xref: /openbmc/linux/security/selinux/hooks.c (revision 84336d1a77ccd2c06a730ddd38e695c2324a7386)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *		Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>		/* for local_port_range[] */
52 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>	/* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>		/* for Unix socket types */
67 #include <net/af_unix.h>	/* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88 
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91 
92 #define NUM_SEL_MNT_OPTS 5
93 
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97 
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100 
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103 
104 static int __init enforcing_setup(char *str)
105 {
106 	unsigned long enforcing;
107 	if (!strict_strtoul(str, 0, &enforcing))
108 		selinux_enforcing = enforcing ? 1 : 0;
109 	return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113 
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116 
117 static int __init selinux_enabled_setup(char *str)
118 {
119 	unsigned long enabled;
120 	if (!strict_strtoul(str, 0, &enabled))
121 		selinux_enabled = enabled ? 1 : 0;
122 	return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128 
129 
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135 
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140 
141 static struct kmem_cache *sel_inode_cache;
142 
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155 	return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157 
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163 	struct cred *cred = (struct cred *) current->real_cred;
164 	struct task_security_struct *tsec;
165 
166 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167 	if (!tsec)
168 		panic("SELinux:  Failed to initialize initial task.\n");
169 
170 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
171 	cred->security = tsec;
172 }
173 
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179 	const struct task_security_struct *tsec;
180 
181 	tsec = cred->security;
182 	return tsec->sid;
183 }
184 
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190 	u32 sid;
191 
192 	rcu_read_lock();
193 	sid = cred_sid(__task_cred(task));
194 	rcu_read_unlock();
195 	return sid;
196 }
197 
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203 	const struct task_security_struct *tsec = current_cred()->security;
204 
205 	return tsec->sid;
206 }
207 
208 /* Allocate and free functions for each kind of security blob. */
209 
210 static int inode_alloc_security(struct inode *inode)
211 {
212 	struct inode_security_struct *isec;
213 	u32 sid = current_sid();
214 
215 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216 	if (!isec)
217 		return -ENOMEM;
218 
219 	mutex_init(&isec->lock);
220 	INIT_LIST_HEAD(&isec->list);
221 	isec->inode = inode;
222 	isec->sid = SECINITSID_UNLABELED;
223 	isec->sclass = SECCLASS_FILE;
224 	isec->task_sid = sid;
225 	inode->i_security = isec;
226 
227 	return 0;
228 }
229 
230 static void inode_free_security(struct inode *inode)
231 {
232 	struct inode_security_struct *isec = inode->i_security;
233 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234 
235 	spin_lock(&sbsec->isec_lock);
236 	if (!list_empty(&isec->list))
237 		list_del_init(&isec->list);
238 	spin_unlock(&sbsec->isec_lock);
239 
240 	inode->i_security = NULL;
241 	kmem_cache_free(sel_inode_cache, isec);
242 }
243 
244 static int file_alloc_security(struct file *file)
245 {
246 	struct file_security_struct *fsec;
247 	u32 sid = current_sid();
248 
249 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250 	if (!fsec)
251 		return -ENOMEM;
252 
253 	fsec->sid = sid;
254 	fsec->fown_sid = sid;
255 	file->f_security = fsec;
256 
257 	return 0;
258 }
259 
260 static void file_free_security(struct file *file)
261 {
262 	struct file_security_struct *fsec = file->f_security;
263 	file->f_security = NULL;
264 	kfree(fsec);
265 }
266 
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269 	struct superblock_security_struct *sbsec;
270 
271 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272 	if (!sbsec)
273 		return -ENOMEM;
274 
275 	mutex_init(&sbsec->lock);
276 	INIT_LIST_HEAD(&sbsec->list);
277 	INIT_LIST_HEAD(&sbsec->isec_head);
278 	spin_lock_init(&sbsec->isec_lock);
279 	sbsec->sb = sb;
280 	sbsec->sid = SECINITSID_UNLABELED;
281 	sbsec->def_sid = SECINITSID_FILE;
282 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283 	sb->s_security = sbsec;
284 
285 	return 0;
286 }
287 
288 static void superblock_free_security(struct super_block *sb)
289 {
290 	struct superblock_security_struct *sbsec = sb->s_security;
291 
292 	spin_lock(&sb_security_lock);
293 	if (!list_empty(&sbsec->list))
294 		list_del_init(&sbsec->list);
295 	spin_unlock(&sb_security_lock);
296 
297 	sb->s_security = NULL;
298 	kfree(sbsec);
299 }
300 
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303 	struct sk_security_struct *ssec;
304 
305 	ssec = kzalloc(sizeof(*ssec), priority);
306 	if (!ssec)
307 		return -ENOMEM;
308 
309 	ssec->peer_sid = SECINITSID_UNLABELED;
310 	ssec->sid = SECINITSID_UNLABELED;
311 	sk->sk_security = ssec;
312 
313 	selinux_netlbl_sk_security_reset(ssec);
314 
315 	return 0;
316 }
317 
318 static void sk_free_security(struct sock *sk)
319 {
320 	struct sk_security_struct *ssec = sk->sk_security;
321 
322 	sk->sk_security = NULL;
323 	selinux_netlbl_sk_security_free(ssec);
324 	kfree(ssec);
325 }
326 
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330 
331 /* The file system's label must be initialized prior to use. */
332 
333 static char *labeling_behaviors[6] = {
334 	"uses xattr",
335 	"uses transition SIDs",
336 	"uses task SIDs",
337 	"uses genfs_contexts",
338 	"not configured for labeling",
339 	"uses mountpoint labeling",
340 };
341 
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343 
344 static inline int inode_doinit(struct inode *inode)
345 {
346 	return inode_doinit_with_dentry(inode, NULL);
347 }
348 
349 enum {
350 	Opt_error = -1,
351 	Opt_context = 1,
352 	Opt_fscontext = 2,
353 	Opt_defcontext = 3,
354 	Opt_rootcontext = 4,
355 	Opt_labelsupport = 5,
356 };
357 
358 static const match_table_t tokens = {
359 	{Opt_context, CONTEXT_STR "%s"},
360 	{Opt_fscontext, FSCONTEXT_STR "%s"},
361 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
362 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363 	{Opt_labelsupport, LABELSUPP_STR},
364 	{Opt_error, NULL},
365 };
366 
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368 
369 static int may_context_mount_sb_relabel(u32 sid,
370 			struct superblock_security_struct *sbsec,
371 			const struct cred *cred)
372 {
373 	const struct task_security_struct *tsec = cred->security;
