xref: /openbmc/linux/security/selinux/hooks.c (revision b0c636b99997c8594da6a46e166ce4fcf6956fda)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
16  *                Paul Moore <paul.moore@hp.com>
17  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
18  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
19  *
20  *	This program is free software; you can redistribute it and/or modify
21  *	it under the terms of the GNU General Public License version 2,
22  *      as published by the Free Software Foundation.
23  */
24 
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/security.h>
31 #include <linux/xattr.h>
32 #include <linux/capability.h>
33 #include <linux/unistd.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/slab.h>
37 #include <linux/pagemap.h>
38 #include <linux/swap.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>		/* for local_port_range[] */
52 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <asm/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>	/* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>		/* for Unix socket types */
67 #include <net/af_unix.h>	/* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 
79 #include "avc.h"
80 #include "objsec.h"
81 #include "netif.h"
82 #include "netnode.h"
83 #include "xfrm.h"
84 #include "netlabel.h"
85 
86 #define XATTR_SELINUX_SUFFIX "selinux"
87 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
88 
89 #define NUM_SEL_MNT_OPTS 4
90 
91 extern unsigned int policydb_loaded_version;
92 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
93 extern int selinux_compat_net;
94 extern struct security_operations *security_ops;
95 
96 /* SECMARK reference count */
97 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
98 
99 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
100 int selinux_enforcing = 0;
101 
102 static int __init enforcing_setup(char *str)
103 {
104 	selinux_enforcing = simple_strtol(str,NULL,0);
105 	return 1;
106 }
107 __setup("enforcing=", enforcing_setup);
108 #endif
109 
110 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
111 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
112 
113 static int __init selinux_enabled_setup(char *str)
114 {
115 	selinux_enabled = simple_strtol(str, NULL, 0);
116 	return 1;
117 }
118 __setup("selinux=", selinux_enabled_setup);
119 #else
120 int selinux_enabled = 1;
121 #endif
122 
123 /* Original (dummy) security module. */
124 static struct security_operations *original_ops = NULL;
125 
126 /* Minimal support for a secondary security module,
127    just to allow the use of the dummy or capability modules.
128    The owlsm module can alternatively be used as a secondary
129    module as long as CONFIG_OWLSM_FD is not enabled. */
130 static struct security_operations *secondary_ops = NULL;
131 
132 /* Lists of inode and superblock security structures initialized
133    before the policy was loaded. */
134 static LIST_HEAD(superblock_security_head);
135 static DEFINE_SPINLOCK(sb_security_lock);
136 
137 static struct kmem_cache *sel_inode_cache;
138 
139 /**
140  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
141  *
142  * Description:
143  * This function checks the SECMARK reference counter to see if any SECMARK
144  * targets are currently configured, if the reference counter is greater than
145  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
146  * enabled, false (0) if SECMARK is disabled.
147  *
148  */
149 static int selinux_secmark_enabled(void)
150 {
151 	return (atomic_read(&selinux_secmark_refcount) > 0);
152 }
153 
154 /* Allocate and free functions for each kind of security blob. */
155 
156 static int task_alloc_security(struct task_struct *task)
157 {
158 	struct task_security_struct *tsec;
159 
160 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
161 	if (!tsec)
162 		return -ENOMEM;
163 
164 	tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
165 	task->security = tsec;
166 
167 	return 0;
168 }
169 
170 static void task_free_security(struct task_struct *task)
171 {
172 	struct task_security_struct *tsec = task->security;
173 	task->security = NULL;
174 	kfree(tsec);
175 }
176 
177 static int inode_alloc_security(struct inode *inode)
178 {
179 	struct task_security_struct *tsec = current->security;
180 	struct inode_security_struct *isec;
181 
182 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
183 	if (!isec)
184 		return -ENOMEM;
185 
186 	mutex_init(&isec->lock);
187 	INIT_LIST_HEAD(&isec->list);
188 	isec->inode = inode;
189 	isec->sid = SECINITSID_UNLABELED;
190 	isec->sclass = SECCLASS_FILE;
191 	isec->task_sid = tsec->sid;
192 	inode->i_security = isec;
193 
194 	return 0;
195 }
196 
197 static void inode_free_security(struct inode *inode)
198 {
199 	struct inode_security_struct *isec = inode->i_security;
200 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
201 
202 	spin_lock(&sbsec->isec_lock);
203 	if (!list_empty(&isec->list))
204 		list_del_init(&isec->list);
205 	spin_unlock(&sbsec->isec_lock);
206 
207 	inode->i_security = NULL;
208 	kmem_cache_free(sel_inode_cache, isec);
209 }
210 
211 static int file_alloc_security(struct file *file)
212 {
213 	struct task_security_struct *tsec = current->security;
214 	struct file_security_struct *fsec;
215 
216 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
217 	if (!fsec)
218 		return -ENOMEM;
219 
220 	fsec->sid = tsec->sid;
221 	fsec->fown_sid = tsec->sid;
222 	file->f_security = fsec;
223 
224 	return 0;
225 }
226 
227 static void file_free_security(struct file *file)
228 {
229 	struct file_security_struct *fsec = file->f_security;
230 	file->f_security = NULL;
231 	kfree(fsec);
232 }
233 
234 static int superblock_alloc_security(struct super_block *sb)
235 {
236 	struct superblock_security_struct *sbsec;
237 
238 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
239 	if (!sbsec)
240 		return -ENOMEM;
241 
242 	mutex_init(&sbsec->lock);
243 	INIT_LIST_HEAD(&sbsec->list);
244 	INIT_LIST_HEAD(&sbsec->isec_head);
245 	spin_lock_init(&sbsec->isec_lock);
246 	sbsec->sb = sb;
247 	sbsec->sid = SECINITSID_UNLABELED;
248 	sbsec->def_sid = SECINITSID_FILE;
249 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
250 	sb->s_security = sbsec;
251 
252 	return 0;
253 }
254 
255 static void superblock_free_security(struct super_block *sb)
256 {
257 	struct superblock_security_struct *sbsec = sb->s_security;
258 
259 	spin_lock(&sb_security_lock);
260 	if (!list_empty(&sbsec->list))
261 		list_del_init(&sbsec->list);
262 	spin_unlock(&sb_security_lock);
263 
264 	sb->s_security = NULL;
265 	kfree(sbsec);
266 }
267 
268 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
269 {
270 	struct sk_security_struct *ssec;
271 
272 	ssec = kzalloc(sizeof(*ssec), priority);
273 	if (!ssec)
274 		return -ENOMEM;
275 
276 	ssec->peer_sid = SECINITSID_UNLABELED;
277 	ssec->sid = SECINITSID_UNLABELED;
278 	sk->sk_security = ssec;
279 
280 	selinux_netlbl_sk_security_reset(ssec, family);
281 
282 	return 0;
283 }
284 
285 static void sk_free_security(struct sock *sk)
286 {
287 	struct sk_security_struct *ssec = sk->sk_security;
288 
289 	sk->sk_security = NULL;
290 	kfree(ssec);
291 }
292 
293 /* The security server must be initialized before
294    any labeling or access decisions can be provided. */
295 extern int ss_initialized;
296 
297 /* The file system's label must be initialized prior to use. */
298 
299 static char *labeling_behaviors[6] = {
300 	"uses xattr",
301 	"uses transition SIDs",
302 	"uses task SIDs",
303 	"uses genfs_contexts",
304 	"not configured for labeling",
305 	"uses mountpoint labeling",
306 };
307 
308 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
309 
310 static inline int inode_doinit(struct inode *inode)
311 {
312 	return inode_doinit_with_dentry(inode, NULL);
313 }
314 
315 enum {
316 	Opt_error = -1,
317 	Opt_context = 1,
318 	Opt_fscontext = 2,
319 	Opt_defcontext = 3,
320 	Opt_rootcontext = 4,
321 };
322 
323 static match_table_t tokens = {
324 	{Opt_context, "context=%s"},
325 	{Opt_fscontext, "fscontext=%s"},
326 	{Opt_defcontext, "defcontext=%s"},
327 	{Opt_rootcontext, "rootcontext=%s"},
328 	{Opt_error, NULL},
329 };
330 
331 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
332 
333 static int may_context_mount_sb_relabel(u32 sid,
334 			struct superblock_security_struct *sbsec,
335 			struct task_security_struct *tsec)
336 {
337 	int rc;
338 
339 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
340 			  FILESYSTEM__RELABELFROM, NULL);
341 	if (rc)
342 		return rc;
343 
344 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
345 			  FILESYSTEM__RELABELTO, NULL);
346 	return rc;
347 }
348 
349 static int may_context_mount_inode_relabel(u32 sid,
350 			struct superblock_security_struct *sbsec,
351 			struct task_security_struct *tsec)
352 {
353 	int rc;
354 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
355 			  FILESYSTEM__RELABELFROM, NULL);
356 	if (rc)
357 		return rc;
358 
359 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
360 			  FILESYSTEM__ASSOCIATE, NULL);
361 	return rc;
362 }
363 
364 static int sb_finish_set_opts(struct super_block *sb)
365 {
366 	struct superblock_security_struct *sbsec = sb->s_security;
367 	struct dentry *root = sb->s_root;
368 	struct inode *root_inode = root->d_inode;
369 	int rc = 0;
370 
371 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
372 		/* Make sure that the xattr handler exists and that no
373 		   error other than -ENODATA is returned by getxattr on
374 		   the root directory.  -ENODATA is ok, as this may be
375 		   the first boot of the SELinux kernel before we have
376 		   assigned xattr values to the filesystem. */
377 		if (!root_inode->i_op->getxattr) {
378 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
379 			       "xattr support\n", sb->s_id, sb->s_type->name);
380 			rc = -EOPNOTSUPP;
381 			goto out;
382 		}
383 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
384 		if (rc < 0 && rc != -ENODATA) {
385 			if (rc == -EOPNOTSUPP)
386 				printk(KERN_WARNING "SELinux: (dev %s, type "
387 				       "%s) has no security xattr handler\n",
388 				       sb->s_id, sb->s_type->name);
389 			else
390 				printk(KERN_WARNING "SELinux: (dev %s, type "
391 				       "%s) getxattr errno %d\n", sb->s_id,
392 				       sb->s_type->name, -rc);
393 			goto out;
394 		}
395 	}
396 
397 	sbsec->initialized = 1;
398 
399 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
400 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
401 		       sb->s_id, sb->s_type->name);
402 	else
403 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
404 		       sb->s_id, sb->s_type->name,
405 		       labeling_behaviors[sbsec->behavior-1]);
406 
407 	/* Initialize the root inode. */
408 	rc = inode_doinit_with_dentry(root_inode, root);
409 
410 	/* Initialize any other inodes associated with the superblock, e.g.
411 	   inodes created prior to initial policy load or inodes created
412 	   during get_sb by a pseudo filesystem that directly
413 	   populates itself. */
414 	spin_lock(&sbsec->isec_lock);
415 next_inode:
416 	if (!list_empty(&sbsec->isec_head)) {
417 		struct inode_security_struct *isec =
418 				list_entry(sbsec->isec_head.next,
419 					   struct inode_security_struct, list);
420 		struct inode *inode = isec->inode;
421 		spin_unlock(&sbsec->isec_lock);
422 		inode = igrab(inode);
423 		if (inode) {
424 			if (!IS_PRIVATE(inode))
425 				inode_doinit(inode);
426 			iput(inode);
427 		}
428 		spin_lock(&sbsec->isec_lock);
429 		list_del_init(&isec->list);
430 		goto next_inode;
431 	}
432 	spin_unlock(&sbsec->isec_lock);
433 out:
434 	return rc;
435 }
436 
437 /*
438  * This function should allow an FS to ask what it's mount security
439  * options were so it can use those later for submounts, displaying
440  * mount options, or whatever.
441  */
442 static int selinux_get_mnt_opts(const struct super_block *sb,
443 				struct security_mnt_opts *opts)
444 {
445 	int rc = 0, i;
446 	struct superblock_security_struct *sbsec = sb->s_security;
447 	char *context = NULL;
448 	u32 len;
449 	char tmp;
450 
451 	security_init_mnt_opts(opts);
452 
453 	if (!sbsec->initialized)
454 		return -EINVAL;
455 
456 	if (!ss_initialized)
457 		return -EINVAL;
458 
459 	/*
460 	 * if we ever use sbsec flags for anything other than tracking mount
461 	 * settings this is going to need a mask
462 	 */
463 	tmp = sbsec->flags;
464 	/* count the number of mount options for this sb */
465 	for (i = 0; i < 8; i++) {
466 		if (tmp & 0x01)
467 			opts->num_mnt_opts++;
468 		tmp >>= 1;
469 	}
470 
471 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 	if (!opts->mnt_opts) {
473 		rc = -ENOMEM;
474 		goto out_free;
475 	}
476 
477 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 	if (!opts->mnt_opts_flags) {
479 		rc = -ENOMEM;
480 		goto out_free;
481 	}
482 
483 	i = 0;
484 	if (sbsec->flags & FSCONTEXT_MNT) {
485 		rc = security_sid_to_context(sbsec->sid, &context, &len);
486 		if (rc)
487 			goto out_free;
488 		opts->mnt_opts[i] = context;
489 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 	}
491 	if (sbsec->flags & CONTEXT_MNT) {
492 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 		if (rc)
494 			goto out_free;
495 		opts->mnt_opts[i] = context;
496 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 	}
498 	if (sbsec->flags & DEFCONTEXT_MNT) {
499 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 		if (rc)
501 			goto out_free;
502 		opts->mnt_opts[i] = context;
503 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 	}
505 	if (sbsec->flags & ROOTCONTEXT_MNT) {
506 		struct inode *root = sbsec->sb->s_root->d_inode;
507 		struct inode_security_struct *isec = root->i_security;
508 
509 		rc = security_sid_to_context(isec->sid, &context, &len);
510 		if (rc)
511 			goto out_free;
512 		opts->mnt_opts[i] = context;
513 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 	}
515 
516 	BUG_ON(i != opts->num_mnt_opts);
517 
518 	return 0;
519 
520 out_free:
521 	security_free_mnt_opts(opts);
522 	return rc;
523 }
524 
525 static int bad_option(struct superblock_security_struct *sbsec, char flag,
526 		      u32 old_sid, u32 new_sid)
527 {
528 	/* check if the old mount command had the same options */
529 	if (sbsec->initialized)
530 		if (!(sbsec->flags & flag) ||
531 		    (old_sid != new_sid))
532 			return 1;
533 
534 	/* check if we were passed the same options twice,
535 	 * aka someone passed context=a,context=b
536 	 */
537 	if (!sbsec->initialized)
538 		if (sbsec->flags & flag)
539 			return 1;
540 	return 0;
541 }
542 
543 /*
544  * Allow filesystems with binary mount data to explicitly set mount point
545  * labeling information.
546  */
547 static int selinux_set_mnt_opts(struct super_block *sb,
548 				struct security_mnt_opts *opts)
549 {
550 	int rc = 0, i;
551 	struct task_security_struct *tsec = current->security;
552 	struct superblock_security_struct *sbsec = sb->s_security;
553 	const char *name = sb->s_type->name;
554 	struct inode *inode = sbsec->sb->s_root->d_inode;
555 	struct inode_security_struct *root_isec = inode->i_security;
556 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
557 	u32 defcontext_sid = 0;
558 	char **mount_options = opts->mnt_opts;
559 	int *flags = opts->mnt_opts_flags;
560 	int num_opts = opts->num_mnt_opts;
561 
562 	mutex_lock(&sbsec->lock);
563 
564 	if (!ss_initialized) {
565 		if (!num_opts) {
566 			/* Defer initialization until selinux_complete_init,
567 			   after the initial policy is loaded and the security
568 			   server is ready to handle calls. */
569 			spin_lock(&sb_security_lock);
570 			if (list_empty(&sbsec->list))
571 				list_add(&sbsec->list, &superblock_security_head);
572 			spin_unlock(&sb_security_lock);
573 			goto out;
574 		}
575 		rc = -EINVAL;
576 		printk(KERN_WARNING "Unable to set superblock options before "
577 		       "the security server is initialized\n");
578 		goto out;
579 	}
580 
581 	/*
582 	 * Binary mount data FS will come through this function twice.  Once
583 	 * from an explicit call and once from the generic calls from the vfs.
584 	 * Since the generic VFS calls will not contain any security mount data
585 	 * we need to skip the double mount verification.
586 	 *
587 	 * This does open a hole in which we will not notice if the first
588 	 * mount using this sb set explict options and a second mount using
589 	 * this sb does not set any security options.  (The first options
590 	 * will be used for both mounts)
591 	 */
592 	if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
593 	    && (num_opts == 0))
594 	        goto out;
595 
596 	/*
597 	 * parse the mount options, check if they are valid sids.
598 	 * also check if someone is trying to mount the same sb more
599 	 * than once with different security options.
600 	 */
601 	for (i = 0; i < num_opts; i++) {
602 		u32 sid;
603 		rc = security_context_to_sid(mount_options[i],
604 					     strlen(mount_options[i]), &sid);
605 		if (rc) {
606 			printk(KERN_WARNING "SELinux: security_context_to_sid"
607 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
608 			       mount_options[i], sb->s_id, name, rc);
609 			goto out;
610 		}
611 		switch (flags[i]) {
612 		case FSCONTEXT_MNT:
613 			fscontext_sid = sid;
614 
615 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
616 					fscontext_sid))
617 				goto out_double_mount;
618 
619 			sbsec->flags |= FSCONTEXT_MNT;
620 			break;
621 		case CONTEXT_MNT:
622 			context_sid = sid;
623 
624 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
625 					context_sid))
626 				goto out_double_mount;
627 
628 			sbsec->flags |= CONTEXT_MNT;
629 			break;
630 		case ROOTCONTEXT_MNT:
631 			rootcontext_sid = sid;
632 
633 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
634 					rootcontext_sid))
635 				goto out_double_mount;
636 
637 			sbsec->flags |= ROOTCONTEXT_MNT;
638 
639 			break;
640 		case DEFCONTEXT_MNT:
641 			defcontext_sid = sid;
642 
643 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
644 					defcontext_sid))
645 				goto out_double_mount;
646 
647 			sbsec->flags |= DEFCONTEXT_MNT;
648 
649 			break;
650 		default:
651 			rc = -EINVAL;
652 			goto out;
653 		}
654 	}
655 
656 	if (sbsec->initialized) {
657 		/* previously mounted with options, but not on this attempt? */
658 		if (sbsec->flags && !num_opts)
659 			goto out_double_mount;
660 		rc = 0;
661 		goto out;
662 	}
663 
664 	if (strcmp(sb->s_type->name, "proc") == 0)
665 		sbsec->proc = 1;
666 
667 	/* Determine the labeling behavior to use for this filesystem type. */
668 	rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
669 	if (rc) {
670 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
671 		       __FUNCTION__, sb->s_type->name, rc);
672 		goto out;
673 	}
674 
675 	/* sets the context of the superblock for the fs being mounted. */
676 	if (fscontext_sid) {
677 
678 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
679 		if (rc)
680 			goto out;
681 
682 		sbsec->sid = fscontext_sid;
683 	}
684 
685 	/*
686 	 * Switch to using mount point labeling behavior.
687 	 * sets the label used on all file below the mountpoint, and will set
688 	 * the superblock context if not already set.
