1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 #include <linux/posix-timers.h> 79 80 #include "avc.h" 81 #include "objsec.h" 82 #include "netif.h" 83 #include "netnode.h" 84 #include "netport.h" 85 #include "xfrm.h" 86 #include "netlabel.h" 87 #include "audit.h" 88 89 #define XATTR_SELINUX_SUFFIX "selinux" 90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 91 92 #define NUM_SEL_MNT_OPTS 5 93 94 extern unsigned int policydb_loaded_version; 95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 96 extern struct security_operations *security_ops; 97 98 /* SECMARK reference count */ 99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 100 101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 102 int selinux_enforcing; 103 104 static int __init enforcing_setup(char *str) 105 { 106 unsigned long enforcing; 107 if (!strict_strtoul(str, 0, &enforcing)) 108 selinux_enforcing = enforcing ? 1 : 0; 109 return 1; 110 } 111 __setup("enforcing=", enforcing_setup); 112 #endif 113 114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 116 117 static int __init selinux_enabled_setup(char *str) 118 { 119 unsigned long enabled; 120 if (!strict_strtoul(str, 0, &enabled)) 121 selinux_enabled = enabled ? 1 : 0; 122 return 1; 123 } 124 __setup("selinux=", selinux_enabled_setup); 125 #else 126 int selinux_enabled = 1; 127 #endif 128 129 130 /* 131 * Minimal support for a secondary security module, 132 * just to allow the use of the capability module. 133 */ 134 static struct security_operations *secondary_ops; 135 136 /* Lists of inode and superblock security structures initialized 137 before the policy was loaded. */ 138 static LIST_HEAD(superblock_security_head); 139 static DEFINE_SPINLOCK(sb_security_lock); 140 141 static struct kmem_cache *sel_inode_cache; 142 143 /** 144 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 145 * 146 * Description: 147 * This function checks the SECMARK reference counter to see if any SECMARK 148 * targets are currently configured, if the reference counter is greater than 149 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 150 * enabled, false (0) if SECMARK is disabled. 151 * 152 */ 153 static int selinux_secmark_enabled(void) 154 { 155 return (atomic_read(&selinux_secmark_refcount) > 0); 156 } 157 158 /* 159 * initialise the security for the init task 160 */ 161 static void cred_init_security(void) 162 { 163 struct cred *cred = (struct cred *) current->real_cred; 164 struct task_security_struct *tsec; 165 166 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 167 if (!tsec) 168 panic("SELinux: Failed to initialize initial task.\n"); 169 170 tsec->osid = tsec->sid = SECINITSID_KERNEL; 171 cred->security = tsec; 172 } 173 174 /* 175 * get the security ID of a set of credentials 176 */ 177 static inline u32 cred_sid(const struct cred *cred) 178 { 179 const struct task_security_struct *tsec; 180 181 tsec = cred->security; 182 return tsec->sid; 183 } 184 185 /* 186 * get the objective security ID of a task 187 */ 188 static inline u32 task_sid(const struct task_struct *task) 189 { 190 u32 sid; 191 192 rcu_read_lock(); 193 sid = cred_sid(__task_cred(task)); 194 rcu_read_unlock(); 195 return sid; 196 } 197 198 /* 199 * get the subjective security ID of the current task 200 */ 201 static inline u32 current_sid(void) 202 { 203 const struct task_security_struct *tsec = current_cred()->security; 204 205 return tsec->sid; 206 } 207 208 /* Allocate and free functions for each kind of security blob. */ 209 210 static int inode_alloc_security(struct inode *inode) 211 { 212 struct inode_security_struct *isec; 213 u32 sid = current_sid(); 214 215 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 216 if (!isec) 217 return -ENOMEM; 218 219 mutex_init(&isec->lock); 220 INIT_LIST_HEAD(&isec->list); 221 isec->inode = inode; 222 isec->sid = SECINITSID_UNLABELED; 223 isec->sclass = SECCLASS_FILE; 224 isec->task_sid = sid; 225 inode->i_security = isec; 226 227 return 0; 228 } 229 230 static void inode_free_security(struct inode *inode) 231 { 232 struct inode_security_struct *isec = inode->i_security; 233 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 234 235 spin_lock(&sbsec->isec_lock); 236 if (!list_empty(&isec->list)) 237 list_del_init(&isec->list); 238 spin_unlock(&sbsec->isec_lock); 239 240 inode->i_security = NULL; 241 kmem_cache_free(sel_inode_cache, isec); 242 } 243 244 static int file_alloc_security(struct file *file) 245 { 246 struct file_security_struct *fsec; 247 u32 sid = current_sid(); 248 249 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 250 if (!fsec) 251 return -ENOMEM; 252 253 fsec->sid = sid; 254 fsec->fown_sid = sid; 255 file->f_security = fsec; 256 257 return 0; 258 } 259 260 static void file_free_security(struct file *file) 261 { 262 struct file_security_struct *fsec = file->f_security; 263 file->f_security = NULL; 264 kfree(fsec); 265 } 266 267 static int superblock_alloc_security(struct super_block *sb) 268 { 269 struct superblock_security_struct *sbsec; 270 271 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 272 if (!sbsec) 273 return -ENOMEM; 274 275 mutex_init(&sbsec->lock); 276 INIT_LIST_HEAD(&sbsec->list); 277 INIT_LIST_HEAD(&sbsec->isec_head); 278 spin_lock_init(&sbsec->isec_lock); 279 sbsec->sb = sb; 280 sbsec->sid = SECINITSID_UNLABELED; 281 sbsec->def_sid = SECINITSID_FILE; 282 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 283 sb->s_security = sbsec; 284 285 return 0; 286 } 287 288 static void superblock_free_security(struct super_block *sb) 289 { 290 struct superblock_security_struct *sbsec = sb->s_security; 291 292 spin_lock(&sb_security_lock); 293 if (!list_empty(&sbsec->list)) 294 list_del_init(&sbsec->list); 295 spin_unlock(&sb_security_lock); 296 297 sb->s_security = NULL; 298 kfree(sbsec); 299 } 300 301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 302 { 303 struct sk_security_struct *ssec; 304 305 ssec = kzalloc(sizeof(*ssec), priority); 306 if (!ssec) 307 return -ENOMEM; 308 309 ssec->peer_sid = SECINITSID_UNLABELED; 310 ssec->sid = SECINITSID_UNLABELED; 311 sk->sk_security = ssec; 312 313 selinux_netlbl_sk_security_reset(ssec); 314 315 return 0; 316 } 317 318 static void sk_free_security(struct sock *sk) 319 { 320 struct sk_security_struct *ssec = sk->sk_security; 321 322 sk->sk_security = NULL; 323 selinux_netlbl_sk_security_free(ssec); 324 kfree(ssec); 325 } 326 327 /* The security server must be initialized before 328 any labeling or access decisions can be provided. */ 329 extern int ss_initialized; 330 331 /* The file system's label must be initialized prior to use. */ 332 333 static char *labeling_behaviors[6] = { 334 "uses xattr", 335 "uses transition SIDs", 336 "uses task SIDs", 337 "uses genfs_contexts", 338 "not configured for labeling", 339 "uses mountpoint labeling", 340 }; 341 342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 343 344 static inline int inode_doinit(struct inode *inode) 345 { 346 return inode_doinit_with_dentry(inode, NULL); 347 } 348 349 enum { 350 Opt_error = -1, 351 Opt_context = 1, 352 Opt_fscontext = 2, 353 Opt_defcontext = 3, 354 Opt_rootcontext = 4, 355 Opt_labelsupport = 5, 356 }; 357 358 static const match_table_t tokens = { 359 {Opt_context, CONTEXT_STR "%s"}, 360 {Opt_fscontext, FSCONTEXT_STR "%s"}, 361 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 362 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 363 {Opt_labelsupport, LABELSUPP_STR}, 364 {Opt_error, NULL}, 365 }; 366 367 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 368 369 static int may_context_mount_sb_relabel(u32 sid, 370 struct superblock_security_struct *sbsec, 371 const struct cred *cred) 372 { 373 const struct task_security_struct *tsec = cred->security; 374 int rc; 375 376 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 377 FILESYSTEM__RELABELFROM, NULL); 378 if (rc) 379 return rc; 380 381 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 382 FILESYSTEM__RELABELTO, NULL); 383 return rc; 384 } 385 386 static int may_context_mount_inode_relabel(u32 sid, 387 struct superblock_security_struct *sbsec, 388 const struct cred *cred) 389 { 390 const struct task_security_struct *tsec = cred->security; 391 int rc; 392 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 393 FILESYSTEM__RELABELFROM, NULL); 394 if (rc) 395 return rc; 396 397 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 398 FILESYSTEM__ASSOCIATE, NULL); 399 return rc; 400 } 401 402 static int sb_finish_set_opts(struct super_block *sb) 403 { 404 struct superblock_security_struct *sbsec = sb->s_security; 405 struct dentry *root = sb->s_root; 406 struct inode *root_inode = root->d_inode; 407 int rc = 0; 408 409 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 410 /* Make sure that the xattr handler exists and that no 411 error other than -ENODATA is returned by getxattr on 412 the root directory. -ENODATA is ok, as this may be 413 the first boot of the SELinux kernel before we have 414 assigned xattr values to the filesystem. */ 415 if (!root_inode->i_op->getxattr) { 416 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 417 "xattr support\n", sb->s_id, sb->s_type->name); 418 rc = -EOPNOTSUPP; 419 goto out; 420 } 421 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 422 if (rc < 0 && rc != -ENODATA) { 423 if (rc == -EOPNOTSUPP) 424 printk(KERN_WARNING "SELinux: (dev %s, type " 425 "%s) has no security xattr handler\n", 426 sb->s_id, sb->s_type->name); 427 else 428 printk(KERN_WARNING "SELinux: (dev %s, type " 429 "%s) getxattr errno %d\n", sb->s_id, 430 sb->s_type->name, -rc); 431 goto out; 432 } 433 } 434 435 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP); 436 437 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 438 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 439 sb->s_id, sb->s_type->name); 440 else 441 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 442 sb->s_id, sb->s_type->name, 443 labeling_behaviors[sbsec->behavior-1]); 444 445 if (sbsec->behavior == SECURITY_FS_USE_GENFS || 446 sbsec->behavior == SECURITY_FS_USE_MNTPOINT || 447 sbsec->behavior == SECURITY_FS_USE_NONE || 448 sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 449 sbsec->flags &= ~SE_SBLABELSUPP; 450 451 /* Initialize the root inode. */ 452 rc = inode_doinit_with_dentry(root_inode, root); 453 454 /* Initialize any other inodes associated with the superblock, e.g. 455 inodes created prior to initial policy load or inodes created 456 during get_sb by a pseudo filesystem that directly 457 populates itself. */ 458 spin_lock(&sbsec->isec_lock); 459 next_inode: 460 if (!list_empty(&sbsec->isec_head)) { 461 struct inode_security_struct *isec = 462 list_entry(sbsec->isec_head.next, 463 struct inode_security_struct, list); 464 struct inode *inode = isec->inode; 465 spin_unlock(&sbsec->isec_lock); 466 inode = igrab(inode); 467 if (inode) { 468 if (!IS_PRIVATE(inode)) 469 inode_doinit(inode); 470 iput(inode); 471 } 472 spin_lock(&sbsec->isec_lock); 473 list_del_init(&isec->list); 474 goto next_inode; 475 } 476 spin_unlock(&sbsec->isec_lock); 477 out: 478 return rc; 479 } 480 481 /* 482 * This function should allow an FS to ask what it's mount security 483 * options were so it can use those later for submounts, displaying 484 * mount options, or whatever. 485 */ 486 static int selinux_get_mnt_opts(const struct super_block *sb, 487 struct security_mnt_opts *opts) 488 { 489 int rc = 0, i; 490 struct superblock_security_struct *sbsec = sb->s_security; 491 char *context = NULL; 492 u32 len; 493 char tmp; 494 495 security_init_mnt_opts(opts); 496 497 if (!(sbsec->flags & SE_SBINITIALIZED)) 498 return -EINVAL; 499 500 if (!ss_initialized) 501 return -EINVAL; 502 503 tmp = sbsec->flags & SE_MNTMASK; 504 /* count the number of mount options for this sb */ 505 for (i = 0; i < 8; i++) { 506 if (tmp & 0x01) 507 opts->num_mnt_opts++; 508 tmp >>= 1; 509 } 510 /* Check if the Label support flag is set */ 511 if (sbsec->flags & SE_SBLABELSUPP) 512 opts->num_mnt_opts++; 513 514 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 515 if (!opts->mnt_opts) { 516 rc = -ENOMEM; 517 goto out_free; 518 } 519 520 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 521 if (!opts->mnt_opts_flags) { 522 rc = -ENOMEM; 523 goto out_free; 524 } 525 526 i = 0; 527 if (sbsec->flags & FSCONTEXT_MNT) { 528 rc = security_sid_to_context(sbsec->sid, &context, &len); 529 if (rc) 530 goto out_free; 531 opts->mnt_opts[i] = context; 532 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 533 } 534 if (sbsec->flags & CONTEXT_MNT) { 535 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 536 if (rc) 537 goto out_free; 538 opts->mnt_opts[i] = context; 539 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 540 } 541 if (sbsec->flags & DEFCONTEXT_MNT) { 542 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 543 if (rc) 544 goto out_free; 545 opts->mnt_opts[i] = context; 546 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 547 } 548 if (sbsec->flags & ROOTCONTEXT_MNT) { 549 struct inode *root = sbsec->sb->s_root->d_inode; 550 struct inode_security_struct *isec = root->i_security; 551 552 rc = security_sid_to_context(isec->sid, &context, &len); 553 if (rc) 554 goto out_free; 555 opts->mnt_opts[i] = context; 556 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 557 } 558 if (sbsec->flags & SE_SBLABELSUPP) { 559 opts->mnt_opts[i] = NULL; 560 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP; 561 } 562 563 BUG_ON(i != opts->num_mnt_opts); 564 565 return 0; 566 567 out_free: 568 security_free_mnt_opts(opts); 569 return rc; 570 } 571 572 static int bad_option(struct superblock_security_struct *sbsec, char flag, 573 u32 old_sid, u32 new_sid) 574 { 575 char mnt_flags = sbsec->flags & SE_MNTMASK; 576 577 /* check if the old mount command had the same options */ 578 if (sbsec->flags & SE_SBINITIALIZED) 579 if (!(sbsec->flags & flag) || 580 (old_sid != new_sid)) 581 return 1; 582 583 /* check if we were passed the same options twice, 584 * aka someone passed context=a,context=b 585 */ 586 if (!(sbsec->flags & SE_SBINITIALIZED)) 587 if (mnt_flags & flag) 588 return 1; 589 return 0; 590 } 591 592 /* 593 * Allow filesystems with binary mount data to explicitly set mount point 594 * labeling information. 595 */ 596 static int selinux_set_mnt_opts(struct super_block *sb, 597 struct security_mnt_opts *opts) 598 { 599 const struct cred *cred = current_cred(); 600 int rc = 0, i; 601 struct superblock_security_struct *sbsec = sb->s_security; 602 const char *name = sb->s_type->name; 603 struct inode *inode = sbsec->sb->s_root->d_inode; 604 struct inode_security_struct *root_isec = inode->i_security; 605 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 606 u32 defcontext_sid = 0; 607 char **mount_options = opts->mnt_opts; 608 int *flags = opts->mnt_opts_flags; 609 int num_opts = opts->num_mnt_opts; 610 611 mutex_lock(&sbsec->lock); 612 613 if (!ss_initialized) { 614 if (!num_opts) { 615 /* Defer initialization until selinux_complete_init, 616 after the initial policy is loaded and the security 617 server is ready to handle calls. */ 618 spin_lock(&sb_security_lock); 619 if (list_empty(&sbsec->list)) 620 list_add(&sbsec->list, &superblock_security_head); 621 spin_unlock(&sb_security_lock); 622 goto out; 623 } 624 rc = -EINVAL; 625 printk(KERN_WARNING "SELinux: Unable to set superblock options " 626 "before the security server is initialized\n"); 627 goto out; 628 } 629 630 /* 631 * Binary mount data FS will come through this function twice. Once 632 * from an explicit call and once from the generic calls from the vfs. 633 * Since the generic VFS calls will not contain any security mount data 634 * we need to skip the double mount verification. 635 * 636 * This does open a hole in which we will not notice if the first 637 * mount using this sb set explict options and a second mount using 638 * this sb does not set any security options. (The first options 639 * will be used for both mounts) 640 */ 641 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 642 && (num_opts == 0)) 643 goto out; 644 645 /* 646 * parse the mount options, check if they are valid sids. 647 * also check if someone is trying to mount the same sb more 648 * than once with different security options. 649 */ 650 for (i = 0; i < num_opts; i++) { 651 u32 sid; 652 653 if (flags[i] == SE_SBLABELSUPP) 654 continue; 655 rc = security_context_to_sid(mount_options[i], 656 strlen(mount_options[i]), &sid); 657 if (rc) { 658 printk(KERN_WARNING "SELinux: security_context_to_sid" 659 "(%s) failed for (dev %s, type %s) errno=%d\n", 660 mount_options[i], sb->s_id, name, rc); 661 goto out; 662 } 663 switch (flags[i]) { 664 case FSCONTEXT_MNT: 665 fscontext_sid = sid; 666 667 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 668 fscontext_sid)) 669 goto out_double_mount; 670 671 sbsec->flags |= FSCONTEXT_MNT; 672 break; 673 case CONTEXT_MNT: 674 context_sid = sid; 675 676 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 677 context_sid)) 678 goto out_double_mount; 679 680 sbsec->flags |= CONTEXT_MNT; 681 break; 682 case ROOTCONTEXT_MNT: 683 rootcontext_sid = sid; 684 685 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 686 rootcontext_sid)) 687 goto out_double_mount; 688 689 sbsec->flags |= ROOTCONTEXT_MNT; 690 691 break; 692 case DEFCONTEXT_MNT: 693 defcontext_sid = sid; 694 695 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 696 defcontext_sid)) 697 goto out_double_mount; 698 699 sbsec->flags |= DEFCONTEXT_MNT; 700 701 break; 702 default: 703 rc = -EINVAL; 704 goto out; 705 } 706 } 707 708 if (sbsec->flags & SE_SBINITIALIZED) { 709 /* previously mounted with options, but not on this attempt? */ 710 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 711 goto out_double_mount; 712 rc = 0; 713 goto out; 714 } 715 716 if (strcmp(sb->s_type->name, "proc") == 0) 717 sbsec->flags |= SE_SBPROC; 718 719 /* Determine the labeling behavior to use for this filesystem type. */ 720 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid); 721 if (rc) { 722 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 723 __func__, sb->s_type->name, rc); 724 goto out; 725 } 726 727 /* sets the context of the superblock for the fs being mounted. */ 728 if (fscontext_sid) { 729 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 730 if (rc) 731 goto out; 732 733 sbsec->sid = fscontext_sid; 734 } 735 736 /* 737 * Switch to using mount point labeling behavior. 