374 	int rc;
375 
376 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377 			  FILESYSTEM__RELABELFROM, NULL);
378 	if (rc)
379 		return rc;
380 
381 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382 			  FILESYSTEM__RELABELTO, NULL);
383 	return rc;
384 }
385 
386 static int may_context_mount_inode_relabel(u32 sid,
387 			struct superblock_security_struct *sbsec,
388 			const struct cred *cred)
389 {
390 	const struct task_security_struct *tsec = cred->security;
391 	int rc;
392 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393 			  FILESYSTEM__RELABELFROM, NULL);
394 	if (rc)
395 		return rc;
396 
397 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398 			  FILESYSTEM__ASSOCIATE, NULL);
399 	return rc;
400 }
401 
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404 	struct superblock_security_struct *sbsec = sb->s_security;
405 	struct dentry *root = sb->s_root;
406 	struct inode *root_inode = root->d_inode;
407 	int rc = 0;
408 
409 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410 		/* Make sure that the xattr handler exists and that no
411 		   error other than -ENODATA is returned by getxattr on
412 		   the root directory.  -ENODATA is ok, as this may be
413 		   the first boot of the SELinux kernel before we have
414 		   assigned xattr values to the filesystem. */
415 		if (!root_inode->i_op->getxattr) {
416 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417 			       "xattr support\n", sb->s_id, sb->s_type->name);
418 			rc = -EOPNOTSUPP;
419 			goto out;
420 		}
421 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422 		if (rc < 0 && rc != -ENODATA) {
423 			if (rc == -EOPNOTSUPP)
424 				printk(KERN_WARNING "SELinux: (dev %s, type "
425 				       "%s) has no security xattr handler\n",
426 				       sb->s_id, sb->s_type->name);
427 			else
428 				printk(KERN_WARNING "SELinux: (dev %s, type "
429 				       "%s) getxattr errno %d\n", sb->s_id,
430 				       sb->s_type->name, -rc);
431 			goto out;
432 		}
433 	}
434 
435 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436 
437 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439 		       sb->s_id, sb->s_type->name);
440 	else
441 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442 		       sb->s_id, sb->s_type->name,
443 		       labeling_behaviors[sbsec->behavior-1]);
444 
445 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
448 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449 		sbsec->flags &= ~SE_SBLABELSUPP;
450 
451 	/* Initialize the root inode. */
452 	rc = inode_doinit_with_dentry(root_inode, root);
453 
454 	/* Initialize any other inodes associated with the superblock, e.g.
455 	   inodes created prior to initial policy load or inodes created
456 	   during get_sb by a pseudo filesystem that directly
457 	   populates itself. */
458 	spin_lock(&sbsec->isec_lock);
459 next_inode:
460 	if (!list_empty(&sbsec->isec_head)) {
461 		struct inode_security_struct *isec =
462 				list_entry(sbsec->isec_head.next,
463 					   struct inode_security_struct, list);
464 		struct inode *inode = isec->inode;
465 		spin_unlock(&sbsec->isec_lock);
466 		inode = igrab(inode);
467 		if (inode) {
468 			if (!IS_PRIVATE(inode))
469 				inode_doinit(inode);
470 			iput(inode);
471 		}
472 		spin_lock(&sbsec->isec_lock);
473 		list_del_init(&isec->list);
474 		goto next_inode;
475 	}
476 	spin_unlock(&sbsec->isec_lock);
477 out:
478 	return rc;
479 }
480 
481 /*
482  * This function should allow an FS to ask what it's mount security
483  * options were so it can use those later for submounts, displaying
484  * mount options, or whatever.
485  */
486 static int selinux_get_mnt_opts(const struct super_block *sb,
487 				struct security_mnt_opts *opts)
488 {
489 	int rc = 0, i;
490 	struct superblock_security_struct *sbsec = sb->s_security;
491 	char *context = NULL;
492 	u32 len;
493 	char tmp;
494 
495 	security_init_mnt_opts(opts);
496 
497 	if (!(sbsec->flags & SE_SBINITIALIZED))
498 		return -EINVAL;
499 
500 	if (!ss_initialized)
501 		return -EINVAL;
502 
503 	tmp = sbsec->flags & SE_MNTMASK;
504 	/* count the number of mount options for this sb */
505 	for (i = 0; i < 8; i++) {
506 		if (tmp & 0x01)
507 			opts->num_mnt_opts++;
508 		tmp >>= 1;
509 	}
510 	/* Check if the Label support flag is set */
511 	if (sbsec->flags & SE_SBLABELSUPP)
512 		opts->num_mnt_opts++;
513 
514 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
515 	if (!opts->mnt_opts) {
516 		rc = -ENOMEM;
517 		goto out_free;
518 	}
519 
520 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
521 	if (!opts->mnt_opts_flags) {
522 		rc = -ENOMEM;
523 		goto out_free;
524 	}
525 
526 	i = 0;
527 	if (sbsec->flags & FSCONTEXT_MNT) {
528 		rc = security_sid_to_context(sbsec->sid, &context, &len);
529 		if (rc)
530 			goto out_free;
531 		opts->mnt_opts[i] = context;
532 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
533 	}
534 	if (sbsec->flags & CONTEXT_MNT) {
535 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
536 		if (rc)
537 			goto out_free;
538 		opts->mnt_opts[i] = context;
539 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
540 	}
541 	if (sbsec->flags & DEFCONTEXT_MNT) {
542 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
543 		if (rc)
544 			goto out_free;
545 		opts->mnt_opts[i] = context;
546 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
547 	}
548 	if (sbsec->flags & ROOTCONTEXT_MNT) {
549 		struct inode *root = sbsec->sb->s_root->d_inode;
550 		struct inode_security_struct *isec = root->i_security;
551 
552 		rc = security_sid_to_context(isec->sid, &context, &len);
553 		if (rc)
554 			goto out_free;
555 		opts->mnt_opts[i] = context;
556 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
557 	}
558 	if (sbsec->flags & SE_SBLABELSUPP) {
559 		opts->mnt_opts[i] = NULL;
560 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
561 	}
562 
563 	BUG_ON(i != opts->num_mnt_opts);
564 
565 	return 0;
566 
567 out_free:
568 	security_free_mnt_opts(opts);
569 	return rc;
570 }
571 
572 static int bad_option(struct superblock_security_struct *sbsec, char flag,
573 		      u32 old_sid, u32 new_sid)
574 {
575 	char mnt_flags = sbsec->flags & SE_MNTMASK;
576 
577 	/* check if the old mount command had the same options */
578 	if (sbsec->flags & SE_SBINITIALIZED)
579 		if (!(sbsec->flags & flag) ||
580 		    (old_sid != new_sid))
581 			return 1;
582 
583 	/* check if we were passed the same options twice,
584 	 * aka someone passed context=a,context=b
585 	 */
586 	if (!(sbsec->flags & SE_SBINITIALIZED))
587 		if (mnt_flags & flag)
588 			return 1;
589 	return 0;
590 }
591 
592 /*
593  * Allow filesystems with binary mount data to explicitly set mount point
594  * labeling information.
