xref: /openbmc/linux/security/selinux/hooks.c (revision b78b7d59bdbe6028ab362c2551dc684872f2052a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/tracehook.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h>	/* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94 
95 #include "avc.h"
96 #include "objsec.h"
97 #include "netif.h"
98 #include "netnode.h"
99 #include "netport.h"
100 #include "ibpkey.h"
101 #include "xfrm.h"
102 #include "netlabel.h"
103 #include "audit.h"
104 #include "avc_ss.h"
105 
106 struct selinux_state selinux_state;
107 
108 /* SECMARK reference count */
109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110 
111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112 static int selinux_enforcing_boot __initdata;
113 
114 static int __init enforcing_setup(char *str)
115 {
116 	unsigned long enforcing;
117 	if (!kstrtoul(str, 0, &enforcing))
118 		selinux_enforcing_boot = enforcing ? 1 : 0;
119 	return 1;
120 }
121 __setup("enforcing=", enforcing_setup);
122 #else
123 #define selinux_enforcing_boot 1
124 #endif
125 
126 int selinux_enabled_boot __initdata = 1;
127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128 static int __init selinux_enabled_setup(char *str)
129 {
130 	unsigned long enabled;
131 	if (!kstrtoul(str, 0, &enabled))
132 		selinux_enabled_boot = enabled ? 1 : 0;
133 	return 1;
134 }
135 __setup("selinux=", selinux_enabled_setup);
136 #endif
137 
138 static unsigned int selinux_checkreqprot_boot =
139 	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140 
141 static int __init checkreqprot_setup(char *str)
142 {
143 	unsigned long checkreqprot;
144 
145 	if (!kstrtoul(str, 0, &checkreqprot))
146 		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 	return 1;
148 }
149 __setup("checkreqprot=", checkreqprot_setup);
150 
151 /**
152  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
153  *
154  * Description:
155  * This function checks the SECMARK reference counter to see if any SECMARK
156  * targets are currently configured, if the reference counter is greater than
157  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
158  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
159  * policy capability is enabled, SECMARK is always considered enabled.
160  *
161  */
162 static int selinux_secmark_enabled(void)
163 {
164 	return (selinux_policycap_alwaysnetwork() ||
165 		atomic_read(&selinux_secmark_refcount));
166 }
167 
168 /**
169  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
170  *
171  * Description:
172  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
173  * (1) if any are enabled or false (0) if neither are enabled.  If the
174  * always_check_network policy capability is enabled, peer labeling
175  * is always considered enabled.
176  *
177  */
178 static int selinux_peerlbl_enabled(void)
179 {
180 	return (selinux_policycap_alwaysnetwork() ||
181 		netlbl_enabled() || selinux_xfrm_enabled());
182 }
183 
184 static int selinux_netcache_avc_callback(u32 event)
185 {
186 	if (event == AVC_CALLBACK_RESET) {
187 		sel_netif_flush();
188 		sel_netnode_flush();
189 		sel_netport_flush();
190 		synchronize_net();
191 	}
192 	return 0;
193 }
194 
195 static int selinux_lsm_notifier_avc_callback(u32 event)
196 {
197 	if (event == AVC_CALLBACK_RESET) {
198 		sel_ib_pkey_flush();
199 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
200 	}
201 
202 	return 0;
203 }
204 
205 /*
206  * initialise the security for the init task
207  */
208 static void cred_init_security(void)
209 {
210 	struct cred *cred = (struct cred *) current->real_cred;
211 	struct task_security_struct *tsec;
212 
213 	tsec = selinux_cred(cred);
214 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
215 }
216 
217 /*
218  * get the security ID of a set of credentials
219  */
220 static inline u32 cred_sid(const struct cred *cred)
221 {
222 	const struct task_security_struct *tsec;
223 
224 	tsec = selinux_cred(cred);
225 	return tsec->sid;
226 }
227 
228 /*
229  * get the objective security ID of a task
230  */
231 static inline u32 task_sid(const struct task_struct *task)
232 {
233 	u32 sid;
234 
235 	rcu_read_lock();
236 	sid = cred_sid(__task_cred(task));
237 	rcu_read_unlock();
238 	return sid;
239 }
240 
241 /* Allocate and free functions for each kind of security blob. */
242 
243 static int inode_alloc_security(struct inode *inode)
244 {
245 	struct inode_security_struct *isec = selinux_inode(inode);
246 	u32 sid = current_sid();
247 
248 	spin_lock_init(&isec->lock);
249 	INIT_LIST_HEAD(&isec->list);
250 	isec->inode = inode;
251 	isec->sid = SECINITSID_UNLABELED;
252 	isec->sclass = SECCLASS_FILE;
253 	isec->task_sid = sid;
254 	isec->initialized = LABEL_INVALID;
255 
256 	return 0;
257 }
258 
259 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
260 
261 /*
262  * Try reloading inode security labels that have been marked as invalid.  The
263  * @may_sleep parameter indicates when sleeping and thus reloading labels is
264  * allowed; when set to false, returns -ECHILD when the label is
265  * invalid.  The @dentry parameter should be set to a dentry of the inode.
266  */
267 static int __inode_security_revalidate(struct inode *inode,
268 				       struct dentry *dentry,
269 				       bool may_sleep)
270 {
271 	struct inode_security_struct *isec = selinux_inode(inode);
272 
273 	might_sleep_if(may_sleep);
274 
275 	if (selinux_state.initialized &&
276 	    isec->initialized != LABEL_INITIALIZED) {
277 		if (!may_sleep)
278 			return -ECHILD;
279 
280 		/*
281 		 * Try reloading the inode security label.  This will fail if
282 		 * @opt_dentry is NULL and no dentry for this inode can be
283 		 * found; in that case, continue using the old label.
284 		 */
285 		inode_doinit_with_dentry(inode, dentry);
286 	}
287 	return 0;
288 }
289 
290 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
291 {
292 	return selinux_inode(inode);
293 }
294 
295 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
296 {
297 	int error;
298 
299 	error = __inode_security_revalidate(inode, NULL, !rcu);
300 	if (error)
301 		return ERR_PTR(error);
302 	return selinux_inode(inode);
303 }
304 
305 /*
306  * Get the security label of an inode.
307  */
308 static struct inode_security_struct *inode_security(struct inode *inode)
309 {
310 	__inode_security_revalidate(inode, NULL, true);
311 	return selinux_inode(inode);
312 }
313 
314 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
315 {
316 	struct inode *inode = d_backing_inode(dentry);
317 
318 	return selinux_inode(inode);
319 }
320 
321 /*
322  * Get the security label of a dentry's backing inode.
323  */
324 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
325 {
326 	struct inode *inode = d_backing_inode(dentry);
327 
328 	__inode_security_revalidate(inode, dentry, true);
329 	return selinux_inode(inode);
330 }
331 
332 static void inode_free_security(struct inode *inode)
333 {
334 	struct inode_security_struct *isec = selinux_inode(inode);
335 	struct superblock_security_struct *sbsec;
336 
337 	if (!isec)
338 		return;
339 	sbsec = inode->i_sb->s_security;
340 	/*
341 	 * As not all inode security structures are in a list, we check for
342 	 * empty list outside of the lock to make sure that we won't waste
343 	 * time taking a lock doing nothing.
344 	 *
345 	 * The list_del_init() function can be safely called more than once.
346 	 * It should not be possible for this function to be called with
347 	 * concurrent list_add(), but for better safety against future changes
348 	 * in the code, we use list_empty_careful() here.
349 	 */
350 	if (!list_empty_careful(&isec->list)) {
351 		spin_lock(&sbsec->isec_lock);
352 		list_del_init(&isec->list);
353 		spin_unlock(&sbsec->isec_lock);
354 	}
355 }
356 
357 static int file_alloc_security(struct file *file)
358 {
359 	struct file_security_struct *fsec = selinux_file(file);
360 	u32 sid = current_sid();
361 
362 	fsec->sid = sid;
363 	fsec->fown_sid = sid;
364 
365 	return 0;
366 }
367 
368 static int superblock_alloc_security(struct super_block *sb)
369 {
370 	struct superblock_security_struct *sbsec;
371 
372 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
373 	if (!sbsec)
374 		return -ENOMEM;
375 
376 	mutex_init(&sbsec->lock);
377 	INIT_LIST_HEAD(&sbsec->isec_head);
378 	spin_lock_init(&sbsec->isec_lock);
379 	sbsec->sb = sb;
380 	sbsec->sid = SECINITSID_UNLABELED;
381 	sbsec->def_sid = SECINITSID_FILE;
382 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
383 	sb->s_security = sbsec;
384 
385 	return 0;
386 }
387 
388 static void superblock_free_security(struct super_block *sb)
389 {
390 	struct superblock_security_struct *sbsec = sb->s_security;
391 	sb->s_security = NULL;
392 	kfree(sbsec);
393 }
394 
395 struct selinux_mnt_opts {
396 	const char *fscontext, *context, *rootcontext, *defcontext;
397 };
398 
399 static void selinux_free_mnt_opts(void *mnt_opts)
400 {
401 	struct selinux_mnt_opts *opts = mnt_opts;
402 	kfree(opts->fscontext);
403 	kfree(opts->context);
404 	kfree(opts->rootcontext);
405 	kfree(opts->defcontext);
406 	kfree(opts);
407 }
408 
409 static inline int inode_doinit(struct inode *inode)
410 {
411 	return inode_doinit_with_dentry(inode, NULL);
412 }
413 
414 enum {
415 	Opt_error = -1,
416 	Opt_context = 0,
417 	Opt_defcontext = 1,
418 	Opt_fscontext = 2,
419 	Opt_rootcontext = 3,
420 	Opt_seclabel = 4,
421 };
422 
423 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
424 static struct {
425 	const char *name;
426 	int len;
427 	int opt;
428 	bool has_arg;
429 } tokens[] = {
430 	A(context, true),
431 	A(fscontext, true),
432 	A(defcontext, true),
433 	A(rootcontext, true),
434 	A(seclabel, false),
435 };
436 #undef A
437 
438 static int match_opt_prefix(char *s, int l, char **arg)
439 {
440 	int i;
441 
442 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
443 		size_t len = tokens[i].len;
444 		if (len > l || memcmp(s, tokens[i].name, len))
445 			continue;
446 		if (tokens[i].has_arg) {
447 			if (len == l || s[len] != '=')
448 				continue;
449 			*arg = s + len + 1;
450 		} else if (len != l)
451 			continue;
452 		return tokens[i].opt;
453 	}
454 	return Opt_error;
455 }
456 
457 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
458 
459 static int may_context_mount_sb_relabel(u32 sid,
460 			struct superblock_security_struct *sbsec,
461 			const struct cred *cred)
462 {
463 	const struct task_security_struct *tsec = selinux_cred(cred);
464 	int rc;
465 
466 	rc = avc_has_perm(&selinux_state,
467 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
468 			  FILESYSTEM__RELABELFROM, NULL);
469 	if (rc)
470 		return rc;
471 
472 	rc = avc_has_perm(&selinux_state,
473 			  tsec->sid, sid, SECCLASS_FILESYSTEM,
474 			  FILESYSTEM__RELABELTO, NULL);
475 	return rc;
476 }
477 
478 static int may_context_mount_inode_relabel(u32 sid,
479 			struct superblock_security_struct *sbsec,
480 			const struct cred *cred)
481 {
482 	const struct task_security_struct *tsec = selinux_cred(cred);
483 	int rc;
484 	rc = avc_has_perm(&selinux_state,
485 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
486 			  FILESYSTEM__RELABELFROM, NULL);
487 	if (rc)
488 		return rc;
489 
490 	rc = avc_has_perm(&selinux_state,
491 			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
492 			  FILESYSTEM__ASSOCIATE, NULL);
493 	return rc;
494 }
495 
496 static int selinux_is_genfs_special_handling(struct super_block *sb)
497 {
498 	/* Special handling. Genfs but also in-core setxattr handler */
499 	return	!strcmp(sb->s_type->name, "sysfs") ||
500 		!strcmp(sb->s_type->name, "pstore") ||
501 		!strcmp(sb->s_type->name, "debugfs") ||
502 		!strcmp(sb->s_type->name, "tracefs") ||
503 		!strcmp(sb->s_type->name, "rootfs") ||
504 		(selinux_policycap_cgroupseclabel() &&
505 		 (!strcmp(sb->s_type->name, "cgroup") ||
506 		  !strcmp(sb->s_type->name, "cgroup2")));
507 }
508 
509 static int selinux_is_sblabel_mnt(struct super_block *sb)
510 {
511 	struct superblock_security_struct *sbsec = sb->s_security;
512 
513 	/*
514 	 * IMPORTANT: Double-check logic in this function when adding a new
515 	 * SECURITY_FS_USE_* definition!
516 	 */
517 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
518 
519 	switch (sbsec->behavior) {
520 	case SECURITY_FS_USE_XATTR:
521 	case SECURITY_FS_USE_TRANS:
522 	case SECURITY_FS_USE_TASK:
523 	case SECURITY_FS_USE_NATIVE:
524 		return 1;
525 
526 	case SECURITY_FS_USE_GENFS:
527 		return selinux_is_genfs_special_handling(sb);
528 
529 	/* Never allow relabeling on context mounts */
530 	case SECURITY_FS_USE_MNTPOINT:
531 	case SECURITY_FS_USE_NONE:
532 	default:
533 		return 0;
534 	}
535 }
536 
537 static int sb_finish_set_opts(struct super_block *sb)
538 {
539 	struct superblock_security_struct *sbsec = sb->s_security;
540 	struct dentry *root = sb->s_root;
541 	struct inode *root_inode = d_backing_inode(root);
542 	int rc = 0;
543 
544 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
545 		/* Make sure that the xattr handler exists and that no
546 		   error other than -ENODATA is returned by getxattr on
547 		   the root directory.  -ENODATA is ok, as this may be
548 		   the first boot of the SELinux kernel before we have
549 		   assigned xattr values to the filesystem. */
550 		if (!(root_inode->i_opflags & IOP_XATTR)) {
551 			pr_warn("SELinux: (dev %s, type %s) has no "
552 			       "xattr support\n", sb->s_id, sb->s_type->name);
553 			rc = -EOPNOTSUPP;
554 			goto out;
555 		}
556 
557 		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
558 		if (rc < 0 && rc != -ENODATA) {
559 			if (rc == -EOPNOTSUPP)
560 				pr_warn("SELinux: (dev %s, type "
561 				       "%s) has no security xattr handler\n",
562 				       sb->s_id, sb->s_type->name);
563 			else
564 				pr_warn("SELinux: (dev %s, type "
565 				       "%s) getxattr errno %d\n", sb->s_id,
566 				       sb->s_type->name, -rc);
567 			goto out;
568 		}
569 	}
570 
571 	sbsec->flags |= SE_SBINITIALIZED;
572 
573 	/*
574 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
575 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
576 	 * us a superblock that needs the flag to be cleared.
577 	 */
578 	if (selinux_is_sblabel_mnt(sb))
579 		sbsec->flags |= SBLABEL_MNT;
580 	else
581 		sbsec->flags &= ~SBLABEL_MNT;
582 
583 	/* Initialize the root inode. */
584 	rc = inode_doinit_with_dentry(root_inode, root);
585 
586 	/* Initialize any other inodes associated with the superblock, e.g.
587 	   inodes created prior to initial policy load or inodes created
588 	   during get_sb by a pseudo filesystem that directly
589 	   populates itself. */
590 	spin_lock(&sbsec->isec_lock);
591 	while (!list_empty(&sbsec->isec_head)) {
592 		struct inode_security_struct *isec =
593 				list_first_entry(&sbsec->isec_head,
594 					   struct inode_security_struct, list);
595 		struct inode *inode = isec->inode;
596 		list_del_init(&isec->list);
597 		spin_unlock(&sbsec->isec_lock);
598 		inode = igrab(inode);
599 		if (inode) {
600 			if (!IS_PRIVATE(inode))
601 				inode_doinit(inode);
602 			iput(inode);
603 		}
604 		spin_lock(&sbsec->isec_lock);
605 	}
606 	spin_unlock(&sbsec->isec_lock);
607 out:
608 	return rc;
609 }
610 
611 static int bad_option(struct superblock_security_struct *sbsec, char flag,
612 		      u32 old_sid, u32 new_sid)
613 {
614 	char mnt_flags = sbsec->flags & SE_MNTMASK;
615 
616 	/* check if the old mount command had the same options */
617 	if (sbsec->flags & SE_SBINITIALIZED)
618 		if (!(sbsec->flags & flag) ||
619 		    (old_sid != new_sid))
620 			return 1;
621 
622 	/* check if we were passed the same options twice,
623 	 * aka someone passed context=a,context=b
624 	 */
625 	if (!(sbsec->flags & SE_SBINITIALIZED))
626 		if (mnt_flags & flag)
627 			return 1;
628 	return 0;
629 }
630 
631 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
632 {
633 	int rc = security_context_str_to_sid(&selinux_state, s,
634 					     sid, GFP_KERNEL);
635 	if (rc)
636 		pr_warn("SELinux: security_context_str_to_sid"
637 		       "(%s) failed for (dev %s, type %s) errno=%d\n",
638 		       s, sb->s_id, sb->s_type->name, rc);
639 	return rc;
640 }
641 
642 /*
643  * Allow filesystems with binary mount data to explicitly set mount point
644  * labeling information.
645  */
646 static int selinux_set_mnt_opts(struct super_block *sb,
647 				void *mnt_opts,
648 				unsigned long kern_flags,
649 				unsigned long *set_kern_flags)
650 {
651 	const struct cred *cred = current_cred();
652 	struct superblock_security_struct *sbsec = sb->s_security;
653 	struct dentry *root = sbsec->sb->s_root;
654 	struct selinux_mnt_opts *opts = mnt_opts;
655 	struct inode_security_struct *root_isec;
656 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
657 	u32 defcontext_sid = 0;
658 	int rc = 0;
659 
660 	mutex_lock(&sbsec->lock);
661 
662 	if (!selinux_state.initialized) {
663 		if (!opts) {
664 			/* Defer initialization until selinux_complete_init,
665 			   after the initial policy is loaded and the security
666 			   server is ready to handle calls. */
667 			goto out;
668 		}
669 		rc = -EINVAL;
670 		pr_warn("SELinux: Unable to set superblock options "
671 			"before the security server is initialized\n");
672 		goto out;
673 	}
674 	if (kern_flags && !set_kern_flags) {
675 		/* Specifying internal flags without providing a place to
676 		 * place the results is not allowed */
677 		rc = -EINVAL;
678 		goto out;
679 	}
680 
681 	/*
682 	 * Binary mount data FS will come through this function twice.  Once
683 	 * from an explicit call and once from the generic calls from the vfs.
684 	 * Since the generic VFS calls will not contain any security mount data
685 	 * we need to skip the double mount verification.
686 	 *
687 	 * This does open a hole in which we will not notice if the first
688 	 * mount using this sb set explict options and a second mount using
689 	 * this sb does not set any security options.  (The first options
690 	 * will be used for both mounts)
691 	 */
692 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
693 	    && !opts)
694 		goto out;
695 
696 	root_isec = backing_inode_security_novalidate(root);
697 
698 	/*
699 	 * parse the mount options, check if they are valid sids.
700 	 * also check if someone is trying to mount the same sb more
701 	 * than once with different security options.
702 	 */
703 	if (opts) {
704 		if (opts->fscontext) {
705 			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
706 			if (rc)
707 				goto out;
708 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
709 					fscontext_sid))
710 				goto out_double_mount;
711 			sbsec->flags |= FSCONTEXT_MNT;
712 		}
713 		if (opts->context) {
714 			rc = parse_sid(sb, opts->context, &context_sid);
715 			if (rc)
716 				goto out;
717 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
718 					context_sid))
719 				goto out_double_mount;
720 			sbsec->flags |= CONTEXT_MNT;
721 		}
722 		if (opts->rootcontext) {
723 			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
724 			if (rc)
725 				goto out;
726 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
727 					rootcontext_sid))
728 				goto out_double_mount;
729 			sbsec->flags |= ROOTCONTEXT_MNT;
730 		}
731 		if (opts->defcontext) {
732 			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
733 			if (rc)
734 				goto out;
735 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
736 					defcontext_sid))
737 				goto out_double_mount;
738 			sbsec->flags |= DEFCONTEXT_MNT;
739 		}
740 	}
741 
742 	if (sbsec->flags & SE_SBINITIALIZED) {
743 		/* previously mounted with options, but not on this attempt? */
744 		if ((sbsec->flags & SE_MNTMASK) && !opts)
745 			goto out_double_mount;
746 		rc = 0;
747 		goto out;
748 	}
749 
750 	if (strcmp(sb->s_type->name, "proc") == 0)
751 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
752 
753 	if (!strcmp(sb->s_type->name, "debugfs") ||
754 	    !strcmp(sb->s_type->name, "tracefs") ||
755 	    !strcmp(sb->s_type->name, "binderfs") ||
756 	    !strcmp(sb->s_type->name, "pstore"))
757 		sbsec->flags |= SE_SBGENFS;
758 
759 	if (!strcmp(sb->s_type->name, "sysfs") ||
760 	    !strcmp(sb->s_type->name, "cgroup") ||
761 	    !strcmp(sb->s_type->name, "cgroup2"))
762 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
763 
764 	if (!sbsec->behavior) {
765 		/*
766 		 * Determine the labeling behavior to use for this
767 		 * filesystem type.
768 		 */
769 		rc = security_fs_use(&selinux_state, sb);
770 		if (rc) {
771 			pr_warn("%s: security_fs_use(%s) returned %d\n",
772 					__func__, sb->s_type->name, rc);
773 			goto out;
774 		}
775 	}
776 
777 	/*
778 	 * If this is a user namespace mount and the filesystem type is not
779 	 * explicitly whitelisted, then no contexts are allowed on the command
780 	 * line and security labels must be ignored.
781 	 */
782 	if (sb->s_user_ns != &init_user_ns &&
783 	    strcmp(sb->s_type->name, "tmpfs") &&
784 	    strcmp(sb->s_type->name, "ramfs") &&
785 	    strcmp(sb->s_type->name, "devpts")) {
786 		if (context_sid || fscontext_sid || rootcontext_sid ||
787 		    defcontext_sid) {
788 			rc = -EACCES;
789 			goto out;
790 		}
791 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
792 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
793 			rc = security_transition_sid(&selinux_state,
794 						     current_sid(),
795 						     current_sid(),
796 						     SECCLASS_FILE, NULL,
797 						     &sbsec->mntpoint_sid);
798 			if (rc)
799 				goto out;
800 		}
801 		goto out_set_opts;
802 	}
803 
804 	/* sets the context of the superblock for the fs being mounted. */
805 	if (fscontext_sid) {
806 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
807 		if (rc)
808 			goto out;
809 
810 		sbsec->sid = fscontext_sid;
811 	}
812 
813 	/*
814 	 * Switch to using mount point labeling behavior.
815 	 * sets the label used on all file below the mountpoint, and will set
816 	 * the superblock context if not already set.
817 	 */
818 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
819 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
820 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
821 	}
822 
823 	if (context_sid) {
824 		if (!fscontext_sid) {
825 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
826 							  cred);
827 			if (rc)
828 				goto out;
829 			sbsec->sid = context_sid;
830 		} else {
831 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
832 							     cred);
833 			if (rc)
834 				goto out;
835 		}
836 		if (!rootcontext_sid)
837 			rootcontext_sid = context_sid;
838 
839 		sbsec->mntpoint_sid = context_sid;
840 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
841 	}
842 
843 	if (rootcontext_sid) {
844 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
845 						     cred);
846 		if (rc)
847 			goto out;
848 
849 		root_isec->sid = rootcontext_sid;
850 		root_isec->initialized = LABEL_INITIALIZED;
851 	}
852 
853 	if (defcontext_sid) {
854 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
855 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
856 			rc = -EINVAL;
857 			pr_warn("SELinux: defcontext option is "
858 			       "invalid for this filesystem type\n");
859 			goto out;
860 		}
861 
862 		if (defcontext_sid != sbsec->def_sid) {
863 			rc = may_context_mount_inode_relabel(defcontext_sid,
864 							     sbsec, cred);
865 			if (rc)
866 				goto out;
867 		}
868 
869 		sbsec->def_sid = defcontext_sid;
870 	}
871 
872 out_set_opts:
873 	rc = sb_finish_set_opts(sb);
874 out:
875 	mutex_unlock(&sbsec->lock);
876 	return rc;
877 out_double_mount:
878 	rc = -EINVAL;
879 	pr_warn("SELinux: mount invalid.  Same superblock, different "
880 	       "security settings for (dev %s, type %s)\n", sb->s_id,
881 	       sb->s_type->name);
882 	goto out;
883 }
884 
885 static int selinux_cmp_sb_context(const struct super_block *oldsb,
886 				    const struct super_block *newsb)
887 {
888 	struct superblock_security_struct *old = oldsb->s_security;
889 	struct superblock_security_struct *new = newsb->s_security;
890 	char oldflags = old->flags & SE_MNTMASK;
891 	char newflags = new->flags & SE_MNTMASK;
892 
893 	if (oldflags != newflags)
894 		goto mismatch;
895 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
896 		goto mismatch;
897 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
898 		goto mismatch;
899 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
900 		goto mismatch;
901 	if (oldflags & ROOTCONTEXT_MNT) {
902 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
903 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
904 		if (oldroot->sid != newroot->sid)
905 			goto mismatch;
906 	}
907 	return 0;
908 mismatch:
909 	pr_warn("SELinux: mount invalid.  Same superblock, "
910 			    "different security settings for (dev %s, "
911 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
912 	return -EBUSY;
913 }
914 
915 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
916 					struct super_block *newsb,
917 					unsigned long kern_flags,
918 					unsigned long *set_kern_flags)
919 {
920 	int rc = 0;
921 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
922 	struct superblock_security_struct *newsbsec = newsb->s_security;
923 
924 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
925 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
926 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
927 
928 	/*
929 	 * if the parent was able to be mounted it clearly had no special lsm
930 	 * mount options.  thus we can safely deal with this superblock later
931 	 */
932 	if (!selinux_state.initialized)
933 		return 0;
934 
935 	/*
936 	 * Specifying internal flags without providing a place to
937 	 * place the results is not allowed.
