xref: /openbmc/linux/security/selinux/hooks.c (revision 99f59ed073d3c1b890690064ab285a201dea2e35)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *
18  *	This program is free software; you can redistribute it and/or modify
19  *	it under the terms of the GNU General Public License version 2,
20  *      as published by the Free Software Foundation.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>		/* for sysctl_local_port_range[] */
52 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/semaphore.h>
55 #include <asm/ioctls.h>
56 #include <linux/bitops.h>
57 #include <linux/interrupt.h>
58 #include <linux/netdevice.h>	/* for network interface checks */
59 #include <linux/netlink.h>
60 #include <linux/tcp.h>
61 #include <linux/udp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>		/* for Unix socket types */
64 #include <net/af_unix.h>	/* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 
75 #include "avc.h"
76 #include "objsec.h"
77 #include "netif.h"
78 #include "xfrm.h"
79 #include "selinux_netlabel.h"
80 
81 #define XATTR_SELINUX_SUFFIX "selinux"
82 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
83 
84 extern unsigned int policydb_loaded_version;
85 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
86 extern int selinux_compat_net;
87 
88 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
89 int selinux_enforcing = 0;
90 
91 static int __init enforcing_setup(char *str)
92 {
93 	selinux_enforcing = simple_strtol(str,NULL,0);
94 	return 1;
95 }
96 __setup("enforcing=", enforcing_setup);
97 #endif
98 
99 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
100 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
101 
102 static int __init selinux_enabled_setup(char *str)
103 {
104 	selinux_enabled = simple_strtol(str, NULL, 0);
105 	return 1;
106 }
107 __setup("selinux=", selinux_enabled_setup);
108 #else
109 int selinux_enabled = 1;
110 #endif
111 
112 /* Original (dummy) security module. */
113 static struct security_operations *original_ops = NULL;
114 
115 /* Minimal support for a secondary security module,
116    just to allow the use of the dummy or capability modules.
117    The owlsm module can alternatively be used as a secondary
118    module as long as CONFIG_OWLSM_FD is not enabled. */
119 static struct security_operations *secondary_ops = NULL;
120 
121 /* Lists of inode and superblock security structures initialized
122    before the policy was loaded. */
123 static LIST_HEAD(superblock_security_head);
124 static DEFINE_SPINLOCK(sb_security_lock);
125 
126 static kmem_cache_t *sel_inode_cache;
127 
128 /* Return security context for a given sid or just the context
129    length if the buffer is null or length is 0 */
130 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
131 {
132 	char *context;
133 	unsigned len;
134 	int rc;
135 
136 	rc = security_sid_to_context(sid, &context, &len);
137 	if (rc)
138 		return rc;
139 
140 	if (!buffer || !size)
141 		goto getsecurity_exit;
142 
143 	if (size < len) {
144 		len = -ERANGE;
145 		goto getsecurity_exit;
146 	}
147 	memcpy(buffer, context, len);
148 
149 getsecurity_exit:
150 	kfree(context);
151 	return len;
152 }
153 
154 /* Allocate and free functions for each kind of security blob. */
155 
156 static int task_alloc_security(struct task_struct *task)
157 {
158 	struct task_security_struct *tsec;
159 
160 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
161 	if (!tsec)
162 		return -ENOMEM;
163 
164 	tsec->task = task;
165 	tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
166 	task->security = tsec;
167 
168 	return 0;
169 }
170 
171 static void task_free_security(struct task_struct *task)
172 {
173 	struct task_security_struct *tsec = task->security;
174 	task->security = NULL;
175 	kfree(tsec);
176 }
177 
178 static int inode_alloc_security(struct inode *inode)
179 {
180 	struct task_security_struct *tsec = current->security;
181 	struct inode_security_struct *isec;
182 
183 	isec = kmem_cache_alloc(sel_inode_cache, SLAB_KERNEL);
184 	if (!isec)
185 		return -ENOMEM;
186 
187 	memset(isec, 0, sizeof(*isec));
188 	init_MUTEX(&isec->sem);
189 	INIT_LIST_HEAD(&isec->list);
190 	isec->inode = inode;
191 	isec->sid = SECINITSID_UNLABELED;
192 	isec->sclass = SECCLASS_FILE;
193 	isec->task_sid = tsec->sid;
194 	inode->i_security = isec;
195 
196 	return 0;
197 }
198 
199 static void inode_free_security(struct inode *inode)
200 {
201 	struct inode_security_struct *isec = inode->i_security;
202 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
203 
204 	spin_lock(&sbsec->isec_lock);
205 	if (!list_empty(&isec->list))
206 		list_del_init(&isec->list);
207 	spin_unlock(&sbsec->isec_lock);
208 
209 	inode->i_security = NULL;
210 	kmem_cache_free(sel_inode_cache, isec);
211 }
212 
213 static int file_alloc_security(struct file *file)
214 {
215 	struct task_security_struct *tsec = current->security;
216 	struct file_security_struct *fsec;
217 
218 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
219 	if (!fsec)
220 		return -ENOMEM;
221 
222 	fsec->file = file;
223 	fsec->sid = tsec->sid;
224 	fsec->fown_sid = tsec->sid;
225 	file->f_security = fsec;
226 
227 	return 0;
228 }
229 
230 static void file_free_security(struct file *file)
231 {
232 	struct file_security_struct *fsec = file->f_security;
233 	file->f_security = NULL;
234 	kfree(fsec);
235 }
236 
237 static int superblock_alloc_security(struct super_block *sb)
238 {
239 	struct superblock_security_struct *sbsec;
240 
241 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
242 	if (!sbsec)
243 		return -ENOMEM;
244 
245 	init_MUTEX(&sbsec->sem);
246 	INIT_LIST_HEAD(&sbsec->list);
247 	INIT_LIST_HEAD(&sbsec->isec_head);
248 	spin_lock_init(&sbsec->isec_lock);
249 	sbsec->sb = sb;
250 	sbsec->sid = SECINITSID_UNLABELED;
251 	sbsec->def_sid = SECINITSID_FILE;
252 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
253 	sb->s_security = sbsec;
254 
255 	return 0;
256 }
257 
258 static void superblock_free_security(struct super_block *sb)
259 {
260 	struct superblock_security_struct *sbsec = sb->s_security;
261 
262 	spin_lock(&sb_security_lock);
263 	if (!list_empty(&sbsec->list))
264 		list_del_init(&sbsec->list);
265 	spin_unlock(&sb_security_lock);
266 
267 	sb->s_security = NULL;
268 	kfree(sbsec);
269 }
270 
271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
272 {
273 	struct sk_security_struct *ssec;
274 
275 	ssec = kzalloc(sizeof(*ssec), priority);
276 	if (!ssec)
277 		return -ENOMEM;
278 
279 	ssec->sk = sk;
280 	ssec->peer_sid = SECINITSID_UNLABELED;
281 	ssec->sid = SECINITSID_UNLABELED;
282 	sk->sk_security = ssec;
283 
284 	selinux_netlbl_sk_security_init(ssec, family);
285 
286 	return 0;
287 }
288 
289 static void sk_free_security(struct sock *sk)
290 {
291 	struct sk_security_struct *ssec = sk->sk_security;
292 
293 	sk->sk_security = NULL;
294 	kfree(ssec);
295 }
296 
297 /* The security server must be initialized before
298    any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300 
301 /* The file system's label must be initialized prior to use. */
302 
303 static char *labeling_behaviors[6] = {
304 	"uses xattr",
305 	"uses transition SIDs",
306 	"uses task SIDs",
307 	"uses genfs_contexts",
308 	"not configured for labeling",
309 	"uses mountpoint labeling",
310 };
311 
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313 
314 static inline int inode_doinit(struct inode *inode)
315 {
316 	return inode_doinit_with_dentry(inode, NULL);
317 }
318 
319 enum {
320 	Opt_context = 1,
321 	Opt_fscontext = 2,
322 	Opt_defcontext = 4,
323 	Opt_rootcontext = 8,
324 };
325 
326 static match_table_t tokens = {
327 	{Opt_context, "context=%s"},
328 	{Opt_fscontext, "fscontext=%s"},
329 	{Opt_defcontext, "defcontext=%s"},
330 	{Opt_rootcontext, "rootcontext=%s"},
331 };
332 
333 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
334 
335 static int may_context_mount_sb_relabel(u32 sid,
336 			struct superblock_security_struct *sbsec,
337 			struct task_security_struct *tsec)
338 {
339 	int rc;
340 
341 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342 			  FILESYSTEM__RELABELFROM, NULL);
343 	if (rc)
344 		return rc;
345 
346 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347 			  FILESYSTEM__RELABELTO, NULL);
348 	return rc;
349 }
350 
351 static int may_context_mount_inode_relabel(u32 sid,
352 			struct superblock_security_struct *sbsec,
353 			struct task_security_struct *tsec)
354 {
355 	int rc;
356 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357 			  FILESYSTEM__RELABELFROM, NULL);
358 	if (rc)
359 		return rc;
360 
361 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362 			  FILESYSTEM__ASSOCIATE, NULL);
363 	return rc;
364 }
365 
366 static int try_context_mount(struct super_block *sb, void *data)
367 {
368 	char *context = NULL, *defcontext = NULL;
369 	char *fscontext = NULL, *rootcontext = NULL;
370 	const char *name;
371 	u32 sid;
372 	int alloc = 0, rc = 0, seen = 0;
373 	struct task_security_struct *tsec = current->security;
374 	struct superblock_security_struct *sbsec = sb->s_security;
375 
376 	if (!data)
377 		goto out;
378 
379 	name = sb->s_type->name;
380 
381 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
382 
383 		/* NFS we understand. */
384 		if (!strcmp(name, "nfs")) {
385 			struct nfs_mount_data *d = data;
386 
387 			if (d->version <  NFS_MOUNT_VERSION)
388 				goto out;
389 
390 			if (d->context[0]) {
391 				context = d->context;
392 				seen |= Opt_context;
393 			}
394 		} else
395 			goto out;
396 
397 	} else {
398 		/* Standard string-based options. */
399 		char *p, *options = data;
400 
401 		while ((p = strsep(&options, ",")) != NULL) {
402 			int token;
403 			substring_t args[MAX_OPT_ARGS];
404 
405 			if (!*p)
406 				continue;
407 
408 			token = match_token(p, tokens, args);
409 
410 			switch (token) {
411 			case Opt_context:
412 				if (seen & (Opt_context|Opt_defcontext)) {
413 					rc = -EINVAL;
414 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
415 					goto out_free;
416 				}
417 				context = match_strdup(&args[0]);
418 				if (!context) {
419 					rc = -ENOMEM;
420 					goto out_free;
421 				}
422 				if (!alloc)
423 					alloc = 1;
424 				seen |= Opt_context;
425 				break;
426 
427 			case Opt_fscontext:
428 				if (seen & Opt_fscontext) {
429 					rc = -EINVAL;
430 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
431 					goto out_free;
432 				}
433 				fscontext = match_strdup(&args[0]);
434 				if (!fscontext) {
435 					rc = -ENOMEM;
436 					goto out_free;
437 				}
438 				if (!alloc)
439 					alloc = 1;
440 				seen |= Opt_fscontext;
441 				break;
442 
443 			case Opt_rootcontext:
444 				if (seen & Opt_rootcontext) {
445 					rc = -EINVAL;
446 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
447 					goto out_free;
448 				}
449 				rootcontext = match_strdup(&args[0]);
450 				if (!rootcontext) {
451 					rc = -ENOMEM;
452 					goto out_free;
453 				}
454 				if (!alloc)
455 					alloc = 1;
456 				seen |= Opt_rootcontext;
457 				break;
458 
459 			case Opt_defcontext:
460 				if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461 					rc = -EINVAL;
462 					printk(KERN_WARNING "SELinux:  "
463 					       "defcontext option is invalid "
464 					       "for this filesystem type\n");
465 					goto out_free;
466 				}
467 				if (seen & (Opt_context|Opt_defcontext)) {
468 					rc = -EINVAL;
469 					printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
470 					goto out_free;
471 				}
472 				defcontext = match_strdup(&args[0]);
473 				if (!defcontext) {
474 					rc = -ENOMEM;
475 					goto out_free;
476 				}
477 				if (!alloc)
478 					alloc = 1;
479 				seen |= Opt_defcontext;
480 				break;
481 
482 			default:
483 				rc = -EINVAL;
484 				printk(KERN_WARNING "SELinux:  unknown mount "
485 				       "option\n");
486 				goto out_free;
487 
488 			}
489 		}
490 	}
491 
492 	if (!seen)
493 		goto out;
494 
495 	/* sets the context of the superblock for the fs being mounted. */
496 	if (fscontext) {
497 		rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498 		if (rc) {
499 			printk(KERN_WARNING "SELinux: security_context_to_sid"
500 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
501 			       fscontext, sb->s_id, name, rc);
502 			goto out_free;
503 		}
504 
505 		rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
506 		if (rc)
507 			goto out_free;
508 
509 		sbsec->sid = sid;
510 	}
511 
512 	/*
513 	 * Switch to using mount point labeling behavior.
514 	 * sets the label used on all file below the mountpoint, and will set
515 	 * the superblock context if not already set.
516 	 */
517 	if (context) {
518 		rc = security_context_to_sid(context, strlen(context), &sid);
519 		if (rc) {
520 			printk(KERN_WARNING "SELinux: security_context_to_sid"
521 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
522 			       context, sb->s_id, name, rc);
523 			goto out_free;
524 		}
525 
526 		if (!fscontext) {
527 			rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
528 			if (rc)
529 				goto out_free;
530 			sbsec->sid = sid;
531 		} else {
532 			rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
533 			if (rc)
534 				goto out_free;
535 		}
536 		sbsec->mntpoint_sid = sid;
537 
538 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
539 	}
540 
541 	if (rootcontext) {
542 		struct inode *inode = sb->s_root->d_inode;
543 		struct inode_security_struct *isec = inode->i_security;
544 		rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545 		if (rc) {
546 			printk(KERN_WARNING "SELinux: security_context_to_sid"
547 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
548 			       rootcontext, sb->s_id, name, rc);
549 			goto out_free;
550 		}
551 
552 		rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
553 		if (rc)
554 			goto out_free;
555 
556 		isec->sid = sid;
557 		isec->initialized = 1;
558 	}
559 
560 	if (defcontext) {
561 		rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562 		if (rc) {
563 			printk(KERN_WARNING "SELinux: security_context_to_sid"
564 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
565 			       defcontext, sb->s_id, name, rc);
566 			goto out_free;
567 		}
568 
569 		if (sid == sbsec->def_sid)
570 			goto out_free;
571 
572 		rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
573 		if (rc)
574 			goto out_free;
575 
576 		sbsec->def_sid = sid;
577 	}
578 
579 out_free:
580 	if (alloc) {
581 		kfree(context);
582 		kfree(defcontext);
583 		kfree(fscontext);
584 		kfree(rootcontext);
585 	}
586 out:
587 	return rc;
588 }
589 
590 static int superblock_doinit(struct super_block *sb, void *data)
591 {
592 	struct superblock_security_struct *sbsec = sb->s_security;
593 	struct dentry *root = sb->s_root;
594 	struct inode *inode = root->d_inode;
595 	int rc = 0;
596 
597 	down(&sbsec->sem);
598 	if (sbsec->initialized)
599 		goto out;
600 
601 	if (!ss_initialized) {
602 		/* Defer initialization until selinux_complete_init,
603 		   after the initial policy is loaded and the security
604 		   server is ready to handle calls. */
605 		spin_lock(&sb_security_lock);
606 		if (list_empty(&sbsec->list))
607 			list_add(&sbsec->list, &superblock_security_head);
608 		spin_unlock(&sb_security_lock);
609 		goto out;
610 	}
611 
612 	/* Determine the labeling behavior to use for this filesystem type. */
613 	rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614 	if (rc) {
615 		printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
616 		       __FUNCTION__, sb->s_type->name, rc);
617 		goto out;
618 	}
619 
620 	rc = try_context_mount(sb, data);
621 	if (rc)
622 		goto out;
623 
624 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625 		/* Make sure that the xattr handler exists and that no
626 		   error other than -ENODATA is returned by getxattr on
627 		   the root directory.  -ENODATA is ok, as this may be
628 		   the first boot of the SELinux kernel before we have
629 		   assigned xattr values to the filesystem. */
630 		if (!inode->i_op->getxattr) {
631 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632 			       "xattr support\n", sb->s_id, sb->s_type->name);
633 			rc = -EOPNOTSUPP;
634 			goto out;
635 		}
636 		rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637 		if (rc < 0 && rc != -ENODATA) {
638 			if (rc == -EOPNOTSUPP)
639 				printk(KERN_WARNING "SELinux: (dev %s, type "
640 				       "%s) has no security xattr handler\n",
641 				       sb->s_id, sb->s_type->name);
642 			else
643 				printk(KERN_WARNING "SELinux: (dev %s, type "
644 				       "%s) getxattr errno %d\n", sb->s_id,
645 				       sb->s_type->name, -rc);
646 			goto out;
647 		}
648 	}
649 
650 	if (strcmp(sb->s_type->name, "proc") == 0)
651 		sbsec->proc = 1;
652 
653 	sbsec->initialized = 1;
654 
655 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656 		printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657 		       sb->s_id, sb->s_type->name);
658 	}
659 	else {
660 		printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
661 		       sb->s_id, sb->s_type->name,
662 		       labeling_behaviors[sbsec->behavior-1]);
663 	}
664 
665 	/* Initialize the root inode. */
666 	rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
667 
668 	/* Initialize any other inodes associated with the superblock, e.g.