595  */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597 				struct security_mnt_opts *opts)
598 {
599 	const struct cred *cred = current_cred();
600 	int rc = 0, i;
601 	struct superblock_security_struct *sbsec = sb->s_security;
602 	const char *name = sb->s_type->name;
603 	struct inode *inode = sbsec->sb->s_root->d_inode;
604 	struct inode_security_struct *root_isec = inode->i_security;
605 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606 	u32 defcontext_sid = 0;
607 	char **mount_options = opts->mnt_opts;
608 	int *flags = opts->mnt_opts_flags;
609 	int num_opts = opts->num_mnt_opts;
610 
611 	mutex_lock(&sbsec->lock);
612 
613 	if (!ss_initialized) {
614 		if (!num_opts) {
615 			/* Defer initialization until selinux_complete_init,
616 			   after the initial policy is loaded and the security
617 			   server is ready to handle calls. */
618 			spin_lock(&sb_security_lock);
619 			if (list_empty(&sbsec->list))
620 				list_add(&sbsec->list, &superblock_security_head);
621 			spin_unlock(&sb_security_lock);
622 			goto out;
623 		}
624 		rc = -EINVAL;
625 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
626 			"before the security server is initialized\n");
627 		goto out;
628 	}
629 
630 	/*
631 	 * Binary mount data FS will come through this function twice.  Once
632 	 * from an explicit call and once from the generic calls from the vfs.
633 	 * Since the generic VFS calls will not contain any security mount data
634 	 * we need to skip the double mount verification.
635 	 *
636 	 * This does open a hole in which we will not notice if the first
637 	 * mount using this sb set explict options and a second mount using
638 	 * this sb does not set any security options.  (The first options
639 	 * will be used for both mounts)
640 	 */
641 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642 	    && (num_opts == 0))
643 		goto out;
644 
645 	/*
646 	 * parse the mount options, check if they are valid sids.
647 	 * also check if someone is trying to mount the same sb more
648 	 * than once with different security options.
649 	 */
650 	for (i = 0; i < num_opts; i++) {
651 		u32 sid;
652 
653 		if (flags[i] == SE_SBLABELSUPP)
654 			continue;
655 		rc = security_context_to_sid(mount_options[i],
656 					     strlen(mount_options[i]), &sid);
657 		if (rc) {
658 			printk(KERN_WARNING "SELinux: security_context_to_sid"
659 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
660 			       mount_options[i], sb->s_id, name, rc);
661 			goto out;
662 		}
663 		switch (flags[i]) {
664 		case FSCONTEXT_MNT:
665 			fscontext_sid = sid;
666 
667 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
668 					fscontext_sid))
669 				goto out_double_mount;
670 
671 			sbsec->flags |= FSCONTEXT_MNT;
672 			break;
673 		case CONTEXT_MNT:
674 			context_sid = sid;
675 
676 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
677 					context_sid))
678 				goto out_double_mount;
679 
680 			sbsec->flags |= CONTEXT_MNT;
681 			break;
682 		case ROOTCONTEXT_MNT:
683 			rootcontext_sid = sid;
684 
685 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
686 					rootcontext_sid))
687 				goto out_double_mount;
688 
689 			sbsec->flags |= ROOTCONTEXT_MNT;
690 
691 			break;
692 		case DEFCONTEXT_MNT:
693 			defcontext_sid = sid;
694 
695 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
696 					defcontext_sid))
697 				goto out_double_mount;
698 
699 			sbsec->flags |= DEFCONTEXT_MNT;
700 
701 			break;
702 		default:
703 			rc = -EINVAL;
704 			goto out;
705 		}
706 	}
707 
708 	if (sbsec->flags & SE_SBINITIALIZED) {
709 		/* previously mounted with options, but not on this attempt? */
710 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
711 			goto out_double_mount;
712 		rc = 0;
713 		goto out;
714 	}
715 
716 	if (strcmp(sb->s_type->name, "proc") == 0)
717 		sbsec->flags |= SE_SBPROC;
718 
719 	/* Determine the labeling behavior to use for this filesystem type. */
720 	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
721 	if (rc) {
722 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
723 		       __func__, sb->s_type->name, rc);
724 		goto out;
725 	}
726 
727 	/* sets the context of the superblock for the fs being mounted. */
728 	if (fscontext_sid) {
729 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
730 		if (rc)
731 			goto out;
732 
733 		sbsec->sid = fscontext_sid;
734 	}
735 
736 	/*
737 	 * Switch to using mount point labeling behavior.
738 	 * sets the label used on all file below the mountpoint, and will set
739 	 * the superblock context if not already set.