689 	 */
690 	if (context_sid) {
691 		if (!fscontext_sid) {
692 			rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
693 			if (rc)
694 				goto out;
695 			sbsec->sid = context_sid;
696 		} else {
697 			rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
698 			if (rc)
699 				goto out;
700 		}
701 		if (!rootcontext_sid)
702 			rootcontext_sid = context_sid;
703 
704 		sbsec->mntpoint_sid = context_sid;
705 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
706 	}
707 
708 	if (rootcontext_sid) {
709 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
710 		if (rc)
711 			goto out;
712 
713 		root_isec->sid = rootcontext_sid;
714 		root_isec->initialized = 1;
715 	}
716 
717 	if (defcontext_sid) {
718 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
719 			rc = -EINVAL;
720 			printk(KERN_WARNING "SELinux: defcontext option is "
721 			       "invalid for this filesystem type\n");
722 			goto out;
723 		}
724 
725 		if (defcontext_sid != sbsec->def_sid) {
726 			rc = may_context_mount_inode_relabel(defcontext_sid,
727 							     sbsec, tsec);
728 			if (rc)
729 				goto out;
730 		}
731 
732 		sbsec->def_sid = defcontext_sid;
733 	}
734 
735 	rc = sb_finish_set_opts(sb);
736 out:
737 	mutex_unlock(&sbsec->lock);
738 	return rc;
739 out_double_mount:
740 	rc = -EINVAL;
741 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
742 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
743 	goto out;
744 }
745 
746 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
747 					struct super_block *newsb)
748 {
749 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
750 	struct superblock_security_struct *newsbsec = newsb->s_security;
751 
752 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
753 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
754 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
755 
756 	/* we can't error, we can't save the info, this shouldn't get called
757 	 * this early in the boot process. */
758 	BUG_ON(!ss_initialized);
759 
760 	/* how can we clone if the old one wasn't set up?? */
761 	BUG_ON(!oldsbsec->initialized);
762 
763 	/* if fs is reusing a sb, just let its options stand... */
764 	if (newsbsec->initialized)
765 		return;
766 
767 	mutex_lock(&newsbsec->lock);
768 
769 	newsbsec->flags = oldsbsec->flags;
770 
771 	newsbsec->sid = oldsbsec->sid;
772 	newsbsec->def_sid = oldsbsec->def_sid;
773 	newsbsec->behavior = oldsbsec->behavior;
774 
775 	if (set_context) {
776 		u32 sid = oldsbsec->mntpoint_sid;
777 
778 		if (!set_fscontext)
779 			newsbsec->sid = sid;
780 		if (!set_rootcontext) {
781 			struct inode *newinode = newsb->s_root->d_inode;
782 			struct inode_security_struct *newisec = newinode->i_security;
783 			newisec->sid = sid;
784 		}
785 		newsbsec->mntpoint_sid = sid;
786 	}
787 	if (set_rootcontext) {
788 		const struct inode *oldinode = oldsb->s_root->d_inode;
789 		const struct inode_security_struct *oldisec = oldinode->i_security;
790 		struct inode *newinode = newsb->s_root->d_inode;
791 		struct inode_security_struct *newisec = newinode->i_security;
792 
793 		newisec->sid = oldisec->sid;
794 	}
795 
796 	sb_finish_set_opts(newsb);
797 	mutex_unlock(&newsbsec->lock);
798 }
799 
800 static int selinux_parse_opts_str(char *options,
801 				  struct security_mnt_opts *opts)
802 {
803 	char *p;
804 	char *context = NULL, *defcontext = NULL;
805 	char *fscontext = NULL, *rootcontext = NULL;
806 	int rc, num_mnt_opts = 0;
807 
808 	opts->num_mnt_opts = 0;
809 
810 	/* Standard string-based options. */
811 	while ((p = strsep(&options, "|")) != NULL) {
812 		int token;
813 		substring_t args[MAX_OPT_ARGS];
814 
815 		if (!*p)
816 			continue;
817 
818 		token = match_token(p, tokens, args);
819 
820 		switch (token) {
821 		case Opt_context:
822 			if (context || defcontext) {
823 				rc = -EINVAL;
824 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
825 				goto out_err;
826 			}
827 			context = match_strdup(&args[0]);
828 			if (!context) {
829 				rc = -ENOMEM;
830 				goto out_err;
831 			}
832 			break;
833 
834 		case Opt_fscontext:
835 			if (fscontext) {
836 				rc = -EINVAL;
837 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
838 				goto out_err;
839 			}
840 			fscontext = match_strdup(&args[0]);
841 			if (!fscontext) {
842 				rc = -ENOMEM;
843 				goto out_err;
844 			}
845 			break;
846 
847 		case Opt_rootcontext:
848 			if (rootcontext) {
849 				rc = -EINVAL;
850 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
851 				goto out_err;
852 			}
853 			rootcontext = match_strdup(&args[0]);
854 			if (!rootcontext) {
855 				rc = -ENOMEM;
856 				goto out_err;
857 			}
858 			break;
859 
860 		case Opt_defcontext:
861 			if (context || defcontext) {
862 				rc = -EINVAL;
863 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
864 				goto out_err;
865 			}
866 			defcontext = match_strdup(&args[0]);
867 			if (!defcontext) {
868 				rc = -ENOMEM;
869 				goto out_err;
870 			}
871 			break;
872 
873 		default:
874 			rc = -EINVAL;
875 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
876 			goto out_err;
877 
878 		}
879 	}
880 
881 	rc = -ENOMEM;
882 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
883 	if (!opts->mnt_opts)
884 		goto out_err;
885 
886 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
887 	if (!opts->mnt_opts_flags) {
888 		kfree(opts->mnt_opts);
889 		goto out_err;
890 	}
891 
892 	if (fscontext) {
893 		opts->mnt_opts[num_mnt_opts] = fscontext;
894 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
895 	}
896 	if (context) {
897 		opts->mnt_opts[num_mnt_opts] = context;
898 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
899 	}
900 	if (rootcontext) {
901 		opts->mnt_opts[num_mnt_opts] = rootcontext;
902 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
903 	}
904 	if (defcontext) {
905 		opts->mnt_opts[num_mnt_opts] = defcontext;
906 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
907 	}
908 
909 	opts->num_mnt_opts = num_mnt_opts;
910 	return 0;
911 
912 out_err:
913 	kfree(context);
914 	kfree(defcontext);
915 	kfree(fscontext);
916 	kfree(rootcontext);
917 	return rc;
918 }
919 /*
920  * string mount options parsing and call set the sbsec
921  */
922 static int superblock_doinit(struct super_block *sb, void *data)
923 {
924 	int rc = 0;
925 	char *options = data;
926 	struct security_mnt_opts opts;
927 
928 	security_init_mnt_opts(&opts);
929 
930 	if (!data)
931 		goto out;
932 
933 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
934 
935 	rc = selinux_parse_opts_str(options, &opts);
936 	if (rc)
937 		goto out_err;
938 
939 out:
940 	rc = selinux_set_mnt_opts(sb, &opts);
941 
942 out_err:
943 	security_free_mnt_opts(&opts);
944 	return rc;
945 }
946 
947 static inline u16 inode_mode_to_security_class(umode_t mode)
948 {
949 	switch (mode & S_IFMT) {
950 	case S_IFSOCK:
951 		return SECCLASS_SOCK_FILE;
952 	case S_IFLNK:
953 		return SECCLASS_LNK_FILE;
954 	case S_IFREG:
955 		return SECCLASS_FILE;
956 	case S_IFBLK:
957 		return SECCLASS_BLK_FILE;
958 	case S_IFDIR:
959 		return SECCLASS_DIR;
960 	case S_IFCHR:
961 		return SECCLASS_CHR_FILE;
962 	case S_IFIFO:
963 		return SECCLASS_FIFO_FILE;
964 
965 	}
966 
967 	return SECCLASS_FILE;
968 }
969 
970 static inline int default_protocol_stream(int protocol)
971 {
972 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
973 }
974 
975 static inline int default_protocol_dgram(int protocol)
976 {
977 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
978 }
979 
980 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
981 {
982 	switch (family) {
983 	case PF_UNIX:
984 		switch (type) {
985 		case SOCK_STREAM:
986 		case SOCK_SEQPACKET:
987 			return SECCLASS_UNIX_STREAM_SOCKET;
988 		case SOCK_DGRAM:
989 			return SECCLASS_UNIX_DGRAM_SOCKET;
990 		}
991 		break;
992 	case PF_INET:
993 	case PF_INET6:
994 		switch (type) {
995 		case SOCK_STREAM:
996 			if (default_protocol_stream(protocol))
997 				return SECCLASS_TCP_SOCKET;
998 			else
999 				return SECCLASS_RAWIP_SOCKET;
1000 		case SOCK_DGRAM:
1001 			if (default_protocol_dgram(protocol))
1002 				return SECCLASS_UDP_SOCKET;
1003 			else
1004 				return SECCLASS_RAWIP_SOCKET;
1005 		case SOCK_DCCP:
1006 			return SECCLASS_DCCP_SOCKET;
1007 		default:
1008 			return SECCLASS_RAWIP_SOCKET;
1009 		}
1010 		break;
1011 	case PF_NETLINK:
1012 		switch (protocol) {
1013 		case NETLINK_ROUTE:
1014 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1015 		case NETLINK_FIREWALL:
1016 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1017 		case NETLINK_INET_DIAG:
1018 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1019 		case NETLINK_NFLOG:
1020 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1021 		case NETLINK_XFRM:
1022 			return SECCLASS_NETLINK_XFRM_SOCKET;
1023 		case NETLINK_SELINUX:
1024 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1025 		case NETLINK_AUDIT:
1026 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1027 		case NETLINK_IP6_FW:
1028 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1029 		case NETLINK_DNRTMSG:
1030 			return SECCLASS_NETLINK_DNRT_SOCKET;
1031 		case NETLINK_KOBJECT_UEVENT:
1032 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1033 		default:
1034 			return SECCLASS_NETLINK_SOCKET;
1035 		}
1036 	case PF_PACKET:
1037 		return SECCLASS_PACKET_SOCKET;
1038 	case PF_KEY:
1039 		return SECCLASS_KEY_SOCKET;
1040 	case PF_APPLETALK:
1041 		return SECCLASS_APPLETALK_SOCKET;
1042 	}
1043 
1044 	return SECCLASS_SOCKET;
1045 }
1046 
1047 #ifdef CONFIG_PROC_FS
1048 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1049 				u16 tclass,
1050 				u32 *sid)
1051 {
1052 	int buflen, rc;
1053 	char *buffer, *path, *end;
1054 
1055 	buffer = (char*)__get_free_page(GFP_KERNEL);
1056 	if (!buffer)
1057 		return -ENOMEM;
1058 
1059 	buflen = PAGE_SIZE;
1060 	end = buffer+buflen;
1061 	*--end = '\0';
1062 	buflen--;
1063 	path = end-1;
1064 	*path = '/';
1065 	while (de && de != de->parent) {
1066 		buflen -= de->namelen + 1;
1067 		if (buflen < 0)
1068 			break;
1069 		end -= de->namelen;
1070 		memcpy(end, de->name, de->namelen);
1071 		*--end = '/';
1072 		path = end;
1073 		de = de->parent;
1074 	}
1075 	rc = security_genfs_sid("proc", path, tclass, sid);
1076 	free_page((unsigned long)buffer);
1077 	return rc;
1078 }
1079 #else
1080 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1081 				u16 tclass,
1082 				u32 *sid)
1083 {
1084 	return -EINVAL;
1085 }
1086 #endif
1087 
1088 /* The inode's security attributes must be initialized before first use. */
1089 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1090 {
1091 	struct superblock_security_struct *sbsec = NULL;
1092 	struct inode_security_struct *isec = inode->i_security;
1093 	u32 sid;
1094 	struct dentry *dentry;
1095 #define INITCONTEXTLEN 255
1096 	char *context = NULL;
1097 	unsigned len = 0;
1098 	int rc = 0;
1099 
1100 	if (isec->initialized)
1101 		goto out;
1102 
1103 	mutex_lock(&isec->lock);
1104 	if (isec->initialized)
1105 		goto out_unlock;
1106 
1107 	sbsec = inode->i_sb->s_security;
1108 	if (!sbsec->initialized) {
1109 		/* Defer initialization until selinux_complete_init,
1110 		   after the initial policy is loaded and the security
1111 		   server is ready to handle calls. */
1112 		spin_lock(&sbsec->isec_lock);
1113 		if (list_empty(&isec->list))
1114 			list_add(&isec->list, &sbsec->isec_head);
1115 		spin_unlock(&sbsec->isec_lock);
1116 		goto out_unlock;
1117 	}
1118 
1119 	switch (sbsec->behavior) {
1120 	case SECURITY_FS_USE_XATTR:
1121 		if (!inode->i_op->getxattr) {
1122 			isec->sid = sbsec->def_sid;
1123 			break;
1124 		}
1125 
1126 		/* Need a dentry, since the xattr API requires one.
1127 		   Life would be simpler if we could just pass the inode. */
1128 		if (opt_dentry) {
1129 			/* Called from d_instantiate or d_splice_alias. */
1130 			dentry = dget(opt_dentry);
1131 		} else {
1132 			/* Called from selinux_complete_init, try to find a dentry. */
1133 			dentry = d_find_alias(inode);
1134 		}
1135 		if (!dentry) {
1136 			printk(KERN_WARNING "%s:  no dentry for dev=%s "
1137 			       "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
1138 			       inode->i_ino);
1139 			goto out_unlock;
1140 		}
1141 
1142 		len = INITCONTEXTLEN;
1143 		context = kmalloc(len, GFP_NOFS);
1144 		if (!context) {
1145 			rc = -ENOMEM;
1146 			dput(dentry);
1147 			goto out_unlock;
1148 		}
1149 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1150 					   context, len);
1151 		if (rc == -ERANGE) {
1152 			/* Need a larger buffer.  Query for the right size. */
1153 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1154 						   NULL, 0);
1155 			if (rc < 0) {
1156 				dput(dentry);
1157 				goto out_unlock;
1158 			}
1159 			kfree(context);
1160 			len = rc;
1161 			context = kmalloc(len, GFP_NOFS);
1162 			if (!context) {
1163 				rc = -ENOMEM;
1164 				dput(dentry);
1165 				goto out_unlock;
1166 			}
1167 			rc = inode->i_op->getxattr(dentry,
1168 						   XATTR_NAME_SELINUX,
1169 						   context, len);
1170 		}
1171 		dput(dentry);
1172 		if (rc < 0) {
1173 			if (rc != -ENODATA) {
1174 				printk(KERN_WARNING "%s:  getxattr returned "
1175 				       "%d for dev=%s ino=%ld\n", __FUNCTION__,
1176 				       -rc, inode->i_sb->s_id, inode->i_ino);
1177 				kfree(context);
1178 				goto out_unlock;
1179 			}
1180 			/* Map ENODATA to the default file SID */
1181 			sid = sbsec->def_sid;
1182 			rc = 0;
1183 		} else {
1184 			rc = security_context_to_sid_default(context, rc, &sid,
1185 							     sbsec->def_sid,
1186 							     GFP_NOFS);
1187 			if (rc) {
1188 				printk(KERN_WARNING "%s:  context_to_sid(%s) "
1189 				       "returned %d for dev=%s ino=%ld\n",
1190 				       __FUNCTION__, context, -rc,
1191 				       inode->i_sb->s_id, inode->i_ino);
1192 				kfree(context);
1193 				/* Leave with the unlabeled SID */
1194 				rc = 0;
1195 				break;
1196 			}
1197 		}
1198 		kfree(context);
1199 		isec->sid = sid;
1200 		break;
1201 	case SECURITY_FS_USE_TASK:
1202 		isec->sid = isec->task_sid;
1203 		break;
1204 	case SECURITY_FS_USE_TRANS:
1205 		/* Default to the fs SID. */
1206 		isec->sid = sbsec->sid;
1207 
1208 		/* Try to obtain a transition SID. */
1209 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1210 		rc = security_transition_sid(isec->task_sid,
1211 					     sbsec->sid,
1212 					     isec->sclass,
1213 					     &sid);
1214 		if (rc)
1215 			goto out_unlock;
1216 		isec->sid = sid;
1217 		break;
1218 	case SECURITY_FS_USE_MNTPOINT:
1219 		isec->sid = sbsec->mntpoint_sid;
1220 		break;
1221 	default:
1222 		/* Default to the fs superblock SID. */
1223 		isec->sid = sbsec->sid;
1224 
1225 		if (sbsec->proc) {
1226 			struct proc_inode *proci = PROC_I(inode);
1227 			if (proci->pde) {
1228 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1229 				rc = selinux_proc_get_sid(proci->pde,
1230 							  isec->sclass,
1231 							  &sid);
1232 				if (rc)
1233 					goto out_unlock;
1234 				isec->sid = sid;
1235 			}
1236 		}
1237 		break;
1238 	}
1239 
1240 	isec->initialized = 1;
1241 
1242 out_unlock:
1243 	mutex_unlock(&isec->lock);
1244 out:
1245 	if (isec->sclass == SECCLASS_FILE)
1246 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1247 	return rc;
1248 }
1249 
1250 /* Convert a Linux signal to an access vector. */
1251 static inline u32 signal_to_av(int sig)
1252 {
1253 	u32 perm = 0;
1254 
1255 	switch (sig) {
1256 	case SIGCHLD:
1257 		/* Commonly granted from child to parent. */
1258 		perm = PROCESS__SIGCHLD;
1259 		break;
1260 	case SIGKILL:
1261 		/* Cannot be caught or ignored */
1262 		perm = PROCESS__SIGKILL;
1263 		break;
1264 	case SIGSTOP:
1265 		/* Cannot be caught or ignored */
1266 		perm = PROCESS__SIGSTOP;
1267 		break;
1268 	default:
1269 		/* All other signals. */
1270 		perm = PROCESS__SIGNAL;
1271 		break;
1272 	}
1273 
1274 	return perm;
1275 }
1276 
1277 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1278    fork check, ptrace check, etc. */
1279 static int task_has_perm(struct task_struct *tsk1,
1280 			 struct task_struct *tsk2,
1281 			 u32 perms)
1282 {
1283 	struct task_security_struct *tsec1, *tsec2;
1284 
1285 	tsec1 = tsk1->security;
1286 	tsec2 = tsk2->security;
1287 	return avc_has_perm(tsec1->sid, tsec2->sid,
1288 			    SECCLASS_PROCESS, perms, NULL);
1289 }
1290 
1291 #if CAP_LAST_CAP > 63
1292 #error Fix SELinux to handle capabilities > 63.
1293 #endif
1294 
1295 /* Check whether a task is allowed to use a capability. */
1296 static int task_has_capability(struct task_struct *tsk,
1297 			       int cap)
1298 {
1299 	struct task_security_struct *tsec;
1300 	struct avc_audit_data ad;
1301 	u16 sclass;
1302 	u32 av = CAP_TO_MASK(cap);
1303 
1304 	tsec = tsk->security;
1305 
1306 	AVC_AUDIT_DATA_INIT(&ad,CAP);
1307 	ad.tsk = tsk;
1308 	ad.u.cap = cap;
1309 
1310 	switch (CAP_TO_INDEX(cap)) {
1311 	case 0:
1312 		sclass = SECCLASS_CAPABILITY;
1313 		break;
1314 	case 1:
1315 		sclass = SECCLASS_CAPABILITY2;
1316 		break;
1317 	default:
1318 		printk(KERN_ERR
1319 		       "SELinux:  out of range capability %d\n", cap);
1320 		BUG();
1321 	}
1322 	return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1323 }
1324 
1325 /* Check whether a task is allowed to use a system operation. */
1326 static int task_has_system(struct task_struct *tsk,
1327 			   u32 perms)
1328 {
1329 	struct task_security_struct *tsec;
1330 
1331 	tsec = tsk->security;
1332 
1333 	return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1334 			    SECCLASS_SYSTEM, perms, NULL);
1335 }
1336 
1337 /* Check whether a task has a particular permission to an inode.
1338    The 'adp' parameter is optional and allows other audit
1339    data to be passed (e.g. the dentry). */
1340 static int inode_has_perm(struct task_struct *tsk,
1341 			  struct inode *inode,
1342 			  u32 perms,
1343 			  struct avc_audit_data *adp)
1344 {
1345 	struct task_security_struct *tsec;
1346 	struct inode_security_struct *isec;
1347 	struct avc_audit_data ad;
1348 
1349 	if (unlikely (IS_PRIVATE (inode)))
1350 		return 0;
1351 
1352 	tsec = tsk->security;
1353 	isec = inode->i_security;
1354 
1355 	if (!adp) {
1356 		adp = &ad;
1357 		AVC_AUDIT_DATA_INIT(&ad, FS);
1358 		ad.u.fs.inode = inode;
1359 	}
1360 
1361 	return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1362 }
1363 
1364 /* Same as inode_has_perm, but pass explicit audit data containing
1365    the dentry to help the auditing code to more easily generate the
1366    pathname if needed. */
1367 static inline int dentry_has_perm(struct task_struct *tsk,
1368 				  struct vfsmount *mnt,
1369 				  struct dentry *dentry,
1370 				  u32 av)
1371 {
1372 	struct inode *inode = dentry->d_inode;
1373 	struct avc_audit_data ad;
1374 	AVC_AUDIT_DATA_INIT(&ad,FS);
1375 	ad.u.fs.path.mnt = mnt;
1376 	ad.u.fs.path.dentry = dentry;
1377 	return inode_has_perm(tsk, inode, av, &ad);
1378 }
1379 
1380 /* Check whether a task can use an open file descriptor to
1381    access an inode in a given way.  Check access to the
1382    descriptor itself, and then use dentry_has_perm to
1383    check a particular permission to the file.