938 	 */
939 	if (kern_flags && !set_kern_flags)
940 		return -EINVAL;
941 
942 	/* how can we clone if the old one wasn't set up?? */
943 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
944 
945 	/* if fs is reusing a sb, make sure that the contexts match */
946 	if (newsbsec->flags & SE_SBINITIALIZED) {
947 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
948 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
949 		return selinux_cmp_sb_context(oldsb, newsb);
950 	}
951 
952 	mutex_lock(&newsbsec->lock);
953 
954 	newsbsec->flags = oldsbsec->flags;
955 
956 	newsbsec->sid = oldsbsec->sid;
957 	newsbsec->def_sid = oldsbsec->def_sid;
958 	newsbsec->behavior = oldsbsec->behavior;
959 
960 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
961 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
962 		rc = security_fs_use(&selinux_state, newsb);
963 		if (rc)
964 			goto out;
965 	}
966 
967 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
968 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
969 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
970 	}
971 
972 	if (set_context) {
973 		u32 sid = oldsbsec->mntpoint_sid;
974 
975 		if (!set_fscontext)
976 			newsbsec->sid = sid;
977 		if (!set_rootcontext) {
978 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979 			newisec->sid = sid;
980 		}
981 		newsbsec->mntpoint_sid = sid;
982 	}
983 	if (set_rootcontext) {
984 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
985 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
986 
987 		newisec->sid = oldisec->sid;
988 	}
989 
990 	sb_finish_set_opts(newsb);
991 out:
992 	mutex_unlock(&newsbsec->lock);
993 	return rc;
994 }
995 
996 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
997 {
998 	struct selinux_mnt_opts *opts = *mnt_opts;
999 
1000 	if (token == Opt_seclabel)	/* eaten and completely ignored */
1001 		return 0;
1002 
1003 	if (!opts) {
1004 		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1005 		if (!opts)
1006 			return -ENOMEM;
1007 		*mnt_opts = opts;
1008 	}
1009 	if (!s)
1010 		return -ENOMEM;
1011 	switch (token) {
1012 	case Opt_context:
1013 		if (opts->context || opts->defcontext)
1014 			goto Einval;
1015 		opts->context = s;
1016 		break;
1017 	case Opt_fscontext:
1018 		if (opts->fscontext)
1019 			goto Einval;
1020 		opts->fscontext = s;
1021 		break;
1022 	case Opt_rootcontext:
1023 		if (opts->rootcontext)
1024 			goto Einval;
1025 		opts->rootcontext = s;
1026 		break;
1027 	case Opt_defcontext:
1028 		if (opts->context || opts->defcontext)
1029 			goto Einval;
1030 		opts->defcontext = s;
1031 		break;
1032 	}
1033 	return 0;
1034 Einval:
1035 	pr_warn(SEL_MOUNT_FAIL_MSG);
1036 	return -EINVAL;
1037 }
1038 
1039 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1040 			       void **mnt_opts)
1041 {
1042 	int token = Opt_error;
1043 	int rc, i;
1044 
1045 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1046 		if (strcmp(option, tokens[i].name) == 0) {
1047 			token = tokens[i].opt;
1048 			break;
1049 		}
1050 	}
1051 
1052 	if (token == Opt_error)
1053 		return -EINVAL;
1054 
1055 	if (token != Opt_seclabel) {
1056 		val = kmemdup_nul(val, len, GFP_KERNEL);
1057 		if (!val) {
1058 			rc = -ENOMEM;
1059 			goto free_opt;
1060 		}
1061 	}
1062 	rc = selinux_add_opt(token, val, mnt_opts);
1063 	if (unlikely(rc)) {
1064 		kfree(val);
1065 		goto free_opt;
1066 	}
1067 	return rc;
1068 
1069 free_opt:
1070 	if (*mnt_opts) {
1071 		selinux_free_mnt_opts(*mnt_opts);
1072 		*mnt_opts = NULL;
1073 	}
1074 	return rc;
1075 }
1076 
1077 static int show_sid(struct seq_file *m, u32 sid)
1078 {
1079 	char *context = NULL;
1080 	u32 len;
1081 	int rc;
1082 
1083 	rc = security_sid_to_context(&selinux_state, sid,
1084 					     &context, &len);
1085 	if (!rc) {
1086 		bool has_comma = context && strchr(context, ',');
1087 
1088 		seq_putc(m, '=');
1089 		if (has_comma)
1090 			seq_putc(m, '\"');
1091 		seq_escape(m, context, "\"\n\\");
1092 		if (has_comma)
1093 			seq_putc(m, '\"');
1094 	}
1095 	kfree(context);
1096 	return rc;
1097 }
1098 
1099 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1100 {
1101 	struct superblock_security_struct *sbsec = sb->s_security;
1102 	int rc;
1103 
1104 	if (!(sbsec->flags & SE_SBINITIALIZED))
1105 		return 0;
1106 
1107 	if (!selinux_state.initialized)
1108 		return 0;
1109 
1110 	if (sbsec->flags & FSCONTEXT_MNT) {
1111 		seq_putc(m, ',');
1112 		seq_puts(m, FSCONTEXT_STR);
1113 		rc = show_sid(m, sbsec->sid);
1114 		if (rc)
1115 			return rc;
1116 	}
1117 	if (sbsec->flags & CONTEXT_MNT) {
1118 		seq_putc(m, ',');
1119 		seq_puts(m, CONTEXT_STR);
1120 		rc = show_sid(m, sbsec->mntpoint_sid);
1121 		if (rc)
1122 			return rc;
1123 	}
1124 	if (sbsec->flags & DEFCONTEXT_MNT) {
1125 		seq_putc(m, ',');
1126 		seq_puts(m, DEFCONTEXT_STR);
1127 		rc = show_sid(m, sbsec->def_sid);
1128 		if (rc)
1129 			return rc;
1130 	}
1131 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1132 		struct dentry *root = sbsec->sb->s_root;
1133 		struct inode_security_struct *isec = backing_inode_security(root);
1134 		seq_putc(m, ',');
1135 		seq_puts(m, ROOTCONTEXT_STR);
1136 		rc = show_sid(m, isec->sid);
1137 		if (rc)
1138 			return rc;
1139 	}
1140 	if (sbsec->flags & SBLABEL_MNT) {
1141 		seq_putc(m, ',');
1142 		seq_puts(m, SECLABEL_STR);
1143 	}
1144 	return 0;
1145 }
1146 
1147 static inline u16 inode_mode_to_security_class(umode_t mode)
1148 {
1149 	switch (mode & S_IFMT) {
1150 	case S_IFSOCK:
1151 		return SECCLASS_SOCK_FILE;
1152 	case S_IFLNK:
1153 		return SECCLASS_LNK_FILE;
1154 	case S_IFREG:
1155 		return SECCLASS_FILE;
1156 	case S_IFBLK:
1157 		return SECCLASS_BLK_FILE;
1158 	case S_IFDIR:
1159 		return SECCLASS_DIR;
1160 	case S_IFCHR:
1161 		return SECCLASS_CHR_FILE;
1162 	case S_IFIFO:
1163 		return SECCLASS_FIFO_FILE;
1164 
1165 	}
1166 
1167 	return SECCLASS_FILE;
1168 }
1169 
1170 static inline int default_protocol_stream(int protocol)
1171 {
1172 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1173 }
1174 
1175 static inline int default_protocol_dgram(int protocol)
1176 {
1177 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1178 }
1179 
1180 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1181 {
1182 	int extsockclass = selinux_policycap_extsockclass();
1183 
1184 	switch (family) {
1185 	case PF_UNIX:
1186 		switch (type) {
1187 		case SOCK_STREAM:
1188 		case SOCK_SEQPACKET:
1189 			return SECCLASS_UNIX_STREAM_SOCKET;
1190 		case SOCK_DGRAM:
1191 		case SOCK_RAW:
1192 			return SECCLASS_UNIX_DGRAM_SOCKET;
1193 		}
1194 		break;
1195 	case PF_INET:
1196 	case PF_INET6:
1197 		switch (type) {
1198 		case SOCK_STREAM:
1199 		case SOCK_SEQPACKET:
1200 			if (default_protocol_stream(protocol))
1201 				return SECCLASS_TCP_SOCKET;
1202 			else if (extsockclass && protocol == IPPROTO_SCTP)
1203 				return SECCLASS_SCTP_SOCKET;
1204 			else
1205 				return SECCLASS_RAWIP_SOCKET;
1206 		case SOCK_DGRAM:
1207 			if (default_protocol_dgram(protocol))
1208 				return SECCLASS_UDP_SOCKET;
1209 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1210 						  protocol == IPPROTO_ICMPV6))
1211 				return SECCLASS_ICMP_SOCKET;
1212 			else
1213 				return SECCLASS_RAWIP_SOCKET;
1214 		case SOCK_DCCP:
1215 			return SECCLASS_DCCP_SOCKET;
1216 		default:
1217 			return SECCLASS_RAWIP_SOCKET;
1218 		}
1219 		break;
1220 	case PF_NETLINK:
1221 		switch (protocol) {
1222 		case NETLINK_ROUTE:
1223 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1224 		case NETLINK_SOCK_DIAG:
1225 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1226 		case NETLINK_NFLOG:
1227 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1228 		case NETLINK_XFRM:
1229 			return SECCLASS_NETLINK_XFRM_SOCKET;
1230 		case NETLINK_SELINUX:
1231 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1232 		case NETLINK_ISCSI:
1233 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1234 		case NETLINK_AUDIT:
1235 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1236 		case NETLINK_FIB_LOOKUP:
1237 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1238 		case NETLINK_CONNECTOR:
1239 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1240 		case NETLINK_NETFILTER:
1241 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1242 		case NETLINK_DNRTMSG:
1243 			return SECCLASS_NETLINK_DNRT_SOCKET;
1244 		case NETLINK_KOBJECT_UEVENT:
1245 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1246 		case NETLINK_GENERIC:
1247 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1248 		case NETLINK_SCSITRANSPORT:
1249 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1250 		case NETLINK_RDMA:
1251 			return SECCLASS_NETLINK_RDMA_SOCKET;
1252 		case NETLINK_CRYPTO:
1253 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1254 		default:
1255 			return SECCLASS_NETLINK_SOCKET;
1256 		}
1257 	case PF_PACKET:
1258 		return SECCLASS_PACKET_SOCKET;
1259 	case PF_KEY:
1260 		return SECCLASS_KEY_SOCKET;
1261 	case PF_APPLETALK:
1262 		return SECCLASS_APPLETALK_SOCKET;
1263 	}
1264 
1265 	if (extsockclass) {
1266 		switch (family) {
1267 		case PF_AX25:
1268 			return SECCLASS_AX25_SOCKET;
1269 		case PF_IPX:
1270 			return SECCLASS_IPX_SOCKET;
1271 		case PF_NETROM:
1272 			return SECCLASS_NETROM_SOCKET;
1273 		case PF_ATMPVC:
1274 			return SECCLASS_ATMPVC_SOCKET;
1275 		case PF_X25:
1276 			return SECCLASS_X25_SOCKET;
1277 		case PF_ROSE:
1278 			return SECCLASS_ROSE_SOCKET;
1279 		case PF_DECnet:
1280 			return SECCLASS_DECNET_SOCKET;
1281 		case PF_ATMSVC:
1282 			return SECCLASS_ATMSVC_SOCKET;
1283 		case PF_RDS:
1284 			return SECCLASS_RDS_SOCKET;
1285 		case PF_IRDA:
1286 			return SECCLASS_IRDA_SOCKET;
1287 		case PF_PPPOX:
1288 			return SECCLASS_PPPOX_SOCKET;
1289 		case PF_LLC:
1290 			return SECCLASS_LLC_SOCKET;
1291 		case PF_CAN:
1292 			return SECCLASS_CAN_SOCKET;
1293 		case PF_TIPC:
1294 			return SECCLASS_TIPC_SOCKET;
1295 		case PF_BLUETOOTH:
1296 			return SECCLASS_BLUETOOTH_SOCKET;
1297 		case PF_IUCV:
1298 			return SECCLASS_IUCV_SOCKET;
1299 		case PF_RXRPC:
1300 			return SECCLASS_RXRPC_SOCKET;
1301 		case PF_ISDN:
1302 			return SECCLASS_ISDN_SOCKET;
1303 		case PF_PHONET:
1304 			return SECCLASS_PHONET_SOCKET;
1305 		case PF_IEEE802154:
1306 			return SECCLASS_IEEE802154_SOCKET;
1307 		case PF_CAIF:
1308 			return SECCLASS_CAIF_SOCKET;
1309 		case PF_ALG:
1310 			return SECCLASS_ALG_SOCKET;
1311 		case PF_NFC:
1312 			return SECCLASS_NFC_SOCKET;
1313 		case PF_VSOCK:
1314 			return SECCLASS_VSOCK_SOCKET;
1315 		case PF_KCM:
1316 			return SECCLASS_KCM_SOCKET;
1317 		case PF_QIPCRTR:
1318 			return SECCLASS_QIPCRTR_SOCKET;
1319 		case PF_SMC:
1320 			return SECCLASS_SMC_SOCKET;
1321 		case PF_XDP:
1322 			return SECCLASS_XDP_SOCKET;
1323 #if PF_MAX > 45
1324 #error New address family defined, please update this function.
1325 #endif
1326 		}
1327 	}
1328 
1329 	return SECCLASS_SOCKET;
1330 }
1331 
1332 static int selinux_genfs_get_sid(struct dentry *dentry,
1333 				 u16 tclass,
1334 				 u16 flags,
1335 				 u32 *sid)
1336 {
1337 	int rc;
1338 	struct super_block *sb = dentry->d_sb;
1339 	char *buffer, *path;
1340 
1341 	buffer = (char *)__get_free_page(GFP_KERNEL);
1342 	if (!buffer)
1343 		return -ENOMEM;
1344 
1345 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1346 	if (IS_ERR(path))
1347 		rc = PTR_ERR(path);
1348 	else {
1349 		if (flags & SE_SBPROC) {
1350 			/* each process gets a /proc/PID/ entry. Strip off the
1351 			 * PID part to get a valid selinux labeling.
1352 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1353 			while (path[1] >= '0' && path[1] <= '9') {
1354 				path[1] = '/';
1355 				path++;
1356 			}
1357 		}
1358 		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1359 					path, tclass, sid);
1360 		if (rc == -ENOENT) {
1361 			/* No match in policy, mark as unlabeled. */
1362 			*sid = SECINITSID_UNLABELED;
1363 			rc = 0;
1364 		}
1365 	}
1366 	free_page((unsigned long)buffer);
1367 	return rc;
1368 }
1369 
1370 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1371 				  u32 def_sid, u32 *sid)
1372 {
1373 #define INITCONTEXTLEN 255
1374 	char *context;
1375 	unsigned int len;
1376 	int rc;
1377 
1378 	len = INITCONTEXTLEN;
1379 	context = kmalloc(len + 1, GFP_NOFS);
1380 	if (!context)
1381 		return -ENOMEM;
1382 
1383 	context[len] = '\0';
1384 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1385 	if (rc == -ERANGE) {
1386 		kfree(context);
1387 
1388 		/* Need a larger buffer.  Query for the right size. */
1389 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1390 		if (rc < 0)
1391 			return rc;
1392 
1393 		len = rc;
1394 		context = kmalloc(len + 1, GFP_NOFS);
1395 		if (!context)
1396 			return -ENOMEM;
1397 
1398 		context[len] = '\0';
1399 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1400 				    context, len);
1401 	}
1402 	if (rc < 0) {
1403 		kfree(context);
1404 		if (rc != -ENODATA) {
1405 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1406 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1407 			return rc;
1408 		}
1409 		*sid = def_sid;
1410 		return 0;
1411 	}
1412 
1413 	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1414 					     def_sid, GFP_NOFS);
1415 	if (rc) {
1416 		char *dev = inode->i_sb->s_id;
1417 		unsigned long ino = inode->i_ino;
1418 
1419 		if (rc == -EINVAL) {
1420 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1421 					      ino, dev, context);
1422 		} else {
1423 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1424 				__func__, context, -rc, dev, ino);
1425 		}
1426 	}
1427 	kfree(context);
1428 	return 0;
1429 }
1430 
1431 /* The inode's security attributes must be initialized before first use. */
1432 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1433 {
1434 	struct superblock_security_struct *sbsec = NULL;
1435 	struct inode_security_struct *isec = selinux_inode(inode);
1436 	u32 task_sid, sid = 0;
1437 	u16 sclass;
1438 	struct dentry *dentry;
1439 	int rc = 0;
1440 
1441 	if (isec->initialized == LABEL_INITIALIZED)
1442 		return 0;
1443 
1444 	spin_lock(&isec->lock);
1445 	if (isec->initialized == LABEL_INITIALIZED)
1446 		goto out_unlock;
1447 
1448 	if (isec->sclass == SECCLASS_FILE)
1449 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1450 
1451 	sbsec = inode->i_sb->s_security;
1452 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1453 		/* Defer initialization until selinux_complete_init,
1454 		   after the initial policy is loaded and the security
1455 		   server is ready to handle calls. */
1456 		spin_lock(&sbsec->isec_lock);
1457 		if (list_empty(&isec->list))
1458 			list_add(&isec->list, &sbsec->isec_head);
1459 		spin_unlock(&sbsec->isec_lock);
1460 		goto out_unlock;
1461 	}
1462 
1463 	sclass = isec->sclass;
1464 	task_sid = isec->task_sid;
1465 	sid = isec->sid;
1466 	isec->initialized = LABEL_PENDING;
1467 	spin_unlock(&isec->lock);
1468 
1469 	switch (sbsec->behavior) {
1470 	case SECURITY_FS_USE_NATIVE:
1471 		break;
1472 	case SECURITY_FS_USE_XATTR:
1473 		if (!(inode->i_opflags & IOP_XATTR)) {
1474 			sid = sbsec->def_sid;
1475 			break;
1476 		}
1477 		/* Need a dentry, since the xattr API requires one.
1478 		   Life would be simpler if we could just pass the inode. */
1479 		if (opt_dentry) {
1480 			/* Called from d_instantiate or d_splice_alias. */
1481 			dentry = dget(opt_dentry);
1482 		} else {
1483 			/*
1484 			 * Called from selinux_complete_init, try to find a dentry.
1485 			 * Some filesystems really want a connected one, so try
1486 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1487 			 * two, depending upon that...
1488 			 */
1489 			dentry = d_find_alias(inode);
1490 			if (!dentry)
1491 				dentry = d_find_any_alias(inode);
1492 		}
1493 		if (!dentry) {
1494 			/*
1495 			 * this is can be hit on boot when a file is accessed
1496 			 * before the policy is loaded.  When we load policy we
1497 			 * may find inodes that have no dentry on the
1498 			 * sbsec->isec_head list.  No reason to complain as these
1499 			 * will get fixed up the next time we go through
1500 			 * inode_doinit with a dentry, before these inodes could
1501 			 * be used again by userspace.
1502 			 */
1503 			goto out;
1504 		}
1505 
1506 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1507 					    &sid);
1508 		dput(dentry);
1509 		if (rc)
1510 			goto out;
1511 		break;
1512 	case SECURITY_FS_USE_TASK:
1513 		sid = task_sid;
1514 		break;
1515 	case SECURITY_FS_USE_TRANS:
1516 		/* Default to the fs SID. */
1517 		sid = sbsec->sid;
1518 
1519 		/* Try to obtain a transition SID. */
1520 		rc = security_transition_sid(&selinux_state, task_sid, sid,
1521 					     sclass, NULL, &sid);
1522 		if (rc)
1523 			goto out;
1524 		break;
1525 	case SECURITY_FS_USE_MNTPOINT:
1526 		sid = sbsec->mntpoint_sid;
1527 		break;
1528 	default:
1529 		/* Default to the fs superblock SID. */
1530 		sid = sbsec->sid;
1531 
1532 		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1533 			/* We must have a dentry to determine the label on
1534 			 * procfs inodes */
1535 			if (opt_dentry) {
1536 				/* Called from d_instantiate or
1537 				 * d_splice_alias. */
1538 				dentry = dget(opt_dentry);
1539 			} else {
1540 				/* Called from selinux_complete_init, try to
1541 				 * find a dentry.  Some filesystems really want
1542 				 * a connected one, so try that first.
1543 				 */
1544 				dentry = d_find_alias(inode);
1545 				if (!dentry)
1546 					dentry = d_find_any_alias(inode);
1547 			}
1548 			/*
1549 			 * This can be hit on boot when a file is accessed
1550 			 * before the policy is loaded.  When we load policy we
1551 			 * may find inodes that have no dentry on the
1552 			 * sbsec->isec_head list.  No reason to complain as
1553 			 * these will get fixed up the next time we go through
1554 			 * inode_doinit() with a dentry, before these inodes
1555 			 * could be used again by userspace.
1556 			 */
1557 			if (!dentry)
1558 				goto out;
1559 			rc = selinux_genfs_get_sid(dentry, sclass,
1560 						   sbsec->flags, &sid);
1561 			if (rc) {
1562 				dput(dentry);
1563 				goto out;
1564 			}
1565 
1566 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1567 			    (inode->i_opflags & IOP_XATTR)) {
1568 				rc = inode_doinit_use_xattr(inode, dentry,
1569 							    sid, &sid);
1570 				if (rc) {
1571 					dput(dentry);
1572 					goto out;
1573 				}
1574 			}
1575 			dput(dentry);
1576 		}
1577 		break;
1578 	}
1579 
1580 out:
1581 	spin_lock(&isec->lock);
1582 	if (isec->initialized == LABEL_PENDING) {
1583 		if (!sid || rc) {
1584 			isec->initialized = LABEL_INVALID;
1585 			goto out_unlock;
1586 		}
1587 
1588 		isec->initialized = LABEL_INITIALIZED;
1589 		isec->sid = sid;
1590 	}
1591 
1592 out_unlock:
1593 	spin_unlock(&isec->lock);
1594 	return rc;
1595 }
1596 
1597 /* Convert a Linux signal to an access vector. */
1598 static inline u32 signal_to_av(int sig)
1599 {
1600 	u32 perm = 0;
1601 
1602 	switch (sig) {
1603 	case SIGCHLD:
1604 		/* Commonly granted from child to parent. */
1605 		perm = PROCESS__SIGCHLD;
1606 		break;
1607 	case SIGKILL:
1608 		/* Cannot be caught or ignored */
1609 		perm = PROCESS__SIGKILL;
1610 		break;
1611 	case SIGSTOP:
1612 		/* Cannot be caught or ignored */
1613 		perm = PROCESS__SIGSTOP;
1614 		break;
1615 	default:
1616 		/* All other signals. */
1617 		perm = PROCESS__SIGNAL;
1618 		break;
1619 	}
1620 
1621 	return perm;
1622 }
1623 
1624 #if CAP_LAST_CAP > 63
1625 #error Fix SELinux to handle capabilities > 63.
1626 #endif
1627 
1628 /* Check whether a task is allowed to use a capability. */
1629 static int cred_has_capability(const struct cred *cred,
1630 			       int cap, unsigned int opts, bool initns)
1631 {
1632 	struct common_audit_data ad;
1633 	struct av_decision avd;
1634 	u16 sclass;
1635 	u32 sid = cred_sid(cred);
1636 	u32 av = CAP_TO_MASK(cap);
1637 	int rc;
1638 
1639 	ad.type = LSM_AUDIT_DATA_CAP;
1640 	ad.u.cap = cap;
1641 
1642 	switch (CAP_TO_INDEX(cap)) {
1643 	case 0:
1644 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1645 		break;
1646 	case 1:
1647 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1648 		break;
1649 	default:
1650 		pr_err("SELinux:  out of range capability %d\n", cap);
1651 		BUG();
1652 		return -EINVAL;
1653 	}
1654 
1655 	rc = avc_has_perm_noaudit(&selinux_state,
1656 				  sid, sid, sclass, av, 0, &avd);
1657 	if (!(opts & CAP_OPT_NOAUDIT)) {
1658 		int rc2 = avc_audit(&selinux_state,
1659 				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1660 		if (rc2)
1661 			return rc2;
1662 	}
1663 	return rc;
1664 }
1665 
1666 /* Check whether a task has a particular permission to an inode.
1667    The 'adp' parameter is optional and allows other audit
1668    data to be passed (e.g. the dentry). */
1669 static int inode_has_perm(const struct cred *cred,
1670 			  struct inode *inode,
1671 			  u32 perms,
1672 			  struct common_audit_data *adp)
1673 {
1674 	struct inode_security_struct *isec;
1675 	u32 sid;
1676 
1677 	validate_creds(cred);
1678 
1679 	if (unlikely(IS_PRIVATE(inode)))
1680 		return 0;
1681 
1682 	sid = cred_sid(cred);
1683 	isec = selinux_inode(inode);
1684 
1685 	return avc_has_perm(&selinux_state,
1686 			    sid, isec->sid, isec->sclass, perms, adp);
1687 }
1688 
1689 /* Same as inode_has_perm, but pass explicit audit data containing
1690    the dentry to help the auditing code to more easily generate the
1691    pathname if needed. */
1692 static inline int dentry_has_perm(const struct cred *cred,
1693 				  struct dentry *dentry,
1694 				  u32 av)
1695 {
1696 	struct inode *inode = d_backing_inode(dentry);
1697 	struct common_audit_data ad;
1698 
1699 	ad.type = LSM_AUDIT_DATA_DENTRY;
1700 	ad.u.dentry = dentry;
1701 	__inode_security_revalidate(inode, dentry, true);
1702 	return inode_has_perm(cred, inode, av, &ad);
1703 }
1704 
1705 /* Same as inode_has_perm, but pass explicit audit data containing
1706    the path to help the auditing code to more easily generate the
1707    pathname if needed. */
1708 static inline int path_has_perm(const struct cred *cred,
1709 				const struct path *path,
1710 				u32 av)
1711 {
1712 	struct inode *inode = d_backing_inode(path->dentry);
1713 	struct common_audit_data ad;
1714 
1715 	ad.type = LSM_AUDIT_DATA_PATH;
1716 	ad.u.path = *path;
1717 	__inode_security_revalidate(inode, path->dentry, true);
1718 	return inode_has_perm(cred, inode, av, &ad);
1719 }
1720 
1721 /* Same as path_has_perm, but uses the inode from the file struct. */
1722 static inline int file_path_has_perm(const struct cred *cred,
1723 				     struct file *file,
1724 				     u32 av)
1725 {
1726 	struct common_audit_data ad;
1727 
1728 	ad.type = LSM_AUDIT_DATA_FILE;
1729 	ad.u.file = file;
1730 	return inode_has_perm(cred, file_inode(file), av, &ad);
1731 }
1732 
1733 #ifdef CONFIG_BPF_SYSCALL
1734 static int bpf_fd_pass(struct file *file, u32 sid);
1735 #endif
1736 
1737 /* Check whether a task can use an open file descriptor to
1738    access an inode in a given way.  Check access to the
1739    descriptor itself, and then use dentry_has_perm to
1740    check a particular permission to the file.
1741    Access to the descriptor is implicitly granted if it
1742    has the same SID as the process.  If av is zero, then
1743    access to the file is not checked, e.g. for cases
1744    where only the descriptor is affected like seek. */
1745 static int file_has_perm(const struct cred *cred,
1746 			 struct file *file,
1747 			 u32 av)
1748 {
1749 	struct file_security_struct *fsec = selinux_file(file);
1750 	struct inode *inode = file_inode(file);
1751 	struct common_audit_data ad;
1752 	u32 sid = cred_sid(cred);
1753 	int rc;
1754 
1755 	ad.type = LSM_AUDIT_DATA_FILE;
1756 	ad.u.file = file;
1757 
1758 	if (sid != fsec->sid) {
1759 		rc = avc_has_perm(&selinux_state,
1760 				  sid, fsec->sid,
1761 				  SECCLASS_FD,
1762 				  FD__USE,
1763 				  &ad);
1764 		if (rc)
1765 			goto out;
1766 	}
1767 
1768 #ifdef CONFIG_BPF_SYSCALL
1769 	rc = bpf_fd_pass(file, cred_sid(cred));
1770 	if (rc)
1771 		return rc;
1772 #endif
1773 
1774 	/* av is zero if only checking access to the descriptor. */
1775 	rc = 0;
1776 	if (av)
1777 		rc = inode_has_perm(cred, inode, av, &ad);
1778 
1779 out:
1780 	return rc;
1781 }
1782 
1783 /*
1784  * Determine the label for an inode that might be unioned.