669 	   inodes created prior to initial policy load or inodes created
670 	   during get_sb by a pseudo filesystem that directly
671 	   populates itself. */
672 	spin_lock(&sbsec->isec_lock);
673 next_inode:
674 	if (!list_empty(&sbsec->isec_head)) {
675 		struct inode_security_struct *isec =
676 				list_entry(sbsec->isec_head.next,
677 				           struct inode_security_struct, list);
678 		struct inode *inode = isec->inode;
679 		spin_unlock(&sbsec->isec_lock);
680 		inode = igrab(inode);
681 		if (inode) {
682 			if (!IS_PRIVATE (inode))
683 				inode_doinit(inode);
684 			iput(inode);
685 		}
686 		spin_lock(&sbsec->isec_lock);
687 		list_del_init(&isec->list);
688 		goto next_inode;
689 	}
690 	spin_unlock(&sbsec->isec_lock);
691 out:
692 	up(&sbsec->sem);
693 	return rc;
694 }
695 
696 static inline u16 inode_mode_to_security_class(umode_t mode)
697 {
698 	switch (mode & S_IFMT) {
699 	case S_IFSOCK:
700 		return SECCLASS_SOCK_FILE;
701 	case S_IFLNK:
702 		return SECCLASS_LNK_FILE;
703 	case S_IFREG:
704 		return SECCLASS_FILE;
705 	case S_IFBLK:
706 		return SECCLASS_BLK_FILE;
707 	case S_IFDIR:
708 		return SECCLASS_DIR;
709 	case S_IFCHR:
710 		return SECCLASS_CHR_FILE;
711 	case S_IFIFO:
712 		return SECCLASS_FIFO_FILE;
713 
714 	}
715 
716 	return SECCLASS_FILE;
717 }
718 
719 static inline int default_protocol_stream(int protocol)
720 {
721 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
722 }
723 
724 static inline int default_protocol_dgram(int protocol)
725 {
726 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
727 }
728 
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
730 {
731 	switch (family) {
732 	case PF_UNIX:
733 		switch (type) {
734 		case SOCK_STREAM:
735 		case SOCK_SEQPACKET:
736 			return SECCLASS_UNIX_STREAM_SOCKET;
737 		case SOCK_DGRAM:
738 			return SECCLASS_UNIX_DGRAM_SOCKET;
739 		}
740 		break;
741 	case PF_INET:
742 	case PF_INET6:
743 		switch (type) {
744 		case SOCK_STREAM:
745 			if (default_protocol_stream(protocol))
746 				return SECCLASS_TCP_SOCKET;
747 			else
748 				return SECCLASS_RAWIP_SOCKET;
749 		case SOCK_DGRAM:
750 			if (default_protocol_dgram(protocol))
751 				return SECCLASS_UDP_SOCKET;
752 			else
753 				return SECCLASS_RAWIP_SOCKET;
754 		default:
755 			return SECCLASS_RAWIP_SOCKET;
756 		}
757 		break;
758 	case PF_NETLINK:
759 		switch (protocol) {
760 		case NETLINK_ROUTE:
761 			return SECCLASS_NETLINK_ROUTE_SOCKET;
762 		case NETLINK_FIREWALL:
763 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
764 		case NETLINK_INET_DIAG:
765 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
766 		case NETLINK_NFLOG:
767 			return SECCLASS_NETLINK_NFLOG_SOCKET;
768 		case NETLINK_XFRM:
769 			return SECCLASS_NETLINK_XFRM_SOCKET;
770 		case NETLINK_SELINUX:
771 			return SECCLASS_NETLINK_SELINUX_SOCKET;
772 		case NETLINK_AUDIT:
773 			return SECCLASS_NETLINK_AUDIT_SOCKET;
774 		case NETLINK_IP6_FW:
775 			return SECCLASS_NETLINK_IP6FW_SOCKET;
776 		case NETLINK_DNRTMSG:
777 			return SECCLASS_NETLINK_DNRT_SOCKET;
778 		case NETLINK_KOBJECT_UEVENT:
779 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
780 		default:
781 			return SECCLASS_NETLINK_SOCKET;
782 		}
783 	case PF_PACKET:
784 		return SECCLASS_PACKET_SOCKET;
785 	case PF_KEY:
786 		return SECCLASS_KEY_SOCKET;
787 	case PF_APPLETALK:
788 		return SECCLASS_APPLETALK_SOCKET;
789 	}
790 
791 	return SECCLASS_SOCKET;
792 }
793 
794 #ifdef CONFIG_PROC_FS
795 static int selinux_proc_get_sid(struct proc_dir_entry *de,
796 				u16 tclass,
797 				u32 *sid)
798 {
799 	int buflen, rc;
800 	char *buffer, *path, *end;
801 
802 	buffer = (char*)__get_free_page(GFP_KERNEL);
803 	if (!buffer)
804 		return -ENOMEM;
805 
806 	buflen = PAGE_SIZE;
807 	end = buffer+buflen;
808 	*--end = '\0';
809 	buflen--;
810 	path = end-1;
811 	*path = '/';
812 	while (de && de != de->parent) {
813 		buflen -= de->namelen + 1;
814 		if (buflen < 0)
815 			break;
816 		end -= de->namelen;
817 		memcpy(end, de->name, de->namelen);
818 		*--end = '/';
819 		path = end;
820 		de = de->parent;
821 	}
822 	rc = security_genfs_sid("proc", path, tclass, sid);
823 	free_page((unsigned long)buffer);
824 	return rc;
825 }
826 #else
827 static int selinux_proc_get_sid(struct proc_dir_entry *de,
828 				u16 tclass,
829 				u32 *sid)
830 {
831 	return -EINVAL;
832 }
833 #endif
834 
835 /* The inode's security attributes must be initialized before first use. */
836 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
837 {
838 	struct superblock_security_struct *sbsec = NULL;
839 	struct inode_security_struct *isec = inode->i_security;
840 	u32 sid;
841 	struct dentry *dentry;
842 #define INITCONTEXTLEN 255
843 	char *context = NULL;
844 	unsigned len = 0;
845 	int rc = 0;
846 	int hold_sem = 0;
847 
848 	if (isec->initialized)
849 		goto out;
850 
851 	down(&isec->sem);
852 	hold_sem = 1;
853 	if (isec->initialized)
854 		goto out;
855 
856 	sbsec = inode->i_sb->s_security;
857 	if (!sbsec->initialized) {
858 		/* Defer initialization until selinux_complete_init,
859 		   after the initial policy is loaded and the security
860 		   server is ready to handle calls. */
861 		spin_lock(&sbsec->isec_lock);
862 		if (list_empty(&isec->list))
863 			list_add(&isec->list, &sbsec->isec_head);
864 		spin_unlock(&sbsec->isec_lock);
865 		goto out;
866 	}
867 
868 	switch (sbsec->behavior) {
869 	case SECURITY_FS_USE_XATTR:
870 		if (!inode->i_op->getxattr) {
871 			isec->sid = sbsec->def_sid;
872 			break;
873 		}
874 
875 		/* Need a dentry, since the xattr API requires one.
876 		   Life would be simpler if we could just pass the inode. */
877 		if (opt_dentry) {
878 			/* Called from d_instantiate or d_splice_alias. */
879 			dentry = dget(opt_dentry);
880 		} else {
881 			/* Called from selinux_complete_init, try to find a dentry. */
882 			dentry = d_find_alias(inode);
883 		}
884 		if (!dentry) {
885 			printk(KERN_WARNING "%s:  no dentry for dev=%s "
886 			       "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
887 			       inode->i_ino);
888 			goto out;
889 		}
890 
891 		len = INITCONTEXTLEN;
892 		context = kmalloc(len, GFP_KERNEL);
893 		if (!context) {
894 			rc = -ENOMEM;
895 			dput(dentry);
896 			goto out;
897 		}
898 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
899 					   context, len);
900 		if (rc == -ERANGE) {
901 			/* Need a larger buffer.  Query for the right size. */
902 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
903 						   NULL, 0);
904 			if (rc < 0) {
905 				dput(dentry);
906 				goto out;
907 			}
908 			kfree(context);
909 			len = rc;
910 			context = kmalloc(len, GFP_KERNEL);
911 			if (!context) {
912 				rc = -ENOMEM;
913 				dput(dentry);
914 				goto out;
915 			}
916 			rc = inode->i_op->getxattr(dentry,
917 						   XATTR_NAME_SELINUX,
918 						   context, len);
919 		}
920 		dput(dentry);
921 		if (rc < 0) {
922 			if (rc != -ENODATA) {
923 				printk(KERN_WARNING "%s:  getxattr returned "
924 				       "%d for dev=%s ino=%ld\n", __FUNCTION__,
925 				       -rc, inode->i_sb->s_id, inode->i_ino);
926 				kfree(context);
927 				goto out;
928 			}
929 			/* Map ENODATA to the default file SID */
930 			sid = sbsec->def_sid;
931 			rc = 0;
932 		} else {
933 			rc = security_context_to_sid_default(context, rc, &sid,
934 			                                     sbsec->def_sid);
935 			if (rc) {
936 				printk(KERN_WARNING "%s:  context_to_sid(%s) "
937 				       "returned %d for dev=%s ino=%ld\n",
938 				       __FUNCTION__, context, -rc,
939 				       inode->i_sb->s_id, inode->i_ino);
940 				kfree(context);
941 				/* Leave with the unlabeled SID */
942 				rc = 0;
943 				break;
944 			}
945 		}
946 		kfree(context);
947 		isec->sid = sid;
948 		break;
949 	case SECURITY_FS_USE_TASK:
950 		isec->sid = isec->task_sid;
951 		break;
952 	case SECURITY_FS_USE_TRANS:
953 		/* Default to the fs SID. */
954 		isec->sid = sbsec->sid;
955 
956 		/* Try to obtain a transition SID. */
957 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
958 		rc = security_transition_sid(isec->task_sid,
959 					     sbsec->sid,
960 					     isec->sclass,
961 					     &sid);
962 		if (rc)
963 			goto out;
964 		isec->sid = sid;
965 		break;
966 	case SECURITY_FS_USE_MNTPOINT:
967 		isec->sid = sbsec->mntpoint_sid;
968 		break;
969 	default:
970 		/* Default to the fs superblock SID. */
971 		isec->sid = sbsec->sid;
972 
973 		if (sbsec->proc) {
974 			struct proc_inode *proci = PROC_I(inode);
975 			if (proci->pde) {
976 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
977 				rc = selinux_proc_get_sid(proci->pde,
978 							  isec->sclass,
979 							  &sid);
980 				if (rc)
981 					goto out;
982 				isec->sid = sid;
983 			}
984 		}
985 		break;
986 	}
987 
988 	isec->initialized = 1;
989 
990 out:
991 	if (isec->sclass == SECCLASS_FILE)
992 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
993 
994 	if (hold_sem)
995 		up(&isec->sem);
996 	return rc;
997 }
998 
999 /* Convert a Linux signal to an access vector. */
1000 static inline u32 signal_to_av(int sig)
1001 {
1002 	u32 perm = 0;
1003 
1004 	switch (sig) {
1005 	case SIGCHLD:
1006 		/* Commonly granted from child to parent. */
1007 		perm = PROCESS__SIGCHLD;
1008 		break;
1009 	case SIGKILL:
1010 		/* Cannot be caught or ignored */
1011 		perm = PROCESS__SIGKILL;
1012 		break;
1013 	case SIGSTOP:
1014 		/* Cannot be caught or ignored */
1015 		perm = PROCESS__SIGSTOP;
1016 		break;
1017 	default:
1018 		/* All other signals. */
1019 		perm = PROCESS__SIGNAL;
1020 		break;
1021 	}
1022 
1023 	return perm;
1024 }
1025 
1026 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1027    fork check, ptrace check, etc. */
1028 static int task_has_perm(struct task_struct *tsk1,
1029 			 struct task_struct *tsk2,
1030 			 u32 perms)
1031 {
1032 	struct task_security_struct *tsec1, *tsec2;
1033 
1034 	tsec1 = tsk1->security;
1035 	tsec2 = tsk2->security;
1036 	return avc_has_perm(tsec1->sid, tsec2->sid,
1037 			    SECCLASS_PROCESS, perms, NULL);
1038 }
1039 
1040 /* Check whether a task is allowed to use a capability. */
1041 static int task_has_capability(struct task_struct *tsk,
1042 			       int cap)
1043 {
1044 	struct task_security_struct *tsec;
1045 	struct avc_audit_data ad;
1046 
1047 	tsec = tsk->security;
1048 
1049 	AVC_AUDIT_DATA_INIT(&ad,CAP);
1050 	ad.tsk = tsk;
1051 	ad.u.cap = cap;
1052 
1053 	return avc_has_perm(tsec->sid, tsec->sid,
1054 			    SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1055 }
1056 
1057 /* Check whether a task is allowed to use a system operation. */
1058 static int task_has_system(struct task_struct *tsk,
1059 			   u32 perms)
1060 {
1061 	struct task_security_struct *tsec;
1062 
1063 	tsec = tsk->security;
1064 
1065 	return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1066 			    SECCLASS_SYSTEM, perms, NULL);
1067 }
1068 
1069 /* Check whether a task has a particular permission to an inode.
1070    The 'adp' parameter is optional and allows other audit
1071    data to be passed (e.g. the dentry). */
1072 static int inode_has_perm(struct task_struct *tsk,
1073 			  struct inode *inode,
1074 			  u32 perms,
1075 			  struct avc_audit_data *adp)
1076 {
1077 	struct task_security_struct *tsec;
1078 	struct inode_security_struct *isec;
1079 	struct avc_audit_data ad;
1080 
1081 	tsec = tsk->security;
1082 	isec = inode->i_security;
1083 
1084 	if (!adp) {
1085 		adp = &ad;
1086 		AVC_AUDIT_DATA_INIT(&ad, FS);
1087 		ad.u.fs.inode = inode;
1088 	}
1089 
1090 	return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1091 }
1092 
1093 /* Same as inode_has_perm, but pass explicit audit data containing
1094    the dentry to help the auditing code to more easily generate the
1095    pathname if needed. */
1096 static inline int dentry_has_perm(struct task_struct *tsk,
1097 				  struct vfsmount *mnt,
1098 				  struct dentry *dentry,
1099 				  u32 av)
1100 {
1101 	struct inode *inode = dentry->d_inode;
1102 	struct avc_audit_data ad;
1103 	AVC_AUDIT_DATA_INIT(&ad,FS);
1104 	ad.u.fs.mnt = mnt;
1105 	ad.u.fs.dentry = dentry;
1106 	return inode_has_perm(tsk, inode, av, &ad);
1107 }
1108 
1109 /* Check whether a task can use an open file descriptor to
1110    access an inode in a given way.  Check access to the
1111    descriptor itself, and then use dentry_has_perm to
1112    check a particular permission to the file.
1113    Access to the descriptor is implicitly granted if it
1114    has the same SID as the process.  If av is zero, then
1115    access to the file is not checked, e.g. for cases
1116    where only the descriptor is affected like seek. */
1117 static int file_has_perm(struct task_struct *tsk,
1118 				struct file *file,
1119 				u32 av)
1120 {
1121 	struct task_security_struct *tsec = tsk->security;
1122 	struct file_security_struct *fsec = file->f_security;
1123 	struct vfsmount *mnt = file->f_vfsmnt;
1124 	struct dentry *dentry = file->f_dentry;
1125 	struct inode *inode = dentry->d_inode;
1126 	struct avc_audit_data ad;
1127 	int rc;
1128 
1129 	AVC_AUDIT_DATA_INIT(&ad, FS);
1130 	ad.u.fs.mnt = mnt;
1131 	ad.u.fs.dentry = dentry;
1132 
1133 	if (tsec->sid != fsec->sid) {
1134 		rc = avc_has_perm(tsec->sid, fsec->sid,
1135 				  SECCLASS_FD,
1136 				  FD__USE,
1137 				  &ad);
1138 		if (rc)
1139 			return rc;
1140 	}
1141 
1142 	/* av is zero if only checking access to the descriptor. */
1143 	if (av)
1144 		return inode_has_perm(tsk, inode, av, &ad);
1145 
1146 	return 0;
1147 }
1148 
1149 /* Check whether a task can create a file. */
1150 static int may_create(struct inode *dir,
1151 		      struct dentry *dentry,
1152 		      u16 tclass)
1153 {
1154 	struct task_security_struct *tsec;
1155 	struct inode_security_struct *dsec;
1156 	struct superblock_security_struct *sbsec;
1157 	u32 newsid;
1158 	struct avc_audit_data ad;
1159 	int rc;
1160 
1161 	tsec = current->security;
1162 	dsec = dir->i_security;
1163 	sbsec = dir->i_sb->s_security;
1164 
1165 	AVC_AUDIT_DATA_INIT(&ad, FS);
1166 	ad.u.fs.dentry = dentry;
1167 
1168 	rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1169 			  DIR__ADD_NAME | DIR__SEARCH,
1170 			  &ad);
1171 	if (rc)
1172 		return rc;
1173 
1174 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1175 		newsid = tsec->create_sid;
1176 	} else {
1177 		rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1178 					     &newsid);
1179 		if (rc)
1180 			return rc;
1181 	}
1182 
1183 	rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1184 	if (rc)
1185 		return rc;
1186 
1187 	return avc_has_perm(newsid, sbsec->sid,
1188 			    SECCLASS_FILESYSTEM,
1189 			    FILESYSTEM__ASSOCIATE, &ad);
1190 }
1191 
1192 /* Check whether a task can create a key. */
1193 static int may_create_key(u32 ksid,
1194 			  struct task_struct *ctx)
1195 {
1196 	struct task_security_struct *tsec;
1197 
1198 	tsec = ctx->security;
1199 
1200 	return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1201 }
1202 
1203 #define MAY_LINK   0
1204 #define MAY_UNLINK 1
1205 #define MAY_RMDIR  2
1206 
1207 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1208 static int may_link(struct inode *dir,
1209 		    struct dentry *dentry,
1210 		    int kind)
1211 
1212 {
1213 	struct task_security_struct *tsec;
1214 	struct inode_security_struct *dsec, *isec;
1215 	struct avc_audit_data ad;
1216 	u32 av;
1217 	int rc;
1218 
1219 	tsec = current->security;
1220 	dsec = dir->i_security;
1221 	isec = dentry->d_inode->i_security;
1222 
1223 	AVC_AUDIT_DATA_INIT(&ad, FS);
1224 	ad.u.fs.dentry = dentry;
1225 
1226 	av = DIR__SEARCH;
1227 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1228 	rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1229 	if (rc)
1230 		return rc;
1231 
1232 	switch (kind) {
1233 	case MAY_LINK:
1234 		av = FILE__LINK;
1235 		break;
1236 	case MAY_UNLINK:
1237 		av = FILE__UNLINK;
1238 		break;
1239 	case MAY_RMDIR:
1240 		av = DIR__RMDIR;
1241 		break;
1242 	default:
1243 		printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1244 		return 0;
1245 	}
1246 
1247 	rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1248 	return rc;
1249 }
1250 
1251 static inline int may_rename(struct inode *old_dir,
1252 			     struct dentry *old_dentry,
1253 			     struct inode *new_dir,
1254 			     struct dentry *new_dentry)
1255 {
1256 	struct task_security_struct *tsec;
1257 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1258 	struct avc_audit_data ad;
1259 	u32 av;
1260 	int old_is_dir, new_is_dir;
1261 	int rc;
1262 
1263 	tsec = current->security;
1264 	old_dsec = old_dir->i_security;
1265 	old_isec = old_dentry->d_inode->i_security;
1266 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1267 	new_dsec = new_dir->i_security;
1268 
1269 	AVC_AUDIT_DATA_INIT(&ad, FS);
1270 
1271 	ad.u.fs.dentry = old_dentry;
1272 	rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1273 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1274 	if (rc)
1275 		return rc;
1276 	rc = avc_has_perm(tsec->sid, old_isec->sid,
1277 			  old_isec->sclass, FILE__RENAME, &ad);
1278 	if (rc)
1279 		return rc;
1280 	if (old_is_dir && new_dir != old_dir) {
1281 		rc = avc_has_perm(tsec->sid, old_isec->sid,
1282 				  old_isec->sclass, DIR__REPARENT, &ad);
1283 		if (rc)
1284 			return rc;
1285 	}
1286 
1287 	ad.u.fs.dentry = new_dentry;
1288 	av = DIR__ADD_NAME | DIR__SEARCH;
1289 	if (new_dentry->d_inode)
1290 		av |= DIR__REMOVE_NAME;
1291 	rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1292 	if (rc)
1293 		return rc;
1294 	if (new_dentry->d_inode) {
1295 		new_isec = new_dentry->d_inode->i_security;
1296 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1297 		rc = avc_has_perm(tsec->sid, new_isec->sid,
1298 				  new_isec->sclass,
1299 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1300 		if (rc)
1301 			return rc;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /* Check whether a task can perform a filesystem operation. */
1308 static int superblock_has_perm(struct task_struct *tsk,
1309 			       struct super_block *sb,
1310 			       u32 perms,
1311 			       struct avc_audit_data *ad)
1312 {
1313 	struct task_security_struct *tsec;
1314 	struct superblock_security_struct *sbsec;
1315 
1316 	tsec = tsk->security;
1317 	sbsec = sb->s_security;
1318 	return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1319 			    perms, ad);
1320 }
1321 
1322 /* Convert a Linux mode and permission mask to an access vector. */
1323 static inline u32 file_mask_to_av(int mode, int mask)
1324 {
1325 	u32 av = 0;
1326 
1327 	if ((mode & S_IFMT) != S_IFDIR) {
1328 		if (mask & MAY_EXEC)
1329 			av |= FILE__EXECUTE;
1330 		if (mask & MAY_READ)
1331 			av |= FILE__READ;
1332 
1333 		if (mask & MAY_APPEND)
1334 			av |= FILE__APPEND;
1335 		else if (mask & MAY_WRITE)
1336 			av |= FILE__WRITE;
1337 
1338 	} else {
1339 		if (mask & MAY_EXEC)
1340 			av |= DIR__SEARCH;
1341 		if (mask & MAY_WRITE)
1342 			av |= DIR__WRITE;
1343 		if (mask & MAY_READ)
1344 			av |= DIR__READ;
1345 	}
1346 
1347 	return av;
1348 }
1349 
1350 /* Convert a Linux file to an access vector. */
1351 static inline u32 file_to_av(struct file *file)
1352 {
1353 	u32 av = 0;
1354 
1355 	if (file->f_mode & FMODE_READ)
1356 		av |= FILE__READ;
1357 	if (file->f_mode & FMODE_WRITE) {
1358 		if (file->f_flags & O_APPEND)
1359 			av |= FILE__APPEND;
1360 		else
1361 			av |= FILE__WRITE;
1362 	}
1363 
1364 	return av;
1365 }
1366 
1367 /* Set an inode's SID to a specified value. */
1368 static int inode_security_set_sid(struct inode *inode, u32 sid)
1369 {
1370 	struct inode_security_struct *isec = inode->i_security;
1371 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
1372 
1373 	if (!sbsec->initialized) {
1374 		/* Defer initialization to selinux_complete_init. */
1375 		return 0;
1376 	}
1377 
1378 	down(&isec->sem);
1379 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
1380 	isec->sid = sid;
1381 	isec->initialized = 1;
1382 	up(&isec->sem);
1383 	return 0;
1384 }
1385 
1386 /* Hook functions begin here. */
1387 
1388 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1389 {
1390 	struct task_security_struct *psec = parent->security;
1391 	struct task_security_struct *csec = child->security;
1392 	int rc;
1393 
1394 	rc = secondary_ops->ptrace(parent,child);
1395 	if (rc)
1396 		return rc;
1397 
1398 	rc = task_has_perm(parent, child, PROCESS__PTRACE);
1399 	/* Save the SID of the tracing process for later use in apply_creds. */
1400 	if (!(child->ptrace & PT_PTRACED) && !rc)
1401 		csec->ptrace_sid = psec->sid;
1402 	return rc;
1403 }
1404 
1405 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1406                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1407 {
1408 	int error;
1409 
1410 	error = task_has_perm(current, target, PROCESS__GETCAP);
1411 	if (error)
1412 		return error;
1413 
1414 	return secondary_ops->capget(target, effective, inheritable, permitted);
1415 }
1416 
1417 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1418                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1419 {
1420 	int error;
1421 
1422 	error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1423 	if (error)
1424 		return error;
1425 
1426 	return task_has_perm(current, target, PROCESS__SETCAP);
1427 }
1428 
1429 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1430                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1431 {
1432 	secondary_ops->capset_set(target, effective, inheritable, permitted);
1433 }
1434 
1435 static int selinux_capable(struct task_struct *tsk, int cap)
1436 {
1437 	int rc;
1438 
1439 	rc = secondary_ops->capable(tsk, cap);
1440 	if (rc)
1441 		return rc;
1442 
1443 	return task_has_capability(tsk,cap);
1444 }
1445 
1446 static int selinux_sysctl(ctl_table *table, int op)
1447 {
1448 	int error = 0;
1449 	u32 av;
1450 	struct task_security_struct *tsec;
1451 	u32 tsid;
1452 	int rc;
1453 
1454 	rc = secondary_ops->sysctl(table, op);
1455 	if (rc)
1456 		return rc;
1457 
1458 	tsec = current->security;
1459 
1460 	rc = selinux_proc_get_sid(table->de, (op == 001) ?
