614 kfree(ksec); 4615 } 4616 4617 static int selinux_key_permission(key_ref_t key_ref, 4618 struct task_struct *ctx, 4619 key_perm_t perm) 4620 { 4621 struct key *key; 4622 struct task_security_struct *tsec; 4623 struct key_security_struct *ksec; 4624 4625 key = key_ref_to_ptr(key_ref); 4626 4627 tsec = ctx->security; 4628 ksec = key->security; 4629 4630 /* if no specific permissions are requested, we skip the 4631 permission check. No serious, additional covert channels 4632 appear to be created. */ 4633 if (perm == 0) 4634 return 0; 4635 4636 return avc_has_perm(tsec->sid, ksec->sid, 4637 SECCLASS_KEY, perm, NULL); 4638 } 4639 4640 #endif 4641 4642 static struct security_operations selinux_ops = { 4643 .ptrace = selinux_ptrace, 4644 .capget = selinux_capget, 4645 .capset_check = selinux_capset_check, 4646 .capset_set = selinux_capset_set, 4647 .sysctl = selinux_sysctl, 4648 .capable = selinux_capable, 4649 .quotactl = selinux_quotactl, 4650 .quota_on = selinux_quota_on, 4651 .syslog = selinux_syslog, 4652 .vm_enough_memory = selinux_vm_enough_memory, 4653 4654 .netlink_send = selinux_netlink_send, 4655 .netlink_recv = selinux_netlink_recv, 4656 4657 .bprm_alloc_security = selinux_bprm_alloc_security, 4658 .bprm_free_security = selinux_bprm_free_security, 4659 .bprm_apply_creds = selinux_bprm_apply_creds, 4660 .bprm_post_apply_creds = selinux_bprm_post_apply_creds, 4661 .bprm_set_security = selinux_bprm_set_security, 4662 .bprm_check_security = selinux_bprm_check_security, 4663 .bprm_secureexec = selinux_bprm_secureexec, 4664 4665 .sb_alloc_security = selinux_sb_alloc_security, 4666 .sb_free_security = selinux_sb_free_security, 4667 .sb_copy_data = selinux_sb_copy_data, 4668 .sb_kern_mount = selinux_sb_kern_mount, 4669 .sb_statfs = selinux_sb_statfs, 4670 .sb_mount = selinux_mount, 4671 .sb_umount = selinux_umount, 4672 4673 .inode_alloc_security = selinux_inode_alloc_security, 4674 .inode_free_security = selinux_inode_free_security, 4675 .inode_init_security = selinux_inode_init_security, 4676 .inode_create = selinux_inode_create, 4677 .inode_link = selinux_inode_link, 4678 .inode_unlink = selinux_inode_unlink, 4679 .inode_symlink = selinux_inode_symlink, 4680 .inode_mkdir = selinux_inode_mkdir, 4681 .inode_rmdir = selinux_inode_rmdir, 4682 .inode_mknod = selinux_inode_mknod, 4683 .inode_rename = selinux_inode_rename, 4684 .inode_readlink = selinux_inode_readlink, 4685 .inode_follow_link = selinux_inode_follow_link, 4686 .inode_permission = selinux_inode_permission, 4687 .inode_setattr = selinux_inode_setattr, 4688 .inode_getattr = selinux_inode_getattr, 4689 .inode_setxattr = selinux_inode_setxattr, 4690 .inode_post_setxattr = selinux_inode_post_setxattr, 4691 .inode_getxattr = selinux_inode_getxattr, 4692 .inode_listxattr = selinux_inode_listxattr, 4693 .inode_removexattr = selinux_inode_removexattr, 4694 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix, 4695 .inode_getsecurity = selinux_inode_getsecurity, 4696 .inode_setsecurity = selinux_inode_setsecurity, 4697 .inode_listsecurity = selinux_inode_listsecurity, 4698 4699 .file_permission = selinux_file_permission, 4700 .file_alloc_security = selinux_file_alloc_security, 4701 .file_free_security = selinux_file_free_security, 4702 .file_ioctl = selinux_file_ioctl, 4703 .file_mmap = selinux_file_mmap, 4704 .file_mprotect = selinux_file_mprotect, 4705 .file_lock = selinux_file_lock, 4706 .file_fcntl = selinux_file_fcntl, 4707 .file_set_fowner = selinux_file_set_fowner, 4708 .file_send_sigiotask = selinux_file_send_sigiotask, 4709 .file_receive = selinux_file_receive, 4710 4711 .task_create = selinux_task_create, 4712 .task_alloc_security = selinux_task_alloc_security, 4713 .task_free_security = selinux_task_free_security, 4714 .task_setuid = selinux_task_setuid, 4715 .task_post_setuid = selinux_task_post_setuid, 4716 .task_setgid = selinux_task_setgid, 4717 .task_setpgid = selinux_task_setpgid, 4718 .task_getpgid = selinux_task_getpgid, 4719 .task_getsid = selinux_task_getsid, 4720 .task_getsecid = selinux_task_getsecid, 4721 .task_setgroups = selinux_task_setgroups, 4722 .task_setnice = selinux_task_setnice, 4723 .task_setioprio = selinux_task_setioprio, 4724 .task_getioprio = selinux_task_getioprio, 4725 .task_setrlimit = selinux_task_setrlimit, 4726 .task_setscheduler = selinux_task_setscheduler, 4727 .task_getscheduler = selinux_task_getscheduler, 4728 .task_movememory = selinux_task_movememory, 4729 .task_kill = selinux_task_kill, 4730 .task_wait = selinux_task_wait, 4731 .task_prctl = selinux_task_prctl, 4732 .task_reparent_to_init = selinux_task_reparent_to_init, 4733 .task_to_inode = selinux_task_to_inode, 4734 4735 .ipc_permission = selinux_ipc_permission, 4736 4737 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 4738 .msg_msg_free_security = selinux_msg_msg_free_security, 4739 4740 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 4741 .msg_queue_free_security = selinux_msg_queue_free_security, 4742 .msg_queue_associate = selinux_msg_queue_associate, 4743 .msg_queue_msgctl = selinux_msg_queue_msgctl, 4744 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 4745 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 4746 4747 .shm_alloc_security = selinux_shm_alloc_security, 4748 .shm_free_security = selinux_shm_free_security, 4749 .shm_associate = selinux_shm_associate, 4750 .shm_shmctl = selinux_shm_shmctl, 4751 .shm_shmat = selinux_shm_shmat, 4752 4753 .sem_alloc_security = selinux_sem_alloc_security, 4754 .sem_free_security = selinux_sem_free_security, 4755 .sem_associate = selinux_sem_associate, 4756 .sem_semctl = selinux_sem_semctl, 4757 .sem_semop = selinux_sem_semop, 4758 4759 .register_security = selinux_register_security, 4760 .unregister_security = selinux_unregister_security, 4761 4762 .d_instantiate = selinux_d_instantiate, 4763 4764 .getprocattr = selinux_getprocattr, 4765 .setprocattr = selinux_setprocattr, 4766 4767 .secid_to_secctx = selinux_secid_to_secctx, 4768 .release_secctx = selinux_release_secctx, 4769 4770 .unix_stream_connect = selinux_socket_unix_stream_connect, 4771 .unix_may_send = selinux_socket_unix_may_send, 4772 4773 .socket_create = selinux_socket_create, 4774 .socket_post_create = selinux_socket_post_create, 4775 .socket_bind = selinux_socket_bind, 4776 .socket_connect = selinux_socket_connect, 4777 .socket_listen = selinux_socket_listen, 4778 .socket_accept = selinux_socket_accept, 4779 .socket_sendmsg = selinux_socket_sendmsg, 4780 .socket_recvmsg = selinux_socket_recvmsg, 4781 .socket_getsockname = selinux_socket_getsockname, 4782 .socket_getpeername = selinux_socket_getpeername, 4783 .socket_getsockopt = selinux_socket_getsockopt, 4784 .socket_setsockopt = selinux_socket_setsockopt, 4785 .socket_shutdown = selinux_socket_shutdown, 4786 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 4787 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 4788 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 4789 .sk_alloc_security = selinux_sk_alloc_security, 4790 .sk_free_security = selinux_sk_free_security, 4791 .sk_clone_security = selinux_sk_clone_security, 4792 .sk_getsecid = selinux_sk_getsecid, 4793 .sock_graft = selinux_sock_graft, 4794 .inet_conn_request = selinux_inet_conn_request, 4795 .inet_csk_clone = selinux_inet_csk_clone, 4796 .inet_conn_established = selinux_inet_conn_established, 4797 .req_classify_flow = selinux_req_classify_flow, 4798 4799 #ifdef CONFIG_SECURITY_NETWORK_XFRM 4800 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 4801 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 4802 .xfrm_policy_free_security = selinux_xfrm_policy_free, 4803 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 4804 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 4805 .xfrm_state_free_security = selinux_xfrm_state_free, 4806 .xfrm_state_delete_security = selinux_xfrm_state_delete, 4807 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 4808 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 4809 .xfrm_decode_session = selinux_xfrm_decode_session, 4810 #endif 4811 4812 #ifdef CONFIG_KEYS 4813 .key_alloc = selinux_key_alloc, 4814 .key_free = selinux_key_free, 4815 .key_permission = selinux_key_permission, 4816 #endif 4817 }; 4818 4819 static __init int selinux_init(void) 4820 { 4821 struct task_security_struct *tsec; 4822 4823 if (!selinux_enabled) { 4824 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 4825 return 0; 4826 } 4827 4828 printk(KERN_INFO "SELinux: Initializing.\n"); 4829 4830 /* Set the security state for the initial task. */ 4831 if (task_alloc_security(current)) 4832 panic("SELinux: Failed to initialize initial task.\n"); 4833 tsec = current->security; 4834 tsec->osid = tsec->sid = SECINITSID_KERNEL; 4835 4836 sel_inode_cache = kmem_cache_create("selinux_inode_security", 4837 sizeof(struct inode_security_struct), 4838 0, SLAB_PANIC, NULL, NULL); 4839 avc_init(); 4840 4841 original_ops = secondary_ops = security_ops; 4842 if (!secondary_ops) 4843 panic ("SELinux: No initial security operations\n"); 4844 if (register_security (&selinux_ops)) 4845 panic("SELinux: Unable to register with kernel.\n"); 4846 4847 if (selinux_enforcing) { 4848 printk(KERN_INFO "SELinux: Starting in enforcing mode\n"); 4849 } else { 4850 printk(KERN_INFO "SELinux: Starting in permissive mode\n"); 4851 } 4852 4853 #ifdef CONFIG_KEYS 4854 /* Add security information to initial keyrings */ 4855 selinux_key_alloc(&root_user_keyring, current, 4856 KEY_ALLOC_NOT_IN_QUOTA); 4857 selinux_key_alloc(&root_session_keyring, current, 4858 KEY_ALLOC_NOT_IN_QUOTA); 4859 #endif 4860 4861 return 0; 4862 } 4863 4864 void selinux_complete_init(void) 4865 { 4866 printk(KERN_INFO "SELinux: Completing initialization.\n"); 4867 4868 /* Set up any superblocks initialized prior to the policy load. */ 4869 printk(KERN_INFO "SELinux: Setting up existing superblocks.