1384    Access to the descriptor is implicitly granted if it
1385    has the same SID as the process.  If av is zero, then
1386    access to the file is not checked, e.g. for cases
1387    where only the descriptor is affected like seek. */
1388 static int file_has_perm(struct task_struct *tsk,
1389 				struct file *file,
1390 				u32 av)
1391 {
1392 	struct task_security_struct *tsec = tsk->security;
1393 	struct file_security_struct *fsec = file->f_security;
1394 	struct inode *inode = file->f_path.dentry->d_inode;
1395 	struct avc_audit_data ad;
1396 	int rc;
1397 
1398 	AVC_AUDIT_DATA_INIT(&ad, FS);
1399 	ad.u.fs.path = file->f_path;
1400 
1401 	if (tsec->sid != fsec->sid) {
1402 		rc = avc_has_perm(tsec->sid, fsec->sid,
1403 				  SECCLASS_FD,
1404 				  FD__USE,
1405 				  &ad);
1406 		if (rc)
1407 			return rc;
1408 	}
1409 
1410 	/* av is zero if only checking access to the descriptor. */
1411 	if (av)
1412 		return inode_has_perm(tsk, inode, av, &ad);
1413 
1414 	return 0;
1415 }
1416 
1417 /* Check whether a task can create a file. */
1418 static int may_create(struct inode *dir,
1419 		      struct dentry *dentry,
1420 		      u16 tclass)
1421 {
1422 	struct task_security_struct *tsec;
1423 	struct inode_security_struct *dsec;
1424 	struct superblock_security_struct *sbsec;
1425 	u32 newsid;
1426 	struct avc_audit_data ad;
1427 	int rc;
1428 
1429 	tsec = current->security;
1430 	dsec = dir->i_security;
1431 	sbsec = dir->i_sb->s_security;
1432 
1433 	AVC_AUDIT_DATA_INIT(&ad, FS);
1434 	ad.u.fs.path.dentry = dentry;
1435 
1436 	rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1437 			  DIR__ADD_NAME | DIR__SEARCH,
1438 			  &ad);
1439 	if (rc)
1440 		return rc;
1441 
1442 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1443 		newsid = tsec->create_sid;
1444 	} else {
1445 		rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1446 					     &newsid);
1447 		if (rc)
1448 			return rc;
1449 	}
1450 
1451 	rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1452 	if (rc)
1453 		return rc;
1454 
1455 	return avc_has_perm(newsid, sbsec->sid,
1456 			    SECCLASS_FILESYSTEM,
1457 			    FILESYSTEM__ASSOCIATE, &ad);
1458 }
1459 
1460 /* Check whether a task can create a key. */
1461 static int may_create_key(u32 ksid,
1462 			  struct task_struct *ctx)
1463 {
1464 	struct task_security_struct *tsec;
1465 
1466 	tsec = ctx->security;
1467 
1468 	return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1469 }
1470 
1471 #define MAY_LINK   0
1472 #define MAY_UNLINK 1
1473 #define MAY_RMDIR  2
1474 
1475 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1476 static int may_link(struct inode *dir,
1477 		    struct dentry *dentry,
1478 		    int kind)
1479 
1480 {
1481 	struct task_security_struct *tsec;
1482 	struct inode_security_struct *dsec, *isec;
1483 	struct avc_audit_data ad;
1484 	u32 av;
1485 	int rc;
1486 
1487 	tsec = current->security;
1488 	dsec = dir->i_security;
1489 	isec = dentry->d_inode->i_security;
1490 
1491 	AVC_AUDIT_DATA_INIT(&ad, FS);
1492 	ad.u.fs.path.dentry = dentry;
1493 
1494 	av = DIR__SEARCH;
1495 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1496 	rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1497 	if (rc)
1498 		return rc;
1499 
1500 	switch (kind) {
1501 	case MAY_LINK:
1502 		av = FILE__LINK;
1503 		break;
1504 	case MAY_UNLINK:
1505 		av = FILE__UNLINK;
1506 		break;
1507 	case MAY_RMDIR:
1508 		av = DIR__RMDIR;
1509 		break;
1510 	default:
1511 		printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1512 		return 0;
1513 	}
1514 
1515 	rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1516 	return rc;
1517 }
1518 
1519 static inline int may_rename(struct inode *old_dir,
1520 			     struct dentry *old_dentry,
1521 			     struct inode *new_dir,
1522 			     struct dentry *new_dentry)
1523 {
1524 	struct task_security_struct *tsec;
1525 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1526 	struct avc_audit_data ad;
1527 	u32 av;
1528 	int old_is_dir, new_is_dir;
1529 	int rc;
1530 
1531 	tsec = current->security;
1532 	old_dsec = old_dir->i_security;
1533 	old_isec = old_dentry->d_inode->i_security;
1534 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1535 	new_dsec = new_dir->i_security;
1536 
1537 	AVC_AUDIT_DATA_INIT(&ad, FS);
1538 
1539 	ad.u.fs.path.dentry = old_dentry;
1540 	rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1541 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1542 	if (rc)
1543 		return rc;
1544 	rc = avc_has_perm(tsec->sid, old_isec->sid,
1545 			  old_isec->sclass, FILE__RENAME, &ad);
1546 	if (rc)
1547 		return rc;
1548 	if (old_is_dir && new_dir != old_dir) {
1549 		rc = avc_has_perm(tsec->sid, old_isec->sid,
1550 				  old_isec->sclass, DIR__REPARENT, &ad);
1551 		if (rc)
1552 			return rc;
1553 	}
1554 
1555 	ad.u.fs.path.dentry = new_dentry;
1556 	av = DIR__ADD_NAME | DIR__SEARCH;
1557 	if (new_dentry->d_inode)
1558 		av |= DIR__REMOVE_NAME;
1559 	rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1560 	if (rc)
1561 		return rc;
1562 	if (new_dentry->d_inode) {
1563 		new_isec = new_dentry->d_inode->i_security;
1564 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1565 		rc = avc_has_perm(tsec->sid, new_isec->sid,
1566 				  new_isec->sclass,
1567 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1568 		if (rc)
1569 			return rc;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 /* Check whether a task can perform a filesystem operation. */
1576 static int superblock_has_perm(struct task_struct *tsk,
1577 			       struct super_block *sb,
1578 			       u32 perms,
1579 			       struct avc_audit_data *ad)
1580 {
1581 	struct task_security_struct *tsec;
1582 	struct superblock_security_struct *sbsec;
1583 
1584 	tsec = tsk->security;
1585 	sbsec = sb->s_security;
1586 	return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1587 			    perms, ad);
1588 }
1589 
1590 /* Convert a Linux mode and permission mask to an access vector. */
1591 static inline u32 file_mask_to_av(int mode, int mask)
1592 {
1593 	u32 av = 0;
1594 
1595 	if ((mode & S_IFMT) != S_IFDIR) {
1596 		if (mask & MAY_EXEC)
1597 			av |= FILE__EXECUTE;
1598 		if (mask & MAY_READ)
1599 			av |= FILE__READ;
1600 
1601 		if (mask & MAY_APPEND)
1602 			av |= FILE__APPEND;
1603 		else if (mask & MAY_WRITE)
1604 			av |= FILE__WRITE;
1605 
1606 	} else {
1607 		if (mask & MAY_EXEC)
1608 			av |= DIR__SEARCH;
1609 		if (mask & MAY_WRITE)
1610 			av |= DIR__WRITE;
1611 		if (mask & MAY_READ)
1612 			av |= DIR__READ;
1613 	}
1614 
1615 	return av;
1616 }
1617 
1618 /*
1619  * Convert a file mask to an access vector and include the correct open
1620  * open permission.
1621  */
1622 static inline u32 open_file_mask_to_av(int mode, int mask)
1623 {
1624 	u32 av = file_mask_to_av(mode, mask);
1625 
1626 	if (selinux_policycap_openperm) {
1627 		/*
1628 		 * lnk files and socks do not really have an 'open'
1629 		 */
1630 		if (S_ISREG(mode))
1631 			av |= FILE__OPEN;
1632 		else if (S_ISCHR(mode))
1633 			av |= CHR_FILE__OPEN;
1634 		else if (S_ISBLK(mode))
1635 			av |= BLK_FILE__OPEN;
1636 		else if (S_ISFIFO(mode))
1637 			av |= FIFO_FILE__OPEN;
1638 		else if (S_ISDIR(mode))
1639 			av |= DIR__OPEN;
1640 		else
1641 			printk(KERN_ERR "SELinux: WARNING: inside open_file_to_av "
1642 				"with unknown mode:%x\n", mode);
1643 	}
1644 	return av;
1645 }
1646 
1647 /* Convert a Linux file to an access vector. */
1648 static inline u32 file_to_av(struct file *file)
1649 {
1650 	u32 av = 0;
1651 
1652 	if (file->f_mode & FMODE_READ)
1653 		av |= FILE__READ;
1654 	if (file->f_mode & FMODE_WRITE) {
1655 		if (file->f_flags & O_APPEND)
1656 			av |= FILE__APPEND;
1657 		else
1658 			av |= FILE__WRITE;
1659 	}
1660 	if (!av) {
1661 		/*
1662 		 * Special file opened with flags 3 for ioctl-only use.
1663 		 */
1664 		av = FILE__IOCTL;
1665 	}
1666 
1667 	return av;
1668 }
1669 
1670 /* Hook functions begin here. */
1671 
1672 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1673 {
1674 	struct task_security_struct *psec = parent->security;
1675 	struct task_security_struct *csec = child->security;
1676 	int rc;
1677 
1678 	rc = secondary_ops->ptrace(parent,child);
1679 	if (rc)
1680 		return rc;
1681 
1682 	rc = task_has_perm(parent, child, PROCESS__PTRACE);
1683 	/* Save the SID of the tracing process for later use in apply_creds. */
1684 	if (!(child->ptrace & PT_PTRACED) && !rc)
1685 		csec->ptrace_sid = psec->sid;
1686 	return rc;
1687 }
1688 
1689 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1690                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1691 {
1692 	int error;
1693 
1694 	error = task_has_perm(current, target, PROCESS__GETCAP);
1695 	if (error)
1696 		return error;
1697 
1698 	return secondary_ops->capget(target, effective, inheritable, permitted);
1699 }
1700 
1701 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1702                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1703 {
1704 	int error;
1705 
1706 	error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1707 	if (error)
1708 		return error;
1709 
1710 	return task_has_perm(current, target, PROCESS__SETCAP);
1711 }
1712 
1713 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1714                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1715 {
1716 	secondary_ops->capset_set(target, effective, inheritable, permitted);
1717 }
1718 
1719 static int selinux_capable(struct task_struct *tsk, int cap)
1720 {
1721 	int rc;
1722 
1723 	rc = secondary_ops->capable(tsk, cap);
1724 	if (rc)
1725 		return rc;
1726 
1727 	return task_has_capability(tsk,cap);
1728 }
1729 
1730 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1731 {
1732 	int buflen, rc;
1733 	char *buffer, *path, *end;
1734 
1735 	rc = -ENOMEM;
1736 	buffer = (char*)__get_free_page(GFP_KERNEL);
1737 	if (!buffer)
1738 		goto out;
1739 
1740 	buflen = PAGE_SIZE;
1741 	end = buffer+buflen;
1742 	*--end = '\0';
1743 	buflen--;
1744 	path = end-1;
1745 	*path = '/';
1746 	while (table) {
1747 		const char *name = table->procname;
1748 		size_t namelen = strlen(name);
1749 		buflen -= namelen + 1;
1750 		if (buflen < 0)
1751 			goto out_free;
1752 		end -= namelen;
1753 		memcpy(end, name, namelen);
1754 		*--end = '/';
1755 		path = end;
1756 		table = table->parent;
1757 	}
1758 	buflen -= 4;
1759 	if (buflen < 0)
1760 		goto out_free;
1761 	end -= 4;
1762 	memcpy(end, "/sys", 4);
1763 	path = end;
1764 	rc = security_genfs_sid("proc", path, tclass, sid);
1765 out_free:
1766 	free_page((unsigned long)buffer);
1767 out:
1768 	return rc;
1769 }
1770 
1771 static int selinux_sysctl(ctl_table *table, int op)
1772 {
1773 	int error = 0;
1774 	u32 av;
1775 	struct task_security_struct *tsec;
1776 	u32 tsid;
1777 	int rc;
1778 
1779 	rc = secondary_ops->sysctl(table, op);
1780 	if (rc)
1781 		return rc;
1782 
1783 	tsec = current->security;
1784 
1785 	rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1786 				    SECCLASS_DIR : SECCLASS_FILE, &tsid);
1787 	if (rc) {
1788 		/* Default to the well-defined sysctl SID. */
1789 		tsid = SECINITSID_SYSCTL;
1790 	}
1791 
1792 	/* The op values are "defined" in sysctl.c, thereby creating
1793 	 * a bad coupling between this module and sysctl.c */
1794 	if(op == 001) {
1795 		error = avc_has_perm(tsec->sid, tsid,
1796 				     SECCLASS_DIR, DIR__SEARCH, NULL);
1797 	} else {
1798 		av = 0;
1799 		if (op & 004)
1800 			av |= FILE__READ;
1801 		if (op & 002)
1802 			av |= FILE__WRITE;
1803 		if (av)
1804 			error = avc_has_perm(tsec->sid, tsid,
1805 					     SECCLASS_FILE, av, NULL);
1806         }
1807 
1808 	return error;
1809 }
1810 
1811 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1812 {
1813 	int rc = 0;
1814 
1815 	if (!sb)
1816 		return 0;
1817 
1818 	switch (cmds) {
1819 		case Q_SYNC:
1820 		case Q_QUOTAON:
1821 		case Q_QUOTAOFF:
1822 	        case Q_SETINFO:
1823 		case Q_SETQUOTA:
1824 			rc = superblock_has_perm(current,
1825 						 sb,
1826 						 FILESYSTEM__QUOTAMOD, NULL);
1827 			break;
1828 	        case Q_GETFMT:
1829 	        case Q_GETINFO:
1830 		case Q_GETQUOTA:
1831 			rc = superblock_has_perm(current,
1832 						 sb,
1833 						 FILESYSTEM__QUOTAGET, NULL);
1834 			break;
1835 		default:
1836 			rc = 0;  /* let the kernel handle invalid cmds */
1837 			break;
1838 	}
1839 	return rc;
1840 }
1841 
1842 static int selinux_quota_on(struct dentry *dentry)
1843 {
1844 	return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1845 }
1846 
1847 static int selinux_syslog(int type)
1848 {
1849 	int rc;
1850 
1851 	rc = secondary_ops->syslog(type);
1852 	if (rc)
1853 		return rc;
1854 
1855 	switch (type) {
1856 		case 3:         /* Read last kernel messages */
1857 		case 10:        /* Return size of the log buffer */
1858 			rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1859 			break;
1860 		case 6:         /* Disable logging to console */
1861 		case 7:         /* Enable logging to console */
1862 		case 8:		/* Set level of messages printed to console */
1863 			rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1864 			break;
1865 		case 0:         /* Close log */
1866 		case 1:         /* Open log */
1867 		case 2:         /* Read from log */
1868 		case 4:         /* Read/clear last kernel messages */
1869 		case 5:         /* Clear ring buffer */
1870 		default:
1871 			rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1872 			break;
1873 	}
1874 	return rc;
1875 }
1876 
1877 /*
1878  * Check that a process has enough memory to allocate a new virtual
1879  * mapping. 0 means there is enough memory for the allocation to
1880  * succeed and -ENOMEM implies there is not.
1881  *
1882  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1883  * if the capability is granted, but __vm_enough_memory requires 1 if
1884  * the capability is granted.
1885  *
1886  * Do not audit the selinux permission check, as this is applied to all
1887  * processes that allocate mappings.
1888  */
1889 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1890 {
1891 	int rc, cap_sys_admin = 0;
1892 	struct task_security_struct *tsec = current->security;
1893 
1894 	rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1895 	if (rc == 0)
1896 		rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1897 					  SECCLASS_CAPABILITY,
1898 					  CAP_TO_MASK(CAP_SYS_ADMIN),
1899 					  0,
1900 					  NULL);
1901 
1902 	if (rc == 0)
1903 		cap_sys_admin = 1;
1904 
1905 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1906 }
1907 
1908 /* binprm security operations */
1909 
1910 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1911 {
1912 	struct bprm_security_struct *bsec;
1913 
1914 	bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1915 	if (!bsec)
1916 		return -ENOMEM;
1917 
1918 	bsec->sid = SECINITSID_UNLABELED;
1919 	bsec->set = 0;
1920 
1921 	bprm->security = bsec;
1922 	return 0;
1923 }
1924 
1925 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1926 {
1927 	struct task_security_struct *tsec;
1928 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1929 	struct inode_security_struct *isec;
1930 	struct bprm_security_struct *bsec;
1931 	u32 newsid;
1932 	struct avc_audit_data ad;
1933 	int rc;
1934 
1935 	rc = secondary_ops->bprm_set_security(bprm);
1936 	if (rc)
1937 		return rc;
1938 
1939 	bsec = bprm->security;
1940 
1941 	if (bsec->set)
1942 		return 0;
1943 
1944 	tsec = current->security;
1945 	isec = inode->i_security;
1946 
1947 	/* Default to the current task SID. */
1948 	bsec->sid = tsec->sid;
1949 
1950 	/* Reset fs, key, and sock SIDs on execve. */
1951 	tsec->create_sid = 0;
1952 	tsec->keycreate_sid = 0;
1953 	tsec->sockcreate_sid = 0;
1954 
1955 	if (tsec->exec_sid) {
1956 		newsid = tsec->exec_sid;
1957 		/* Reset exec SID on execve. */
1958 		tsec->exec_sid = 0;
1959 	} else {
1960 		/* Check for a default transition on this program. */
1961 		rc = security_transition_sid(tsec->sid, isec->sid,
1962 		                             SECCLASS_PROCESS, &newsid);
1963 		if (rc)
1964 			return rc;
1965 	}
1966 
1967 	AVC_AUDIT_DATA_INIT(&ad, FS);
1968 	ad.u.fs.path = bprm->file->f_path;
1969 
1970 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1971 		newsid = tsec->sid;
1972 
1973         if (tsec->sid == newsid) {
1974 		rc = avc_has_perm(tsec->sid, isec->sid,
1975 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1976 		if (rc)
1977 			return rc;
1978 	} else {
1979 		/* Check permissions for the transition. */
1980 		rc = avc_has_perm(tsec->sid, newsid,
1981 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1982 		if (rc)
1983 			return rc;
1984 
1985 		rc = avc_has_perm(newsid, isec->sid,
1986 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1987 		if (rc)
1988 			return rc;
1989 
1990 		/* Clear any possibly unsafe personality bits on exec: */
1991 		current->personality &= ~PER_CLEAR_ON_SETID;
1992 
1993 		/* Set the security field to the new SID. */
1994 		bsec->sid = newsid;
1995 	}
1996 
1997 	bsec->set = 1;
1998 	return 0;
1999 }
2000 
2001 static int selinux_bprm_check_security (struct linux_binprm *bprm)
2002 {
2003 	return secondary_ops->bprm_check_security(bprm);
2004 }
2005 
2006 
2007 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
2008 {
2009 	struct task_security_struct *tsec = current->security;
2010 	int atsecure = 0;
2011 
2012 	if (tsec->osid != tsec->sid) {
2013 		/* Enable secure mode for SIDs transitions unless
2014 		   the noatsecure permission is granted between
2015 		   the two SIDs, i.e. ahp returns 0. */
2016 		atsecure = avc_has_perm(tsec->osid, tsec->sid,
2017 					 SECCLASS_PROCESS,
2018 					 PROCESS__NOATSECURE, NULL);
2019 	}
2020 
2021 	return (atsecure || secondary_ops->bprm_secureexec(bprm));
2022 }
2023 
2024 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2025 {
2026 	kfree(bprm->security);
2027 	bprm->security = NULL;
2028 }
2029 
2030 extern struct vfsmount *selinuxfs_mount;
2031 extern struct dentry *selinux_null;
2032 
2033 /* Derived from fs/exec.c:flush_old_files. */
2034 static inline void flush_unauthorized_files(struct files_struct * files)
2035 {
2036 	struct avc_audit_data ad;
2037 	struct file *file, *devnull = NULL;
2038 	struct tty_struct *tty;
2039 	struct fdtable *fdt;
2040 	long j = -1;
2041 	int drop_tty = 0;
2042 
2043 	mutex_lock(&tty_mutex);
2044 	tty = get_current_tty();
2045 	if (tty) {
2046 		file_list_lock();
2047 		file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
2048 		if (file) {
2049 			/* Revalidate access to controlling tty.
2050 			   Use inode_has_perm on the tty inode directly rather
2051 			   than using file_has_perm, as this particular open
2052 			   file may belong to another process and we are only
2053 			   interested in the inode-based check here. */
2054 			struct inode *inode = file->f_path.dentry->d_inode;
2055 			if (inode_has_perm(current, inode,
2056 					   FILE__READ | FILE__WRITE, NULL)) {
2057 				drop_tty = 1;
2058 			}
2059 		}
2060 		file_list_unlock();
2061 	}
2062 	mutex_unlock(&tty_mutex);
2063 	/* Reset controlling tty. */
2064 	if (drop_tty)
2065 		no_tty();
2066 
2067 	/* Revalidate access to inherited open files. */
2068 
2069 	AVC_AUDIT_DATA_INIT(&ad,FS);
2070 
2071 	spin_lock(&files->file_lock);
2072 	for (;;) {
2073 		unsigned long set, i;
2074 		int fd;
2075 
2076 		j++;
2077 		i = j * __NFDBITS;
2078 		fdt = files_fdtable(files);
2079 		if (i >= fdt->max_fds)
2080 			break;
2081 		set = fdt->open_fds->fds_bits[j];
2082 		if (!set)
2083 			continue;
2084 		spin_unlock(&files->file_lock);
2085 		for ( ; set ; i++,set >>= 1) {
2086 			if (set & 1) {
2087 				file = fget(i);
2088 				if (!file)
2089 					continue;
2090 				if (file_has_perm(current,
2091 						  file,
2092 						  file_to_av(file))) {
2093 					sys_close(i);
2094 					fd = get_unused_fd();
2095 					if (fd != i) {
2096 						if (fd >= 0)
2097 							put_unused_fd(fd);
2098 						fput(file);
2099 						continue;
2100 					}
2101 					if (devnull) {
2102 						get_file(devnull);
2103 					} else {
2104 						devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2105 						if (IS_ERR(devnull)) {
2106 							devnull = NULL;
2107 							put_unused_fd(fd);
2108 							fput(file);
2109 							continue;
2110 						}
2111 					}
2112 					fd_install(fd, devnull);
2113 				}
2114 				fput(file);
2115 			}
2116 		}
2117 		spin_lock(&files->file_lock);
2118 
2119 	}
2120 	spin_unlock(&files->file_lock);
2121 }
2122 
2123 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2124 {
2125 	struct task_security_struct *tsec;
2126 	struct bprm_security_struct *bsec;
2127 	u32 sid;
2128 	int rc;
2129 
2130 	secondary_ops->bprm_apply_creds(bprm, unsafe);
2131 
2132 	tsec = current->security;
2133 
2134 	bsec = bprm->security;
2135 	sid = bsec->sid;
2136 
2137 	tsec->osid = tsec->sid;
2138 	bsec->unsafe = 0;
2139 	if (tsec->sid != sid) {
2140 		/* Check for shared state.  If not ok, leave SID
2141 		   unchanged and kill. */
2142 		if (unsafe & LSM_UNSAFE_SHARE) {
2143 			rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2144 					PROCESS__SHARE, NULL);
2145 			if (rc) {
2146 				bsec->unsafe = 1;
2147 				return;
2148 			}
2149 		}
2150 
2151 		/* Check for ptracing, and update the task SID if ok.