740 	 */
741 	if (context_sid) {
742 		if (!fscontext_sid) {
743 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
744 							  cred);
745 			if (rc)
746 				goto out;
747 			sbsec->sid = context_sid;
748 		} else {
749 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
750 							     cred);
751 			if (rc)
752 				goto out;
753 		}
754 		if (!rootcontext_sid)
755 			rootcontext_sid = context_sid;
756 
757 		sbsec->mntpoint_sid = context_sid;
758 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
759 	}
760 
761 	if (rootcontext_sid) {
762 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
763 						     cred);
764 		if (rc)
765 			goto out;
766 
767 		root_isec->sid = rootcontext_sid;
768 		root_isec->initialized = 1;
769 	}
770 
771 	if (defcontext_sid) {
772 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
773 			rc = -EINVAL;
774 			printk(KERN_WARNING "SELinux: defcontext option is "
775 			       "invalid for this filesystem type\n");
776 			goto out;
777 		}
778 
779 		if (defcontext_sid != sbsec->def_sid) {
780 			rc = may_context_mount_inode_relabel(defcontext_sid,
781 							     sbsec, cred);
782 			if (rc)
783 				goto out;
784 		}
785 
786 		sbsec->def_sid = defcontext_sid;
787 	}
788 
789 	rc = sb_finish_set_opts(sb);
790 out:
791 	mutex_unlock(&sbsec->lock);
792 	return rc;
793 out_double_mount:
794 	rc = -EINVAL;
795 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
796 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
797 	goto out;
798 }
799 
800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
801 					struct super_block *newsb)
802 {
803 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
804 	struct superblock_security_struct *newsbsec = newsb->s_security;
805 
806 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
807 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
808 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
809 
810 	/*
811 	 * if the parent was able to be mounted it clearly had no special lsm
812 	 * mount options.  thus we can safely put this sb on the list and deal
813 	 * with it later
814 	 */
815 	if (!ss_initialized) {
816 		spin_lock(&sb_security_lock);
817 		if (list_empty(&newsbsec->list))
818 			list_add(&newsbsec->list, &superblock_security_head);
819 		spin_unlock(&sb_security_lock);
820 		return;
821 	}
822 
823 	/* how can we clone if the old one wasn't set up?? */
824 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
825 
826 	/* if fs is reusing a sb, just let its options stand... */
827 	if (newsbsec->flags & SE_SBINITIALIZED)
828 		return;
829 
830 	mutex_lock(&newsbsec->lock);
831 
832 	newsbsec->flags = oldsbsec->flags;
833 
834 	newsbsec->sid = oldsbsec->sid;
835 	newsbsec->def_sid = oldsbsec->def_sid;
836 	newsbsec->behavior = oldsbsec->behavior;
837 
838 	if (set_context) {
839 		u32 sid = oldsbsec->mntpoint_sid;
840 
841 		if (!set_fscontext)
842 			newsbsec->sid = sid;
843 		if (!set_rootcontext) {
844 			struct inode *newinode = newsb->s_root->d_inode;
845 			struct inode_security_struct *newisec = newinode->i_security;
846 			newisec->sid = sid;
847 		}
848 		newsbsec->mntpoint_sid = sid;
849 	}
850 	if (set_rootcontext) {
851 		const struct inode *oldinode = oldsb->s_root->d_inode;
852 		const struct inode_security_struct *oldisec = oldinode->i_security;
853 		struct inode *newinode = newsb->s_root->d_inode;
854 		struct inode_security_struct *newisec = newinode->i_security;
855 
856 		newisec->sid = oldisec->sid;
857 	}
858 
859 	sb_finish_set_opts(newsb);
860 	mutex_unlock(&newsbsec->lock);
861 }
862 
863 static int selinux_parse_opts_str(char *options,
864 				  struct security_mnt_opts *opts)
865 {
866 	char *p;
867 	char *context = NULL, *defcontext = NULL;
868 	char *fscontext = NULL, *rootcontext = NULL;
869 	int rc, num_mnt_opts = 0;
870 
871 	opts->num_mnt_opts = 0;
872 
873 	/* Standard string-based options. */
874 	while ((p = strsep(&options, "|")) != NULL) {
875 		int token;
876 		substring_t args[MAX_OPT_ARGS];
877 
878 		if (!*p)
879 			continue;
880 
881 		token = match_token(p, tokens, args);
882 
883 		switch (token) {
884 		case Opt_context:
885 			if (context || defcontext) {
886 				rc = -EINVAL;
887 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
888 				goto out_err;
889 			}
890 			context = match_strdup(&args[0]);
891 			if (!context) {
892 				rc = -ENOMEM;
893 				goto out_err;
894 			}
895 			break;
896 
897 		case Opt_fscontext:
898 			if (fscontext) {
899 				rc = -EINVAL;
900 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
901 				goto out_err;
902 			}
903 			fscontext = match_strdup(&args[0]);
904 			if (!fscontext) {
905 				rc = -ENOMEM;
906 				goto out_err;
907 			}
908 			break;
909 
910 		case Opt_rootcontext:
911 			if (rootcontext) {
912 				rc = -EINVAL;
913 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
914 				goto out_err;
915 			}
916 			rootcontext = match_strdup(&args[0]);
917 			if (!rootcontext) {
918 				rc = -ENOMEM;
919 				goto out_err;
920 			}
921 			break;
922 
923 		case Opt_defcontext:
924 			if (context || defcontext) {
925 				rc = -EINVAL;
926 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
927 				goto out_err;
928 			}
929 			defcontext = match_strdup(&args[0]);
930 			if (!defcontext) {
931 				rc = -ENOMEM;
932 				goto out_err;
933 			}
934 			break;
935 		case Opt_labelsupport:
936 			break;
937 		default:
938 			rc = -EINVAL;
939 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
940 			goto out_err;
941 
942 		}
943 	}
944 
945 	rc = -ENOMEM;
946 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
947 	if (!opts->mnt_opts)
948 		goto out_err;
949 
950 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
951 	if (!opts->mnt_opts_flags) {
952 		kfree(opts->mnt_opts);
953 		goto out_err;
954 	}
955 
956 	if (fscontext) {
957 		opts->mnt_opts[num_mnt_opts] = fscontext;
958 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
959 	}
960 	if (context) {
961 		opts->mnt_opts[num_mnt_opts] = context;
962 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
963 	}
964 	if (rootcontext) {
965 		opts->mnt_opts[num_mnt_opts] = rootcontext;
966 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
967 	}
968 	if (defcontext) {
969 		opts->mnt_opts[num_mnt_opts] = defcontext;
970 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
971 	}
972 
973 	opts->num_mnt_opts = num_mnt_opts;
974 	return 0;
975 
976 out_err:
977 	kfree(context);
978 	kfree(defcontext);
979 	kfree(fscontext);
980 	kfree(rootcontext);
981 	return rc;
982 }
983 /*
984  * string mount options parsing and call set the sbsec
985  */
986 static int superblock_doinit(struct super_block *sb, void *data)
987 {
988 	int rc = 0;
989 	char *options = data;
990 	struct security_mnt_opts opts;
991 
992 	security_init_mnt_opts(&opts);
993 
994 	if (!data)
995 		goto out;
996 