738 * sets the label used on all file below the mountpoint, and will set 739 * the superblock context if not already set. 740 */ 741 if (context_sid) { 742 if (!fscontext_sid) { 743 rc = may_context_mount_sb_relabel(context_sid, sbsec, 744 cred); 745 if (rc) 746 goto out; 747 sbsec->sid = context_sid; 748 } else { 749 rc = may_context_mount_inode_relabel(context_sid, sbsec, 750 cred); 751 if (rc) 752 goto out; 753 } 754 if (!rootcontext_sid) 755 rootcontext_sid = context_sid; 756 757 sbsec->mntpoint_sid = context_sid; 758 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 759 } 760 761 if (rootcontext_sid) { 762 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 763 cred); 764 if (rc) 765 goto out; 766 767 root_isec->sid = rootcontext_sid; 768 root_isec->initialized = 1; 769 } 770 771 if (defcontext_sid) { 772 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 773 rc = -EINVAL; 774 printk(KERN_WARNING "SELinux: defcontext option is " 775 "invalid for this filesystem type\n"); 776 goto out; 777 } 778 779 if (defcontext_sid != sbsec->def_sid) { 780 rc = may_context_mount_inode_relabel(defcontext_sid, 781 sbsec, cred); 782 if (rc) 783 goto out; 784 } 785 786 sbsec->def_sid = defcontext_sid; 787 } 788 789 rc = sb_finish_set_opts(sb); 790 out: 791 mutex_unlock(&sbsec->lock); 792 return rc; 793 out_double_mount: 794 rc = -EINVAL; 795 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 796 "security settings for (dev %s, type %s)\n", sb->s_id, name); 797 goto out; 798 } 799 800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 801 struct super_block *newsb) 802 { 803 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 804 struct superblock_security_struct *newsbsec = newsb->s_security; 805 806 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 807 int set_context = (oldsbsec->flags & CONTEXT_MNT); 808 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 809 810 /* 811 * if the parent was able to be mounted it clearly had no special lsm 812 * mount options. thus we can safely put this sb on the list and deal 813 * with it later 814 */ 815 if (!ss_initialized) { 816 spin_lock(&sb_security_lock); 817 if (list_empty(&newsbsec->list)) 818 list_add(&newsbsec->list, &superblock_security_head); 819 spin_unlock(&sb_security_lock); 820 return; 821 } 822 823 /* how can we clone if the old one wasn't set up?? */ 824 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 825 826 /* if fs is reusing a sb, just let its options stand... */ 827 if (newsbsec->flags & SE_SBINITIALIZED) 828 return; 829 830 mutex_lock(&newsbsec->lock); 831 832 newsbsec->flags = oldsbsec->flags; 833 834 newsbsec->sid = oldsbsec->sid; 835 newsbsec->def_sid = oldsbsec->def_sid; 836 newsbsec->behavior = oldsbsec->behavior; 837 838 if (set_context) { 839 u32 sid = oldsbsec->mntpoint_sid; 840 841 if (!set_fscontext) 842 newsbsec->sid = sid; 843 if (!set_rootcontext) { 844 struct inode *newinode = newsb->s_root->d_inode; 845 struct inode_security_struct *newisec = newinode->i_security; 846 newisec->sid = sid; 847 } 848 newsbsec->mntpoint_sid = sid; 849 } 850 if (set_rootcontext) { 851 const struct inode *oldinode = oldsb->s_root->d_inode; 852 const struct inode_security_struct *oldisec = oldinode->i_security; 853 struct inode *newinode = newsb->s_root->d_inode; 854 struct inode_security_struct *newisec = newinode->i_security; 855 856 newisec->sid = oldisec->sid; 857 } 858 859 sb_finish_set_opts(newsb); 860 mutex_unlock(&newsbsec->lock); 861 } 862 863 static int selinux_parse_opts_str(char *options, 864 struct security_mnt_opts *opts) 865 { 866 char *p; 867 char *context = NULL, *defcontext = NULL; 868 char *fscontext = NULL, *rootcontext = NULL; 869 int rc, num_mnt_opts = 0; 870 871 opts->num_mnt_opts = 0; 872 873 /* Standard string-based options. */ 874 while ((p = strsep(&options, "|")) != NULL) { 875 int token; 876 substring_t args[MAX_OPT_ARGS]; 877 878 if (!*p) 879 continue; 880 881 token = match_token(p, tokens, args); 882 883 switch (token) { 884 case Opt_context: 885 if (context || defcontext) { 886 rc = -EINVAL; 887 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 888 goto out_err; 889 } 890 context = match_strdup(&args[0]); 891 if (!context) { 892 rc = -ENOMEM; 893 goto out_err; 894 } 895 break; 896 897 case Opt_fscontext: 898 if (fscontext) { 899 rc = -EINVAL; 900 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 901 goto out_err; 902 } 903 fscontext = match_strdup(&args[0]); 904 if (!fscontext) { 905 rc = -ENOMEM; 906 goto out_err; 907 } 908 break; 909 910 case Opt_rootcontext: 911 if (rootcontext) { 912 rc = -EINVAL; 913 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 914 goto out_err; 915 } 916 rootcontext = match_strdup(&args[0]); 917 if (!rootcontext) { 918 rc = -ENOMEM; 919 goto out_err; 920 } 921 break; 922 923 case Opt_defcontext: 924 if (context || defcontext) { 925 rc = -EINVAL; 926 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 927 goto out_err; 928 } 929 defcontext = match_strdup(&args[0]); 930 if (!defcontext) { 931 rc = -ENOMEM; 932 goto out_err; 933 } 934 break; 935 case Opt_labelsupport: 936 break; 937 default: 938 rc = -EINVAL; 939 printk(KERN_WARNING "SELinux: unknown mount option\n"); 940 goto out_err; 941 942 } 943 } 944 945 rc = -ENOMEM; 946 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 947 if (!opts->mnt_opts) 948 goto out_err; 949 950 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 951 if (!opts->mnt_opts_flags) { 952 kfree(opts->mnt_opts); 953 goto out_err; 954 } 955 956 if (fscontext) { 957 opts->mnt_opts[num_mnt_opts] = fscontext; 958 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 959 } 960 if (context) { 961 opts->mnt_opts[num_mnt_opts] = context; 962 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 963 } 964 if (rootcontext) { 965 opts->mnt_opts[num_mnt_opts] = rootcontext; 966 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 967 } 968 if (defcontext) { 969 opts->mnt_opts[num_mnt_opts] = defcontext; 970 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 971 } 972 973 opts->num_mnt_opts = num_mnt_opts; 974 return 0; 975 976 out_err: 977 kfree(context); 978 kfree(defcontext); 979 kfree(fscontext); 980 kfree(rootcontext); 981 return rc; 982 } 983 /* 984 * string mount options parsing and call set the sbsec 985 */ 986 static int superblock_doinit(struct super_block *sb, void *data) 987 { 988 int rc = 0; 989 char *options = data; 990 struct security_mnt_opts opts; 991 992 security_init_mnt_opts(&opts); 993 994 if (!data) 995 goto out; 996 997 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 998 999 rc = selinux_parse_opts_str(options, &opts); 1000 if (rc) 1001 goto out_err; 1002 1003 out: 1004 rc = selinux_set_mnt_opts(sb, &opts); 1005 1006 out_err: 1007 security_free_mnt_opts(&opts); 1008 return rc; 1009 } 1010 1011 static void selinux_write_opts(struct seq_file *m, 1012 struct security_mnt_opts *opts) 1013 { 1014 int i; 1015 char *prefix; 1016 1017 for (i = 0; i < opts->num_mnt_opts; i++) { 1018 char *has_comma; 1019 1020 if (opts->mnt_opts[i]) 1021 has_comma = strchr(opts->mnt_opts[i], ','); 1022 else 1023 has_comma = NULL; 1024 1025 switch (opts->mnt_opts_flags[i]) { 1026 case CONTEXT_MNT: 1027 prefix = CONTEXT_STR; 1028 break; 1029 case FSCONTEXT_MNT: 1030 prefix = FSCONTEXT_STR; 1031 break; 1032 case ROOTCONTEXT_MNT: 1033 prefix = ROOTCONTEXT_STR; 1034 break; 1035 case DEFCONTEXT_MNT: 1036 prefix = DEFCONTEXT_STR; 1037 break; 1038 case SE_SBLABELSUPP: 1039 seq_putc(m, ','); 1040 seq_puts(m, LABELSUPP_STR); 1041 continue; 1042 default: 1043 BUG(); 1044 }; 1045 /* we need a comma before each option */ 1046 seq_putc(m, ','); 1047 seq_puts(m, prefix); 1048 if (has_comma) 1049 seq_putc(m, '\"'); 1050 seq_puts(m, opts->mnt_opts[i]); 1051 if (has_comma) 1052 seq_putc(m, '\"'); 1053 } 1054 } 1055 1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1057 { 1058 struct security_mnt_opts opts; 1059 int rc; 1060 1061 rc = selinux_get_mnt_opts(sb, &opts); 1062 if (rc) { 1063 /* before policy load we may get EINVAL, don't show anything */ 1064 if (rc == -EINVAL) 1065 rc = 0; 1066 return rc; 1067 } 1068 1069 selinux_write_opts(m, &opts); 1070 1071 security_free_mnt_opts(&opts); 1072 1073 return rc; 1074 } 1075 1076 static inline u16 inode_mode_to_security_class(umode_t mode) 1077 { 1078 switch (mode & S_IFMT) { 1079 case S_IFSOCK: 1080 return SECCLASS_SOCK_FILE; 1081 case S_IFLNK: 1082 return SECCLASS_LNK_FILE; 1083 case S_IFREG: 1084 return SECCLASS_FILE; 1085 case S_IFBLK: 1086 return SECCLASS_BLK_FILE; 1087 case S_IFDIR: 1088 return SECCLASS_DIR; 1089 case S_IFCHR: 1090 return SECCLASS_CHR_FILE; 1091 case S_IFIFO: 1092 return SECCLASS_FIFO_FILE; 1093 1094 } 1095 1096 return SECCLASS_FILE; 1097 } 1098 1099 static inline int default_protocol_stream(int protocol) 1100 { 1101 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1102 } 1103 1104 static inline int default_protocol_dgram(int protocol) 1105 { 1106 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1107 } 1108 1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1110 { 1111 switch (family) { 1112 case PF_UNIX: 1113 switch (type) { 1114 case SOCK_STREAM: 1115 case SOCK_SEQPACKET: 1116 return SECCLASS_UNIX_STREAM_SOCKET; 1117 case SOCK_DGRAM: 1118 return SECCLASS_UNIX_DGRAM_SOCKET; 1119 } 1120 break; 1121 case PF_INET: 1122 case PF_INET6: 1123 switch (type) { 1124 case SOCK_STREAM: 1125 if (default_protocol_stream(protocol)) 1126 return SECCLASS_TCP_SOCKET; 1127 else 1128 return SECCLASS_RAWIP_SOCKET; 1129 case SOCK_DGRAM: 1130 if (default_protocol_dgram(protocol)) 1131 return SECCLASS_UDP_SOCKET; 1132 else 1133 return SECCLASS_RAWIP_SOCKET; 1134 case SOCK_DCCP: 1135 return SECCLASS_DCCP_SOCKET; 1136 default: 1137 return SECCLASS_RAWIP_SOCKET; 1138 } 1139 break; 1140 case PF_NETLINK: 1141 switch (protocol) { 1142 case NETLINK_ROUTE: 1143 return SECCLASS_NETLINK_ROUTE_SOCKET; 1144 case NETLINK_FIREWALL: 1145 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1146 case NETLINK_INET_DIAG: 1147 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1148 case NETLINK_NFLOG: 1149 return SECCLASS_NETLINK_NFLOG_SOCKET; 1150 case NETLINK_XFRM: 1151 return SECCLASS_NETLINK_XFRM_SOCKET; 1152 case NETLINK_SELINUX: 1153 return SECCLASS_NETLINK_SELINUX_SOCKET; 1154 case NETLINK_AUDIT: 1155 return SECCLASS_NETLINK_AUDIT_SOCKET; 1156 case NETLINK_IP6_FW: 1157 return SECCLASS_NETLINK_IP6FW_SOCKET; 1158 case NETLINK_DNRTMSG: 1159 return SECCLASS_NETLINK_DNRT_SOCKET; 1160 case NETLINK_KOBJECT_UEVENT: 1161 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1162 default: 1163 return SECCLASS_NETLINK_SOCKET; 1164 } 1165 case PF_PACKET: 1166 return SECCLASS_PACKET_SOCKET; 1167 case PF_KEY: 1168 return SECCLASS_KEY_SOCKET; 1169 case PF_APPLETALK: 1170 return SECCLASS_APPLETALK_SOCKET; 1171 } 1172 1173 return SECCLASS_SOCKET; 1174 } 1175 1176 #ifdef CONFIG_PROC_FS 1177 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1178 u16 tclass, 1179 u32 *sid) 1180 { 1181 int buflen, rc; 1182 char *buffer, *path, *end; 1183 1184 buffer = (char *)__get_free_page(GFP_KERNEL); 1185 if (!buffer) 1186 return -ENOMEM; 1187 1188 buflen = PAGE_SIZE; 1189 end = buffer+buflen; 1190 *--end = '\0'; 1191 buflen--; 1192 path = end-1; 1193 *path = '/'; 1194 while (de && de != de->parent) { 1195 buflen -= de->namelen + 1; 1196 if (buflen < 0) 1197 break; 1198 end -= de->namelen; 1199 memcpy(end, de->name, de->namelen); 1200 *--end = '/'; 1201 path = end; 1202 de = de->parent; 1203 } 1204 rc = security_genfs_sid("proc", path, tclass, sid); 1205 free_page((unsigned long)buffer); 1206 return rc; 1207 } 1208 #else 1209 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1210 u16 tclass, 1211 u32 *sid) 1212 { 1213 return -EINVAL; 1214 } 1215 #endif 1216 1217 /* The inode's security attributes must be initialized before first use. */ 1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1219 { 1220 struct superblock_security_struct *sbsec = NULL; 1221 struct inode_security_struct *isec = inode->i_security; 1222 u32 sid; 1223 struct dentry *dentry; 1224 #define INITCONTEXTLEN 255 1225 char *context = NULL; 1226 unsigned len = 0; 1227 int rc = 0; 1228 1229 if (isec->initialized) 1230 goto out; 1231 1232 mutex_lock(&isec->lock); 1233 if (isec->initialized) 1234 goto out_unlock; 1235 1236 sbsec = inode->i_sb->s_security; 1237 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1238 /* Defer initialization until selinux_complete_init, 1239 after the initial policy is loaded and the security 1240 server is ready to handle calls. */ 1241 spin_lock(&sbsec->isec_lock); 1242 if (list_empty(&isec->list)) 1243 list_add(&isec->list, &sbsec->isec_head); 1244 spin_unlock(&sbsec->isec_lock); 1245 goto out_unlock; 1246 } 1247 1248 switch (sbsec->behavior) { 1249 case SECURITY_FS_USE_XATTR: 1250 if (!inode->i_op->getxattr) { 1251 isec->sid = sbsec->def_sid; 1252 break; 1253 } 1254 1255 /* Need a dentry, since the xattr API requires one. 1256 Life would be simpler if we could just pass the inode. */ 1257 if (opt_dentry) { 1258 /* Called from d_instantiate or d_splice_alias. */ 1259 dentry = dget(opt_dentry); 1260 } else { 1261 /* Called from selinux_complete_init, try to find a dentry. */ 1262 dentry = d_find_alias(inode); 1263 } 1264 if (!dentry) { 1265 /* 1266 * this is can be hit on boot when a file is accessed 1267 * before the policy is loaded. When we load policy we 1268 * may find inodes that have no dentry on the 1269 * sbsec->isec_head list. No reason to complain as these 1270 * will get fixed up the next time we go through 1271 * inode_doinit with a dentry, before these inodes could 1272 * be used again by userspace. 1273 */ 1274 goto out_unlock; 1275 } 1276 1277 len = INITCONTEXTLEN; 1278 context = kmalloc(len+1, GFP_NOFS); 1279 if (!context) { 1280 rc = -ENOMEM; 1281 dput(dentry); 1282 goto out_unlock; 1283 } 1284 context[len] = '\0'; 1285 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1286 context, len); 1287 if (rc == -ERANGE) { 1288 /* Need a larger buffer. Query for the right size. */ 1289 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1290 NULL, 0); 1291 if (rc < 0) { 1292 dput(dentry); 1293 goto out_unlock; 1294 } 1295 kfree(context); 1296 len = rc; 1297 context = kmalloc(len+1, GFP_NOFS); 1298 if (!context) { 1299 rc = -ENOMEM; 1300 dput(dentry); 1301 goto out_unlock; 1302 } 1303 context[len] = '\0'; 1304 rc = inode->i_op->getxattr(dentry, 1305 XATTR_NAME_SELINUX, 1306 context, len); 1307 } 1308 dput(dentry); 1309 if (rc < 0) { 1310 if (rc != -ENODATA) { 1311 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1312 "%d for dev=%s ino=%ld\n", __func__, 1313 -rc, inode->i_sb->s_id, inode->i_ino); 1314 kfree(context); 1315 goto out_unlock; 1316 } 1317 /* Map ENODATA to the default file SID */ 1318 sid = sbsec->def_sid; 1319 rc = 0; 1320 } else { 1321 rc = security_context_to_sid_default(context, rc, &sid, 1322 sbsec->def_sid, 1323 GFP_NOFS); 1324 if (rc) { 1325 char *dev = inode->i_sb->s_id; 1326 unsigned long ino = inode->i_ino; 1327 1328 if (rc == -EINVAL) { 1329 if (printk_ratelimit()) 1330 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1331 "context=%s. This indicates you may need to relabel the inode or the " 1332 "filesystem in question.\n", ino, dev, context); 1333 } else { 1334 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1335 "returned %d for dev=%s ino=%ld\n", 1336 __func__, context, -rc, dev, ino); 1337 } 1338 kfree(context); 1339 /* Leave with the unlabeled SID */ 1340 rc = 0; 1341 break; 1342 } 1343 } 1344 kfree(context); 1345 isec->sid = sid; 1346 break; 1347 case SECURITY_FS_USE_TASK: 1348 isec->sid = isec->task_sid; 1349 break; 1350 case SECURITY_FS_USE_TRANS: 1351 /* Default to the fs SID. */ 1352 isec->sid = sbsec->sid; 1353 1354 /* Try to obtain a transition SID. */ 1355 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1356 rc = security_transition_sid(isec->task_sid, 1357 sbsec->sid, 1358 isec->sclass, 1359 &sid); 1360 if (rc) 1361 goto out_unlock; 1362 isec->sid = sid; 1363 break; 1364 case SECURITY_FS_USE_MNTPOINT: 1365 isec->sid = sbsec->mntpoint_sid; 1366 break; 1367 default: 1368 /* Default to the fs superblock SID. */ 1369 isec->sid = sbsec->sid; 1370 1371 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1372 struct proc_inode *proci = PROC_I(inode); 1373 if (proci->pde) { 1374 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1375 rc = selinux_proc_get_sid(proci->pde, 1376 isec->sclass, 1377 &sid); 1378 if (rc) 1379 goto out_unlock; 1380 isec->sid = sid; 1381 } 1382 } 1383 break; 1384 } 1385 1386 isec->initialized = 1; 1387 1388 out_unlock: 1389 mutex_unlock(&isec->lock); 1390 out: 1391 if (isec->sclass == SECCLASS_FILE) 1392 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1393 return rc; 1394 } 1395 1396 /* Convert a Linux signal to an access vector. */ 1397 static inline u32 signal_to_av(int sig) 1398 { 1399 u32 perm = 0; 1400 1401 switch (sig) { 1402 case SIGCHLD: 1403 /* Commonly granted from child to parent. */ 1404 perm = PROCESS__SIGCHLD; 1405 break; 1406 case SIGKILL: 1407 /* Cannot be caught or ignored */ 1408 perm = PROCESS__SIGKILL; 1409 break; 1410 case SIGSTOP: 1411 /* Cannot be caught or ignored */ 1412 perm = PROCESS__SIGSTOP; 1413 break; 1414 default: 1415 /* All other signals. */ 1416 perm = PROCESS__SIGNAL; 1417 break; 1418 } 1419 1420 return perm; 1421 } 1422 1423 /* 1424 * Check permission between a pair of credentials 1425 * fork check, ptrace check, etc. 1426 */ 1427 static int cred_has_perm(const struct cred *actor, 1428 const struct cred *target, 1429 u32 perms) 1430 { 1431 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1432 1433 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1434 } 1435 1436 /* 1437 * Check permission between a pair of tasks, e.g. signal checks, 1438 * fork check, ptrace check, etc. 1439 * tsk1 is the actor and tsk2 is the target 1440 * - this uses the default subjective creds of tsk1 1441 */ 1442 static int task_has_perm(const struct task_struct *tsk1, 1443 const struct task_struct *tsk2, 1444 u32 perms) 1445 { 1446 const struct task_security_struct *__tsec1, *__tsec2; 1447 u32 sid1, sid2; 1448 1449 rcu_read_lock(); 1450 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1451 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1452 rcu_read_unlock(); 1453 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1454 } 1455 1456 /* 1457 * Check permission between current and another task, e.g. signal checks, 1458 * fork check, ptrace check, etc. 1459 * current is the actor and tsk2 is the target 1460 * - this uses current's subjective creds 1461 */ 1462 static int current_has_perm(const struct task_struct *tsk, 1463 u32 perms) 1464 { 1465 u32 sid, tsid; 1466 1467 sid = current_sid(); 1468 tsid = task_sid(tsk); 1469 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1470 } 1471 1472 #if CAP_LAST_CAP > 63 1473 #error Fix SELinux to handle capabilities > 63. 1474 #endif 1475 1476 /* Check whether a task is allowed to use a capability. */ 1477 static int task_has_capability(struct task_struct *tsk, 1478 const struct cred *cred, 1479 int cap, int audit) 1480 { 1481 struct avc_audit_data ad; 1482 struct av_decision avd; 1483 u16 sclass; 1484 u32 sid = cred_sid(cred); 1485 u32 av = CAP_TO_MASK(cap); 1486 int rc; 1487 1488 AVC_AUDIT_DATA_INIT(&ad, CAP); 1489 ad.tsk = tsk; 1490 ad.u.cap = cap; 1491 1492 switch (CAP_TO_INDEX(cap)) { 1493 case 0: 1494 sclass = SECCLASS_CAPABILITY; 1495 break; 1496 case 1: 1497 sclass = SECCLASS_CAPABILITY2; 1498 break; 1499 default: 1500 printk(KERN_ERR 1501 "SELinux: out of range capability %d\n", cap); 1502 BUG(); 1503 } 1504 1505 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1506 if (audit == SECURITY_CAP_AUDIT) 1507 avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1508 return rc; 1509 } 1510 1511 /* Check whether a task is allowed to use a system operation. */ 1512 static int task_has_system(struct task_struct *tsk, 1513 u32 perms) 1514 { 1515 u32 sid = task_sid(tsk); 1516 1517 return avc_has_perm(sid, SECINITSID_KERNEL, 1518 SECCLASS_SYSTEM, perms, NULL); 1519 } 1520 1521 /* Check whether a task has a particular permission to an inode. 