1785  */
1786 static int
1787 selinux_determine_inode_label(const struct task_security_struct *tsec,
1788 				 struct inode *dir,
1789 				 const struct qstr *name, u16 tclass,
1790 				 u32 *_new_isid)
1791 {
1792 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1793 
1794 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1795 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1796 		*_new_isid = sbsec->mntpoint_sid;
1797 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1798 		   tsec->create_sid) {
1799 		*_new_isid = tsec->create_sid;
1800 	} else {
1801 		const struct inode_security_struct *dsec = inode_security(dir);
1802 		return security_transition_sid(&selinux_state, tsec->sid,
1803 					       dsec->sid, tclass,
1804 					       name, _new_isid);
1805 	}
1806 
1807 	return 0;
1808 }
1809 
1810 /* Check whether a task can create a file. */
1811 static int may_create(struct inode *dir,
1812 		      struct dentry *dentry,
1813 		      u16 tclass)
1814 {
1815 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1816 	struct inode_security_struct *dsec;
1817 	struct superblock_security_struct *sbsec;
1818 	u32 sid, newsid;
1819 	struct common_audit_data ad;
1820 	int rc;
1821 
1822 	dsec = inode_security(dir);
1823 	sbsec = dir->i_sb->s_security;
1824 
1825 	sid = tsec->sid;
1826 
1827 	ad.type = LSM_AUDIT_DATA_DENTRY;
1828 	ad.u.dentry = dentry;
1829 
1830 	rc = avc_has_perm(&selinux_state,
1831 			  sid, dsec->sid, SECCLASS_DIR,
1832 			  DIR__ADD_NAME | DIR__SEARCH,
1833 			  &ad);
1834 	if (rc)
1835 		return rc;
1836 
1837 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1838 					   &newsid);
1839 	if (rc)
1840 		return rc;
1841 
1842 	rc = avc_has_perm(&selinux_state,
1843 			  sid, newsid, tclass, FILE__CREATE, &ad);
1844 	if (rc)
1845 		return rc;
1846 
1847 	return avc_has_perm(&selinux_state,
1848 			    newsid, sbsec->sid,
1849 			    SECCLASS_FILESYSTEM,
1850 			    FILESYSTEM__ASSOCIATE, &ad);
1851 }
1852 
1853 #define MAY_LINK	0
1854 #define MAY_UNLINK	1
1855 #define MAY_RMDIR	2
1856 
1857 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1858 static int may_link(struct inode *dir,
1859 		    struct dentry *dentry,
1860 		    int kind)
1861 
1862 {
1863 	struct inode_security_struct *dsec, *isec;
1864 	struct common_audit_data ad;
1865 	u32 sid = current_sid();
1866 	u32 av;
1867 	int rc;
1868 
1869 	dsec = inode_security(dir);
1870 	isec = backing_inode_security(dentry);
1871 
1872 	ad.type = LSM_AUDIT_DATA_DENTRY;
1873 	ad.u.dentry = dentry;
1874 
1875 	av = DIR__SEARCH;
1876 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1877 	rc = avc_has_perm(&selinux_state,
1878 			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1879 	if (rc)
1880 		return rc;
1881 
1882 	switch (kind) {
1883 	case MAY_LINK:
1884 		av = FILE__LINK;
1885 		break;
1886 	case MAY_UNLINK:
1887 		av = FILE__UNLINK;
1888 		break;
1889 	case MAY_RMDIR:
1890 		av = DIR__RMDIR;
1891 		break;
1892 	default:
1893 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1894 			__func__, kind);
1895 		return 0;
1896 	}
1897 
1898 	rc = avc_has_perm(&selinux_state,
1899 			  sid, isec->sid, isec->sclass, av, &ad);
1900 	return rc;
1901 }
1902 
1903 static inline int may_rename(struct inode *old_dir,
1904 			     struct dentry *old_dentry,
1905 			     struct inode *new_dir,
1906 			     struct dentry *new_dentry)
1907 {
1908 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1909 	struct common_audit_data ad;
1910 	u32 sid = current_sid();
1911 	u32 av;
1912 	int old_is_dir, new_is_dir;
1913 	int rc;
1914 
1915 	old_dsec = inode_security(old_dir);
1916 	old_isec = backing_inode_security(old_dentry);
1917 	old_is_dir = d_is_dir(old_dentry);
1918 	new_dsec = inode_security(new_dir);
1919 
1920 	ad.type = LSM_AUDIT_DATA_DENTRY;
1921 
1922 	ad.u.dentry = old_dentry;
1923 	rc = avc_has_perm(&selinux_state,
1924 			  sid, old_dsec->sid, SECCLASS_DIR,
1925 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1926 	if (rc)
1927 		return rc;
1928 	rc = avc_has_perm(&selinux_state,
1929 			  sid, old_isec->sid,
1930 			  old_isec->sclass, FILE__RENAME, &ad);
1931 	if (rc)
1932 		return rc;
1933 	if (old_is_dir && new_dir != old_dir) {
1934 		rc = avc_has_perm(&selinux_state,
1935 				  sid, old_isec->sid,
1936 				  old_isec->sclass, DIR__REPARENT, &ad);
1937 		if (rc)
1938 			return rc;
1939 	}
1940 
1941 	ad.u.dentry = new_dentry;
1942 	av = DIR__ADD_NAME | DIR__SEARCH;
1943 	if (d_is_positive(new_dentry))
1944 		av |= DIR__REMOVE_NAME;
1945 	rc = avc_has_perm(&selinux_state,
1946 			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1947 	if (rc)
1948 		return rc;
1949 	if (d_is_positive(new_dentry)) {
1950 		new_isec = backing_inode_security(new_dentry);
1951 		new_is_dir = d_is_dir(new_dentry);
1952 		rc = avc_has_perm(&selinux_state,
1953 				  sid, new_isec->sid,
1954 				  new_isec->sclass,
1955 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1956 		if (rc)
1957 			return rc;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 /* Check whether a task can perform a filesystem operation. */
1964 static int superblock_has_perm(const struct cred *cred,
1965 			       struct super_block *sb,
1966 			       u32 perms,
1967 			       struct common_audit_data *ad)
1968 {
1969 	struct superblock_security_struct *sbsec;
1970 	u32 sid = cred_sid(cred);
1971 
1972 	sbsec = sb->s_security;
1973 	return avc_has_perm(&selinux_state,
1974 			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1975 }
1976 
1977 /* Convert a Linux mode and permission mask to an access vector. */
1978 static inline u32 file_mask_to_av(int mode, int mask)
1979 {
1980 	u32 av = 0;
1981 
1982 	if (!S_ISDIR(mode)) {
1983 		if (mask & MAY_EXEC)
1984 			av |= FILE__EXECUTE;
1985 		if (mask & MAY_READ)
1986 			av |= FILE__READ;
1987 
1988 		if (mask & MAY_APPEND)
1989 			av |= FILE__APPEND;
1990 		else if (mask & MAY_WRITE)
1991 			av |= FILE__WRITE;
1992 
1993 	} else {
1994 		if (mask & MAY_EXEC)
1995 			av |= DIR__SEARCH;
1996 		if (mask & MAY_WRITE)
1997 			av |= DIR__WRITE;
1998 		if (mask & MAY_READ)
1999 			av |= DIR__READ;
2000 	}
2001 
2002 	return av;
2003 }
2004 
2005 /* Convert a Linux file to an access vector. */
2006 static inline u32 file_to_av(struct file *file)
2007 {
2008 	u32 av = 0;
2009 
2010 	if (file->f_mode & FMODE_READ)
2011 		av |= FILE__READ;
2012 	if (file->f_mode & FMODE_WRITE) {
2013 		if (file->f_flags & O_APPEND)
2014 			av |= FILE__APPEND;
2015 		else
2016 			av |= FILE__WRITE;
2017 	}
2018 	if (!av) {
2019 		/*
2020 		 * Special file opened with flags 3 for ioctl-only use.
2021 		 */
2022 		av = FILE__IOCTL;
2023 	}
2024 
2025 	return av;
2026 }
2027 
2028 /*
2029  * Convert a file to an access vector and include the correct open
2030  * open permission.
2031  */
2032 static inline u32 open_file_to_av(struct file *file)
2033 {
2034 	u32 av = file_to_av(file);
2035 	struct inode *inode = file_inode(file);
2036 
2037 	if (selinux_policycap_openperm() &&
2038 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2039 		av |= FILE__OPEN;
2040 
2041 	return av;
2042 }
2043 
2044 /* Hook functions begin here. */
2045 
2046 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2047 {
2048 	u32 mysid = current_sid();
2049 	u32 mgrsid = task_sid(mgr);
2050 
2051 	return avc_has_perm(&selinux_state,
2052 			    mysid, mgrsid, SECCLASS_BINDER,
2053 			    BINDER__SET_CONTEXT_MGR, NULL);
2054 }
2055 
2056 static int selinux_binder_transaction(struct task_struct *from,
2057 				      struct task_struct *to)
2058 {
2059 	u32 mysid = current_sid();
2060 	u32 fromsid = task_sid(from);
2061 	u32 tosid = task_sid(to);
2062 	int rc;
2063 
2064 	if (mysid != fromsid) {
2065 		rc = avc_has_perm(&selinux_state,
2066 				  mysid, fromsid, SECCLASS_BINDER,
2067 				  BINDER__IMPERSONATE, NULL);
2068 		if (rc)
2069 			return rc;
2070 	}
2071 
2072 	return avc_has_perm(&selinux_state,
2073 			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2074 			    NULL);
2075 }
2076 
2077 static int selinux_binder_transfer_binder(struct task_struct *from,
2078 					  struct task_struct *to)
2079 {
2080 	u32 fromsid = task_sid(from);
2081 	u32 tosid = task_sid(to);
2082 
2083 	return avc_has_perm(&selinux_state,
2084 			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2085 			    NULL);
2086 }
2087 
2088 static int selinux_binder_transfer_file(struct task_struct *from,
2089 					struct task_struct *to,
2090 					struct file *file)
2091 {
2092 	u32 sid = task_sid(to);
2093 	struct file_security_struct *fsec = selinux_file(file);
2094 	struct dentry *dentry = file->f_path.dentry;
2095 	struct inode_security_struct *isec;
2096 	struct common_audit_data ad;
2097 	int rc;
2098 
2099 	ad.type = LSM_AUDIT_DATA_PATH;
2100 	ad.u.path = file->f_path;
2101 
2102 	if (sid != fsec->sid) {
2103 		rc = avc_has_perm(&selinux_state,
2104 				  sid, fsec->sid,
2105 				  SECCLASS_FD,
2106 				  FD__USE,
2107 				  &ad);
2108 		if (rc)
2109 			return rc;
2110 	}
2111 
2112 #ifdef CONFIG_BPF_SYSCALL
2113 	rc = bpf_fd_pass(file, sid);
2114 	if (rc)
2115 		return rc;
2116 #endif
2117 
2118 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2119 		return 0;
2120 
2121 	isec = backing_inode_security(dentry);
2122 	return avc_has_perm(&selinux_state,
2123 			    sid, isec->sid, isec->sclass, file_to_av(file),
2124 			    &ad);
2125 }
2126 
2127 static int selinux_ptrace_access_check(struct task_struct *child,
2128 				     unsigned int mode)
2129 {
2130 	u32 sid = current_sid();
2131 	u32 csid = task_sid(child);
2132 
2133 	if (mode & PTRACE_MODE_READ)
2134 		return avc_has_perm(&selinux_state,
2135 				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2136 
2137 	return avc_has_perm(&selinux_state,
2138 			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2139 }
2140 
2141 static int selinux_ptrace_traceme(struct task_struct *parent)
2142 {
2143 	return avc_has_perm(&selinux_state,
2144 			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2145 			    PROCESS__PTRACE, NULL);
2146 }
2147 
2148 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2149 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2150 {
2151 	return avc_has_perm(&selinux_state,
2152 			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2153 			    PROCESS__GETCAP, NULL);
2154 }
2155 
2156 static int selinux_capset(struct cred *new, const struct cred *old,
2157 			  const kernel_cap_t *effective,
2158 			  const kernel_cap_t *inheritable,
2159 			  const kernel_cap_t *permitted)
2160 {
2161 	return avc_has_perm(&selinux_state,
2162 			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2163 			    PROCESS__SETCAP, NULL);
2164 }
2165 
2166 /*
2167  * (This comment used to live with the selinux_task_setuid hook,
2168  * which was removed).
2169  *
2170  * Since setuid only affects the current process, and since the SELinux
2171  * controls are not based on the Linux identity attributes, SELinux does not
2172  * need to control this operation.  However, SELinux does control the use of
2173  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2174  */
2175 
2176 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2177 			   int cap, unsigned int opts)
2178 {
2179 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2180 }
2181 
2182 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2183 {
2184 	const struct cred *cred = current_cred();
2185 	int rc = 0;
2186 
2187 	if (!sb)
2188 		return 0;
2189 
2190 	switch (cmds) {
2191 	case Q_SYNC:
2192 	case Q_QUOTAON:
2193 	case Q_QUOTAOFF:
2194 	case Q_SETINFO:
2195 	case Q_SETQUOTA:
2196 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2197 		break;
2198 	case Q_GETFMT:
2199 	case Q_GETINFO:
2200 	case Q_GETQUOTA:
2201 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2202 		break;
2203 	default:
2204 		rc = 0;  /* let the kernel handle invalid cmds */
2205 		break;
2206 	}
2207 	return rc;
2208 }
2209 
2210 static int selinux_quota_on(struct dentry *dentry)
2211 {
2212 	const struct cred *cred = current_cred();
2213 
2214 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2215 }
2216 
2217 static int selinux_syslog(int type)
2218 {
2219 	switch (type) {
2220 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2221 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2222 		return avc_has_perm(&selinux_state,
2223 				    current_sid(), SECINITSID_KERNEL,
2224 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2225 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2226 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2227 	/* Set level of messages printed to console */
2228 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2229 		return avc_has_perm(&selinux_state,
2230 				    current_sid(), SECINITSID_KERNEL,
2231 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2232 				    NULL);
2233 	}
2234 	/* All other syslog types */
2235 	return avc_has_perm(&selinux_state,
2236 			    current_sid(), SECINITSID_KERNEL,
2237 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2238 }
2239 
2240 /*
2241  * Check that a process has enough memory to allocate a new virtual
2242  * mapping. 0 means there is enough memory for the allocation to
2243  * succeed and -ENOMEM implies there is not.
2244  *
2245  * Do not audit the selinux permission check, as this is applied to all
2246  * processes that allocate mappings.
2247  */
2248 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2249 {
2250 	int rc, cap_sys_admin = 0;
2251 
2252 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2253 				 CAP_OPT_NOAUDIT, true);
2254 	if (rc == 0)
2255 		cap_sys_admin = 1;
2256 
2257 	return cap_sys_admin;
2258 }
2259 
2260 /* binprm security operations */
2261 
2262 static u32 ptrace_parent_sid(void)
2263 {
2264 	u32 sid = 0;
2265 	struct task_struct *tracer;
2266 
2267 	rcu_read_lock();
2268 	tracer = ptrace_parent(current);
2269 	if (tracer)
2270 		sid = task_sid(tracer);
2271 	rcu_read_unlock();
2272 
2273 	return sid;
2274 }
2275 
2276 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2277 			    const struct task_security_struct *old_tsec,
2278 			    const struct task_security_struct *new_tsec)
2279 {
2280 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2281 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2282 	int rc;
2283 	u32 av;
2284 
2285 	if (!nnp && !nosuid)
2286 		return 0; /* neither NNP nor nosuid */
2287 
2288 	if (new_tsec->sid == old_tsec->sid)
2289 		return 0; /* No change in credentials */
2290 
2291 	/*
2292 	 * If the policy enables the nnp_nosuid_transition policy capability,
2293 	 * then we permit transitions under NNP or nosuid if the
2294 	 * policy allows the corresponding permission between
2295 	 * the old and new contexts.
2296 	 */
2297 	if (selinux_policycap_nnp_nosuid_transition()) {
2298 		av = 0;
2299 		if (nnp)
2300 			av |= PROCESS2__NNP_TRANSITION;
2301 		if (nosuid)
2302 			av |= PROCESS2__NOSUID_TRANSITION;
2303 		rc = avc_has_perm(&selinux_state,
2304 				  old_tsec->sid, new_tsec->sid,
2305 				  SECCLASS_PROCESS2, av, NULL);
2306 		if (!rc)
2307 			return 0;
2308 	}
2309 
2310 	/*
2311 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2312 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2313 	 * of the permissions of the current SID.
2314 	 */
2315 	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2316 					 new_tsec->sid);
2317 	if (!rc)
2318 		return 0;
2319 
2320 	/*
2321 	 * On failure, preserve the errno values for NNP vs nosuid.
2322 	 * NNP:  Operation not permitted for caller.
2323 	 * nosuid:  Permission denied to file.
2324 	 */
2325 	if (nnp)
2326 		return -EPERM;
2327 	return -EACCES;
2328 }
2329 
2330 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2331 {
2332 	const struct task_security_struct *old_tsec;
2333 	struct task_security_struct *new_tsec;
2334 	struct inode_security_struct *isec;
2335 	struct common_audit_data ad;
2336 	struct inode *inode = file_inode(bprm->file);
2337 	int rc;
2338 
2339 	/* SELinux context only depends on initial program or script and not
2340 	 * the script interpreter */
2341 	if (bprm->called_set_creds)
2342 		return 0;
2343 
2344 	old_tsec = selinux_cred(current_cred());
2345 	new_tsec = selinux_cred(bprm->cred);
2346 	isec = inode_security(inode);
2347 
2348 	/* Default to the current task SID. */
2349 	new_tsec->sid = old_tsec->sid;
2350 	new_tsec->osid = old_tsec->sid;
2351 
2352 	/* Reset fs, key, and sock SIDs on execve. */
2353 	new_tsec->create_sid = 0;
2354 	new_tsec->keycreate_sid = 0;
2355 	new_tsec->sockcreate_sid = 0;
2356 
2357 	if (old_tsec->exec_sid) {
2358 		new_tsec->sid = old_tsec->exec_sid;
2359 		/* Reset exec SID on execve. */
2360 		new_tsec->exec_sid = 0;
2361 
2362 		/* Fail on NNP or nosuid if not an allowed transition. */
2363 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2364 		if (rc)
2365 			return rc;
2366 	} else {
2367 		/* Check for a default transition on this program. */
2368 		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2369 					     isec->sid, SECCLASS_PROCESS, NULL,
2370 					     &new_tsec->sid);
2371 		if (rc)
2372 			return rc;
2373 
2374 		/*
2375 		 * Fallback to old SID on NNP or nosuid if not an allowed
2376 		 * transition.
2377 		 */
2378 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2379 		if (rc)
2380 			new_tsec->sid = old_tsec->sid;
2381 	}
2382 
2383 	ad.type = LSM_AUDIT_DATA_FILE;
2384 	ad.u.file = bprm->file;
2385 
2386 	if (new_tsec->sid == old_tsec->sid) {
2387 		rc = avc_has_perm(&selinux_state,
2388 				  old_tsec->sid, isec->sid,
2389 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2390 		if (rc)
2391 			return rc;
2392 	} else {
2393 		/* Check permissions for the transition. */
2394 		rc = avc_has_perm(&selinux_state,
2395 				  old_tsec->sid, new_tsec->sid,
2396 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2397 		if (rc)
2398 			return rc;
2399 
2400 		rc = avc_has_perm(&selinux_state,
2401 				  new_tsec->sid, isec->sid,
2402 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2403 		if (rc)
2404 			return rc;
2405 
2406 		/* Check for shared state */
2407 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2408 			rc = avc_has_perm(&selinux_state,
2409 					  old_tsec->sid, new_tsec->sid,
2410 					  SECCLASS_PROCESS, PROCESS__SHARE,
2411 					  NULL);
2412 			if (rc)
2413 				return -EPERM;
2414 		}
2415 
2416 		/* Make sure that anyone attempting to ptrace over a task that
2417 		 * changes its SID has the appropriate permit */
2418 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2419 			u32 ptsid = ptrace_parent_sid();
2420 			if (ptsid != 0) {
2421 				rc = avc_has_perm(&selinux_state,
2422 						  ptsid, new_tsec->sid,
2423 						  SECCLASS_PROCESS,
2424 						  PROCESS__PTRACE, NULL);
2425 				if (rc)
2426 					return -EPERM;
2427 			}
2428 		}
2429 
2430 		/* Clear any possibly unsafe personality bits on exec: */
2431 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2432 
2433 		/* Enable secure mode for SIDs transitions unless
2434 		   the noatsecure permission is granted between
2435 		   the two SIDs, i.e. ahp returns 0. */
2436 		rc = avc_has_perm(&selinux_state,
2437 				  old_tsec->sid, new_tsec->sid,
2438 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2439 				  NULL);
2440 		bprm->secureexec |= !!rc;
2441 	}
2442 
2443 	return 0;
2444 }
2445 
2446 static int match_file(const void *p, struct file *file, unsigned fd)
2447 {
2448 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2449 }
2450 
2451 /* Derived from fs/exec.c:flush_old_files. */
2452 static inline void flush_unauthorized_files(const struct cred *cred,
2453 					    struct files_struct *files)
2454 {
2455 	struct file *file, *devnull = NULL;
2456 	struct tty_struct *tty;
2457 	int drop_tty = 0;
2458 	unsigned n;
2459 
2460 	tty = get_current_tty();
2461 	if (tty) {
2462 		spin_lock(&tty->files_lock);
2463 		if (!list_empty(&tty->tty_files)) {
2464 			struct tty_file_private *file_priv;
2465 
2466 			/* Revalidate access to controlling tty.
2467 			   Use file_path_has_perm on the tty path directly
2468 			   rather than using file_has_perm, as this particular
2469 			   open file may belong to another process and we are
2470 			   only interested in the inode-based check here. */
2471 			file_priv = list_first_entry(&tty->tty_files,
2472 						struct tty_file_private, list);
2473 			file = file_priv->file;
2474 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2475 				drop_tty = 1;
2476 		}
2477 		spin_unlock(&tty->files_lock);
2478 		tty_kref_put(tty);
2479 	}
2480 	/* Reset controlling tty. */
2481 	if (drop_tty)
2482 		no_tty();
2483 
2484 	/* Revalidate access to inherited open files. */
2485 	n = iterate_fd(files, 0, match_file, cred);
2486 	if (!n) /* none found? */
2487 		return;
2488 
2489 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2490 	if (IS_ERR(devnull))
2491 		devnull = NULL;
2492 	/* replace all the matching ones with this */
2493 	do {
2494 		replace_fd(n - 1, devnull, 0);
2495 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2496 	if (devnull)
2497 		fput(devnull);
2498 }
2499 
2500 /*
2501  * Prepare a process for imminent new credential changes due to exec
2502  */
2503 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2504 {
2505 	struct task_security_struct *new_tsec;
2506 	struct rlimit *rlim, *initrlim;
2507 	int rc, i;
2508 
2509 	new_tsec = selinux_cred(bprm->cred);
2510 	if (new_tsec->sid == new_tsec->osid)
2511 		return;
2512 
2513 	/* Close files for which the new task SID is not authorized. */
2514 	flush_unauthorized_files(bprm->cred, current->files);
2515 
2516 	/* Always clear parent death signal on SID transitions. */
2517 	current->pdeath_signal = 0;
2518 
2519 	/* Check whether the new SID can inherit resource limits from the old
2520 	 * SID.  If not, reset all soft limits to the lower of the current
2521 	 * task's hard limit and the init task's soft limit.
2522 	 *
2523 	 * Note that the setting of hard limits (even to lower them) can be
2524 	 * controlled by the setrlimit check.  The inclusion of the init task's
2525 	 * soft limit into the computation is to avoid resetting soft limits
2526 	 * higher than the default soft limit for cases where the default is
2527 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2528 	 */
2529 	rc = avc_has_perm(&selinux_state,
2530 			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2531 			  PROCESS__RLIMITINH, NULL);
2532 	if (rc) {
2533 		/* protect against do_prlimit() */
2534 		task_lock(current);
2535 		for (i = 0; i < RLIM_NLIMITS; i++) {
2536 			rlim = current->signal->rlim + i;
2537 			initrlim = init_task.signal->rlim + i;
2538 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2539 		}
2540 		task_unlock(current);
2541 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2542 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2543 	}
2544 }
2545 
2546 /*
2547  * Clean up the process immediately after the installation of new credentials
2548  * due to exec
2549  */
2550 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2551 {
2552 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2553 	u32 osid, sid;
2554 	int rc;
2555 
2556 	osid = tsec->osid;
2557 	sid = tsec->sid;
2558 
2559 	if (sid == osid)
2560 		return;
2561 
2562 	/* Check whether the new SID can inherit signal state from the old SID.
2563 	 * If not, clear itimers to avoid subsequent signal generation and
2564 	 * flush and unblock signals.
2565 	 *
2566 	 * This must occur _after_ the task SID has been updated so that any
2567 	 * kill done after the flush will be checked against the new SID.