997 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
998 
999 	rc = selinux_parse_opts_str(options, &opts);
1000 	if (rc)
1001 		goto out_err;
1002 
1003 out:
1004 	rc = selinux_set_mnt_opts(sb, &opts);
1005 
1006 out_err:
1007 	security_free_mnt_opts(&opts);
1008 	return rc;
1009 }
1010 
1011 static void selinux_write_opts(struct seq_file *m,
1012 			       struct security_mnt_opts *opts)
1013 {
1014 	int i;
1015 	char *prefix;
1016 
1017 	for (i = 0; i < opts->num_mnt_opts; i++) {
1018 		char *has_comma;
1019 
1020 		if (opts->mnt_opts[i])
1021 			has_comma = strchr(opts->mnt_opts[i], ',');
1022 		else
1023 			has_comma = NULL;
1024 
1025 		switch (opts->mnt_opts_flags[i]) {
1026 		case CONTEXT_MNT:
1027 			prefix = CONTEXT_STR;
1028 			break;
1029 		case FSCONTEXT_MNT:
1030 			prefix = FSCONTEXT_STR;
1031 			break;
1032 		case ROOTCONTEXT_MNT:
1033 			prefix = ROOTCONTEXT_STR;
1034 			break;
1035 		case DEFCONTEXT_MNT:
1036 			prefix = DEFCONTEXT_STR;
1037 			break;
1038 		case SE_SBLABELSUPP:
1039 			seq_putc(m, ',');
1040 			seq_puts(m, LABELSUPP_STR);
1041 			continue;
1042 		default:
1043 			BUG();
1044 		};
1045 		/* we need a comma before each option */
1046 		seq_putc(m, ',');
1047 		seq_puts(m, prefix);
1048 		if (has_comma)
1049 			seq_putc(m, '\"');
1050 		seq_puts(m, opts->mnt_opts[i]);
1051 		if (has_comma)
1052 			seq_putc(m, '\"');
1053 	}
1054 }
1055 
1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1057 {
1058 	struct security_mnt_opts opts;
1059 	int rc;
1060 
1061 	rc = selinux_get_mnt_opts(sb, &opts);
1062 	if (rc) {
1063 		/* before policy load we may get EINVAL, don't show anything */
1064 		if (rc == -EINVAL)
1065 			rc = 0;
1066 		return rc;
1067 	}
1068 
1069 	selinux_write_opts(m, &opts);
1070 
1071 	security_free_mnt_opts(&opts);
1072 
1073 	return rc;
1074 }
1075 
1076 static inline u16 inode_mode_to_security_class(umode_t mode)
1077 {
1078 	switch (mode & S_IFMT) {
1079 	case S_IFSOCK:
1080 		return SECCLASS_SOCK_FILE;
1081 	case S_IFLNK:
1082 		return SECCLASS_LNK_FILE;
1083 	case S_IFREG:
1084 		return SECCLASS_FILE;
1085 	case S_IFBLK:
1086 		return SECCLASS_BLK_FILE;
1087 	case S_IFDIR:
1088 		return SECCLASS_DIR;
1089 	case S_IFCHR:
1090 		return SECCLASS_CHR_FILE;
1091 	case S_IFIFO:
1092 		return SECCLASS_FIFO_FILE;
1093 
1094 	}
1095 
1096 	return SECCLASS_FILE;
1097 }
1098 
1099 static inline int default_protocol_stream(int protocol)
1100 {
1101 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1102 }
1103 
1104 static inline int default_protocol_dgram(int protocol)
1105 {
1106 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1107 }
1108 
1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1110 {
1111 	switch (family) {
1112 	case PF_UNIX:
1113 		switch (type) {
1114 		case SOCK_STREAM:
1115 		case SOCK_SEQPACKET:
1116 			return SECCLASS_UNIX_STREAM_SOCKET;
1117 		case SOCK_DGRAM:
1118 			return SECCLASS_UNIX_DGRAM_SOCKET;
1119 		}
1120 		break;
1121 	case PF_INET:
1122 	case PF_INET6:
1123 		switch (type) {
1124 		case SOCK_STREAM:
1125 			if (default_protocol_stream(protocol))
1126 				return SECCLASS_TCP_SOCKET;
1127 			else
1128 				return SECCLASS_RAWIP_SOCKET;
1129 		case SOCK_DGRAM:
1130 			if (default_protocol_dgram(protocol))
1131 				return SECCLASS_UDP_SOCKET;
1132 			else
1133 				return SECCLASS_RAWIP_SOCKET;
1134 		case SOCK_DCCP:
1135 			return SECCLASS_DCCP_SOCKET;
1136 		default:
1137 			return SECCLASS_RAWIP_SOCKET;
1138 		}
1139 		break;
1140 	case PF_NETLINK:
1141 		switch (protocol) {
1142 		case NETLINK_ROUTE:
1143 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1144 		case NETLINK_FIREWALL:
1145 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1146 		case NETLINK_INET_DIAG:
1147 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1148 		case NETLINK_NFLOG:
1149 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1150 		case NETLINK_XFRM:
1151 			return SECCLASS_NETLINK_XFRM_SOCKET;
1152 		case NETLINK_SELINUX:
1153 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1154 		case NETLINK_AUDIT:
1155 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1156 		case NETLINK_IP6_FW:
1157 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1158 		case NETLINK_DNRTMSG:
1159 			return SECCLASS_NETLINK_DNRT_SOCKET;
1160 		case NETLINK_KOBJECT_UEVENT:
1161 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1162 		default:
1163 			return SECCLASS_NETLINK_SOCKET;
1164 		}
1165 	case PF_PACKET:
1166 		return SECCLASS_PACKET_SOCKET;
1167 	case PF_KEY:
1168 		return SECCLASS_KEY_SOCKET;
1169 	case PF_APPLETALK:
1170 		return SECCLASS_APPLETALK_SOCKET;
1171 	}
1172 
1173 	return SECCLASS_SOCKET;
1174 }
1175 
1176 #ifdef CONFIG_PROC_FS
1177 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1178 				u16 tclass,
1179 				u32 *sid)
1180 {
1181 	int buflen, rc;
1182 	char *buffer, *path, *end;
1183 
1184 	buffer = (char *)__get_free_page(GFP_KERNEL);
1185 	if (!buffer)
1186 		return -ENOMEM;
1187 
1188 	buflen = PAGE_SIZE;
1189 	end = buffer+buflen;
1190 	*--end = '\0';
1191 	buflen--;
1192 	path = end-1;
1193 	*path = '/';
1194 	while (de && de != de->parent) {
1195 		buflen -= de->namelen + 1;
1196 		if (buflen < 0)
1197 			break;
1198 		end -= de->namelen;
1199 		memcpy(end, de->name, de->namelen);
1200 		*--end = '/';
1201 		path = end;
1202 		de = de->parent;
1203 	}
1204 	rc = security_genfs_sid("proc", path, tclass, sid);
1205 	free_page((unsigned long)buffer);
1206 	return rc;
1207 }
1208 #else
1209 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1210 				u16 tclass,
1211 				u32 *sid)
1212 {
1213 	return -EINVAL;
1214 }
1215 #endif
1216 
1217 /* The inode's security attributes must be initialized before first use. */
1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1219 {
1220 	struct superblock_security_struct *sbsec = NULL;
1221 	struct inode_security_struct *isec = inode->i_security;
1222 	u32 sid;
1223 	struct dentry *dentry;
1224 #define INITCONTEXTLEN 255
1225 	char *context = NULL;
1226 	unsigned len = 0;
1227 	int rc = 0;
1228 
1229 	if (isec->initialized)
1230 		goto out;
1231 
1232 	mutex_lock(&isec->lock);
1233 	if (isec->initialized)
1234 		goto out_unlock;
1235 
1236 	sbsec = inode->i_sb->s_security;
1237 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1238 		/* Defer initialization until selinux_complete_init,
1239 		   after the initial policy is loaded and the security
1240 		   server is ready to handle calls. */
1241 		spin_lock(&sbsec->isec_lock);
1242 		if (list_empty(&isec->list))
1243 			list_add(&isec->list, &sbsec->isec_head);
1244 		spin_unlock(&sbsec->isec_lock);
1245 		goto out_unlock;
1246 	}
1247 
1248 	switch (sbsec->behavior) {
1249 	case SECURITY_FS_USE_XATTR:
1250 		if (!inode->i_op->getxattr) {
1251 			isec->sid = sbsec->def_sid;
1252 			break;
1253 		}
1254 
1255 		/* Need a dentry, since the xattr API requires one.