2152 		   Otherwise, leave SID unchanged and kill. */
2153 		if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2154 			rc = avc_has_perm(tsec->ptrace_sid, sid,
2155 					  SECCLASS_PROCESS, PROCESS__PTRACE,
2156 					  NULL);
2157 			if (rc) {
2158 				bsec->unsafe = 1;
2159 				return;
2160 			}
2161 		}
2162 		tsec->sid = sid;
2163 	}
2164 }
2165 
2166 /*
2167  * called after apply_creds without the task lock held
2168  */
2169 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2170 {
2171 	struct task_security_struct *tsec;
2172 	struct rlimit *rlim, *initrlim;
2173 	struct itimerval itimer;
2174 	struct bprm_security_struct *bsec;
2175 	int rc, i;
2176 
2177 	tsec = current->security;
2178 	bsec = bprm->security;
2179 
2180 	if (bsec->unsafe) {
2181 		force_sig_specific(SIGKILL, current);
2182 		return;
2183 	}
2184 	if (tsec->osid == tsec->sid)
2185 		return;
2186 
2187 	/* Close files for which the new task SID is not authorized. */
2188 	flush_unauthorized_files(current->files);
2189 
2190 	/* Check whether the new SID can inherit signal state
2191 	   from the old SID.  If not, clear itimers to avoid
2192 	   subsequent signal generation and flush and unblock
2193 	   signals. This must occur _after_ the task SID has
2194 	  been updated so that any kill done after the flush
2195 	  will be checked against the new SID. */
2196 	rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2197 			  PROCESS__SIGINH, NULL);
2198 	if (rc) {
2199 		memset(&itimer, 0, sizeof itimer);
2200 		for (i = 0; i < 3; i++)
2201 			do_setitimer(i, &itimer, NULL);
2202 		flush_signals(current);
2203 		spin_lock_irq(&current->sighand->siglock);
2204 		flush_signal_handlers(current, 1);
2205 		sigemptyset(&current->blocked);
2206 		recalc_sigpending();
2207 		spin_unlock_irq(&current->sighand->siglock);
2208 	}
2209 
2210 	/* Always clear parent death signal on SID transitions. */
2211 	current->pdeath_signal = 0;
2212 
2213 	/* Check whether the new SID can inherit resource limits
2214 	   from the old SID.  If not, reset all soft limits to
2215 	   the lower of the current task's hard limit and the init
2216 	   task's soft limit.  Note that the setting of hard limits
2217 	   (even to lower them) can be controlled by the setrlimit
2218 	   check. The inclusion of the init task's soft limit into
2219 	   the computation is to avoid resetting soft limits higher
2220 	   than the default soft limit for cases where the default
2221 	   is lower than the hard limit, e.g. RLIMIT_CORE or
2222 	   RLIMIT_STACK.*/
2223 	rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2224 			  PROCESS__RLIMITINH, NULL);
2225 	if (rc) {
2226 		for (i = 0; i < RLIM_NLIMITS; i++) {
2227 			rlim = current->signal->rlim + i;
2228 			initrlim = init_task.signal->rlim+i;
2229 			rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
2230 		}
2231 		if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
2232 			/*
2233 			 * This will cause RLIMIT_CPU calculations
2234 			 * to be refigured.
2235 			 */
2236 			current->it_prof_expires = jiffies_to_cputime(1);
2237 		}
2238 	}
2239 
2240 	/* Wake up the parent if it is waiting so that it can
2241 	   recheck wait permission to the new task SID. */
2242 	wake_up_interruptible(&current->parent->signal->wait_chldexit);
2243 }
2244 
2245 /* superblock security operations */
2246 
2247 static int selinux_sb_alloc_security(struct super_block *sb)
2248 {
2249 	return superblock_alloc_security(sb);
2250 }
2251 
2252 static void selinux_sb_free_security(struct super_block *sb)
2253 {
2254 	superblock_free_security(sb);
2255 }
2256 
2257 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2258 {
2259 	if (plen > olen)
2260 		return 0;
2261 
2262 	return !memcmp(prefix, option, plen);
2263 }
2264 
2265 static inline int selinux_option(char *option, int len)
2266 {
2267 	return (match_prefix("context=", sizeof("context=")-1, option, len) ||
2268 	        match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
2269 	        match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
2270 		match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
2271 }
2272 
2273 static inline void take_option(char **to, char *from, int *first, int len)
2274 {
2275 	if (!*first) {
2276 		**to = ',';
2277 		*to += 1;
2278 	} else
2279 		*first = 0;
2280 	memcpy(*to, from, len);
2281 	*to += len;
2282 }
2283 
2284 static inline void take_selinux_option(char **to, char *from, int *first,
2285 		                       int len)
2286 {
2287 	int current_size = 0;
2288 
2289 	if (!*first) {
2290 		**to = '|';
2291 		*to += 1;
2292 	}
2293 	else
2294 		*first = 0;
2295 
2296 	while (current_size < len) {
2297 		if (*from != '"') {
2298 			**to = *from;
2299 			*to += 1;
2300 		}
2301 		from += 1;
2302 		current_size += 1;
2303 	}
2304 }
2305 
2306 static int selinux_sb_copy_data(char *orig, char *copy)
2307 {
2308 	int fnosec, fsec, rc = 0;
2309 	char *in_save, *in_curr, *in_end;
2310 	char *sec_curr, *nosec_save, *nosec;
2311 	int open_quote = 0;
2312 
2313 	in_curr = orig;
2314 	sec_curr = copy;
2315 
2316 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2317 	if (!nosec) {
2318 		rc = -ENOMEM;
2319 		goto out;
2320 	}
2321 
2322 	nosec_save = nosec;
2323 	fnosec = fsec = 1;
2324 	in_save = in_end = orig;
2325 
2326 	do {
2327 		if (*in_end == '"')
2328 			open_quote = !open_quote;
2329 		if ((*in_end == ',' && open_quote == 0) ||
2330 				*in_end == '\0') {
2331 			int len = in_end - in_curr;
2332 
2333 			if (selinux_option(in_curr, len))
2334 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2335 			else
2336 				take_option(&nosec, in_curr, &fnosec, len);
2337 
2338 			in_curr = in_end + 1;
2339 		}
2340 	} while (*in_end++);
2341 
2342 	strcpy(in_save, nosec_save);
2343 	free_page((unsigned long)nosec_save);
2344 out:
2345 	return rc;
2346 }
2347 
2348 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2349 {
2350 	struct avc_audit_data ad;
2351 	int rc;
2352 
2353 	rc = superblock_doinit(sb, data);
2354 	if (rc)
2355 		return rc;
2356 
2357 	AVC_AUDIT_DATA_INIT(&ad,FS);
2358 	ad.u.fs.path.dentry = sb->s_root;
2359 	return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2360 }
2361 
2362 static int selinux_sb_statfs(struct dentry *dentry)
2363 {
2364 	struct avc_audit_data ad;
2365 
2366 	AVC_AUDIT_DATA_INIT(&ad,FS);
2367 	ad.u.fs.path.dentry = dentry->d_sb->s_root;
2368 	return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2369 }
2370 
2371 static int selinux_mount(char * dev_name,
2372                          struct nameidata *nd,
2373                          char * type,
2374                          unsigned long flags,
2375                          void * data)
2376 {
2377 	int rc;
2378 
2379 	rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2380 	if (rc)
2381 		return rc;
2382 
2383 	if (flags & MS_REMOUNT)
2384 		return superblock_has_perm(current, nd->path.mnt->mnt_sb,
2385 		                           FILESYSTEM__REMOUNT, NULL);
2386 	else
2387 		return dentry_has_perm(current, nd->path.mnt, nd->path.dentry,
2388 		                       FILE__MOUNTON);
2389 }
2390 
2391 static int selinux_umount(struct vfsmount *mnt, int flags)
2392 {
2393 	int rc;
2394 
2395 	rc = secondary_ops->sb_umount(mnt, flags);
2396 	if (rc)
2397 		return rc;
2398 
2399 	return superblock_has_perm(current,mnt->mnt_sb,
2400 	                           FILESYSTEM__UNMOUNT,NULL);
2401 }
2402 
2403 /* inode security operations */
2404 
2405 static int selinux_inode_alloc_security(struct inode *inode)
2406 {
2407 	return inode_alloc_security(inode);
2408 }
2409 
2410 static void selinux_inode_free_security(struct inode *inode)
2411 {
2412 	inode_free_security(inode);
2413 }
2414 
2415 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2416 				       char **name, void **value,
2417 				       size_t *len)
2418 {
2419 	struct task_security_struct *tsec;
2420 	struct inode_security_struct *dsec;
2421 	struct superblock_security_struct *sbsec;
2422 	u32 newsid, clen;
2423 	int rc;
2424 	char *namep = NULL, *context;
2425 
2426 	tsec = current->security;
2427 	dsec = dir->i_security;
2428 	sbsec = dir->i_sb->s_security;
2429 
2430 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2431 		newsid = tsec->create_sid;
2432 	} else {
2433 		rc = security_transition_sid(tsec->sid, dsec->sid,
2434 					     inode_mode_to_security_class(inode->i_mode),
2435 					     &newsid);
2436 		if (rc) {
2437 			printk(KERN_WARNING "%s:  "
2438 			       "security_transition_sid failed, rc=%d (dev=%s "
2439 			       "ino=%ld)\n",
2440 			       __FUNCTION__,
2441 			       -rc, inode->i_sb->s_id, inode->i_ino);
2442 			return rc;
2443 		}
2444 	}
2445 
2446 	/* Possibly defer initialization to selinux_complete_init. */
2447 	if (sbsec->initialized) {
2448 		struct inode_security_struct *isec = inode->i_security;
2449 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2450 		isec->sid = newsid;
2451 		isec->initialized = 1;
2452 	}
2453 
2454 	if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2455 		return -EOPNOTSUPP;
2456 
2457 	if (name) {
2458 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2459 		if (!namep)
2460 			return -ENOMEM;
2461 		*name = namep;
2462 	}
2463 
2464 	if (value && len) {
2465 		rc = security_sid_to_context(newsid, &context, &clen);
2466 		if (rc) {
2467 			kfree(namep);
2468 			return rc;
2469 		}
2470 		*value = context;
2471 		*len = clen;
2472 	}
2473 
2474 	return 0;
2475 }
2476 
2477 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2478 {
2479 	return may_create(dir, dentry, SECCLASS_FILE);
2480 }
2481 
2482 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2483 {
2484 	int rc;
2485 
2486 	rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2487 	if (rc)
2488 		return rc;
2489 	return may_link(dir, old_dentry, MAY_LINK);
2490 }
2491 
2492 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2493 {
2494 	int rc;
2495 
2496 	rc = secondary_ops->inode_unlink(dir, dentry);
2497 	if (rc)
2498 		return rc;
2499 	return may_link(dir, dentry, MAY_UNLINK);
2500 }
2501 
2502 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2503 {
2504 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2505 }
2506 
2507 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2508 {
2509 	return may_create(dir, dentry, SECCLASS_DIR);
2510 }
2511 
2512 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2513 {
2514 	return may_link(dir, dentry, MAY_RMDIR);
2515 }
2516 
2517 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2518 {
2519 	int rc;
2520 
2521 	rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2522 	if (rc)
2523 		return rc;
2524 
2525 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2526 }
2527 
2528 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2529                                 struct inode *new_inode, struct dentry *new_dentry)
2530 {
2531 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2532 }
2533 
2534 static int selinux_inode_readlink(struct dentry *dentry)
2535 {
2536 	return dentry_has_perm(current, NULL, dentry, FILE__READ);
2537 }
2538 
2539 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2540 {
2541 	int rc;
2542 
2543 	rc = secondary_ops->inode_follow_link(dentry,nameidata);
2544 	if (rc)
2545 		return rc;
2546 	return dentry_has_perm(current, NULL, dentry, FILE__READ);
2547 }
2548 
2549 static int selinux_inode_permission(struct inode *inode, int mask,
2550 				    struct nameidata *nd)
2551 {
2552 	int rc;
2553 
2554 	rc = secondary_ops->inode_permission(inode, mask, nd);
2555 	if (rc)
2556 		return rc;
2557 
2558 	if (!mask) {
2559 		/* No permission to check.  Existence test. */
2560 		return 0;
2561 	}
2562 
2563 	return inode_has_perm(current, inode,
2564 			       open_file_mask_to_av(inode->i_mode, mask), NULL);
2565 }
2566 
2567 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2568 {
2569 	int rc;
2570 
2571 	rc = secondary_ops->inode_setattr(dentry, iattr);
2572 	if (rc)
2573 		return rc;
2574 
2575 	if (iattr->ia_valid & ATTR_FORCE)
2576 		return 0;
2577 
2578 	if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2579 			       ATTR_ATIME_SET | ATTR_MTIME_SET))
2580 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2581 
2582 	return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2583 }
2584 
2585 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2586 {
2587 	return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2588 }
2589 
2590 static int selinux_inode_setotherxattr(struct dentry *dentry, char *name)
2591 {
2592 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2593 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2594 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2595 			if (!capable(CAP_SETFCAP))
2596 				return -EPERM;
2597 		} else if (!capable(CAP_SYS_ADMIN)) {
2598 			/* A different attribute in the security namespace.
2599 			   Restrict to administrator. */
2600 			return -EPERM;
2601 		}
2602 	}
2603 
2604 	/* Not an attribute we recognize, so just check the
2605 	   ordinary setattr permission. */
2606 	return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2607 }
2608 
2609 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2610 {
2611 	struct task_security_struct *tsec = current->security;
2612 	struct inode *inode = dentry->d_inode;
2613 	struct inode_security_struct *isec = inode->i_security;
2614 	struct superblock_security_struct *sbsec;
2615 	struct avc_audit_data ad;
2616 	u32 newsid;
2617 	int rc = 0;
2618 
2619 	if (strcmp(name, XATTR_NAME_SELINUX))
2620 		return selinux_inode_setotherxattr(dentry, name);
2621 
2622 	sbsec = inode->i_sb->s_security;
2623 	if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2624 		return -EOPNOTSUPP;
2625 
2626 	if (!is_owner_or_cap(inode))
2627 		return -EPERM;
2628 
2629 	AVC_AUDIT_DATA_INIT(&ad,FS);
2630 	ad.u.fs.path.dentry = dentry;
2631 
2632 	rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2633 			  FILE__RELABELFROM, &ad);
2634 	if (rc)
2635 		return rc;
2636 
2637 	rc = security_context_to_sid(value, size, &newsid);
2638 	if (rc)
2639 		return rc;
2640 
2641 	rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2642 			  FILE__RELABELTO, &ad);
2643 	if (rc)
2644 		return rc;
2645 
2646 	rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2647 	                                  isec->sclass);
2648 	if (rc)
2649 		return rc;
2650 
2651 	return avc_has_perm(newsid,
2652 			    sbsec->sid,
2653 			    SECCLASS_FILESYSTEM,
2654 			    FILESYSTEM__ASSOCIATE,
2655 			    &ad);
2656 }
2657 
2658 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2659                                         void *value, size_t size, int flags)
2660 {
2661 	struct inode *inode = dentry->d_inode;
2662 	struct inode_security_struct *isec = inode->i_security;
2663 	u32 newsid;
2664 	int rc;
2665 
2666 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2667 		/* Not an attribute we recognize, so nothing to do. */
2668 		return;
2669 	}
2670 
2671 	rc = security_context_to_sid(value, size, &newsid);
2672 	if (rc) {
2673 		printk(KERN_WARNING "%s:  unable to obtain SID for context "
2674 		       "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2675 		return;
2676 	}
2677 
2678 	isec->sid = newsid;
2679 	return;
2680 }
2681 
2682 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2683 {
2684 	return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2685 }
2686 
2687 static int selinux_inode_listxattr (struct dentry *dentry)
2688 {
2689 	return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2690 }
2691 
2692 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2693 {
2694 	if (strcmp(name, XATTR_NAME_SELINUX))
2695 		return selinux_inode_setotherxattr(dentry, name);
2696 
2697 	/* No one is allowed to remove a SELinux security label.
2698 	   You can change the label, but all data must be labeled. */
2699 	return -EACCES;
2700 }
2701 
2702 /*
2703  * Copy the in-core inode security context value to the user.  If the
2704  * getxattr() prior to this succeeded, check to see if we need to
2705  * canonicalize the value to be finally returned to the user.
2706  *
2707  * Permission check is handled by selinux_inode_getxattr hook.
2708  */
2709 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2710 {
2711 	u32 size;
2712 	int error;
2713 	char *context = NULL;
2714 	struct inode_security_struct *isec = inode->i_security;
2715 
2716 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2717 		return -EOPNOTSUPP;
2718 
2719 	error = security_sid_to_context(isec->sid, &context, &size);
2720 	if (error)
2721 		return error;
2722 	error = size;
2723 	if (alloc) {
2724 		*buffer = context;
2725 		goto out_nofree;
2726 	}
2727 	kfree(context);
2728 out_nofree:
2729 	return error;
2730 }
2731 
2732 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2733                                      const void *value, size_t size, int flags)
2734 {
2735 	struct inode_security_struct *isec = inode->i_security;
2736 	u32 newsid;
2737 	int rc;
2738 
2739 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2740 		return -EOPNOTSUPP;
2741 
2742 	if (!value || !size)
2743 		return -EACCES;
2744 
2745 	rc = security_context_to_sid((void*)value, size, &newsid);
2746 	if (rc)
2747 		return rc;
2748 
2749 	isec->sid = newsid;
2750 	return 0;
2751 }
2752 
2753 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2754 {
2755 	const int len = sizeof(XATTR_NAME_SELINUX);
2756 	if (buffer && len <= buffer_size)
2757 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2758 	return len;
2759 }
2760 
2761 static int selinux_inode_need_killpriv(struct dentry *dentry)
2762 {
2763 	return secondary_ops->inode_need_killpriv(dentry);
2764 }
2765 
2766 static int selinux_inode_killpriv(struct dentry *dentry)
2767 {
2768 	return secondary_ops->inode_killpriv(dentry);
2769 }
2770 
2771 /* file security operations */
2772 
2773 static int selinux_revalidate_file_permission(struct file *file, int mask)
2774 {
2775 	int rc;
2776 	struct inode *inode = file->f_path.dentry->d_inode;
2777 
2778 	if (!mask) {
2779 		/* No permission to check.  Existence test. */
2780 		return 0;
2781 	}
2782 
2783 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2784 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2785 		mask |= MAY_APPEND;
2786 
2787 	rc = file_has_perm(current, file,
2788 			   file_mask_to_av(inode->i_mode, mask));
2789 	if (rc)
2790 		return rc;
2791 
2792 	return selinux_netlbl_inode_permission(inode, mask);
2793 }
2794 
2795 static int selinux_file_permission(struct file *file, int mask)
2796 {
2797 	struct inode *inode = file->f_path.dentry->d_inode;
2798 	struct task_security_struct *tsec = current->security;
2799 	struct file_security_struct *fsec = file->f_security;
2800 	struct inode_security_struct *isec = inode->i_security;
2801 
2802 	if (!mask) {
2803 		/* No permission to check.  Existence test. */
2804 		return 0;
2805 	}
2806 
2807 	if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2808 	    && fsec->pseqno == avc_policy_seqno())
2809 		return selinux_netlbl_inode_permission(inode, mask);
2810 
2811 	return selinux_revalidate_file_permission(file, mask);
2812 }
2813 
2814 static int selinux_file_alloc_security(struct file *file)
2815 {
2816 	return file_alloc_security(file);
2817 }
2818 
2819 static void selinux_file_free_security(struct file *file)
2820 {
2821 	file_free_security(file);
2822 }
2823 
2824 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2825 			      unsigned long arg)
2826 {
2827 	int error = 0;
2828 
2829 	switch (cmd) {
2830 		case FIONREAD:
2831 		/* fall through */
2832 		case FIBMAP:
2833 		/* fall through */
2834 		case FIGETBSZ:
2835 		/* fall through */
2836 		case EXT2_IOC_GETFLAGS:
2837 		/* fall through */
2838 		case EXT2_IOC_GETVERSION:
2839 			error = file_has_perm(current, file, FILE__GETATTR);
2840 			break;
2841 
2842 		case EXT2_IOC_SETFLAGS:
2843 		/* fall through */
2844 		case EXT2_IOC_SETVERSION:
2845 			error = file_has_perm(current, file, FILE__SETATTR);
2846 			break;
2847 
2848 		/* sys_ioctl() checks */
2849 		case FIONBIO:
2850 		/* fall through */
2851 		case FIOASYNC:
2852 			error = file_has_perm(current, file, 0);
2853 			break;
2854 
2855 	        case KDSKBENT:
2856 	        case KDSKBSENT:
2857 			error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2858 			break;
2859 
2860 		/* default case assumes that the command will go
2861 		 * to the file's ioctl() function.
2862 		 */
2863 		default:
2864 			error = file_has_perm(current, file, FILE__IOCTL);
2865 
2866 	}
2867 	return error;
2868 }
2869 
2870 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2871 {
2872 #ifndef CONFIG_PPC32
2873 	if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2874 		/*
2875 		 * We are making executable an anonymous mapping or a
2876 		 * private file mapping that will also be writable.
2877 		 * This has an additional check.