2568 	 */
2569 	rc = avc_has_perm(&selinux_state,
2570 			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571 	if (rc) {
2572 		clear_itimer();
2573 
2574 		spin_lock_irq(&current->sighand->siglock);
2575 		if (!fatal_signal_pending(current)) {
2576 			flush_sigqueue(&current->pending);
2577 			flush_sigqueue(&current->signal->shared_pending);
2578 			flush_signal_handlers(current, 1);
2579 			sigemptyset(&current->blocked);
2580 			recalc_sigpending();
2581 		}
2582 		spin_unlock_irq(&current->sighand->siglock);
2583 	}
2584 
2585 	/* Wake up the parent if it is waiting so that it can recheck
2586 	 * wait permission to the new task SID. */
2587 	read_lock(&tasklist_lock);
2588 	__wake_up_parent(current, current->real_parent);
2589 	read_unlock(&tasklist_lock);
2590 }
2591 
2592 /* superblock security operations */
2593 
2594 static int selinux_sb_alloc_security(struct super_block *sb)
2595 {
2596 	return superblock_alloc_security(sb);
2597 }
2598 
2599 static void selinux_sb_free_security(struct super_block *sb)
2600 {
2601 	superblock_free_security(sb);
2602 }
2603 
2604 static inline int opt_len(const char *s)
2605 {
2606 	bool open_quote = false;
2607 	int len;
2608 	char c;
2609 
2610 	for (len = 0; (c = s[len]) != '\0'; len++) {
2611 		if (c == '"')
2612 			open_quote = !open_quote;
2613 		if (c == ',' && !open_quote)
2614 			break;
2615 	}
2616 	return len;
2617 }
2618 
2619 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2620 {
2621 	char *from = options;
2622 	char *to = options;
2623 	bool first = true;
2624 	int rc;
2625 
2626 	while (1) {
2627 		int len = opt_len(from);
2628 		int token;
2629 		char *arg = NULL;
2630 
2631 		token = match_opt_prefix(from, len, &arg);
2632 
2633 		if (token != Opt_error) {
2634 			char *p, *q;
2635 
2636 			/* strip quotes */
2637 			if (arg) {
2638 				for (p = q = arg; p < from + len; p++) {
2639 					char c = *p;
2640 					if (c != '"')
2641 						*q++ = c;
2642 				}
2643 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2644 				if (!arg) {
2645 					rc = -ENOMEM;
2646 					goto free_opt;
2647 				}
2648 			}
2649 			rc = selinux_add_opt(token, arg, mnt_opts);
2650 			if (unlikely(rc)) {
2651 				kfree(arg);
2652 				goto free_opt;
2653 			}
2654 		} else {
2655 			if (!first) {	// copy with preceding comma
2656 				from--;
2657 				len++;
2658 			}
2659 			if (to != from)
2660 				memmove(to, from, len);
2661 			to += len;
2662 			first = false;
2663 		}
2664 		if (!from[len])
2665 			break;
2666 		from += len + 1;
2667 	}
2668 	*to = '\0';
2669 	return 0;
2670 
2671 free_opt:
2672 	if (*mnt_opts) {
2673 		selinux_free_mnt_opts(*mnt_opts);
2674 		*mnt_opts = NULL;
2675 	}
2676 	return rc;
2677 }
2678 
2679 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2680 {
2681 	struct selinux_mnt_opts *opts = mnt_opts;
2682 	struct superblock_security_struct *sbsec = sb->s_security;
2683 	u32 sid;
2684 	int rc;
2685 
2686 	if (!(sbsec->flags & SE_SBINITIALIZED))
2687 		return 0;
2688 
2689 	if (!opts)
2690 		return 0;
2691 
2692 	if (opts->fscontext) {
2693 		rc = parse_sid(sb, opts->fscontext, &sid);
2694 		if (rc)
2695 			return rc;
2696 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2697 			goto out_bad_option;
2698 	}
2699 	if (opts->context) {
2700 		rc = parse_sid(sb, opts->context, &sid);
2701 		if (rc)
2702 			return rc;
2703 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2704 			goto out_bad_option;
2705 	}
2706 	if (opts->rootcontext) {
2707 		struct inode_security_struct *root_isec;
2708 		root_isec = backing_inode_security(sb->s_root);
2709 		rc = parse_sid(sb, opts->rootcontext, &sid);
2710 		if (rc)
2711 			return rc;
2712 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2713 			goto out_bad_option;
2714 	}
2715 	if (opts->defcontext) {
2716 		rc = parse_sid(sb, opts->defcontext, &sid);
2717 		if (rc)
2718 			return rc;
2719 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2720 			goto out_bad_option;
2721 	}
2722 	return 0;
2723 
2724 out_bad_option:
2725 	pr_warn("SELinux: unable to change security options "
2726 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2727 	       sb->s_type->name);
2728 	return -EINVAL;
2729 }
2730 
2731 static int selinux_sb_kern_mount(struct super_block *sb)
2732 {
2733 	const struct cred *cred = current_cred();
2734 	struct common_audit_data ad;
2735 
2736 	ad.type = LSM_AUDIT_DATA_DENTRY;
2737 	ad.u.dentry = sb->s_root;
2738 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2739 }
2740 
2741 static int selinux_sb_statfs(struct dentry *dentry)
2742 {
2743 	const struct cred *cred = current_cred();
2744 	struct common_audit_data ad;
2745 
2746 	ad.type = LSM_AUDIT_DATA_DENTRY;
2747 	ad.u.dentry = dentry->d_sb->s_root;
2748 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2749 }
2750 
2751 static int selinux_mount(const char *dev_name,
2752 			 const struct path *path,
2753 			 const char *type,
2754 			 unsigned long flags,
2755 			 void *data)
2756 {
2757 	const struct cred *cred = current_cred();
2758 
2759 	if (flags & MS_REMOUNT)
2760 		return superblock_has_perm(cred, path->dentry->d_sb,
2761 					   FILESYSTEM__REMOUNT, NULL);
2762 	else
2763 		return path_has_perm(cred, path, FILE__MOUNTON);
2764 }
2765 
2766 static int selinux_umount(struct vfsmount *mnt, int flags)
2767 {
2768 	const struct cred *cred = current_cred();
2769 
2770 	return superblock_has_perm(cred, mnt->mnt_sb,
2771 				   FILESYSTEM__UNMOUNT, NULL);
2772 }
2773 
2774 static int selinux_fs_context_dup(struct fs_context *fc,
2775 				  struct fs_context *src_fc)
2776 {
2777 	const struct selinux_mnt_opts *src = src_fc->security;
2778 	struct selinux_mnt_opts *opts;
2779 
2780 	if (!src)
2781 		return 0;
2782 
2783 	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2784 	if (!fc->security)
2785 		return -ENOMEM;
2786 
2787 	opts = fc->security;
2788 
2789 	if (src->fscontext) {
2790 		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2791 		if (!opts->fscontext)
2792 			return -ENOMEM;
2793 	}
2794 	if (src->context) {
2795 		opts->context = kstrdup(src->context, GFP_KERNEL);
2796 		if (!opts->context)
2797 			return -ENOMEM;
2798 	}
2799 	if (src->rootcontext) {
2800 		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2801 		if (!opts->rootcontext)
2802 			return -ENOMEM;
2803 	}
2804 	if (src->defcontext) {
2805 		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2806 		if (!opts->defcontext)
2807 			return -ENOMEM;
2808 	}
2809 	return 0;
2810 }
2811 
2812 static const struct fs_parameter_spec selinux_param_specs[] = {
2813 	fsparam_string(CONTEXT_STR,	Opt_context),
2814 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2815 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2816 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2817 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2818 	{}
2819 };
2820 
2821 static const struct fs_parameter_description selinux_fs_parameters = {
2822 	.name		= "SELinux",
2823 	.specs		= selinux_param_specs,
2824 };
2825 
2826 static int selinux_fs_context_parse_param(struct fs_context *fc,
2827 					  struct fs_parameter *param)
2828 {
2829 	struct fs_parse_result result;
2830 	int opt, rc;
2831 
2832 	opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2833 	if (opt < 0)
2834 		return opt;
2835 
2836 	rc = selinux_add_opt(opt, param->string, &fc->security);
2837 	if (!rc) {
2838 		param->string = NULL;
2839 		rc = 1;
2840 	}
2841 	return rc;
2842 }
2843 
2844 /* inode security operations */
2845 
2846 static int selinux_inode_alloc_security(struct inode *inode)
2847 {
2848 	return inode_alloc_security(inode);
2849 }
2850 
2851 static void selinux_inode_free_security(struct inode *inode)
2852 {
2853 	inode_free_security(inode);
2854 }
2855 
2856 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2857 					const struct qstr *name, void **ctx,
2858 					u32 *ctxlen)
2859 {
2860 	u32 newsid;
2861 	int rc;
2862 
2863 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2864 					   d_inode(dentry->d_parent), name,
2865 					   inode_mode_to_security_class(mode),
2866 					   &newsid);
2867 	if (rc)
2868 		return rc;
2869 
2870 	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2871 				       ctxlen);
2872 }
2873 
2874 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2875 					  struct qstr *name,
2876 					  const struct cred *old,
2877 					  struct cred *new)
2878 {
2879 	u32 newsid;
2880 	int rc;
2881 	struct task_security_struct *tsec;
2882 
2883 	rc = selinux_determine_inode_label(selinux_cred(old),
2884 					   d_inode(dentry->d_parent), name,
2885 					   inode_mode_to_security_class(mode),
2886 					   &newsid);
2887 	if (rc)
2888 		return rc;
2889 
2890 	tsec = selinux_cred(new);
2891 	tsec->create_sid = newsid;
2892 	return 0;
2893 }
2894 
2895 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2896 				       const struct qstr *qstr,
2897 				       const char **name,
2898 				       void **value, size_t *len)
2899 {
2900 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2901 	struct superblock_security_struct *sbsec;
2902 	u32 newsid, clen;
2903 	int rc;
2904 	char *context;
2905 
2906 	sbsec = dir->i_sb->s_security;
2907 
2908 	newsid = tsec->create_sid;
2909 
2910 	rc = selinux_determine_inode_label(tsec, dir, qstr,
2911 		inode_mode_to_security_class(inode->i_mode),
2912 		&newsid);
2913 	if (rc)
2914 		return rc;
2915 
2916 	/* Possibly defer initialization to selinux_complete_init. */
2917 	if (sbsec->flags & SE_SBINITIALIZED) {
2918 		struct inode_security_struct *isec = selinux_inode(inode);
2919 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2920 		isec->sid = newsid;
2921 		isec->initialized = LABEL_INITIALIZED;
2922 	}
2923 
2924 	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
2925 		return -EOPNOTSUPP;
2926 
2927 	if (name)
2928 		*name = XATTR_SELINUX_SUFFIX;
2929 
2930 	if (value && len) {
2931 		rc = security_sid_to_context_force(&selinux_state, newsid,
2932 						   &context, &clen);
2933 		if (rc)
2934 			return rc;
2935 		*value = context;
2936 		*len = clen;
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2943 {
2944 	return may_create(dir, dentry, SECCLASS_FILE);
2945 }
2946 
2947 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2948 {
2949 	return may_link(dir, old_dentry, MAY_LINK);
2950 }
2951 
2952 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2953 {
2954 	return may_link(dir, dentry, MAY_UNLINK);
2955 }
2956 
2957 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2958 {
2959 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2960 }
2961 
2962 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2963 {
2964 	return may_create(dir, dentry, SECCLASS_DIR);
2965 }
2966 
2967 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2968 {
2969 	return may_link(dir, dentry, MAY_RMDIR);
2970 }
2971 
2972 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2973 {
2974 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2975 }
2976 
2977 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2978 				struct inode *new_inode, struct dentry *new_dentry)
2979 {
2980 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2981 }
2982 
2983 static int selinux_inode_readlink(struct dentry *dentry)
2984 {
2985 	const struct cred *cred = current_cred();
2986 
2987 	return dentry_has_perm(cred, dentry, FILE__READ);
2988 }
2989 
2990 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2991 				     bool rcu)
2992 {
2993 	const struct cred *cred = current_cred();
2994 	struct common_audit_data ad;
2995 	struct inode_security_struct *isec;
2996 	u32 sid;
2997 
2998 	validate_creds(cred);
2999 
3000 	ad.type = LSM_AUDIT_DATA_DENTRY;
3001 	ad.u.dentry = dentry;
3002 	sid = cred_sid(cred);
3003 	isec = inode_security_rcu(inode, rcu);
3004 	if (IS_ERR(isec))
3005 		return PTR_ERR(isec);
3006 
3007 	return avc_has_perm_flags(&selinux_state,
3008 				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
3009 				  rcu ? MAY_NOT_BLOCK : 0);
3010 }
3011 
3012 static noinline int audit_inode_permission(struct inode *inode,
3013 					   u32 perms, u32 audited, u32 denied,
3014 					   int result)
3015 {
3016 	struct common_audit_data ad;
3017 	struct inode_security_struct *isec = selinux_inode(inode);
3018 	int rc;
3019 
3020 	ad.type = LSM_AUDIT_DATA_INODE;
3021 	ad.u.inode = inode;
3022 
3023 	rc = slow_avc_audit(&selinux_state,
3024 			    current_sid(), isec->sid, isec->sclass, perms,
3025 			    audited, denied, result, &ad);
3026 	if (rc)
3027 		return rc;
3028 	return 0;
3029 }
3030 
3031 static int selinux_inode_permission(struct inode *inode, int mask)
3032 {
3033 	const struct cred *cred = current_cred();
3034 	u32 perms;
3035 	bool from_access;
3036 	bool no_block = mask & MAY_NOT_BLOCK;
3037 	struct inode_security_struct *isec;
3038 	u32 sid;
3039 	struct av_decision avd;
3040 	int rc, rc2;
3041 	u32 audited, denied;
3042 
3043 	from_access = mask & MAY_ACCESS;
3044 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3045 
3046 	/* No permission to check.  Existence test. */
3047 	if (!mask)
3048 		return 0;
3049 
3050 	validate_creds(cred);
3051 
3052 	if (unlikely(IS_PRIVATE(inode)))
3053 		return 0;
3054 
3055 	perms = file_mask_to_av(inode->i_mode, mask);
3056 
3057 	sid = cred_sid(cred);
3058 	isec = inode_security_rcu(inode, no_block);
3059 	if (IS_ERR(isec))
3060 		return PTR_ERR(isec);
3061 
3062 	rc = avc_has_perm_noaudit(&selinux_state,
3063 				  sid, isec->sid, isec->sclass, perms,
3064 				  no_block ? AVC_NONBLOCKING : 0,
3065 				  &avd);
3066 	audited = avc_audit_required(perms, &avd, rc,
3067 				     from_access ? FILE__AUDIT_ACCESS : 0,
3068 				     &denied);
3069 	if (likely(!audited))
3070 		return rc;
3071 
3072 	/* fall back to ref-walk if we have to generate audit */
3073 	if (no_block)
3074 		return -ECHILD;
3075 
3076 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3077 	if (rc2)
3078 		return rc2;
3079 	return rc;
3080 }
3081 
3082 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3083 {
3084 	const struct cred *cred = current_cred();
3085 	struct inode *inode = d_backing_inode(dentry);
3086 	unsigned int ia_valid = iattr->ia_valid;
3087 	__u32 av = FILE__WRITE;
3088 
3089 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3090 	if (ia_valid & ATTR_FORCE) {
3091 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3092 			      ATTR_FORCE);
3093 		if (!ia_valid)
3094 			return 0;
3095 	}
3096 
3097 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3098 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3099 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3100 
3101 	if (selinux_policycap_openperm() &&
3102 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3103 	    (ia_valid & ATTR_SIZE) &&
3104 	    !(ia_valid & ATTR_FILE))
3105 		av |= FILE__OPEN;
3106 
3107 	return dentry_has_perm(cred, dentry, av);
3108 }
3109 
3110 static int selinux_inode_getattr(const struct path *path)
3111 {
3112 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3113 }
3114 
3115 static bool has_cap_mac_admin(bool audit)
3116 {
3117 	const struct cred *cred = current_cred();
3118 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3119 
3120 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3121 		return false;
3122 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3123 		return false;
3124 	return true;
3125 }
3126 
3127 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3128 				  const void *value, size_t size, int flags)
3129 {
3130 	struct inode *inode = d_backing_inode(dentry);
3131 	struct inode_security_struct *isec;
3132 	struct superblock_security_struct *sbsec;
3133 	struct common_audit_data ad;
3134 	u32 newsid, sid = current_sid();
3135 	int rc = 0;
3136 
3137 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3138 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3139 		if (rc)
3140 			return rc;
3141 
3142 		/* Not an attribute we recognize, so just check the
3143 		   ordinary setattr permission. */
3144 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3145 	}
3146 
3147 	if (!selinux_state.initialized)
3148 		return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3149 
3150 	sbsec = inode->i_sb->s_security;
3151 	if (!(sbsec->flags & SBLABEL_MNT))
3152 		return -EOPNOTSUPP;
3153 
3154 	if (!inode_owner_or_capable(inode))
3155 		return -EPERM;
3156 
3157 	ad.type = LSM_AUDIT_DATA_DENTRY;
3158 	ad.u.dentry = dentry;
3159 
3160 	isec = backing_inode_security(dentry);
3161 	rc = avc_has_perm(&selinux_state,
3162 			  sid, isec->sid, isec->sclass,
3163 			  FILE__RELABELFROM, &ad);
3164 	if (rc)
3165 		return rc;
3166 
3167 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3168 				     GFP_KERNEL);
3169 	if (rc == -EINVAL) {
3170 		if (!has_cap_mac_admin(true)) {
3171 			struct audit_buffer *ab;
3172 			size_t audit_size;
3173 
3174 			/* We strip a nul only if it is at the end, otherwise the
3175 			 * context contains a nul and we should audit that */
3176 			if (value) {
3177 				const char *str = value;
3178 
3179 				if (str[size - 1] == '\0')
3180 					audit_size = size - 1;
3181 				else
3182 					audit_size = size;
3183 			} else {
3184 				audit_size = 0;
3185 			}
3186 			ab = audit_log_start(audit_context(),
3187 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3188 			audit_log_format(ab, "op=setxattr invalid_context=");
3189 			audit_log_n_untrustedstring(ab, value, audit_size);
3190 			audit_log_end(ab);
3191 
3192 			return rc;
3193 		}
3194 		rc = security_context_to_sid_force(&selinux_state, value,
3195 						   size, &newsid);
3196 	}
3197 	if (rc)
3198 		return rc;
3199 
3200 	rc = avc_has_perm(&selinux_state,
3201 			  sid, newsid, isec->sclass,
3202 			  FILE__RELABELTO, &ad);
3203 	if (rc)
3204 		return rc;
3205 
3206 	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3207 					  sid, isec->sclass);
3208 	if (rc)
3209 		return rc;
3210 
3211 	return avc_has_perm(&selinux_state,
3212 			    newsid,
3213 			    sbsec->sid,
3214 			    SECCLASS_FILESYSTEM,
3215 			    FILESYSTEM__ASSOCIATE,
3216 			    &ad);
3217 }
3218 
3219 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3220 					const void *value, size_t size,
3221 					int flags)
3222 {
3223 	struct inode *inode = d_backing_inode(dentry);
3224 	struct inode_security_struct *isec;
3225 	u32 newsid;
3226 	int rc;
3227 
3228 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3229 		/* Not an attribute we recognize, so nothing to do. */
3230 		return;
3231 	}
3232 
3233 	if (!selinux_state.initialized) {
3234 		/* If we haven't even been initialized, then we can't validate
3235 		 * against a policy, so leave the label as invalid. It may
3236 		 * resolve to a valid label on the next revalidation try if
3237 		 * we've since initialized.
3238 		 */
3239 		return;
3240 	}
3241 
3242 	rc = security_context_to_sid_force(&selinux_state, value, size,
3243 					   &newsid);
3244 	if (rc) {
3245 		pr_err("SELinux:  unable to map context to SID"
3246 		       "for (%s, %lu), rc=%d\n",
3247 		       inode->i_sb->s_id, inode->i_ino, -rc);
3248 		return;
3249 	}
3250 
3251 	isec = backing_inode_security(dentry);
3252 	spin_lock(&isec->lock);
3253 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3254 	isec->sid = newsid;
3255 	isec->initialized = LABEL_INITIALIZED;
3256 	spin_unlock(&isec->lock);
3257 
3258 	return;
3259 }
3260 
3261 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3262 {
3263 	const struct cred *cred = current_cred();
3264 
3265 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3266 }
3267 
3268 static int selinux_inode_listxattr(struct dentry *dentry)
3269 {
3270 	const struct cred *cred = current_cred();
3271 
3272 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3273 }
3274 
3275 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3276 {
3277 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3278 		int rc = cap_inode_removexattr(dentry, name);
3279 		if (rc)
3280 			return rc;
3281 
3282 		/* Not an attribute we recognize, so just check the
3283 		   ordinary setattr permission. */
3284 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3285 	}
3286 
3287 	/* No one is allowed to remove a SELinux security label.
3288 	   You can change the label, but all data must be labeled. */
3289 	return -EACCES;
3290 }
3291 
3292 static int selinux_path_notify(const struct path *path, u64 mask,
3293 						unsigned int obj_type)
3294 {
3295 	int ret;
3296 	u32 perm;
3297 
3298 	struct common_audit_data ad;
3299 
3300 	ad.type = LSM_AUDIT_DATA_PATH;
3301 	ad.u.path = *path;
3302 
3303 	/*
3304 	 * Set permission needed based on the type of mark being set.
3305 	 * Performs an additional check for sb watches.
3306 	 */
3307 	switch (obj_type) {
3308 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3309 		perm = FILE__WATCH_MOUNT;
3310 		break;
3311 	case FSNOTIFY_OBJ_TYPE_SB:
3312 		perm = FILE__WATCH_SB;
3313 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3314 						FILESYSTEM__WATCH, &ad);
3315 		if (ret)
3316 			return ret;
3317 		break;
3318 	case FSNOTIFY_OBJ_TYPE_INODE:
3319 		perm = FILE__WATCH;
3320 		break;
3321 	default:
3322 		return -EINVAL;
3323 	}
3324 
3325 	/* blocking watches require the file:watch_with_perm permission */
3326 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3327 		perm |= FILE__WATCH_WITH_PERM;
3328 
3329 	/* watches on read-like events need the file:watch_reads permission */
3330 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3331 		perm |= FILE__WATCH_READS;
3332 
3333 	return path_has_perm(current_cred(), path, perm);
3334 }
3335 
3336 /*
3337  * Copy the inode security context value to the user.
3338  *
3339  * Permission check is handled by selinux_inode_getxattr hook.
3340  */
3341 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3342 {
3343 	u32 size;
3344 	int error;
3345 	char *context = NULL;
3346 	struct inode_security_struct *isec;
3347 
3348 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3349 		return -EOPNOTSUPP;
3350 
3351 	/*
3352 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3353 	 * value even if it is not defined by current policy; otherwise,
3354 	 * use the in-core value under current policy.
3355 	 * Use the non-auditing forms of the permission checks since
3356 	 * getxattr may be called by unprivileged processes commonly
3357 	 * and lack of permission just means that we fall back to the
3358 	 * in-core context value, not a denial.
3359 	 */
3360 	isec = inode_security(inode);
3361 	if (has_cap_mac_admin(false))
3362 		error = security_sid_to_context_force(&selinux_state,
3363 						      isec->sid, &context,
3364 						      &size);
3365 	else
3366 		error = security_sid_to_context(&selinux_state, isec->sid,
3367 						&context, &size);
3368 	if (error)
3369 		return error;
3370 	error = size;
3371 	if (alloc) {
3372 		*buffer = context;
3373 		goto out_nofree;
3374 	}
3375 	kfree(context);
3376 out_nofree:
3377 	return error;
3378 }
3379 
3380 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3381 				     const void *value, size_t size, int flags)
3382 {
3383 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3384 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3385 	u32 newsid;
3386 	int rc;
3387 
3388 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3389 		return -EOPNOTSUPP;
3390 
3391 	if (!(sbsec->flags & SBLABEL_MNT))
3392 		return -EOPNOTSUPP;
3393 
3394 	if (!value || !size)
3395 		return -EACCES;
3396 
3397 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3398 				     GFP_KERNEL);
3399 	if (rc)
3400 		return rc;
3401 
3402 	spin_lock(&isec->lock);
3403 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3404 	isec->sid = newsid;
3405 	isec->initialized = LABEL_INITIALIZED;
3406 	spin_unlock(&isec->lock);
3407 	return 0;
3408 }
3409 
3410 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3411 {
3412 	const int len = sizeof(XATTR_NAME_SELINUX);
3413 	if (buffer && len <= buffer_size)
3414 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3415 	return len;
3416 }
3417 
3418 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3419 {
3420 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3421 	*secid = isec->sid;
3422 }
3423 
3424 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3425 {
3426 	u32 sid;
3427 	struct task_security_struct *tsec;
3428 	struct cred *new_creds = *new;
3429 
3430 	if (new_creds == NULL) {
3431 		new_creds = prepare_creds();
3432 		if (!new_creds)
3433 			return -ENOMEM;
3434 	}
3435 
3436 	tsec = selinux_cred(new_creds);
3437 	/* Get label from overlay inode and set it in create_sid */
3438 	selinux_inode_getsecid(d_inode(src), &sid);
3439 	tsec->create_sid = sid;
3440 	*new = new_creds;
3441 	return 0;
3442 }
3443 
3444 static int selinux_inode_copy_up_xattr(const char *name)
3445 {
3446 	/* The copy_up hook above sets the initial context on an inode, but we
3447 	 * don't then want to overwrite it by blindly copying all the lower
3448 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3449 	 */
3450 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3451 		return 1; /* Discard */
3452 	/*
3453 	 * Any other attribute apart from SELINUX is not claimed, supported
3454 	 * by selinux.
3455 	 */
3456 	return -EOPNOTSUPP;
3457 }
3458 
3459 /* kernfs node operations */
3460 
3461 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3462 					struct kernfs_node *kn)
3463 {
3464 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3465 	u32 parent_sid, newsid, clen;
3466 	int rc;
3467 	char *context;
3468 
3469 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3470 	if (rc == -ENODATA)
3471 		return 0;
3472 	else if (rc < 0)
3473 		return rc;
3474 
3475 	clen = (u32)rc;
3476 	context = kmalloc(clen, GFP_KERNEL);
3477 	if (!context)
3478 		return -ENOMEM;
3479 
3480 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3481 	if (rc < 0) {
3482 		kfree(context);
3483 		return rc;
3484 	}
3485 
3486 	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3487 				     GFP_KERNEL);
3488 	kfree(context);
3489 	if (rc)
3490 		return rc;
3491 
3492 	if (tsec->create_sid) {
3493 		newsid = tsec->create_sid;
3494 	} else {
3495 		u16 secclass = inode_mode_to_security_class(kn->mode);
3496 		struct qstr q;
3497 
3498 		q.name = kn->name;
3499 		q.hash_len = hashlen_string(kn_dir, kn->name);
3500 
3501 		rc = security_transition_sid(&selinux_state, tsec->sid,
3502 					     parent_sid, secclass, &q,
3503 					     &newsid);
3504 		if (rc)
3505 			return rc;
3506 	}
3507 
3508 	rc = security_sid_to_context_force(&selinux_state, newsid,
3509 					   &context, &clen);
3510 	if (rc)
3511 		return rc;
3512 
3513 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3514 			      XATTR_CREATE);
3515 	kfree(context);
3516 	return rc;
3517 }
3518 
3519 
3520 /* file security operations */
3521 
3522 static int selinux_revalidate_file_permission(struct file *file, int mask)
3523 {
3524 	const struct cred *cred = current_cred();
3525 	struct inode *inode = file_inode(file);
3526 
3527 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3528 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3529 		mask |= MAY_APPEND;
3530 
3531 	return file_has_perm(cred, file,
3532 			     file_mask_to_av(inode->i_mode, mask));
3533 }
3534 
3535 static int selinux_file_permission(struct file *file, int mask)
3536 {
3537 	struct inode *inode = file_inode(file);
3538 	struct file_security_struct *fsec = selinux_file(file);
3539 	struct inode_security_struct *isec;
3540 	u32 sid = current_sid();
3541 
3542 	if (!mask)
3543 		/* No permission to check.  Existence test. */
3544 		return 0;
3545 
3546 	isec = inode_security(inode);
3547 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3548 	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3549 		/* No change since file_open check. */
3550 		return 0;
3551 
3552 	return selinux_revalidate_file_permission(file, mask);
3553 }
3554 
3555 static int selinux_file_alloc_security(struct file *file)
3556 {
3557 	return file_alloc_security(file);
3558 }
3559 
3560 /*
3561  * Check whether a task has the ioctl permission and cmd
3562  * operation to an inode.
3563  */
3564 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3565 		u32 requested, u16 cmd)
3566 {
3567 	struct common_audit_data ad;
3568 	struct file_security_struct *fsec = selinux_file(file);
3569 	struct inode *inode = file_inode(file);
3570 	struct inode_security_struct *isec;
3571 	struct lsm_ioctlop_audit ioctl;
3572 	u32 ssid = cred_sid(cred);
3573 	int rc;
3574 	u8 driver = cmd >> 8;
3575 	u8 xperm = cmd & 0xff;
3576 
3577 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3578 	ad.u.op = &ioctl;
3579 	ad.u.op->cmd = cmd;
3580 	ad.u.op->path = file->f_path;
3581 
3582 	if (ssid != fsec->sid) {
3583 		rc = avc_has_perm(&selinux_state,
3584 				  ssid, fsec->sid,
3585 				SECCLASS_FD,
3586 				FD__USE,
3587 				&ad);
3588 		if (rc)
3589 			goto out;
3590 	}
3591 
3592 	if (unlikely(IS_PRIVATE(inode)))
3593 		return 0;
3594 
3595 	isec = inode_security(inode);
3596 	rc = avc_has_extended_perms(&selinux_state,
3597 				    ssid, isec->sid, isec->sclass,
3598 				    requested, driver, xperm, &ad);
3599 out:
3600 	return rc;
3601 }
3602 
3603 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3604 			      unsigned long arg)
3605 {
3606 	const struct cred *cred = current_cred();
3607 	int error = 0;
3608 
3609 	switch (cmd) {
3610 	case FIONREAD:
3611 	/* fall through */
3612 	case FIBMAP:
3613 	/* fall through */
3614 	case FIGETBSZ:
3615 	/* fall through */
3616 	case FS_IOC_GETFLAGS:
3617 	/* fall through */
3618 	case FS_IOC_GETVERSION:
3619 		error = file_has_perm(cred, file, FILE__GETATTR);
3620 		break;
3621 
3622 	case FS_IOC_SETFLAGS:
3623 	/* fall through */
3624 	case FS_IOC_SETVERSION:
3625 		error = file_has_perm(cred, file, FILE__SETATTR);
3626 		break;
3627 
3628 	/* sys_ioctl() checks */
3629 	case FIONBIO:
3630 	/* fall through */
3631 	case FIOASYNC:
3632 		error = file_has_perm(cred, file, 0);
3633 		break;
3634 
3635 	case KDSKBENT:
3636 	case KDSKBSENT:
3637 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3638 					    CAP_OPT_NONE, true);
3639 		break;
3640 
3641 	/* default case assumes that the command will go
3642 	 * to the file's ioctl() function.