1461 	                          SECCLASS_DIR : SECCLASS_FILE, &tsid);
1462 	if (rc) {
1463 		/* Default to the well-defined sysctl SID. */
1464 		tsid = SECINITSID_SYSCTL;
1465 	}
1466 
1467 	/* The op values are "defined" in sysctl.c, thereby creating
1468 	 * a bad coupling between this module and sysctl.c */
1469 	if(op == 001) {
1470 		error = avc_has_perm(tsec->sid, tsid,
1471 				     SECCLASS_DIR, DIR__SEARCH, NULL);
1472 	} else {
1473 		av = 0;
1474 		if (op & 004)
1475 			av |= FILE__READ;
1476 		if (op & 002)
1477 			av |= FILE__WRITE;
1478 		if (av)
1479 			error = avc_has_perm(tsec->sid, tsid,
1480 					     SECCLASS_FILE, av, NULL);
1481         }
1482 
1483 	return error;
1484 }
1485 
1486 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1487 {
1488 	int rc = 0;
1489 
1490 	if (!sb)
1491 		return 0;
1492 
1493 	switch (cmds) {
1494 		case Q_SYNC:
1495 		case Q_QUOTAON:
1496 		case Q_QUOTAOFF:
1497 	        case Q_SETINFO:
1498 		case Q_SETQUOTA:
1499 			rc = superblock_has_perm(current,
1500 						 sb,
1501 						 FILESYSTEM__QUOTAMOD, NULL);
1502 			break;
1503 	        case Q_GETFMT:
1504 	        case Q_GETINFO:
1505 		case Q_GETQUOTA:
1506 			rc = superblock_has_perm(current,
1507 						 sb,
1508 						 FILESYSTEM__QUOTAGET, NULL);
1509 			break;
1510 		default:
1511 			rc = 0;  /* let the kernel handle invalid cmds */
1512 			break;
1513 	}
1514 	return rc;
1515 }
1516 
1517 static int selinux_quota_on(struct dentry *dentry)
1518 {
1519 	return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1520 }
1521 
1522 static int selinux_syslog(int type)
1523 {
1524 	int rc;
1525 
1526 	rc = secondary_ops->syslog(type);
1527 	if (rc)
1528 		return rc;
1529 
1530 	switch (type) {
1531 		case 3:         /* Read last kernel messages */
1532 		case 10:        /* Return size of the log buffer */
1533 			rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1534 			break;
1535 		case 6:         /* Disable logging to console */
1536 		case 7:         /* Enable logging to console */
1537 		case 8:		/* Set level of messages printed to console */
1538 			rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1539 			break;
1540 		case 0:         /* Close log */
1541 		case 1:         /* Open log */
1542 		case 2:         /* Read from log */
1543 		case 4:         /* Read/clear last kernel messages */
1544 		case 5:         /* Clear ring buffer */
1545 		default:
1546 			rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1547 			break;
1548 	}
1549 	return rc;
1550 }
1551 
1552 /*
1553  * Check that a process has enough memory to allocate a new virtual
1554  * mapping. 0 means there is enough memory for the allocation to
1555  * succeed and -ENOMEM implies there is not.
1556  *
1557  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1558  * if the capability is granted, but __vm_enough_memory requires 1 if
1559  * the capability is granted.
1560  *
1561  * Do not audit the selinux permission check, as this is applied to all
1562  * processes that allocate mappings.
1563  */
1564 static int selinux_vm_enough_memory(long pages)
1565 {
1566 	int rc, cap_sys_admin = 0;
1567 	struct task_security_struct *tsec = current->security;
1568 
1569 	rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1570 	if (rc == 0)
1571 		rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1572 					SECCLASS_CAPABILITY,
1573 					CAP_TO_MASK(CAP_SYS_ADMIN),
1574 					NULL);
1575 
1576 	if (rc == 0)
1577 		cap_sys_admin = 1;
1578 
1579 	return __vm_enough_memory(pages, cap_sys_admin);
1580 }
1581 
1582 /* binprm security operations */
1583 
1584 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1585 {
1586 	struct bprm_security_struct *bsec;
1587 
1588 	bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1589 	if (!bsec)
1590 		return -ENOMEM;
1591 
1592 	bsec->bprm = bprm;
1593 	bsec->sid = SECINITSID_UNLABELED;
1594 	bsec->set = 0;
1595 
1596 	bprm->security = bsec;
1597 	return 0;
1598 }
1599 
1600 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1601 {
1602 	struct task_security_struct *tsec;
1603 	struct inode *inode = bprm->file->f_dentry->d_inode;
1604 	struct inode_security_struct *isec;
1605 	struct bprm_security_struct *bsec;
1606 	u32 newsid;
1607 	struct avc_audit_data ad;
1608 	int rc;
1609 
1610 	rc = secondary_ops->bprm_set_security(bprm);
1611 	if (rc)
1612 		return rc;
1613 
1614 	bsec = bprm->security;
1615 
1616 	if (bsec->set)
1617 		return 0;
1618 
1619 	tsec = current->security;
1620 	isec = inode->i_security;
1621 
1622 	/* Default to the current task SID. */
1623 	bsec->sid = tsec->sid;
1624 
1625 	/* Reset fs, key, and sock SIDs on execve. */
1626 	tsec->create_sid = 0;
1627 	tsec->keycreate_sid = 0;
1628 	tsec->sockcreate_sid = 0;
1629 
1630 	if (tsec->exec_sid) {
1631 		newsid = tsec->exec_sid;
1632 		/* Reset exec SID on execve. */
1633 		tsec->exec_sid = 0;
1634 	} else {
1635 		/* Check for a default transition on this program. */
1636 		rc = security_transition_sid(tsec->sid, isec->sid,
1637 		                             SECCLASS_PROCESS, &newsid);
1638 		if (rc)
1639 			return rc;
1640 	}
1641 
1642 	AVC_AUDIT_DATA_INIT(&ad, FS);
1643 	ad.u.fs.mnt = bprm->file->f_vfsmnt;
1644 	ad.u.fs.dentry = bprm->file->f_dentry;
1645 
1646 	if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1647 		newsid = tsec->sid;
1648 
1649         if (tsec->sid == newsid) {
1650 		rc = avc_has_perm(tsec->sid, isec->sid,
1651 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1652 		if (rc)
1653 			return rc;
1654 	} else {
1655 		/* Check permissions for the transition. */
1656 		rc = avc_has_perm(tsec->sid, newsid,
1657 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1658 		if (rc)
1659 			return rc;
1660 
1661 		rc = avc_has_perm(newsid, isec->sid,
1662 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1663 		if (rc)
1664 			return rc;
1665 
1666 		/* Clear any possibly unsafe personality bits on exec: */
1667 		current->personality &= ~PER_CLEAR_ON_SETID;
1668 
1669 		/* Set the security field to the new SID. */
1670 		bsec->sid = newsid;
1671 	}
1672 
1673 	bsec->set = 1;
1674 	return 0;
1675 }
1676 
1677 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1678 {
1679 	return secondary_ops->bprm_check_security(bprm);
1680 }
1681 
1682 
1683 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1684 {
1685 	struct task_security_struct *tsec = current->security;
1686 	int atsecure = 0;
1687 
1688 	if (tsec->osid != tsec->sid) {
1689 		/* Enable secure mode for SIDs transitions unless
1690 		   the noatsecure permission is granted between
1691 		   the two SIDs, i.e. ahp returns 0. */
1692 		atsecure = avc_has_perm(tsec->osid, tsec->sid,
1693 					 SECCLASS_PROCESS,
1694 					 PROCESS__NOATSECURE, NULL);
1695 	}
1696 
1697 	return (atsecure || secondary_ops->bprm_secureexec(bprm));
1698 }
1699 
1700 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1701 {
1702 	kfree(bprm->security);
1703 	bprm->security = NULL;
1704 }
1705 
1706 extern struct vfsmount *selinuxfs_mount;
1707 extern struct dentry *selinux_null;
1708 
1709 /* Derived from fs/exec.c:flush_old_files. */
1710 static inline void flush_unauthorized_files(struct files_struct * files)
1711 {
1712 	struct avc_audit_data ad;
1713 	struct file *file, *devnull = NULL;
1714 	struct tty_struct *tty = current->signal->tty;
1715 	struct fdtable *fdt;
1716 	long j = -1;
1717 
1718 	if (tty) {
1719 		file_list_lock();
1720 		file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1721 		if (file) {
1722 			/* Revalidate access to controlling tty.
1723 			   Use inode_has_perm on the tty inode directly rather
1724 			   than using file_has_perm, as this particular open
1725 			   file may belong to another process and we are only
1726 			   interested in the inode-based check here. */
1727 			struct inode *inode = file->f_dentry->d_inode;
1728 			if (inode_has_perm(current, inode,
1729 					   FILE__READ | FILE__WRITE, NULL)) {
1730 				/* Reset controlling tty. */
1731 				current->signal->tty = NULL;
1732 				current->signal->tty_old_pgrp = 0;
1733 			}
1734 		}
1735 		file_list_unlock();
1736 	}
1737 
1738 	/* Revalidate access to inherited open files. */
1739 
1740 	AVC_AUDIT_DATA_INIT(&ad,FS);
1741 
1742 	spin_lock(&files->file_lock);
1743 	for (;;) {
1744 		unsigned long set, i;
1745 		int fd;
1746 
1747 		j++;
1748 		i = j * __NFDBITS;
1749 		fdt = files_fdtable(files);
1750 		if (i >= fdt->max_fds || i >= fdt->max_fdset)
1751 			break;
1752 		set = fdt->open_fds->fds_bits[j];
1753 		if (!set)
1754 			continue;
1755 		spin_unlock(&files->file_lock);
1756 		for ( ; set ; i++,set >>= 1) {
1757 			if (set & 1) {
1758 				file = fget(i);
1759 				if (!file)
1760 					continue;
1761 				if (file_has_perm(current,
1762 						  file,
1763 						  file_to_av(file))) {
1764 					sys_close(i);
1765 					fd = get_unused_fd();
1766 					if (fd != i) {
1767 						if (fd >= 0)
1768 							put_unused_fd(fd);
1769 						fput(file);
1770 						continue;
1771 					}
1772 					if (devnull) {
1773 						get_file(devnull);
1774 					} else {
1775 						devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1776 						if (!devnull) {
1777 							put_unused_fd(fd);
1778 							fput(file);
1779 							continue;
1780 						}
1781 					}
1782 					fd_install(fd, devnull);
1783 				}
1784 				fput(file);
1785 			}
1786 		}
1787 		spin_lock(&files->file_lock);
1788 
1789 	}
1790 	spin_unlock(&files->file_lock);
1791 }
1792 
1793 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1794 {
1795 	struct task_security_struct *tsec;
1796 	struct bprm_security_struct *bsec;
1797 	u32 sid;
1798 	int rc;
1799 
1800 	secondary_ops->bprm_apply_creds(bprm, unsafe);
1801 
1802 	tsec = current->security;
1803 
1804 	bsec = bprm->security;
1805 	sid = bsec->sid;
1806 
1807 	tsec->osid = tsec->sid;
1808 	bsec->unsafe = 0;
1809 	if (tsec->sid != sid) {
1810 		/* Check for shared state.  If not ok, leave SID
1811 		   unchanged and kill. */
1812 		if (unsafe & LSM_UNSAFE_SHARE) {
1813 			rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1814 					PROCESS__SHARE, NULL);
1815 			if (rc) {
1816 				bsec->unsafe = 1;
1817 				return;
1818 			}
1819 		}
1820 
1821 		/* Check for ptracing, and update the task SID if ok.
1822 		   Otherwise, leave SID unchanged and kill. */
1823 		if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1824 			rc = avc_has_perm(tsec->ptrace_sid, sid,
1825 					  SECCLASS_PROCESS, PROCESS__PTRACE,
1826 					  NULL);
1827 			if (rc) {
1828 				bsec->unsafe = 1;
1829 				return;
1830 			}
1831 		}
1832 		tsec->sid = sid;
1833 	}
1834 }
1835 
1836 /*
1837  * called after apply_creds without the task lock held
1838  */
1839 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1840 {
1841 	struct task_security_struct *tsec;
1842 	struct rlimit *rlim, *initrlim;
1843 	struct itimerval itimer;
1844 	struct bprm_security_struct *bsec;
1845 	int rc, i;
1846 
1847 	tsec = current->security;
1848 	bsec = bprm->security;
1849 
1850 	if (bsec->unsafe) {
1851 		force_sig_specific(SIGKILL, current);
1852 		return;
1853 	}
1854 	if (tsec->osid == tsec->sid)
1855 		return;
1856 
1857 	/* Close files for which the new task SID is not authorized. */
1858 	flush_unauthorized_files(current->files);
1859 
1860 	/* Check whether the new SID can inherit signal state
1861 	   from the old SID.  If not, clear itimers to avoid
1862 	   subsequent signal generation and flush and unblock
1863 	   signals. This must occur _after_ the task SID has
1864 	  been updated so that any kill done after the flush
1865 	  will be checked against the new SID. */
1866 	rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1867 			  PROCESS__SIGINH, NULL);
1868 	if (rc) {
1869 		memset(&itimer, 0, sizeof itimer);
1870 		for (i = 0; i < 3; i++)
1871 			do_setitimer(i, &itimer, NULL);
1872 		flush_signals(current);
1873 		spin_lock_irq(&current->sighand->siglock);
1874 		flush_signal_handlers(current, 1);
1875 		sigemptyset(&current->blocked);
1876 		recalc_sigpending();
1877 		spin_unlock_irq(&current->sighand->siglock);
1878 	}
1879 
1880 	/* Check whether the new SID can inherit resource limits
1881 	   from the old SID.  If not, reset all soft limits to
1882 	   the lower of the current task's hard limit and the init
1883 	   task's soft limit.  Note that the setting of hard limits
1884 	   (even to lower them) can be controlled by the setrlimit
1885 	   check. The inclusion of the init task's soft limit into
1886 	   the computation is to avoid resetting soft limits higher
1887 	   than the default soft limit for cases where the default
1888 	   is lower than the hard limit, e.g. RLIMIT_CORE or
1889 	   RLIMIT_STACK.*/
1890 	rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1891 			  PROCESS__RLIMITINH, NULL);
1892 	if (rc) {
1893 		for (i = 0; i < RLIM_NLIMITS; i++) {
1894 			rlim = current->signal->rlim + i;
1895 			initrlim = init_task.signal->rlim+i;
1896 			rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1897 		}
1898 		if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1899 			/*
1900 			 * This will cause RLIMIT_CPU calculations
1901 			 * to be refigured.