1522 The 'adp' parameter is optional and allows other audit 1523 data to be passed (e.g. the dentry). */ 1524 static int inode_has_perm(const struct cred *cred, 1525 struct inode *inode, 1526 u32 perms, 1527 struct avc_audit_data *adp) 1528 { 1529 struct inode_security_struct *isec; 1530 struct avc_audit_data ad; 1531 u32 sid; 1532 1533 if (unlikely(IS_PRIVATE(inode))) 1534 return 0; 1535 1536 sid = cred_sid(cred); 1537 isec = inode->i_security; 1538 1539 if (!adp) { 1540 adp = &ad; 1541 AVC_AUDIT_DATA_INIT(&ad, FS); 1542 ad.u.fs.inode = inode; 1543 } 1544 1545 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1546 } 1547 1548 /* Same as inode_has_perm, but pass explicit audit data containing 1549 the dentry to help the auditing code to more easily generate the 1550 pathname if needed. */ 1551 static inline int dentry_has_perm(const struct cred *cred, 1552 struct vfsmount *mnt, 1553 struct dentry *dentry, 1554 u32 av) 1555 { 1556 struct inode *inode = dentry->d_inode; 1557 struct avc_audit_data ad; 1558 1559 AVC_AUDIT_DATA_INIT(&ad, FS); 1560 ad.u.fs.path.mnt = mnt; 1561 ad.u.fs.path.dentry = dentry; 1562 return inode_has_perm(cred, inode, av, &ad); 1563 } 1564 1565 /* Check whether a task can use an open file descriptor to 1566 access an inode in a given way. Check access to the 1567 descriptor itself, and then use dentry_has_perm to 1568 check a particular permission to the file. 1569 Access to the descriptor is implicitly granted if it 1570 has the same SID as the process. If av is zero, then 1571 access to the file is not checked, e.g. for cases 1572 where only the descriptor is affected like seek. */ 1573 static int file_has_perm(const struct cred *cred, 1574 struct file *file, 1575 u32 av) 1576 { 1577 struct file_security_struct *fsec = file->f_security; 1578 struct inode *inode = file->f_path.dentry->d_inode; 1579 struct avc_audit_data ad; 1580 u32 sid = cred_sid(cred); 1581 int rc; 1582 1583 AVC_AUDIT_DATA_INIT(&ad, FS); 1584 ad.u.fs.path = file->f_path; 1585 1586 if (sid != fsec->sid) { 1587 rc = avc_has_perm(sid, fsec->sid, 1588 SECCLASS_FD, 1589 FD__USE, 1590 &ad); 1591 if (rc) 1592 goto out; 1593 } 1594 1595 /* av is zero if only checking access to the descriptor. */ 1596 rc = 0; 1597 if (av) 1598 rc = inode_has_perm(cred, inode, av, &ad); 1599 1600 out: 1601 return rc; 1602 } 1603 1604 /* Check whether a task can create a file. */ 1605 static int may_create(struct inode *dir, 1606 struct dentry *dentry, 1607 u16 tclass) 1608 { 1609 const struct cred *cred = current_cred(); 1610 const struct task_security_struct *tsec = cred->security; 1611 struct inode_security_struct *dsec; 1612 struct superblock_security_struct *sbsec; 1613 u32 sid, newsid; 1614 struct avc_audit_data ad; 1615 int rc; 1616 1617 dsec = dir->i_security; 1618 sbsec = dir->i_sb->s_security; 1619 1620 sid = tsec->sid; 1621 newsid = tsec->create_sid; 1622 1623 AVC_AUDIT_DATA_INIT(&ad, FS); 1624 ad.u.fs.path.dentry = dentry; 1625 1626 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1627 DIR__ADD_NAME | DIR__SEARCH, 1628 &ad); 1629 if (rc) 1630 return rc; 1631 1632 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 1633 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid); 1634 if (rc) 1635 return rc; 1636 } 1637 1638 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1639 if (rc) 1640 return rc; 1641 1642 return avc_has_perm(newsid, sbsec->sid, 1643 SECCLASS_FILESYSTEM, 1644 FILESYSTEM__ASSOCIATE, &ad); 1645 } 1646 1647 /* Check whether a task can create a key. */ 1648 static int may_create_key(u32 ksid, 1649 struct task_struct *ctx) 1650 { 1651 u32 sid = task_sid(ctx); 1652 1653 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1654 } 1655 1656 #define MAY_LINK 0 1657 #define MAY_UNLINK 1 1658 #define MAY_RMDIR 2 1659 1660 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1661 static int may_link(struct inode *dir, 1662 struct dentry *dentry, 1663 int kind) 1664 1665 { 1666 struct inode_security_struct *dsec, *isec; 1667 struct avc_audit_data ad; 1668 u32 sid = current_sid(); 1669 u32 av; 1670 int rc; 1671 1672 dsec = dir->i_security; 1673 isec = dentry->d_inode->i_security; 1674 1675 AVC_AUDIT_DATA_INIT(&ad, FS); 1676 ad.u.fs.path.dentry = dentry; 1677 1678 av = DIR__SEARCH; 1679 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1680 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1681 if (rc) 1682 return rc; 1683 1684 switch (kind) { 1685 case MAY_LINK: 1686 av = FILE__LINK; 1687 break; 1688 case MAY_UNLINK: 1689 av = FILE__UNLINK; 1690 break; 1691 case MAY_RMDIR: 1692 av = DIR__RMDIR; 1693 break; 1694 default: 1695 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1696 __func__, kind); 1697 return 0; 1698 } 1699 1700 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1701 return rc; 1702 } 1703 1704 static inline int may_rename(struct inode *old_dir, 1705 struct dentry *old_dentry, 1706 struct inode *new_dir, 1707 struct dentry *new_dentry) 1708 { 1709 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1710 struct avc_audit_data ad; 1711 u32 sid = current_sid(); 1712 u32 av; 1713 int old_is_dir, new_is_dir; 1714 int rc; 1715 1716 old_dsec = old_dir->i_security; 1717 old_isec = old_dentry->d_inode->i_security; 1718 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1719 new_dsec = new_dir->i_security; 1720 1721 AVC_AUDIT_DATA_INIT(&ad, FS); 1722 1723 ad.u.fs.path.dentry = old_dentry; 1724 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1725 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1726 if (rc) 1727 return rc; 1728 rc = avc_has_perm(sid, old_isec->sid, 1729 old_isec->sclass, FILE__RENAME, &ad); 1730 if (rc) 1731 return rc; 1732 if (old_is_dir && new_dir != old_dir) { 1733 rc = avc_has_perm(sid, old_isec->sid, 1734 old_isec->sclass, DIR__REPARENT, &ad); 1735 if (rc) 1736 return rc; 1737 } 1738 1739 ad.u.fs.path.dentry = new_dentry; 1740 av = DIR__ADD_NAME | DIR__SEARCH; 1741 if (new_dentry->d_inode) 1742 av |= DIR__REMOVE_NAME; 1743 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1744 if (rc) 1745 return rc; 1746 if (new_dentry->d_inode) { 1747 new_isec = new_dentry->d_inode->i_security; 1748 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1749 rc = avc_has_perm(sid, new_isec->sid, 1750 new_isec->sclass, 1751 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1752 if (rc) 1753 return rc; 1754 } 1755 1756 return 0; 1757 } 1758 1759 /* Check whether a task can perform a filesystem operation. */ 1760 static int superblock_has_perm(const struct cred *cred, 1761 struct super_block *sb, 1762 u32 perms, 1763 struct avc_audit_data *ad) 1764 { 1765 struct superblock_security_struct *sbsec; 1766 u32 sid = cred_sid(cred); 1767 1768 sbsec = sb->s_security; 1769 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1770 } 1771 1772 /* Convert a Linux mode and permission mask to an access vector. */ 1773 static inline u32 file_mask_to_av(int mode, int mask) 1774 { 1775 u32 av = 0; 1776 1777 if ((mode & S_IFMT) != S_IFDIR) { 1778 if (mask & MAY_EXEC) 1779 av |= FILE__EXECUTE; 1780 if (mask & MAY_READ) 1781 av |= FILE__READ; 1782 1783 if (mask & MAY_APPEND) 1784 av |= FILE__APPEND; 1785 else if (mask & MAY_WRITE) 1786 av |= FILE__WRITE; 1787 1788 } else { 1789 if (mask & MAY_EXEC) 1790 av |= DIR__SEARCH; 1791 if (mask & MAY_WRITE) 1792 av |= DIR__WRITE; 1793 if (mask & MAY_READ) 1794 av |= DIR__READ; 1795 } 1796 1797 return av; 1798 } 1799 1800 /* Convert a Linux file to an access vector. */ 1801 static inline u32 file_to_av(struct file *file) 1802 { 1803 u32 av = 0; 1804 1805 if (file->f_mode & FMODE_READ) 1806 av |= FILE__READ; 1807 if (file->f_mode & FMODE_WRITE) { 1808 if (file->f_flags & O_APPEND) 1809 av |= FILE__APPEND; 1810 else 1811 av |= FILE__WRITE; 1812 } 1813 if (!av) { 1814 /* 1815 * Special file opened with flags 3 for ioctl-only use. 1816 */ 1817 av = FILE__IOCTL; 1818 } 1819 1820 return av; 1821 } 1822 1823 /* 1824 * Convert a file to an access vector and include the correct open 1825 * open permission. 1826 */ 1827 static inline u32 open_file_to_av(struct file *file) 1828 { 1829 u32 av = file_to_av(file); 1830 1831 if (selinux_policycap_openperm) { 1832 mode_t mode = file->f_path.dentry->d_inode->i_mode; 1833 /* 1834 * lnk files and socks do not really have an 'open' 1835 */ 1836 if (S_ISREG(mode)) 1837 av |= FILE__OPEN; 1838 else if (S_ISCHR(mode)) 1839 av |= CHR_FILE__OPEN; 1840 else if (S_ISBLK(mode)) 1841 av |= BLK_FILE__OPEN; 1842 else if (S_ISFIFO(mode)) 1843 av |= FIFO_FILE__OPEN; 1844 else if (S_ISDIR(mode)) 1845 av |= DIR__OPEN; 1846 else if (S_ISSOCK(mode)) 1847 av |= SOCK_FILE__OPEN; 1848 else 1849 printk(KERN_ERR "SELinux: WARNING: inside %s with " 1850 "unknown mode:%o\n", __func__, mode); 1851 } 1852 return av; 1853 } 1854 1855 /* Hook functions begin here. */ 1856 1857 static int selinux_ptrace_access_check(struct task_struct *child, 1858 unsigned int mode) 1859 { 1860 int rc; 1861 1862 rc = cap_ptrace_access_check(child, mode); 1863 if (rc) 1864 return rc; 1865 1866 if (mode == PTRACE_MODE_READ) { 1867 u32 sid = current_sid(); 1868 u32 csid = task_sid(child); 1869 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 1870 } 1871 1872 return current_has_perm(child, PROCESS__PTRACE); 1873 } 1874 1875 static int selinux_ptrace_traceme(struct task_struct *parent) 1876 { 1877 int rc; 1878 1879 rc = cap_ptrace_traceme(parent); 1880 if (rc) 1881 return rc; 1882 1883 return task_has_perm(parent, current, PROCESS__PTRACE); 1884 } 1885 1886 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1887 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1888 { 1889 int error; 1890 1891 error = current_has_perm(target, PROCESS__GETCAP); 1892 if (error) 1893 return error; 1894 1895 return cap_capget(target, effective, inheritable, permitted); 1896 } 1897 1898 static int selinux_capset(struct cred *new, const struct cred *old, 1899 const kernel_cap_t *effective, 1900 const kernel_cap_t *inheritable, 1901 const kernel_cap_t *permitted) 1902 { 1903 int error; 1904 1905 error = cap_capset(new, old, 1906 effective, inheritable, permitted); 1907 if (error) 1908 return error; 1909 1910 return cred_has_perm(old, new, PROCESS__SETCAP); 1911 } 1912 1913 /* 1914 * (This comment used to live with the selinux_task_setuid hook, 1915 * which was removed). 1916 * 1917 * Since setuid only affects the current process, and since the SELinux 1918 * controls are not based on the Linux identity attributes, SELinux does not 1919 * need to control this operation. However, SELinux does control the use of 1920 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 1921 */ 1922 1923 static int selinux_capable(struct task_struct *tsk, const struct cred *cred, 1924 int cap, int audit) 1925 { 1926 int rc; 1927 1928 rc = cap_capable(tsk, cred, cap, audit); 1929 if (rc) 1930 return rc; 1931 1932 return task_has_capability(tsk, cred, cap, audit); 1933 } 1934 1935 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1936 { 1937 int buflen, rc; 1938 char *buffer, *path, *end; 1939 1940 rc = -ENOMEM; 1941 buffer = (char *)__get_free_page(GFP_KERNEL); 1942 if (!buffer) 1943 goto out; 1944 1945 buflen = PAGE_SIZE; 1946 end = buffer+buflen; 1947 *--end = '\0'; 1948 buflen--; 1949 path = end-1; 1950 *path = '/'; 1951 while (table) { 1952 const char *name = table->procname; 1953 size_t namelen = strlen(name); 1954 buflen -= namelen + 1; 1955 if (buflen < 0) 1956 goto out_free; 1957 end -= namelen; 1958 memcpy(end, name, namelen); 1959 *--end = '/'; 1960 path = end; 1961 table = table->parent; 1962 } 1963 buflen -= 4; 1964 if (buflen < 0) 1965 goto out_free; 1966 end -= 4; 1967 memcpy(end, "/sys", 4); 1968 path = end; 1969 rc = security_genfs_sid("proc", path, tclass, sid); 1970 out_free: 1971 free_page((unsigned long)buffer); 1972 out: 1973 return rc; 1974 } 1975 1976 static int selinux_sysctl(ctl_table *table, int op) 1977 { 1978 int error = 0; 1979 u32 av; 1980 u32 tsid, sid; 1981 int rc; 1982 1983 sid = current_sid(); 1984 1985 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1986 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1987 if (rc) { 1988 /* Default to the well-defined sysctl SID. */ 1989 tsid = SECINITSID_SYSCTL; 1990 } 1991 1992 /* The op values are "defined" in sysctl.c, thereby creating 1993 * a bad coupling between this module and sysctl.c */ 1994 if (op == 001) { 1995 error = avc_has_perm(sid, tsid, 1996 SECCLASS_DIR, DIR__SEARCH, NULL); 1997 } else { 1998 av = 0; 1999 if (op & 004) 2000 av |= FILE__READ; 2001 if (op & 002) 2002 av |= FILE__WRITE; 2003 if (av) 2004 error = avc_has_perm(sid, tsid, 2005 SECCLASS_FILE, av, NULL); 2006 } 2007 2008 return error; 2009 } 2010 2011 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2012 { 2013 const struct cred *cred = current_cred(); 2014 int rc = 0; 2015 2016 if (!sb) 2017 return 0; 2018 2019 switch (cmds) { 2020 case Q_SYNC: 2021 case Q_QUOTAON: 2022 case Q_QUOTAOFF: 2023 case Q_SETINFO: 2024 case Q_SETQUOTA: 2025 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2026 break; 2027 case Q_GETFMT: 2028 case Q_GETINFO: 2029 case Q_GETQUOTA: 2030 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2031 break; 2032 default: 2033 rc = 0; /* let the kernel handle invalid cmds */ 2034 break; 2035 } 2036 return rc; 2037 } 2038 2039 static int selinux_quota_on(struct dentry *dentry) 2040 { 2041 const struct cred *cred = current_cred(); 2042 2043 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON); 2044 } 2045 2046 static int selinux_syslog(int type) 2047 { 2048 int rc; 2049 2050 rc = cap_syslog(type); 2051 if (rc) 2052 return rc; 2053 2054 switch (type) { 2055 case 3: /* Read last kernel messages */ 2056 case 10: /* Return size of the log buffer */ 2057 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2058 break; 2059 case 6: /* Disable logging to console */ 2060 case 7: /* Enable logging to console */ 2061 case 8: /* Set level of messages printed to console */ 2062 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2063 break; 2064 case 0: /* Close log */ 2065 case 1: /* Open log */ 2066 case 2: /* Read from log */ 2067 case 4: /* Read/clear last kernel messages */ 2068 case 5: /* Clear ring buffer */ 2069 default: 2070 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2071 break; 2072 } 2073 return rc; 2074 } 2075 2076 /* 2077 * Check that a process has enough memory to allocate a new virtual 2078 * mapping. 0 means there is enough memory for the allocation to 2079 * succeed and -ENOMEM implies there is not. 2080 * 2081 * Do not audit the selinux permission check, as this is applied to all 2082 * processes that allocate mappings. 2083 */ 2084 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2085 { 2086 int rc, cap_sys_admin = 0; 2087 2088 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN, 2089 SECURITY_CAP_NOAUDIT); 2090 if (rc == 0) 2091 cap_sys_admin = 1; 2092 2093 return __vm_enough_memory(mm, pages, cap_sys_admin); 2094 } 2095 2096 /* binprm security operations */ 2097 2098 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2099 { 2100 const struct task_security_struct *old_tsec; 2101 struct task_security_struct *new_tsec; 2102 struct inode_security_struct *isec; 2103 struct avc_audit_data ad; 2104 struct inode *inode = bprm->file->f_path.dentry->d_inode; 2105 int rc; 2106 2107 rc = cap_bprm_set_creds(bprm); 2108 if (rc) 2109 return rc; 2110 2111 /* SELinux context only depends on initial program or script and not 2112 * the script interpreter */ 2113 if (bprm->cred_prepared) 2114 return 0; 2115 2116 old_tsec = current_security(); 2117 new_tsec = bprm->cred->security; 2118 isec = inode->i_security; 2119 2120 /* Default to the current task SID. */ 2121 new_tsec->sid = old_tsec->sid; 2122 new_tsec->osid = old_tsec->sid; 2123 2124 /* Reset fs, key, and sock SIDs on execve. */ 2125 new_tsec->create_sid = 0; 2126 new_tsec->keycreate_sid = 0; 2127 new_tsec->sockcreate_sid = 0; 2128 2129 if (old_tsec->exec_sid) { 2130 new_tsec->sid = old_tsec->exec_sid; 2131 /* Reset exec SID on execve. */ 2132 new_tsec->exec_sid = 0; 2133 } else { 2134 /* Check for a default transition on this program. */ 2135 rc = security_transition_sid(old_tsec->sid, isec->sid, 2136 SECCLASS_PROCESS, &new_tsec->sid); 2137 if (rc) 2138 return rc; 2139 } 2140 2141 AVC_AUDIT_DATA_INIT(&ad, FS); 2142 ad.u.fs.path = bprm->file->f_path; 2143 2144 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2145 new_tsec->sid = old_tsec->sid; 2146 2147 if (new_tsec->sid == old_tsec->sid) { 2148 rc = avc_has_perm(old_tsec->sid, isec->sid, 2149 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2150 if (rc) 2151 return rc; 2152 } else { 2153 /* Check permissions for the transition. */ 2154 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2155 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2156 if (rc) 2157 return rc; 2158 2159 rc = avc_has_perm(new_tsec->sid, isec->sid, 2160 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2161 if (rc) 2162 return rc; 2163 2164 /* Check for shared state */ 2165 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2166 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2167 SECCLASS_PROCESS, PROCESS__SHARE, 2168 NULL); 2169 if (rc) 2170 return -EPERM; 2171 } 2172 2173 /* Make sure that anyone attempting to ptrace over a task that 2174 * changes its SID has the appropriate permit */ 2175 if (bprm->unsafe & 2176 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2177 struct task_struct *tracer; 2178 struct task_security_struct *sec; 2179 u32 ptsid = 0; 2180 2181 rcu_read_lock(); 2182 tracer = tracehook_tracer_task(current); 2183 if (likely(tracer != NULL)) { 2184 sec = __task_cred(tracer)->security; 2185 ptsid = sec->sid; 2186 } 2187 rcu_read_unlock(); 2188 2189 if (ptsid != 0) { 2190 rc = avc_has_perm(ptsid, new_tsec->sid, 2191 SECCLASS_PROCESS, 2192 PROCESS__PTRACE, NULL); 2193 if (rc) 2194 return -EPERM; 2195 } 2196 } 2197 2198 /* Clear any possibly unsafe personality bits on exec: */ 2199 bprm->per_clear |= PER_CLEAR_ON_SETID; 2200 } 2201 2202 return 0; 2203 } 2204 2205 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2206 { 2207 const struct cred *cred = current_cred(); 2208 const struct task_security_struct *tsec = cred->security; 2209 u32 sid, osid; 2210 int atsecure = 0; 2211 2212 sid = tsec->sid; 2213 osid = tsec->osid; 2214 2215 if (osid != sid) { 2216 /* Enable secure mode for SIDs transitions unless 2217 the noatsecure permission