\n"); 4870 spin_lock(&sb_lock); 4871 spin_lock(&sb_security_lock); 4872 next_sb: 4873 if (!list_empty(&superblock_security_head)) { 4874 struct superblock_security_struct *sbsec = 4875 list_entry(superblock_security_head.next, 4876 struct superblock_security_struct, 4877 list); 4878 struct super_block *sb = sbsec->sb; 4879 sb->s_count++; 4880 spin_unlock(&sb_security_lock); 4881 spin_unlock(&sb_lock); 4882 down_read(&sb->s_umount); 4883 if (sb->s_root) 4884 superblock_doinit(sb, NULL); 4885 drop_super(sb); 4886 spin_lock(&sb_lock); 4887 spin_lock(&sb_security_lock); 4888 list_del_init(&sbsec->list); 4889 goto next_sb; 4890 } 4891 spin_unlock(&sb_security_lock); 4892 spin_unlock(&sb_lock); 4893 } 4894 4895 /* SELinux requires early initialization in order to label 4896 all processes and objects when they are created. */ 4897 security_initcall(selinux_init); 4898 4899 #if defined(CONFIG_NETFILTER) 4900 4901 static struct nf_hook_ops selinux_ipv4_op = { 4902 .hook = selinux_ipv4_postroute_last, 4903 .owner = THIS_MODULE, 4904 .pf = PF_INET, 4905 .hooknum = NF_IP_POST_ROUTING, 4906 .priority = NF_IP_PRI_SELINUX_LAST, 4907 }; 4908 4909 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4910 4911 static struct nf_hook_ops selinux_ipv6_op = { 4912 .hook = selinux_ipv6_postroute_last, 4913 .owner = THIS_MODULE, 4914 .pf = PF_INET6, 4915 .hooknum = NF_IP6_POST_ROUTING, 4916 .priority = NF_IP6_PRI_SELINUX_LAST, 4917 }; 4918 4919 #endif /* IPV6 */ 4920 4921 static int __init selinux_nf_ip_init(void) 4922 { 4923 int err = 0; 4924 4925 if (!selinux_enabled) 4926 goto out; 4927 4928 printk(KERN_INFO "SELinux: Registering netfilter hooks\n"); 4929 4930 err = nf_register_hook(&selinux_ipv4_op); 4931 if (err) 4932 panic("SELinux: nf_register_hook for IPv4: error %d\n", err); 4933 4934 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4935 4936 err = nf_register_hook(&selinux_ipv6_op); 4937 if (err) 4938 panic("SELinux: nf_register_hook for IPv6: error %d\n", err); 4939 4940 #endif /* IPV6 */ 4941 4942 out: 4943 return err; 4944 } 4945 4946 __initcall(selinux_nf_ip_init); 4947 4948 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 4949 static void selinux_nf_ip_exit(void) 4950 { 4951 printk(KERN_INFO "SELinux: Unregistering netfilter hooks\n"); 4952 4953 nf_unregister_hook(&selinux_ipv4_op); 4954 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4955 nf_unregister_hook(&selinux_ipv6_op); 4956 #endif /* IPV6 */ 4957 } 4958 #endif 4959 4960 #else /* CONFIG_NETFILTER */ 4961 4962 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 4963 #define selinux_nf_ip_exit() 4964 #endif 4965 4966 #endif /* CONFIG_NETFILTER */ 4967 4968 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 4969 int selinux_disable(void) 4970 { 4971 extern void exit_sel_fs(void); 4972 static int selinux_disabled = 0; 4973 4974 if (ss_initialized) { 4975 /* Not permitted after initial policy load. */ 4976 return -EINVAL; 4977 } 4978 4979 if (selinux_disabled) { 4980 /* Only do this once. */ 4981 return -EINVAL; 4982 } 4983 4984 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 4985 4986 selinux_disabled = 1; 4987 selinux_enabled = 0; 4988 4989 /* Reset security_ops to the secondary module, dummy or capability. */ 4990 security_ops = secondary_ops; 4991 4992 /* Unregister netfilter hooks. */ 4993 selinux_nf_ip_exit(); 4994 4995 /* Unregister selinuxfs. */ 4996 exit_sel_fs(); 4997 4998 return 0; 4999 } 5000 #endif 5001 5002 5003