1902 			 */
1903 			current->it_prof_expires = jiffies_to_cputime(1);
1904 		}
1905 	}
1906 
1907 	/* Wake up the parent if it is waiting so that it can
1908 	   recheck wait permission to the new task SID. */
1909 	wake_up_interruptible(&current->parent->signal->wait_chldexit);
1910 }
1911 
1912 /* superblock security operations */
1913 
1914 static int selinux_sb_alloc_security(struct super_block *sb)
1915 {
1916 	return superblock_alloc_security(sb);
1917 }
1918 
1919 static void selinux_sb_free_security(struct super_block *sb)
1920 {
1921 	superblock_free_security(sb);
1922 }
1923 
1924 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1925 {
1926 	if (plen > olen)
1927 		return 0;
1928 
1929 	return !memcmp(prefix, option, plen);
1930 }
1931 
1932 static inline int selinux_option(char *option, int len)
1933 {
1934 	return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1935 	        match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1936 	        match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1937 		match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1938 }
1939 
1940 static inline void take_option(char **to, char *from, int *first, int len)
1941 {
1942 	if (!*first) {
1943 		**to = ',';
1944 		*to += 1;
1945 	}
1946 	else
1947 		*first = 0;
1948 	memcpy(*to, from, len);
1949 	*to += len;
1950 }
1951 
1952 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1953 {
1954 	int fnosec, fsec, rc = 0;
1955 	char *in_save, *in_curr, *in_end;
1956 	char *sec_curr, *nosec_save, *nosec;
1957 
1958 	in_curr = orig;
1959 	sec_curr = copy;
1960 
1961 	/* Binary mount data: just copy */
1962 	if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1963 		copy_page(sec_curr, in_curr);
1964 		goto out;
1965 	}
1966 
1967 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
1968 	if (!nosec) {
1969 		rc = -ENOMEM;
1970 		goto out;
1971 	}
1972 
1973 	nosec_save = nosec;
1974 	fnosec = fsec = 1;
1975 	in_save = in_end = orig;
1976 
1977 	do {
1978 		if (*in_end == ',' || *in_end == '\0') {
1979 			int len = in_end - in_curr;
1980 
1981 			if (selinux_option(in_curr, len))
1982 				take_option(&sec_curr, in_curr, &fsec, len);
1983 			else
1984 				take_option(&nosec, in_curr, &fnosec, len);
1985 
1986 			in_curr = in_end + 1;
1987 		}
1988 	} while (*in_end++);
1989 
1990 	strcpy(in_save, nosec_save);
1991 	free_page((unsigned long)nosec_save);
1992 out:
1993 	return rc;
1994 }
1995 
1996 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
1997 {
1998 	struct avc_audit_data ad;
1999 	int rc;
2000 
2001 	rc = superblock_doinit(sb, data);
2002 	if (rc)
2003 		return rc;
2004 
2005 	AVC_AUDIT_DATA_INIT(&ad,FS);
2006 	ad.u.fs.dentry = sb->s_root;
2007 	return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2008 }
2009 
2010 static int selinux_sb_statfs(struct dentry *dentry)
2011 {
2012 	struct avc_audit_data ad;
2013 
2014 	AVC_AUDIT_DATA_INIT(&ad,FS);
2015 	ad.u.fs.dentry = dentry->d_sb->s_root;
2016 	return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2017 }
2018 
2019 static int selinux_mount(char * dev_name,
2020                          struct nameidata *nd,
2021                          char * type,
2022                          unsigned long flags,
2023                          void * data)
2024 {
2025 	int rc;
2026 
2027 	rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2028 	if (rc)
2029 		return rc;
2030 
2031 	if (flags & MS_REMOUNT)
2032 		return superblock_has_perm(current, nd->mnt->mnt_sb,
2033 		                           FILESYSTEM__REMOUNT, NULL);
2034 	else
2035 		return dentry_has_perm(current, nd->mnt, nd->dentry,
2036 		                       FILE__MOUNTON);
2037 }
2038 
2039 static int selinux_umount(struct vfsmount *mnt, int flags)
2040 {
2041 	int rc;
2042 
2043 	rc = secondary_ops->sb_umount(mnt, flags);
2044 	if (rc)
2045 		return rc;
2046 
2047 	return superblock_has_perm(current,mnt->mnt_sb,
2048 	                           FILESYSTEM__UNMOUNT,NULL);
2049 }
2050 
2051 /* inode security operations */
2052 
2053 static int selinux_inode_alloc_security(struct inode *inode)
2054 {
2055 	return inode_alloc_security(inode);
2056 }
2057 
2058 static void selinux_inode_free_security(struct inode *inode)
2059 {
2060 	inode_free_security(inode);
2061 }
2062 
2063 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2064 				       char **name, void **value,
2065 				       size_t *len)
2066 {
2067 	struct task_security_struct *tsec;
2068 	struct inode_security_struct *dsec;
2069 	struct superblock_security_struct *sbsec;
2070 	u32 newsid, clen;
2071 	int rc;
2072 	char *namep = NULL, *context;
2073 
2074 	tsec = current->security;
2075 	dsec = dir->i_security;
2076 	sbsec = dir->i_sb->s_security;
2077 
2078 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2079 		newsid = tsec->create_sid;
2080 	} else {
2081 		rc = security_transition_sid(tsec->sid, dsec->sid,
2082 					     inode_mode_to_security_class(inode->i_mode),
2083 					     &newsid);
2084 		if (rc) {
2085 			printk(KERN_WARNING "%s:  "
2086 			       "security_transition_sid failed, rc=%d (dev=%s "
2087 			       "ino=%ld)\n",
2088 			       __FUNCTION__,
2089 			       -rc, inode->i_sb->s_id, inode->i_ino);
2090 			return rc;
2091 		}
2092 	}
2093 
2094 	inode_security_set_sid(inode, newsid);
2095 
2096 	if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2097 		return -EOPNOTSUPP;
2098 
2099 	if (name) {
2100 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2101 		if (!namep)
2102 			return -ENOMEM;
2103 		*name = namep;
2104 	}
2105 
2106 	if (value && len) {
2107 		rc = security_sid_to_context(newsid, &context, &clen);
2108 		if (rc) {
2109 			kfree(namep);
2110 			return rc;
2111 		}
2112 		*value = context;
2113 		*len = clen;
2114 	}
2115 
2116 	return 0;
2117 }
2118 
2119 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2120 {
2121 	return may_create(dir, dentry, SECCLASS_FILE);
2122 }
2123 
2124 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2125 {
2126 	int rc;
2127 
2128 	rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2129 	if (rc)
2130 		return rc;
2131 	return may_link(dir, old_dentry, MAY_LINK);
2132 }
2133 
2134 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2135 {
2136 	int rc;
2137 
2138 	rc = secondary_ops->inode_unlink(dir, dentry);
2139 	if (rc)
2140 		return rc;
2141 	return may_link(dir, dentry, MAY_UNLINK);
2142 }
2143 
2144 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2145 {
2146 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2147 }
2148 
2149 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2150 {
2151 	return may_create(dir, dentry, SECCLASS_DIR);
2152 }
2153 
2154 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2155 {
2156 	return may_link(dir, dentry, MAY_RMDIR);
2157 }
2158 
2159 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2160 {
2161 	int rc;
2162 
2163 	rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2164 	if (rc)
2165 		return rc;
2166 
2167 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2168 }
2169 
2170 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2171                                 struct inode *new_inode, struct dentry *new_dentry)
2172 {
2173 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2174 }
2175 
2176 static int selinux_inode_readlink(struct dentry *dentry)
2177 {
2178 	return dentry_has_perm(current, NULL, dentry, FILE__READ);
2179 }
2180 
2181 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2182 {
2183 	int rc;
2184 
2185 	rc = secondary_ops->inode_follow_link(dentry,nameidata);
2186 	if (rc)
2187 		return rc;
2188 	return dentry_has_perm(current, NULL, dentry, FILE__READ);
2189 }
2190 
2191 static int selinux_inode_permission(struct inode *inode, int mask,
2192 				    struct nameidata *nd)
2193 {
2194 	int rc;
2195 
2196 	rc = secondary_ops->inode_permission(inode, mask, nd);
2197 	if (rc)
2198 		return rc;
2199 
2200 	if (!mask) {
2201 		/* No permission to check.  Existence test. */
2202 		return 0;
2203 	}
2204 
2205 	return inode_has_perm(current, inode,
2206 			       file_mask_to_av(inode->i_mode, mask), NULL);
2207 }
2208 
2209 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2210 {
2211 	int rc;
2212 
2213 	rc = secondary_ops->inode_setattr(dentry, iattr);
2214 	if (rc)
2215 		return rc;
2216 
2217 	if (iattr->ia_valid & ATTR_FORCE)
2218 		return 0;
2219 
2220 	if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2221 			       ATTR_ATIME_SET | ATTR_MTIME_SET))
2222 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2223 
2224 	return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2225 }
2226 
2227 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2228 {
2229 	return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2230 }
2231 
2232 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2233 {
2234 	struct task_security_struct *tsec = current->security;
2235 	struct inode *inode = dentry->d_inode;
2236 	struct inode_security_struct *isec = inode->i_security;
2237 	struct superblock_security_struct *sbsec;
2238 	struct avc_audit_data ad;
2239 	u32 newsid;
2240 	int rc = 0;
2241 
2242 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2243 		if (!strncmp(name, XATTR_SECURITY_PREFIX,
2244 			     sizeof XATTR_SECURITY_PREFIX - 1) &&
2245 		    !capable(CAP_SYS_ADMIN)) {
2246 			/* A different attribute in the security namespace.
2247 			   Restrict to administrator. */
2248 			return -EPERM;
2249 		}
2250 
2251 		/* Not an attribute we recognize, so just check the
2252 		   ordinary setattr permission. */
2253 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2254 	}
2255 
2256 	sbsec = inode->i_sb->s_security;
2257 	if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2258 		return -EOPNOTSUPP;
2259 
2260 	if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2261 		return -EPERM;
2262 
2263 	AVC_AUDIT_DATA_INIT(&ad,FS);
2264 	ad.u.fs.dentry = dentry;
2265 
2266 	rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2267 			  FILE__RELABELFROM, &ad);
2268 	if (rc)
2269 		return rc;
2270 
2271 	rc = security_context_to_sid(value, size, &newsid);
2272 	if (rc)
2273 		return rc;
2274 
2275 	rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2276 			  FILE__RELABELTO, &ad);
2277 	if (rc)
2278 		return rc;
2279 
2280 	rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2281 	                                  isec->sclass);
2282 	if (rc)
2283 		return rc;
2284 
2285 	return avc_has_perm(newsid,
2286 			    sbsec->sid,
2287 			    SECCLASS_FILESYSTEM,
2288 			    FILESYSTEM__ASSOCIATE,
2289 			    &ad);
2290 }
2291 
2292 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2293                                         void *value, size_t size, int flags)
2294 {
2295 	struct inode *inode = dentry->d_inode;
2296 	struct inode_security_struct *isec = inode->i_security;
2297 	u32 newsid;
2298 	int rc;
2299 
2300 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2301 		/* Not an attribute we recognize, so nothing to do. */
2302 		return;
2303 	}
2304 
2305 	rc = security_context_to_sid(value, size, &newsid);
2306 	if (rc) {
2307 		printk(KERN_WARNING "%s:  unable to obtain SID for context "
2308 		       "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2309 		return;
2310 	}
2311 
2312 	isec->sid = newsid;
2313 	return;
2314 }
2315 
2316 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2317 {
2318 	return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2319 }
2320 
2321 static int selinux_inode_listxattr (struct dentry *dentry)
2322 {
2323 	return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2324 }
2325 
2326 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2327 {
2328 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2329 		if (!strncmp(name, XATTR_SECURITY_PREFIX,
2330 			     sizeof XATTR_SECURITY_PREFIX - 1) &&
2331 		    !capable(CAP_SYS_ADMIN)) {
2332 			/* A different attribute in the security namespace.
2333 			   Restrict to administrator. */
2334 			return -EPERM;
2335 		}
2336 
2337 		/* Not an attribute we recognize, so just check the
2338 		   ordinary setattr permission. Might want a separate
2339 		   permission for removexattr. */
2340 		return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2341 	}
2342 
2343 	/* No one is allowed to remove a SELinux security label.
2344 	   You can change the label, but all data must be labeled. */
2345 	return -EACCES;
2346 }
2347 
2348 static const char *selinux_inode_xattr_getsuffix(void)
2349 {
2350       return XATTR_SELINUX_SUFFIX;
2351 }
2352 
2353 /*
2354  * Copy the in-core inode security context value to the user.  If the
2355  * getxattr() prior to this succeeded, check to see if we need to
2356  * canonicalize the value to be finally returned to the user.
2357  *
2358  * Permission check is handled by selinux_inode_getxattr hook.
2359  */
2360 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2361 {
2362 	struct inode_security_struct *isec = inode->i_security;
2363 
2364 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2365 		return -EOPNOTSUPP;
2366 
2367 	return selinux_getsecurity(isec->sid, buffer, size);
2368 }
2369 
2370 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2371                                      const void *value, size_t size, int flags)
2372 {
2373 	struct inode_security_struct *isec = inode->i_security;
2374 	u32 newsid;
2375 	int rc;
2376 
2377 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2378 		return -EOPNOTSUPP;
2379 
2380 	if (!value || !size)
2381 		return -EACCES;
2382 
2383 	rc = security_context_to_sid((void*)value, size, &newsid);
2384 	if (rc)
2385 		return rc;
2386 
2387 	isec->sid = newsid;
2388 	return 0;
2389 }
2390 
2391 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2392 {
2393 	const int len = sizeof(XATTR_NAME_SELINUX);
2394 	if (buffer && len <= buffer_size)
2395 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2396 	return len;
2397 }
2398 
2399 /* file security operations */
2400 
2401 static int selinux_file_permission(struct file *file, int mask)
2402 {
2403 	int rc;
2404 	struct inode *inode = file->f_dentry->d_inode;
2405 
2406 	if (!mask) {
2407 		/* No permission to check.  Existence test. */
2408 		return 0;
2409 	}
2410 
2411 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2412 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2413 		mask |= MAY_APPEND;
2414 
2415 	rc = file_has_perm(current, file,
2416 			   file_mask_to_av(inode->i_mode, mask));
2417 	if (rc)
2418 		return rc;
2419 
2420 	return selinux_netlbl_inode_permission(inode, mask);
2421 }
2422 
2423 static int selinux_file_alloc_security(struct file *file)
2424 {
2425 	return file_alloc_security(file);
2426 }
2427 
2428 static void selinux_file_free_security(struct file *file)
2429 {
2430 	file_free_security(file);
2431 }
2432 
2433 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2434 			      unsigned long arg)
2435 {
2436 	int error = 0;
2437 
2438 	switch (cmd) {
2439 		case FIONREAD:
2440 		/* fall through */
2441 		case FIBMAP:
2442 		/* fall through */
2443 		case FIGETBSZ:
2444 		/* fall through */
2445 		case EXT2_IOC_GETFLAGS:
2446 		/* fall through */
2447 		case EXT2_IOC_GETVERSION:
2448 			error = file_has_perm(current, file, FILE__GETATTR);
2449 			break;
2450 
2451 		case EXT2_IOC_SETFLAGS:
2452 		/* fall through */
2453 		case EXT2_IOC_SETVERSION:
2454 			error = file_has_perm(current, file, FILE__SETATTR);
2455 			break;
2456 
2457 		/* sys_ioctl() checks */
2458 		case FIONBIO:
2459 		/* fall through */
2460 		case FIOASYNC:
2461 			error = file_has_perm(current, file, 0);
2462 			break;
2463 
2464 	        case KDSKBENT:
2465 	        case KDSKBSENT:
2466 			error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2467 			break;
2468 
2469 		/* default case assumes that the command will go
2470 		 * to the file's ioctl() function.
2471 		 */
2472 		default:
2473 			error = file_has_perm(current, file, FILE__IOCTL);
2474 
2475 	}
2476 	return error;
2477 }
2478 
2479 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2480 {
2481 #ifndef CONFIG_PPC32
2482 	if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2483 		/*
2484 		 * We are making executable an anonymous mapping or a
2485 		 * private file mapping that will also be writable.
2486 		 * This has an additional check.
2487 		 */
2488 		int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2489 		if (rc)
2490 			return rc;
2491 	}
2492 #endif
2493 
2494 	if (file) {
2495 		/* read access is always possible with a mapping */
2496 		u32 av = FILE__READ;
2497 
2498 		/* write access only matters if the mapping is shared */
2499 		if (shared && (prot & PROT_WRITE))
2500 			av |= FILE__WRITE;
2501 
2502 		if (prot & PROT_EXEC)
2503 			av |= FILE__EXECUTE;
2504 
2505 		return file_has_perm(current, file, av);
2506 	}
2507 	return 0;
2508 }
2509 
2510 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2511 			     unsigned long prot, unsigned long flags)
2512 {
2513 	int rc;
2514 
2515 	rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2516 	if (rc)
2517 		return rc;
2518 
2519 	if (selinux_checkreqprot)
2520 		prot = reqprot;
2521 
2522 	return file_map_prot_check(file, prot,
2523 				   (flags & MAP_TYPE) == MAP_SHARED);
2524 }
2525 
2526 static int selinux_file_mprotect(struct vm_area_struct *vma,
2527 				 unsigned long reqprot,
2528 				 unsigned long prot)
2529 {
2530 	int rc;
2531 
2532 	rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2533 	if (rc)
2534 		return rc;
2535 
2536 	if (selinux_checkreqprot)
2537 		prot = reqprot;
2538 
2539 #ifndef CONFIG_PPC32
2540 	if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2541 		rc = 0;
2542 		if (vma->vm_start >= vma->vm_mm->start_brk &&
2543 		    vma->vm_end <= vma->vm_mm->brk) {
2544 			rc = task_has_perm(current, current,
2545 					   PROCESS__EXECHEAP);
2546 		} else if (!vma->vm_file &&
2547 			   vma->vm_start <= vma->vm_mm->start_stack &&
2548 			   vma->vm_end >= vma->vm_mm->start_stack) {
2549 			rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2550 		} else if (vma->vm_file && vma->anon_vma) {
2551 			/*
2552 			 * We are making executable a file mapping that has
2553 			 * had some COW done. Since pages might have been
2554 			 * written, check ability to execute the possibly
2555 			 * modified content.  This typically should only
2556 			 * occur for text relocations.