2878 		 */
2879 		int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2880 		if (rc)
2881 			return rc;
2882 	}
2883 #endif
2884 
2885 	if (file) {
2886 		/* read access is always possible with a mapping */
2887 		u32 av = FILE__READ;
2888 
2889 		/* write access only matters if the mapping is shared */
2890 		if (shared && (prot & PROT_WRITE))
2891 			av |= FILE__WRITE;
2892 
2893 		if (prot & PROT_EXEC)
2894 			av |= FILE__EXECUTE;
2895 
2896 		return file_has_perm(current, file, av);
2897 	}
2898 	return 0;
2899 }
2900 
2901 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2902 			     unsigned long prot, unsigned long flags,
2903 			     unsigned long addr, unsigned long addr_only)
2904 {
2905 	int rc = 0;
2906 	u32 sid = ((struct task_security_struct*)(current->security))->sid;
2907 
2908 	if (addr < mmap_min_addr)
2909 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2910 				  MEMPROTECT__MMAP_ZERO, NULL);
2911 	if (rc || addr_only)
2912 		return rc;
2913 
2914 	if (selinux_checkreqprot)
2915 		prot = reqprot;
2916 
2917 	return file_map_prot_check(file, prot,
2918 				   (flags & MAP_TYPE) == MAP_SHARED);
2919 }
2920 
2921 static int selinux_file_mprotect(struct vm_area_struct *vma,
2922 				 unsigned long reqprot,
2923 				 unsigned long prot)
2924 {
2925 	int rc;
2926 
2927 	rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2928 	if (rc)
2929 		return rc;
2930 
2931 	if (selinux_checkreqprot)
2932 		prot = reqprot;
2933 
2934 #ifndef CONFIG_PPC32
2935 	if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2936 		rc = 0;
2937 		if (vma->vm_start >= vma->vm_mm->start_brk &&
2938 		    vma->vm_end <= vma->vm_mm->brk) {
2939 			rc = task_has_perm(current, current,
2940 					   PROCESS__EXECHEAP);
2941 		} else if (!vma->vm_file &&
2942 			   vma->vm_start <= vma->vm_mm->start_stack &&
2943 			   vma->vm_end >= vma->vm_mm->start_stack) {
2944 			rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2945 		} else if (vma->vm_file && vma->anon_vma) {
2946 			/*
2947 			 * We are making executable a file mapping that has
2948 			 * had some COW done. Since pages might have been
2949 			 * written, check ability to execute the possibly
2950 			 * modified content.  This typically should only
2951 			 * occur for text relocations.
2952 			 */
2953 			rc = file_has_perm(current, vma->vm_file,
2954 					   FILE__EXECMOD);
2955 		}
2956 		if (rc)
2957 			return rc;
2958 	}
2959 #endif
2960 
2961 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2962 }
2963 
2964 static int selinux_file_lock(struct file *file, unsigned int cmd)
2965 {
2966 	return file_has_perm(current, file, FILE__LOCK);
2967 }
2968 
2969 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2970 			      unsigned long arg)
2971 {
2972 	int err = 0;
2973 
2974 	switch (cmd) {
2975 	        case F_SETFL:
2976 			if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2977 				err = -EINVAL;
2978 				break;
2979 			}
2980 
2981 			if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2982 				err = file_has_perm(current, file,FILE__WRITE);
2983 				break;
2984 			}
2985 			/* fall through */
2986 	        case F_SETOWN:
2987 	        case F_SETSIG:
2988 	        case F_GETFL:
2989 	        case F_GETOWN:
2990 	        case F_GETSIG:
2991 			/* Just check FD__USE permission */
2992 			err = file_has_perm(current, file, 0);
2993 			break;
2994 		case F_GETLK:
2995 		case F_SETLK:
2996 	        case F_SETLKW:
2997 #if BITS_PER_LONG == 32
2998 	        case F_GETLK64:
2999 		case F_SETLK64:
3000 	        case F_SETLKW64:
3001 #endif
3002 			if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3003 				err = -EINVAL;
3004 				break;
3005 			}
3006 			err = file_has_perm(current, file, FILE__LOCK);
3007 			break;
3008 	}
3009 
3010 	return err;
3011 }
3012 
3013 static int selinux_file_set_fowner(struct file *file)
3014 {
3015 	struct task_security_struct *tsec;
3016 	struct file_security_struct *fsec;
3017 
3018 	tsec = current->security;
3019 	fsec = file->f_security;
3020 	fsec->fown_sid = tsec->sid;
3021 
3022 	return 0;
3023 }
3024 
3025 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3026 				       struct fown_struct *fown, int signum)
3027 {
3028         struct file *file;
3029 	u32 perm;
3030 	struct task_security_struct *tsec;
3031 	struct file_security_struct *fsec;
3032 
3033 	/* struct fown_struct is never outside the context of a struct file */
3034         file = container_of(fown, struct file, f_owner);
3035 
3036 	tsec = tsk->security;
3037 	fsec = file->f_security;
3038 
3039 	if (!signum)
3040 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3041 	else
3042 		perm = signal_to_av(signum);
3043 
3044 	return avc_has_perm(fsec->fown_sid, tsec->sid,
3045 			    SECCLASS_PROCESS, perm, NULL);
3046 }
3047 
3048 static int selinux_file_receive(struct file *file)
3049 {
3050 	return file_has_perm(current, file, file_to_av(file));
3051 }
3052 
3053 static int selinux_dentry_open(struct file *file)
3054 {
3055 	struct file_security_struct *fsec;
3056 	struct inode *inode;
3057 	struct inode_security_struct *isec;
3058 	inode = file->f_path.dentry->d_inode;
3059 	fsec = file->f_security;
3060 	isec = inode->i_security;
3061 	/*
3062 	 * Save inode label and policy sequence number
3063 	 * at open-time so that selinux_file_permission
3064 	 * can determine whether revalidation is necessary.
3065 	 * Task label is already saved in the file security
3066 	 * struct as its SID.
3067 	 */
3068 	fsec->isid = isec->sid;
3069 	fsec->pseqno = avc_policy_seqno();
3070 	/*
3071 	 * Since the inode label or policy seqno may have changed
3072 	 * between the selinux_inode_permission check and the saving
3073 	 * of state above, recheck that access is still permitted.
3074 	 * Otherwise, access might never be revalidated against the
3075 	 * new inode label or new policy.
3076 	 * This check is not redundant - do not remove.
3077 	 */
3078 	return inode_has_perm(current, inode, file_to_av(file), NULL);
3079 }
3080 
3081 /* task security operations */
3082 
3083 static int selinux_task_create(unsigned long clone_flags)
3084 {
3085 	int rc;
3086 
3087 	rc = secondary_ops->task_create(clone_flags);
3088 	if (rc)
3089 		return rc;
3090 
3091 	return task_has_perm(current, current, PROCESS__FORK);
3092 }
3093 
3094 static int selinux_task_alloc_security(struct task_struct *tsk)
3095 {
3096 	struct task_security_struct *tsec1, *tsec2;
3097 	int rc;
3098 
3099 	tsec1 = current->security;
3100 
3101 	rc = task_alloc_security(tsk);
3102 	if (rc)
3103 		return rc;
3104 	tsec2 = tsk->security;
3105 
3106 	tsec2->osid = tsec1->osid;
3107 	tsec2->sid = tsec1->sid;
3108 
3109 	/* Retain the exec, fs, key, and sock SIDs across fork */
3110 	tsec2->exec_sid = tsec1->exec_sid;
3111 	tsec2->create_sid = tsec1->create_sid;
3112 	tsec2->keycreate_sid = tsec1->keycreate_sid;
3113 	tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3114 
3115 	/* Retain ptracer SID across fork, if any.
3116 	   This will be reset by the ptrace hook upon any
3117 	   subsequent ptrace_attach operations. */
3118 	tsec2->ptrace_sid = tsec1->ptrace_sid;
3119 
3120 	return 0;
3121 }
3122 
3123 static void selinux_task_free_security(struct task_struct *tsk)
3124 {
3125 	task_free_security(tsk);
3126 }
3127 
3128 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3129 {
3130 	/* Since setuid only affects the current process, and
3131 	   since the SELinux controls are not based on the Linux
3132 	   identity attributes, SELinux does not need to control
3133 	   this operation.  However, SELinux does control the use
3134 	   of the CAP_SETUID and CAP_SETGID capabilities using the
3135 	   capable hook. */
3136 	return 0;
3137 }
3138 
3139 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3140 {
3141 	return secondary_ops->task_post_setuid(id0,id1,id2,flags);
3142 }
3143 
3144 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3145 {
3146 	/* See the comment for setuid above. */
3147 	return 0;
3148 }
3149 
3150 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3151 {
3152 	return task_has_perm(current, p, PROCESS__SETPGID);
3153 }
3154 
3155 static int selinux_task_getpgid(struct task_struct *p)
3156 {
3157 	return task_has_perm(current, p, PROCESS__GETPGID);
3158 }
3159 
3160 static int selinux_task_getsid(struct task_struct *p)
3161 {
3162 	return task_has_perm(current, p, PROCESS__GETSESSION);
3163 }
3164 
3165 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3166 {
3167 	selinux_get_task_sid(p, secid);
3168 }
3169 
3170 static int selinux_task_setgroups(struct group_info *group_info)
3171 {
3172 	/* See the comment for setuid above. */
3173 	return 0;
3174 }
3175 
3176 static int selinux_task_setnice(struct task_struct *p, int nice)
3177 {
3178 	int rc;
3179 
3180 	rc = secondary_ops->task_setnice(p, nice);
3181 	if (rc)
3182 		return rc;
3183 
3184 	return task_has_perm(current,p, PROCESS__SETSCHED);
3185 }
3186 
3187 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3188 {
3189 	int rc;
3190 
3191 	rc = secondary_ops->task_setioprio(p, ioprio);
3192 	if (rc)
3193 		return rc;
3194 
3195 	return task_has_perm(current, p, PROCESS__SETSCHED);
3196 }
3197 
3198 static int selinux_task_getioprio(struct task_struct *p)
3199 {
3200 	return task_has_perm(current, p, PROCESS__GETSCHED);
3201 }
3202 
3203 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3204 {
3205 	struct rlimit *old_rlim = current->signal->rlim + resource;
3206 	int rc;
3207 
3208 	rc = secondary_ops->task_setrlimit(resource, new_rlim);
3209 	if (rc)
3210 		return rc;
3211 
3212 	/* Control the ability to change the hard limit (whether
3213 	   lowering or raising it), so that the hard limit can
3214 	   later be used as a safe reset point for the soft limit
3215 	   upon context transitions. See selinux_bprm_apply_creds. */
3216 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3217 		return task_has_perm(current, current, PROCESS__SETRLIMIT);
3218 
3219 	return 0;
3220 }
3221 
3222 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3223 {
3224 	int rc;
3225 
3226 	rc = secondary_ops->task_setscheduler(p, policy, lp);
3227 	if (rc)
3228 		return rc;
3229 
3230 	return task_has_perm(current, p, PROCESS__SETSCHED);
3231 }
3232 
3233 static int selinux_task_getscheduler(struct task_struct *p)
3234 {
3235 	return task_has_perm(current, p, PROCESS__GETSCHED);
3236 }
3237 
3238 static int selinux_task_movememory(struct task_struct *p)
3239 {
3240 	return task_has_perm(current, p, PROCESS__SETSCHED);
3241 }
3242 
3243 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3244 				int sig, u32 secid)
3245 {
3246 	u32 perm;
3247 	int rc;
3248 	struct task_security_struct *tsec;
3249 
3250 	rc = secondary_ops->task_kill(p, info, sig, secid);
3251 	if (rc)
3252 		return rc;
3253 
3254 	if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
3255 		return 0;
3256 
3257 	if (!sig)
3258 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3259 	else
3260 		perm = signal_to_av(sig);
3261 	tsec = p->security;
3262 	if (secid)
3263 		rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3264 	else
3265 		rc = task_has_perm(current, p, perm);
3266 	return rc;
3267 }
3268 
3269 static int selinux_task_prctl(int option,
3270 			      unsigned long arg2,
3271 			      unsigned long arg3,
3272 			      unsigned long arg4,
3273 			      unsigned long arg5)
3274 {
3275 	/* The current prctl operations do not appear to require
3276 	   any SELinux controls since they merely observe or modify
3277 	   the state of the current process. */
3278 	return 0;
3279 }
3280 
3281 static int selinux_task_wait(struct task_struct *p)
3282 {
3283 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3284 }
3285 
3286 static void selinux_task_reparent_to_init(struct task_struct *p)
3287 {
3288   	struct task_security_struct *tsec;
3289 
3290 	secondary_ops->task_reparent_to_init(p);
3291 
3292 	tsec = p->security;
3293 	tsec->osid = tsec->sid;
3294 	tsec->sid = SECINITSID_KERNEL;
3295 	return;
3296 }
3297 
3298 static void selinux_task_to_inode(struct task_struct *p,
3299 				  struct inode *inode)
3300 {
3301 	struct task_security_struct *tsec = p->security;
3302 	struct inode_security_struct *isec = inode->i_security;
3303 
3304 	isec->sid = tsec->sid;
3305 	isec->initialized = 1;
3306 	return;
3307 }
3308 
3309 /* Returns error only if unable to parse addresses */
3310 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3311 			struct avc_audit_data *ad, u8 *proto)
3312 {
3313 	int offset, ihlen, ret = -EINVAL;
3314 	struct iphdr _iph, *ih;
3315 
3316 	offset = skb_network_offset(skb);
3317 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3318 	if (ih == NULL)
3319 		goto out;
3320 
3321 	ihlen = ih->ihl * 4;
3322 	if (ihlen < sizeof(_iph))
3323 		goto out;
3324 
3325 	ad->u.net.v4info.saddr = ih->saddr;
3326 	ad->u.net.v4info.daddr = ih->daddr;
3327 	ret = 0;
3328 
3329 	if (proto)
3330 		*proto = ih->protocol;
3331 
3332 	switch (ih->protocol) {
3333         case IPPROTO_TCP: {
3334         	struct tcphdr _tcph, *th;
3335 
3336         	if (ntohs(ih->frag_off) & IP_OFFSET)
3337         		break;
3338 
3339 		offset += ihlen;
3340 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3341 		if (th == NULL)
3342 			break;
3343 
3344 		ad->u.net.sport = th->source;
3345 		ad->u.net.dport = th->dest;
3346 		break;
3347         }
3348 
3349         case IPPROTO_UDP: {
3350         	struct udphdr _udph, *uh;
3351 
3352         	if (ntohs(ih->frag_off) & IP_OFFSET)
3353         		break;
3354 
3355 		offset += ihlen;
3356         	uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3357 		if (uh == NULL)
3358 			break;
3359 
3360         	ad->u.net.sport = uh->source;
3361         	ad->u.net.dport = uh->dest;
3362         	break;
3363         }
3364 
3365 	case IPPROTO_DCCP: {
3366 		struct dccp_hdr _dccph, *dh;
3367 
3368 		if (ntohs(ih->frag_off) & IP_OFFSET)
3369 			break;
3370 
3371 		offset += ihlen;
3372 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3373 		if (dh == NULL)
3374 			break;
3375 
3376 		ad->u.net.sport = dh->dccph_sport;
3377 		ad->u.net.dport = dh->dccph_dport;
3378 		break;
3379         }
3380 
3381         default:
3382         	break;
3383         }
3384 out:
3385 	return ret;
3386 }
3387 
3388 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3389 
3390 /* Returns error only if unable to parse addresses */
3391 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3392 			struct avc_audit_data *ad, u8 *proto)
3393 {
3394 	u8 nexthdr;
3395 	int ret = -EINVAL, offset;
3396 	struct ipv6hdr _ipv6h, *ip6;
3397 
3398 	offset = skb_network_offset(skb);
3399 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3400 	if (ip6 == NULL)
3401 		goto out;
3402 
3403 	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3404 	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3405 	ret = 0;
3406 
3407 	nexthdr = ip6->nexthdr;
3408 	offset += sizeof(_ipv6h);
3409 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3410 	if (offset < 0)
3411 		goto out;
3412 
3413 	if (proto)
3414 		*proto = nexthdr;
3415 
3416 	switch (nexthdr) {
3417 	case IPPROTO_TCP: {
3418         	struct tcphdr _tcph, *th;
3419 
3420 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3421 		if (th == NULL)
3422 			break;
3423 
3424 		ad->u.net.sport = th->source;
3425 		ad->u.net.dport = th->dest;
3426 		break;
3427 	}
3428 
3429 	case IPPROTO_UDP: {
3430 		struct udphdr _udph, *uh;
3431 
3432 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3433 		if (uh == NULL)
3434 			break;
3435 
3436 		ad->u.net.sport = uh->source;
3437 		ad->u.net.dport = uh->dest;
3438 		break;
3439 	}
3440 
3441 	case IPPROTO_DCCP: {
3442 		struct dccp_hdr _dccph, *dh;
3443 
3444 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3445 		if (dh == NULL)
3446 			break;
3447 
3448 		ad->u.net.sport = dh->dccph_sport;
3449 		ad->u.net.dport = dh->dccph_dport;
3450 		break;
3451         }
3452 
3453 	/* includes fragments */
3454 	default:
3455 		break;
3456 	}
3457 out:
3458 	return ret;
3459 }
3460 
3461 #endif /* IPV6 */
3462 
3463 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3464 			     char **addrp, int src, u8 *proto)
3465 {
3466 	int ret = 0;
3467 
3468 	switch (ad->u.net.family) {
3469 	case PF_INET:
3470 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3471 		if (ret || !addrp)
3472 			break;
3473 		*addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3474 					&ad->u.net.v4info.daddr);
3475 		break;
3476 
3477 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3478 	case PF_INET6:
3479 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3480 		if (ret || !addrp)
3481 			break;
3482 		*addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3483 					&ad->u.net.v6info.daddr);
3484 		break;
3485 #endif	/* IPV6 */
3486 	default:
3487 		break;
3488 	}
3489 
3490 	if (unlikely(ret))
3491 		printk(KERN_WARNING
3492 		       "SELinux: failure in selinux_parse_skb(),"
3493 		       " unable to parse packet\n");
3494 
3495 	return ret;
3496 }
3497 
3498 /**
3499  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3500  * @skb: the packet
3501  * @family: protocol family
3502  * @sid: the packet's peer label SID
3503  *
3504  * Description:
3505  * Check the various different forms of network peer labeling and determine
3506  * the peer label/SID for the packet; most of the magic actually occurs in
3507  * the security server function security_net_peersid_cmp().  The function
3508  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3509  * or -EACCES if @sid is invalid due to inconsistencies with the different
3510  * peer labels.
3511  *
3512  */
3513 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3514 {
3515 	int err;
3516 	u32 xfrm_sid;
3517 	u32 nlbl_sid;
3518 	u32 nlbl_type;
3519 
3520 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3521 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3522 
3523 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3524 	if (unlikely(err)) {
3525 		printk(KERN_WARNING
3526 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3527 		       " unable to determine packet's peer label\n");
3528 		return -EACCES;
3529 	}
3530 
3531 	return 0;
3532 }
3533 
3534 /* socket security operations */
3535 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3536 			   u32 perms)
3537 {
3538 	struct inode_security_struct *isec;
3539 	struct task_security_struct *tsec;
3540 	struct avc_audit_data ad;
3541 	int err = 0;
3542 
3543 	tsec = task->security;
3544 	isec = SOCK_INODE(sock)->i_security;
3545 
3546 	if (isec->sid == SECINITSID_KERNEL)
3547 		goto out;
3548 
3549 	AVC_AUDIT_DATA_INIT(&ad,NET);
3550 	ad.u.net.sk = sock->sk;
3551 	err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3552 
3553 out:
3554 	return err;
3555 }
3556 
3557 static int selinux_socket_create(int family, int type,
3558 				 int protocol, int kern)
3559 {
3560 	int err = 0;
3561 	struct task_security_struct *tsec;
3562 	u32 newsid;
3563 
3564 	if (kern)
3565 		goto out;
3566 
3567 	tsec = current->security;
3568 	newsid = tsec->sockcreate_sid ? : tsec->sid;
3569 	err = avc_has_perm(tsec->sid, newsid,
3570 			   socket_type_to_security_class(family, type,
3571 			   protocol), SOCKET__CREATE, NULL);
3572 
3573 out:
3574 	return err;
3575 }
3576 
3577 static int selinux_socket_post_create(struct socket *sock, int family,
3578 				      int type, int protocol, int kern)
3579 {
3580 	int err = 0;
3581 	struct inode_security_struct *isec;
3582 	struct task_security_struct *tsec;
3583 	struct sk_security_struct *sksec;
3584 	u32 newsid;
3585 
3586 	isec = SOCK_INODE(sock)->i_security;
3587 
3588 	tsec = current->security;
3589 	newsid = tsec->sockcreate_sid ? : tsec->sid;
3590 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3591 	isec->sid = kern ? SECINITSID_KERNEL : newsid;
3592 	isec->initialized = 1;
3593 
3594 	if (sock->sk) {
3595 		sksec = sock->sk->sk_security;
3596 		sksec->sid = isec->sid;
3597 		sksec->sclass = isec->sclass;
3598 		err = selinux_netlbl_socket_post_create(sock);
3599 	}
3600 
3601 	return err;
3602 }
3603 
3604 /* Range of port numbers used to automatically bind.
3605    Need to determine whether we should perform a name_bind
3606    permission check between the socket and the port number. */
3607 
3608 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3609 {
3610 	u16 family;
3611 	int err;
3612 
3613 	err = socket_has_perm(current, sock, SOCKET__BIND);
3614 	if (err)
3615 		goto out;
3616 
3617 	/*
3618 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3619 	 * Multiple address binding for SCTP is not supported yet: we just
3620 	 * check the first address now.