1256 		   Life would be simpler if we could just pass the inode. */
1257 		if (opt_dentry) {
1258 			/* Called from d_instantiate or d_splice_alias. */
1259 			dentry = dget(opt_dentry);
1260 		} else {
1261 			/* Called from selinux_complete_init, try to find a dentry. */
1262 			dentry = d_find_alias(inode);
1263 		}
1264 		if (!dentry) {
1265 			/*
1266 			 * this is can be hit on boot when a file is accessed
1267 			 * before the policy is loaded.  When we load policy we
1268 			 * may find inodes that have no dentry on the
1269 			 * sbsec->isec_head list.  No reason to complain as these
1270 			 * will get fixed up the next time we go through
1271 			 * inode_doinit with a dentry, before these inodes could
1272 			 * be used again by userspace.
1273 			 */
1274 			goto out_unlock;
1275 		}
1276 
1277 		len = INITCONTEXTLEN;
1278 		context = kmalloc(len+1, GFP_NOFS);
1279 		if (!context) {
1280 			rc = -ENOMEM;
1281 			dput(dentry);
1282 			goto out_unlock;
1283 		}
1284 		context[len] = '\0';
1285 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1286 					   context, len);
1287 		if (rc == -ERANGE) {
1288 			/* Need a larger buffer.  Query for the right size. */
1289 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1290 						   NULL, 0);
1291 			if (rc < 0) {
1292 				dput(dentry);
1293 				goto out_unlock;
1294 			}
1295 			kfree(context);
1296 			len = rc;
1297 			context = kmalloc(len+1, GFP_NOFS);
1298 			if (!context) {
1299 				rc = -ENOMEM;
1300 				dput(dentry);
1301 				goto out_unlock;
1302 			}
1303 			context[len] = '\0';
1304 			rc = inode->i_op->getxattr(dentry,
1305 						   XATTR_NAME_SELINUX,
1306 						   context, len);
1307 		}
1308 		dput(dentry);
1309 		if (rc < 0) {
1310 			if (rc != -ENODATA) {
1311 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1312 				       "%d for dev=%s ino=%ld\n", __func__,
1313 				       -rc, inode->i_sb->s_id, inode->i_ino);
1314 				kfree(context);
1315 				goto out_unlock;
1316 			}
1317 			/* Map ENODATA to the default file SID */
1318 			sid = sbsec->def_sid;
1319 			rc = 0;
1320 		} else {
1321 			rc = security_context_to_sid_default(context, rc, &sid,
1322 							     sbsec->def_sid,
1323 							     GFP_NOFS);
1324 			if (rc) {
1325 				char *dev = inode->i_sb->s_id;
1326 				unsigned long ino = inode->i_ino;
1327 
1328 				if (rc == -EINVAL) {
1329 					if (printk_ratelimit())
1330 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1331 							"context=%s.  This indicates you may need to relabel the inode or the "
1332 							"filesystem in question.\n", ino, dev, context);
1333 				} else {
1334 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1335 					       "returned %d for dev=%s ino=%ld\n",
1336 					       __func__, context, -rc, dev, ino);
1337 				}
1338 				kfree(context);
1339 				/* Leave with the unlabeled SID */
1340 				rc = 0;
1341 				break;
1342 			}
1343 		}
1344 		kfree(context);
1345 		isec->sid = sid;
1346 		break;
1347 	case SECURITY_FS_USE_TASK:
1348 		isec->sid = isec->task_sid;
1349 		break;
1350 	case SECURITY_FS_USE_TRANS:
1351 		/* Default to the fs SID. */
1352 		isec->sid = sbsec->sid;
1353 
1354 		/* Try to obtain a transition SID. */
1355 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1356 		rc = security_transition_sid(isec->task_sid,
1357 					     sbsec->sid,
1358 					     isec->sclass,
1359 					     &sid);
1360 		if (rc)
1361 			goto out_unlock;
1362 		isec->sid = sid;
1363 		break;
1364 	case SECURITY_FS_USE_MNTPOINT:
1365 		isec->sid = sbsec->mntpoint_sid;
1366 		break;
1367 	default:
1368 		/* Default to the fs superblock SID. */
1369 		isec->sid = sbsec->sid;
1370 
1371 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1372 			struct proc_inode *proci = PROC_I(inode);
1373 			if (proci->pde) {
1374 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1375 				rc = selinux_proc_get_sid(proci->pde,
1376 							  isec->sclass,
1377 							  &sid);
1378 				if (rc)
1379 					goto out_unlock;
1380 				isec->sid = sid;
1381 			}
1382 		}
1383 		break;
1384 	}
1385 
1386 	isec->initialized = 1;
1387 
1388 out_unlock:
1389 	mutex_unlock(&isec->lock);
1390 out:
1391 	if (isec->sclass == SECCLASS_FILE)
1392 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1393 	return rc;
1394 }
1395 
1396 /* Convert a Linux signal to an access vector. */
1397 static inline u32 signal_to_av(int sig)
1398 {
1399 	u32 perm = 0;
1400 
1401 	switch (sig) {
1402 	case SIGCHLD:
1403 		/* Commonly granted from child to parent. */
1404 		perm = PROCESS__SIGCHLD;
1405 		break;
1406 	case SIGKILL:
1407 		/* Cannot be caught or ignored */
1408 		perm = PROCESS__SIGKILL;
1409 		break;
1410 	case SIGSTOP:
1411 		/* Cannot be caught or ignored */
1412 		perm = PROCESS__SIGSTOP;
1413 		break;
1414 	default:
1415 		/* All other signals. */
1416 		perm = PROCESS__SIGNAL;
1417 		break;
1418 	}
1419 
1420 	return perm;
1421 }
1422 
1423 /*
1424  * Check permission between a pair of credentials
1425  * fork check, ptrace check, etc.