3643 	 */
3644 	default:
3645 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3646 	}
3647 	return error;
3648 }
3649 
3650 static int default_noexec __ro_after_init;
3651 
3652 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3653 {
3654 	const struct cred *cred = current_cred();
3655 	u32 sid = cred_sid(cred);
3656 	int rc = 0;
3657 
3658 	if (default_noexec &&
3659 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3660 				   (!shared && (prot & PROT_WRITE)))) {
3661 		/*
3662 		 * We are making executable an anonymous mapping or a
3663 		 * private file mapping that will also be writable.
3664 		 * This has an additional check.
3665 		 */
3666 		rc = avc_has_perm(&selinux_state,
3667 				  sid, sid, SECCLASS_PROCESS,
3668 				  PROCESS__EXECMEM, NULL);
3669 		if (rc)
3670 			goto error;
3671 	}
3672 
3673 	if (file) {
3674 		/* read access is always possible with a mapping */
3675 		u32 av = FILE__READ;
3676 
3677 		/* write access only matters if the mapping is shared */
3678 		if (shared && (prot & PROT_WRITE))
3679 			av |= FILE__WRITE;
3680 
3681 		if (prot & PROT_EXEC)
3682 			av |= FILE__EXECUTE;
3683 
3684 		return file_has_perm(cred, file, av);
3685 	}
3686 
3687 error:
3688 	return rc;
3689 }
3690 
3691 static int selinux_mmap_addr(unsigned long addr)
3692 {
3693 	int rc = 0;
3694 
3695 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3696 		u32 sid = current_sid();
3697 		rc = avc_has_perm(&selinux_state,
3698 				  sid, sid, SECCLASS_MEMPROTECT,
3699 				  MEMPROTECT__MMAP_ZERO, NULL);
3700 	}
3701 
3702 	return rc;
3703 }
3704 
3705 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3706 			     unsigned long prot, unsigned long flags)
3707 {
3708 	struct common_audit_data ad;
3709 	int rc;
3710 
3711 	if (file) {
3712 		ad.type = LSM_AUDIT_DATA_FILE;
3713 		ad.u.file = file;
3714 		rc = inode_has_perm(current_cred(), file_inode(file),
3715 				    FILE__MAP, &ad);
3716 		if (rc)
3717 			return rc;
3718 	}
3719 
3720 	if (selinux_state.checkreqprot)
3721 		prot = reqprot;
3722 
3723 	return file_map_prot_check(file, prot,
3724 				   (flags & MAP_TYPE) == MAP_SHARED);
3725 }
3726 
3727 static int selinux_file_mprotect(struct vm_area_struct *vma,
3728 				 unsigned long reqprot,
3729 				 unsigned long prot)
3730 {
3731 	const struct cred *cred = current_cred();
3732 	u32 sid = cred_sid(cred);
3733 
3734 	if (selinux_state.checkreqprot)
3735 		prot = reqprot;
3736 
3737 	if (default_noexec &&
3738 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3739 		int rc = 0;
3740 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3741 		    vma->vm_end <= vma->vm_mm->brk) {
3742 			rc = avc_has_perm(&selinux_state,
3743 					  sid, sid, SECCLASS_PROCESS,
3744 					  PROCESS__EXECHEAP, NULL);
3745 		} else if (!vma->vm_file &&
3746 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3747 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3748 			    vma_is_stack_for_current(vma))) {
3749 			rc = avc_has_perm(&selinux_state,
3750 					  sid, sid, SECCLASS_PROCESS,
3751 					  PROCESS__EXECSTACK, NULL);
3752 		} else if (vma->vm_file && vma->anon_vma) {
3753 			/*
3754 			 * We are making executable a file mapping that has
3755 			 * had some COW done. Since pages might have been
3756 			 * written, check ability to execute the possibly
3757 			 * modified content.  This typically should only
3758 			 * occur for text relocations.
3759 			 */
3760 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3761 		}
3762 		if (rc)
3763 			return rc;
3764 	}
3765 
3766 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3767 }
3768 
3769 static int selinux_file_lock(struct file *file, unsigned int cmd)
3770 {
3771 	const struct cred *cred = current_cred();
3772 
3773 	return file_has_perm(cred, file, FILE__LOCK);
3774 }
3775 
3776 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3777 			      unsigned long arg)
3778 {
3779 	const struct cred *cred = current_cred();
3780 	int err = 0;
3781 
3782 	switch (cmd) {
3783 	case F_SETFL:
3784 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3785 			err = file_has_perm(cred, file, FILE__WRITE);
3786 			break;
3787 		}
3788 		/* fall through */
3789 	case F_SETOWN:
3790 	case F_SETSIG:
3791 	case F_GETFL:
3792 	case F_GETOWN:
3793 	case F_GETSIG:
3794 	case F_GETOWNER_UIDS:
3795 		/* Just check FD__USE permission */
3796 		err = file_has_perm(cred, file, 0);
3797 		break;
3798 	case F_GETLK:
3799 	case F_SETLK:
3800 	case F_SETLKW:
3801 	case F_OFD_GETLK:
3802 	case F_OFD_SETLK:
3803 	case F_OFD_SETLKW:
3804 #if BITS_PER_LONG == 32
3805 	case F_GETLK64:
3806 	case F_SETLK64:
3807 	case F_SETLKW64:
3808 #endif
3809 		err = file_has_perm(cred, file, FILE__LOCK);
3810 		break;
3811 	}
3812 
3813 	return err;
3814 }
3815 
3816 static void selinux_file_set_fowner(struct file *file)
3817 {
3818 	struct file_security_struct *fsec;
3819 
3820 	fsec = selinux_file(file);
3821 	fsec->fown_sid = current_sid();
3822 }
3823 
3824 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3825 				       struct fown_struct *fown, int signum)
3826 {
3827 	struct file *file;
3828 	u32 sid = task_sid(tsk);
3829 	u32 perm;
3830 	struct file_security_struct *fsec;
3831 
3832 	/* struct fown_struct is never outside the context of a struct file */
3833 	file = container_of(fown, struct file, f_owner);
3834 
3835 	fsec = selinux_file(file);
3836 
3837 	if (!signum)
3838 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3839 	else
3840 		perm = signal_to_av(signum);
3841 
3842 	return avc_has_perm(&selinux_state,
3843 			    fsec->fown_sid, sid,
3844 			    SECCLASS_PROCESS, perm, NULL);
3845 }
3846 
3847 static int selinux_file_receive(struct file *file)
3848 {
3849 	const struct cred *cred = current_cred();
3850 
3851 	return file_has_perm(cred, file, file_to_av(file));
3852 }
3853 
3854 static int selinux_file_open(struct file *file)
3855 {
3856 	struct file_security_struct *fsec;
3857 	struct inode_security_struct *isec;
3858 
3859 	fsec = selinux_file(file);
3860 	isec = inode_security(file_inode(file));
3861 	/*
3862 	 * Save inode label and policy sequence number
3863 	 * at open-time so that selinux_file_permission
3864 	 * can determine whether revalidation is necessary.
3865 	 * Task label is already saved in the file security
3866 	 * struct as its SID.
3867 	 */
3868 	fsec->isid = isec->sid;
3869 	fsec->pseqno = avc_policy_seqno(&selinux_state);
3870 	/*
3871 	 * Since the inode label or policy seqno may have changed
3872 	 * between the selinux_inode_permission check and the saving
3873 	 * of state above, recheck that access is still permitted.
3874 	 * Otherwise, access might never be revalidated against the
3875 	 * new inode label or new policy.
3876 	 * This check is not redundant - do not remove.
3877 	 */
3878 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3879 }
3880 
3881 /* task security operations */
3882 
3883 static int selinux_task_alloc(struct task_struct *task,
3884 			      unsigned long clone_flags)
3885 {
3886 	u32 sid = current_sid();
3887 
3888 	return avc_has_perm(&selinux_state,
3889 			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3890 }
3891 
3892 /*
3893  * prepare a new set of credentials for modification
3894  */
3895 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3896 				gfp_t gfp)
3897 {
3898 	const struct task_security_struct *old_tsec = selinux_cred(old);
3899 	struct task_security_struct *tsec = selinux_cred(new);
3900 
3901 	*tsec = *old_tsec;
3902 	return 0;
3903 }
3904 
3905 /*
3906  * transfer the SELinux data to a blank set of creds
3907  */
3908 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3909 {
3910 	const struct task_security_struct *old_tsec = selinux_cred(old);
3911 	struct task_security_struct *tsec = selinux_cred(new);
3912 
3913 	*tsec = *old_tsec;
3914 }
3915 
3916 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3917 {
3918 	*secid = cred_sid(c);
3919 }
3920 
3921 /*
3922  * set the security data for a kernel service
3923  * - all the creation contexts are set to unlabelled
3924  */
3925 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3926 {
3927 	struct task_security_struct *tsec = selinux_cred(new);
3928 	u32 sid = current_sid();
3929 	int ret;
3930 
3931 	ret = avc_has_perm(&selinux_state,
3932 			   sid, secid,
3933 			   SECCLASS_KERNEL_SERVICE,
3934 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3935 			   NULL);
3936 	if (ret == 0) {
3937 		tsec->sid = secid;
3938 		tsec->create_sid = 0;
3939 		tsec->keycreate_sid = 0;
3940 		tsec->sockcreate_sid = 0;
3941 	}
3942 	return ret;
3943 }
3944 
3945 /*
3946  * set the file creation context in a security record to the same as the
3947  * objective context of the specified inode
3948  */
3949 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3950 {
3951 	struct inode_security_struct *isec = inode_security(inode);
3952 	struct task_security_struct *tsec = selinux_cred(new);
3953 	u32 sid = current_sid();
3954 	int ret;
3955 
3956 	ret = avc_has_perm(&selinux_state,
3957 			   sid, isec->sid,
3958 			   SECCLASS_KERNEL_SERVICE,
3959 			   KERNEL_SERVICE__CREATE_FILES_AS,
3960 			   NULL);
3961 
3962 	if (ret == 0)
3963 		tsec->create_sid = isec->sid;
3964 	return ret;
3965 }
3966 
3967 static int selinux_kernel_module_request(char *kmod_name)
3968 {
3969 	struct common_audit_data ad;
3970 
3971 	ad.type = LSM_AUDIT_DATA_KMOD;
3972 	ad.u.kmod_name = kmod_name;
3973 
3974 	return avc_has_perm(&selinux_state,
3975 			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3976 			    SYSTEM__MODULE_REQUEST, &ad);
3977 }
3978 
3979 static int selinux_kernel_module_from_file(struct file *file)
3980 {
3981 	struct common_audit_data ad;
3982 	struct inode_security_struct *isec;
3983 	struct file_security_struct *fsec;
3984 	u32 sid = current_sid();
3985 	int rc;
3986 
3987 	/* init_module */
3988 	if (file == NULL)
3989 		return avc_has_perm(&selinux_state,
3990 				    sid, sid, SECCLASS_SYSTEM,
3991 					SYSTEM__MODULE_LOAD, NULL);
3992 
3993 	/* finit_module */
3994 
3995 	ad.type = LSM_AUDIT_DATA_FILE;
3996 	ad.u.file = file;
3997 
3998 	fsec = selinux_file(file);
3999 	if (sid != fsec->sid) {
4000 		rc = avc_has_perm(&selinux_state,
4001 				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4002 		if (rc)
4003 			return rc;
4004 	}
4005 
4006 	isec = inode_security(file_inode(file));
4007 	return avc_has_perm(&selinux_state,
4008 			    sid, isec->sid, SECCLASS_SYSTEM,
4009 				SYSTEM__MODULE_LOAD, &ad);
4010 }
4011 
4012 static int selinux_kernel_read_file(struct file *file,
4013 				    enum kernel_read_file_id id)
4014 {
4015 	int rc = 0;
4016 
4017 	switch (id) {
4018 	case READING_MODULE:
4019 		rc = selinux_kernel_module_from_file(file);
4020 		break;
4021 	default:
4022 		break;
4023 	}
4024 
4025 	return rc;
4026 }
4027 
4028 static int selinux_kernel_load_data(enum kernel_load_data_id id)
4029 {
4030 	int rc = 0;
4031 
4032 	switch (id) {
4033 	case LOADING_MODULE:
4034 		rc = selinux_kernel_module_from_file(NULL);
4035 	default:
4036 		break;
4037 	}
4038 
4039 	return rc;
4040 }
4041 
4042 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4043 {
4044 	return avc_has_perm(&selinux_state,
4045 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4046 			    PROCESS__SETPGID, NULL);
4047 }
4048 
4049 static int selinux_task_getpgid(struct task_struct *p)
4050 {
4051 	return avc_has_perm(&selinux_state,
4052 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4053 			    PROCESS__GETPGID, NULL);
4054 }
4055 
4056 static int selinux_task_getsid(struct task_struct *p)
4057 {
4058 	return avc_has_perm(&selinux_state,
4059 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4060 			    PROCESS__GETSESSION, NULL);
4061 }
4062 
4063 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4064 {
4065 	*secid = task_sid(p);
4066 }
4067 
4068 static int selinux_task_setnice(struct task_struct *p, int nice)
4069 {
4070 	return avc_has_perm(&selinux_state,
4071 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4072 			    PROCESS__SETSCHED, NULL);
4073 }
4074 
4075 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4076 {
4077 	return avc_has_perm(&selinux_state,
4078 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4079 			    PROCESS__SETSCHED, NULL);
4080 }
4081 
4082 static int selinux_task_getioprio(struct task_struct *p)
4083 {
4084 	return avc_has_perm(&selinux_state,
4085 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4086 			    PROCESS__GETSCHED, NULL);
4087 }
4088 
4089 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4090 				unsigned int flags)
4091 {
4092 	u32 av = 0;
4093 
4094 	if (!flags)
4095 		return 0;
4096 	if (flags & LSM_PRLIMIT_WRITE)
4097 		av |= PROCESS__SETRLIMIT;
4098 	if (flags & LSM_PRLIMIT_READ)
4099 		av |= PROCESS__GETRLIMIT;
4100 	return avc_has_perm(&selinux_state,
4101 			    cred_sid(cred), cred_sid(tcred),
4102 			    SECCLASS_PROCESS, av, NULL);
4103 }
4104 
4105 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4106 		struct rlimit *new_rlim)
4107 {
4108 	struct rlimit *old_rlim = p->signal->rlim + resource;
4109 
4110 	/* Control the ability to change the hard limit (whether
4111 	   lowering or raising it), so that the hard limit can
4112 	   later be used as a safe reset point for the soft limit
4113 	   upon context transitions.  See selinux_bprm_committing_creds. */
4114 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4115 		return avc_has_perm(&selinux_state,
4116 				    current_sid(), task_sid(p),
4117 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4118 
4119 	return 0;
4120 }
4121 
4122 static int selinux_task_setscheduler(struct task_struct *p)
4123 {
4124 	return avc_has_perm(&selinux_state,
4125 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4126 			    PROCESS__SETSCHED, NULL);
4127 }
4128 
4129 static int selinux_task_getscheduler(struct task_struct *p)
4130 {
4131 	return avc_has_perm(&selinux_state,
4132 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4133 			    PROCESS__GETSCHED, NULL);
4134 }
4135 
4136 static int selinux_task_movememory(struct task_struct *p)
4137 {
4138 	return avc_has_perm(&selinux_state,
4139 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4140 			    PROCESS__SETSCHED, NULL);
4141 }
4142 
4143 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4144 				int sig, const struct cred *cred)
4145 {
4146 	u32 secid;
4147 	u32 perm;
4148 
4149 	if (!sig)
4150 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4151 	else
4152 		perm = signal_to_av(sig);
4153 	if (!cred)
4154 		secid = current_sid();
4155 	else
4156 		secid = cred_sid(cred);
4157 	return avc_has_perm(&selinux_state,
4158 			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4159 }
4160 
4161 static void selinux_task_to_inode(struct task_struct *p,
4162 				  struct inode *inode)
4163 {
4164 	struct inode_security_struct *isec = selinux_inode(inode);
4165 	u32 sid = task_sid(p);
4166 
4167 	spin_lock(&isec->lock);
4168 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4169 	isec->sid = sid;
4170 	isec->initialized = LABEL_INITIALIZED;
4171 	spin_unlock(&isec->lock);
4172 }
4173 
4174 /* Returns error only if unable to parse addresses */
4175 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4176 			struct common_audit_data *ad, u8 *proto)
4177 {
4178 	int offset, ihlen, ret = -EINVAL;
4179 	struct iphdr _iph, *ih;
4180 
4181 	offset = skb_network_offset(skb);
4182 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4183 	if (ih == NULL)
4184 		goto out;
4185 
4186 	ihlen = ih->ihl * 4;
4187 	if (ihlen < sizeof(_iph))
4188 		goto out;
4189 
4190 	ad->u.net->v4info.saddr = ih->saddr;
4191 	ad->u.net->v4info.daddr = ih->daddr;
4192 	ret = 0;
4193 
4194 	if (proto)
4195 		*proto = ih->protocol;
4196 
4197 	switch (ih->protocol) {
4198 	case IPPROTO_TCP: {
4199 		struct tcphdr _tcph, *th;
4200 
4201 		if (ntohs(ih->frag_off) & IP_OFFSET)
4202 			break;
4203 
4204 		offset += ihlen;
4205 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4206 		if (th == NULL)
4207 			break;
4208 
4209 		ad->u.net->sport = th->source;
4210 		ad->u.net->dport = th->dest;
4211 		break;
4212 	}
4213 
4214 	case IPPROTO_UDP: {
4215 		struct udphdr _udph, *uh;
4216 
4217 		if (ntohs(ih->frag_off) & IP_OFFSET)
4218 			break;
4219 
4220 		offset += ihlen;
4221 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4222 		if (uh == NULL)
4223 			break;
4224 
4225 		ad->u.net->sport = uh->source;
4226 		ad->u.net->dport = uh->dest;
4227 		break;
4228 	}
4229 
4230 	case IPPROTO_DCCP: {
4231 		struct dccp_hdr _dccph, *dh;
4232 
4233 		if (ntohs(ih->frag_off) & IP_OFFSET)
4234 			break;
4235 
4236 		offset += ihlen;
4237 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4238 		if (dh == NULL)
4239 			break;
4240 
4241 		ad->u.net->sport = dh->dccph_sport;
4242 		ad->u.net->dport = dh->dccph_dport;
4243 		break;
4244 	}
4245 
4246 #if IS_ENABLED(CONFIG_IP_SCTP)
4247 	case IPPROTO_SCTP: {
4248 		struct sctphdr _sctph, *sh;
4249 
4250 		if (ntohs(ih->frag_off) & IP_OFFSET)
4251 			break;
4252 
4253 		offset += ihlen;
4254 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4255 		if (sh == NULL)
4256 			break;
4257 
4258 		ad->u.net->sport = sh->source;
4259 		ad->u.net->dport = sh->dest;
4260 		break;
4261 	}
4262 #endif
4263 	default:
4264 		break;
4265 	}
4266 out:
4267 	return ret;
4268 }
4269 
4270 #if IS_ENABLED(CONFIG_IPV6)
4271 
4272 /* Returns error only if unable to parse addresses */
4273 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4274 			struct common_audit_data *ad, u8 *proto)
4275 {
4276 	u8 nexthdr;
4277 	int ret = -EINVAL, offset;
4278 	struct ipv6hdr _ipv6h, *ip6;
4279 	__be16 frag_off;
4280 
4281 	offset = skb_network_offset(skb);
4282 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4283 	if (ip6 == NULL)
4284 		goto out;
4285 
4286 	ad->u.net->v6info.saddr = ip6->saddr;
4287 	ad->u.net->v6info.daddr = ip6->daddr;
4288 	ret = 0;
4289 
4290 	nexthdr = ip6->nexthdr;
4291 	offset += sizeof(_ipv6h);
4292 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4293 	if (offset < 0)
4294 		goto out;
4295 
4296 	if (proto)
4297 		*proto = nexthdr;
4298 
4299 	switch (nexthdr) {
4300 	case IPPROTO_TCP: {
4301 		struct tcphdr _tcph, *th;
4302 
4303 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4304 		if (th == NULL)
4305 			break;
4306 
4307 		ad->u.net->sport = th->source;
4308 		ad->u.net->dport = th->dest;
4309 		break;
4310 	}
4311 
4312 	case IPPROTO_UDP: {
4313 		struct udphdr _udph, *uh;
4314 
4315 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4316 		if (uh == NULL)
4317 			break;
4318 
4319 		ad->u.net->sport = uh->source;
4320 		ad->u.net->dport = uh->dest;
4321 		break;
4322 	}
4323 
4324 	case IPPROTO_DCCP: {
4325 		struct dccp_hdr _dccph, *dh;
4326 
4327 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4328 		if (dh == NULL)
4329 			break;
4330 
4331 		ad->u.net->sport = dh->dccph_sport;
4332 		ad->u.net->dport = dh->dccph_dport;
4333 		break;
4334 	}
4335 
4336 #if IS_ENABLED(CONFIG_IP_SCTP)
4337 	case IPPROTO_SCTP: {
4338 		struct sctphdr _sctph, *sh;
4339 
4340 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4341 		if (sh == NULL)
4342 			break;
4343 
4344 		ad->u.net->sport = sh->source;
4345 		ad->u.net->dport = sh->dest;
4346 		break;
4347 	}
4348 #endif
4349 	/* includes fragments */
4350 	default:
4351 		break;
4352 	}
4353 out:
4354 	return ret;
4355 }
4356 
4357 #endif /* IPV6 */
4358 
4359 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4360 			     char **_addrp, int src, u8 *proto)
4361 {
4362 	char *addrp;
4363 	int ret;
4364 
4365 	switch (ad->u.net->family) {
4366 	case PF_INET:
4367 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4368 		if (ret)
4369 			goto parse_error;
4370 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4371 				       &ad->u.net->v4info.daddr);
4372 		goto okay;
4373 
4374 #if IS_ENABLED(CONFIG_IPV6)
4375 	case PF_INET6:
4376 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4377 		if (ret)
4378 			goto parse_error;
4379 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4380 				       &ad->u.net->v6info.daddr);
4381 		goto okay;
4382 #endif	/* IPV6 */
4383 	default:
4384 		addrp = NULL;
4385 		goto okay;
4386 	}
4387 
4388 parse_error:
4389 	pr_warn(
4390 	       "SELinux: failure in selinux_parse_skb(),"
4391 	       " unable to parse packet\n");
4392 	return ret;
4393 
4394 okay:
4395 	if (_addrp)
4396 		*_addrp = addrp;
4397 	return 0;
4398 }
4399 
4400 /**
4401  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4402  * @skb: the packet
4403  * @family: protocol family
4404  * @sid: the packet's peer label SID
4405  *
4406  * Description:
4407  * Check the various different forms of network peer labeling and determine
4408  * the peer label/SID for the packet; most of the magic actually occurs in
4409  * the security server function security_net_peersid_cmp().  The function
4410  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4411  * or -EACCES if @sid is invalid due to inconsistencies with the different
4412  * peer labels.
4413  *
4414  */
4415 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4416 {
4417 	int err;
4418 	u32 xfrm_sid;
4419 	u32 nlbl_sid;
4420 	u32 nlbl_type;
4421 
4422 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4423 	if (unlikely(err))
4424 		return -EACCES;
4425 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4426 	if (unlikely(err))
4427 		return -EACCES;
4428 
4429 	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4430 					   nlbl_type, xfrm_sid, sid);
4431 	if (unlikely(err)) {
4432 		pr_warn(
4433 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4434 		       " unable to determine packet's peer label\n");
4435 		return -EACCES;
4436 	}
4437 
4438 	return 0;
4439 }
4440 
4441 /**
4442  * selinux_conn_sid - Determine the child socket label for a connection
4443  * @sk_sid: the parent socket's SID
4444  * @skb_sid: the packet's SID
4445  * @conn_sid: the resulting connection SID
4446  *
4447  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4448  * combined with the MLS information from @skb_sid in order to create
4449  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4450  * of @sk_sid.  Returns zero on success, negative values on failure.
4451  *
4452  */
4453 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4454 {
4455 	int err = 0;
4456 
4457 	if (skb_sid != SECSID_NULL)
4458 		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4459 					    conn_sid);
4460 	else
4461 		*conn_sid = sk_sid;
4462 
4463 	return err;
4464 }
4465 
4466 /* socket security operations */
4467 
4468 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4469 				 u16 secclass, u32 *socksid)
4470 {
4471 	if (tsec->sockcreate_sid > SECSID_NULL) {
4472 		*socksid = tsec->sockcreate_sid;
4473 		return 0;
4474 	}
4475 
4476 	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4477 				       secclass, NULL, socksid);
4478 }
4479 
4480 static int sock_has_perm(struct sock *sk, u32 perms)
4481 {
4482 	struct sk_security_struct *sksec = sk->sk_security;
4483 	struct common_audit_data ad;
4484 	struct lsm_network_audit net = {0,};
4485 
4486 	if (sksec->sid == SECINITSID_KERNEL)
4487 		return 0;
4488 
4489 	ad.type = LSM_AUDIT_DATA_NET;
4490 	ad.u.net = &net;
4491 	ad.u.net->sk = sk;
4492 
4493 	return avc_has_perm(&selinux_state,
4494 			    current_sid(), sksec->sid, sksec->sclass, perms,
4495 			    &ad);
4496 }
4497 
4498 static int selinux_socket_create(int family, int type,
4499 				 int protocol, int kern)
4500 {
4501 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4502 	u32 newsid;
4503 	u16 secclass;
4504 	int rc;
4505 
4506 	if (kern)
4507 		return 0;
4508 
4509 	secclass = socket_type_to_security_class(family, type, protocol);
4510 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4511 	if (rc)
4512 		return rc;
4513 
4514 	return avc_has_perm(&selinux_state,
4515 			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4516 }
4517 
4518 static int selinux_socket_post_create(struct socket *sock, int family,
4519 				      int type, int protocol, int kern)
4520 {
4521 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4522 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4523 	struct sk_security_struct *sksec;
4524 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4525 	u32 sid = SECINITSID_KERNEL;
4526 	int err = 0;
4527 
4528 	if (!kern) {
4529 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4530 		if (err)
4531 			return err;
4532 	}
4533 
4534 	isec->sclass = sclass;
4535 	isec->sid = sid;
4536 	isec->initialized = LABEL_INITIALIZED;
4537 
4538 	if (sock->sk) {
4539 		sksec = sock->sk->sk_security;
4540 		sksec->sclass = sclass;
4541 		sksec->sid = sid;
4542 		/* Allows detection of the first association on this socket */
4543 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4544 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4545 
4546 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4547 	}
4548 
4549 	return err;
4550 }
4551 
4552 static int selinux_socket_socketpair(struct socket *socka,
4553 				     struct socket *sockb)
4554 {
4555 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4556 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4557 
4558 	sksec_a->peer_sid = sksec_b->sid;
4559 	sksec_b->peer_sid = sksec_a->sid;
4560 
4561 	return 0;
4562 }
4563 
4564 /* Range of port numbers used to automatically bind.