is granted between 2218 the two SIDs, i.e. ahp returns 0. */ 2219 atsecure = avc_has_perm(osid, sid, 2220 SECCLASS_PROCESS, 2221 PROCESS__NOATSECURE, NULL); 2222 } 2223 2224 return (atsecure || cap_bprm_secureexec(bprm)); 2225 } 2226 2227 extern struct vfsmount *selinuxfs_mount; 2228 extern struct dentry *selinux_null; 2229 2230 /* Derived from fs/exec.c:flush_old_files. */ 2231 static inline void flush_unauthorized_files(const struct cred *cred, 2232 struct files_struct *files) 2233 { 2234 struct avc_audit_data ad; 2235 struct file *file, *devnull = NULL; 2236 struct tty_struct *tty; 2237 struct fdtable *fdt; 2238 long j = -1; 2239 int drop_tty = 0; 2240 2241 tty = get_current_tty(); 2242 if (tty) { 2243 file_list_lock(); 2244 if (!list_empty(&tty->tty_files)) { 2245 struct inode *inode; 2246 2247 /* Revalidate access to controlling tty. 2248 Use inode_has_perm on the tty inode directly rather 2249 than using file_has_perm, as this particular open 2250 file may belong to another process and we are only 2251 interested in the inode-based check here. */ 2252 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list); 2253 inode = file->f_path.dentry->d_inode; 2254 if (inode_has_perm(cred, inode, 2255 FILE__READ | FILE__WRITE, NULL)) { 2256 drop_tty = 1; 2257 } 2258 } 2259 file_list_unlock(); 2260 tty_kref_put(tty); 2261 } 2262 /* Reset controlling tty. */ 2263 if (drop_tty) 2264 no_tty(); 2265 2266 /* Revalidate access to inherited open files. */ 2267 2268 AVC_AUDIT_DATA_INIT(&ad, FS); 2269 2270 spin_lock(&files->file_lock); 2271 for (;;) { 2272 unsigned long set, i; 2273 int fd; 2274 2275 j++; 2276 i = j * __NFDBITS; 2277 fdt = files_fdtable(files); 2278 if (i >= fdt->max_fds) 2279 break; 2280 set = fdt->open_fds->fds_bits[j]; 2281 if (!set) 2282 continue; 2283 spin_unlock(&files->file_lock); 2284 for ( ; set ; i++, set >>= 1) { 2285 if (set & 1) { 2286 file = fget(i); 2287 if (!file) 2288 continue; 2289 if (file_has_perm(cred, 2290 file, 2291 file_to_av(file))) { 2292 sys_close(i); 2293 fd = get_unused_fd(); 2294 if (fd != i) { 2295 if (fd >= 0) 2296 put_unused_fd(fd); 2297 fput(file); 2298 continue; 2299 } 2300 if (devnull) { 2301 get_file(devnull); 2302 } else { 2303 devnull = dentry_open( 2304 dget(selinux_null), 2305 mntget(selinuxfs_mount), 2306 O_RDWR, cred); 2307 if (IS_ERR(devnull)) { 2308 devnull = NULL; 2309 put_unused_fd(fd); 2310 fput(file); 2311 continue; 2312 } 2313 } 2314 fd_install(fd, devnull); 2315 } 2316 fput(file); 2317 } 2318 } 2319 spin_lock(&files->file_lock); 2320 2321 } 2322 spin_unlock(&files->file_lock); 2323 } 2324 2325 /* 2326 * Prepare a process for imminent new credential changes due to exec 2327 */ 2328 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2329 { 2330 struct task_security_struct *new_tsec; 2331 struct rlimit *rlim, *initrlim; 2332 int rc, i; 2333 2334 new_tsec = bprm->cred->security; 2335 if (new_tsec->sid == new_tsec->osid) 2336 return; 2337 2338 /* Close files for which the new task SID is not authorized. */ 2339 flush_unauthorized_files(bprm->cred, current->files); 2340 2341 /* Always clear parent death signal on SID transitions. */ 2342 current->pdeath_signal = 0; 2343 2344 /* Check whether the new SID can inherit resource limits from the old 2345 * SID. If not, reset all soft limits to the lower of the current 2346 * task's hard limit and the init task's soft limit. 2347 * 2348 * Note that the setting of hard limits (even to lower them) can be 2349 * controlled by the setrlimit check. The inclusion of the init task's 2350 * soft limit into the computation is to avoid resetting soft limits 2351 * higher than the default soft limit for cases where the default is 2352 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2353 */ 2354 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2355 PROCESS__RLIMITINH, NULL); 2356 if (rc) { 2357 for (i = 0; i < RLIM_NLIMITS; i++) { 2358 rlim = current->signal->rlim + i; 2359 initrlim = init_task.signal->rlim + i; 2360 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2361 } 2362 update_rlimit_cpu(rlim->rlim_cur); 2363 } 2364 } 2365 2366 /* 2367 * Clean up the process immediately after the installation of new credentials 2368 * due to exec 2369 */ 2370 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2371 { 2372 const struct task_security_struct *tsec = current_security(); 2373 struct itimerval itimer; 2374 u32 osid, sid; 2375 int rc, i; 2376 2377 osid = tsec->osid; 2378 sid = tsec->sid; 2379 2380 if (sid == osid) 2381 return; 2382 2383 /* Check whether the new SID can inherit signal state from the old SID. 2384 * If not, clear itimers to avoid subsequent signal generation and 2385 * flush and unblock signals. 2386 * 2387 * This must occur _after_ the task SID has been updated so that any 2388 * kill done after the flush will be checked against the new SID. 2389 */ 2390 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2391 if (rc) { 2392 memset(&itimer, 0, sizeof itimer); 2393 for (i = 0; i < 3; i++) 2394 do_setitimer(i, &itimer, NULL); 2395 spin_lock_irq(¤t->sighand->siglock); 2396 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2397 __flush_signals(current); 2398 flush_signal_handlers(current, 1); 2399 sigemptyset(¤t->blocked); 2400 } 2401 spin_unlock_irq(¤t->sighand->siglock); 2402 } 2403 2404 /* Wake up the parent if it is waiting so that it can recheck 2405 * wait permission to the new task SID. */ 2406 read_lock(&tasklist_lock); 2407 wake_up_interruptible(¤t->real_parent->signal->wait_chldexit); 2408 read_unlock(&tasklist_lock); 2409 } 2410 2411 /* superblock security operations */ 2412 2413 static int selinux_sb_alloc_security(struct super_block *sb) 2414 { 2415 return superblock_alloc_security(sb); 2416 } 2417 2418 static void selinux_sb_free_security(struct super_block *sb) 2419 { 2420 superblock_free_security(sb); 2421 } 2422 2423 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2424 { 2425 if (plen > olen) 2426 return 0; 2427 2428 return !memcmp(prefix, option, plen); 2429 } 2430 2431 static inline int selinux_option(char *option, int len) 2432 { 2433 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2434 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2435 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2436 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2437 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2438 } 2439 2440 static inline void take_option(char **to, char *from, int *first, int len) 2441 { 2442 if (!*first) { 2443 **to = ','; 2444 *to += 1; 2445 } else 2446 *first = 0; 2447 memcpy(*to, from, len); 2448 *to += len; 2449 } 2450 2451 static inline void take_selinux_option(char **to, char *from, int *first, 2452 int len) 2453 { 2454 int current_size = 0; 2455 2456 if (!*first) { 2457 **to = '|'; 2458 *to += 1; 2459 } else 2460 *first = 0; 2461 2462 while (current_size < len) { 2463 if (*from != '"') { 2464 **to = *from; 2465 *to += 1; 2466 } 2467 from += 1; 2468 current_size += 1; 2469 } 2470 } 2471 2472 static int selinux_sb_copy_data(char *orig, char *copy) 2473 { 2474 int fnosec, fsec, rc = 0; 2475 char *in_save, *in_curr, *in_end; 2476 char *sec_curr, *nosec_save, *nosec; 2477 int open_quote = 0; 2478 2479 in_curr = orig; 2480 sec_curr = copy; 2481 2482 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2483 if (!nosec) { 2484 rc = -ENOMEM; 2485 goto out; 2486 } 2487 2488 nosec_save = nosec; 2489 fnosec = fsec = 1; 2490 in_save = in_end = orig; 2491 2492 do { 2493 if (*in_end == '"') 2494 open_quote = !open_quote; 2495 if ((*in_end == ',' && open_quote == 0) || 2496 *in_end == '\0') { 2497 int len = in_end - in_curr; 2498 2499 if (selinux_option(in_curr, len)) 2500 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2501 else 2502 take_option(&nosec, in_curr, &fnosec, len); 2503 2504 in_curr = in_end + 1; 2505 } 2506 } while (*in_end++); 2507 2508 strcpy(in_save, nosec_save); 2509 free_page((unsigned long)nosec_save); 2510 out: 2511 return rc; 2512 } 2513 2514 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2515 { 2516 const struct cred *cred = current_cred(); 2517 struct avc_audit_data ad; 2518 int rc; 2519 2520 rc = superblock_doinit(sb, data); 2521 if (rc) 2522 return rc; 2523 2524 /* Allow all mounts performed by the kernel */ 2525 if (flags & MS_KERNMOUNT) 2526 return 0; 2527 2528 AVC_AUDIT_DATA_INIT(&ad, FS); 2529 ad.u.fs.path.dentry = sb->s_root; 2530 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2531 } 2532 2533 static int selinux_sb_statfs(struct dentry *dentry) 2534 { 2535 const struct cred *cred = current_cred(); 2536 struct avc_audit_data ad; 2537 2538 AVC_AUDIT_DATA_INIT(&ad, FS); 2539 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2540 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2541 } 2542 2543 static int selinux_mount(char *dev_name, 2544 struct path *path, 2545 char *type, 2546 unsigned long flags, 2547 void *data) 2548 { 2549 const struct cred *cred = current_cred(); 2550 2551 if (flags & MS_REMOUNT) 2552 return superblock_has_perm(cred, path->mnt->mnt_sb, 2553 FILESYSTEM__REMOUNT, NULL); 2554 else 2555 return dentry_has_perm(cred, path->mnt, path->dentry, 2556 FILE__MOUNTON); 2557 } 2558 2559 static int selinux_umount(struct vfsmount *mnt, int flags) 2560 { 2561 const struct cred *cred = current_cred(); 2562 2563 return superblock_has_perm(cred, mnt->mnt_sb, 2564 FILESYSTEM__UNMOUNT, NULL); 2565 } 2566 2567 /* inode security operations */ 2568 2569 static int selinux_inode_alloc_security(struct inode *inode) 2570 { 2571 return inode_alloc_security(inode); 2572 } 2573 2574 static void selinux_inode_free_security(struct inode *inode) 2575 { 2576 inode_free_security(inode); 2577 } 2578 2579 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2580 char **name, void **value, 2581 size_t *len) 2582 { 2583 const struct cred *cred = current_cred(); 2584 const struct task_security_struct *tsec = cred->security; 2585 struct inode_security_struct *dsec; 2586 struct superblock_security_struct *sbsec; 2587 u32 sid, newsid, clen; 2588 int rc; 2589 char *namep = NULL, *context; 2590 2591 dsec = dir->i_security; 2592 sbsec = dir->i_sb->s_security; 2593 2594 sid = tsec->sid; 2595 newsid = tsec->create_sid; 2596 2597 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 2598 rc = security_transition_sid(sid, dsec->sid, 2599 inode_mode_to_security_class(inode->i_mode), 2600 &newsid); 2601 if (rc) { 2602 printk(KERN_WARNING "%s: " 2603 "security_transition_sid failed, rc=%d (dev=%s " 2604 "ino=%ld)\n", 2605 __func__, 2606 -rc, inode->i_sb->s_id, inode->i_ino); 2607 return rc; 2608 } 2609 } 2610 2611 /* Possibly defer initialization to selinux_complete_init. */ 2612 if (sbsec->flags & SE_SBINITIALIZED) { 2613 struct inode_security_struct *isec = inode->i_security; 2614 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2615 isec->sid = newsid; 2616 isec->initialized = 1; 2617 } 2618 2619 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP)) 2620 return -EOPNOTSUPP; 2621 2622 if (name) { 2623 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2624 if (!namep) 2625 return -ENOMEM; 2626 *name = namep; 2627 } 2628 2629 if (value && len) { 2630 rc = security_sid_to_context_force(newsid, &context, &clen); 2631 if (rc) { 2632 kfree(namep); 2633 return rc; 2634 } 2635 *value = context; 2636 *len = clen; 2637 } 2638 2639 return 0; 2640 } 2641 2642 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2643 { 2644 return may_create(dir, dentry, SECCLASS_FILE); 2645 } 2646 2647 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2648 { 2649 return may_link(dir, old_dentry, MAY_LINK); 2650 } 2651 2652 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2653 { 2654 return may_link(dir, dentry, MAY_UNLINK); 2655 } 2656 2657 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2658 { 2659 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2660 } 2661 2662 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2663 { 2664 return may_create(dir, dentry, SECCLASS_DIR); 2665 } 2666 2667 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2668 { 2669 return may_link(dir, dentry, MAY_RMDIR); 2670 } 2671 2672 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2673 { 2674 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2675 } 2676 2677 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2678 struct inode *new_inode, struct dentry *new_dentry) 2679 { 2680 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2681 } 2682 2683 static int selinux_inode_readlink(struct dentry *dentry) 2684 { 2685 const struct cred *cred = current_cred(); 2686 2687 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2688 } 2689 2690 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2691 { 2692 const struct cred *cred = current_cred(); 2693 2694 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2695 } 2696 2697 static int selinux_inode_permission(struct inode *inode, int mask) 2698 { 2699 const struct cred *cred = current_cred(); 2700 2701 if (!mask) { 2702 /* No permission to check. Existence test. */ 2703 return 0; 2704 } 2705 2706 return inode_has_perm(cred, inode, 2707 file_mask_to_av(inode->i_mode, mask), NULL); 2708 } 2709 2710 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2711 { 2712 const struct cred *cred = current_cred(); 2713 2714 if (iattr->ia_valid & ATTR_FORCE) 2715 return 0; 2716 2717 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2718 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2719 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2720 2721 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE); 2722 } 2723 2724 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2725 { 2726 const struct cred *cred = current_cred(); 2727 2728 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR); 2729 } 2730 2731 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2732 { 2733 const struct cred *cred = current_cred(); 2734 2735 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2736 sizeof XATTR_SECURITY_PREFIX - 1)) { 2737 if (!strcmp(name, XATTR_NAME_CAPS)) { 2738 if (!capable(CAP_SETFCAP)) 2739 return -EPERM; 2740 } else if (!capable(CAP_SYS_ADMIN)) { 2741 /* A different attribute in the security namespace. 2742 Restrict to administrator. */ 2743 return -EPERM; 2744 } 2745 } 2746 2747 /* Not an attribute we recognize, so just check the 2748 ordinary setattr permission. */ 2749 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2750 } 2751 2752 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2753 const void *value, size_t size, int flags) 2754 { 2755 struct inode *inode = dentry->d_inode; 2756 struct inode_security_struct *isec = inode->i_security; 2757 struct superblock_security_struct *sbsec; 2758 struct avc_audit_data ad; 2759 u32 newsid, sid = current_sid(); 2760 int rc = 0; 2761 2762 if (strcmp(name, XATTR_NAME_SELINUX)) 2763 return selinux_inode_setotherxattr(dentry, name); 2764 2765 sbsec = inode->i_sb->s_security; 2766 if (!(sbsec->flags & SE_SBLABELSUPP)) 2767 return -EOPNOTSUPP; 2768 2769 if (!is_owner_or_cap(inode)) 2770 return -EPERM; 2771 2772 AVC_AUDIT_DATA_INIT(&ad, FS); 2773 ad.u.fs.path.dentry = dentry; 2774 2775 rc = avc_has_perm(sid, isec->sid, isec->sclass, 2776 FILE__RELABELFROM, &ad); 2777 if (rc) 2778 return rc; 2779 2780 rc = security_context_to_sid(value, size, &newsid); 2781 if (rc == -EINVAL) { 2782 if (!capable(CAP_MAC_ADMIN)) 2783 return rc; 2784 rc = security_context_to_sid_force(value, size, &newsid); 2785 } 2786 if (rc) 2787 return rc; 2788 2789 rc = avc_has_perm(sid, newsid, isec->sclass, 2790 FILE__RELABELTO, &ad); 2791 if (rc) 2792 return rc; 2793 2794 rc = security_validate_transition(isec->sid, newsid, sid, 2795 isec->sclass); 2796 if (rc) 2797 return rc; 2798 2799 return avc_has_perm(newsid, 2800 sbsec->sid, 2801 SECCLASS_FILESYSTEM, 2802 FILESYSTEM__ASSOCIATE, 2803 &ad); 2804 } 2805 2806 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2807 const void *value, size_t size, 2808 int flags) 2809 { 2810 struct inode *inode = dentry->d_inode; 2811 struct inode_security_struct *isec = inode->i_security; 2812 u32 newsid; 2813 int rc; 2814 2815 if (strcmp(name, XATTR_NAME_SELINUX)) { 2816 /* Not an attribute we recognize, so nothing to do. */ 2817 return; 2818 } 2819 2820 rc = security_context_to_sid_force(value, size, &newsid); 2821 if (rc) { 2822 printk(KERN_ERR "SELinux: unable to map context to SID" 2823 "for (%s, %lu), rc=%d\n", 2824 inode->i_sb->s_id, inode->i_ino, -rc); 2825 return; 2826 } 2827 2828 isec->sid = newsid; 2829 return; 2830 } 2831 2832 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2833 { 2834 const struct cred *cred = current_cred(); 2835 2836 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2837 } 2838 2839 static int selinux_inode_listxattr(struct dentry *dentry) 2840 { 2841 const struct cred *cred = current_cred(); 2842 2843 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2844 } 2845 2846 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2847 { 2848 if (strcmp(name, XATTR_NAME_SELINUX)) 2849 return selinux_inode_setotherxattr(dentry, name); 2850 2851 /* No one is allowed to remove a SELinux security label. 2852 You can change the label, but all data must be labeled. */ 2853 return -EACCES; 2854 } 2855 2856 /* 2857 * Copy the inode security context value to the user. 2858 * 2859 * Permission check is handled by selinux_inode_getxattr hook. 2860 */ 2861 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2862 { 2863 u32 size; 2864 int error; 2865 char *context = NULL; 2866 struct inode_security_struct *isec = inode->i_security; 2867 2868 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2869 return -EOPNOTSUPP; 2870 2871 /* 2872 * If the caller has CAP_MAC_ADMIN, then get the raw context 2873 * value even if it is not defined by current policy; otherwise, 2874 * use the in-core value under current policy. 2875 * Use the non-auditing forms of the permission checks since 2876 * getxattr may be called by unprivileged processes commonly 2877 * and lack of permission just means that we fall back to the 2878 * in-core context value, not a denial. 