2557 			 */
2558 			rc = file_has_perm(current, vma->vm_file,
2559 					   FILE__EXECMOD);
2560 		}
2561 		if (rc)
2562 			return rc;
2563 	}
2564 #endif
2565 
2566 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2567 }
2568 
2569 static int selinux_file_lock(struct file *file, unsigned int cmd)
2570 {
2571 	return file_has_perm(current, file, FILE__LOCK);
2572 }
2573 
2574 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2575 			      unsigned long arg)
2576 {
2577 	int err = 0;
2578 
2579 	switch (cmd) {
2580 	        case F_SETFL:
2581 			if (!file->f_dentry || !file->f_dentry->d_inode) {
2582 				err = -EINVAL;
2583 				break;
2584 			}
2585 
2586 			if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2587 				err = file_has_perm(current, file,FILE__WRITE);
2588 				break;
2589 			}
2590 			/* fall through */
2591 	        case F_SETOWN:
2592 	        case F_SETSIG:
2593 	        case F_GETFL:
2594 	        case F_GETOWN:
2595 	        case F_GETSIG:
2596 			/* Just check FD__USE permission */
2597 			err = file_has_perm(current, file, 0);
2598 			break;
2599 		case F_GETLK:
2600 		case F_SETLK:
2601 	        case F_SETLKW:
2602 #if BITS_PER_LONG == 32
2603 	        case F_GETLK64:
2604 		case F_SETLK64:
2605 	        case F_SETLKW64:
2606 #endif
2607 			if (!file->f_dentry || !file->f_dentry->d_inode) {
2608 				err = -EINVAL;
2609 				break;
2610 			}
2611 			err = file_has_perm(current, file, FILE__LOCK);
2612 			break;
2613 	}
2614 
2615 	return err;
2616 }
2617 
2618 static int selinux_file_set_fowner(struct file *file)
2619 {
2620 	struct task_security_struct *tsec;
2621 	struct file_security_struct *fsec;
2622 
2623 	tsec = current->security;
2624 	fsec = file->f_security;
2625 	fsec->fown_sid = tsec->sid;
2626 
2627 	return 0;
2628 }
2629 
2630 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2631 				       struct fown_struct *fown, int signum)
2632 {
2633         struct file *file;
2634 	u32 perm;
2635 	struct task_security_struct *tsec;
2636 	struct file_security_struct *fsec;
2637 
2638 	/* struct fown_struct is never outside the context of a struct file */
2639         file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2640 
2641 	tsec = tsk->security;
2642 	fsec = file->f_security;
2643 
2644 	if (!signum)
2645 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2646 	else
2647 		perm = signal_to_av(signum);
2648 
2649 	return avc_has_perm(fsec->fown_sid, tsec->sid,
2650 			    SECCLASS_PROCESS, perm, NULL);
2651 }
2652 
2653 static int selinux_file_receive(struct file *file)
2654 {
2655 	return file_has_perm(current, file, file_to_av(file));
2656 }
2657 
2658 /* task security operations */
2659 
2660 static int selinux_task_create(unsigned long clone_flags)
2661 {
2662 	int rc;
2663 
2664 	rc = secondary_ops->task_create(clone_flags);
2665 	if (rc)
2666 		return rc;
2667 
2668 	return task_has_perm(current, current, PROCESS__FORK);
2669 }
2670 
2671 static int selinux_task_alloc_security(struct task_struct *tsk)
2672 {
2673 	struct task_security_struct *tsec1, *tsec2;
2674 	int rc;
2675 
2676 	tsec1 = current->security;
2677 
2678 	rc = task_alloc_security(tsk);
2679 	if (rc)
2680 		return rc;
2681 	tsec2 = tsk->security;
2682 
2683 	tsec2->osid = tsec1->osid;
2684 	tsec2->sid = tsec1->sid;
2685 
2686 	/* Retain the exec, fs, key, and sock SIDs across fork */
2687 	tsec2->exec_sid = tsec1->exec_sid;
2688 	tsec2->create_sid = tsec1->create_sid;
2689 	tsec2->keycreate_sid = tsec1->keycreate_sid;
2690 	tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2691 
2692 	/* Retain ptracer SID across fork, if any.
2693 	   This will be reset by the ptrace hook upon any
2694 	   subsequent ptrace_attach operations. */
2695 	tsec2->ptrace_sid = tsec1->ptrace_sid;
2696 
2697 	return 0;
2698 }
2699 
2700 static void selinux_task_free_security(struct task_struct *tsk)
2701 {
2702 	task_free_security(tsk);
2703 }
2704 
2705 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2706 {
2707 	/* Since setuid only affects the current process, and
2708 	   since the SELinux controls are not based on the Linux
2709 	   identity attributes, SELinux does not need to control
2710 	   this operation.  However, SELinux does control the use
2711 	   of the CAP_SETUID and CAP_SETGID capabilities using the
2712 	   capable hook. */
2713 	return 0;
2714 }
2715 
2716 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2717 {
2718 	return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2719 }
2720 
2721 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2722 {
2723 	/* See the comment for setuid above. */
2724 	return 0;
2725 }
2726 
2727 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2728 {
2729 	return task_has_perm(current, p, PROCESS__SETPGID);
2730 }
2731 
2732 static int selinux_task_getpgid(struct task_struct *p)
2733 {
2734 	return task_has_perm(current, p, PROCESS__GETPGID);
2735 }
2736 
2737 static int selinux_task_getsid(struct task_struct *p)
2738 {
2739 	return task_has_perm(current, p, PROCESS__GETSESSION);
2740 }
2741 
2742 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2743 {
2744 	selinux_get_task_sid(p, secid);
2745 }
2746 
2747 static int selinux_task_setgroups(struct group_info *group_info)
2748 {
2749 	/* See the comment for setuid above. */
2750 	return 0;
2751 }
2752 
2753 static int selinux_task_setnice(struct task_struct *p, int nice)
2754 {
2755 	int rc;
2756 
2757 	rc = secondary_ops->task_setnice(p, nice);
2758 	if (rc)
2759 		return rc;
2760 
2761 	return task_has_perm(current,p, PROCESS__SETSCHED);
2762 }
2763 
2764 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2765 {
2766 	return task_has_perm(current, p, PROCESS__SETSCHED);
2767 }
2768 
2769 static int selinux_task_getioprio(struct task_struct *p)
2770 {
2771 	return task_has_perm(current, p, PROCESS__GETSCHED);
2772 }
2773 
2774 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2775 {
2776 	struct rlimit *old_rlim = current->signal->rlim + resource;
2777 	int rc;
2778 
2779 	rc = secondary_ops->task_setrlimit(resource, new_rlim);
2780 	if (rc)
2781 		return rc;
2782 
2783 	/* Control the ability to change the hard limit (whether
2784 	   lowering or raising it), so that the hard limit can
2785 	   later be used as a safe reset point for the soft limit
2786 	   upon context transitions. See selinux_bprm_apply_creds. */
2787 	if (old_rlim->rlim_max != new_rlim->rlim_max)
2788 		return task_has_perm(current, current, PROCESS__SETRLIMIT);
2789 
2790 	return 0;
2791 }
2792 
2793 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2794 {
2795 	return task_has_perm(current, p, PROCESS__SETSCHED);
2796 }
2797 
2798 static int selinux_task_getscheduler(struct task_struct *p)
2799 {
2800 	return task_has_perm(current, p, PROCESS__GETSCHED);
2801 }
2802 
2803 static int selinux_task_movememory(struct task_struct *p)
2804 {
2805 	return task_has_perm(current, p, PROCESS__SETSCHED);
2806 }
2807 
2808 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2809 				int sig, u32 secid)
2810 {
2811 	u32 perm;
2812 	int rc;
2813 	struct task_security_struct *tsec;
2814 
2815 	rc = secondary_ops->task_kill(p, info, sig, secid);
2816 	if (rc)
2817 		return rc;
2818 
2819 	if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2820 		return 0;
2821 
2822 	if (!sig)
2823 		perm = PROCESS__SIGNULL; /* null signal; existence test */
2824 	else
2825 		perm = signal_to_av(sig);
2826 	tsec = p->security;
2827 	if (secid)
2828 		rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2829 	else
2830 		rc = task_has_perm(current, p, perm);
2831 	return rc;
2832 }
2833 
2834 static int selinux_task_prctl(int option,
2835 			      unsigned long arg2,
2836 			      unsigned long arg3,
2837 			      unsigned long arg4,
2838 			      unsigned long arg5)
2839 {
2840 	/* The current prctl operations do not appear to require
2841 	   any SELinux controls since they merely observe or modify
2842 	   the state of the current process. */
2843 	return 0;
2844 }
2845 
2846 static int selinux_task_wait(struct task_struct *p)
2847 {
2848 	u32 perm;
2849 
2850 	perm = signal_to_av(p->exit_signal);
2851 
2852 	return task_has_perm(p, current, perm);
2853 }
2854 
2855 static void selinux_task_reparent_to_init(struct task_struct *p)
2856 {
2857   	struct task_security_struct *tsec;
2858 
2859 	secondary_ops->task_reparent_to_init(p);
2860 
2861 	tsec = p->security;
2862 	tsec->osid = tsec->sid;
2863 	tsec->sid = SECINITSID_KERNEL;
2864 	return;
2865 }
2866 
2867 static void selinux_task_to_inode(struct task_struct *p,
2868 				  struct inode *inode)
2869 {
2870 	struct task_security_struct *tsec = p->security;
2871 	struct inode_security_struct *isec = inode->i_security;
2872 
2873 	isec->sid = tsec->sid;
2874 	isec->initialized = 1;
2875 	return;
2876 }
2877 
2878 /* Returns error only if unable to parse addresses */
2879 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2880 {
2881 	int offset, ihlen, ret = -EINVAL;
2882 	struct iphdr _iph, *ih;
2883 
2884 	offset = skb->nh.raw - skb->data;
2885 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2886 	if (ih == NULL)
2887 		goto out;
2888 
2889 	ihlen = ih->ihl * 4;
2890 	if (ihlen < sizeof(_iph))
2891 		goto out;
2892 
2893 	ad->u.net.v4info.saddr = ih->saddr;
2894 	ad->u.net.v4info.daddr = ih->daddr;
2895 	ret = 0;
2896 
2897 	switch (ih->protocol) {
2898         case IPPROTO_TCP: {
2899         	struct tcphdr _tcph, *th;
2900 
2901         	if (ntohs(ih->frag_off) & IP_OFFSET)
2902         		break;
2903 
2904 		offset += ihlen;
2905 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2906 		if (th == NULL)
2907 			break;
2908 
2909 		ad->u.net.sport = th->source;
2910 		ad->u.net.dport = th->dest;
2911 		break;
2912         }
2913 
2914         case IPPROTO_UDP: {
2915         	struct udphdr _udph, *uh;
2916 
2917         	if (ntohs(ih->frag_off) & IP_OFFSET)
2918         		break;
2919 
2920 		offset += ihlen;
2921         	uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2922 		if (uh == NULL)
2923 			break;
2924 
2925         	ad->u.net.sport = uh->source;
2926         	ad->u.net.dport = uh->dest;
2927         	break;
2928         }
2929 
2930         default:
2931         	break;
2932         }
2933 out:
2934 	return ret;
2935 }
2936 
2937 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2938 
2939 /* Returns error only if unable to parse addresses */
2940 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2941 {
2942 	u8 nexthdr;
2943 	int ret = -EINVAL, offset;
2944 	struct ipv6hdr _ipv6h, *ip6;
2945 
2946 	offset = skb->nh.raw - skb->data;
2947 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2948 	if (ip6 == NULL)
2949 		goto out;
2950 
2951 	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2952 	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2953 	ret = 0;
2954 
2955 	nexthdr = ip6->nexthdr;
2956 	offset += sizeof(_ipv6h);
2957 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2958 	if (offset < 0)
2959 		goto out;
2960 
2961 	switch (nexthdr) {
2962 	case IPPROTO_TCP: {
2963         	struct tcphdr _tcph, *th;
2964 
2965 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2966 		if (th == NULL)
2967 			break;
2968 
2969 		ad->u.net.sport = th->source;
2970 		ad->u.net.dport = th->dest;
2971 		break;
2972 	}
2973 
2974 	case IPPROTO_UDP: {
2975 		struct udphdr _udph, *uh;
2976 
2977 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2978 		if (uh == NULL)
2979 			break;
2980 
2981 		ad->u.net.sport = uh->source;
2982 		ad->u.net.dport = uh->dest;
2983 		break;
2984 	}
2985 
2986 	/* includes fragments */
2987 	default:
2988 		break;
2989 	}
2990 out:
2991 	return ret;
2992 }
2993 
2994 #endif /* IPV6 */
2995 
2996 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
2997 			     char **addrp, int *len, int src)
2998 {
2999 	int ret = 0;
3000 
3001 	switch (ad->u.net.family) {
3002 	case PF_INET:
3003 		ret = selinux_parse_skb_ipv4(skb, ad);
3004 		if (ret || !addrp)
3005 			break;
3006 		*len = 4;
3007 		*addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3008 					&ad->u.net.v4info.daddr);
3009 		break;
3010 
3011 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3012 	case PF_INET6:
3013 		ret = selinux_parse_skb_ipv6(skb, ad);
3014 		if (ret || !addrp)
3015 			break;
3016 		*len = 16;
3017 		*addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3018 					&ad->u.net.v6info.daddr);
3019 		break;
3020 #endif	/* IPV6 */
3021 	default:
3022 		break;
3023 	}
3024 
3025 	return ret;
3026 }
3027 
3028 /* socket security operations */
3029 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3030 			   u32 perms)
3031 {
3032 	struct inode_security_struct *isec;
3033 	struct task_security_struct *tsec;
3034 	struct avc_audit_data ad;
3035 	int err = 0;
3036 
3037 	tsec = task->security;
3038 	isec = SOCK_INODE(sock)->i_security;
3039 
3040 	if (isec->sid == SECINITSID_KERNEL)
3041 		goto out;
3042 
3043 	AVC_AUDIT_DATA_INIT(&ad,NET);
3044 	ad.u.net.sk = sock->sk;
3045 	err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3046 
3047 out:
3048 	return err;
3049 }
3050 
3051 static int selinux_socket_create(int family, int type,
3052 				 int protocol, int kern)
3053 {
3054 	int err = 0;
3055 	struct task_security_struct *tsec;
3056 	u32 newsid;
3057 
3058 	if (kern)
3059 		goto out;
3060 
3061 	tsec = current->security;
3062 	newsid = tsec->sockcreate_sid ? : tsec->sid;
3063 	err = avc_has_perm(tsec->sid, newsid,
3064 			   socket_type_to_security_class(family, type,
3065 			   protocol), SOCKET__CREATE, NULL);
3066 
3067 out:
3068 	return err;
3069 }
3070 
3071 static int selinux_socket_post_create(struct socket *sock, int family,
3072 				      int type, int protocol, int kern)
3073 {
3074 	int err = 0;
3075 	struct inode_security_struct *isec;
3076 	struct task_security_struct *tsec;
3077 	struct sk_security_struct *sksec;
3078 	u32 newsid;
3079 
3080 	isec = SOCK_INODE(sock)->i_security;
3081 
3082 	tsec = current->security;
3083 	newsid = tsec->sockcreate_sid ? : tsec->sid;
3084 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3085 	isec->sid = kern ? SECINITSID_KERNEL : newsid;
3086 	isec->initialized = 1;
3087 
3088 	if (sock->sk) {
3089 		sksec = sock->sk->sk_security;
3090 		sksec->sid = isec->sid;
3091 		err = selinux_netlbl_socket_post_create(sock,
3092 							family,
3093 							isec->sid);
3094 	}
3095 
3096 	return err;
3097 }
3098 
3099 /* Range of port numbers used to automatically bind.
3100    Need to determine whether we should perform a name_bind
3101    permission check between the socket and the port number. */
3102 #define ip_local_port_range_0 sysctl_local_port_range[0]
3103 #define ip_local_port_range_1 sysctl_local_port_range[1]
3104 
3105 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3106 {
3107 	u16 family;
3108 	int err;
3109 
3110 	err = socket_has_perm(current, sock, SOCKET__BIND);
3111 	if (err)
3112 		goto out;
3113 
3114 	/*
3115 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3116 	 * Multiple address binding for SCTP is not supported yet: we just
3117 	 * check the first address now.
3118 	 */
3119 	family = sock->sk->sk_family;
3120 	if (family == PF_INET || family == PF_INET6) {
3121 		char *addrp;
3122 		struct inode_security_struct *isec;
3123 		struct task_security_struct *tsec;
3124 		struct avc_audit_data ad;
3125 		struct sockaddr_in *addr4 = NULL;
3126 		struct sockaddr_in6 *addr6 = NULL;
3127 		unsigned short snum;
3128 		struct sock *sk = sock->sk;
3129 		u32 sid, node_perm, addrlen;
3130 
3131 		tsec = current->security;
3132 		isec = SOCK_INODE(sock)->i_security;
3133 
3134 		if (family == PF_INET) {
3135 			addr4 = (struct sockaddr_in *)address;
3136 			snum = ntohs(addr4->sin_port);
3137 			addrlen = sizeof(addr4->sin_addr.s_addr);
3138 			addrp = (char *)&addr4->sin_addr.s_addr;
3139 		} else {
3140 			addr6 = (struct sockaddr_in6 *)address;
3141 			snum = ntohs(addr6->sin6_port);
3142 			addrlen = sizeof(addr6->sin6_addr.s6_addr);
3143 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3144 		}
3145 
3146 		if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3147 			   snum > ip_local_port_range_1)) {
3148 			err = security_port_sid(sk->sk_family, sk->sk_type,
3149 						sk->sk_protocol, snum, &sid);
3150 			if (err)
3151 				goto out;
3152 			AVC_AUDIT_DATA_INIT(&ad,NET);
3153 			ad.u.net.sport = htons(snum);
3154 			ad.u.net.family = family;
3155 			err = avc_has_perm(isec->sid, sid,
3156 					   isec->sclass,
3157 					   SOCKET__NAME_BIND, &ad);
3158 			if (err)
3159 				goto out;
3160 		}
3161 
3162 		switch(isec->sclass) {
3163 		case SECCLASS_TCP_SOCKET:
3164 			node_perm = TCP_SOCKET__NODE_BIND;
3165 			break;
3166 
3167 		case SECCLASS_UDP_SOCKET:
3168 			node_perm = UDP_SOCKET__NODE_BIND;
3169 			break;
3170 
3171 		default:
3172 			node_perm = RAWIP_SOCKET__NODE_BIND;
3173 			break;
3174 		}
3175 
3176 		err = security_node_sid(family, addrp, addrlen, &sid);
3177 		if (err)
3178 			goto out;
3179 
3180 		AVC_AUDIT_DATA_INIT(&ad,NET);
3181 		ad.u.net.sport = htons(snum);
3182 		ad.u.net.family = family;
3183 
3184 		if (family == PF_INET)
3185 			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3186 		else
3187 			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3188 
3189 		err = avc_has_perm(isec->sid, sid,
3190 		                   isec->sclass, node_perm, &ad);
3191 		if (err)
3192 			goto out;
3193 	}
3194 out:
3195 	return err;
3196 }
3197 
3198 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3199 {
3200 	struct inode_security_struct *isec;
3201 	int err;
3202 
3203 	err = socket_has_perm(current, sock, SOCKET__CONNECT);
3204 	if (err)
3205 		return err;
3206 
3207 	/*
3208 	 * If a TCP socket, check name_connect permission for the port.