3621 	 */
3622 	family = sock->sk->sk_family;
3623 	if (family == PF_INET || family == PF_INET6) {
3624 		char *addrp;
3625 		struct inode_security_struct *isec;
3626 		struct task_security_struct *tsec;
3627 		struct avc_audit_data ad;
3628 		struct sockaddr_in *addr4 = NULL;
3629 		struct sockaddr_in6 *addr6 = NULL;
3630 		unsigned short snum;
3631 		struct sock *sk = sock->sk;
3632 		u32 sid, node_perm, addrlen;
3633 
3634 		tsec = current->security;
3635 		isec = SOCK_INODE(sock)->i_security;
3636 
3637 		if (family == PF_INET) {
3638 			addr4 = (struct sockaddr_in *)address;
3639 			snum = ntohs(addr4->sin_port);
3640 			addrlen = sizeof(addr4->sin_addr.s_addr);
3641 			addrp = (char *)&addr4->sin_addr.s_addr;
3642 		} else {
3643 			addr6 = (struct sockaddr_in6 *)address;
3644 			snum = ntohs(addr6->sin6_port);
3645 			addrlen = sizeof(addr6->sin6_addr.s6_addr);
3646 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3647 		}
3648 
3649 		if (snum) {
3650 			int low, high;
3651 
3652 			inet_get_local_port_range(&low, &high);
3653 
3654 			if (snum < max(PROT_SOCK, low) || snum > high) {
3655 				err = security_port_sid(sk->sk_family,
3656 							sk->sk_type,
3657 							sk->sk_protocol, snum,
3658 							&sid);
3659 				if (err)
3660 					goto out;
3661 				AVC_AUDIT_DATA_INIT(&ad,NET);
3662 				ad.u.net.sport = htons(snum);
3663 				ad.u.net.family = family;
3664 				err = avc_has_perm(isec->sid, sid,
3665 						   isec->sclass,
3666 						   SOCKET__NAME_BIND, &ad);
3667 				if (err)
3668 					goto out;
3669 			}
3670 		}
3671 
3672 		switch(isec->sclass) {
3673 		case SECCLASS_TCP_SOCKET:
3674 			node_perm = TCP_SOCKET__NODE_BIND;
3675 			break;
3676 
3677 		case SECCLASS_UDP_SOCKET:
3678 			node_perm = UDP_SOCKET__NODE_BIND;
3679 			break;
3680 
3681 		case SECCLASS_DCCP_SOCKET:
3682 			node_perm = DCCP_SOCKET__NODE_BIND;
3683 			break;
3684 
3685 		default:
3686 			node_perm = RAWIP_SOCKET__NODE_BIND;
3687 			break;
3688 		}
3689 
3690 		err = sel_netnode_sid(addrp, family, &sid);
3691 		if (err)
3692 			goto out;
3693 
3694 		AVC_AUDIT_DATA_INIT(&ad,NET);
3695 		ad.u.net.sport = htons(snum);
3696 		ad.u.net.family = family;
3697 
3698 		if (family == PF_INET)
3699 			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3700 		else
3701 			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3702 
3703 		err = avc_has_perm(isec->sid, sid,
3704 		                   isec->sclass, node_perm, &ad);
3705 		if (err)
3706 			goto out;
3707 	}
3708 out:
3709 	return err;
3710 }
3711 
3712 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3713 {
3714 	struct inode_security_struct *isec;
3715 	int err;
3716 
3717 	err = socket_has_perm(current, sock, SOCKET__CONNECT);
3718 	if (err)
3719 		return err;
3720 
3721 	/*
3722 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3723 	 */
3724 	isec = SOCK_INODE(sock)->i_security;
3725 	if (isec->sclass == SECCLASS_TCP_SOCKET ||
3726 	    isec->sclass == SECCLASS_DCCP_SOCKET) {
3727 		struct sock *sk = sock->sk;
3728 		struct avc_audit_data ad;
3729 		struct sockaddr_in *addr4 = NULL;
3730 		struct sockaddr_in6 *addr6 = NULL;
3731 		unsigned short snum;
3732 		u32 sid, perm;
3733 
3734 		if (sk->sk_family == PF_INET) {
3735 			addr4 = (struct sockaddr_in *)address;
3736 			if (addrlen < sizeof(struct sockaddr_in))
3737 				return -EINVAL;
3738 			snum = ntohs(addr4->sin_port);
3739 		} else {
3740 			addr6 = (struct sockaddr_in6 *)address;
3741 			if (addrlen < SIN6_LEN_RFC2133)
3742 				return -EINVAL;
3743 			snum = ntohs(addr6->sin6_port);
3744 		}
3745 
3746 		err = security_port_sid(sk->sk_family, sk->sk_type,
3747 					sk->sk_protocol, snum, &sid);
3748 		if (err)
3749 			goto out;
3750 
3751 		perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3752 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3753 
3754 		AVC_AUDIT_DATA_INIT(&ad,NET);
3755 		ad.u.net.dport = htons(snum);
3756 		ad.u.net.family = sk->sk_family;
3757 		err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3758 		if (err)
3759 			goto out;
3760 	}
3761 
3762 out:
3763 	return err;
3764 }
3765 
3766 static int selinux_socket_listen(struct socket *sock, int backlog)
3767 {
3768 	return socket_has_perm(current, sock, SOCKET__LISTEN);
3769 }
3770 
3771 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3772 {
3773 	int err;
3774 	struct inode_security_struct *isec;
3775 	struct inode_security_struct *newisec;
3776 
3777 	err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3778 	if (err)
3779 		return err;
3780 
3781 	newisec = SOCK_INODE(newsock)->i_security;
3782 
3783 	isec = SOCK_INODE(sock)->i_security;
3784 	newisec->sclass = isec->sclass;
3785 	newisec->sid = isec->sid;
3786 	newisec->initialized = 1;
3787 
3788 	return 0;
3789 }
3790 
3791 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3792  				  int size)
3793 {
3794 	int rc;
3795 
3796 	rc = socket_has_perm(current, sock, SOCKET__WRITE);
3797 	if (rc)
3798 		return rc;
3799 
3800 	return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3801 }
3802 
3803 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3804 				  int size, int flags)
3805 {
3806 	return socket_has_perm(current, sock, SOCKET__READ);
3807 }
3808 
3809 static int selinux_socket_getsockname(struct socket *sock)
3810 {
3811 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3812 }
3813 
3814 static int selinux_socket_getpeername(struct socket *sock)
3815 {
3816 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3817 }
3818 
3819 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3820 {
3821 	int err;
3822 
3823 	err = socket_has_perm(current, sock, SOCKET__SETOPT);
3824 	if (err)
3825 		return err;
3826 
3827 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
3828 }
3829 
3830 static int selinux_socket_getsockopt(struct socket *sock, int level,
3831 				     int optname)
3832 {
3833 	return socket_has_perm(current, sock, SOCKET__GETOPT);
3834 }
3835 
3836 static int selinux_socket_shutdown(struct socket *sock, int how)
3837 {
3838 	return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3839 }
3840 
3841 static int selinux_socket_unix_stream_connect(struct socket *sock,
3842 					      struct socket *other,
3843 					      struct sock *newsk)
3844 {
3845 	struct sk_security_struct *ssec;
3846 	struct inode_security_struct *isec;
3847 	struct inode_security_struct *other_isec;
3848 	struct avc_audit_data ad;
3849 	int err;
3850 
3851 	err = secondary_ops->unix_stream_connect(sock, other, newsk);
3852 	if (err)
3853 		return err;
3854 
3855 	isec = SOCK_INODE(sock)->i_security;
3856 	other_isec = SOCK_INODE(other)->i_security;
3857 
3858 	AVC_AUDIT_DATA_INIT(&ad,NET);
3859 	ad.u.net.sk = other->sk;
3860 
3861 	err = avc_has_perm(isec->sid, other_isec->sid,
3862 			   isec->sclass,
3863 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3864 	if (err)
3865 		return err;
3866 
3867 	/* connecting socket */
3868 	ssec = sock->sk->sk_security;
3869 	ssec->peer_sid = other_isec->sid;
3870 
3871 	/* server child socket */
3872 	ssec = newsk->sk_security;
3873 	ssec->peer_sid = isec->sid;
3874 	err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3875 
3876 	return err;
3877 }
3878 
3879 static int selinux_socket_unix_may_send(struct socket *sock,
3880 					struct socket *other)
3881 {
3882 	struct inode_security_struct *isec;
3883 	struct inode_security_struct *other_isec;
3884 	struct avc_audit_data ad;
3885 	int err;
3886 
3887 	isec = SOCK_INODE(sock)->i_security;
3888 	other_isec = SOCK_INODE(other)->i_security;
3889 
3890 	AVC_AUDIT_DATA_INIT(&ad,NET);
3891 	ad.u.net.sk = other->sk;
3892 
3893 	err = avc_has_perm(isec->sid, other_isec->sid,
3894 			   isec->sclass, SOCKET__SENDTO, &ad);
3895 	if (err)
3896 		return err;
3897 
3898 	return 0;
3899 }
3900 
3901 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3902 				    u32 peer_sid,
3903 				    struct avc_audit_data *ad)
3904 {
3905 	int err;
3906 	u32 if_sid;
3907 	u32 node_sid;
3908 
3909 	err = sel_netif_sid(ifindex, &if_sid);
3910 	if (err)
3911 		return err;
3912 	err = avc_has_perm(peer_sid, if_sid,
3913 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
3914 	if (err)
3915 		return err;
3916 
3917 	err = sel_netnode_sid(addrp, family, &node_sid);
3918 	if (err)
3919 		return err;
3920 	return avc_has_perm(peer_sid, node_sid,
3921 			    SECCLASS_NODE, NODE__RECVFROM, ad);
3922 }
3923 
3924 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
3925 						struct sk_buff *skb,
3926 						struct avc_audit_data *ad,
3927 						u16 family,
3928 						char *addrp)
3929 {
3930 	int err;
3931 	struct sk_security_struct *sksec = sk->sk_security;
3932 	u16 sk_class;
3933 	u32 netif_perm, node_perm, recv_perm;
3934 	u32 port_sid, node_sid, if_sid, sk_sid;
3935 
3936 	sk_sid = sksec->sid;
3937 	sk_class = sksec->sclass;
3938 
3939 	switch (sk_class) {
3940 	case SECCLASS_UDP_SOCKET:
3941 		netif_perm = NETIF__UDP_RECV;
3942 		node_perm = NODE__UDP_RECV;
3943 		recv_perm = UDP_SOCKET__RECV_MSG;
3944 		break;
3945 	case SECCLASS_TCP_SOCKET:
3946 		netif_perm = NETIF__TCP_RECV;
3947 		node_perm = NODE__TCP_RECV;
3948 		recv_perm = TCP_SOCKET__RECV_MSG;
3949 		break;
3950 	case SECCLASS_DCCP_SOCKET:
3951 		netif_perm = NETIF__DCCP_RECV;
3952 		node_perm = NODE__DCCP_RECV;
3953 		recv_perm = DCCP_SOCKET__RECV_MSG;
3954 		break;
3955 	default:
3956 		netif_perm = NETIF__RAWIP_RECV;
3957 		node_perm = NODE__RAWIP_RECV;
3958 		recv_perm = 0;
3959 		break;
3960 	}
3961 
3962 	err = sel_netif_sid(skb->iif, &if_sid);
3963 	if (err)
3964 		return err;
3965 	err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3966 	if (err)
3967 		return err;
3968 
3969 	err = sel_netnode_sid(addrp, family, &node_sid);
3970 	if (err)
3971 		return err;
3972 	err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3973 	if (err)
3974 		return err;
3975 
3976 	if (!recv_perm)
3977 		return 0;
3978 	err = security_port_sid(sk->sk_family, sk->sk_type,
3979 				sk->sk_protocol, ntohs(ad->u.net.sport),
3980 				&port_sid);
3981 	if (unlikely(err)) {
3982 		printk(KERN_WARNING
3983 		       "SELinux: failure in"
3984 		       " selinux_sock_rcv_skb_iptables_compat(),"
3985 		       " network port label not found\n");
3986 		return err;
3987 	}
3988 	return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
3989 }
3990 
3991 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3992 				       struct avc_audit_data *ad,
3993 				       u16 family, char *addrp)
3994 {
3995 	int err;
3996 	struct sk_security_struct *sksec = sk->sk_security;
3997 	u32 peer_sid;
3998 	u32 sk_sid = sksec->sid;
3999 
4000 	if (selinux_compat_net)
4001 		err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad,
4002 							   family, addrp);
4003 	else
4004 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4005 				   PACKET__RECV, ad);
4006 	if (err)
4007 		return err;
4008 
4009 	if (selinux_policycap_netpeer) {
4010 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4011 		if (err)
4012 			return err;
4013 		err = avc_has_perm(sk_sid, peer_sid,
4014 				   SECCLASS_PEER, PEER__RECV, ad);
4015 	} else {
4016 		err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad);
4017 		if (err)
4018 			return err;
4019 		err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad);
4020 	}
4021 
4022 	return err;
4023 }
4024 
4025 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4026 {
4027 	int err;
4028 	struct sk_security_struct *sksec = sk->sk_security;
4029 	u16 family = sk->sk_family;
4030 	u32 sk_sid = sksec->sid;
4031 	struct avc_audit_data ad;
4032 	char *addrp;
4033 
4034 	if (family != PF_INET && family != PF_INET6)
4035 		return 0;
4036 
4037 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4038 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4039 		family = PF_INET;
4040 
4041 	AVC_AUDIT_DATA_INIT(&ad, NET);
4042 	ad.u.net.netif = skb->iif;
4043 	ad.u.net.family = family;
4044 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4045 	if (err)
4046 		return err;
4047 
4048 	/* If any sort of compatibility mode is enabled then handoff processing
4049 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4050 	 * special handling.  We do this in an attempt to keep this function
4051 	 * as fast and as clean as possible. */
4052 	if (selinux_compat_net || !selinux_policycap_netpeer)
4053 		return selinux_sock_rcv_skb_compat(sk, skb, &ad,
4054 						   family, addrp);
4055 
4056 	if (netlbl_enabled() || selinux_xfrm_enabled()) {
4057 		u32 peer_sid;
4058 
4059 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4060 		if (err)
4061 			return err;
4062 		err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4063 					       peer_sid, &ad);
4064 		if (err)
4065 			return err;
4066 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4067 				   PEER__RECV, &ad);
4068 	}
4069 
4070 	if (selinux_secmark_enabled()) {
4071 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4072 				   PACKET__RECV, &ad);
4073 		if (err)
4074 			return err;
4075 	}
4076 
4077 	return err;
4078 }
4079 
4080 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4081 					    int __user *optlen, unsigned len)
4082 {
4083 	int err = 0;
4084 	char *scontext;
4085 	u32 scontext_len;
4086 	struct sk_security_struct *ssec;
4087 	struct inode_security_struct *isec;
4088 	u32 peer_sid = SECSID_NULL;
4089 
4090 	isec = SOCK_INODE(sock)->i_security;
4091 
4092 	if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4093 	    isec->sclass == SECCLASS_TCP_SOCKET) {
4094 		ssec = sock->sk->sk_security;
4095 		peer_sid = ssec->peer_sid;
4096 	}
4097 	if (peer_sid == SECSID_NULL) {
4098 		err = -ENOPROTOOPT;
4099 		goto out;
4100 	}
4101 
4102 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4103 
4104 	if (err)
4105 		goto out;
4106 
4107 	if (scontext_len > len) {
4108 		err = -ERANGE;
4109 		goto out_len;
4110 	}
4111 
4112 	if (copy_to_user(optval, scontext, scontext_len))
4113 		err = -EFAULT;
4114 
4115 out_len:
4116 	if (put_user(scontext_len, optlen))
4117 		err = -EFAULT;
4118 
4119 	kfree(scontext);
4120 out:
4121 	return err;
4122 }
4123 
4124 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4125 {
4126 	u32 peer_secid = SECSID_NULL;
4127 	u16 family;
4128 
4129 	if (sock)
4130 		family = sock->sk->sk_family;
4131 	else if (skb && skb->sk)
4132 		family = skb->sk->sk_family;
4133 	else
4134 		goto out;
4135 
4136 	if (sock && family == PF_UNIX)
4137 		selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
4138 	else if (skb)
4139 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4140 
4141 out:
4142 	*secid = peer_secid;
4143 	if (peer_secid == SECSID_NULL)
4144 		return -EINVAL;
4145 	return 0;
4146 }
4147 
4148 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4149 {
4150 	return sk_alloc_security(sk, family, priority);
4151 }
4152 
4153 static void selinux_sk_free_security(struct sock *sk)
4154 {
4155 	sk_free_security(sk);
4156 }
4157 
4158 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4159 {
4160 	struct sk_security_struct *ssec = sk->sk_security;
4161 	struct sk_security_struct *newssec = newsk->sk_security;
4162 
4163 	newssec->sid = ssec->sid;
4164 	newssec->peer_sid = ssec->peer_sid;
4165 	newssec->sclass = ssec->sclass;
4166 
4167 	selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4168 }
4169 
4170 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4171 {
4172 	if (!sk)
4173 		*secid = SECINITSID_ANY_SOCKET;
4174 	else {
4175 		struct sk_security_struct *sksec = sk->sk_security;
4176 
4177 		*secid = sksec->sid;
4178 	}
4179 }
4180 
4181 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
4182 {
4183 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4184 	struct sk_security_struct *sksec = sk->sk_security;
4185 
4186 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4187 	    sk->sk_family == PF_UNIX)
4188 		isec->sid = sksec->sid;
4189 	sksec->sclass = isec->sclass;
4190 
4191 	selinux_netlbl_sock_graft(sk, parent);
4192 }
4193 
4194 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4195 				     struct request_sock *req)
4196 {
4197 	struct sk_security_struct *sksec = sk->sk_security;
4198 	int err;
4199 	u32 newsid;
4200 	u32 peersid;
4201 
4202 	err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid);
4203 	if (err)
4204 		return err;
4205 	if (peersid == SECSID_NULL) {
4206 		req->secid = sksec->sid;
4207 		req->peer_secid = SECSID_NULL;
4208 		return 0;
4209 	}
4210 
4211 	err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4212 	if (err)
4213 		return err;
4214 
4215 	req->secid = newsid;
4216 	req->peer_secid = peersid;
4217 	return 0;
4218 }
4219 
4220 static void selinux_inet_csk_clone(struct sock *newsk,
4221 				   const struct request_sock *req)
4222 {
4223 	struct sk_security_struct *newsksec = newsk->sk_security;
4224 
4225 	newsksec->sid = req->secid;
4226 	newsksec->peer_sid = req->peer_secid;
4227 	/* NOTE: Ideally, we should also get the isec->sid for the
4228 	   new socket in sync, but we don't have the isec available yet.