4565    Need to determine whether we should perform a name_bind
4566    permission check between the socket and the port number. */
4567 
4568 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4569 {
4570 	struct sock *sk = sock->sk;
4571 	struct sk_security_struct *sksec = sk->sk_security;
4572 	u16 family;
4573 	int err;
4574 
4575 	err = sock_has_perm(sk, SOCKET__BIND);
4576 	if (err)
4577 		goto out;
4578 
4579 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4580 	family = sk->sk_family;
4581 	if (family == PF_INET || family == PF_INET6) {
4582 		char *addrp;
4583 		struct common_audit_data ad;
4584 		struct lsm_network_audit net = {0,};
4585 		struct sockaddr_in *addr4 = NULL;
4586 		struct sockaddr_in6 *addr6 = NULL;
4587 		u16 family_sa;
4588 		unsigned short snum;
4589 		u32 sid, node_perm;
4590 
4591 		/*
4592 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4593 		 * that validates multiple binding addresses. Because of this
4594 		 * need to check address->sa_family as it is possible to have
4595 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4596 		 */
4597 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4598 			return -EINVAL;
4599 		family_sa = address->sa_family;
4600 		switch (family_sa) {
4601 		case AF_UNSPEC:
4602 		case AF_INET:
4603 			if (addrlen < sizeof(struct sockaddr_in))
4604 				return -EINVAL;
4605 			addr4 = (struct sockaddr_in *)address;
4606 			if (family_sa == AF_UNSPEC) {
4607 				/* see __inet_bind(), we only want to allow
4608 				 * AF_UNSPEC if the address is INADDR_ANY
4609 				 */
4610 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4611 					goto err_af;
4612 				family_sa = AF_INET;
4613 			}
4614 			snum = ntohs(addr4->sin_port);
4615 			addrp = (char *)&addr4->sin_addr.s_addr;
4616 			break;
4617 		case AF_INET6:
4618 			if (addrlen < SIN6_LEN_RFC2133)
4619 				return -EINVAL;
4620 			addr6 = (struct sockaddr_in6 *)address;
4621 			snum = ntohs(addr6->sin6_port);
4622 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4623 			break;
4624 		default:
4625 			goto err_af;
4626 		}
4627 
4628 		ad.type = LSM_AUDIT_DATA_NET;
4629 		ad.u.net = &net;
4630 		ad.u.net->sport = htons(snum);
4631 		ad.u.net->family = family_sa;
4632 
4633 		if (snum) {
4634 			int low, high;
4635 
4636 			inet_get_local_port_range(sock_net(sk), &low, &high);
4637 
4638 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4639 			    snum < low || snum > high) {
4640 				err = sel_netport_sid(sk->sk_protocol,
4641 						      snum, &sid);
4642 				if (err)
4643 					goto out;
4644 				err = avc_has_perm(&selinux_state,
4645 						   sksec->sid, sid,
4646 						   sksec->sclass,
4647 						   SOCKET__NAME_BIND, &ad);
4648 				if (err)
4649 					goto out;
4650 			}
4651 		}
4652 
4653 		switch (sksec->sclass) {
4654 		case SECCLASS_TCP_SOCKET:
4655 			node_perm = TCP_SOCKET__NODE_BIND;
4656 			break;
4657 
4658 		case SECCLASS_UDP_SOCKET:
4659 			node_perm = UDP_SOCKET__NODE_BIND;
4660 			break;
4661 
4662 		case SECCLASS_DCCP_SOCKET:
4663 			node_perm = DCCP_SOCKET__NODE_BIND;
4664 			break;
4665 
4666 		case SECCLASS_SCTP_SOCKET:
4667 			node_perm = SCTP_SOCKET__NODE_BIND;
4668 			break;
4669 
4670 		default:
4671 			node_perm = RAWIP_SOCKET__NODE_BIND;
4672 			break;
4673 		}
4674 
4675 		err = sel_netnode_sid(addrp, family_sa, &sid);
4676 		if (err)
4677 			goto out;
4678 
4679 		if (family_sa == AF_INET)
4680 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4681 		else
4682 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4683 
4684 		err = avc_has_perm(&selinux_state,
4685 				   sksec->sid, sid,
4686 				   sksec->sclass, node_perm, &ad);
4687 		if (err)
4688 			goto out;
4689 	}
4690 out:
4691 	return err;
4692 err_af:
4693 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4694 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4695 		return -EINVAL;
4696 	return -EAFNOSUPPORT;
4697 }
4698 
4699 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4700  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4701  */
4702 static int selinux_socket_connect_helper(struct socket *sock,
4703 					 struct sockaddr *address, int addrlen)
4704 {
4705 	struct sock *sk = sock->sk;
4706 	struct sk_security_struct *sksec = sk->sk_security;
4707 	int err;
4708 
4709 	err = sock_has_perm(sk, SOCKET__CONNECT);
4710 	if (err)
4711 		return err;
4712 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4713 		return -EINVAL;
4714 
4715 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4716 	 * way to disconnect the socket
4717 	 */
4718 	if (address->sa_family == AF_UNSPEC)
4719 		return 0;
4720 
4721 	/*
4722 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4723 	 * for the port.
4724 	 */
4725 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4726 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4727 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4728 		struct common_audit_data ad;
4729 		struct lsm_network_audit net = {0,};
4730 		struct sockaddr_in *addr4 = NULL;
4731 		struct sockaddr_in6 *addr6 = NULL;
4732 		unsigned short snum;
4733 		u32 sid, perm;
4734 
4735 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4736 		 * that validates multiple connect addresses. Because of this
4737 		 * need to check address->sa_family as it is possible to have
4738 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4739 		 */
4740 		switch (address->sa_family) {
4741 		case AF_INET:
4742 			addr4 = (struct sockaddr_in *)address;
4743 			if (addrlen < sizeof(struct sockaddr_in))
4744 				return -EINVAL;
4745 			snum = ntohs(addr4->sin_port);
4746 			break;
4747 		case AF_INET6:
4748 			addr6 = (struct sockaddr_in6 *)address;
4749 			if (addrlen < SIN6_LEN_RFC2133)
4750 				return -EINVAL;
4751 			snum = ntohs(addr6->sin6_port);
4752 			break;
4753 		default:
4754 			/* Note that SCTP services expect -EINVAL, whereas
4755 			 * others expect -EAFNOSUPPORT.
4756 			 */
4757 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4758 				return -EINVAL;
4759 			else
4760 				return -EAFNOSUPPORT;
4761 		}
4762 
4763 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4764 		if (err)
4765 			return err;
4766 
4767 		switch (sksec->sclass) {
4768 		case SECCLASS_TCP_SOCKET:
4769 			perm = TCP_SOCKET__NAME_CONNECT;
4770 			break;
4771 		case SECCLASS_DCCP_SOCKET:
4772 			perm = DCCP_SOCKET__NAME_CONNECT;
4773 			break;
4774 		case SECCLASS_SCTP_SOCKET:
4775 			perm = SCTP_SOCKET__NAME_CONNECT;
4776 			break;
4777 		}
4778 
4779 		ad.type = LSM_AUDIT_DATA_NET;
4780 		ad.u.net = &net;
4781 		ad.u.net->dport = htons(snum);
4782 		ad.u.net->family = address->sa_family;
4783 		err = avc_has_perm(&selinux_state,
4784 				   sksec->sid, sid, sksec->sclass, perm, &ad);
4785 		if (err)
4786 			return err;
4787 	}
4788 
4789 	return 0;
4790 }
4791 
4792 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4793 static int selinux_socket_connect(struct socket *sock,
4794 				  struct sockaddr *address, int addrlen)
4795 {
4796 	int err;
4797 	struct sock *sk = sock->sk;
4798 
4799 	err = selinux_socket_connect_helper(sock, address, addrlen);
4800 	if (err)
4801 		return err;
4802 
4803 	return selinux_netlbl_socket_connect(sk, address);
4804 }
4805 
4806 static int selinux_socket_listen(struct socket *sock, int backlog)
4807 {
4808 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4809 }
4810 
4811 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4812 {
4813 	int err;
4814 	struct inode_security_struct *isec;
4815 	struct inode_security_struct *newisec;
4816 	u16 sclass;
4817 	u32 sid;
4818 
4819 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4820 	if (err)
4821 		return err;
4822 
4823 	isec = inode_security_novalidate(SOCK_INODE(sock));
4824 	spin_lock(&isec->lock);
4825 	sclass = isec->sclass;
4826 	sid = isec->sid;
4827 	spin_unlock(&isec->lock);
4828 
4829 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4830 	newisec->sclass = sclass;
4831 	newisec->sid = sid;
4832 	newisec->initialized = LABEL_INITIALIZED;
4833 
4834 	return 0;
4835 }
4836 
4837 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4838 				  int size)
4839 {
4840 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4841 }
4842 
4843 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4844 				  int size, int flags)
4845 {
4846 	return sock_has_perm(sock->sk, SOCKET__READ);
4847 }
4848 
4849 static int selinux_socket_getsockname(struct socket *sock)
4850 {
4851 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4852 }
4853 
4854 static int selinux_socket_getpeername(struct socket *sock)
4855 {
4856 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4857 }
4858 
4859 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4860 {
4861 	int err;
4862 
4863 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4864 	if (err)
4865 		return err;
4866 
4867 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4868 }
4869 
4870 static int selinux_socket_getsockopt(struct socket *sock, int level,
4871 				     int optname)
4872 {
4873 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4874 }
4875 
4876 static int selinux_socket_shutdown(struct socket *sock, int how)
4877 {
4878 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4879 }
4880 
4881 static int selinux_socket_unix_stream_connect(struct sock *sock,
4882 					      struct sock *other,
4883 					      struct sock *newsk)
4884 {
4885 	struct sk_security_struct *sksec_sock = sock->sk_security;
4886 	struct sk_security_struct *sksec_other = other->sk_security;
4887 	struct sk_security_struct *sksec_new = newsk->sk_security;
4888 	struct common_audit_data ad;
4889 	struct lsm_network_audit net = {0,};
4890 	int err;
4891 
4892 	ad.type = LSM_AUDIT_DATA_NET;
4893 	ad.u.net = &net;
4894 	ad.u.net->sk = other;
4895 
4896 	err = avc_has_perm(&selinux_state,
4897 			   sksec_sock->sid, sksec_other->sid,
4898 			   sksec_other->sclass,
4899 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4900 	if (err)
4901 		return err;
4902 
4903 	/* server child socket */
4904 	sksec_new->peer_sid = sksec_sock->sid;
4905 	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4906 				    sksec_sock->sid, &sksec_new->sid);
4907 	if (err)
4908 		return err;
4909 
4910 	/* connecting socket */
4911 	sksec_sock->peer_sid = sksec_new->sid;
4912 
4913 	return 0;
4914 }
4915 
4916 static int selinux_socket_unix_may_send(struct socket *sock,
4917 					struct socket *other)
4918 {
4919 	struct sk_security_struct *ssec = sock->sk->sk_security;
4920 	struct sk_security_struct *osec = other->sk->sk_security;
4921 	struct common_audit_data ad;
4922 	struct lsm_network_audit net = {0,};
4923 
4924 	ad.type = LSM_AUDIT_DATA_NET;
4925 	ad.u.net = &net;
4926 	ad.u.net->sk = other->sk;
4927 
4928 	return avc_has_perm(&selinux_state,
4929 			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4930 			    &ad);
4931 }
4932 
4933 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4934 				    char *addrp, u16 family, u32 peer_sid,
4935 				    struct common_audit_data *ad)
4936 {
4937 	int err;
4938 	u32 if_sid;
4939 	u32 node_sid;
4940 
4941 	err = sel_netif_sid(ns, ifindex, &if_sid);
4942 	if (err)
4943 		return err;
4944 	err = avc_has_perm(&selinux_state,
4945 			   peer_sid, if_sid,
4946 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4947 	if (err)
4948 		return err;
4949 
4950 	err = sel_netnode_sid(addrp, family, &node_sid);
4951 	if (err)
4952 		return err;
4953 	return avc_has_perm(&selinux_state,
4954 			    peer_sid, node_sid,
4955 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4956 }
4957 
4958 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4959 				       u16 family)
4960 {
4961 	int err = 0;
4962 	struct sk_security_struct *sksec = sk->sk_security;
4963 	u32 sk_sid = sksec->sid;
4964 	struct common_audit_data ad;
4965 	struct lsm_network_audit net = {0,};
4966 	char *addrp;
4967 
4968 	ad.type = LSM_AUDIT_DATA_NET;
4969 	ad.u.net = &net;
4970 	ad.u.net->netif = skb->skb_iif;
4971 	ad.u.net->family = family;
4972 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4973 	if (err)
4974 		return err;
4975 
4976 	if (selinux_secmark_enabled()) {
4977 		err = avc_has_perm(&selinux_state,
4978 				   sk_sid, skb->secmark, SECCLASS_PACKET,
4979 				   PACKET__RECV, &ad);
4980 		if (err)
4981 			return err;
4982 	}
4983 
4984 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4985 	if (err)
4986 		return err;
4987 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4988 
4989 	return err;
4990 }
4991 
4992 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4993 {
4994 	int err;
4995 	struct sk_security_struct *sksec = sk->sk_security;
4996 	u16 family = sk->sk_family;
4997 	u32 sk_sid = sksec->sid;
4998 	struct common_audit_data ad;
4999 	struct lsm_network_audit net = {0,};
5000 	char *addrp;
5001 	u8 secmark_active;
5002 	u8 peerlbl_active;
5003 
5004 	if (family != PF_INET && family != PF_INET6)
5005 		return 0;
5006 
5007 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5008 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5009 		family = PF_INET;
5010 
5011 	/* If any sort of compatibility mode is enabled then handoff processing
5012 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5013 	 * special handling.  We do this in an attempt to keep this function
5014 	 * as fast and as clean as possible. */
5015 	if (!selinux_policycap_netpeer())
5016 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5017 
5018 	secmark_active = selinux_secmark_enabled();
5019 	peerlbl_active = selinux_peerlbl_enabled();
5020 	if (!secmark_active && !peerlbl_active)
5021 		return 0;
5022 
5023 	ad.type = LSM_AUDIT_DATA_NET;
5024 	ad.u.net = &net;
5025 	ad.u.net->netif = skb->skb_iif;
5026 	ad.u.net->family = family;
5027 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5028 	if (err)
5029 		return err;
5030 
5031 	if (peerlbl_active) {
5032 		u32 peer_sid;
5033 
5034 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5035 		if (err)
5036 			return err;
5037 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5038 					       addrp, family, peer_sid, &ad);
5039 		if (err) {
5040 			selinux_netlbl_err(skb, family, err, 0);
5041 			return err;
5042 		}
5043 		err = avc_has_perm(&selinux_state,
5044 				   sk_sid, peer_sid, SECCLASS_PEER,
5045 				   PEER__RECV, &ad);
5046 		if (err) {
5047 			selinux_netlbl_err(skb, family, err, 0);
5048 			return err;
5049 		}
5050 	}
5051 
5052 	if (secmark_active) {
5053 		err = avc_has_perm(&selinux_state,
5054 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5055 				   PACKET__RECV, &ad);
5056 		if (err)
5057 			return err;
5058 	}
5059 
5060 	return err;
5061 }
5062 
5063 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5064 					    int __user *optlen, unsigned len)
5065 {
5066 	int err = 0;
5067 	char *scontext;
5068 	u32 scontext_len;
5069 	struct sk_security_struct *sksec = sock->sk->sk_security;
5070 	u32 peer_sid = SECSID_NULL;
5071 
5072 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5073 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5074 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5075 		peer_sid = sksec->peer_sid;
5076 	if (peer_sid == SECSID_NULL)
5077 		return -ENOPROTOOPT;
5078 
5079 	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5080 				      &scontext_len);
5081 	if (err)
5082 		return err;
5083 
5084 	if (scontext_len > len) {
5085 		err = -ERANGE;
5086 		goto out_len;
5087 	}
5088 
5089 	if (copy_to_user(optval, scontext, scontext_len))
5090 		err = -EFAULT;
5091 
5092 out_len:
5093 	if (put_user(scontext_len, optlen))
5094 		err = -EFAULT;
5095 	kfree(scontext);
5096 	return err;
5097 }
5098 
5099 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5100 {
5101 	u32 peer_secid = SECSID_NULL;
5102 	u16 family;
5103 	struct inode_security_struct *isec;
5104 
5105 	if (skb && skb->protocol == htons(ETH_P_IP))
5106 		family = PF_INET;
5107 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5108 		family = PF_INET6;
5109 	else if (sock)
5110 		family = sock->sk->sk_family;
5111 	else
5112 		goto out;
5113 
5114 	if (sock && family == PF_UNIX) {
5115 		isec = inode_security_novalidate(SOCK_INODE(sock));
5116 		peer_secid = isec->sid;
5117 	} else if (skb)
5118 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5119 
5120 out:
5121 	*secid = peer_secid;
5122 	if (peer_secid == SECSID_NULL)
5123 		return -EINVAL;
5124 	return 0;
5125 }
5126 
5127 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5128 {
5129 	struct sk_security_struct *sksec;
5130 
5131 	sksec = kzalloc(sizeof(*sksec), priority);
5132 	if (!sksec)
5133 		return -ENOMEM;
5134 
5135 	sksec->peer_sid = SECINITSID_UNLABELED;
5136 	sksec->sid = SECINITSID_UNLABELED;
5137 	sksec->sclass = SECCLASS_SOCKET;
5138 	selinux_netlbl_sk_security_reset(sksec);
5139 	sk->sk_security = sksec;
5140 
5141 	return 0;
5142 }
5143 
5144 static void selinux_sk_free_security(struct sock *sk)
5145 {
5146 	struct sk_security_struct *sksec = sk->sk_security;
5147 
5148 	sk->sk_security = NULL;
5149 	selinux_netlbl_sk_security_free(sksec);
5150 	kfree(sksec);
5151 }
5152 
5153 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5154 {
5155 	struct sk_security_struct *sksec = sk->sk_security;
5156 	struct sk_security_struct *newsksec = newsk->sk_security;
5157 
5158 	newsksec->sid = sksec->sid;
5159 	newsksec->peer_sid = sksec->peer_sid;
5160 	newsksec->sclass = sksec->sclass;
5161 
5162 	selinux_netlbl_sk_security_reset(newsksec);
5163 }
5164 
5165 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5166 {
5167 	if (!sk)
5168 		*secid = SECINITSID_ANY_SOCKET;
5169 	else {
5170 		struct sk_security_struct *sksec = sk->sk_security;
5171 
5172 		*secid = sksec->sid;
5173 	}
5174 }
5175 
5176 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5177 {
5178 	struct inode_security_struct *isec =
5179 		inode_security_novalidate(SOCK_INODE(parent));
5180 	struct sk_security_struct *sksec = sk->sk_security;
5181 
5182 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5183 	    sk->sk_family == PF_UNIX)
5184 		isec->sid = sksec->sid;
5185 	sksec->sclass = isec->sclass;
5186 }
5187 
5188 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5189  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5190  * already present).
5191  */
5192 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5193 				      struct sk_buff *skb)
5194 {
5195 	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5196 	struct common_audit_data ad;
5197 	struct lsm_network_audit net = {0,};
5198 	u8 peerlbl_active;
5199 	u32 peer_sid = SECINITSID_UNLABELED;
5200 	u32 conn_sid;
5201 	int err = 0;
5202 
5203 	if (!selinux_policycap_extsockclass())
5204 		return 0;
5205 
5206 	peerlbl_active = selinux_peerlbl_enabled();
5207 
5208 	if (peerlbl_active) {
5209 		/* This will return peer_sid = SECSID_NULL if there are
5210 		 * no peer labels, see security_net_peersid_resolve().
5211 		 */
5212 		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5213 					      &peer_sid);
5214 		if (err)
5215 			return err;
5216 
5217 		if (peer_sid == SECSID_NULL)
5218 			peer_sid = SECINITSID_UNLABELED;
5219 	}
5220 
5221 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5222 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5223 
5224 		/* Here as first association on socket. As the peer SID
5225 		 * was allowed by peer recv (and the netif/node checks),
5226 		 * then it is approved by policy and used as the primary
5227 		 * peer SID for getpeercon(3).
5228 		 */
5229 		sksec->peer_sid = peer_sid;
5230 	} else if  (sksec->peer_sid != peer_sid) {
5231 		/* Other association peer SIDs are checked to enforce
5232 		 * consistency among the peer SIDs.
5233 		 */
5234 		ad.type = LSM_AUDIT_DATA_NET;
5235 		ad.u.net = &net;
5236 		ad.u.net->sk = ep->base.sk;
5237 		err = avc_has_perm(&selinux_state,
5238 				   sksec->peer_sid, peer_sid, sksec->sclass,
5239 				   SCTP_SOCKET__ASSOCIATION, &ad);
5240 		if (err)
5241 			return err;
5242 	}
5243 
5244 	/* Compute the MLS component for the connection and store
5245 	 * the information in ep. This will be used by SCTP TCP type
5246 	 * sockets and peeled off connections as they cause a new
5247 	 * socket to be generated. selinux_sctp_sk_clone() will then
5248 	 * plug this into the new socket.
5249 	 */
5250 	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5251 	if (err)
5252 		return err;
5253 
5254 	ep->secid = conn_sid;
5255 	ep->peer_secid = peer_sid;
5256 
5257 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5258 	return selinux_netlbl_sctp_assoc_request(ep, skb);
5259 }
5260 
5261 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5262  * based on their @optname.
5263  */
5264 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5265 				     struct sockaddr *address,
5266 				     int addrlen)
5267 {
5268 	int len, err = 0, walk_size = 0;
5269 	void *addr_buf;
5270 	struct sockaddr *addr;
5271 	struct socket *sock;
5272 
5273 	if (!selinux_policycap_extsockclass())
5274 		return 0;
5275 
5276 	/* Process one or more addresses that may be IPv4 or IPv6 */
5277 	sock = sk->sk_socket;
5278 	addr_buf = address;
5279 
5280 	while (walk_size < addrlen) {
5281 		if (walk_size + sizeof(sa_family_t) > addrlen)
5282 			return -EINVAL;
5283 
5284 		addr = addr_buf;
5285 		switch (addr->sa_family) {
5286 		case AF_UNSPEC:
5287 		case AF_INET:
5288 			len = sizeof(struct sockaddr_in);
5289 			break;
5290 		case AF_INET6:
5291 			len = sizeof(struct sockaddr_in6);
5292 			break;
5293 		default:
5294 			return -EINVAL;
5295 		}
5296 
5297 		if (walk_size + len > addrlen)
5298 			return -EINVAL;
5299 
5300 		err = -EINVAL;
5301 		switch (optname) {
5302 		/* Bind checks */
5303 		case SCTP_PRIMARY_ADDR:
5304 		case SCTP_SET_PEER_PRIMARY_ADDR:
5305 		case SCTP_SOCKOPT_BINDX_ADD:
5306 			err = selinux_socket_bind(sock, addr, len);
5307 			break;
5308 		/* Connect checks */
5309 		case SCTP_SOCKOPT_CONNECTX:
5310 		case SCTP_PARAM_SET_PRIMARY:
5311 		case SCTP_PARAM_ADD_IP:
5312 		case SCTP_SENDMSG_CONNECT:
5313 			err = selinux_socket_connect_helper(sock, addr, len);
5314 			if (err)
5315 				return err;
5316 
5317 			/* As selinux_sctp_bind_connect() is called by the
5318 			 * SCTP protocol layer, the socket is already locked,
5319 			 * therefore selinux_netlbl_socket_connect_locked() is
5320 			 * is called here. The situations handled are:
5321 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5322 			 * whenever a new IP address is added or when a new
5323 			 * primary address is selected.
5324 			 * Note that an SCTP connect(2) call happens before
5325 			 * the SCTP protocol layer and is handled via
5326 			 * selinux_socket_connect().
5327 			 */
5328 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5329 			break;
5330 		}
5331 
5332 		if (err)
5333 			return err;
5334 
5335 		addr_buf += len;
5336 		walk_size += len;
5337 	}
5338 
5339 	return 0;
5340 }
5341 
5342 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5343 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5344 				  struct sock *newsk)
5345 {
5346 	struct sk_security_struct *sksec = sk->sk_security;
5347 	struct sk_security_struct *newsksec = newsk->sk_security;
5348 
5349 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5350 	 * the non-sctp clone version.
5351 	 */
5352 	if (!selinux_policycap_extsockclass())
5353 		return selinux_sk_clone_security(sk, newsk);
5354 
5355 	newsksec->sid = ep->secid;
5356 	newsksec->peer_sid = ep->peer_secid;
5357 	newsksec->sclass = sksec->sclass;
5358 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5359 }
5360 
5361 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5362 				     struct request_sock *req)
5363 {
5364 	struct sk_security_struct *sksec = sk->sk_security;
5365 	int err;
5366 	u16 family = req->rsk_ops->family;
5367 	u32 connsid;
5368 	u32 peersid;
5369 
5370 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5371 	if (err)
5372 		return err;
5373 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5374 	if (err)
5375 		return err;
5376 	req->secid = connsid;
5377 	req->peer_secid = peersid;
5378 
5379 	return selinux_netlbl_inet_conn_request(req, family);
5380 }
5381 
5382 static void selinux_inet_csk_clone(struct sock *newsk,
5383 				   const struct request_sock *req)
5384 {
5385 	struct sk_security_struct *newsksec = newsk->sk_security;
5386 
5387 	newsksec->sid = req->secid;
5388 	newsksec->peer_sid = req->peer_secid;
5389 	/* NOTE: Ideally, we should also get the isec->sid for the
5390 	   new socket in sync, but we don't have the isec available yet.