2879 */ 2880 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN, 2881 SECURITY_CAP_NOAUDIT); 2882 if (!error) 2883 error = security_sid_to_context_force(isec->sid, &context, 2884 &size); 2885 else 2886 error = security_sid_to_context(isec->sid, &context, &size); 2887 if (error) 2888 return error; 2889 error = size; 2890 if (alloc) { 2891 *buffer = context; 2892 goto out_nofree; 2893 } 2894 kfree(context); 2895 out_nofree: 2896 return error; 2897 } 2898 2899 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2900 const void *value, size_t size, int flags) 2901 { 2902 struct inode_security_struct *isec = inode->i_security; 2903 u32 newsid; 2904 int rc; 2905 2906 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2907 return -EOPNOTSUPP; 2908 2909 if (!value || !size) 2910 return -EACCES; 2911 2912 rc = security_context_to_sid((void *)value, size, &newsid); 2913 if (rc) 2914 return rc; 2915 2916 isec->sid = newsid; 2917 return 0; 2918 } 2919 2920 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2921 { 2922 const int len = sizeof(XATTR_NAME_SELINUX); 2923 if (buffer && len <= buffer_size) 2924 memcpy(buffer, XATTR_NAME_SELINUX, len); 2925 return len; 2926 } 2927 2928 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2929 { 2930 struct inode_security_struct *isec = inode->i_security; 2931 *secid = isec->sid; 2932 } 2933 2934 /* file security operations */ 2935 2936 static int selinux_revalidate_file_permission(struct file *file, int mask) 2937 { 2938 const struct cred *cred = current_cred(); 2939 struct inode *inode = file->f_path.dentry->d_inode; 2940 2941 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2942 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2943 mask |= MAY_APPEND; 2944 2945 return file_has_perm(cred, file, 2946 file_mask_to_av(inode->i_mode, mask)); 2947 } 2948 2949 static int selinux_file_permission(struct file *file, int mask) 2950 { 2951 struct inode *inode = file->f_path.dentry->d_inode; 2952 struct file_security_struct *fsec = file->f_security; 2953 struct inode_security_struct *isec = inode->i_security; 2954 u32 sid = current_sid(); 2955 2956 if (!mask) 2957 /* No permission to check. Existence test. */ 2958 return 0; 2959 2960 if (sid == fsec->sid && fsec->isid == isec->sid && 2961 fsec->pseqno == avc_policy_seqno()) 2962 /* No change since dentry_open check. */ 2963 return 0; 2964 2965 return selinux_revalidate_file_permission(file, mask); 2966 } 2967 2968 static int selinux_file_alloc_security(struct file *file) 2969 { 2970 return file_alloc_security(file); 2971 } 2972 2973 static void selinux_file_free_security(struct file *file) 2974 { 2975 file_free_security(file); 2976 } 2977 2978 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2979 unsigned long arg) 2980 { 2981 const struct cred *cred = current_cred(); 2982 u32 av = 0; 2983 2984 if (_IOC_DIR(cmd) & _IOC_WRITE) 2985 av |= FILE__WRITE; 2986 if (_IOC_DIR(cmd) & _IOC_READ) 2987 av |= FILE__READ; 2988 if (!av) 2989 av = FILE__IOCTL; 2990 2991 return file_has_perm(cred, file, av); 2992 } 2993 2994 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2995 { 2996 const struct cred *cred = current_cred(); 2997 int rc = 0; 2998 2999 #ifndef CONFIG_PPC32 3000 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 3001 /* 3002 * We are making executable an anonymous mapping or a 3003 * private file mapping that will also be writable. 3004 * This has an additional check. 3005 */ 3006 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3007 if (rc) 3008 goto error; 3009 } 3010 #endif 3011 3012 if (file) { 3013 /* read access is always possible with a mapping */ 3014 u32 av = FILE__READ; 3015 3016 /* write access only matters if the mapping is shared */ 3017 if (shared && (prot & PROT_WRITE)) 3018 av |= FILE__WRITE; 3019 3020 if (prot & PROT_EXEC) 3021 av |= FILE__EXECUTE; 3022 3023 return file_has_perm(cred, file, av); 3024 } 3025 3026 error: 3027 return rc; 3028 } 3029 3030 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 3031 unsigned long prot, unsigned long flags, 3032 unsigned long addr, unsigned long addr_only) 3033 { 3034 int rc = 0; 3035 u32 sid = current_sid(); 3036 3037 /* 3038 * notice that we are intentionally putting the SELinux check before 3039 * the secondary cap_file_mmap check. This is such a likely attempt 3040 * at bad behaviour/exploit that we always want to get the AVC, even 3041 * if DAC would have also denied the operation. 3042 */ 3043 if (addr < mmap_min_addr) { 3044 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3045 MEMPROTECT__MMAP_ZERO, NULL); 3046 if (rc) 3047 return rc; 3048 } 3049 3050 /* do DAC check on address space usage */ 3051 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only); 3052 if (rc || addr_only) 3053 return rc; 3054 3055 if (selinux_checkreqprot) 3056 prot = reqprot; 3057 3058 return file_map_prot_check(file, prot, 3059 (flags & MAP_TYPE) == MAP_SHARED); 3060 } 3061 3062 static int selinux_file_mprotect(struct vm_area_struct *vma, 3063 unsigned long reqprot, 3064 unsigned long prot) 3065 { 3066 const struct cred *cred = current_cred(); 3067 3068 if (selinux_checkreqprot) 3069 prot = reqprot; 3070 3071 #ifndef CONFIG_PPC32 3072 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3073 int rc = 0; 3074 if (vma->vm_start >= vma->vm_mm->start_brk && 3075 vma->vm_end <= vma->vm_mm->brk) { 3076 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3077 } else if (!vma->vm_file && 3078 vma->vm_start <= vma->vm_mm->start_stack && 3079 vma->vm_end >= vma->vm_mm->start_stack) { 3080 rc = current_has_perm(current, PROCESS__EXECSTACK); 3081 } else if (vma->vm_file && vma->anon_vma) { 3082 /* 3083 * We are making executable a file mapping that has 3084 * had some COW done. Since pages might have been 3085 * written, check ability to execute the possibly 3086 * modified content. This typically should only 3087 * occur for text relocations. 3088 */ 3089 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3090 } 3091 if (rc) 3092 return rc; 3093 } 3094 #endif 3095 3096 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3097 } 3098 3099 static int selinux_file_lock(struct file *file, unsigned int cmd) 3100 { 3101 const struct cred *cred = current_cred(); 3102 3103 return file_has_perm(cred, file, FILE__LOCK); 3104 } 3105 3106 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3107 unsigned long arg) 3108 { 3109 const struct cred *cred = current_cred(); 3110 int err = 0; 3111 3112 switch (cmd) { 3113 case F_SETFL: 3114 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3115 err = -EINVAL; 3116 break; 3117 } 3118 3119 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3120 err = file_has_perm(cred, file, FILE__WRITE); 3121 break; 3122 } 3123 /* fall through */ 3124 case F_SETOWN: 3125 case F_SETSIG: 3126 case F_GETFL: 3127 case F_GETOWN: 3128 case F_GETSIG: 3129 /* Just check FD__USE permission */ 3130 err = file_has_perm(cred, file, 0); 3131 break; 3132 case F_GETLK: 3133 case F_SETLK: 3134 case F_SETLKW: 3135 #if BITS_PER_LONG == 32 3136 case F_GETLK64: 3137 case F_SETLK64: 3138 case F_SETLKW64: 3139 #endif 3140 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3141 err = -EINVAL; 3142 break; 3143 } 3144 err = file_has_perm(cred, file, FILE__LOCK); 3145 break; 3146 } 3147 3148 return err; 3149 } 3150 3151 static int selinux_file_set_fowner(struct file *file) 3152 { 3153 struct file_security_struct *fsec; 3154 3155 fsec = file->f_security; 3156 fsec->fown_sid = current_sid(); 3157 3158 return 0; 3159 } 3160 3161 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3162 struct fown_struct *fown, int signum) 3163 { 3164 struct file *file; 3165 u32 sid = task_sid(tsk); 3166 u32 perm; 3167 struct file_security_struct *fsec; 3168 3169 /* struct fown_struct is never outside the context of a struct file */ 3170 file = container_of(fown, struct file, f_owner); 3171 3172 fsec = file->f_security; 3173 3174 if (!signum) 3175 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3176 else 3177 perm = signal_to_av(signum); 3178 3179 return avc_has_perm(fsec->fown_sid, sid, 3180 SECCLASS_PROCESS, perm, NULL); 3181 } 3182 3183 static int selinux_file_receive(struct file *file) 3184 { 3185 const struct cred *cred = current_cred(); 3186 3187 return file_has_perm(cred, file, file_to_av(file)); 3188 } 3189 3190 static int selinux_dentry_open(struct file *file, const struct cred *cred) 3191 { 3192 struct file_security_struct *fsec; 3193 struct inode *inode; 3194 struct inode_security_struct *isec; 3195 3196 inode = file->f_path.dentry->d_inode; 3197 fsec = file->f_security; 3198 isec = inode->i_security; 3199 /* 3200 * Save inode label and policy sequence number 3201 * at open-time so that selinux_file_permission 3202 * can determine whether revalidation is necessary. 3203 * Task label is already saved in the file security 3204 * struct as its SID. 3205 */ 3206 fsec->isid = isec->sid; 3207 fsec->pseqno = avc_policy_seqno(); 3208 /* 3209 * Since the inode label or policy seqno may have changed 3210 * between the selinux_inode_permission check and the saving 3211 * of state above, recheck that access is still permitted. 3212 * Otherwise, access might never be revalidated against the 3213 * new inode label or new policy. 3214 * This check is not redundant - do not remove. 3215 */ 3216 return inode_has_perm(cred, inode, open_file_to_av(file), NULL); 3217 } 3218 3219 /* task security operations */ 3220 3221 static int selinux_task_create(unsigned long clone_flags) 3222 { 3223 return current_has_perm(current, PROCESS__FORK); 3224 } 3225 3226 /* 3227 * detach and free the LSM part of a set of credentials 3228 */ 3229 static void selinux_cred_free(struct cred *cred) 3230 { 3231 struct task_security_struct *tsec = cred->security; 3232 cred->security = NULL; 3233 kfree(tsec); 3234 } 3235 3236 /* 3237 * prepare a new set of credentials for modification 3238 */ 3239 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3240 gfp_t gfp) 3241 { 3242 const struct task_security_struct *old_tsec; 3243 struct task_security_struct *tsec; 3244 3245 old_tsec = old->security; 3246 3247 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3248 if (!tsec) 3249 return -ENOMEM; 3250 3251 new->security = tsec; 3252 return 0; 3253 } 3254 3255 /* 3256 * set the security data for a kernel service 3257 * - all the creation contexts are set to unlabelled 3258 */ 3259 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3260 { 3261 struct task_security_struct *tsec = new->security; 3262 u32 sid = current_sid(); 3263 int ret; 3264 3265 ret = avc_has_perm(sid, secid, 3266 SECCLASS_KERNEL_SERVICE, 3267 KERNEL_SERVICE__USE_AS_OVERRIDE, 3268 NULL); 3269 if (ret == 0) { 3270 tsec->sid = secid; 3271 tsec->create_sid = 0; 3272 tsec->keycreate_sid = 0; 3273 tsec->sockcreate_sid = 0; 3274 } 3275 return ret; 3276 } 3277 3278 /* 3279 * set the file creation context in a security record to the same as the 3280 * objective context of the specified inode 3281 */ 3282 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3283 { 3284 struct inode_security_struct *isec = inode->i_security; 3285 struct task_security_struct *tsec = new->security; 3286 u32 sid = current_sid(); 3287 int ret; 3288 3289 ret = avc_has_perm(sid, isec->sid, 3290 SECCLASS_KERNEL_SERVICE, 3291 KERNEL_SERVICE__CREATE_FILES_AS, 3292 NULL); 3293 3294 if (ret == 0) 3295 tsec->create_sid = isec->sid; 3296 return 0; 3297 } 3298 3299 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3300 { 3301 return current_has_perm(p, PROCESS__SETPGID); 3302 } 3303 3304 static int selinux_task_getpgid(struct task_struct *p) 3305 { 3306 return current_has_perm(p, PROCESS__GETPGID); 3307 } 3308 3309 static int selinux_task_getsid(struct task_struct *p) 3310 { 3311 return current_has_perm(p, PROCESS__GETSESSION); 3312 } 3313 3314 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3315 { 3316 *secid = task_sid(p); 3317 } 3318 3319 static int selinux_task_setnice(struct task_struct *p, int nice) 3320 { 3321 int rc; 3322 3323 rc = cap_task_setnice(p, nice); 3324 if (rc) 3325 return rc; 3326 3327 return current_has_perm(p, PROCESS__SETSCHED); 3328 } 3329 3330 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3331 { 3332 int rc; 3333 3334 rc = cap_task_setioprio(p, ioprio); 3335 if (rc) 3336 return rc; 3337 3338 return current_has_perm(p, PROCESS__SETSCHED); 3339 } 3340 3341 static int selinux_task_getioprio(struct task_struct *p) 3342 { 3343 return current_has_perm(p, PROCESS__GETSCHED); 3344 } 3345 3346 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3347 { 3348 struct rlimit *old_rlim = current->signal->rlim + resource; 3349 3350 /* Control the ability to change the hard limit (whether 3351 lowering or raising it), so that the hard limit can 3352 later be used as a safe reset point for the soft limit 3353 upon context transitions. See selinux_bprm_committing_creds. */ 3354 if (old_rlim->rlim_max != new_rlim->rlim_max) 3355 return current_has_perm(current, PROCESS__SETRLIMIT); 3356 3357 return 0; 3358 } 3359 3360 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3361 { 3362 int rc; 3363 3364 rc = cap_task_setscheduler(p, policy, lp); 3365 if (rc) 3366 return rc; 3367 3368 return current_has_perm(p, PROCESS__SETSCHED); 3369 } 3370 3371 static int selinux_task_getscheduler(struct task_struct *p) 3372 { 3373 return current_has_perm(p, PROCESS__GETSCHED); 3374 } 3375 3376 static int selinux_task_movememory(struct task_struct *p) 3377 { 3378 return current_has_perm(p, PROCESS__SETSCHED); 3379 } 3380 3381 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3382 int sig, u32 secid) 3383 { 3384 u32 perm; 3385 int rc; 3386 3387 if (!sig) 3388 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3389 else 3390 perm = signal_to_av(sig); 3391 if (secid) 3392 rc = avc_has_perm(secid, task_sid(p), 3393 SECCLASS_PROCESS, perm, NULL); 3394 else 3395 rc = current_has_perm(p, perm); 3396 return rc; 3397 } 3398 3399 static int selinux_task_wait(struct task_struct *p) 3400 { 3401 return task_has_perm(p, current, PROCESS__SIGCHLD); 3402 } 3403 3404 static void selinux_task_to_inode(struct task_struct *p, 3405 struct inode *inode) 3406 { 3407 struct inode_security_struct *isec = inode->i_security; 3408 u32 sid = task_sid(p); 3409 3410 isec->sid = sid; 3411 isec->initialized = 1; 3412 } 3413 3414 /* Returns error only if unable to parse addresses */ 3415 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3416 struct avc_audit_data *ad, u8 *proto) 3417 { 3418 int offset, ihlen, ret = -EINVAL; 3419 struct iphdr _iph, *ih; 3420 3421 offset = skb_network_offset(skb); 3422 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3423 if (ih == NULL) 3424 goto out; 3425 3426 ihlen = ih->ihl * 4; 3427 if (ihlen < sizeof(_iph)) 3428 goto out; 3429 3430 ad->u.net.v4info.saddr = ih->saddr; 3431 ad->u.net.v4info.daddr = ih->daddr; 3432 ret = 0; 3433 3434 if (proto) 3435 *proto = ih->protocol; 3436 3437 switch (ih->protocol) { 3438 case IPPROTO_TCP: { 3439 struct tcphdr _tcph, *th; 3440 3441 if (ntohs(ih->frag_off) & IP_OFFSET) 3442 break; 3443 3444 offset += ihlen; 3445 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3446 if (th == NULL) 3447 break; 3448 3449 ad->u.net.sport = th->source; 3450 ad->u.net.dport = th->dest; 3451 break; 3452 } 3453 3454 case IPPROTO_UDP: { 3455 struct udphdr _udph, *uh; 3456 3457 if (ntohs(ih->frag_off) & IP_OFFSET) 3458 break; 3459 3460 offset += ihlen; 3461 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3462 if (uh == NULL) 3463 break; 3464 3465 ad->u.net.sport = uh->source; 3466 ad->u.net.dport = uh->dest; 3467 break; 3468 } 3469 3470 case IPPROTO_DCCP: { 3471 struct dccp_hdr _dccph, *dh; 3472 3473 if (ntohs(ih->frag_off) & IP_OFFSET) 3474 break; 3475 3476 offset += ihlen; 3477 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3478 if (dh == NULL) 3479 break; 3480 3481 ad->u.net.sport = dh->dccph_sport; 3482 ad->u.net.dport = dh->dccph_dport; 3483 break; 3484 } 3485 3486 default: 3487 break; 3488 } 3489 out: 3490 return ret; 3491 } 3492 3493 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3494 3495 /* Returns error only if unable to parse addresses */ 3496 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3497 struct avc_audit_data *ad, u8 *proto) 3498 { 3499 u8 nexthdr; 3500 int ret = -EINVAL, offset; 3501 struct ipv6hdr _ipv6h, *ip6; 3502 3503 offset = skb_network_offset(skb); 3504 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3505 if (ip6 == NULL) 3506 goto out; 3507 3508 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3509 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3510 ret = 0; 3511 3512 nexthdr = ip6->nexthdr; 3513 offset += sizeof(_ipv6h); 3514 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3515 if (offset < 0) 3516 goto out; 3517 3518 if (proto) 3519 *proto = nexthdr; 3520 3521 switch (nexthdr) { 3522 case IPPROTO_TCP: { 3523 struct tcphdr _tcph, *th; 3524 3525 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3526 if (th == NULL) 3527 break; 3528 3529 ad->u.net.sport = th->source; 3530 ad->u.net.dport = th->dest; 3531 break; 3532 } 3533 3534 case IPPROTO_UDP: { 3535 struct udphdr _udph, *uh; 3536 3537 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3538 if (uh == NULL) 3539 break; 3540 3541 ad->u.net.sport = uh->source; 3542 ad->u.net.dport = uh->dest; 3543 break; 3544 } 3545 3546 case IPPROTO_DCCP: { 3547 struct dccp_hdr _dccph, *dh; 3548 3549 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3550 if (dh == NULL) 3551 break; 3552 3553 ad->u.net.sport = dh->dccph_sport; 3554 ad->u.net.dport = dh->dccph_dport; 3555 break; 3556 } 3557 3558 /* includes fragments */ 3559 default: 3560 break; 3561 } 3562 out: 3563 return ret; 3564 } 3565 3566 #endif /* IPV6 */ 3567 3568 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3569 char **_addrp, int src, u8 *proto) 3570 { 3571 char *addrp; 3572 int ret; 3573 3574 switch (ad->u.net.family) { 3575 case PF_INET: 3576 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3577 if (ret) 3578 goto parse_error; 3579 addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3580 &ad->u.net.v4info.daddr); 3581 goto okay; 3582 3583 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3584 case PF_INET6: 3585 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3586 if (ret) 3587 goto parse_error; 3588 addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3589 &ad->u.net.v6info.daddr); 3590 goto okay; 3591 #endif /* IPV6 */ 3592 default: 3593 addrp = NULL; 3594 goto okay; 3595 } 3596 3597 parse_error: 3598 printk(KERN_WARNING 3599 "SELinux: failure in selinux_parse_skb()," 3600 " unable to parse packet\n"); 3601 return ret; 3602 3603 okay: 3604 if (_addrp) 3605 *_addrp = addrp; 3606 return 0; 3607 } 3608 3609 /** 3610 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3611 * @skb: the packet 3612 * @family: protocol family 3613 * @sid: the packet's peer label SID 3614 * 3615 * Description: 3616 * Check the various different forms of network peer labeling and determine 3617 * the peer label/SID for the packet; most of the magic actually occurs in 3618 * the security server function security_net_peersid_cmp(). The function 3619 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3620 * or -EACCES if @sid is invalid due to inconsistencies with the different 3621 * peer labels. 