1426  */
1427 static int cred_has_perm(const struct cred *actor,
1428 			 const struct cred *target,
1429 			 u32 perms)
1430 {
1431 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1432 
1433 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1434 }
1435 
1436 /*
1437  * Check permission between a pair of tasks, e.g. signal checks,
1438  * fork check, ptrace check, etc.
1439  * tsk1 is the actor and tsk2 is the target
1440  * - this uses the default subjective creds of tsk1
1441  */
1442 static int task_has_perm(const struct task_struct *tsk1,
1443 			 const struct task_struct *tsk2,
1444 			 u32 perms)
1445 {
1446 	const struct task_security_struct *__tsec1, *__tsec2;
1447 	u32 sid1, sid2;
1448 
1449 	rcu_read_lock();
1450 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1451 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1452 	rcu_read_unlock();
1453 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1454 }
1455 
1456 /*
1457  * Check permission between current and another task, e.g. signal checks,
1458  * fork check, ptrace check, etc.
1459  * current is the actor and tsk2 is the target
1460  * - this uses current's subjective creds
1461  */
1462 static int current_has_perm(const struct task_struct *tsk,
1463 			    u32 perms)
1464 {
1465 	u32 sid, tsid;
1466 
1467 	sid = current_sid();
1468 	tsid = task_sid(tsk);
1469 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1470 }
1471 
1472 #if CAP_LAST_CAP > 63
1473 #error Fix SELinux to handle capabilities > 63.
1474 #endif
1475 
1476 /* Check whether a task is allowed to use a capability. */
1477 static int task_has_capability(struct task_struct *tsk,
1478 			       const struct cred *cred,
1479 			       int cap, int audit)
1480 {
1481 	struct avc_audit_data ad;
1482 	struct av_decision avd;
1483 	u16 sclass;
1484 	u32 sid = cred_sid(cred);
1485 	u32 av = CAP_TO_MASK(cap);
1486 	int rc;
1487 
1488 	AVC_AUDIT_DATA_INIT(&ad, CAP);
1489 	ad.tsk = tsk;
1490 	ad.u.cap = cap;
1491 
1492 	switch (CAP_TO_INDEX(cap)) {
1493 	case 0:
1494 		sclass = SECCLASS_CAPABILITY;
1495 		break;
1496 	case 1:
1497 		sclass = SECCLASS_CAPABILITY2;
1498 		break;
1499 	default:
1500 		printk(KERN_ERR
1501 		       "SELinux:  out of range capability %d\n", cap);
1502 		BUG();
1503 	}
1504 
1505 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1506 	if (audit == SECURITY_CAP_AUDIT)
1507 		avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1508 	return rc;
1509 }
1510 
1511 /* Check whether a task is allowed to use a system operation. */
1512 static int task_has_system(struct task_struct *tsk,
1513 			   u32 perms)
1514 {
1515 	u32 sid = task_sid(tsk);
1516 
1517 	return avc_has_perm(sid, SECINITSID_KERNEL,
1518 			    SECCLASS_SYSTEM, perms, NULL);
1519 }
1520 
1521 /* Check whether a task has a particular permission to an inode.
1522    The 'adp' parameter is optional and allows other audit
1523    data to be passed (e.g. the dentry). */
1524 static int inode_has_perm(const struct cred *cred,
1525 			  struct inode *inode,
1526 			  u32 perms,
1527 			  struct avc_audit_data *adp)
1528 {
1529 	struct inode_security_struct *isec;
1530 	struct avc_audit_data ad;
1531 	u32 sid;
1532 
1533 	if (unlikely(IS_PRIVATE(inode)))
1534 		return 0;
1535 
1536 	sid = cred_sid(cred);
1537 	isec = inode->i_security;
1538 
1539 	if (!adp) {
1540 		adp = &ad;
1541 		AVC_AUDIT_DATA_INIT(&ad, FS);
1542 		ad.u.fs.inode = inode;
1543 	}
1544 
1545 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1546 }
1547 
1548 /* Same as inode_has_perm, but pass explicit audit data containing
1549    the dentry to help the auditing code to more easily generate the
1550    pathname if needed. */
1551 static inline int dentry_has_perm(const struct cred *cred,
1552 				  struct vfsmount *mnt,
1553 				  struct dentry *dentry,
1554 				  u32 av)
1555 {
1556 	struct inode *inode = dentry->d_inode;
1557 	struct avc_audit_data ad;
1558 
1559 	AVC_AUDIT_DATA_INIT(&ad, FS);
1560 	ad.u.fs.path.mnt = mnt;
1561 	ad.u.fs.path.dentry = dentry;
1562 	return inode_has_perm(cred, inode, av, &ad);
1563 }
1564 
1565 /* Check whether a task can use an open file descriptor to
1566    access an inode in a given way.  Check access to the
1567    descriptor itself, and then use dentry_has_perm to
1568    check a particular permission to the file.