5391 	   So we will wait until sock_graft to do it, by which
5392 	   time it will have been created and available. */
5393 
5394 	/* We don't need to take any sort of lock here as we are the only
5395 	 * thread with access to newsksec */
5396 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5397 }
5398 
5399 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5400 {
5401 	u16 family = sk->sk_family;
5402 	struct sk_security_struct *sksec = sk->sk_security;
5403 
5404 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5405 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5406 		family = PF_INET;
5407 
5408 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5409 }
5410 
5411 static int selinux_secmark_relabel_packet(u32 sid)
5412 {
5413 	const struct task_security_struct *__tsec;
5414 	u32 tsid;
5415 
5416 	__tsec = selinux_cred(current_cred());
5417 	tsid = __tsec->sid;
5418 
5419 	return avc_has_perm(&selinux_state,
5420 			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5421 			    NULL);
5422 }
5423 
5424 static void selinux_secmark_refcount_inc(void)
5425 {
5426 	atomic_inc(&selinux_secmark_refcount);
5427 }
5428 
5429 static void selinux_secmark_refcount_dec(void)
5430 {
5431 	atomic_dec(&selinux_secmark_refcount);
5432 }
5433 
5434 static void selinux_req_classify_flow(const struct request_sock *req,
5435 				      struct flowi *fl)
5436 {
5437 	fl->flowi_secid = req->secid;
5438 }
5439 
5440 static int selinux_tun_dev_alloc_security(void **security)
5441 {
5442 	struct tun_security_struct *tunsec;
5443 
5444 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5445 	if (!tunsec)
5446 		return -ENOMEM;
5447 	tunsec->sid = current_sid();
5448 
5449 	*security = tunsec;
5450 	return 0;
5451 }
5452 
5453 static void selinux_tun_dev_free_security(void *security)
5454 {
5455 	kfree(security);
5456 }
5457 
5458 static int selinux_tun_dev_create(void)
5459 {
5460 	u32 sid = current_sid();
5461 
5462 	/* we aren't taking into account the "sockcreate" SID since the socket
5463 	 * that is being created here is not a socket in the traditional sense,
5464 	 * instead it is a private sock, accessible only to the kernel, and
5465 	 * representing a wide range of network traffic spanning multiple
5466 	 * connections unlike traditional sockets - check the TUN driver to
5467 	 * get a better understanding of why this socket is special */
5468 
5469 	return avc_has_perm(&selinux_state,
5470 			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5471 			    NULL);
5472 }
5473 
5474 static int selinux_tun_dev_attach_queue(void *security)
5475 {
5476 	struct tun_security_struct *tunsec = security;
5477 
5478 	return avc_has_perm(&selinux_state,
5479 			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5480 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5481 }
5482 
5483 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5484 {
5485 	struct tun_security_struct *tunsec = security;
5486 	struct sk_security_struct *sksec = sk->sk_security;
5487 
5488 	/* we don't currently perform any NetLabel based labeling here and it
5489 	 * isn't clear that we would want to do so anyway; while we could apply
5490 	 * labeling without the support of the TUN user the resulting labeled
5491 	 * traffic from the other end of the connection would almost certainly
5492 	 * cause confusion to the TUN user that had no idea network labeling
5493 	 * protocols were being used */
5494 
5495 	sksec->sid = tunsec->sid;
5496 	sksec->sclass = SECCLASS_TUN_SOCKET;
5497 
5498 	return 0;
5499 }
5500 
5501 static int selinux_tun_dev_open(void *security)
5502 {
5503 	struct tun_security_struct *tunsec = security;
5504 	u32 sid = current_sid();
5505 	int err;
5506 
5507 	err = avc_has_perm(&selinux_state,
5508 			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5509 			   TUN_SOCKET__RELABELFROM, NULL);
5510 	if (err)
5511 		return err;
5512 	err = avc_has_perm(&selinux_state,
5513 			   sid, sid, SECCLASS_TUN_SOCKET,
5514 			   TUN_SOCKET__RELABELTO, NULL);
5515 	if (err)
5516 		return err;
5517 	tunsec->sid = sid;
5518 
5519 	return 0;
5520 }
5521 
5522 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5523 {
5524 	int err = 0;
5525 	u32 perm;
5526 	struct nlmsghdr *nlh;
5527 	struct sk_security_struct *sksec = sk->sk_security;
5528 
5529 	if (skb->len < NLMSG_HDRLEN) {
5530 		err = -EINVAL;
5531 		goto out;
5532 	}
5533 	nlh = nlmsg_hdr(skb);
5534 
5535 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5536 	if (err) {
5537 		if (err == -EINVAL) {
5538 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5539 			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5540 			       " pig=%d comm=%s\n",
5541 			       sk->sk_protocol, nlh->nlmsg_type,
5542 			       secclass_map[sksec->sclass - 1].name,
5543 			       task_pid_nr(current), current->comm);
5544 			if (!enforcing_enabled(&selinux_state) ||
5545 			    security_get_allow_unknown(&selinux_state))
5546 				err = 0;
5547 		}
5548 
5549 		/* Ignore */
5550 		if (err == -ENOENT)
5551 			err = 0;
5552 		goto out;
5553 	}
5554 
5555 	err = sock_has_perm(sk, perm);
5556 out:
5557 	return err;
5558 }
5559 
5560 #ifdef CONFIG_NETFILTER
5561 
5562 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5563 				       const struct net_device *indev,
5564 				       u16 family)
5565 {
5566 	int err;
5567 	char *addrp;
5568 	u32 peer_sid;
5569 	struct common_audit_data ad;
5570 	struct lsm_network_audit net = {0,};
5571 	u8 secmark_active;
5572 	u8 netlbl_active;
5573 	u8 peerlbl_active;
5574 
5575 	if (!selinux_policycap_netpeer())
5576 		return NF_ACCEPT;
5577 
5578 	secmark_active = selinux_secmark_enabled();
5579 	netlbl_active = netlbl_enabled();
5580 	peerlbl_active = selinux_peerlbl_enabled();
5581 	if (!secmark_active && !peerlbl_active)
5582 		return NF_ACCEPT;
5583 
5584 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5585 		return NF_DROP;
5586 
5587 	ad.type = LSM_AUDIT_DATA_NET;
5588 	ad.u.net = &net;
5589 	ad.u.net->netif = indev->ifindex;
5590 	ad.u.net->family = family;
5591 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5592 		return NF_DROP;
5593 
5594 	if (peerlbl_active) {
5595 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5596 					       addrp, family, peer_sid, &ad);
5597 		if (err) {
5598 			selinux_netlbl_err(skb, family, err, 1);
5599 			return NF_DROP;
5600 		}
5601 	}
5602 
5603 	if (secmark_active)
5604 		if (avc_has_perm(&selinux_state,
5605 				 peer_sid, skb->secmark,
5606 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5607 			return NF_DROP;
5608 
5609 	if (netlbl_active)
5610 		/* we do this in the FORWARD path and not the POST_ROUTING
5611 		 * path because we want to make sure we apply the necessary
5612 		 * labeling before IPsec is applied so we can leverage AH
5613 		 * protection */
5614 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5615 			return NF_DROP;
5616 
5617 	return NF_ACCEPT;
5618 }
5619 
5620 static unsigned int selinux_ipv4_forward(void *priv,
5621 					 struct sk_buff *skb,
5622 					 const struct nf_hook_state *state)
5623 {
5624 	return selinux_ip_forward(skb, state->in, PF_INET);
5625 }
5626 
5627 #if IS_ENABLED(CONFIG_IPV6)
5628 static unsigned int selinux_ipv6_forward(void *priv,
5629 					 struct sk_buff *skb,
5630 					 const struct nf_hook_state *state)
5631 {
5632 	return selinux_ip_forward(skb, state->in, PF_INET6);
5633 }
5634 #endif	/* IPV6 */
5635 
5636 static unsigned int selinux_ip_output(struct sk_buff *skb,
5637 				      u16 family)
5638 {
5639 	struct sock *sk;
5640 	u32 sid;
5641 
5642 	if (!netlbl_enabled())
5643 		return NF_ACCEPT;
5644 
5645 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5646 	 * because we want to make sure we apply the necessary labeling
5647 	 * before IPsec is applied so we can leverage AH protection */
5648 	sk = skb->sk;
5649 	if (sk) {
5650 		struct sk_security_struct *sksec;
5651 
5652 		if (sk_listener(sk))
5653 			/* if the socket is the listening state then this
5654 			 * packet is a SYN-ACK packet which means it needs to
5655 			 * be labeled based on the connection/request_sock and
5656 			 * not the parent socket.  unfortunately, we can't
5657 			 * lookup the request_sock yet as it isn't queued on
5658 			 * the parent socket until after the SYN-ACK is sent.
5659 			 * the "solution" is to simply pass the packet as-is
5660 			 * as any IP option based labeling should be copied
5661 			 * from the initial connection request (in the IP
5662 			 * layer).  it is far from ideal, but until we get a
5663 			 * security label in the packet itself this is the
5664 			 * best we can do. */
5665 			return NF_ACCEPT;
5666 
5667 		/* standard practice, label using the parent socket */
5668 		sksec = sk->sk_security;
5669 		sid = sksec->sid;
5670 	} else
5671 		sid = SECINITSID_KERNEL;
5672 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5673 		return NF_DROP;
5674 
5675 	return NF_ACCEPT;
5676 }
5677 
5678 static unsigned int selinux_ipv4_output(void *priv,
5679 					struct sk_buff *skb,
5680 					const struct nf_hook_state *state)
5681 {
5682 	return selinux_ip_output(skb, PF_INET);
5683 }
5684 
5685 #if IS_ENABLED(CONFIG_IPV6)
5686 static unsigned int selinux_ipv6_output(void *priv,
5687 					struct sk_buff *skb,
5688 					const struct nf_hook_state *state)
5689 {
5690 	return selinux_ip_output(skb, PF_INET6);
5691 }
5692 #endif	/* IPV6 */
5693 
5694 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5695 						int ifindex,
5696 						u16 family)
5697 {
5698 	struct sock *sk = skb_to_full_sk(skb);
5699 	struct sk_security_struct *sksec;
5700 	struct common_audit_data ad;
5701 	struct lsm_network_audit net = {0,};
5702 	char *addrp;
5703 	u8 proto;
5704 
5705 	if (sk == NULL)
5706 		return NF_ACCEPT;
5707 	sksec = sk->sk_security;
5708 
5709 	ad.type = LSM_AUDIT_DATA_NET;
5710 	ad.u.net = &net;
5711 	ad.u.net->netif = ifindex;
5712 	ad.u.net->family = family;
5713 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5714 		return NF_DROP;
5715 
5716 	if (selinux_secmark_enabled())
5717 		if (avc_has_perm(&selinux_state,
5718 				 sksec->sid, skb->secmark,
5719 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5720 			return NF_DROP_ERR(-ECONNREFUSED);
5721 
5722 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5723 		return NF_DROP_ERR(-ECONNREFUSED);
5724 
5725 	return NF_ACCEPT;
5726 }
5727 
5728 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5729 					 const struct net_device *outdev,
5730 					 u16 family)
5731 {
5732 	u32 secmark_perm;
5733 	u32 peer_sid;
5734 	int ifindex = outdev->ifindex;
5735 	struct sock *sk;
5736 	struct common_audit_data ad;
5737 	struct lsm_network_audit net = {0,};
5738 	char *addrp;
5739 	u8 secmark_active;
5740 	u8 peerlbl_active;
5741 
5742 	/* If any sort of compatibility mode is enabled then handoff processing
5743 	 * to the selinux_ip_postroute_compat() function to deal with the
5744 	 * special handling.  We do this in an attempt to keep this function
5745 	 * as fast and as clean as possible. */
5746 	if (!selinux_policycap_netpeer())
5747 		return selinux_ip_postroute_compat(skb, ifindex, family);
5748 
5749 	secmark_active = selinux_secmark_enabled();
5750 	peerlbl_active = selinux_peerlbl_enabled();
5751 	if (!secmark_active && !peerlbl_active)
5752 		return NF_ACCEPT;
5753 
5754 	sk = skb_to_full_sk(skb);
5755 
5756 #ifdef CONFIG_XFRM
5757 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5758 	 * packet transformation so allow the packet to pass without any checks
5759 	 * since we'll have another chance to perform access control checks
5760 	 * when the packet is on it's final way out.
5761 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5762 	 *       is NULL, in this case go ahead and apply access control.
5763 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5764 	 *       TCP listening state we cannot wait until the XFRM processing
5765 	 *       is done as we will miss out on the SA label if we do;
5766 	 *       unfortunately, this means more work, but it is only once per
5767 	 *       connection. */
5768 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5769 	    !(sk && sk_listener(sk)))
5770 		return NF_ACCEPT;
5771 #endif
5772 
5773 	if (sk == NULL) {
5774 		/* Without an associated socket the packet is either coming
5775 		 * from the kernel or it is being forwarded; check the packet
5776 		 * to determine which and if the packet is being forwarded
5777 		 * query the packet directly to determine the security label. */
5778 		if (skb->skb_iif) {
5779 			secmark_perm = PACKET__FORWARD_OUT;
5780 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5781 				return NF_DROP;
5782 		} else {
5783 			secmark_perm = PACKET__SEND;
5784 			peer_sid = SECINITSID_KERNEL;
5785 		}
5786 	} else if (sk_listener(sk)) {
5787 		/* Locally generated packet but the associated socket is in the
5788 		 * listening state which means this is a SYN-ACK packet.  In
5789 		 * this particular case the correct security label is assigned
5790 		 * to the connection/request_sock but unfortunately we can't
5791 		 * query the request_sock as it isn't queued on the parent
5792 		 * socket until after the SYN-ACK packet is sent; the only
5793 		 * viable choice is to regenerate the label like we do in
5794 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5795 		 * for similar problems. */
5796 		u32 skb_sid;
5797 		struct sk_security_struct *sksec;
5798 
5799 		sksec = sk->sk_security;
5800 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5801 			return NF_DROP;
5802 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5803 		 * and the packet has been through at least one XFRM
5804 		 * transformation then we must be dealing with the "final"
5805 		 * form of labeled IPsec packet; since we've already applied
5806 		 * all of our access controls on this packet we can safely
5807 		 * pass the packet. */
5808 		if (skb_sid == SECSID_NULL) {
5809 			switch (family) {
5810 			case PF_INET:
5811 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5812 					return NF_ACCEPT;
5813 				break;
5814 			case PF_INET6:
5815 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5816 					return NF_ACCEPT;
5817 				break;
5818 			default:
5819 				return NF_DROP_ERR(-ECONNREFUSED);
5820 			}
5821 		}
5822 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5823 			return NF_DROP;
5824 		secmark_perm = PACKET__SEND;
5825 	} else {
5826 		/* Locally generated packet, fetch the security label from the
5827 		 * associated socket. */
5828 		struct sk_security_struct *sksec = sk->sk_security;
5829 		peer_sid = sksec->sid;
5830 		secmark_perm = PACKET__SEND;
5831 	}
5832 
5833 	ad.type = LSM_AUDIT_DATA_NET;
5834 	ad.u.net = &net;
5835 	ad.u.net->netif = ifindex;
5836 	ad.u.net->family = family;
5837 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5838 		return NF_DROP;
5839 
5840 	if (secmark_active)
5841 		if (avc_has_perm(&selinux_state,
5842 				 peer_sid, skb->secmark,
5843 				 SECCLASS_PACKET, secmark_perm, &ad))
5844 			return NF_DROP_ERR(-ECONNREFUSED);
5845 
5846 	if (peerlbl_active) {
5847 		u32 if_sid;
5848 		u32 node_sid;
5849 
5850 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5851 			return NF_DROP;
5852 		if (avc_has_perm(&selinux_state,
5853 				 peer_sid, if_sid,
5854 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5855 			return NF_DROP_ERR(-ECONNREFUSED);
5856 
5857 		if (sel_netnode_sid(addrp, family, &node_sid))
5858 			return NF_DROP;
5859 		if (avc_has_perm(&selinux_state,
5860 				 peer_sid, node_sid,
5861 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5862 			return NF_DROP_ERR(-ECONNREFUSED);
5863 	}
5864 
5865 	return NF_ACCEPT;
5866 }
5867 
5868 static unsigned int selinux_ipv4_postroute(void *priv,
5869 					   struct sk_buff *skb,
5870 					   const struct nf_hook_state *state)
5871 {
5872 	return selinux_ip_postroute(skb, state->out, PF_INET);
5873 }
5874 
5875 #if IS_ENABLED(CONFIG_IPV6)
5876 static unsigned int selinux_ipv6_postroute(void *priv,
5877 					   struct sk_buff *skb,
5878 					   const struct nf_hook_state *state)
5879 {
5880 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5881 }
5882 #endif	/* IPV6 */
5883 
5884 #endif	/* CONFIG_NETFILTER */
5885 
5886 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5887 {
5888 	return selinux_nlmsg_perm(sk, skb);
5889 }
5890 
5891 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5892 {
5893 	isec->sclass = sclass;
5894 	isec->sid = current_sid();
5895 }
5896 
5897 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5898 			u32 perms)
5899 {
5900 	struct ipc_security_struct *isec;
5901 	struct common_audit_data ad;
5902 	u32 sid = current_sid();
5903 
5904 	isec = selinux_ipc(ipc_perms);
5905 
5906 	ad.type = LSM_AUDIT_DATA_IPC;
5907 	ad.u.ipc_id = ipc_perms->key;
5908 
5909 	return avc_has_perm(&selinux_state,
5910 			    sid, isec->sid, isec->sclass, perms, &ad);
5911 }
5912 
5913 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5914 {
5915 	struct msg_security_struct *msec;
5916 
5917 	msec = selinux_msg_msg(msg);
5918 	msec->sid = SECINITSID_UNLABELED;
5919 
5920 	return 0;
5921 }
5922 
5923 /* message queue security operations */
5924 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5925 {
5926 	struct ipc_security_struct *isec;
5927 	struct common_audit_data ad;
5928 	u32 sid = current_sid();
5929 	int rc;
5930 
5931 	isec = selinux_ipc(msq);
5932 	ipc_init_security(isec, SECCLASS_MSGQ);
5933 
5934 	ad.type = LSM_AUDIT_DATA_IPC;
5935 	ad.u.ipc_id = msq->key;
5936 
5937 	rc = avc_has_perm(&selinux_state,
5938 			  sid, isec->sid, SECCLASS_MSGQ,
5939 			  MSGQ__CREATE, &ad);
5940 	return rc;
5941 }
5942 
5943 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5944 {
5945 	struct ipc_security_struct *isec;
5946 	struct common_audit_data ad;
5947 	u32 sid = current_sid();
5948 
5949 	isec = selinux_ipc(msq);
5950 
5951 	ad.type = LSM_AUDIT_DATA_IPC;
5952 	ad.u.ipc_id = msq->key;
5953 
5954 	return avc_has_perm(&selinux_state,
5955 			    sid, isec->sid, SECCLASS_MSGQ,
5956 			    MSGQ__ASSOCIATE, &ad);
5957 }
5958 
5959 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5960 {
5961 	int err;
5962 	int perms;
5963 
5964 	switch (cmd) {
5965 	case IPC_INFO:
5966 	case MSG_INFO:
5967 		/* No specific object, just general system-wide information. */
5968 		return avc_has_perm(&selinux_state,
5969 				    current_sid(), SECINITSID_KERNEL,
5970 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5971 	case IPC_STAT:
5972 	case MSG_STAT:
5973 	case MSG_STAT_ANY:
5974 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5975 		break;
5976 	case IPC_SET:
5977 		perms = MSGQ__SETATTR;
5978 		break;
5979 	case IPC_RMID:
5980 		perms = MSGQ__DESTROY;
5981 		break;
5982 	default:
5983 		return 0;
5984 	}
5985 
5986 	err = ipc_has_perm(msq, perms);
5987 	return err;
5988 }
5989 
5990 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5991 {
5992 	struct ipc_security_struct *isec;
5993 	struct msg_security_struct *msec;
5994 	struct common_audit_data ad;
5995 	u32 sid = current_sid();
5996 	int rc;
5997 
5998 	isec = selinux_ipc(msq);
5999 	msec = selinux_msg_msg(msg);
6000 
6001 	/*
6002 	 * First time through, need to assign label to the message
6003 	 */
6004 	if (msec->sid == SECINITSID_UNLABELED) {
6005 		/*
6006 		 * Compute new sid based on current process and
6007 		 * message queue this message will be stored in
6008 		 */
6009 		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6010 					     SECCLASS_MSG, NULL, &msec->sid);
6011 		if (rc)
6012 			return rc;
6013 	}
6014 
6015 	ad.type = LSM_AUDIT_DATA_IPC;
6016 	ad.u.ipc_id = msq->key;
6017 
6018 	/* Can this process write to the queue? */
6019 	rc = avc_has_perm(&selinux_state,
6020 			  sid, isec->sid, SECCLASS_MSGQ,
6021 			  MSGQ__WRITE, &ad);
6022 	if (!rc)
6023 		/* Can this process send the message */
6024 		rc = avc_has_perm(&selinux_state,
6025 				  sid, msec->sid, SECCLASS_MSG,
6026 				  MSG__SEND, &ad);
6027 	if (!rc)
6028 		/* Can the message be put in the queue? */
6029 		rc = avc_has_perm(&selinux_state,
6030 				  msec->sid, isec->sid, SECCLASS_MSGQ,
6031 				  MSGQ__ENQUEUE, &ad);
6032 
6033 	return rc;
6034 }
6035 
6036 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6037 				    struct task_struct *target,
6038 				    long type, int mode)
6039 {
6040 	struct ipc_security_struct *isec;
6041 	struct msg_security_struct *msec;
6042 	struct common_audit_data ad;
6043 	u32 sid = task_sid(target);
6044 	int rc;
6045 
6046 	isec = selinux_ipc(msq);
6047 	msec = selinux_msg_msg(msg);
6048 
6049 	ad.type = LSM_AUDIT_DATA_IPC;
6050 	ad.u.ipc_id = msq->key;
6051 
6052 	rc = avc_has_perm(&selinux_state,
6053 			  sid, isec->sid,
6054 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6055 	if (!rc)
6056 		rc = avc_has_perm(&selinux_state,
6057 				  sid, msec->sid,
6058 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6059 	return rc;
6060 }
6061 
6062 /* Shared Memory security operations */
6063 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6064 {
6065 	struct ipc_security_struct *isec;
6066 	struct common_audit_data ad;
6067 	u32 sid = current_sid();
6068 	int rc;
6069 
6070 	isec = selinux_ipc(shp);
6071 	ipc_init_security(isec, SECCLASS_SHM);
6072 
6073 	ad.type = LSM_AUDIT_DATA_IPC;
6074 	ad.u.ipc_id = shp->key;
6075 
6076 	rc = avc_has_perm(&selinux_state,
6077 			  sid, isec->sid, SECCLASS_SHM,
6078 			  SHM__CREATE, &ad);
6079 	return rc;
6080 }
6081 
6082 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6083 {
6084 	struct ipc_security_struct *isec;
6085 	struct common_audit_data ad;
6086 	u32 sid = current_sid();
6087 
6088 	isec = selinux_ipc(shp);
6089 
6090 	ad.type = LSM_AUDIT_DATA_IPC;
6091 	ad.u.ipc_id = shp->key;
6092 
6093 	return avc_has_perm(&selinux_state,
6094 			    sid, isec->sid, SECCLASS_SHM,
6095 			    SHM__ASSOCIATE, &ad);
6096 }
6097 
6098 /* Note, at this point, shp is locked down */
6099 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6100 {
6101 	int perms;
6102 	int err;
6103 
6104 	switch (cmd) {
6105 	case IPC_INFO:
6106 	case SHM_INFO:
6107 		/* No specific object, just general system-wide information. */
6108 		return avc_has_perm(&selinux_state,
6109 				    current_sid(), SECINITSID_KERNEL,
6110 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6111 	case IPC_STAT:
6112 	case SHM_STAT:
6113 	case SHM_STAT_ANY:
6114 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6115 		break;
6116 	case IPC_SET:
6117 		perms = SHM__SETATTR;
6118 		break;
6119 	case SHM_LOCK:
6120 	case SHM_UNLOCK:
6121 		perms = SHM__LOCK;
6122 		break;
6123 	case IPC_RMID:
6124 		perms = SHM__DESTROY;
6125 		break;
6126 	default:
6127 		return 0;
6128 	}
6129 
6130 	err = ipc_has_perm(shp, perms);
6131 	return err;
6132 }
6133 
6134 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6135 			     char __user *shmaddr, int shmflg)
6136 {
6137 	u32 perms;
6138 
6139 	if (shmflg & SHM_RDONLY)
6140 		perms = SHM__READ;
6141 	else
6142 		perms = SHM__READ | SHM__WRITE;
6143 
6144 	return ipc_has_perm(shp, perms);
6145 }
6146 
6147 /* Semaphore security operations */
6148 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6149 {
6150 	struct ipc_security_struct *isec;
6151 	struct common_audit_data ad;
6152 	u32 sid = current_sid();
6153 	int rc;
6154 
6155 	isec = selinux_ipc(sma);
6156 	ipc_init_security(isec, SECCLASS_SEM);
6157 
6158 	ad.type = LSM_AUDIT_DATA_IPC;
6159 	ad.u.ipc_id = sma->key;
6160 
6161 	rc = avc_has_perm(&selinux_state,
6162 			  sid, isec->sid, SECCLASS_SEM,
6163 			  SEM__CREATE, &ad);
6164 	return rc;
6165 }
6166 
6167 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6168 {
6169 	struct ipc_security_struct *isec;
6170 	struct common_audit_data ad;
6171 	u32 sid = current_sid();
6172 
6173 	isec = selinux_ipc(sma);
6174 
6175 	ad.type = LSM_AUDIT_DATA_IPC;
6176 	ad.u.ipc_id = sma->key;
6177 
6178 	return avc_has_perm(&selinux_state,
6179 			    sid, isec->sid, SECCLASS_SEM,
6180 			    SEM__ASSOCIATE, &ad);
6181 }
6182 
6183 /* Note, at this point, sma is locked down */
6184 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6185 {
6186 	int err;
6187 	u32 perms;
6188 
6189 	switch (cmd) {
6190 	case IPC_INFO:
6191 	case SEM_INFO:
6192 		/* No specific object, just general system-wide information. */
6193 		return avc_has_perm(&selinux_state,
6194 				    current_sid(), SECINITSID_KERNEL,
6195 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6196 	case GETPID:
6197 	case GETNCNT:
6198 	case GETZCNT:
6199 		perms = SEM__GETATTR;
6200 		break;
6201 	case GETVAL:
6202 	case GETALL:
6203 		perms = SEM__READ;
6204 		break;
6205 	case SETVAL:
6206 	case SETALL:
6207 		perms = SEM__WRITE;
6208 		break;
6209 	case IPC_RMID:
6210 		perms = SEM__DESTROY;
6211 		break;
6212 	case IPC_SET:
6213 		perms = SEM__SETATTR;
6214 		break;
6215 	case IPC_STAT:
6216 	case SEM_STAT:
6217 	case SEM_STAT_ANY:
6218 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6219 		break;
6220 	default:
6221 		return 0;
6222 	}
6223 
6224 	err = ipc_has_perm(sma, perms);
6225 	return err;
6226 }
6227 
6228 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6229 			     struct sembuf *sops, unsigned nsops, int alter)
6230 {
6231 	u32 perms;
6232 
6233 	if (alter)
6234 		perms = SEM__READ | SEM__WRITE;
6235 	else
6236 		perms = SEM__READ;
6237 
6238 	return ipc_has_perm(sma, perms);
6239 }
6240 
6241 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6242 {
6243 	u32 av = 0;
6244 
6245 	av = 0;
6246 	if (flag & S_IRUGO)
6247 		av |= IPC__UNIX_READ;
6248 	if (flag & S_IWUGO)
6249 		av |= IPC__UNIX_WRITE;
6250 
6251 	if (av == 0)
6252 		return 0;
6253 
6254 	return ipc_has_perm(ipcp, av);
6255 }
6256 
6257 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6258 {
6259 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6260 	*secid = isec->sid;
6261 }
6262 
6263 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6264 {
6265 	if (inode)
6266 		inode_doinit_with_dentry(inode, dentry);
6267 }
6268 
6269 static int selinux_getprocattr(struct task_struct *p,
6270 			       char *name, char **value)
6271 {
6272 	const struct task_security_struct *__tsec;
6273 	u32 sid;
6274 	int error;
6275 	unsigned len;
6276 
6277 	rcu_read_lock();
6278 	__tsec = selinux_cred(__task_cred(p));
6279 
6280 	if (current != p) {
6281 		error = avc_has_perm(&selinux_state,
6282 				     current_sid(), __tsec->sid,
6283 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6284 		if (error)
6285 			goto bad;
6286 	}
6287 
6288 	if (!strcmp(name, "current"))
6289 		sid = __tsec->sid;
6290 	else if (!strcmp(name, "prev"))
6291 		sid = __tsec->osid;
6292 	else if (!strcmp(name, "exec"))
6293 		sid = __tsec->exec_sid;
6294 	else if (!strcmp(name, "fscreate"))
6295 		sid = __tsec->create_sid;
6296 	else if (!strcmp(name, "keycreate"))
6297 		sid = __tsec->keycreate_sid;
6298 	else if (!strcmp(name, "sockcreate"))
6299 		sid = __tsec->sockcreate_sid;
6300 	else {
6301 		error = -EINVAL;
6302 		goto bad;
6303 	}
6304 	rcu_read_unlock();
6305 
6306 	if (!sid)
6307 		return 0;
6308 
6309 	error = security_sid_to_context(&selinux_state, sid, value, &len);
6310 	if (error)
6311 		return error;
6312 	return len;
6313 
6314 bad:
6315 	rcu_read_unlock();
6316 	return error;
6317 }
6318 
6319 static int selinux_setprocattr(const char *name, void *value, size_t size)
6320 {
6321 	struct task_security_struct *tsec;
6322 	struct cred *new;
6323 	u32 mysid = current_sid(), sid = 0, ptsid;
6324 	int error;
6325 	char *str = value;
6326 
6327 	/*
6328 	 * Basic control over ability to set these attributes at all.