4229 	   So we will wait until sock_graft to do it, by which
4230 	   time it will have been created and available. */
4231 
4232 	/* We don't need to take any sort of lock here as we are the only
4233 	 * thread with access to newsksec */
4234 	selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4235 }
4236 
4237 static void selinux_inet_conn_established(struct sock *sk,
4238 				struct sk_buff *skb)
4239 {
4240 	struct sk_security_struct *sksec = sk->sk_security;
4241 
4242 	selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid);
4243 }
4244 
4245 static void selinux_req_classify_flow(const struct request_sock *req,
4246 				      struct flowi *fl)
4247 {
4248 	fl->secid = req->secid;
4249 }
4250 
4251 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4252 {
4253 	int err = 0;
4254 	u32 perm;
4255 	struct nlmsghdr *nlh;
4256 	struct socket *sock = sk->sk_socket;
4257 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4258 
4259 	if (skb->len < NLMSG_SPACE(0)) {
4260 		err = -EINVAL;
4261 		goto out;
4262 	}
4263 	nlh = nlmsg_hdr(skb);
4264 
4265 	err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4266 	if (err) {
4267 		if (err == -EINVAL) {
4268 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4269 				  "SELinux:  unrecognized netlink message"
4270 				  " type=%hu for sclass=%hu\n",
4271 				  nlh->nlmsg_type, isec->sclass);
4272 			if (!selinux_enforcing)
4273 				err = 0;
4274 		}
4275 
4276 		/* Ignore */
4277 		if (err == -ENOENT)
4278 			err = 0;
4279 		goto out;
4280 	}
4281 
4282 	err = socket_has_perm(current, sock, perm);
4283 out:
4284 	return err;
4285 }
4286 
4287 #ifdef CONFIG_NETFILTER
4288 
4289 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4290 				       u16 family)
4291 {
4292 	char *addrp;
4293 	u32 peer_sid;
4294 	struct avc_audit_data ad;
4295 	u8 secmark_active;
4296 	u8 peerlbl_active;
4297 
4298 	if (!selinux_policycap_netpeer)
4299 		return NF_ACCEPT;
4300 
4301 	secmark_active = selinux_secmark_enabled();
4302 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4303 	if (!secmark_active && !peerlbl_active)
4304 		return NF_ACCEPT;
4305 
4306 	AVC_AUDIT_DATA_INIT(&ad, NET);
4307 	ad.u.net.netif = ifindex;
4308 	ad.u.net.family = family;
4309 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4310 		return NF_DROP;
4311 
4312 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4313 		return NF_DROP;
4314 
4315 	if (peerlbl_active)
4316 		if (selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4317 					     peer_sid, &ad) != 0)
4318 			return NF_DROP;
4319 
4320 	if (secmark_active)
4321 		if (avc_has_perm(peer_sid, skb->secmark,
4322 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4323 			return NF_DROP;
4324 
4325 	return NF_ACCEPT;
4326 }
4327 
4328 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4329 					 struct sk_buff *skb,
4330 					 const struct net_device *in,
4331 					 const struct net_device *out,
4332 					 int (*okfn)(struct sk_buff *))
4333 {
4334 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4335 }
4336 
4337 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4338 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4339 					 struct sk_buff *skb,
4340 					 const struct net_device *in,
4341 					 const struct net_device *out,
4342 					 int (*okfn)(struct sk_buff *))
4343 {
4344 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4345 }
4346 #endif	/* IPV6 */
4347 
4348 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4349 						int ifindex,
4350 						struct avc_audit_data *ad,
4351 						u16 family, char *addrp)
4352 {
4353 	int err;
4354 	struct sk_security_struct *sksec = sk->sk_security;
4355 	u16 sk_class;
4356 	u32 netif_perm, node_perm, send_perm;
4357 	u32 port_sid, node_sid, if_sid, sk_sid;
4358 
4359 	sk_sid = sksec->sid;
4360 	sk_class = sksec->sclass;
4361 
4362 	switch (sk_class) {
4363 	case SECCLASS_UDP_SOCKET:
4364 		netif_perm = NETIF__UDP_SEND;
4365 		node_perm = NODE__UDP_SEND;
4366 		send_perm = UDP_SOCKET__SEND_MSG;
4367 		break;
4368 	case SECCLASS_TCP_SOCKET:
4369 		netif_perm = NETIF__TCP_SEND;
4370 		node_perm = NODE__TCP_SEND;
4371 		send_perm = TCP_SOCKET__SEND_MSG;
4372 		break;
4373 	case SECCLASS_DCCP_SOCKET:
4374 		netif_perm = NETIF__DCCP_SEND;
4375 		node_perm = NODE__DCCP_SEND;
4376 		send_perm = DCCP_SOCKET__SEND_MSG;
4377 		break;
4378 	default:
4379 		netif_perm = NETIF__RAWIP_SEND;
4380 		node_perm = NODE__RAWIP_SEND;
4381 		send_perm = 0;
4382 		break;
4383 	}
4384 
4385 	err = sel_netif_sid(ifindex, &if_sid);
4386 	if (err)
4387 		return err;
4388 	err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4389 		return err;
4390 
4391 	err = sel_netnode_sid(addrp, family, &node_sid);
4392 	if (err)
4393 		return err;
4394 	err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4395 	if (err)
4396 		return err;
4397 
4398 	if (send_perm != 0)
4399 		return 0;
4400 
4401 	err = security_port_sid(sk->sk_family, sk->sk_type,
4402 				sk->sk_protocol, ntohs(ad->u.net.dport),
4403 				&port_sid);
4404 	if (unlikely(err)) {
4405 		printk(KERN_WARNING
4406 		       "SELinux: failure in"
4407 		       " selinux_ip_postroute_iptables_compat(),"
4408 		       " network port label not found\n");
4409 		return err;
4410 	}
4411 	return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4412 }
4413 
4414 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4415 						int ifindex,
4416 						struct avc_audit_data *ad,
4417 						u16 family,
4418 						char *addrp,
4419 						u8 proto)
4420 {
4421 	struct sock *sk = skb->sk;
4422 	struct sk_security_struct *sksec;
4423 
4424 	if (sk == NULL)
4425 		return NF_ACCEPT;
4426 	sksec = sk->sk_security;
4427 
4428 	if (selinux_compat_net) {
4429 		if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4430 							 ad, family, addrp))
4431 			return NF_DROP;
4432 	} else {
4433 		if (avc_has_perm(sksec->sid, skb->secmark,
4434 				 SECCLASS_PACKET, PACKET__SEND, ad))
4435 			return NF_DROP;
4436 	}
4437 
4438 	if (selinux_policycap_netpeer)
4439 		if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto))
4440 			return NF_DROP;
4441 
4442 	return NF_ACCEPT;
4443 }
4444 
4445 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4446 					 u16 family)
4447 {
4448 	u32 secmark_perm;
4449 	u32 peer_sid;
4450 	struct sock *sk;
4451 	struct avc_audit_data ad;
4452 	char *addrp;
4453 	u8 proto;
4454 	u8 secmark_active;
4455 	u8 peerlbl_active;
4456 
4457 	AVC_AUDIT_DATA_INIT(&ad, NET);
4458 	ad.u.net.netif = ifindex;
4459 	ad.u.net.family = family;
4460 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4461 		return NF_DROP;
4462 
4463 	/* If any sort of compatibility mode is enabled then handoff processing
4464 	 * to the selinux_ip_postroute_compat() function to deal with the
4465 	 * special handling.  We do this in an attempt to keep this function
4466 	 * as fast and as clean as possible. */
4467 	if (selinux_compat_net || !selinux_policycap_netpeer)
4468 		return selinux_ip_postroute_compat(skb, ifindex, &ad,
4469 						   family, addrp, proto);
4470 
4471 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4472 	 * packet transformation so allow the packet to pass without any checks
4473 	 * since we'll have another chance to perform access control checks
4474 	 * when the packet is on it's final way out.
4475 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4476 	 *       is NULL, in this case go ahead and apply access control. */
4477 	if (skb->dst != NULL && skb->dst->xfrm != NULL)
4478 		return NF_ACCEPT;
4479 
4480 	secmark_active = selinux_secmark_enabled();
4481 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4482 	if (!secmark_active && !peerlbl_active)
4483 		return NF_ACCEPT;
4484 
4485 	/* if the packet is locally generated (skb->sk != NULL) then use the
4486 	 * socket's label as the peer label, otherwise the packet is being
4487 	 * forwarded through this system and we need to fetch the peer label
4488 	 * directly from the packet */
4489 	sk = skb->sk;
4490 	if (sk) {
4491 		struct sk_security_struct *sksec = sk->sk_security;
4492 		peer_sid = sksec->sid;
4493 		secmark_perm = PACKET__SEND;
4494 	} else {
4495 		if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4496 				return NF_DROP;
4497 		secmark_perm = PACKET__FORWARD_OUT;
4498 	}
4499 
4500 	if (secmark_active)
4501 		if (avc_has_perm(peer_sid, skb->secmark,
4502 				 SECCLASS_PACKET, secmark_perm, &ad))
4503 			return NF_DROP;
4504 
4505 	if (peerlbl_active) {
4506 		u32 if_sid;
4507 		u32 node_sid;
4508 
4509 		if (sel_netif_sid(ifindex, &if_sid))
4510 			return NF_DROP;
4511 		if (avc_has_perm(peer_sid, if_sid,
4512 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4513 			return NF_DROP;
4514 
4515 		if (sel_netnode_sid(addrp, family, &node_sid))
4516 			return NF_DROP;
4517 		if (avc_has_perm(peer_sid, node_sid,
4518 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4519 			return NF_DROP;
4520 	}
4521 
4522 	return NF_ACCEPT;
4523 }
4524 
4525 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4526 					   struct sk_buff *skb,
4527 					   const struct net_device *in,
4528 					   const struct net_device *out,
4529 					   int (*okfn)(struct sk_buff *))
4530 {
4531 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4532 }
4533 
4534 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4535 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4536 					   struct sk_buff *skb,
4537 					   const struct net_device *in,
4538 					   const struct net_device *out,
4539 					   int (*okfn)(struct sk_buff *))
4540 {
4541 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4542 }
4543 #endif	/* IPV6 */
4544 
4545 #endif	/* CONFIG_NETFILTER */
4546 
4547 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4548 {
4549 	int err;
4550 
4551 	err = secondary_ops->netlink_send(sk, skb);
4552 	if (err)
4553 		return err;
4554 
4555 	if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4556 		err = selinux_nlmsg_perm(sk, skb);
4557 
4558 	return err;
4559 }
4560 
4561 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4562 {
4563 	int err;
4564 	struct avc_audit_data ad;
4565 
4566 	err = secondary_ops->netlink_recv(skb, capability);
4567 	if (err)
4568 		return err;
4569 
4570 	AVC_AUDIT_DATA_INIT(&ad, CAP);
4571 	ad.u.cap = capability;
4572 
4573 	return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4574 	                    SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4575 }
4576 
4577 static int ipc_alloc_security(struct task_struct *task,
4578 			      struct kern_ipc_perm *perm,
4579 			      u16 sclass)
4580 {
4581 	struct task_security_struct *tsec = task->security;
4582 	struct ipc_security_struct *isec;
4583 
4584 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4585 	if (!isec)
4586 		return -ENOMEM;
4587 
4588 	isec->sclass = sclass;
4589 	isec->sid = tsec->sid;
4590 	perm->security = isec;
4591 
4592 	return 0;
4593 }
4594 
4595 static void ipc_free_security(struct kern_ipc_perm *perm)
4596 {
4597 	struct ipc_security_struct *isec = perm->security;
4598 	perm->security = NULL;
4599 	kfree(isec);
4600 }
4601 
4602 static int msg_msg_alloc_security(struct msg_msg *msg)
4603 {
4604 	struct msg_security_struct *msec;
4605 
4606 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4607 	if (!msec)
4608 		return -ENOMEM;
4609 
4610 	msec->sid = SECINITSID_UNLABELED;
4611 	msg->security = msec;
4612 
4613 	return 0;
4614 }
4615 
4616 static void msg_msg_free_security(struct msg_msg *msg)
4617 {
4618 	struct msg_security_struct *msec = msg->security;
4619 
4620 	msg->security = NULL;
4621 	kfree(msec);
4622 }
4623 
4624 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4625 			u32 perms)
4626 {
4627 	struct task_security_struct *tsec;
4628 	struct ipc_security_struct *isec;
4629 	struct avc_audit_data ad;
4630 
4631 	tsec = current->security;
4632 	isec = ipc_perms->security;
4633 
4634 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4635 	ad.u.ipc_id = ipc_perms->key;
4636 
4637 	return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4638 }
4639 
4640 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4641 {
4642 	return msg_msg_alloc_security(msg);
4643 }
4644 
4645 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4646 {
4647 	msg_msg_free_security(msg);
4648 }
4649 
4650 /* message queue security operations */
4651 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4652 {
4653 	struct task_security_struct *tsec;
4654 	struct ipc_security_struct *isec;
4655 	struct avc_audit_data ad;
4656 	int rc;
4657 
4658 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4659 	if (rc)
4660 		return rc;
4661 
4662 	tsec = current->security;
4663 	isec = msq->q_perm.security;
4664 
4665 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4666  	ad.u.ipc_id = msq->q_perm.key;
4667 
4668 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4669 			  MSGQ__CREATE, &ad);
4670 	if (rc) {
4671 		ipc_free_security(&msq->q_perm);
4672 		return rc;
4673 	}
4674 	return 0;
4675 }
4676 
4677 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4678 {
4679 	ipc_free_security(&msq->q_perm);
4680 }
4681 
4682 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4683 {
4684 	struct task_security_struct *tsec;
4685 	struct ipc_security_struct *isec;
4686 	struct avc_audit_data ad;
4687 
4688 	tsec = current->security;
4689 	isec = msq->q_perm.security;
4690 
4691 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4692 	ad.u.ipc_id = msq->q_perm.key;
4693 
4694 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4695 			    MSGQ__ASSOCIATE, &ad);
4696 }
4697 
4698 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4699 {
4700 	int err;
4701 	int perms;
4702 
4703 	switch(cmd) {
4704 	case IPC_INFO:
4705 	case MSG_INFO:
4706 		/* No specific object, just general system-wide information. */
4707 		return task_has_system(current, SYSTEM__IPC_INFO);
4708 	case IPC_STAT:
4709 	case MSG_STAT:
4710 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4711 		break;
4712 	case IPC_SET:
4713 		perms = MSGQ__SETATTR;
4714 		break;
4715 	case IPC_RMID:
4716 		perms = MSGQ__DESTROY;
4717 		break;
4718 	default:
4719 		return 0;
4720 	}
4721 
4722 	err = ipc_has_perm(&msq->q_perm, perms);
4723 	return err;
4724 }
4725 
4726 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4727 {
4728 	struct task_security_struct *tsec;
4729 	struct ipc_security_struct *isec;
4730 	struct msg_security_struct *msec;
4731 	struct avc_audit_data ad;
4732 	int rc;
4733 
4734 	tsec = current->security;
4735 	isec = msq->q_perm.security;
4736 	msec = msg->security;
4737 
4738 	/*
4739 	 * First time through, need to assign label to the message
4740 	 */
4741 	if (msec->sid == SECINITSID_UNLABELED) {
4742 		/*
4743 		 * Compute new sid based on current process and
4744 		 * message queue this message will be stored in
4745 		 */
4746 		rc = security_transition_sid(tsec->sid,
4747 					     isec->sid,
4748 					     SECCLASS_MSG,
4749 					     &msec->sid);
4750 		if (rc)
4751 			return rc;
4752 	}
4753 
4754 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4755 	ad.u.ipc_id = msq->q_perm.key;
4756 
4757 	/* Can this process write to the queue? */
4758 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4759 			  MSGQ__WRITE, &ad);
4760 	if (!rc)
4761 		/* Can this process send the message */
4762 		rc = avc_has_perm(tsec->sid, msec->sid,
4763 				  SECCLASS_MSG, MSG__SEND, &ad);
4764 	if (!rc)
4765 		/* Can the message be put in the queue? */
4766 		rc = avc_has_perm(msec->sid, isec->sid,
4767 				  SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4768 
4769 	return rc;
4770 }
4771 
4772 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4773 				    struct task_struct *target,
4774 				    long type, int mode)
4775 {
4776 	struct task_security_struct *tsec;
4777 	struct ipc_security_struct *isec;
4778 	struct msg_security_struct *msec;
4779 	struct avc_audit_data ad;
4780 	int rc;
4781 
4782 	tsec = target->security;
4783 	isec = msq->q_perm.security;
4784 	msec = msg->security;
4785 
4786 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4787  	ad.u.ipc_id = msq->q_perm.key;
4788 
4789 	rc = avc_has_perm(tsec->sid, isec->sid,
4790 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4791 	if (!rc)
4792 		rc = avc_has_perm(tsec->sid, msec->sid,
4793 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4794 	return rc;
4795 }
4796 
4797 /* Shared Memory security operations */
4798 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4799 {
4800 	struct task_security_struct *tsec;
4801 	struct ipc_security_struct *isec;
4802 	struct avc_audit_data ad;
4803 	int rc;
4804 
4805 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4806 	if (rc)
4807 		return rc;
4808 
4809 	tsec = current->security;
4810 	isec = shp->shm_perm.security;
4811 
4812 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4813  	ad.u.ipc_id = shp->shm_perm.key;
4814 
4815 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4816 			  SHM__CREATE, &ad);
4817 	if (rc) {
4818 		ipc_free_security(&shp->shm_perm);
4819 		return rc;
4820 	}
4821 	return 0;
4822 }
4823 
4824 static void selinux_shm_free_security(struct shmid_kernel *shp)
4825 {
4826 	ipc_free_security(&shp->shm_perm);
4827 }
4828 
4829 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4830 {
4831 	struct task_security_struct *tsec;
4832 	struct ipc_security_struct *isec;
4833 	struct avc_audit_data ad;
4834 
4835 	tsec = current->security;
4836 	isec = shp->shm_perm.security;
4837 
4838 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4839 	ad.u.ipc_id = shp->shm_perm.key;
4840 
4841 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4842 			    SHM__ASSOCIATE, &ad);
4843 }
4844 
4845 /* Note, at this point, shp is locked down */
4846 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4847 {
4848 	int perms;
4849 	int err;
4850 
4851 	switch(cmd) {
4852 	case IPC_INFO:
4853 	case SHM_INFO:
4854 		/* No specific object, just general system-wide information. */
4855 		return task_has_system(current, SYSTEM__IPC_INFO);
4856 	case IPC_STAT:
4857 	case SHM_STAT:
4858 		perms = SHM__GETATTR | SHM__ASSOCIATE;
4859 		break;
4860 	case IPC_SET:
4861 		perms = SHM__SETATTR;
4862 		break;
4863 	case SHM_LOCK:
4864 	case SHM_UNLOCK:
4865 		perms = SHM__LOCK;
4866 		break;
4867 	case IPC_RMID:
4868 		perms = SHM__DESTROY;
4869 		break;
4870 	default:
4871 		return 0;
4872 	}
4873 
4874 	err = ipc_has_perm(&shp->shm_perm, perms);
4875 	return err;
4876 }
4877 
4878 static int selinux_shm_shmat(struct shmid_kernel *shp,
4879 			     char __user *shmaddr, int shmflg)
4880 {
4881 	u32 perms;
4882 	int rc;
4883 
4884 	rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4885 	if (rc)
4886 		return rc;
4887 
4888 	if (shmflg & SHM_RDONLY)
4889 		perms = SHM__READ;
4890 	else
4891 		perms = SHM__READ | SHM__WRITE;
4892 
4893 	return ipc_has_perm(&shp->shm_perm, perms);
4894 }
4895 
4896 /* Semaphore security operations */
4897 static int selinux_sem_alloc_security(struct sem_array *sma)
4898 {
4899 	struct task_security_struct *tsec;
4900 	struct ipc_security_struct *isec;
4901 	struct avc_audit_data ad;
4902 	int rc;
4903 
4904 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4905 	if (rc)
4906 		return rc;
4907 
4908 	tsec = current->security;
4909 	isec = sma->sem_perm.security;
4910 
4911 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4912  	ad.u.ipc_id = sma->sem_perm.key;
4913 
4914 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4915 			  SEM__CREATE, &ad);
4916 	if (rc) {
4917 		ipc_free_security(&sma->sem_perm);
4918 		return rc;
4919 	}
4920 	return 0;
4921 }
4922 
4923 static void selinux_sem_free_security(struct sem_array *sma)
4924 {
4925 	ipc_free_security(&sma->sem_perm);
4926 }
4927 
4928 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4929 {
4930 	struct task_security_struct *tsec;
4931 	struct ipc_security_struct *isec;
4932 	struct avc_audit_data ad;
4933 
4934 	tsec = current->security;
4935 	isec = sma->sem_perm.security;
4936 
4937 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4938 	ad.u.ipc_id = sma->sem_perm.key;
4939 
4940 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4941 			    SEM__ASSOCIATE, &ad);
4942 }
4943 
4944 /* Note, at this point, sma is locked down */
4945 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4946 {
4947 	int err;
4948 	u32 perms;
4949 
4950 	switch(cmd) {
4951 	case IPC_INFO:
4952 	case SEM_INFO:
4953 		/* No specific object, just general system-wide information. */
4954 		return task_has_system(current, SYSTEM__IPC_INFO);
4955 	case GETPID:
4956 	case GETNCNT:
4957 	case GETZCNT:
4958 		perms = SEM__GETATTR;
4959 		break;
4960 	case GETVAL:
4961 	case GETALL:
4962 		perms = SEM__READ;
4963 		break;
4964 	case SETVAL:
4965 	case SETALL:
4966 		perms = SEM__WRITE;
4967 		break;
4968 	case IPC_RMID:
4969 		perms = SEM__DESTROY;
4970 		break;
4971 	case IPC_SET:
4972 		perms = SEM__SETATTR;
4973 		break;
4974 	case IPC_STAT:
4975 	case SEM_STAT:
4976 		perms = SEM__GETATTR | SEM__ASSOCIATE;
4977 		break;
4978 	default:
4979 		return 0;
4980 	}
4981 
4982 	err = ipc_has_perm(&sma->sem_perm, perms);
4983 	return err;
4984 }
4985 
4986 static int selinux_sem_semop(struct sem_array *sma,
4987 			     struct sembuf *sops, unsigned nsops, int alter)
4988 {
4989 	u32 perms;
4990 
4991 	if (alter)
4992 		perms = SEM__READ | SEM__WRITE;
4993 	else
4994 		perms = SEM__READ;
4995 
4996 	return ipc_has_perm(&sma->sem_perm, perms);
4997 }
4998 
4999 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5000 {
5001 	u32 av = 0;
5002 
5003 	av = 0;
5004 	if (flag & S_IRUGO)
5005 		av |= IPC__UNIX_READ;
5006 	if (flag & S_IWUGO)
5007 		av |= IPC__UNIX_WRITE;
5008 
5009 	if (av == 0)
5010 		return 0;
5011 
5012 	return ipc_has_perm(ipcp, av);
5013 }
5014 
5015 /* module stacking operations */
5016 static int selinux_register_security (const char *name, struct security_operations *ops)
5017 {
5018 	if (secondary_ops != original_ops) {
5019 		printk(KERN_ERR "%s:  There is already a secondary security "
5020 		       "module registered.\n", __FUNCTION__);
5021 		return -EINVAL;
5022  	}
5023 
5024 	secondary_ops = ops;
5025 
5026 	printk(KERN_INFO "%s:  Registering secondary module %s\n",
5027 	       __FUNCTION__,
5028 	       name);
5029 
5030 	return 0;
5031 }
5032 
5033 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
5034 {
5035 	if (inode)
5036 		inode_doinit_with_dentry(inode, dentry);
5037 }
5038 
5039 static int selinux_getprocattr(struct task_struct *p,
5040 			       char *name, char **value)
5041 {
5042 	struct task_security_struct *tsec;
5043 	u32 sid;
5044 	int error;
5045 	unsigned len;
5046 
5047 	if (current != p) {
5048 		error = task_has_perm(current, p, PROCESS__GETATTR);
5049 		if (error)
5050 			return error;
5051 	}
5052 
5053 	tsec = p->security;
5054 
5055 	if (!strcmp(name, "current"))
5056 		sid = tsec->sid;
5057 	else if (!strcmp(name, "prev"))
5058 		sid = tsec->osid;
5059 	else if (!strcmp(name, "exec"))
5060 		sid = tsec->exec_sid;
5061 	else if (!strcmp(name, "fscreate"))
5062 		sid = tsec->create_sid;
5063 	else if (!strcmp(name, "keycreate"))
5064 		sid = tsec->keycreate_sid;
5065 	else if (!strcmp(name, "sockcreate"))
5066 		sid = tsec->sockcreate_sid;
5067 	else
5068 		return -EINVAL;
5069 
5070 	if (!sid)
5071 		return 0;
5072 
5073 	error = security_sid_to_context(sid, value, &len);
5074 	if (error)
5075 		return error;
5076 	return len;
5077 }
5078 
5079 static int selinux_setprocattr(struct task_struct *p,
5080 			       char *name, void *value, size_t size)
5081 {
5082 	struct task_security_struct *tsec;
5083 	u32 sid = 0;
5084 	int error;
5085 	char *str = value;
5086 
5087 	if (current != p) {
5088 		/* SELinux only allows a process to change its own
5089 		   security attributes. */
5090 		return -EACCES;
5091 	}
5092 
5093 	/*
5094 	 * Basic control over ability to set these attributes at all.