3622 * 3623 */ 3624 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3625 { 3626 int err; 3627 u32 xfrm_sid; 3628 u32 nlbl_sid; 3629 u32 nlbl_type; 3630 3631 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3632 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3633 3634 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3635 if (unlikely(err)) { 3636 printk(KERN_WARNING 3637 "SELinux: failure in selinux_skb_peerlbl_sid()," 3638 " unable to determine packet's peer label\n"); 3639 return -EACCES; 3640 } 3641 3642 return 0; 3643 } 3644 3645 /* socket security operations */ 3646 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3647 u32 perms) 3648 { 3649 struct inode_security_struct *isec; 3650 struct avc_audit_data ad; 3651 u32 sid; 3652 int err = 0; 3653 3654 isec = SOCK_INODE(sock)->i_security; 3655 3656 if (isec->sid == SECINITSID_KERNEL) 3657 goto out; 3658 sid = task_sid(task); 3659 3660 AVC_AUDIT_DATA_INIT(&ad, NET); 3661 ad.u.net.sk = sock->sk; 3662 err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 3663 3664 out: 3665 return err; 3666 } 3667 3668 static int selinux_socket_create(int family, int type, 3669 int protocol, int kern) 3670 { 3671 const struct cred *cred = current_cred(); 3672 const struct task_security_struct *tsec = cred->security; 3673 u32 sid, newsid; 3674 u16 secclass; 3675 int err = 0; 3676 3677 if (kern) 3678 goto out; 3679 3680 sid = tsec->sid; 3681 newsid = tsec->sockcreate_sid ?: sid; 3682 3683 secclass = socket_type_to_security_class(family, type, protocol); 3684 err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL); 3685 3686 out: 3687 return err; 3688 } 3689 3690 static int selinux_socket_post_create(struct socket *sock, int family, 3691 int type, int protocol, int kern) 3692 { 3693 const struct cred *cred = current_cred(); 3694 const struct task_security_struct *tsec = cred->security; 3695 struct inode_security_struct *isec; 3696 struct sk_security_struct *sksec; 3697 u32 sid, newsid; 3698 int err = 0; 3699 3700 sid = tsec->sid; 3701 newsid = tsec->sockcreate_sid; 3702 3703 isec = SOCK_INODE(sock)->i_security; 3704 3705 if (kern) 3706 isec->sid = SECINITSID_KERNEL; 3707 else if (newsid) 3708 isec->sid = newsid; 3709 else 3710 isec->sid = sid; 3711 3712 isec->sclass = socket_type_to_security_class(family, type, protocol); 3713 isec->initialized = 1; 3714 3715 if (sock->sk) { 3716 sksec = sock->sk->sk_security; 3717 sksec->sid = isec->sid; 3718 sksec->sclass = isec->sclass; 3719 err = selinux_netlbl_socket_post_create(sock->sk, family); 3720 } 3721 3722 return err; 3723 } 3724 3725 /* Range of port numbers used to automatically bind. 3726 Need to determine whether we should perform a name_bind 3727 permission check between the socket and the port number. */ 3728 3729 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3730 { 3731 u16 family; 3732 int err; 3733 3734 err = socket_has_perm(current, sock, SOCKET__BIND); 3735 if (err) 3736 goto out; 3737 3738 /* 3739 * If PF_INET or PF_INET6, check name_bind permission for the port. 3740 * Multiple address binding for SCTP is not supported yet: we just 3741 * check the first address now. 3742 */ 3743 family = sock->sk->sk_family; 3744 if (family == PF_INET || family == PF_INET6) { 3745 char *addrp; 3746 struct inode_security_struct *isec; 3747 struct avc_audit_data ad; 3748 struct sockaddr_in *addr4 = NULL; 3749 struct sockaddr_in6 *addr6 = NULL; 3750 unsigned short snum; 3751 struct sock *sk = sock->sk; 3752 u32 sid, node_perm; 3753 3754 isec = SOCK_INODE(sock)->i_security; 3755 3756 if (family == PF_INET) { 3757 addr4 = (struct sockaddr_in *)address; 3758 snum = ntohs(addr4->sin_port); 3759 addrp = (char *)&addr4->sin_addr.s_addr; 3760 } else { 3761 addr6 = (struct sockaddr_in6 *)address; 3762 snum = ntohs(addr6->sin6_port); 3763 addrp = (char *)&addr6->sin6_addr.s6_addr; 3764 } 3765 3766 if (snum) { 3767 int low, high; 3768 3769 inet_get_local_port_range(&low, &high); 3770 3771 if (snum < max(PROT_SOCK, low) || snum > high) { 3772 err = sel_netport_sid(sk->sk_protocol, 3773 snum, &sid); 3774 if (err) 3775 goto out; 3776 AVC_AUDIT_DATA_INIT(&ad, NET); 3777 ad.u.net.sport = htons(snum); 3778 ad.u.net.family = family; 3779 err = avc_has_perm(isec->sid, sid, 3780 isec->sclass, 3781 SOCKET__NAME_BIND, &ad); 3782 if (err) 3783 goto out; 3784 } 3785 } 3786 3787 switch (isec->sclass) { 3788 case SECCLASS_TCP_SOCKET: 3789 node_perm = TCP_SOCKET__NODE_BIND; 3790 break; 3791 3792 case SECCLASS_UDP_SOCKET: 3793 node_perm = UDP_SOCKET__NODE_BIND; 3794 break; 3795 3796 case SECCLASS_DCCP_SOCKET: 3797 node_perm = DCCP_SOCKET__NODE_BIND; 3798 break; 3799 3800 default: 3801 node_perm = RAWIP_SOCKET__NODE_BIND; 3802 break; 3803 } 3804 3805 err = sel_netnode_sid(addrp, family, &sid); 3806 if (err) 3807 goto out; 3808 3809 AVC_AUDIT_DATA_INIT(&ad, NET); 3810 ad.u.net.sport = htons(snum); 3811 ad.u.net.family = family; 3812 3813 if (family == PF_INET) 3814 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3815 else 3816 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3817 3818 err = avc_has_perm(isec->sid, sid, 3819 isec->sclass, node_perm, &ad); 3820 if (err) 3821 goto out; 3822 } 3823 out: 3824 return err; 3825 } 3826 3827 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3828 { 3829 struct sock *sk = sock->sk; 3830 struct inode_security_struct *isec; 3831 int err; 3832 3833 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3834 if (err) 3835 return err; 3836 3837 /* 3838 * If a TCP or DCCP socket, check name_connect permission for the port. 3839 */ 3840 isec = SOCK_INODE(sock)->i_security; 3841 if (isec->sclass == SECCLASS_TCP_SOCKET || 3842 isec->sclass == SECCLASS_DCCP_SOCKET) { 3843 struct avc_audit_data ad; 3844 struct sockaddr_in *addr4 = NULL; 3845 struct sockaddr_in6 *addr6 = NULL; 3846 unsigned short snum; 3847 u32 sid, perm; 3848 3849 if (sk->sk_family == PF_INET) { 3850 addr4 = (struct sockaddr_in *)address; 3851 if (addrlen < sizeof(struct sockaddr_in)) 3852 return -EINVAL; 3853 snum = ntohs(addr4->sin_port); 3854 } else { 3855 addr6 = (struct sockaddr_in6 *)address; 3856 if (addrlen < SIN6_LEN_RFC2133) 3857 return -EINVAL; 3858 snum = ntohs(addr6->sin6_port); 3859 } 3860 3861 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3862 if (err) 3863 goto out; 3864 3865 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3866 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3867 3868 AVC_AUDIT_DATA_INIT(&ad, NET); 3869 ad.u.net.dport = htons(snum); 3870 ad.u.net.family = sk->sk_family; 3871 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3872 if (err) 3873 goto out; 3874 } 3875 3876 err = selinux_netlbl_socket_connect(sk, address); 3877 3878 out: 3879 return err; 3880 } 3881 3882 static int selinux_socket_listen(struct socket *sock, int backlog) 3883 { 3884 return socket_has_perm(current, sock, SOCKET__LISTEN); 3885 } 3886 3887 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3888 { 3889 int err; 3890 struct inode_security_struct *isec; 3891 struct inode_security_struct *newisec; 3892 3893 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3894 if (err) 3895 return err; 3896 3897 newisec = SOCK_INODE(newsock)->i_security; 3898 3899 isec = SOCK_INODE(sock)->i_security; 3900 newisec->sclass = isec->sclass; 3901 newisec->sid = isec->sid; 3902 newisec->initialized = 1; 3903 3904 return 0; 3905 } 3906 3907 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3908 int size) 3909 { 3910 return socket_has_perm(current, sock, SOCKET__WRITE); 3911 } 3912 3913 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3914 int size, int flags) 3915 { 3916 return socket_has_perm(current, sock, SOCKET__READ); 3917 } 3918 3919 static int selinux_socket_getsockname(struct socket *sock) 3920 { 3921 return socket_has_perm(current, sock, SOCKET__GETATTR); 3922 } 3923 3924 static int selinux_socket_getpeername(struct socket *sock) 3925 { 3926 return socket_has_perm(current, sock, SOCKET__GETATTR); 3927 } 3928 3929 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3930 { 3931 int err; 3932 3933 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3934 if (err) 3935 return err; 3936 3937 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3938 } 3939 3940 static int selinux_socket_getsockopt(struct socket *sock, int level, 3941 int optname) 3942 { 3943 return socket_has_perm(current, sock, SOCKET__GETOPT); 3944 } 3945 3946 static int selinux_socket_shutdown(struct socket *sock, int how) 3947 { 3948 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3949 } 3950 3951 static int selinux_socket_unix_stream_connect(struct socket *sock, 3952 struct socket *other, 3953 struct sock *newsk) 3954 { 3955 struct sk_security_struct *ssec; 3956 struct inode_security_struct *isec; 3957 struct inode_security_struct *other_isec; 3958 struct avc_audit_data ad; 3959 int err; 3960 3961 isec = SOCK_INODE(sock)->i_security; 3962 other_isec = SOCK_INODE(other)->i_security; 3963 3964 AVC_AUDIT_DATA_INIT(&ad, NET); 3965 ad.u.net.sk = other->sk; 3966 3967 err = avc_has_perm(isec->sid, other_isec->sid, 3968 isec->sclass, 3969 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3970 if (err) 3971 return err; 3972 3973 /* connecting socket */ 3974 ssec = sock->sk->sk_security; 3975 ssec->peer_sid = other_isec->sid; 3976 3977 /* server child socket */ 3978 ssec = newsk->sk_security; 3979 ssec->peer_sid = isec->sid; 3980 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3981 3982 return err; 3983 } 3984 3985 static int selinux_socket_unix_may_send(struct socket *sock, 3986 struct socket *other) 3987 { 3988 struct inode_security_struct *isec; 3989 struct inode_security_struct *other_isec; 3990 struct avc_audit_data ad; 3991 int err; 3992 3993 isec = SOCK_INODE(sock)->i_security; 3994 other_isec = SOCK_INODE(other)->i_security; 3995 3996 AVC_AUDIT_DATA_INIT(&ad, NET); 3997 ad.u.net.sk = other->sk; 3998 3999 err = avc_has_perm(isec->sid, other_isec->sid, 4000 isec->sclass, SOCKET__SENDTO, &ad); 4001 if (err) 4002 return err; 4003 4004 return 0; 4005 } 4006 4007 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 4008 u32 peer_sid, 4009 struct avc_audit_data *ad) 4010 { 4011 int err; 4012 u32 if_sid; 4013 u32 node_sid; 4014 4015 err = sel_netif_sid(ifindex, &if_sid); 4016 if (err) 4017 return err; 4018 err = avc_has_perm(peer_sid, if_sid, 4019 SECCLASS_NETIF, NETIF__INGRESS, ad); 4020 if (err) 4021 return err; 4022 4023 err = sel_netnode_sid(addrp, family, &node_sid); 4024 if (err) 4025 return err; 4026 return avc_has_perm(peer_sid, node_sid, 4027 SECCLASS_NODE, NODE__RECVFROM, ad); 4028 } 4029 4030 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4031 u16 family) 4032 { 4033 int err = 0; 4034 struct sk_security_struct *sksec = sk->sk_security; 4035 u32 peer_sid; 4036 u32 sk_sid = sksec->sid; 4037 struct avc_audit_data ad; 4038 char *addrp; 4039 4040 AVC_AUDIT_DATA_INIT(&ad, NET); 4041 ad.u.net.netif = skb->iif; 4042 ad.u.net.family = family; 4043 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4044 if (err) 4045 return err; 4046 4047 if (selinux_secmark_enabled()) { 4048 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4049 PACKET__RECV, &ad); 4050 if (err) 4051 return err; 4052 } 4053 4054 if (selinux_policycap_netpeer) { 4055 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4056 if (err) 4057 return err; 4058 err = avc_has_perm(sk_sid, peer_sid, 4059 SECCLASS_PEER, PEER__RECV, &ad); 4060 if (err) 4061 selinux_netlbl_err(skb, err, 0); 4062 } else { 4063 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4064 if (err) 4065 return err; 4066 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4067 } 4068 4069 return err; 4070 } 4071 4072 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4073 { 4074 int err; 4075 struct sk_security_struct *sksec = sk->sk_security; 4076 u16 family = sk->sk_family; 4077 u32 sk_sid = sksec->sid; 4078 struct avc_audit_data ad; 4079 char *addrp; 4080 u8 secmark_active; 4081 u8 peerlbl_active; 4082 4083 if (family != PF_INET && family != PF_INET6) 4084 return 0; 4085 4086 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4087 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4088 family = PF_INET; 4089 4090 /* If any sort of compatibility mode is enabled then handoff processing 4091 * to the selinux_sock_rcv_skb_compat() function to deal with the 4092 * special handling. We do this in an attempt to keep this function 4093 * as fast and as clean as possible. */ 4094 if (!selinux_policycap_netpeer) 4095 return selinux_sock_rcv_skb_compat(sk, skb, family); 4096 4097 secmark_active = selinux_secmark_enabled(); 4098 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4099 if (!secmark_active && !peerlbl_active) 4100 return 0; 4101 4102 AVC_AUDIT_DATA_INIT(&ad, NET); 4103 ad.u.net.netif = skb->iif; 4104 ad.u.net.family = family; 4105 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4106 if (err) 4107 return err; 4108 4109 if (peerlbl_active) { 4110 u32 peer_sid; 4111 4112 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4113 if (err) 4114 return err; 4115 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family, 4116 peer_sid, &ad); 4117 if (err) { 4118 selinux_netlbl_err(skb, err, 0); 4119 return err; 4120 } 4121 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4122 PEER__RECV, &ad); 4123 if (err) 4124 selinux_netlbl_err(skb, err, 0); 4125 } 4126 4127 if (secmark_active) { 4128 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4129 PACKET__RECV, &ad); 4130 if (err) 4131 return err; 4132 } 4133 4134 return err; 4135 } 4136 4137 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4138 int __user *optlen, unsigned len) 4139 { 4140 int err = 0; 4141 char *scontext; 4142 u32 scontext_len; 4143 struct sk_security_struct *ssec; 4144 struct inode_security_struct *isec; 4145 u32 peer_sid = SECSID_NULL; 4146 4147 isec = SOCK_INODE(sock)->i_security; 4148 4149 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4150 isec->sclass == SECCLASS_TCP_SOCKET) { 4151 ssec = sock->sk->sk_security; 4152 peer_sid = ssec->peer_sid; 4153 } 4154 if (peer_sid == SECSID_NULL) { 4155 err = -ENOPROTOOPT; 4156 goto out; 4157 } 4158 4159 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4160 4161 if (err) 4162 goto out; 4163 4164 if (scontext_len > len) { 4165 err = -ERANGE; 4166 goto out_len; 4167 } 4168 4169 if (copy_to_user(optval, scontext, scontext_len)) 4170 err = -EFAULT; 4171 4172 out_len: 4173 if (put_user(scontext_len, optlen)) 4174 err = -EFAULT; 4175 4176 kfree(scontext); 4177 out: 4178 return err; 4179 } 4180 4181 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4182 { 4183 u32 peer_secid = SECSID_NULL; 4184 u16 family; 4185 4186 if (skb && skb->protocol == htons(ETH_P_IP)) 4187 family = PF_INET; 4188 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4189 family = PF_INET6; 4190 else if (sock) 4191 family = sock->sk->sk_family; 4192 else 4193 goto out; 4194 4195 if (sock && family == PF_UNIX) 4196 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4197 else if (skb) 4198 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4199 4200 out: 4201 *secid = peer_secid; 4202 if (peer_secid == SECSID_NULL) 4203 return -EINVAL; 4204 return 0; 4205 } 4206 4207 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4208 { 4209 return sk_alloc_security(sk, family, priority); 4210 } 4211 4212 static void selinux_sk_free_security(struct sock *sk) 4213 { 4214 sk_free_security(sk); 4215 } 4216 4217 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4218 { 4219 struct sk_security_struct *ssec = sk->sk_security; 4220 struct sk_security_struct *newssec = newsk->sk_security; 4221 4222 newssec->sid = ssec->sid; 4223 newssec->peer_sid = ssec->peer_sid; 4224 newssec->sclass = ssec->sclass; 4225 4226 selinux_netlbl_sk_security_reset(newssec); 4227 } 4228 4229 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4230 { 4231 if (!sk) 4232 *secid = SECINITSID_ANY_SOCKET; 4233 else { 4234 struct sk_security_struct *sksec = sk->sk_security; 4235 4236 *secid = sksec->sid; 4237 } 4238 } 4239 4240 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4241 { 4242 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4243 struct sk_security_struct *sksec = sk->sk_security; 4244 4245 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4246 sk->sk_family == PF_UNIX) 4247 isec->sid = sksec->sid; 4248 sksec->sclass = isec->sclass; 4249 } 4250 4251 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4252 struct request_sock *req) 4253 { 4254 struct sk_security_struct *sksec = sk->sk_security; 4255 int err; 4256 u16 family = sk->sk_family; 4257 u32 newsid; 4258 u32 peersid; 4259 4260 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4261 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4262 family = PF_INET; 4263 4264 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4265 if (err) 4266 return err; 4267 if (peersid == SECSID_NULL) { 4268 req->secid = sksec->sid; 4269 req->peer_secid = SECSID_NULL; 4270 } else { 4271 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4272 if (err) 4273 return err; 4274 req->secid = newsid; 4275 req->peer_secid = peersid; 4276 } 4277 4278 return selinux_netlbl_inet_conn_request(req, family); 4279 } 4280 4281 static void selinux_inet_csk_clone(struct sock *newsk, 4282 const struct request_sock *req) 4283 { 4284 struct sk_security_struct *newsksec = newsk->sk_security; 4285 4286 newsksec->sid = req->secid; 4287 newsksec->peer_sid = req->peer_secid; 4288 /* NOTE: Ideally, we should also get the isec->sid for the 4289 new socket in sync, but we don't have the isec available yet. 4290 So we will wait until sock_graft to do it, by which 4291 time it will have been created and available. */ 4292 4293 /* We don't need to take any sort of lock here as we are the only 4294 * thread with access to newsksec */ 4295 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4296 } 4297 4298 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4299 { 4300 u16 family = sk->sk_family; 4301 struct sk_security_struct *sksec = sk->sk_security; 4302 4303 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4304 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4305 family = PF_INET; 4306 4307 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4308 } 4309 4310 static void selinux_req_classify_flow(const struct request_sock *req, 4311 struct flowi *fl) 4312 { 4313 fl->secid = req->secid; 4314 } 4315 4316 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4317 { 4318 int err = 0; 4319 u32 perm; 4320 struct nlmsghdr *nlh; 4321 struct socket *sock = sk->sk_socket; 4322 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4323 4324 if (skb->len < NLMSG_SPACE(0)) { 4325 err = -EINVAL; 4326 goto out; 4327 } 4328 nlh = nlmsg_hdr(skb); 4329 4330 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4331 if (err) { 4332 if (err == -EINVAL) { 4333 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4334 "SELinux: unrecognized netlink message" 4335 " type=%hu for sclass=%hu\n", 4336 nlh->nlmsg_type, isec->sclass); 4337 if (!selinux_enforcing || security_get_allow_unknown()) 4338 err = 0; 4339 } 4340 4341 /* Ignore */ 4342 if (err == -ENOENT) 4343 err = 0; 4344 goto out; 4345 } 4346 4347 err = socket_has_perm(current, sock, perm); 4348 out: 4349 return err; 4350 } 4351 4352 #ifdef CONFIG_NETFILTER 4353 4354 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4355 u16 family) 4356 { 4357 int err; 4358 char *addrp; 4359 u32 peer_sid; 4360 struct avc_audit_data ad; 4361 u8 secmark_active; 4362 u8 netlbl_active; 4363 u8 peerlbl_active; 4364 4365 if (!selinux_policycap_netpeer) 4366 return NF_ACCEPT; 4367 4368 secmark_active = selinux_secmark_enabled(); 