6329 	 */
6330 	if (!strcmp(name, "exec"))
6331 		error = avc_has_perm(&selinux_state,
6332 				     mysid, mysid, SECCLASS_PROCESS,
6333 				     PROCESS__SETEXEC, NULL);
6334 	else if (!strcmp(name, "fscreate"))
6335 		error = avc_has_perm(&selinux_state,
6336 				     mysid, mysid, SECCLASS_PROCESS,
6337 				     PROCESS__SETFSCREATE, NULL);
6338 	else if (!strcmp(name, "keycreate"))
6339 		error = avc_has_perm(&selinux_state,
6340 				     mysid, mysid, SECCLASS_PROCESS,
6341 				     PROCESS__SETKEYCREATE, NULL);
6342 	else if (!strcmp(name, "sockcreate"))
6343 		error = avc_has_perm(&selinux_state,
6344 				     mysid, mysid, SECCLASS_PROCESS,
6345 				     PROCESS__SETSOCKCREATE, NULL);
6346 	else if (!strcmp(name, "current"))
6347 		error = avc_has_perm(&selinux_state,
6348 				     mysid, mysid, SECCLASS_PROCESS,
6349 				     PROCESS__SETCURRENT, NULL);
6350 	else
6351 		error = -EINVAL;
6352 	if (error)
6353 		return error;
6354 
6355 	/* Obtain a SID for the context, if one was specified. */
6356 	if (size && str[0] && str[0] != '\n') {
6357 		if (str[size-1] == '\n') {
6358 			str[size-1] = 0;
6359 			size--;
6360 		}
6361 		error = security_context_to_sid(&selinux_state, value, size,
6362 						&sid, GFP_KERNEL);
6363 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6364 			if (!has_cap_mac_admin(true)) {
6365 				struct audit_buffer *ab;
6366 				size_t audit_size;
6367 
6368 				/* We strip a nul only if it is at the end, otherwise the
6369 				 * context contains a nul and we should audit that */
6370 				if (str[size - 1] == '\0')
6371 					audit_size = size - 1;
6372 				else
6373 					audit_size = size;
6374 				ab = audit_log_start(audit_context(),
6375 						     GFP_ATOMIC,
6376 						     AUDIT_SELINUX_ERR);
6377 				audit_log_format(ab, "op=fscreate invalid_context=");
6378 				audit_log_n_untrustedstring(ab, value, audit_size);
6379 				audit_log_end(ab);
6380 
6381 				return error;
6382 			}
6383 			error = security_context_to_sid_force(
6384 						      &selinux_state,
6385 						      value, size, &sid);
6386 		}
6387 		if (error)
6388 			return error;
6389 	}
6390 
6391 	new = prepare_creds();
6392 	if (!new)
6393 		return -ENOMEM;
6394 
6395 	/* Permission checking based on the specified context is
6396 	   performed during the actual operation (execve,
6397 	   open/mkdir/...), when we know the full context of the
6398 	   operation.  See selinux_bprm_set_creds for the execve
6399 	   checks and may_create for the file creation checks. The
6400 	   operation will then fail if the context is not permitted. */
6401 	tsec = selinux_cred(new);
6402 	if (!strcmp(name, "exec")) {
6403 		tsec->exec_sid = sid;
6404 	} else if (!strcmp(name, "fscreate")) {
6405 		tsec->create_sid = sid;
6406 	} else if (!strcmp(name, "keycreate")) {
6407 		if (sid) {
6408 			error = avc_has_perm(&selinux_state, mysid, sid,
6409 					     SECCLASS_KEY, KEY__CREATE, NULL);
6410 			if (error)
6411 				goto abort_change;
6412 		}
6413 		tsec->keycreate_sid = sid;
6414 	} else if (!strcmp(name, "sockcreate")) {
6415 		tsec->sockcreate_sid = sid;
6416 	} else if (!strcmp(name, "current")) {
6417 		error = -EINVAL;
6418 		if (sid == 0)
6419 			goto abort_change;
6420 
6421 		/* Only allow single threaded processes to change context */
6422 		error = -EPERM;
6423 		if (!current_is_single_threaded()) {
6424 			error = security_bounded_transition(&selinux_state,
6425 							    tsec->sid, sid);
6426 			if (error)
6427 				goto abort_change;
6428 		}
6429 
6430 		/* Check permissions for the transition. */
6431 		error = avc_has_perm(&selinux_state,
6432 				     tsec->sid, sid, SECCLASS_PROCESS,
6433 				     PROCESS__DYNTRANSITION, NULL);
6434 		if (error)
6435 			goto abort_change;
6436 
6437 		/* Check for ptracing, and update the task SID if ok.
6438 		   Otherwise, leave SID unchanged and fail. */
6439 		ptsid = ptrace_parent_sid();
6440 		if (ptsid != 0) {
6441 			error = avc_has_perm(&selinux_state,
6442 					     ptsid, sid, SECCLASS_PROCESS,
6443 					     PROCESS__PTRACE, NULL);
6444 			if (error)
6445 				goto abort_change;
6446 		}
6447 
6448 		tsec->sid = sid;
6449 	} else {
6450 		error = -EINVAL;
6451 		goto abort_change;
6452 	}
6453 
6454 	commit_creds(new);
6455 	return size;
6456 
6457 abort_change:
6458 	abort_creds(new);
6459 	return error;
6460 }
6461 
6462 static int selinux_ismaclabel(const char *name)
6463 {
6464 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6465 }
6466 
6467 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6468 {
6469 	return security_sid_to_context(&selinux_state, secid,
6470 				       secdata, seclen);
6471 }
6472 
6473 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6474 {
6475 	return security_context_to_sid(&selinux_state, secdata, seclen,
6476 				       secid, GFP_KERNEL);
6477 }
6478 
6479 static void selinux_release_secctx(char *secdata, u32 seclen)
6480 {
6481 	kfree(secdata);
6482 }
6483 
6484 static void selinux_inode_invalidate_secctx(struct inode *inode)
6485 {
6486 	struct inode_security_struct *isec = selinux_inode(inode);
6487 
6488 	spin_lock(&isec->lock);
6489 	isec->initialized = LABEL_INVALID;
6490 	spin_unlock(&isec->lock);
6491 }
6492 
6493 /*
6494  *	called with inode->i_mutex locked
6495  */
6496 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6497 {
6498 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6499 					   ctx, ctxlen, 0);
6500 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6501 	return rc == -EOPNOTSUPP ? 0 : rc;
6502 }
6503 
6504 /*
6505  *	called with inode->i_mutex locked
6506  */
6507 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6508 {
6509 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6510 }
6511 
6512 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6513 {
6514 	int len = 0;
6515 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6516 						ctx, true);
6517 	if (len < 0)
6518 		return len;
6519 	*ctxlen = len;
6520 	return 0;
6521 }
6522 #ifdef CONFIG_KEYS
6523 
6524 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6525 			     unsigned long flags)
6526 {
6527 	const struct task_security_struct *tsec;
6528 	struct key_security_struct *ksec;
6529 
6530 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6531 	if (!ksec)
6532 		return -ENOMEM;
6533 
6534 	tsec = selinux_cred(cred);
6535 	if (tsec->keycreate_sid)
6536 		ksec->sid = tsec->keycreate_sid;
6537 	else
6538 		ksec->sid = tsec->sid;
6539 
6540 	k->security = ksec;
6541 	return 0;
6542 }
6543 
6544 static void selinux_key_free(struct key *k)
6545 {
6546 	struct key_security_struct *ksec = k->security;
6547 
6548 	k->security = NULL;
6549 	kfree(ksec);
6550 }
6551 
6552 static int selinux_key_permission(key_ref_t key_ref,
6553 				  const struct cred *cred,
6554 				  unsigned perm)
6555 {
6556 	struct key *key;
6557 	struct key_security_struct *ksec;
6558 	u32 sid;
6559 
6560 	/* if no specific permissions are requested, we skip the
6561 	   permission check. No serious, additional covert channels
6562 	   appear to be created. */
6563 	if (perm == 0)
6564 		return 0;
6565 
6566 	sid = cred_sid(cred);
6567 
6568 	key = key_ref_to_ptr(key_ref);
6569 	ksec = key->security;
6570 
6571 	return avc_has_perm(&selinux_state,
6572 			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6573 }
6574 
6575 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6576 {
6577 	struct key_security_struct *ksec = key->security;
6578 	char *context = NULL;
6579 	unsigned len;
6580 	int rc;
6581 
6582 	rc = security_sid_to_context(&selinux_state, ksec->sid,
6583 				     &context, &len);
6584 	if (!rc)
6585 		rc = len;
6586 	*_buffer = context;
6587 	return rc;
6588 }
6589 #endif
6590 
6591 #ifdef CONFIG_SECURITY_INFINIBAND
6592 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6593 {
6594 	struct common_audit_data ad;
6595 	int err;
6596 	u32 sid = 0;
6597 	struct ib_security_struct *sec = ib_sec;
6598 	struct lsm_ibpkey_audit ibpkey;
6599 
6600 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6601 	if (err)
6602 		return err;
6603 
6604 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6605 	ibpkey.subnet_prefix = subnet_prefix;
6606 	ibpkey.pkey = pkey_val;
6607 	ad.u.ibpkey = &ibpkey;
6608 	return avc_has_perm(&selinux_state,
6609 			    sec->sid, sid,
6610 			    SECCLASS_INFINIBAND_PKEY,
6611 			    INFINIBAND_PKEY__ACCESS, &ad);
6612 }
6613 
6614 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6615 					    u8 port_num)
6616 {
6617 	struct common_audit_data ad;
6618 	int err;
6619 	u32 sid = 0;
6620 	struct ib_security_struct *sec = ib_sec;
6621 	struct lsm_ibendport_audit ibendport;
6622 
6623 	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6624 				      &sid);
6625 
6626 	if (err)
6627 		return err;
6628 
6629 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6630 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6631 	ibendport.port = port_num;
6632 	ad.u.ibendport = &ibendport;
6633 	return avc_has_perm(&selinux_state,
6634 			    sec->sid, sid,
6635 			    SECCLASS_INFINIBAND_ENDPORT,
6636 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6637 }
6638 
6639 static int selinux_ib_alloc_security(void **ib_sec)
6640 {
6641 	struct ib_security_struct *sec;
6642 
6643 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6644 	if (!sec)
6645 		return -ENOMEM;
6646 	sec->sid = current_sid();
6647 
6648 	*ib_sec = sec;
6649 	return 0;
6650 }
6651 
6652 static void selinux_ib_free_security(void *ib_sec)
6653 {
6654 	kfree(ib_sec);
6655 }
6656 #endif
6657 
6658 #ifdef CONFIG_BPF_SYSCALL
6659 static int selinux_bpf(int cmd, union bpf_attr *attr,
6660 				     unsigned int size)
6661 {
6662 	u32 sid = current_sid();
6663 	int ret;
6664 
6665 	switch (cmd) {
6666 	case BPF_MAP_CREATE:
6667 		ret = avc_has_perm(&selinux_state,
6668 				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6669 				   NULL);
6670 		break;
6671 	case BPF_PROG_LOAD:
6672 		ret = avc_has_perm(&selinux_state,
6673 				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6674 				   NULL);
6675 		break;
6676 	default:
6677 		ret = 0;
6678 		break;
6679 	}
6680 
6681 	return ret;
6682 }
6683 
6684 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6685 {
6686 	u32 av = 0;
6687 
6688 	if (fmode & FMODE_READ)
6689 		av |= BPF__MAP_READ;
6690 	if (fmode & FMODE_WRITE)
6691 		av |= BPF__MAP_WRITE;
6692 	return av;
6693 }
6694 
6695 /* This function will check the file pass through unix socket or binder to see
6696  * if it is a bpf related object. And apply correspinding checks on the bpf
6697  * object based on the type. The bpf maps and programs, not like other files and
6698  * socket, are using a shared anonymous inode inside the kernel as their inode.
6699  * So checking that inode cannot identify if the process have privilege to
6700  * access the bpf object and that's why we have to add this additional check in
6701  * selinux_file_receive and selinux_binder_transfer_files.
6702  */
6703 static int bpf_fd_pass(struct file *file, u32 sid)
6704 {
6705 	struct bpf_security_struct *bpfsec;
6706 	struct bpf_prog *prog;
6707 	struct bpf_map *map;
6708 	int ret;
6709 
6710 	if (file->f_op == &bpf_map_fops) {
6711 		map = file->private_data;
6712 		bpfsec = map->security;
6713 		ret = avc_has_perm(&selinux_state,
6714 				   sid, bpfsec->sid, SECCLASS_BPF,
6715 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6716 		if (ret)
6717 			return ret;
6718 	} else if (file->f_op == &bpf_prog_fops) {
6719 		prog = file->private_data;
6720 		bpfsec = prog->aux->security;
6721 		ret = avc_has_perm(&selinux_state,
6722 				   sid, bpfsec->sid, SECCLASS_BPF,
6723 				   BPF__PROG_RUN, NULL);
6724 		if (ret)
6725 			return ret;
6726 	}
6727 	return 0;
6728 }
6729 
6730 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6731 {
6732 	u32 sid = current_sid();
6733 	struct bpf_security_struct *bpfsec;
6734 
6735 	bpfsec = map->security;
6736 	return avc_has_perm(&selinux_state,
6737 			    sid, bpfsec->sid, SECCLASS_BPF,
6738 			    bpf_map_fmode_to_av(fmode), NULL);
6739 }
6740 
6741 static int selinux_bpf_prog(struct bpf_prog *prog)
6742 {
6743 	u32 sid = current_sid();
6744 	struct bpf_security_struct *bpfsec;
6745 
6746 	bpfsec = prog->aux->security;
6747 	return avc_has_perm(&selinux_state,
6748 			    sid, bpfsec->sid, SECCLASS_BPF,
6749 			    BPF__PROG_RUN, NULL);
6750 }
6751 
6752 static int selinux_bpf_map_alloc(struct bpf_map *map)
6753 {
6754 	struct bpf_security_struct *bpfsec;
6755 
6756 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6757 	if (!bpfsec)
6758 		return -ENOMEM;
6759 
6760 	bpfsec->sid = current_sid();
6761 	map->security = bpfsec;
6762 
6763 	return 0;
6764 }
6765 
6766 static void selinux_bpf_map_free(struct bpf_map *map)
6767 {
6768 	struct bpf_security_struct *bpfsec = map->security;
6769 
6770 	map->security = NULL;
6771 	kfree(bpfsec);
6772 }
6773 
6774 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6775 {
6776 	struct bpf_security_struct *bpfsec;
6777 
6778 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6779 	if (!bpfsec)
6780 		return -ENOMEM;
6781 
6782 	bpfsec->sid = current_sid();
6783 	aux->security = bpfsec;
6784 
6785 	return 0;
6786 }
6787 
6788 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6789 {
6790 	struct bpf_security_struct *bpfsec = aux->security;
6791 
6792 	aux->security = NULL;
6793 	kfree(bpfsec);
6794 }
6795 #endif
6796 
6797 static int selinux_lockdown(enum lockdown_reason what)
6798 {
6799 	struct common_audit_data ad;
6800 	u32 sid = current_sid();
6801 	int invalid_reason = (what <= LOCKDOWN_NONE) ||
6802 			     (what == LOCKDOWN_INTEGRITY_MAX) ||
6803 			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6804 
6805 	if (WARN(invalid_reason, "Invalid lockdown reason")) {
6806 		audit_log(audit_context(),
6807 			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
6808 			  "lockdown_reason=invalid");
6809 		return -EINVAL;
6810 	}
6811 
6812 	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6813 	ad.u.reason = what;
6814 
6815 	if (what <= LOCKDOWN_INTEGRITY_MAX)
6816 		return avc_has_perm(&selinux_state,
6817 				    sid, sid, SECCLASS_LOCKDOWN,
6818 				    LOCKDOWN__INTEGRITY, &ad);
6819 	else
6820 		return avc_has_perm(&selinux_state,
6821 				    sid, sid, SECCLASS_LOCKDOWN,
6822 				    LOCKDOWN__CONFIDENTIALITY, &ad);
6823 }
6824 
6825 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6826 	.lbs_cred = sizeof(struct task_security_struct),
6827 	.lbs_file = sizeof(struct file_security_struct),
6828 	.lbs_inode = sizeof(struct inode_security_struct),
6829 	.lbs_ipc = sizeof(struct ipc_security_struct),
6830 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6831 };
6832 
6833 #ifdef CONFIG_PERF_EVENTS
6834 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6835 {
6836 	u32 requested, sid = current_sid();
6837 
6838 	if (type == PERF_SECURITY_OPEN)
6839 		requested = PERF_EVENT__OPEN;
6840 	else if (type == PERF_SECURITY_CPU)
6841 		requested = PERF_EVENT__CPU;
6842 	else if (type == PERF_SECURITY_KERNEL)
6843 		requested = PERF_EVENT__KERNEL;
6844 	else if (type == PERF_SECURITY_TRACEPOINT)
6845 		requested = PERF_EVENT__TRACEPOINT;
6846 	else
6847 		return -EINVAL;
6848 
6849 	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6850 			    requested, NULL);
6851 }
6852 
6853 static int selinux_perf_event_alloc(struct perf_event *event)
6854 {
6855 	struct perf_event_security_struct *perfsec;
6856 
6857 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6858 	if (!perfsec)
6859 		return -ENOMEM;
6860 
6861 	perfsec->sid = current_sid();
6862 	event->security = perfsec;
6863 
6864 	return 0;
6865 }
6866 
6867 static void selinux_perf_event_free(struct perf_event *event)
6868 {
6869 	struct perf_event_security_struct *perfsec = event->security;
6870 
6871 	event->security = NULL;
6872 	kfree(perfsec);
6873 }
6874 
6875 static int selinux_perf_event_read(struct perf_event *event)
6876 {
6877 	struct perf_event_security_struct *perfsec = event->security;
6878 	u32 sid = current_sid();
6879 
6880 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6881 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6882 }
6883 
6884 static int selinux_perf_event_write(struct perf_event *event)
6885 {
6886 	struct perf_event_security_struct *perfsec = event->security;
6887 	u32 sid = current_sid();
6888 
6889 	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6890 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6891 }
6892 #endif
6893 
6894 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6895 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6896 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6897 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6898 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6899 
6900 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6901 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6902 	LSM_HOOK_INIT(capget, selinux_capget),
6903 	LSM_HOOK_INIT(capset, selinux_capset),
6904 	LSM_HOOK_INIT(capable, selinux_capable),
6905 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6906 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6907 	LSM_HOOK_INIT(syslog, selinux_syslog),
6908 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6909 
6910 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6911 
6912 	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6913 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6914 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6915 
6916 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6917 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6918 
6919 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6920 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6921 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6922 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6923 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6924 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6925 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6926 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6927 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6928 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6929 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6930 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6931 	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
6932 
6933 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6934 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6935 
6936 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6937 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6938 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6939 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6940 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6941 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6942 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6943 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6944 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6945 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6946 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6947 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6948 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6949 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6950 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6951 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6952 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6953 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6954 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6955 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6956 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6957 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6958 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6959 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6960 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6961 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6962 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6963 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
6964 
6965 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6966 
6967 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6968 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6969 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6970 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6971 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6972 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6973 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6974 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6975 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6976 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6977 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6978 
6979 	LSM_HOOK_INIT(file_open, selinux_file_open),
6980 
6981 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6982 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6983 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6984 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6985 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6986 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6987 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6988 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6989 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6990 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6991 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6992 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6993 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6994 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6995 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6996 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6997 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6998 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6999 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7000 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7001 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7002 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7003 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7004 
7005 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7006 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7007 
7008 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7009 
7010 	LSM_HOOK_INIT(msg_queue_alloc_security,
7011 			selinux_msg_queue_alloc_security),
7012 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7013 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7014 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7015 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7016 
7017 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7018 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7019 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7020 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7021 
7022 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7023 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7024 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7025 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7026 
7027 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7028 
7029 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7030 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7031 
7032 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7033 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7034 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7035 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7036 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7037 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7038 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7039 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7040 
7041 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7042 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7043 
7044 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7045 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7046 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7047 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7048 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7049 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7050 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7051 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7052 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7053 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7054 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7055 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7056 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7057 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7058 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7059 	LSM_HOOK_INIT(socket_getpeersec_stream,
7060 			selinux_socket_getpeersec_stream),
7061 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7062 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7063 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7064 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7065 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7066 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7067 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7068 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7069 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7070 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7071 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7072 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7073 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7074 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7075 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7076 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7077 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7078 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7079 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7080 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7081 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7082 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7083 #ifdef CONFIG_SECURITY_INFINIBAND
7084 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7085 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7086 		      selinux_ib_endport_manage_subnet),
7087 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7088 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7089 #endif
7090 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7091 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7092 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7093 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7094 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7095 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7096 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7097 			selinux_xfrm_state_alloc_acquire),
7098 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7099 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7100 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7101 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7102 			selinux_xfrm_state_pol_flow_match),
7103 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7104 #endif
7105 
7106 #ifdef CONFIG_KEYS
7107 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7108 	LSM_HOOK_INIT(key_free, selinux_key_free),
7109 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7110 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7111 #endif
7112 
7113 #ifdef CONFIG_AUDIT
7114 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7115 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7116 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7117 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7118 #endif
7119 
7120 #ifdef CONFIG_BPF_SYSCALL
7121 	LSM_HOOK_INIT(bpf, selinux_bpf),
7122 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7123 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7124 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7125 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7126 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7127 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7128 #endif
7129 
7130 #ifdef CONFIG_PERF_EVENTS
7131 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7132 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7133 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7134 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7135 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7136 #endif
7137 
7138 	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7139 };
7140 
7141 static __init int selinux_init(void)
7142 {
7143 	pr_info("SELinux:  Initializing.\n");
7144 
7145 	memset(&selinux_state, 0, sizeof(selinux_state));
7146 	enforcing_set(&selinux_state, selinux_enforcing_boot);
7147 	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7148 	selinux_ss_init(&selinux_state.ss);
7149 	selinux_avc_init(&selinux_state.avc);
7150 
7151 	/* Set the security state for the initial task. */
7152 	cred_init_security();
7153 
7154 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7155 
7156 	avc_init();
7157 
7158 	avtab_cache_init();
7159 
7160 	ebitmap_cache_init();
7161 
7162 	hashtab_cache_init();
7163 
7164 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7165 
7166 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7167 		panic("SELinux: Unable to register AVC netcache callback\n");
7168 
7169 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7170 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7171 
7172 	if (selinux_enforcing_boot)
7173 		pr_debug("SELinux:  Starting in enforcing mode\n");
7174 	else
7175 		pr_debug("SELinux:  Starting in permissive mode\n");
7176 
7177 	fs_validate_description(&selinux_fs_parameters);
7178 
7179 	return 0;
7180 }
7181 
7182 static void delayed_superblock_init(struct super_block *sb, void *unused)
7183 {
7184 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7185 }
7186 
7187 void selinux_complete_init(void)
7188 {
7189 	pr_debug("SELinux:  Completing initialization.\n");
7190 
7191 	/* Set up any superblocks initialized prior to the policy load. */
7192 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7193 	iterate_supers(delayed_superblock_init, NULL);
7194 }
7195 
7196 /* SELinux requires early initialization in order to label
7197    all processes and objects when they are created. */
7198 DEFINE_LSM(selinux) = {
7199 	.name = "selinux",
7200 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7201 	.enabled = &selinux_enabled_boot,
7202 	.blobs = &selinux_blob_sizes,
7203 	.init = selinux_init,
7204 };
7205 
7206 #if defined(CONFIG_NETFILTER)
7207 
7208 static const struct nf_hook_ops selinux_nf_ops[] = {
7209 	{
7210 		.hook =		selinux_ipv4_postroute,
7211 		.pf =		NFPROTO_IPV4,
7212 		.hooknum =	NF_INET_POST_ROUTING,
7213 		.priority =	NF_IP_PRI_SELINUX_LAST,
7214 	},
7215 	{
7216 		.hook =		selinux_ipv4_forward,
7217 		.pf =		NFPROTO_IPV4,
7218 		.hooknum =	NF_INET_FORWARD,
7219 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7220 	},
7221 	{
7222 		.hook =		selinux_ipv4_output,
7223 		.pf =		NFPROTO_IPV4,
7224 		.hooknum =	NF_INET_LOCAL_OUT,
7225 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7226 	},
7227 #if IS_ENABLED(CONFIG_IPV6)
7228 	{
7229 		.hook =		selinux_ipv6_postroute,
7230 		.pf =		NFPROTO_IPV6,
7231 		.hooknum =	NF_INET_POST_ROUTING,
7232 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7233 	},
7234 	{
7235 		.hook =		selinux_ipv6_forward,
7236 		.pf =		NFPROTO_IPV6,
7237 		.hooknum =	NF_INET_FORWARD,
7238 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7239 	},
7240 	{
7241 		.hook =		selinux_ipv6_output,
7242 		.pf =		NFPROTO_IPV6,
7243 		.hooknum =	NF_INET_LOCAL_OUT,
7244 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7245 	},
7246 #endif	/* IPV6 */
7247 };
7248 
7249 static int __net_init selinux_nf_register(struct net *net)
7250 {
7251 	return nf_register_net_hooks(net, selinux_nf_ops,
7252 				     ARRAY_SIZE(selinux_nf_ops));
7253 }
7254 
7255 static void __net_exit selinux_nf_unregister(struct net *net)
7256 {
7257 	nf_unregister_net_hooks(net, selinux_nf_ops,
7258 				ARRAY_SIZE(selinux_nf_ops));
7259 }
7260 
7261 static struct pernet_operations selinux_net_ops = {
7262 	.init = selinux_nf_register,
7263 	.exit = selinux_nf_unregister,
7264 };
7265 
7266 static int __init selinux_nf_ip_init(void)
7267 {
7268 	int err;
7269 
7270 	if (!selinux_enabled_boot)
7271 		return 0;
7272 
7273 	pr_debug("SELinux:  Registering netfilter hooks\n");
7274 
7275 	err = register_pernet_subsys(&selinux_net_ops);
7276 	if (err)
7277 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7278 
7279 	return 0;
7280 }
7281 __initcall(selinux_nf_ip_init);
7282 
7283 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7284 static void selinux_nf_ip_exit(void)
7285 {
7286 	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7287 
7288 	unregister_pernet_subsys(&selinux_net_ops);
7289 }
7290 #endif
7291 
7292 #else /* CONFIG_NETFILTER */
7293 
7294 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7295 #define selinux_nf_ip_exit()
7296 #endif
7297 
7298 #endif /* CONFIG_NETFILTER */
7299 
7300 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7301 int selinux_disable(struct selinux_state *state)
7302 {
7303 	if (state->initialized) {
7304 		/* Not permitted after initial policy load. */
7305 		return -EINVAL;
7306 	}
7307 
7308 	if (state->disabled) {
7309 		/* Only do this once. */
7310 		return -EINVAL;
7311 	}
7312 
7313 	state->disabled = 1;
7314 
7315 	pr_info("SELinux:  Disabled at runtime.\n");
7316 
7317 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7318 
7319 	/* Try to destroy the avc node cache */
7320 	avc_disable();
7321 
7322 	/* Unregister netfilter hooks. */
7323 	selinux_nf_ip_exit();
7324 
7325 	/* Unregister selinuxfs. */
7326 	exit_sel_fs();
7327 
7328 	return 0;
7329 }
7330 #endif
7331