5095 	 * current == p, but we'll pass them separately in case the
5096 	 * above restriction is ever removed.
5097 	 */
5098 	if (!strcmp(name, "exec"))
5099 		error = task_has_perm(current, p, PROCESS__SETEXEC);
5100 	else if (!strcmp(name, "fscreate"))
5101 		error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5102 	else if (!strcmp(name, "keycreate"))
5103 		error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5104 	else if (!strcmp(name, "sockcreate"))
5105 		error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5106 	else if (!strcmp(name, "current"))
5107 		error = task_has_perm(current, p, PROCESS__SETCURRENT);
5108 	else
5109 		error = -EINVAL;
5110 	if (error)
5111 		return error;
5112 
5113 	/* Obtain a SID for the context, if one was specified. */
5114 	if (size && str[1] && str[1] != '\n') {
5115 		if (str[size-1] == '\n') {
5116 			str[size-1] = 0;
5117 			size--;
5118 		}
5119 		error = security_context_to_sid(value, size, &sid);
5120 		if (error)
5121 			return error;
5122 	}
5123 
5124 	/* Permission checking based on the specified context is
5125 	   performed during the actual operation (execve,
5126 	   open/mkdir/...), when we know the full context of the
5127 	   operation.  See selinux_bprm_set_security for the execve
5128 	   checks and may_create for the file creation checks. The
5129 	   operation will then fail if the context is not permitted. */
5130 	tsec = p->security;
5131 	if (!strcmp(name, "exec"))
5132 		tsec->exec_sid = sid;
5133 	else if (!strcmp(name, "fscreate"))
5134 		tsec->create_sid = sid;
5135 	else if (!strcmp(name, "keycreate")) {
5136 		error = may_create_key(sid, p);
5137 		if (error)
5138 			return error;
5139 		tsec->keycreate_sid = sid;
5140 	} else if (!strcmp(name, "sockcreate"))
5141 		tsec->sockcreate_sid = sid;
5142 	else if (!strcmp(name, "current")) {
5143 		struct av_decision avd;
5144 
5145 		if (sid == 0)
5146 			return -EINVAL;
5147 
5148 		/* Only allow single threaded processes to change context */
5149 		if (atomic_read(&p->mm->mm_users) != 1) {
5150 			struct task_struct *g, *t;
5151 			struct mm_struct *mm = p->mm;
5152 			read_lock(&tasklist_lock);
5153 			do_each_thread(g, t)
5154 				if (t->mm == mm && t != p) {
5155 					read_unlock(&tasklist_lock);
5156 					return -EPERM;
5157 				}
5158 			while_each_thread(g, t);
5159 			read_unlock(&tasklist_lock);
5160                 }
5161 
5162 		/* Check permissions for the transition. */
5163 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5164 		                     PROCESS__DYNTRANSITION, NULL);
5165 		if (error)
5166 			return error;
5167 
5168 		/* Check for ptracing, and update the task SID if ok.
5169 		   Otherwise, leave SID unchanged and fail. */
5170 		task_lock(p);
5171 		if (p->ptrace & PT_PTRACED) {
5172 			error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
5173 						     SECCLASS_PROCESS,
5174 						     PROCESS__PTRACE, 0, &avd);
5175 			if (!error)
5176 				tsec->sid = sid;
5177 			task_unlock(p);
5178 			avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
5179 				  PROCESS__PTRACE, &avd, error, NULL);
5180 			if (error)
5181 				return error;
5182 		} else {
5183 			tsec->sid = sid;
5184 			task_unlock(p);
5185 		}
5186 	}
5187 	else
5188 		return -EINVAL;
5189 
5190 	return size;
5191 }
5192 
5193 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5194 {
5195 	return security_sid_to_context(secid, secdata, seclen);
5196 }
5197 
5198 static int selinux_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
5199 {
5200 	return security_context_to_sid(secdata, seclen, secid);
5201 }
5202 
5203 static void selinux_release_secctx(char *secdata, u32 seclen)
5204 {
5205 	kfree(secdata);
5206 }
5207 
5208 #ifdef CONFIG_KEYS
5209 
5210 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5211 			     unsigned long flags)
5212 {
5213 	struct task_security_struct *tsec = tsk->security;
5214 	struct key_security_struct *ksec;
5215 
5216 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5217 	if (!ksec)
5218 		return -ENOMEM;
5219 
5220 	if (tsec->keycreate_sid)
5221 		ksec->sid = tsec->keycreate_sid;
5222 	else
5223 		ksec->sid = tsec->sid;
5224 	k->security = ksec;
5225 
5226 	return 0;
5227 }
5228 
5229 static void selinux_key_free(struct key *k)
5230 {
5231 	struct key_security_struct *ksec = k->security;
5232 
5233 	k->security = NULL;
5234 	kfree(ksec);
5235 }
5236 
5237 static int selinux_key_permission(key_ref_t key_ref,
5238 			    struct task_struct *ctx,
5239 			    key_perm_t perm)
5240 {
5241 	struct key *key;
5242 	struct task_security_struct *tsec;
5243 	struct key_security_struct *ksec;
5244 
5245 	key = key_ref_to_ptr(key_ref);
5246 
5247 	tsec = ctx->security;
5248 	ksec = key->security;
5249 
5250 	/* if no specific permissions are requested, we skip the
5251 	   permission check. No serious, additional covert channels
5252 	   appear to be created. */
5253 	if (perm == 0)
5254 		return 0;
5255 
5256 	return avc_has_perm(tsec->sid, ksec->sid,
5257 			    SECCLASS_KEY, perm, NULL);
5258 }
5259 
5260 #endif
5261 
5262 static struct security_operations selinux_ops = {
5263 	.ptrace =			selinux_ptrace,
5264 	.capget =			selinux_capget,
5265 	.capset_check =			selinux_capset_check,
5266 	.capset_set =			selinux_capset_set,
5267 	.sysctl =			selinux_sysctl,
5268 	.capable =			selinux_capable,
5269 	.quotactl =			selinux_quotactl,
5270 	.quota_on =			selinux_quota_on,
5271 	.syslog =			selinux_syslog,
5272 	.vm_enough_memory =		selinux_vm_enough_memory,
5273 
5274 	.netlink_send =			selinux_netlink_send,
5275         .netlink_recv =			selinux_netlink_recv,
5276 
5277 	.bprm_alloc_security =		selinux_bprm_alloc_security,
5278 	.bprm_free_security =		selinux_bprm_free_security,
5279 	.bprm_apply_creds =		selinux_bprm_apply_creds,
5280 	.bprm_post_apply_creds =	selinux_bprm_post_apply_creds,
5281 	.bprm_set_security =		selinux_bprm_set_security,
5282 	.bprm_check_security =		selinux_bprm_check_security,
5283 	.bprm_secureexec =		selinux_bprm_secureexec,
5284 
5285 	.sb_alloc_security =		selinux_sb_alloc_security,
5286 	.sb_free_security =		selinux_sb_free_security,
5287 	.sb_copy_data =			selinux_sb_copy_data,
5288 	.sb_kern_mount =	        selinux_sb_kern_mount,
5289 	.sb_statfs =			selinux_sb_statfs,
5290 	.sb_mount =			selinux_mount,
5291 	.sb_umount =			selinux_umount,
5292 	.sb_get_mnt_opts =		selinux_get_mnt_opts,
5293 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5294 	.sb_clone_mnt_opts = 		selinux_sb_clone_mnt_opts,
5295 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5296 
5297 
5298 	.inode_alloc_security =		selinux_inode_alloc_security,
5299 	.inode_free_security =		selinux_inode_free_security,
5300 	.inode_init_security =		selinux_inode_init_security,
5301 	.inode_create =			selinux_inode_create,
5302 	.inode_link =			selinux_inode_link,
5303 	.inode_unlink =			selinux_inode_unlink,
5304 	.inode_symlink =		selinux_inode_symlink,
5305 	.inode_mkdir =			selinux_inode_mkdir,
5306 	.inode_rmdir =			selinux_inode_rmdir,
5307 	.inode_mknod =			selinux_inode_mknod,
5308 	.inode_rename =			selinux_inode_rename,
5309 	.inode_readlink =		selinux_inode_readlink,
5310 	.inode_follow_link =		selinux_inode_follow_link,
5311 	.inode_permission =		selinux_inode_permission,
5312 	.inode_setattr =		selinux_inode_setattr,
5313 	.inode_getattr =		selinux_inode_getattr,
5314 	.inode_setxattr =		selinux_inode_setxattr,
5315 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5316 	.inode_getxattr =		selinux_inode_getxattr,
5317 	.inode_listxattr =		selinux_inode_listxattr,
5318 	.inode_removexattr =		selinux_inode_removexattr,
5319 	.inode_getsecurity =            selinux_inode_getsecurity,
5320 	.inode_setsecurity =            selinux_inode_setsecurity,
5321 	.inode_listsecurity =           selinux_inode_listsecurity,
5322 	.inode_need_killpriv =		selinux_inode_need_killpriv,
5323 	.inode_killpriv =		selinux_inode_killpriv,
5324 
5325 	.file_permission =		selinux_file_permission,
5326 	.file_alloc_security =		selinux_file_alloc_security,
5327 	.file_free_security =		selinux_file_free_security,
5328 	.file_ioctl =			selinux_file_ioctl,
5329 	.file_mmap =			selinux_file_mmap,
5330 	.file_mprotect =		selinux_file_mprotect,
5331 	.file_lock =			selinux_file_lock,
5332 	.file_fcntl =			selinux_file_fcntl,
5333 	.file_set_fowner =		selinux_file_set_fowner,
5334 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5335 	.file_receive =			selinux_file_receive,
5336 
5337 	.dentry_open =                  selinux_dentry_open,
5338 
5339 	.task_create =			selinux_task_create,
5340 	.task_alloc_security =		selinux_task_alloc_security,
5341 	.task_free_security =		selinux_task_free_security,
5342 	.task_setuid =			selinux_task_setuid,
5343 	.task_post_setuid =		selinux_task_post_setuid,
5344 	.task_setgid =			selinux_task_setgid,
5345 	.task_setpgid =			selinux_task_setpgid,
5346 	.task_getpgid =			selinux_task_getpgid,
5347 	.task_getsid =		        selinux_task_getsid,
5348 	.task_getsecid =		selinux_task_getsecid,
5349 	.task_setgroups =		selinux_task_setgroups,
5350 	.task_setnice =			selinux_task_setnice,
5351 	.task_setioprio =		selinux_task_setioprio,
5352 	.task_getioprio =		selinux_task_getioprio,
5353 	.task_setrlimit =		selinux_task_setrlimit,
5354 	.task_setscheduler =		selinux_task_setscheduler,
5355 	.task_getscheduler =		selinux_task_getscheduler,
5356 	.task_movememory =		selinux_task_movememory,
5357 	.task_kill =			selinux_task_kill,
5358 	.task_wait =			selinux_task_wait,
5359 	.task_prctl =			selinux_task_prctl,
5360 	.task_reparent_to_init =	selinux_task_reparent_to_init,
5361 	.task_to_inode =                selinux_task_to_inode,
5362 
5363 	.ipc_permission =		selinux_ipc_permission,
5364 
5365 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5366 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5367 
5368 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5369 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5370 	.msg_queue_associate =		selinux_msg_queue_associate,
5371 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5372 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5373 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5374 
5375 	.shm_alloc_security =		selinux_shm_alloc_security,
5376 	.shm_free_security =		selinux_shm_free_security,
5377 	.shm_associate =		selinux_shm_associate,
5378 	.shm_shmctl =			selinux_shm_shmctl,
5379 	.shm_shmat =			selinux_shm_shmat,
5380 
5381 	.sem_alloc_security = 		selinux_sem_alloc_security,
5382 	.sem_free_security =  		selinux_sem_free_security,
5383 	.sem_associate =		selinux_sem_associate,
5384 	.sem_semctl =			selinux_sem_semctl,
5385 	.sem_semop =			selinux_sem_semop,
5386 
5387 	.register_security =		selinux_register_security,
5388 
5389 	.d_instantiate =                selinux_d_instantiate,
5390 
5391 	.getprocattr =                  selinux_getprocattr,
5392 	.setprocattr =                  selinux_setprocattr,
5393 
5394 	.secid_to_secctx =		selinux_secid_to_secctx,
5395 	.secctx_to_secid =		selinux_secctx_to_secid,
5396 	.release_secctx =		selinux_release_secctx,
5397 
5398         .unix_stream_connect =		selinux_socket_unix_stream_connect,
5399 	.unix_may_send =		selinux_socket_unix_may_send,
5400 
5401 	.socket_create =		selinux_socket_create,
5402 	.socket_post_create =		selinux_socket_post_create,
5403 	.socket_bind =			selinux_socket_bind,
5404 	.socket_connect =		selinux_socket_connect,
5405 	.socket_listen =		selinux_socket_listen,
5406 	.socket_accept =		selinux_socket_accept,
5407 	.socket_sendmsg =		selinux_socket_sendmsg,
5408 	.socket_recvmsg =		selinux_socket_recvmsg,
5409 	.socket_getsockname =		selinux_socket_getsockname,
5410 	.socket_getpeername =		selinux_socket_getpeername,
5411 	.socket_getsockopt =		selinux_socket_getsockopt,
5412 	.socket_setsockopt =		selinux_socket_setsockopt,
5413 	.socket_shutdown =		selinux_socket_shutdown,
5414 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5415 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5416 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5417 	.sk_alloc_security =		selinux_sk_alloc_security,
5418 	.sk_free_security =		selinux_sk_free_security,
5419 	.sk_clone_security =		selinux_sk_clone_security,
5420 	.sk_getsecid = 			selinux_sk_getsecid,
5421 	.sock_graft =			selinux_sock_graft,
5422 	.inet_conn_request =		selinux_inet_conn_request,
5423 	.inet_csk_clone =		selinux_inet_csk_clone,
5424 	.inet_conn_established =	selinux_inet_conn_established,
5425 	.req_classify_flow =		selinux_req_classify_flow,
5426 
5427 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5428 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5429 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5430 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5431 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5432 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5433 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5434 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5435 	.xfrm_policy_lookup = 		selinux_xfrm_policy_lookup,
5436 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5437 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5438 #endif
5439 
5440 #ifdef CONFIG_KEYS
5441 	.key_alloc =                    selinux_key_alloc,
5442 	.key_free =                     selinux_key_free,
5443 	.key_permission =               selinux_key_permission,
5444 #endif
5445 };
5446 
5447 static __init int selinux_init(void)
5448 {
5449 	struct task_security_struct *tsec;
5450 
5451 	if (!selinux_enabled) {
5452 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5453 		return 0;
5454 	}
5455 
5456 	printk(KERN_INFO "SELinux:  Initializing.\n");
5457 
5458 	/* Set the security state for the initial task. */
5459 	if (task_alloc_security(current))
5460 		panic("SELinux:  Failed to initialize initial task.\n");
5461 	tsec = current->security;
5462 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
5463 
5464 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5465 					    sizeof(struct inode_security_struct),
5466 					    0, SLAB_PANIC, NULL);
5467 	avc_init();
5468 
5469 	original_ops = secondary_ops = security_ops;
5470 	if (!secondary_ops)
5471 		panic ("SELinux: No initial security operations\n");
5472 	if (register_security (&selinux_ops))
5473 		panic("SELinux: Unable to register with kernel.\n");
5474 
5475 	if (selinux_enforcing) {
5476 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5477 	} else {
5478 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5479 	}
5480 
5481 #ifdef CONFIG_KEYS
5482 	/* Add security information to initial keyrings */
5483 	selinux_key_alloc(&root_user_keyring, current,
5484 			  KEY_ALLOC_NOT_IN_QUOTA);
5485 	selinux_key_alloc(&root_session_keyring, current,
5486 			  KEY_ALLOC_NOT_IN_QUOTA);
5487 #endif
5488 
5489 	return 0;
5490 }
5491 
5492 void selinux_complete_init(void)
5493 {
5494 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5495 
5496 	/* Set up any superblocks initialized prior to the policy load. */
5497 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5498 	spin_lock(&sb_lock);
5499 	spin_lock(&sb_security_lock);
5500 next_sb:
5501 	if (!list_empty(&superblock_security_head)) {
5502 		struct superblock_security_struct *sbsec =
5503 				list_entry(superblock_security_head.next,
5504 				           struct superblock_security_struct,
5505 				           list);
5506 		struct super_block *sb = sbsec->sb;
5507 		sb->s_count++;
5508 		spin_unlock(&sb_security_lock);
5509 		spin_unlock(&sb_lock);
5510 		down_read(&sb->s_umount);
5511 		if (sb->s_root)
5512 			superblock_doinit(sb, NULL);
5513 		drop_super(sb);
5514 		spin_lock(&sb_lock);
5515 		spin_lock(&sb_security_lock);
5516 		list_del_init(&sbsec->list);
5517 		goto next_sb;
5518 	}
5519 	spin_unlock(&sb_security_lock);
5520 	spin_unlock(&sb_lock);
5521 }
5522 
5523 /* SELinux requires early initialization in order to label
5524    all processes and objects when they are created. */
5525 security_initcall(selinux_init);
5526 
5527 #if defined(CONFIG_NETFILTER)
5528 
5529 static struct nf_hook_ops selinux_ipv4_ops[] = {
5530 	{
5531 		.hook =		selinux_ipv4_postroute,
5532 		.owner =	THIS_MODULE,
5533 		.pf =		PF_INET,
5534 		.hooknum =	NF_INET_POST_ROUTING,
5535 		.priority =	NF_IP_PRI_SELINUX_LAST,
5536 	},
5537 	{
5538 		.hook =		selinux_ipv4_forward,
5539 		.owner =	THIS_MODULE,
5540 		.pf =		PF_INET,
5541 		.hooknum =	NF_INET_FORWARD,
5542 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5543 	}
5544 };
5545 
5546 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5547 
5548 static struct nf_hook_ops selinux_ipv6_ops[] = {
5549 	{
5550 		.hook =		selinux_ipv6_postroute,
5551 		.owner =	THIS_MODULE,
5552 		.pf =		PF_INET6,
5553 		.hooknum =	NF_INET_POST_ROUTING,
5554 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5555 	},
5556 	{
5557 		.hook =		selinux_ipv6_forward,
5558 		.owner =	THIS_MODULE,
5559 		.pf =		PF_INET6,
5560 		.hooknum =	NF_INET_FORWARD,
5561 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5562 	}
5563 };
5564 
5565 #endif	/* IPV6 */
5566 
5567 static int __init selinux_nf_ip_init(void)
5568 {
5569 	int err = 0;
5570 	u32 iter;
5571 
5572 	if (!selinux_enabled)
5573 		goto out;
5574 
5575 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5576 
5577 	for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++) {
5578 		err = nf_register_hook(&selinux_ipv4_ops[iter]);
5579 		if (err)
5580 			panic("SELinux: nf_register_hook for IPv4: error %d\n",
5581 			      err);
5582 	}
5583 
5584 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5585 	for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++) {
5586 		err = nf_register_hook(&selinux_ipv6_ops[iter]);
5587 		if (err)
5588 			panic("SELinux: nf_register_hook for IPv6: error %d\n",
5589 			      err);
5590 	}
5591 #endif	/* IPV6 */
5592 
5593 out:
5594 	return err;
5595 }
5596 
5597 __initcall(selinux_nf_ip_init);
5598 
5599 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5600 static void selinux_nf_ip_exit(void)
5601 {
5602 	u32 iter;
5603 
5604 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5605 
5606 	for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++)
5607 		nf_unregister_hook(&selinux_ipv4_ops[iter]);
5608 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5609 	for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++)
5610 		nf_unregister_hook(&selinux_ipv6_ops[iter]);
5611 #endif	/* IPV6 */
5612 }
5613 #endif
5614 
5615 #else /* CONFIG_NETFILTER */
5616 
5617 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5618 #define selinux_nf_ip_exit()
5619 #endif
5620 
5621 #endif /* CONFIG_NETFILTER */
5622 
5623 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5624 int selinux_disable(void)
5625 {
5626 	extern void exit_sel_fs(void);
5627 	static int selinux_disabled = 0;
5628 
5629 	if (ss_initialized) {
5630 		/* Not permitted after initial policy load. */
5631 		return -EINVAL;
5632 	}
5633 
5634 	if (selinux_disabled) {
5635 		/* Only do this once. */
5636 		return -EINVAL;
5637 	}
5638 
5639 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5640 
5641 	selinux_disabled = 1;
5642 	selinux_enabled = 0;
5643 
5644 	/* Reset security_ops to the secondary module, dummy or capability. */
5645 	security_ops = secondary_ops;
5646 
5647 	/* Unregister netfilter hooks. */
5648 	selinux_nf_ip_exit();
5649 
5650 	/* Unregister selinuxfs. */
5651 	exit_sel_fs();
5652 
5653 	return 0;
5654 }
5655 #endif
5656 
5657 
5658