3209 	 */
3210 	isec = SOCK_INODE(sock)->i_security;
3211 	if (isec->sclass == SECCLASS_TCP_SOCKET) {
3212 		struct sock *sk = sock->sk;
3213 		struct avc_audit_data ad;
3214 		struct sockaddr_in *addr4 = NULL;
3215 		struct sockaddr_in6 *addr6 = NULL;
3216 		unsigned short snum;
3217 		u32 sid;
3218 
3219 		if (sk->sk_family == PF_INET) {
3220 			addr4 = (struct sockaddr_in *)address;
3221 			if (addrlen < sizeof(struct sockaddr_in))
3222 				return -EINVAL;
3223 			snum = ntohs(addr4->sin_port);
3224 		} else {
3225 			addr6 = (struct sockaddr_in6 *)address;
3226 			if (addrlen < SIN6_LEN_RFC2133)
3227 				return -EINVAL;
3228 			snum = ntohs(addr6->sin6_port);
3229 		}
3230 
3231 		err = security_port_sid(sk->sk_family, sk->sk_type,
3232 					sk->sk_protocol, snum, &sid);
3233 		if (err)
3234 			goto out;
3235 
3236 		AVC_AUDIT_DATA_INIT(&ad,NET);
3237 		ad.u.net.dport = htons(snum);
3238 		ad.u.net.family = sk->sk_family;
3239 		err = avc_has_perm(isec->sid, sid, isec->sclass,
3240 				   TCP_SOCKET__NAME_CONNECT, &ad);
3241 		if (err)
3242 			goto out;
3243 	}
3244 
3245 out:
3246 	return err;
3247 }
3248 
3249 static int selinux_socket_listen(struct socket *sock, int backlog)
3250 {
3251 	return socket_has_perm(current, sock, SOCKET__LISTEN);
3252 }
3253 
3254 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3255 {
3256 	int err;
3257 	struct inode_security_struct *isec;
3258 	struct inode_security_struct *newisec;
3259 
3260 	err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3261 	if (err)
3262 		return err;
3263 
3264 	newisec = SOCK_INODE(newsock)->i_security;
3265 
3266 	isec = SOCK_INODE(sock)->i_security;
3267 	newisec->sclass = isec->sclass;
3268 	newisec->sid = isec->sid;
3269 	newisec->initialized = 1;
3270 
3271 	return 0;
3272 }
3273 
3274 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3275  				  int size)
3276 {
3277 	int rc;
3278 
3279 	rc = socket_has_perm(current, sock, SOCKET__WRITE);
3280 	if (rc)
3281 		return rc;
3282 
3283 	return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3284 }
3285 
3286 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3287 				  int size, int flags)
3288 {
3289 	return socket_has_perm(current, sock, SOCKET__READ);
3290 }
3291 
3292 static int selinux_socket_getsockname(struct socket *sock)
3293 {
3294 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3295 }
3296 
3297 static int selinux_socket_getpeername(struct socket *sock)
3298 {
3299 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3300 }
3301 
3302 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3303 {
3304 	return socket_has_perm(current, sock, SOCKET__SETOPT);
3305 }
3306 
3307 static int selinux_socket_getsockopt(struct socket *sock, int level,
3308 				     int optname)
3309 {
3310 	return socket_has_perm(current, sock, SOCKET__GETOPT);
3311 }
3312 
3313 static int selinux_socket_shutdown(struct socket *sock, int how)
3314 {
3315 	return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3316 }
3317 
3318 static int selinux_socket_unix_stream_connect(struct socket *sock,
3319 					      struct socket *other,
3320 					      struct sock *newsk)
3321 {
3322 	struct sk_security_struct *ssec;
3323 	struct inode_security_struct *isec;
3324 	struct inode_security_struct *other_isec;
3325 	struct avc_audit_data ad;
3326 	int err;
3327 
3328 	err = secondary_ops->unix_stream_connect(sock, other, newsk);
3329 	if (err)
3330 		return err;
3331 
3332 	isec = SOCK_INODE(sock)->i_security;
3333 	other_isec = SOCK_INODE(other)->i_security;
3334 
3335 	AVC_AUDIT_DATA_INIT(&ad,NET);
3336 	ad.u.net.sk = other->sk;
3337 
3338 	err = avc_has_perm(isec->sid, other_isec->sid,
3339 			   isec->sclass,
3340 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3341 	if (err)
3342 		return err;
3343 
3344 	/* connecting socket */
3345 	ssec = sock->sk->sk_security;
3346 	ssec->peer_sid = other_isec->sid;
3347 
3348 	/* server child socket */
3349 	ssec = newsk->sk_security;
3350 	ssec->peer_sid = isec->sid;
3351 	err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3352 
3353 	return err;
3354 }
3355 
3356 static int selinux_socket_unix_may_send(struct socket *sock,
3357 					struct socket *other)
3358 {
3359 	struct inode_security_struct *isec;
3360 	struct inode_security_struct *other_isec;
3361 	struct avc_audit_data ad;
3362 	int err;
3363 
3364 	isec = SOCK_INODE(sock)->i_security;
3365 	other_isec = SOCK_INODE(other)->i_security;
3366 
3367 	AVC_AUDIT_DATA_INIT(&ad,NET);
3368 	ad.u.net.sk = other->sk;
3369 
3370 	err = avc_has_perm(isec->sid, other_isec->sid,
3371 			   isec->sclass, SOCKET__SENDTO, &ad);
3372 	if (err)
3373 		return err;
3374 
3375 	return 0;
3376 }
3377 
3378 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3379 		struct avc_audit_data *ad, u16 family, char *addrp, int len)
3380 {
3381 	int err = 0;
3382 	u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3383 	struct socket *sock;
3384 	u16 sock_class = 0;
3385 	u32 sock_sid = 0;
3386 
3387  	read_lock_bh(&sk->sk_callback_lock);
3388  	sock = sk->sk_socket;
3389  	if (sock) {
3390  		struct inode *inode;
3391  		inode = SOCK_INODE(sock);
3392  		if (inode) {
3393  			struct inode_security_struct *isec;
3394  			isec = inode->i_security;
3395  			sock_sid = isec->sid;
3396  			sock_class = isec->sclass;
3397  		}
3398  	}
3399  	read_unlock_bh(&sk->sk_callback_lock);
3400  	if (!sock_sid)
3401   		goto out;
3402 
3403 	if (!skb->dev)
3404 		goto out;
3405 
3406 	err = sel_netif_sids(skb->dev, &if_sid, NULL);
3407 	if (err)
3408 		goto out;
3409 
3410 	switch (sock_class) {
3411 	case SECCLASS_UDP_SOCKET:
3412 		netif_perm = NETIF__UDP_RECV;
3413 		node_perm = NODE__UDP_RECV;
3414 		recv_perm = UDP_SOCKET__RECV_MSG;
3415 		break;
3416 
3417 	case SECCLASS_TCP_SOCKET:
3418 		netif_perm = NETIF__TCP_RECV;
3419 		node_perm = NODE__TCP_RECV;
3420 		recv_perm = TCP_SOCKET__RECV_MSG;
3421 		break;
3422 
3423 	default:
3424 		netif_perm = NETIF__RAWIP_RECV;
3425 		node_perm = NODE__RAWIP_RECV;
3426 		break;
3427 	}
3428 
3429 	err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3430 	if (err)
3431 		goto out;
3432 
3433 	err = security_node_sid(family, addrp, len, &node_sid);
3434 	if (err)
3435 		goto out;
3436 
3437 	err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3438 	if (err)
3439 		goto out;
3440 
3441 	if (recv_perm) {
3442 		u32 port_sid;
3443 
3444 		err = security_port_sid(sk->sk_family, sk->sk_type,
3445 		                        sk->sk_protocol, ntohs(ad->u.net.sport),
3446 		                        &port_sid);
3447 		if (err)
3448 			goto out;
3449 
3450 		err = avc_has_perm(sock_sid, port_sid,
3451 				   sock_class, recv_perm, ad);
3452 	}
3453 
3454 out:
3455 	return err;
3456 }
3457 
3458 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3459 {
3460 	u16 family;
3461 	char *addrp;
3462 	int len, err = 0;
3463 	struct avc_audit_data ad;
3464 	struct sk_security_struct *sksec = sk->sk_security;
3465 
3466 	family = sk->sk_family;
3467 	if (family != PF_INET && family != PF_INET6)
3468 		goto out;
3469 
3470 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
3471 	if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3472 		family = PF_INET;
3473 
3474 	AVC_AUDIT_DATA_INIT(&ad, NET);
3475 	ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3476 	ad.u.net.family = family;
3477 
3478 	err = selinux_parse_skb(skb, &ad, &addrp, &len, 1);
3479 	if (err)
3480 		goto out;
3481 
3482 	if (selinux_compat_net)
3483 		err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3484 						  addrp, len);
3485 	else
3486 		err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3487 				   PACKET__RECV, &ad);
3488 	if (err)
3489 		goto out;
3490 
3491 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3492 	if (err)
3493 		goto out;
3494 
3495 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3496 out:
3497 	return err;
3498 }
3499 
3500 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3501 					    int __user *optlen, unsigned len)
3502 {
3503 	int err = 0;
3504 	char *scontext;
3505 	u32 scontext_len;
3506 	struct sk_security_struct *ssec;
3507 	struct inode_security_struct *isec;
3508 	u32 peer_sid = 0;
3509 
3510 	isec = SOCK_INODE(sock)->i_security;
3511 
3512 	/* if UNIX_STREAM check peer_sid, if TCP check dst for labelled sa */
3513 	if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET) {
3514 		ssec = sock->sk->sk_security;
3515 		peer_sid = ssec->peer_sid;
3516 	}
3517 	else if (isec->sclass == SECCLASS_TCP_SOCKET) {
3518 		peer_sid = selinux_netlbl_socket_getpeersec_stream(sock);
3519 		if (peer_sid == SECSID_NULL)
3520 			peer_sid = selinux_socket_getpeer_stream(sock->sk);
3521 		if (peer_sid == SECSID_NULL) {
3522 			err = -ENOPROTOOPT;
3523 			goto out;
3524 		}
3525 	}
3526 	else {
3527 		err = -ENOPROTOOPT;
3528 		goto out;
3529 	}
3530 
3531 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3532 
3533 	if (err)
3534 		goto out;
3535 
3536 	if (scontext_len > len) {
3537 		err = -ERANGE;
3538 		goto out_len;
3539 	}
3540 
3541 	if (copy_to_user(optval, scontext, scontext_len))
3542 		err = -EFAULT;
3543 
3544 out_len:
3545 	if (put_user(scontext_len, optlen))
3546 		err = -EFAULT;
3547 
3548 	kfree(scontext);
3549 out:
3550 	return err;
3551 }
3552 
3553 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3554 {
3555 	u32 peer_secid = SECSID_NULL;
3556 	int err = 0;
3557 
3558 	if (sock && (sock->sk->sk_family == PF_UNIX))
3559 		selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3560 	else if (skb) {
3561 		peer_secid = selinux_netlbl_socket_getpeersec_dgram(skb);
3562 		if (peer_secid == SECSID_NULL)
3563 			peer_secid = selinux_socket_getpeer_dgram(skb);
3564 	}
3565 
3566 	if (peer_secid == SECSID_NULL)
3567 		err = -EINVAL;
3568 	*secid = peer_secid;
3569 
3570 	return err;
3571 }
3572 
3573 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3574 {
3575 	return sk_alloc_security(sk, family, priority);
3576 }
3577 
3578 static void selinux_sk_free_security(struct sock *sk)
3579 {
3580 	sk_free_security(sk);
3581 }
3582 
3583 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3584 {
3585 	struct sk_security_struct *ssec = sk->sk_security;
3586 	struct sk_security_struct *newssec = newsk->sk_security;
3587 
3588 	newssec->sid = ssec->sid;
3589 	newssec->peer_sid = ssec->peer_sid;
3590 
3591 	selinux_netlbl_sk_clone_security(ssec, newssec);
3592 }
3593 
3594 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3595 {
3596 	if (!sk)
3597 		*secid = SECINITSID_ANY_SOCKET;
3598 	else {
3599 		struct sk_security_struct *sksec = sk->sk_security;
3600 
3601 		*secid = sksec->sid;
3602 	}
3603 }
3604 
3605 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3606 {
3607 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3608 	struct sk_security_struct *sksec = sk->sk_security;
3609 
3610 	isec->sid = sksec->sid;
3611 
3612 	selinux_netlbl_sock_graft(sk, parent);
3613 }
3614 
3615 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3616 				     struct request_sock *req)
3617 {
3618 	struct sk_security_struct *sksec = sk->sk_security;
3619 	int err;
3620 	u32 newsid;
3621 	u32 peersid;
3622 
3623 	newsid = selinux_netlbl_inet_conn_request(skb, sksec->sid);
3624 	if (newsid != SECSID_NULL) {
3625 		req->secid = newsid;
3626 		return 0;
3627 	}
3628 
3629 	err = selinux_xfrm_decode_session(skb, &peersid, 0);
3630 	BUG_ON(err);
3631 
3632 	if (peersid == SECSID_NULL) {
3633 		req->secid = sksec->sid;
3634 		return 0;
3635 	}
3636 
3637 	err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3638 	if (err)
3639 		return err;
3640 
3641 	req->secid = newsid;
3642 	return 0;
3643 }
3644 
3645 static void selinux_inet_csk_clone(struct sock *newsk,
3646 				   const struct request_sock *req)
3647 {
3648 	struct sk_security_struct *newsksec = newsk->sk_security;
3649 
3650 	newsksec->sid = req->secid;
3651 	/* NOTE: Ideally, we should also get the isec->sid for the
3652 	   new socket in sync, but we don't have the isec available yet.