4369 netlbl_active = netlbl_enabled(); 4370 peerlbl_active = netlbl_active || selinux_xfrm_enabled(); 4371 if (!secmark_active && !peerlbl_active) 4372 return NF_ACCEPT; 4373 4374 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4375 return NF_DROP; 4376 4377 AVC_AUDIT_DATA_INIT(&ad, NET); 4378 ad.u.net.netif = ifindex; 4379 ad.u.net.family = family; 4380 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4381 return NF_DROP; 4382 4383 if (peerlbl_active) { 4384 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4385 peer_sid, &ad); 4386 if (err) { 4387 selinux_netlbl_err(skb, err, 1); 4388 return NF_DROP; 4389 } 4390 } 4391 4392 if (secmark_active) 4393 if (avc_has_perm(peer_sid, skb->secmark, 4394 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4395 return NF_DROP; 4396 4397 if (netlbl_active) 4398 /* we do this in the FORWARD path and not the POST_ROUTING 4399 * path because we want to make sure we apply the necessary 4400 * labeling before IPsec is applied so we can leverage AH 4401 * protection */ 4402 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4403 return NF_DROP; 4404 4405 return NF_ACCEPT; 4406 } 4407 4408 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4409 struct sk_buff *skb, 4410 const struct net_device *in, 4411 const struct net_device *out, 4412 int (*okfn)(struct sk_buff *)) 4413 { 4414 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4415 } 4416 4417 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4418 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4419 struct sk_buff *skb, 4420 const struct net_device *in, 4421 const struct net_device *out, 4422 int (*okfn)(struct sk_buff *)) 4423 { 4424 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4425 } 4426 #endif /* IPV6 */ 4427 4428 static unsigned int selinux_ip_output(struct sk_buff *skb, 4429 u16 family) 4430 { 4431 u32 sid; 4432 4433 if (!netlbl_enabled()) 4434 return NF_ACCEPT; 4435 4436 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4437 * because we want to make sure we apply the necessary labeling 4438 * before IPsec is applied so we can leverage AH protection */ 4439 if (skb->sk) { 4440 struct sk_security_struct *sksec = skb->sk->sk_security; 4441 sid = sksec->sid; 4442 } else 4443 sid = SECINITSID_KERNEL; 4444 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4445 return NF_DROP; 4446 4447 return NF_ACCEPT; 4448 } 4449 4450 static unsigned int selinux_ipv4_output(unsigned int hooknum, 4451 struct sk_buff *skb, 4452 const struct net_device *in, 4453 const struct net_device *out, 4454 int (*okfn)(struct sk_buff *)) 4455 { 4456 return selinux_ip_output(skb, PF_INET); 4457 } 4458 4459 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4460 int ifindex, 4461 u16 family) 4462 { 4463 struct sock *sk = skb->sk; 4464 struct sk_security_struct *sksec; 4465 struct avc_audit_data ad; 4466 char *addrp; 4467 u8 proto; 4468 4469 if (sk == NULL) 4470 return NF_ACCEPT; 4471 sksec = sk->sk_security; 4472 4473 AVC_AUDIT_DATA_INIT(&ad, NET); 4474 ad.u.net.netif = ifindex; 4475 ad.u.net.family = family; 4476 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4477 return NF_DROP; 4478 4479 if (selinux_secmark_enabled()) 4480 if (avc_has_perm(sksec->sid, skb->secmark, 4481 SECCLASS_PACKET, PACKET__SEND, &ad)) 4482 return NF_DROP; 4483 4484 if (selinux_policycap_netpeer) 4485 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4486 return NF_DROP; 4487 4488 return NF_ACCEPT; 4489 } 4490 4491 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4492 u16 family) 4493 { 4494 u32 secmark_perm; 4495 u32 peer_sid; 4496 struct sock *sk; 4497 struct avc_audit_data ad; 4498 char *addrp; 4499 u8 secmark_active; 4500 u8 peerlbl_active; 4501 4502 /* If any sort of compatibility mode is enabled then handoff processing 4503 * to the selinux_ip_postroute_compat() function to deal with the 4504 * special handling. We do this in an attempt to keep this function 4505 * as fast and as clean as possible. */ 4506 if (!selinux_policycap_netpeer) 4507 return selinux_ip_postroute_compat(skb, ifindex, family); 4508 #ifdef CONFIG_XFRM 4509 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4510 * packet transformation so allow the packet to pass without any checks 4511 * since we'll have another chance to perform access control checks 4512 * when the packet is on it's final way out. 4513 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4514 * is NULL, in this case go ahead and apply access control. */ 4515 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL) 4516 return NF_ACCEPT; 4517 #endif 4518 secmark_active = selinux_secmark_enabled(); 4519 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4520 if (!secmark_active && !peerlbl_active) 4521 return NF_ACCEPT; 4522 4523 /* if the packet is being forwarded then get the peer label from the 4524 * packet itself; otherwise check to see if it is from a local 4525 * application or the kernel, if from an application get the peer label 4526 * from the sending socket, otherwise use the kernel's sid */ 4527 sk = skb->sk; 4528 if (sk == NULL) { 4529 switch (family) { 4530 case PF_INET: 4531 if (IPCB(skb)->flags & IPSKB_FORWARDED) 4532 secmark_perm = PACKET__FORWARD_OUT; 4533 else 4534 secmark_perm = PACKET__SEND; 4535 break; 4536 case PF_INET6: 4537 if (IP6CB(skb)->flags & IP6SKB_FORWARDED) 4538 secmark_perm = PACKET__FORWARD_OUT; 4539 else 4540 secmark_perm = PACKET__SEND; 4541 break; 4542 default: 4543 return NF_DROP; 4544 } 4545 if (secmark_perm == PACKET__FORWARD_OUT) { 4546 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4547 return NF_DROP; 4548 } else 4549 peer_sid = SECINITSID_KERNEL; 4550 } else { 4551 struct sk_security_struct *sksec = sk->sk_security; 4552 peer_sid = sksec->sid; 4553 secmark_perm = PACKET__SEND; 4554 } 4555 4556 AVC_AUDIT_DATA_INIT(&ad, NET); 4557 ad.u.net.netif = ifindex; 4558 ad.u.net.family = family; 4559 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 4560 return NF_DROP; 4561 4562 if (secmark_active) 4563 if (avc_has_perm(peer_sid, skb->secmark, 4564 SECCLASS_PACKET, secmark_perm, &ad)) 4565 return NF_DROP; 4566 4567 if (peerlbl_active) { 4568 u32 if_sid; 4569 u32 node_sid; 4570 4571 if (sel_netif_sid(ifindex, &if_sid)) 4572 return NF_DROP; 4573 if (avc_has_perm(peer_sid, if_sid, 4574 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4575 return NF_DROP; 4576 4577 if (sel_netnode_sid(addrp, family, &node_sid)) 4578 return NF_DROP; 4579 if (avc_has_perm(peer_sid, node_sid, 4580 SECCLASS_NODE, NODE__SENDTO, &ad)) 4581 return NF_DROP; 4582 } 4583 4584 return NF_ACCEPT; 4585 } 4586 4587 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4588 struct sk_buff *skb, 4589 const struct net_device *in, 4590 const struct net_device *out, 4591 int (*okfn)(struct sk_buff *)) 4592 { 4593 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4594 } 4595 4596 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4597 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4598 struct sk_buff *skb, 4599 const struct net_device *in, 4600 const struct net_device *out, 4601 int (*okfn)(struct sk_buff *)) 4602 { 4603 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4604 } 4605 #endif /* IPV6 */ 4606 4607 #endif /* CONFIG_NETFILTER */ 4608 4609 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4610 { 4611 int err; 4612 4613 err = cap_netlink_send(sk, skb); 4614 if (err) 4615 return err; 4616 4617 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4618 err = selinux_nlmsg_perm(sk, skb); 4619 4620 return err; 4621 } 4622 4623 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4624 { 4625 int err; 4626 struct avc_audit_data ad; 4627 4628 err = cap_netlink_recv(skb, capability); 4629 if (err) 4630 return err; 4631 4632 AVC_AUDIT_DATA_INIT(&ad, CAP); 4633 ad.u.cap = capability; 4634 4635 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4636 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4637 } 4638 4639 static int ipc_alloc_security(struct task_struct *task, 4640 struct kern_ipc_perm *perm, 4641 u16 sclass) 4642 { 4643 struct ipc_security_struct *isec; 4644 u32 sid; 4645 4646 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4647 if (!isec) 4648 return -ENOMEM; 4649 4650 sid = task_sid(task); 4651 isec->sclass = sclass; 4652 isec->sid = sid; 4653 perm->security = isec; 4654 4655 return 0; 4656 } 4657 4658 static void ipc_free_security(struct kern_ipc_perm *perm) 4659 { 4660 struct ipc_security_struct *isec = perm->security; 4661 perm->security = NULL; 4662 kfree(isec); 4663 } 4664 4665 static int msg_msg_alloc_security(struct msg_msg *msg) 4666 { 4667 struct msg_security_struct *msec; 4668 4669 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4670 if (!msec) 4671 return -ENOMEM; 4672 4673 msec->sid = SECINITSID_UNLABELED; 4674 msg->security = msec; 4675 4676 return 0; 4677 } 4678 4679 static void msg_msg_free_security(struct msg_msg *msg) 4680 { 4681 struct msg_security_struct *msec = msg->security; 4682 4683 msg->security = NULL; 4684 kfree(msec); 4685 } 4686 4687 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4688 u32 perms) 4689 { 4690 struct ipc_security_struct *isec; 4691 struct avc_audit_data ad; 4692 u32 sid = current_sid(); 4693 4694 isec = ipc_perms->security; 4695 4696 AVC_AUDIT_DATA_INIT(&ad, IPC); 4697 ad.u.ipc_id = ipc_perms->key; 4698 4699 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 4700 } 4701 4702 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4703 { 4704 return msg_msg_alloc_security(msg); 4705 } 4706 4707 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4708 { 4709 msg_msg_free_security(msg); 4710 } 4711 4712 /* message queue security operations */ 4713 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4714 { 4715 struct ipc_security_struct *isec; 4716 struct avc_audit_data ad; 4717 u32 sid = current_sid(); 4718 int rc; 4719 4720 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4721 if (rc) 4722 return rc; 4723 4724 isec = msq->q_perm.security; 4725 4726 AVC_AUDIT_DATA_INIT(&ad, IPC); 4727 ad.u.ipc_id = msq->q_perm.key; 4728 4729 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4730 MSGQ__CREATE, &ad); 4731 if (rc) { 4732 ipc_free_security(&msq->q_perm); 4733 return rc; 4734 } 4735 return 0; 4736 } 4737 4738 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4739 { 4740 ipc_free_security(&msq->q_perm); 4741 } 4742 4743 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4744 { 4745 struct ipc_security_struct *isec; 4746 struct avc_audit_data ad; 4747 u32 sid = current_sid(); 4748 4749 isec = msq->q_perm.security; 4750 4751 AVC_AUDIT_DATA_INIT(&ad, IPC); 4752 ad.u.ipc_id = msq->q_perm.key; 4753 4754 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4755 MSGQ__ASSOCIATE, &ad); 4756 } 4757 4758 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4759 { 4760 int err; 4761 int perms; 4762 4763 switch (cmd) { 4764 case IPC_INFO: 4765 case MSG_INFO: 4766 /* No specific object, just general system-wide information. */ 4767 return task_has_system(current, SYSTEM__IPC_INFO); 4768 case IPC_STAT: 4769 case MSG_STAT: 4770 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4771 break; 4772 case IPC_SET: 4773 perms = MSGQ__SETATTR; 4774 break; 4775 case IPC_RMID: 4776 perms = MSGQ__DESTROY; 4777 break; 4778 default: 4779 return 0; 4780 } 4781 4782 err = ipc_has_perm(&msq->q_perm, perms); 4783 return err; 4784 } 4785 4786 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4787 { 4788 struct ipc_security_struct *isec; 4789 struct msg_security_struct *msec; 4790 struct avc_audit_data ad; 4791 u32 sid = current_sid(); 4792 int rc; 4793 4794 isec = msq->q_perm.security; 4795 msec = msg->security; 4796 4797 /* 4798 * First time through, need to assign label to the message 4799 */ 4800 if (msec->sid == SECINITSID_UNLABELED) { 4801 /* 4802 * Compute new sid based on current process and 4803 * message queue this message will be stored in 4804 */ 4805 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 4806 &msec->sid); 4807 if (rc) 4808 return rc; 4809 } 4810 4811 AVC_AUDIT_DATA_INIT(&ad, IPC); 4812 ad.u.ipc_id = msq->q_perm.key; 4813 4814 /* Can this process write to the queue? */ 4815 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4816 MSGQ__WRITE, &ad); 4817 if (!rc) 4818 /* Can this process send the message */ 4819 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 4820 MSG__SEND, &ad); 4821 if (!rc) 4822 /* Can the message be put in the queue? */ 4823 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 4824 MSGQ__ENQUEUE, &ad); 4825 4826 return rc; 4827 } 4828 4829 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4830 struct task_struct *target, 4831 long type, int mode) 4832 { 4833 struct ipc_security_struct *isec; 4834 struct msg_security_struct *msec; 4835 struct avc_audit_data ad; 4836 u32 sid = task_sid(target); 4837 int rc; 4838 4839 isec = msq->q_perm.security; 4840 msec = msg->security; 4841 4842 AVC_AUDIT_DATA_INIT(&ad, IPC); 4843 ad.u.ipc_id = msq->q_perm.key; 4844 4845 rc = avc_has_perm(sid, isec->sid, 4846 SECCLASS_MSGQ, MSGQ__READ, &ad); 4847 if (!rc) 4848 rc = avc_has_perm(sid, msec->sid, 4849 SECCLASS_MSG, MSG__RECEIVE, &ad); 4850 return rc; 4851 } 4852 4853 /* Shared Memory security operations */ 4854 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4855 { 4856 struct ipc_security_struct *isec; 4857 struct avc_audit_data ad; 4858 u32 sid = current_sid(); 4859 int rc; 4860 4861 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4862 if (rc) 4863 return rc; 4864 4865 isec = shp->shm_perm.security; 4866 4867 AVC_AUDIT_DATA_INIT(&ad, IPC); 4868 ad.u.ipc_id = shp->shm_perm.key; 4869 4870 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4871 SHM__CREATE, &ad); 4872 if (rc) { 4873 ipc_free_security(&shp->shm_perm); 4874 return rc; 4875 } 4876 return 0; 4877 } 4878 4879 static void selinux_shm_free_security(struct shmid_kernel *shp) 4880 { 4881 ipc_free_security(&shp->shm_perm); 4882 } 4883 4884 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4885 { 4886 struct ipc_security_struct *isec; 4887 struct avc_audit_data ad; 4888 u32 sid = current_sid(); 4889 4890 isec = shp->shm_perm.security; 4891 4892 AVC_AUDIT_DATA_INIT(&ad, IPC); 4893 ad.u.ipc_id = shp->shm_perm.key; 4894 4895 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4896 SHM__ASSOCIATE, &ad); 4897 } 4898 4899 /* Note, at this point, shp is locked down */ 4900 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4901 { 4902 int perms; 4903 int err; 4904 4905 switch (cmd) { 4906 case IPC_INFO: 4907 case SHM_INFO: 4908 /* No specific object, just general system-wide information. */ 4909 return task_has_system(current, SYSTEM__IPC_INFO); 4910 case IPC_STAT: 4911 case SHM_STAT: 4912 perms = SHM__GETATTR | SHM__ASSOCIATE; 4913 break; 4914 case IPC_SET: 4915 perms = SHM__SETATTR; 4916 break; 4917 case SHM_LOCK: 4918 case SHM_UNLOCK: 4919 perms = SHM__LOCK; 4920 break; 4921 case IPC_RMID: 4922 perms = SHM__DESTROY; 4923 break; 4924 default: 4925 return 0; 4926 } 4927 4928 err = ipc_has_perm(&shp->shm_perm, perms); 4929 return err; 4930 } 4931 4932 static int selinux_shm_shmat(struct shmid_kernel *shp, 4933 char __user *shmaddr, int shmflg) 4934 { 4935 u32 perms; 4936 4937 if (shmflg & SHM_RDONLY) 4938 perms = SHM__READ; 4939 else 4940 perms = SHM__READ | SHM__WRITE; 4941 4942 return ipc_has_perm(&shp->shm_perm, perms); 4943 } 4944 4945 /* Semaphore security operations */ 4946 static int selinux_sem_alloc_security(struct sem_array *sma) 4947 { 4948 struct ipc_security_struct *isec; 4949 struct avc_audit_data ad; 4950 u32 sid = current_sid(); 4951 int rc; 4952 4953 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4954 if (rc) 4955 return rc; 4956 4957 isec = sma->sem_perm.security; 4958 4959 AVC_AUDIT_DATA_INIT(&ad, IPC); 4960 ad.u.ipc_id = sma->sem_perm.key; 4961 4962 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 4963 SEM__CREATE, &ad); 4964 if (rc) { 4965 ipc_free_security(&sma->sem_perm); 4966 return rc; 4967 } 4968 return 0; 4969 } 4970 4971 static void selinux_sem_free_security(struct sem_array *sma) 4972 { 4973 ipc_free_security(&sma->sem_perm); 4974 } 4975 4976 static int selinux_sem_associate(struct sem_array *sma, int semflg) 4977 { 4978 struct ipc_security_struct *isec; 4979 struct avc_audit_data ad; 4980 u32 sid = current_sid(); 4981 4982 isec = sma->sem_perm.security; 4983 4984 AVC_AUDIT_DATA_INIT(&ad, IPC); 4985 ad.u.ipc_id = sma->sem_perm.key; 4986 4987 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 4988 SEM__ASSOCIATE, &ad); 4989 } 4990 4991 /* Note, at this point, sma is locked down */ 4992 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 4993 { 4994 int err; 4995 u32 perms; 4996 4997 switch (cmd) { 4998 case IPC_INFO: 4999 case SEM_INFO: 5000 /* No specific object, just general system-wide information. */ 5001 return task_has_system(current, SYSTEM__IPC_INFO); 5002 case GETPID: 5003 case GETNCNT: 5004 case GETZCNT: 5005 perms = SEM__GETATTR; 5006 break; 5007 case GETVAL: 5008 case GETALL: 5009 perms = SEM__READ; 5010 break; 5011 case SETVAL: 5012 case SETALL: 5013 perms = SEM__WRITE; 5014 break; 5015 case IPC_RMID: 5016 perms = SEM__DESTROY; 5017 break; 5018 case IPC_SET: 5019 perms = SEM__SETATTR; 5020 break; 5021 case IPC_STAT: 5022 case SEM_STAT: 5023 perms = SEM__GETATTR | SEM__ASSOCIATE; 5024 break; 5025 default: 5026 return 0; 5027 } 5028 5029 err = ipc_has_perm(&sma->sem_perm, perms); 5030 return err; 5031 } 5032 5033 static int selinux_sem_semop(struct sem_array *sma, 5034 struct sembuf *sops, unsigned nsops, int alter) 5035 { 5036 u32 perms; 5037 5038 if (alter) 5039 perms = SEM__READ | SEM__WRITE; 5040 else 5041 perms = SEM__READ; 5042 5043 return ipc_has_perm(&sma->sem_perm, perms); 5044 } 5045 5046 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5047 { 5048 u32 av = 0; 5049 5050 av = 0; 5051 if (flag & S_IRUGO) 5052 av |= IPC__UNIX_READ; 5053 if (flag & S_IWUGO) 5054 av |= IPC__UNIX_WRITE; 5055 5056 if (av == 0) 5057 return 0; 5058 5059 return ipc_has_perm(ipcp, av); 5060 } 5061 5062 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5063 { 5064 struct ipc_security_struct *isec = ipcp->security; 5065 *secid = isec->sid; 5066 } 5067 5068 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5069 { 5070 if (inode) 5071 inode_doinit_with_dentry(inode, dentry); 5072 } 5073 5074 static int selinux_getprocattr(struct task_struct *p, 5075 char *name, char **value) 5076 { 5077 const struct task_security_struct *__tsec; 5078 u32 sid; 5079 int error; 5080 unsigned len; 5081 5082 if (current != p) { 5083 error = current_has_perm(p, PROCESS__GETATTR); 5084 if (error) 5085 return error; 5086 } 5087 5088 rcu_read_lock(); 5089 __tsec = __task_cred(p)->security; 5090 5091 if (!strcmp(name, "current")) 5092 sid = __tsec->sid; 5093 else if (!strcmp(name, "prev")) 5094 sid = __tsec->osid; 5095 else if (!strcmp(name, "exec")) 5096 sid = __tsec->exec_sid; 5097 else if (!strcmp(name, "fscreate")) 5098 sid = __tsec->create_sid; 5099 else if (!strcmp(name, "keycreate")) 5100 sid = __tsec->keycreate_sid; 5101 else if (!strcmp(name, "sockcreate")) 5102 sid = __tsec->sockcreate_sid; 5103 else 5104 goto invalid; 5105 rcu_read_unlock(); 5106 5107 if (!sid) 5108 return 0; 5109 5110 error = security_sid_to_context(sid, value, &len); 5111 if (error) 5112 return error; 5113 return len; 5114 5115 invalid: 5116 rcu_read_unlock(); 5117 return -EINVAL; 5118 } 5119 5120 static int selinux_setprocattr(struct task_struct *p, 5121 char *name, void *value, size_t size) 5122 { 5123 struct task_security_struct *tsec; 5124 struct task_struct *tracer; 5125 struct cred *new; 5126 u32 sid = 0, ptsid; 5127 int error; 5128 char *str = value; 5129 5130 if (current != p) { 5131 /* SELinux only allows a process to change its own 5132 security attributes. */ 5133 return -EACCES; 5134 } 5135 5136 /* 5137 * Basic control over ability to set these attributes at all. 5138 * current == p, but we'll pass them separately in case the 5139 * above restriction is ever removed. 