3653 	   So we will wait until sock_graft to do it, by which
3654 	   time it will have been created and available. */
3655 
3656 	selinux_netlbl_sk_security_init(newsksec, req->rsk_ops->family);
3657 }
3658 
3659 static void selinux_req_classify_flow(const struct request_sock *req,
3660 				      struct flowi *fl)
3661 {
3662 	fl->secid = req->secid;
3663 }
3664 
3665 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3666 {
3667 	int err = 0;
3668 	u32 perm;
3669 	struct nlmsghdr *nlh;
3670 	struct socket *sock = sk->sk_socket;
3671 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3672 
3673 	if (skb->len < NLMSG_SPACE(0)) {
3674 		err = -EINVAL;
3675 		goto out;
3676 	}
3677 	nlh = (struct nlmsghdr *)skb->data;
3678 
3679 	err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3680 	if (err) {
3681 		if (err == -EINVAL) {
3682 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3683 				  "SELinux:  unrecognized netlink message"
3684 				  " type=%hu for sclass=%hu\n",
3685 				  nlh->nlmsg_type, isec->sclass);
3686 			if (!selinux_enforcing)
3687 				err = 0;
3688 		}
3689 
3690 		/* Ignore */
3691 		if (err == -ENOENT)
3692 			err = 0;
3693 		goto out;
3694 	}
3695 
3696 	err = socket_has_perm(current, sock, perm);
3697 out:
3698 	return err;
3699 }
3700 
3701 #ifdef CONFIG_NETFILTER
3702 
3703 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3704 					    struct avc_audit_data *ad,
3705 					    u16 family, char *addrp, int len)
3706 {
3707 	int err = 0;
3708 	u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3709 	struct socket *sock;
3710 	struct inode *inode;
3711 	struct inode_security_struct *isec;
3712 
3713 	sock = sk->sk_socket;
3714 	if (!sock)
3715 		goto out;
3716 
3717 	inode = SOCK_INODE(sock);
3718 	if (!inode)
3719 		goto out;
3720 
3721 	isec = inode->i_security;
3722 
3723 	err = sel_netif_sids(dev, &if_sid, NULL);
3724 	if (err)
3725 		goto out;
3726 
3727 	switch (isec->sclass) {
3728 	case SECCLASS_UDP_SOCKET:
3729 		netif_perm = NETIF__UDP_SEND;
3730 		node_perm = NODE__UDP_SEND;
3731 		send_perm = UDP_SOCKET__SEND_MSG;
3732 		break;
3733 
3734 	case SECCLASS_TCP_SOCKET:
3735 		netif_perm = NETIF__TCP_SEND;
3736 		node_perm = NODE__TCP_SEND;
3737 		send_perm = TCP_SOCKET__SEND_MSG;
3738 		break;
3739 
3740 	default:
3741 		netif_perm = NETIF__RAWIP_SEND;
3742 		node_perm = NODE__RAWIP_SEND;
3743 		break;
3744 	}
3745 
3746 	err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3747 	if (err)
3748 		goto out;
3749 
3750 	err = security_node_sid(family, addrp, len, &node_sid);
3751 	if (err)
3752 		goto out;
3753 
3754 	err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3755 	if (err)
3756 		goto out;
3757 
3758 	if (send_perm) {
3759 		u32 port_sid;
3760 
3761 		err = security_port_sid(sk->sk_family,
3762 		                        sk->sk_type,
3763 		                        sk->sk_protocol,
3764 		                        ntohs(ad->u.net.dport),
3765 		                        &port_sid);
3766 		if (err)
3767 			goto out;
3768 
3769 		err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3770 				   send_perm, ad);
3771 	}
3772 out:
3773 	return err;
3774 }
3775 
3776 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3777                                               struct sk_buff **pskb,
3778                                               const struct net_device *in,
3779                                               const struct net_device *out,
3780                                               int (*okfn)(struct sk_buff *),
3781                                               u16 family)
3782 {
3783 	char *addrp;
3784 	int len, err = 0;
3785 	struct sock *sk;
3786 	struct sk_buff *skb = *pskb;
3787 	struct avc_audit_data ad;
3788 	struct net_device *dev = (struct net_device *)out;
3789 	struct sk_security_struct *sksec;
3790 
3791 	sk = skb->sk;
3792 	if (!sk)
3793 		goto out;
3794 
3795 	sksec = sk->sk_security;
3796 
3797 	AVC_AUDIT_DATA_INIT(&ad, NET);
3798 	ad.u.net.netif = dev->name;
3799 	ad.u.net.family = family;
3800 
3801 	err = selinux_parse_skb(skb, &ad, &addrp, &len, 0);
3802 	if (err)
3803 		goto out;
3804 
3805 	if (selinux_compat_net)
3806 		err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3807 						       family, addrp, len);
3808 	else
3809 		err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3810 				   PACKET__SEND, &ad);
3811 
3812 	if (err)
3813 		goto out;
3814 
3815 	err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad);
3816 out:
3817 	return err ? NF_DROP : NF_ACCEPT;
3818 }
3819 
3820 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3821 						struct sk_buff **pskb,
3822 						const struct net_device *in,
3823 						const struct net_device *out,
3824 						int (*okfn)(struct sk_buff *))
3825 {
3826 	return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3827 }
3828 
3829 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3830 
3831 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3832 						struct sk_buff **pskb,
3833 						const struct net_device *in,
3834 						const struct net_device *out,
3835 						int (*okfn)(struct sk_buff *))
3836 {
3837 	return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3838 }
3839 
3840 #endif	/* IPV6 */
3841 
3842 #endif	/* CONFIG_NETFILTER */
3843 
3844 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3845 {
3846 	int err;
3847 
3848 	err = secondary_ops->netlink_send(sk, skb);
3849 	if (err)
3850 		return err;
3851 
3852 	if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3853 		err = selinux_nlmsg_perm(sk, skb);
3854 
3855 	return err;
3856 }
3857 
3858 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3859 {
3860 	int err;
3861 	struct avc_audit_data ad;
3862 
3863 	err = secondary_ops->netlink_recv(skb, capability);
3864 	if (err)
3865 		return err;
3866 
3867 	AVC_AUDIT_DATA_INIT(&ad, CAP);
3868 	ad.u.cap = capability;
3869 
3870 	return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3871 	                    SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3872 }
3873 
3874 static int ipc_alloc_security(struct task_struct *task,
3875 			      struct kern_ipc_perm *perm,
3876 			      u16 sclass)
3877 {
3878 	struct task_security_struct *tsec = task->security;
3879 	struct ipc_security_struct *isec;
3880 
3881 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3882 	if (!isec)
3883 		return -ENOMEM;
3884 
3885 	isec->sclass = sclass;
3886 	isec->ipc_perm = perm;
3887 	isec->sid = tsec->sid;
3888 	perm->security = isec;
3889 
3890 	return 0;
3891 }
3892 
3893 static void ipc_free_security(struct kern_ipc_perm *perm)
3894 {
3895 	struct ipc_security_struct *isec = perm->security;
3896 	perm->security = NULL;
3897 	kfree(isec);
3898 }
3899 
3900 static int msg_msg_alloc_security(struct msg_msg *msg)
3901 {
3902 	struct msg_security_struct *msec;
3903 
3904 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3905 	if (!msec)
3906 		return -ENOMEM;
3907 
3908 	msec->msg = msg;
3909 	msec->sid = SECINITSID_UNLABELED;
3910 	msg->security = msec;
3911 
3912 	return 0;
3913 }
3914 
3915 static void msg_msg_free_security(struct msg_msg *msg)
3916 {
3917 	struct msg_security_struct *msec = msg->security;
3918 
3919 	msg->security = NULL;
3920 	kfree(msec);
3921 }
3922 
3923 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3924 			u32 perms)
3925 {
3926 	struct task_security_struct *tsec;
3927 	struct ipc_security_struct *isec;
3928 	struct avc_audit_data ad;
3929 
3930 	tsec = current->security;
3931 	isec = ipc_perms->security;
3932 
3933 	AVC_AUDIT_DATA_INIT(&ad, IPC);
3934 	ad.u.ipc_id = ipc_perms->key;
3935 
3936 	return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3937 }
3938 
3939 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3940 {
3941 	return msg_msg_alloc_security(msg);
3942 }
3943 
3944 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3945 {
3946 	msg_msg_free_security(msg);
3947 }
3948 
3949 /* message queue security operations */
3950 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3951 {
3952 	struct task_security_struct *tsec;
3953 	struct ipc_security_struct *isec;
3954 	struct avc_audit_data ad;
3955 	int rc;
3956 
3957 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
3958 	if (rc)
3959 		return rc;
3960 
3961 	tsec = current->security;
3962 	isec = msq->q_perm.security;
3963 
3964 	AVC_AUDIT_DATA_INIT(&ad, IPC);
3965  	ad.u.ipc_id = msq->q_perm.key;
3966 
3967 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3968 			  MSGQ__CREATE, &ad);
3969 	if (rc) {
3970 		ipc_free_security(&msq->q_perm);
3971 		return rc;
3972 	}
3973 	return 0;
3974 }
3975 
3976 static void selinux_msg_queue_free_security(struct msg_queue *msq)
3977 {
3978 	ipc_free_security(&msq->q_perm);
3979 }
3980 
3981 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
3982 {
3983 	struct task_security_struct *tsec;
3984 	struct ipc_security_struct *isec;
3985 	struct avc_audit_data ad;
3986 
3987 	tsec = current->security;
3988 	isec = msq->q_perm.security;
3989 
3990 	AVC_AUDIT_DATA_INIT(&ad, IPC);
3991 	ad.u.ipc_id = msq->q_perm.key;
3992 
3993 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3994 			    MSGQ__ASSOCIATE, &ad);
3995 }
3996 
3997 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
3998 {
3999 	int err;
4000 	int perms;
4001 
4002 	switch(cmd) {
4003 	case IPC_INFO:
4004 	case MSG_INFO:
4005 		/* No specific object, just general system-wide information. */
4006 		return task_has_system(current, SYSTEM__IPC_INFO);
4007 	case IPC_STAT:
4008 	case MSG_STAT:
4009 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4010 		break;
4011 	case IPC_SET:
4012 		perms = MSGQ__SETATTR;
4013 		break;
4014 	case IPC_RMID:
4015 		perms = MSGQ__DESTROY;
4016 		break;
4017 	default:
4018 		return 0;
4019 	}
4020 
4021 	err = ipc_has_perm(&msq->q_perm, perms);
4022 	return err;
4023 }
4024 
4025 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4026 {
4027 	struct task_security_struct *tsec;
4028 	struct ipc_security_struct *isec;
4029 	struct msg_security_struct *msec;
4030 	struct avc_audit_data ad;
4031 	int rc;
4032 
4033 	tsec = current->security;
4034 	isec = msq->q_perm.security;
4035 	msec = msg->security;
4036 
4037 	/*
4038 	 * First time through, need to assign label to the message
4039 	 */
4040 	if (msec->sid == SECINITSID_UNLABELED) {
4041 		/*
4042 		 * Compute new sid based on current process and
4043 		 * message queue this message will be stored in
4044 		 */
4045 		rc = security_transition_sid(tsec->sid,
4046 					     isec->sid,
4047 					     SECCLASS_MSG,
4048 					     &msec->sid);
4049 		if (rc)
4050 			return rc;
4051 	}
4052 
4053 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4054 	ad.u.ipc_id = msq->q_perm.key;
4055 
4056 	/* Can this process write to the queue? */
4057 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4058 			  MSGQ__WRITE, &ad);
4059 	if (!rc)
4060 		/* Can this process send the message */
4061 		rc = avc_has_perm(tsec->sid, msec->sid,
4062 				  SECCLASS_MSG, MSG__SEND, &ad);
4063 	if (!rc)
4064 		/* Can the message be put in the queue? */
4065 		rc = avc_has_perm(msec->sid, isec->sid,
4066 				  SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4067 
4068 	return rc;
4069 }
4070 
4071 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4072 				    struct task_struct *target,
4073 				    long type, int mode)
4074 {
4075 	struct task_security_struct *tsec;
4076 	struct ipc_security_struct *isec;
4077 	struct msg_security_struct *msec;
4078 	struct avc_audit_data ad;
4079 	int rc;
4080 
4081 	tsec = target->security;
4082 	isec = msq->q_perm.security;
4083 	msec = msg->security;
4084 
4085 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4086  	ad.u.ipc_id = msq->q_perm.key;
4087 
4088 	rc = avc_has_perm(tsec->sid, isec->sid,
4089 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4090 	if (!rc)
4091 		rc = avc_has_perm(tsec->sid, msec->sid,
4092 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4093 	return rc;
4094 }
4095 
4096 /* Shared Memory security operations */
4097 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4098 {
4099 	struct task_security_struct *tsec;
4100 	struct ipc_security_struct *isec;
4101 	struct avc_audit_data ad;
4102 	int rc;
4103 
4104 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4105 	if (rc)
4106 		return rc;
4107 
4108 	tsec = current->security;
4109 	isec = shp->shm_perm.security;
4110 
4111 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4112  	ad.u.ipc_id = shp->shm_perm.key;
4113 
4114 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4115 			  SHM__CREATE, &ad);
4116 	if (rc) {
4117 		ipc_free_security(&shp->shm_perm);
4118 		return rc;
4119 	}
4120 	return 0;
4121 }
4122 
4123 static void selinux_shm_free_security(struct shmid_kernel *shp)
4124 {
4125 	ipc_free_security(&shp->shm_perm);
4126 }
4127 
4128 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4129 {
4130 	struct task_security_struct *tsec;
4131 	struct ipc_security_struct *isec;
4132 	struct avc_audit_data ad;
4133 
4134 	tsec = current->security;
4135 	isec = shp->shm_perm.security;
4136 
4137 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4138 	ad.u.ipc_id = shp->shm_perm.key;
4139 
4140 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4141 			    SHM__ASSOCIATE, &ad);
4142 }
4143 
4144 /* Note, at this point, shp is locked down */
4145 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4146 {
4147 	int perms;
4148 	int err;
4149 
4150 	switch(cmd) {
4151 	case IPC_INFO:
4152 	case SHM_INFO:
4153 		/* No specific object, just general system-wide information. */
4154 		return task_has_system(current, SYSTEM__IPC_INFO);
4155 	case IPC_STAT:
4156 	case SHM_STAT:
4157 		perms = SHM__GETATTR | SHM__ASSOCIATE;
4158 		break;
4159 	case IPC_SET:
4160 		perms = SHM__SETATTR;
4161 		break;
4162 	case SHM_LOCK:
4163 	case SHM_UNLOCK:
4164 		perms = SHM__LOCK;
4165 		break;
4166 	case IPC_RMID:
4167 		perms = SHM__DESTROY;
4168 		break;
4169 	default:
4170 		return 0;
4171 	}
4172 
4173 	err = ipc_has_perm(&shp->shm_perm, perms);
4174 	return err;
4175 }
4176 
4177 static int selinux_shm_shmat(struct shmid_kernel *shp,
4178 			     char __user *shmaddr, int shmflg)
4179 {
4180 	u32 perms;
4181 	int rc;
4182 
4183 	rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4184 	if (rc)
4185 		return rc;
4186 
4187 	if (shmflg & SHM_RDONLY)
4188 		perms = SHM__READ;
4189 	else
4190 		perms = SHM__READ | SHM__WRITE;
4191 
4192 	return ipc_has_perm(&shp->shm_perm, perms);
4193 }
4194 
4195 /* Semaphore security operations */
4196 static int selinux_sem_alloc_security(struct sem_array *sma)
4197 {
4198 	struct task_security_struct *tsec;
4199 	struct ipc_security_struct *isec;
4200 	struct avc_audit_data ad;
4201 	int rc;
4202 
4203 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4204 	if (rc)
4205 		return rc;
4206 
4207 	tsec = current->security;
4208 	isec = sma->sem_perm.security;
4209 
4210 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4211  	ad.u.ipc_id = sma->sem_perm.key;
4212 
4213 	rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4214 			  SEM__CREATE, &ad);
4215 	if (rc) {
4216 		ipc_free_security(&sma->sem_perm);
4217 		return rc;
4218 	}
4219 	return 0;
4220 }
4221 
4222 static void selinux_sem_free_security(struct sem_array *sma)
4223 {
4224 	ipc_free_security(&sma->sem_perm);
4225 }
4226 
4227 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4228 {
4229 	struct task_security_struct *tsec;
4230 	struct ipc_security_struct *isec;
4231 	struct avc_audit_data ad;
4232 
4233 	tsec = current->security;
4234 	isec = sma->sem_perm.security;
4235 
4236 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4237 	ad.u.ipc_id = sma->sem_perm.key;
4238 
4239 	return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4240 			    SEM__ASSOCIATE, &ad);
4241 }
4242 
4243 /* Note, at this point, sma is locked down */
4244 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4245 {
4246 	int err;
4247 	u32 perms;
4248 
4249 	switch(cmd) {
4250 	case IPC_INFO:
4251 	case SEM_INFO:
4252 		/* No specific object, just general system-wide information. */
4253 		return task_has_system(current, SYSTEM__IPC_INFO);
4254 	case GETPID:
4255 	case GETNCNT:
4256 	case GETZCNT:
4257 		perms = SEM__GETATTR;
4258 		break;
4259 	case GETVAL:
4260 	case GETALL:
4261 		perms = SEM__READ;
4262 		break;
4263 	case SETVAL:
4264 	case SETALL:
4265 		perms = SEM__WRITE;
4266 		break;
4267 	case IPC_RMID:
4268 		perms = SEM__DESTROY;
4269 		break;
4270 	case IPC_SET:
4271 		perms = SEM__SETATTR;
4272 		break;
4273 	case IPC_STAT:
4274 	case SEM_STAT:
4275 		perms = SEM__GETATTR | SEM__ASSOCIATE;
4276 		break;
4277 	default:
4278 		return 0;
4279 	}
4280 
4281 	err = ipc_has_perm(&sma->sem_perm, perms);
4282 	return err;
4283 }
4284 
4285 static int selinux_sem_semop(struct sem_array *sma,
4286 			     struct sembuf *sops, unsigned nsops, int alter)
4287 {
4288 	u32 perms;
4289 
4290 	if (alter)
4291 		perms = SEM__READ | SEM__WRITE;
4292 	else
4293 		perms = SEM__READ;
4294 
4295 	return ipc_has_perm(&sma->sem_perm, perms);
4296 }
4297 
4298 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4299 {
4300 	u32 av = 0;
4301 
4302 	av = 0;
4303 	if (flag & S_IRUGO)
4304 		av |= IPC__UNIX_READ;
4305 	if (flag & S_IWUGO)
4306 		av |= IPC__UNIX_WRITE;
4307 
4308 	if (av == 0)
4309 		return 0;
4310 
4311 	return ipc_has_perm(ipcp, av);
4312 }
4313 
4314 /* module stacking operations */
4315 static int selinux_register_security (const char *name, struct security_operations *ops)
4316 {
4317 	if (secondary_ops != original_ops) {
4318 		printk(KERN_INFO "%s:  There is already a secondary security "
4319 		       "module registered.\n", __FUNCTION__);
4320 		return -EINVAL;
4321  	}
4322 
4323 	secondary_ops = ops;
4324 
4325 	printk(KERN_INFO "%s:  Registering secondary module %s\n",
4326 	       __FUNCTION__,
4327 	       name);
4328 
4329 	return 0;
4330 }
4331 
4332 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4333 {
4334 	if (ops != secondary_ops) {
4335 		printk (KERN_INFO "%s:  trying to unregister a security module "
4336 		        "that is not registered.\n", __FUNCTION__);
4337 		return -EINVAL;
4338 	}
4339 
4340 	secondary_ops = original_ops;
4341 
4342 	return 0;
4343 }
4344 
4345 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4346 {
4347 	if (inode)
4348 		inode_doinit_with_dentry(inode, dentry);
4349 }
4350 
4351 static int selinux_getprocattr(struct task_struct *p,
4352 			       char *name, void *value, size_t size)
4353 {
4354 	struct task_security_struct *tsec;
4355 	u32 sid;
4356 	int error;
4357 
4358 	if (current != p) {
4359 		error = task_has_perm(current, p, PROCESS__GETATTR);
4360 		if (error)
4361 			return error;
4362 	}
4363 
4364 	tsec = p->security;
4365 
4366 	if (!strcmp(name, "current"))
4367 		sid = tsec->sid;
4368 	else if (!strcmp(name, "prev"))
4369 		sid = tsec->osid;
4370 	else if (!strcmp(name, "exec"))
4371 		sid = tsec->exec_sid;
4372 	else if (!strcmp(name, "fscreate"))
4373 		sid = tsec->create_sid;
4374 	else if (!strcmp(name, "keycreate"))
4375 		sid = tsec->keycreate_sid;
4376 	else if (!strcmp(name, "sockcreate"))
4377 		sid = tsec->sockcreate_sid;
4378 	else
4379 		return -EINVAL;
4380 
4381 	if (!sid)
4382 		return 0;
4383 
4384 	return selinux_getsecurity(sid, value, size);
4385 }
4386 
4387 static int selinux_setprocattr(struct task_struct *p,
4388 			       char *name, void *value, size_t size)
4389 {
4390 	struct task_security_struct *tsec;
4391 	u32 sid = 0;
4392 	int error;
4393 	char *str = value;
4394 
4395 	if (current != p) {
4396 		/* SELinux only allows a process to change its own
4397 		   security attributes. */
4398 		return -EACCES;
4399 	}
4400 
4401 	/*
4402 	 * Basic control over ability to set these attributes at all.
4403 	 * current == p, but we'll pass them separately in case the
4404 	 * above restriction is ever removed.
4405 	 */
4406 	if (!strcmp(name, "exec"))
4407 		error = task_has_perm(current, p, PROCESS__SETEXEC);
4408 	else if (!strcmp(name, "fscreate"))
4409 		error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4410 	else if (!strcmp(name, "keycreate"))
4411 		error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4412 	else if (!strcmp(name, "sockcreate"))
4413 		error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4414 	else if (!strcmp(name, "current"))
4415 		error = task_has_perm(current, p, PROCESS__SETCURRENT);
4416 	else
4417 		error = -EINVAL;
4418 	if (error)
4419 		return error;
4420 
4421 	/* Obtain a SID for the context, if one was specified. */
4422 	if (size && str[1] && str[1] != '\n') {
4423 		if (str[size-1] == '\n') {
4424 			str[size-1] = 0;
4425 			size--;
4426 		}
4427 		error = security_context_to_sid(value, size, &sid);
4428 		if (error)
4429 			return error;
4430 	}
4431 
4432 	/* Permission checking based on the specified context is
4433 	   performed during the actual operation (execve,
4434 	   open/mkdir/...), when we know the full context of the
4435 	   operation.  See selinux_bprm_set_security for the execve
4436 	   checks and may_create for the file creation checks. The
4437 	   operation will then fail if the context is not permitted. */
4438 	tsec = p->security;
4439 	if (!strcmp(name, "exec"))
4440 		tsec->exec_sid = sid;
4441 	else if (!strcmp(name, "fscreate"))
4442 		tsec->create_sid = sid;
4443 	else if (!strcmp(name, "keycreate")) {
4444 		error = may_create_key(sid, p);
4445 		if (error)
4446 			return error;
4447 		tsec->keycreate_sid = sid;
4448 	} else if (!strcmp(name, "sockcreate"))
4449 		tsec->sockcreate_sid = sid;
4450 	else if (!strcmp(name, "current")) {
4451 		struct av_decision avd;
4452 
4453 		if (sid == 0)
4454 			return -EINVAL;
4455 
4456 		/* Only allow single threaded processes to change context */
4457 		if (atomic_read(&p->mm->mm_users) != 1) {
4458 			struct task_struct *g, *t;
4459 			struct mm_struct *mm = p->mm;
4460 			read_lock(&tasklist_lock);
4461 			do_each_thread(g, t)
4462 				if (t->mm == mm && t != p) {
4463 					read_unlock(&tasklist_lock);
4464 					return -EPERM;
4465 				}
4466 			while_each_thread(g, t);
4467 			read_unlock(&tasklist_lock);
4468                 }
4469 
4470 		/* Check permissions for the transition. */
4471 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4472 		                     PROCESS__DYNTRANSITION, NULL);
4473 		if (error)
4474 			return error;
4475 
4476 		/* Check for ptracing, and update the task SID if ok.
4477 		   Otherwise, leave SID unchanged and fail. */
4478 		task_lock(p);
4479 		if (p->ptrace & PT_PTRACED) {
4480 			error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4481 						     SECCLASS_PROCESS,
4482 						     PROCESS__PTRACE, &avd);
4483 			if (!error)
4484 				tsec->sid = sid;
4485 			task_unlock(p);
4486 			avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4487 				  PROCESS__PTRACE, &avd, error, NULL);
4488 			if (error)
4489 				return error;
4490 		} else {
4491 			tsec->sid = sid;
4492 			task_unlock(p);
4493 		}
4494 	}
4495 	else
4496 		return -EINVAL;
4497 
4498 	return size;
4499 }
4500 
4501 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4502 {
4503 	return security_sid_to_context(secid, secdata, seclen);
4504 }
4505 
4506 static void selinux_release_secctx(char *secdata, u32 seclen)
4507 {
4508 	if (secdata)
4509 		kfree(secdata);
4510 }
4511 
4512 #ifdef CONFIG_KEYS
4513 
4514 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4515 			     unsigned long flags)
4516 {
4517 	struct task_security_struct *tsec = tsk->security;
4518 	struct key_security_struct *ksec;
4519 
4520 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4521 	if (!ksec)
4522 		return -ENOMEM;
4523 
4524 	ksec->obj = k;
4525 	if (tsec->keycreate_sid)
4526 		ksec->sid = tsec->keycreate_sid;
4527 	else
4528 		ksec->sid = tsec->sid;
4529 	k->security = ksec;
4530 
4531 	return 0;
4532 }
4533 
4534 static void selinux_key_free(struct key *k)
4535 {
4536 	struct key_security_struct *ksec = k->security;
4537 
4538 	k->security = NULL;
4539 	kfree(ksec);
4540 }
4541 
4542 static int selinux_key_permission(key_ref_t key_ref,
4543 			    struct task_struct *ctx,
4544 			    key_perm_t perm)
4545 {
4546 	struct key *key;
4547 	struct task_security_struct *tsec;
4548 	struct key_security_struct *ksec;
4549 
4550 	key = key_ref_to_ptr(key_ref);
4551 
4552 	tsec = ctx->security;
4553 	ksec = key->security;
4554 
4555 	/* if no specific permissions are requested, we skip the
4556 	   permission check. No serious, additional covert channels
4557 	   appear to be created. */
4558 	if (perm == 0)
4559 		return 0;
4560 
4561 	return avc_has_perm(tsec->sid, ksec->sid,
4562 			    SECCLASS_KEY, perm, NULL);
4563 }
4564 
4565 #endif
4566 
4567 static struct security_operations selinux_ops = {
4568 	.ptrace =			selinux_ptrace,
4569 	.capget =			selinux_capget,
4570 	.capset_check =			selinux_capset_check,
4571 	.capset_set =			selinux_capset_set,
4572 	.sysctl =			selinux_sysctl,
4573 	.capable =			selinux_capable,
4574 	.quotactl =			selinux_quotactl,
4575 	.quota_on =			selinux_quota_on,
4576 	.syslog =			selinux_syslog,
4577 	.vm_enough_memory =		selinux_vm_enough_memory,
4578 
4579 	.netlink_send =			selinux_netlink_send,
4580         .netlink_recv =			selinux_netlink_recv,
4581 
4582 	.bprm_alloc_security =		selinux_bprm_alloc_security,
4583 	.bprm_free_security =		selinux_bprm_free_security,
4584 	.bprm_apply_creds =		selinux_bprm_apply_creds,
4585 	.bprm_post_apply_creds =	selinux_bprm_post_apply_creds,
4586 	.bprm_set_security =		selinux_bprm_set_security,
4587 	.bprm_check_security =		selinux_bprm_check_security,
4588 	.bprm_secureexec =		selinux_bprm_secureexec,
4589 
4590 	.sb_alloc_security =		selinux_sb_alloc_security,
4591 	.sb_free_security =		selinux_sb_free_security,
4592 	.sb_copy_data =			selinux_sb_copy_data,
4593 	.sb_kern_mount =	        selinux_sb_kern_mount,
4594 	.sb_statfs =			selinux_sb_statfs,
4595 	.sb_mount =			selinux_mount,
4596 	.sb_umount =			selinux_umount,
4597 
4598 	.inode_alloc_security =		selinux_inode_alloc_security,
4599 	.inode_free_security =		selinux_inode_free_security,
4600 	.inode_init_security =		selinux_inode_init_security,
4601 	.inode_create =			selinux_inode_create,
4602 	.inode_link =			selinux_inode_link,
4603 	.inode_unlink =			selinux_inode_unlink,
4604 	.inode_symlink =		selinux_inode_symlink,
4605 	.inode_mkdir =			selinux_inode_mkdir,
4606 	.inode_rmdir =			selinux_inode_rmdir,
4607 	.inode_mknod =			selinux_inode_mknod,
4608 	.inode_rename =			selinux_inode_rename,
4609 	.inode_readlink =		selinux_inode_readlink,
4610 	.inode_follow_link =		selinux_inode_follow_link,
4611 	.inode_permission =		selinux_inode_permission,
4612 	.inode_setattr =		selinux_inode_setattr,
4613 	.inode_getattr =		selinux_inode_getattr,
4614 	.inode_setxattr =		selinux_inode_setxattr,
4615 	.inode_post_setxattr =		selinux_inode_post_setxattr,
4616 	.inode_getxattr =		selinux_inode_getxattr,
4617 	.inode_listxattr =		selinux_inode_listxattr,
4618 	.inode_removexattr =		selinux_inode_removexattr,
4619 	.inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4620 	.inode_getsecurity =            selinux_inode_getsecurity,
4621 	.inode_setsecurity =            selinux_inode_setsecurity,
4622 	.inode_listsecurity =           selinux_inode_listsecurity,
4623 
4624 	.file_permission =		selinux_file_permission,
4625 	.file_alloc_security =		selinux_file_alloc_security,
4626 	.file_free_security =		selinux_file_free_security,
4627 	.file_ioctl =			selinux_file_ioctl,
4628 	.file_mmap =			selinux_file_mmap,
4629 	.file_mprotect =		selinux_file_mprotect,
4630 	.file_lock =			selinux_file_lock,
4631 	.file_fcntl =			selinux_file_fcntl,
4632 	.file_set_fowner =		selinux_file_set_fowner,
4633 	.file_send_sigiotask =		selinux_file_send_sigiotask,
4634 	.file_receive =			selinux_file_receive,
4635 
4636 	.task_create =			selinux_task_create,
4637 	.task_alloc_security =		selinux_task_alloc_security,
4638 	.task_free_security =		selinux_task_free_security,
4639 	.task_setuid =			selinux_task_setuid,
4640 	.task_post_setuid =		selinux_task_post_setuid,
4641 	.task_setgid =			selinux_task_setgid,
4642 	.task_setpgid =			selinux_task_setpgid,
4643 	.task_getpgid =			selinux_task_getpgid,
4644 	.task_getsid =		        selinux_task_getsid,
4645 	.task_getsecid =		selinux_task_getsecid,
4646 	.task_setgroups =		selinux_task_setgroups,
4647 	.task_setnice =			selinux_task_setnice,
4648 	.task_setioprio =		selinux_task_setioprio,
4649 	.task_getioprio =		selinux_task_getioprio,
4650 	.task_setrlimit =		selinux_task_setrlimit,
4651 	.task_setscheduler =		selinux_task_setscheduler,
4652 	.task_getscheduler =		selinux_task_getscheduler,
4653 	.task_movememory =		selinux_task_movememory,
4654 	.task_kill =			selinux_task_kill,
4655 	.task_wait =			selinux_task_wait,
4656 	.task_prctl =			selinux_task_prctl,
4657 	.task_reparent_to_init =	selinux_task_reparent_to_init,
4658 	.task_to_inode =                selinux_task_to_inode,
4659 
4660 	.ipc_permission =		selinux_ipc_permission,
4661 
4662 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
4663 	.msg_msg_free_security =	selinux_msg_msg_free_security,
4664 
4665 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
4666 	.msg_queue_free_security =	selinux_msg_queue_free_security,
4667 	.msg_queue_associate =		selinux_msg_queue_associate,
4668 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
4669 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
4670 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
4671 
4672 	.shm_alloc_security =		selinux_shm_alloc_security,
4673 	.shm_free_security =		selinux_shm_free_security,
4674 	.shm_associate =		selinux_shm_associate,
4675 	.shm_shmctl =			selinux_shm_shmctl,
4676 	.shm_shmat =			selinux_shm_shmat,
4677 
4678 	.sem_alloc_security = 		selinux_sem_alloc_security,
4679 	.sem_free_security =  		selinux_sem_free_security,
4680 	.sem_associate =		selinux_sem_associate,
4681 	.sem_semctl =			selinux_sem_semctl,
4682 	.sem_semop =			selinux_sem_semop,
4683 
4684 	.register_security =		selinux_register_security,
4685 	.unregister_security =		selinux_unregister_security,
4686 
4687 	.d_instantiate =                selinux_d_instantiate,
4688 
4689 	.getprocattr =                  selinux_getprocattr,
4690 	.setprocattr =                  selinux_setprocattr,
4691 
4692 	.secid_to_secctx =		selinux_secid_to_secctx,
4693 	.release_secctx =		selinux_release_secctx,
4694 
4695         .unix_stream_connect =		selinux_socket_unix_stream_connect,
4696 	.unix_may_send =		selinux_socket_unix_may_send,
4697 
4698 	.socket_create =		selinux_socket_create,
4699 	.socket_post_create =		selinux_socket_post_create,
4700 	.socket_bind =			selinux_socket_bind,
4701 	.socket_connect =		selinux_socket_connect,
4702 	.socket_listen =		selinux_socket_listen,
4703 	.socket_accept =		selinux_socket_accept,
4704 	.socket_sendmsg =		selinux_socket_sendmsg,
4705 	.socket_recvmsg =		selinux_socket_recvmsg,
4706 	.socket_getsockname =		selinux_socket_getsockname,
4707 	.socket_getpeername =		selinux_socket_getpeername,
4708 	.socket_getsockopt =		selinux_socket_getsockopt,
4709 	.socket_setsockopt =		selinux_socket_setsockopt,
4710 	.socket_shutdown =		selinux_socket_shutdown,
4711 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
4712 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
4713 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
4714 	.sk_alloc_security =		selinux_sk_alloc_security,
4715 	.sk_free_security =		selinux_sk_free_security,
4716 	.sk_clone_security =		selinux_sk_clone_security,
4717 	.sk_getsecid = 			selinux_sk_getsecid,
4718 	.sock_graft =			selinux_sock_graft,
4719 	.inet_conn_request =		selinux_inet_conn_request,
4720 	.inet_csk_clone =		selinux_inet_csk_clone,
4721 	.req_classify_flow =		selinux_req_classify_flow,
4722 
4723 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4724 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
4725 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
4726 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
4727 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
4728 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
4729 	.xfrm_state_free_security =	selinux_xfrm_state_free,
4730 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
4731 	.xfrm_policy_lookup = 		selinux_xfrm_policy_lookup,
4732 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
4733 	.xfrm_flow_state_match =	selinux_xfrm_flow_state_match,
4734 	.xfrm_decode_session =		selinux_xfrm_decode_session,
4735 #endif
4736 
4737 #ifdef CONFIG_KEYS
4738 	.key_alloc =                    selinux_key_alloc,
4739 	.key_free =                     selinux_key_free,
4740 	.key_permission =               selinux_key_permission,
4741 #endif
4742 };
4743 
4744 static __init int selinux_init(void)
4745 {
4746 	struct task_security_struct *tsec;
4747 
4748 	if (!selinux_enabled) {
4749 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4750 		return 0;
4751 	}
4752 
4753 	printk(KERN_INFO "SELinux:  Initializing.\n");
4754 
4755 	/* Set the security state for the initial task. */
4756 	if (task_alloc_security(current))
4757 		panic("SELinux:  Failed to initialize initial task.\n");
4758 	tsec = current->security;
4759 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
4760 
4761 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
4762 					    sizeof(struct inode_security_struct),
4763 					    0, SLAB_PANIC, NULL, NULL);
4764 	avc_init();
4765 
4766 	original_ops = secondary_ops = security_ops;
4767 	if (!secondary_ops)
4768 		panic ("SELinux: No initial security operations\n");
4769 	if (register_security (&selinux_ops))
4770 		panic("SELinux: Unable to register with kernel.\n");
4771 
4772 	if (selinux_enforcing) {
4773 		printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4774 	} else {
4775 		printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4776 	}
4777 
4778 #ifdef CONFIG_KEYS
4779 	/* Add security information to initial keyrings */
4780 	selinux_key_alloc(&root_user_keyring, current,
4781 			  KEY_ALLOC_NOT_IN_QUOTA);
4782 	selinux_key_alloc(&root_session_keyring, current,
4783 			  KEY_ALLOC_NOT_IN_QUOTA);
4784 #endif
4785 
4786 	return 0;
4787 }
4788 
4789 void selinux_complete_init(void)
4790 {
4791 	printk(KERN_INFO "SELinux:  Completing initialization.\n");
4792 
4793 	/* Set up any superblocks initialized prior to the policy load. */
4794 	printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4795 	spin_lock(&sb_lock);
4796 	spin_lock(&sb_security_lock);
4797 next_sb:
4798 	if (!list_empty(&superblock_security_head)) {
4799 		struct superblock_security_struct *sbsec =
4800 				list_entry(superblock_security_head.next,
4801 				           struct superblock_security_struct,
4802 				           list);
4803 		struct super_block *sb = sbsec->sb;
4804 		sb->s_count++;
4805 		spin_unlock(&sb_security_lock);
4806 		spin_unlock(&sb_lock);
4807 		down_read(&sb->s_umount);
4808 		if (sb->s_root)
4809 			superblock_doinit(sb, NULL);
4810 		drop_super(sb);
4811 		spin_lock(&sb_lock);
4812 		spin_lock(&sb_security_lock);
4813 		list_del_init(&sbsec->list);
4814 		goto next_sb;
4815 	}
4816 	spin_unlock(&sb_security_lock);
4817 	spin_unlock(&sb_lock);
4818 }
4819 
4820 /* SELinux requires early initialization in order to label
4821    all processes and objects when they are created. */
4822 security_initcall(selinux_init);
4823 
4824 #if defined(CONFIG_NETFILTER)
4825 
4826 static struct nf_hook_ops selinux_ipv4_op = {
4827 	.hook =		selinux_ipv4_postroute_last,
4828 	.owner =	THIS_MODULE,
4829 	.pf =		PF_INET,
4830 	.hooknum =	NF_IP_POST_ROUTING,
4831 	.priority =	NF_IP_PRI_SELINUX_LAST,
4832 };
4833 
4834 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4835 
4836 static struct nf_hook_ops selinux_ipv6_op = {
4837 	.hook =		selinux_ipv6_postroute_last,
4838 	.owner =	THIS_MODULE,
4839 	.pf =		PF_INET6,
4840 	.hooknum =	NF_IP6_POST_ROUTING,
4841 	.priority =	NF_IP6_PRI_SELINUX_LAST,
4842 };
4843 
4844 #endif	/* IPV6 */
4845 
4846 static int __init selinux_nf_ip_init(void)
4847 {
4848 	int err = 0;
4849 
4850 	if (!selinux_enabled)
4851 		goto out;
4852 
4853 	printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4854 
4855 	err = nf_register_hook(&selinux_ipv4_op);
4856 	if (err)
4857 		panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4858 
4859 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4860 
4861 	err = nf_register_hook(&selinux_ipv6_op);
4862 	if (err)
4863 		panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4864 
4865 #endif	/* IPV6 */
4866 
4867 out:
4868 	return err;
4869 }
4870 
4871 __initcall(selinux_nf_ip_init);
4872 
4873 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4874 static void selinux_nf_ip_exit(void)
4875 {
4876 	printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4877 
4878 	nf_unregister_hook(&selinux_ipv4_op);
4879 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4880 	nf_unregister_hook(&selinux_ipv6_op);
4881 #endif	/* IPV6 */
4882 }
4883 #endif
4884 
4885 #else /* CONFIG_NETFILTER */
4886 
4887 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4888 #define selinux_nf_ip_exit()
4889 #endif
4890 
4891 #endif /* CONFIG_NETFILTER */
4892 
4893 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4894 int selinux_disable(void)
4895 {
4896 	extern void exit_sel_fs(void);
4897 	static int selinux_disabled = 0;
4898 
4899 	if (ss_initialized) {
4900 		/* Not permitted after initial policy load. */
4901 		return -EINVAL;
4902 	}
4903 
4904 	if (selinux_disabled) {
4905 		/* Only do this once. */
4906 		return -EINVAL;
4907 	}
4908 
4909 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
4910 
4911 	selinux_disabled = 1;
4912 	selinux_enabled = 0;
4913 
4914 	/* Reset security_ops to the secondary module, dummy or capability. */
4915 	security_ops = secondary_ops;
4916 
4917 	/* Unregister netfilter hooks. */
4918 	selinux_nf_ip_exit();
4919 
4920 	/* Unregister selinuxfs. */
4921 	exit_sel_fs();
4922 
4923 	return 0;
4924 }
4925 #endif
4926 
4927 
4928