5140 */ 5141 if (!strcmp(name, "exec")) 5142 error = current_has_perm(p, PROCESS__SETEXEC); 5143 else if (!strcmp(name, "fscreate")) 5144 error = current_has_perm(p, PROCESS__SETFSCREATE); 5145 else if (!strcmp(name, "keycreate")) 5146 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5147 else if (!strcmp(name, "sockcreate")) 5148 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5149 else if (!strcmp(name, "current")) 5150 error = current_has_perm(p, PROCESS__SETCURRENT); 5151 else 5152 error = -EINVAL; 5153 if (error) 5154 return error; 5155 5156 /* Obtain a SID for the context, if one was specified. */ 5157 if (size && str[1] && str[1] != '\n') { 5158 if (str[size-1] == '\n') { 5159 str[size-1] = 0; 5160 size--; 5161 } 5162 error = security_context_to_sid(value, size, &sid); 5163 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5164 if (!capable(CAP_MAC_ADMIN)) 5165 return error; 5166 error = security_context_to_sid_force(value, size, 5167 &sid); 5168 } 5169 if (error) 5170 return error; 5171 } 5172 5173 new = prepare_creds(); 5174 if (!new) 5175 return -ENOMEM; 5176 5177 /* Permission checking based on the specified context is 5178 performed during the actual operation (execve, 5179 open/mkdir/...), when we know the full context of the 5180 operation. See selinux_bprm_set_creds for the execve 5181 checks and may_create for the file creation checks. The 5182 operation will then fail if the context is not permitted. */ 5183 tsec = new->security; 5184 if (!strcmp(name, "exec")) { 5185 tsec->exec_sid = sid; 5186 } else if (!strcmp(name, "fscreate")) { 5187 tsec->create_sid = sid; 5188 } else if (!strcmp(name, "keycreate")) { 5189 error = may_create_key(sid, p); 5190 if (error) 5191 goto abort_change; 5192 tsec->keycreate_sid = sid; 5193 } else if (!strcmp(name, "sockcreate")) { 5194 tsec->sockcreate_sid = sid; 5195 } else if (!strcmp(name, "current")) { 5196 error = -EINVAL; 5197 if (sid == 0) 5198 goto abort_change; 5199 5200 /* Only allow single threaded processes to change context */ 5201 error = -EPERM; 5202 if (!current_is_single_threaded()) { 5203 error = security_bounded_transition(tsec->sid, sid); 5204 if (error) 5205 goto abort_change; 5206 } 5207 5208 /* Check permissions for the transition. */ 5209 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5210 PROCESS__DYNTRANSITION, NULL); 5211 if (error) 5212 goto abort_change; 5213 5214 /* Check for ptracing, and update the task SID if ok. 5215 Otherwise, leave SID unchanged and fail. */ 5216 ptsid = 0; 5217 task_lock(p); 5218 tracer = tracehook_tracer_task(p); 5219 if (tracer) 5220 ptsid = task_sid(tracer); 5221 task_unlock(p); 5222 5223 if (tracer) { 5224 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5225 PROCESS__PTRACE, NULL); 5226 if (error) 5227 goto abort_change; 5228 } 5229 5230 tsec->sid = sid; 5231 } else { 5232 error = -EINVAL; 5233 goto abort_change; 5234 } 5235 5236 commit_creds(new); 5237 return size; 5238 5239 abort_change: 5240 abort_creds(new); 5241 return error; 5242 } 5243 5244 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5245 { 5246 return security_sid_to_context(secid, secdata, seclen); 5247 } 5248 5249 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5250 { 5251 return security_context_to_sid(secdata, seclen, secid); 5252 } 5253 5254 static void selinux_release_secctx(char *secdata, u32 seclen) 5255 { 5256 kfree(secdata); 5257 } 5258 5259 #ifdef CONFIG_KEYS 5260 5261 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5262 unsigned long flags) 5263 { 5264 const struct task_security_struct *tsec; 5265 struct key_security_struct *ksec; 5266 5267 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5268 if (!ksec) 5269 return -ENOMEM; 5270 5271 tsec = cred->security; 5272 if (tsec->keycreate_sid) 5273 ksec->sid = tsec->keycreate_sid; 5274 else 5275 ksec->sid = tsec->sid; 5276 5277 k->security = ksec; 5278 return 0; 5279 } 5280 5281 static void selinux_key_free(struct key *k) 5282 { 5283 struct key_security_struct *ksec = k->security; 5284 5285 k->security = NULL; 5286 kfree(ksec); 5287 } 5288 5289 static int selinux_key_permission(key_ref_t key_ref, 5290 const struct cred *cred, 5291 key_perm_t perm) 5292 { 5293 struct key *key; 5294 struct key_security_struct *ksec; 5295 u32 sid; 5296 5297 /* if no specific permissions are requested, we skip the 5298 permission check. No serious, additional covert channels 5299 appear to be created. */ 5300 if (perm == 0) 5301 return 0; 5302 5303 sid = cred_sid(cred); 5304 5305 key = key_ref_to_ptr(key_ref); 5306 ksec = key->security; 5307 5308 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5309 } 5310 5311 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5312 { 5313 struct key_security_struct *ksec = key->security; 5314 char *context = NULL; 5315 unsigned len; 5316 int rc; 5317 5318 rc = security_sid_to_context(ksec->sid, &context, &len); 5319 if (!rc) 5320 rc = len; 5321 *_buffer = context; 5322 return rc; 5323 } 5324 5325 #endif 5326 5327 static struct security_operations selinux_ops = { 5328 .name = "selinux", 5329 5330 .ptrace_access_check = selinux_ptrace_access_check, 5331 .ptrace_traceme = selinux_ptrace_traceme, 5332 .capget = selinux_capget, 5333 .capset = selinux_capset, 5334 .sysctl = selinux_sysctl, 5335 .capable = selinux_capable, 5336 .quotactl = selinux_quotactl, 5337 .quota_on = selinux_quota_on, 5338 .syslog = selinux_syslog, 5339 .vm_enough_memory = selinux_vm_enough_memory, 5340 5341 .netlink_send = selinux_netlink_send, 5342 .netlink_recv = selinux_netlink_recv, 5343 5344 .bprm_set_creds = selinux_bprm_set_creds, 5345 .bprm_committing_creds = selinux_bprm_committing_creds, 5346 .bprm_committed_creds = selinux_bprm_committed_creds, 5347 .bprm_secureexec = selinux_bprm_secureexec, 5348 5349 .sb_alloc_security = selinux_sb_alloc_security, 5350 .sb_free_security = selinux_sb_free_security, 5351 .sb_copy_data = selinux_sb_copy_data, 5352 .sb_kern_mount = selinux_sb_kern_mount, 5353 .sb_show_options = selinux_sb_show_options, 5354 .sb_statfs = selinux_sb_statfs, 5355 .sb_mount = selinux_mount, 5356 .sb_umount = selinux_umount, 5357 .sb_set_mnt_opts = selinux_set_mnt_opts, 5358 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5359 .sb_parse_opts_str = selinux_parse_opts_str, 5360 5361 5362 .inode_alloc_security = selinux_inode_alloc_security, 5363 .inode_free_security = selinux_inode_free_security, 5364 .inode_init_security = selinux_inode_init_security, 5365 .inode_create = selinux_inode_create, 5366 .inode_link = selinux_inode_link, 5367 .inode_unlink = selinux_inode_unlink, 5368 .inode_symlink = selinux_inode_symlink, 5369 .inode_mkdir = selinux_inode_mkdir, 5370 .inode_rmdir = selinux_inode_rmdir, 5371 .inode_mknod = selinux_inode_mknod, 5372 .inode_rename = selinux_inode_rename, 5373 .inode_readlink = selinux_inode_readlink, 5374 .inode_follow_link = selinux_inode_follow_link, 5375 .inode_permission = selinux_inode_permission, 5376 .inode_setattr = selinux_inode_setattr, 5377 .inode_getattr = selinux_inode_getattr, 5378 .inode_setxattr = selinux_inode_setxattr, 5379 .inode_post_setxattr = selinux_inode_post_setxattr, 5380 .inode_getxattr = selinux_inode_getxattr, 5381 .inode_listxattr = selinux_inode_listxattr, 5382 .inode_removexattr = selinux_inode_removexattr, 5383 .inode_getsecurity = selinux_inode_getsecurity, 5384 .inode_setsecurity = selinux_inode_setsecurity, 5385 .inode_listsecurity = selinux_inode_listsecurity, 5386 .inode_getsecid = selinux_inode_getsecid, 5387 5388 .file_permission = selinux_file_permission, 5389 .file_alloc_security = selinux_file_alloc_security, 5390 .file_free_security = selinux_file_free_security, 5391 .file_ioctl = selinux_file_ioctl, 5392 .file_mmap = selinux_file_mmap, 5393 .file_mprotect = selinux_file_mprotect, 5394 .file_lock = selinux_file_lock, 5395 .file_fcntl = selinux_file_fcntl, 5396 .file_set_fowner = selinux_file_set_fowner, 5397 .file_send_sigiotask = selinux_file_send_sigiotask, 5398 .file_receive = selinux_file_receive, 5399 5400 .dentry_open = selinux_dentry_open, 5401 5402 .task_create = selinux_task_create, 5403 .cred_free = selinux_cred_free, 5404 .cred_prepare = selinux_cred_prepare, 5405 .kernel_act_as = selinux_kernel_act_as, 5406 .kernel_create_files_as = selinux_kernel_create_files_as, 5407 .task_setpgid = selinux_task_setpgid, 5408 .task_getpgid = selinux_task_getpgid, 5409 .task_getsid = selinux_task_getsid, 5410 .task_getsecid = selinux_task_getsecid, 5411 .task_setnice = selinux_task_setnice, 5412 .task_setioprio = selinux_task_setioprio, 5413 .task_getioprio = selinux_task_getioprio, 5414 .task_setrlimit = selinux_task_setrlimit, 5415 .task_setscheduler = selinux_task_setscheduler, 5416 .task_getscheduler = selinux_task_getscheduler, 5417 .task_movememory = selinux_task_movememory, 5418 .task_kill = selinux_task_kill, 5419 .task_wait = selinux_task_wait, 5420 .task_to_inode = selinux_task_to_inode, 5421 5422 .ipc_permission = selinux_ipc_permission, 5423 .ipc_getsecid = selinux_ipc_getsecid, 5424 5425 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5426 .msg_msg_free_security = selinux_msg_msg_free_security, 5427 5428 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5429 .msg_queue_free_security = selinux_msg_queue_free_security, 5430 .msg_queue_associate = selinux_msg_queue_associate, 5431 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5432 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5433 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5434 5435 .shm_alloc_security = selinux_shm_alloc_security, 5436 .shm_free_security = selinux_shm_free_security, 5437 .shm_associate = selinux_shm_associate, 5438 .shm_shmctl = selinux_shm_shmctl, 5439 .shm_shmat = selinux_shm_shmat, 5440 5441 .sem_alloc_security = selinux_sem_alloc_security, 5442 .sem_free_security = selinux_sem_free_security, 5443 .sem_associate = selinux_sem_associate, 5444 .sem_semctl = selinux_sem_semctl, 5445 .sem_semop = selinux_sem_semop, 5446 5447 .d_instantiate = selinux_d_instantiate, 5448 5449 .getprocattr = selinux_getprocattr, 5450 .setprocattr = selinux_setprocattr, 5451 5452 .secid_to_secctx = selinux_secid_to_secctx, 5453 .secctx_to_secid = selinux_secctx_to_secid, 5454 .release_secctx = selinux_release_secctx, 5455 5456 .unix_stream_connect = selinux_socket_unix_stream_connect, 5457 .unix_may_send = selinux_socket_unix_may_send, 5458 5459 .socket_create = selinux_socket_create, 5460 .socket_post_create = selinux_socket_post_create, 5461 .socket_bind = selinux_socket_bind, 5462 .socket_connect = selinux_socket_connect, 5463 .socket_listen = selinux_socket_listen, 5464 .socket_accept = selinux_socket_accept, 5465 .socket_sendmsg = selinux_socket_sendmsg, 5466 .socket_recvmsg = selinux_socket_recvmsg, 5467 .socket_getsockname = selinux_socket_getsockname, 5468 .socket_getpeername = selinux_socket_getpeername, 5469 .socket_getsockopt = selinux_socket_getsockopt, 5470 .socket_setsockopt = selinux_socket_setsockopt, 5471 .socket_shutdown = selinux_socket_shutdown, 5472 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5473 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5474 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5475 .sk_alloc_security = selinux_sk_alloc_security, 5476 .sk_free_security = selinux_sk_free_security, 5477 .sk_clone_security = selinux_sk_clone_security, 5478 .sk_getsecid = selinux_sk_getsecid, 5479 .sock_graft = selinux_sock_graft, 5480 .inet_conn_request = selinux_inet_conn_request, 5481 .inet_csk_clone = selinux_inet_csk_clone, 5482 .inet_conn_established = selinux_inet_conn_established, 5483 .req_classify_flow = selinux_req_classify_flow, 5484 5485 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5486 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5487 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5488 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5489 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5490 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5491 .xfrm_state_free_security = selinux_xfrm_state_free, 5492 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5493 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5494 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5495 .xfrm_decode_session = selinux_xfrm_decode_session, 5496 #endif 5497 5498 #ifdef CONFIG_KEYS 5499 .key_alloc = selinux_key_alloc, 5500 .key_free = selinux_key_free, 5501 .key_permission = selinux_key_permission, 5502 .key_getsecurity = selinux_key_getsecurity, 5503 #endif 5504 5505 #ifdef CONFIG_AUDIT 5506 .audit_rule_init = selinux_audit_rule_init, 5507 .audit_rule_known = selinux_audit_rule_known, 5508 .audit_rule_match = selinux_audit_rule_match, 5509 .audit_rule_free = selinux_audit_rule_free, 5510 #endif 5511 }; 5512 5513 static __init int selinux_init(void) 5514 { 5515 if (!security_module_enable(&selinux_ops)) { 5516 selinux_enabled = 0; 5517 return 0; 5518 } 5519 5520 if (!selinux_enabled) { 5521 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5522 return 0; 5523 } 5524 5525 printk(KERN_INFO "SELinux: Initializing.\n"); 5526 5527 /* Set the security state for the initial task. */ 5528 cred_init_security(); 5529 5530 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5531 sizeof(struct inode_security_struct), 5532 0, SLAB_PANIC, NULL); 5533 avc_init(); 5534 5535 secondary_ops = security_ops; 5536 if (!secondary_ops) 5537 panic("SELinux: No initial security operations\n"); 5538 if (register_security(&selinux_ops)) 5539 panic("SELinux: Unable to register with kernel.\n"); 5540 5541 if (selinux_enforcing) 5542 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5543 else 5544 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5545 5546 return 0; 5547 } 5548 5549 void selinux_complete_init(void) 5550 { 5551 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5552 5553 /* Set up any superblocks initialized prior to the policy load. */ 5554 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5555 spin_lock(&sb_lock); 5556 spin_lock(&sb_security_lock); 5557 next_sb: 5558 if (!list_empty(&superblock_security_head)) { 5559 struct superblock_security_struct *sbsec = 5560 list_entry(superblock_security_head.next, 5561 struct superblock_security_struct, 5562 list); 5563 struct super_block *sb = sbsec->sb; 5564 sb->s_count++; 5565 spin_unlock(&sb_security_lock); 5566 spin_unlock(&sb_lock); 5567 down_read(&sb->s_umount); 5568 if (sb->s_root) 5569 superblock_doinit(sb, NULL); 5570 drop_super(sb); 5571 spin_lock(&sb_lock); 5572 spin_lock(&sb_security_lock); 5573 list_del_init(&sbsec->list); 5574 goto next_sb; 5575 } 5576 spin_unlock(&sb_security_lock); 5577 spin_unlock(&sb_lock); 5578 } 5579 5580 /* SELinux requires early initialization in order to label 5581 all processes and objects when they are created. */ 5582 security_initcall(selinux_init); 5583 5584 #if defined(CONFIG_NETFILTER) 5585 5586 static struct nf_hook_ops selinux_ipv4_ops[] = { 5587 { 5588 .hook = selinux_ipv4_postroute, 5589 .owner = THIS_MODULE, 5590 .pf = PF_INET, 5591 .hooknum = NF_INET_POST_ROUTING, 5592 .priority = NF_IP_PRI_SELINUX_LAST, 5593 }, 5594 { 5595 .hook = selinux_ipv4_forward, 5596 .owner = THIS_MODULE, 5597 .pf = PF_INET, 5598 .hooknum = NF_INET_FORWARD, 5599 .priority = NF_IP_PRI_SELINUX_FIRST, 5600 }, 5601 { 5602 .hook = selinux_ipv4_output, 5603 .owner = THIS_MODULE, 5604 .pf = PF_INET, 5605 .hooknum = NF_INET_LOCAL_OUT, 5606 .priority = NF_IP_PRI_SELINUX_FIRST, 5607 } 5608 }; 5609 5610 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5611 5612 static struct nf_hook_ops selinux_ipv6_ops[] = { 5613 { 5614 .hook = selinux_ipv6_postroute, 5615 .owner = THIS_MODULE, 5616 .pf = PF_INET6, 5617 .hooknum = NF_INET_POST_ROUTING, 5618 .priority = NF_IP6_PRI_SELINUX_LAST, 5619 }, 5620 { 5621 .hook = selinux_ipv6_forward, 5622 .owner = THIS_MODULE, 5623 .pf = PF_INET6, 5624 .hooknum = NF_INET_FORWARD, 5625 .priority = NF_IP6_PRI_SELINUX_FIRST, 5626 } 5627 }; 5628 5629 #endif /* IPV6 */ 5630 5631 static int __init selinux_nf_ip_init(void) 5632 { 5633 int err = 0; 5634 5635 if (!selinux_enabled) 5636 goto out; 5637 5638 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5639 5640 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5641 if (err) 5642 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5643 5644 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5645 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5646 if (err) 5647 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5648 #endif /* IPV6 */ 5649 5650 out: 5651 return err; 5652 } 5653 5654 __initcall(selinux_nf_ip_init); 5655 5656 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5657 static void selinux_nf_ip_exit(void) 5658 { 5659 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5660 5661 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5662 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5663 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5664 #endif /* IPV6 */ 5665 } 5666 #endif 5667 5668 #else /* CONFIG_NETFILTER */ 5669 5670 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5671 #define selinux_nf_ip_exit() 5672 #endif 5673 5674 #endif /* CONFIG_NETFILTER */ 5675 5676 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5677 static int selinux_disabled; 5678 5679 int selinux_disable(void) 5680 { 5681 extern void exit_sel_fs(void); 5682 5683 if (ss_initialized) { 5684 /* Not permitted after initial policy load. */ 5685 return -EINVAL; 5686 } 5687 5688 if (selinux_disabled) { 5689 /* Only do this once. */ 5690 return -EINVAL; 5691 } 5692 5693 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5694 5695 selinux_disabled = 1; 5696 selinux_enabled = 0; 5697 5698 /* Try to destroy the avc node cache */ 5699 avc_disable(); 5700 5701 /* Reset security_ops to the secondary module, dummy or capability. */ 5702 security_ops = secondary_ops; 5703 5704 /* Unregister netfilter hooks. */ 5705 selinux_nf_ip_exit(); 5706 5707 /* Unregister selinuxfs. */ 5708 exit_sel_fs(); 5709 5710 return 0; 5711 } 5712 #endif 5713