1569    Access to the descriptor is implicitly granted if it
1570    has the same SID as the process.  If av is zero, then
1571    access to the file is not checked, e.g. for cases
1572    where only the descriptor is affected like seek. */
1573 static int file_has_perm(const struct cred *cred,
1574 			 struct file *file,
1575 			 u32 av)
1576 {
1577 	struct file_security_struct *fsec = file->f_security;
1578 	struct inode *inode = file->f_path.dentry->d_inode;
1579 	struct avc_audit_data ad;
1580 	u32 sid = cred_sid(cred);
1581 	int rc;
1582 
1583 	AVC_AUDIT_DATA_INIT(&ad, FS);
1584 	ad.u.fs.path = file->f_path;
1585 
1586 	if (sid != fsec->sid) {
1587 		rc = avc_has_perm(sid, fsec->sid,
1588 				  SECCLASS_FD,
1589 				  FD__USE,
1590 				  &ad);
1591 		if (rc)
1592 			goto out;
1593 	}
1594 
1595 	/* av is zero if only checking access to the descriptor. */
1596 	rc = 0;
1597 	if (av)
1598 		rc = inode_has_perm(cred, inode, av, &ad);
1599 
1600 out:
1601 	return rc;
1602 }
1603 
1604 /* Check whether a task can create a file. */
1605 static int may_create(struct inode *dir,
1606 		      struct dentry *dentry,
1607 		      u16 tclass)
1608 {
1609 	const struct cred *cred = current_cred();
1610 	const struct task_security_struct *tsec = cred->security;
1611 	struct inode_security_struct *dsec;
1612 	struct superblock_security_struct *sbsec;
1613 	u32 sid, newsid;
1614 	struct avc_audit_data ad;
1615 	int rc;
1616 
1617 	dsec = dir->i_security;
1618 	sbsec = dir->i_sb->s_security;
1619 
1620 	sid = tsec->sid;
1621 	newsid = tsec->create_sid;
1622 
1623 	AVC_AUDIT_DATA_INIT(&ad, FS);
1624 	ad.u.fs.path.dentry = dentry;
1625 
1626 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1627 			  DIR__ADD_NAME | DIR__SEARCH,
1628 			  &ad);
1629 	if (rc)
1630 		return rc;
1631 
1632 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1633 		rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1634 		if (rc)
1635 			return rc;
1636 	}
1637 
1638 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1639 	if (rc)
1640 		return rc;
1641 
1642 	return avc_has_perm(newsid, sbsec->sid,
1643 			    SECCLASS_FILESYSTEM,
1644 			    FILESYSTEM__ASSOCIATE, &ad);
1645 }
1646 
1647 /* Check whether a task can create a key. */
1648 static int may_create_key(u32 ksid,
1649 			  struct task_struct *ctx)
1650 {
1651 	u32 sid = task_sid(ctx);
1652 
1653 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1654 }
1655 
1656 #define MAY_LINK	0
1657 #define MAY_UNLINK	1
1658 #define MAY_RMDIR	2
1659 
1660 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1661 static int may_link(struct inode *dir,
1662 		    struct dentry *dentry,
1663 		    int kind)
1664 
1665 {
1666 	struct inode_security_struct *dsec, *isec;
1667 	struct avc_audit_data ad;
1668 	u32 sid = current_sid();
1669 	u32 av;
1670 	int rc;
1671 
1672 	dsec = dir->i_security;
1673 	isec = dentry->d_inode->i_security;
1674 
1675 	AVC_AUDIT_DATA_INIT(&ad, FS);
1676 	ad.u.fs.path.dentry = dentry;
1677 
1678 	av = DIR__SEARCH;
1679 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1680 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1681 	if (rc)
1682 		return rc;
1683 
1684 	switch (kind) {
1685 	case MAY_LINK:
1686 		av = FILE__LINK;
1687 		break;
1688 	case MAY_UNLINK:
1689 		av = FILE__UNLINK;
1690 		break;
1691 	case MAY_RMDIR:
1692 		av = DIR__RMDIR;
1693 		break;
1694 	default:
1695 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1696 			__func__, kind);
1697 		return 0;
1698 	}
1699 
1700 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1701 	return rc;
1702 }
1703 
1704 static inline int may_rename(struct inode *old_dir,
1705 			     struct dentry *old_dentry,
1706 			     struct inode *new_dir,
1707 			     struct dentry *new_dentry)
1708 {
1709 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1710 	struct avc_audit_data ad;
1711 	u32 sid = current_sid();
1712 	u32 av;
1713 	int old_is_dir, new_is_dir;
1714 	int rc;
1715 
1716 	old_dsec = old_dir->i_security;
1717 	old_isec = old_dentry->d_inode->i_security;
1718 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1719 	new_dsec = new_dir->i_security;
1720 
1721 	AVC_AUDIT_DATA_INIT(&ad, FS);
1722 
1723 	ad.u.fs.path.dentry = old_dentry;
1724 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1725 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1726 	if (rc)
1727 		return rc;
1728 	rc = avc_has_perm(sid, old_isec->sid,
1729 			  old_isec->sclass, FILE__RENAME, &ad);
1730 	if (rc)
1731 		return rc;
1732 	if (old_is_dir && new_dir != old_dir) {
1733 		rc = avc_has_perm(sid, old_isec->sid,
1734 				  old_isec->sclass, DIR__REPARENT, &ad);
1735 		if (rc)
1736 			return rc;
1737 	}
1738 
1739 	ad.u.fs.path.dentry = new_dentry;
1740 	av = DIR__ADD_NAME | DIR__SEARCH;
1741 	if (new_dentry->d_inode)
1742 		av |= DIR__REMOVE_NAME;
1743 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1744 	if (rc)
1745 		return rc;
1746 	if (new_dentry->d_inode) {
1747 		new_isec = new_dentry->d_inode->i_security;
1748 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1749 		rc = avc_has_perm(sid, new_isec->sid,
1750 				  new_isec->sclass,
1751 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1752 		if (rc)
1753 			return rc;
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 /* Check whether a task can perform a filesystem operation. */
1760 static int superblock_has_perm(const struct cred *cred,
1761 			       struct super_block *sb,
1762 			       u32 perms,
1763 			       struct avc_audit_data *ad)
1764 {
1765 	struct superblock_security_struct *sbsec;
1766 	u32 sid = cred_sid(cred);
1767 
1768 	sbsec = sb->s_security;
1769 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1770 }
1771 
1772 /* Convert a Linux mode and permission mask to an access vector. */
1773 static inline u32 file_mask_to_av(int mode, int mask)
1774 {
1775 	u32 av = 0;
1776 
1777 	if ((mode & S_IFMT) != S_IFDIR) {
1778 		if (mask & MAY_EXEC)
1779 			av |= FILE__EXECUTE;
1780 		if (mask & MAY_READ)
1781 			av |= FILE__READ;
1782 
1783 		if (mask & MAY_APPEND)
1784 			av |= FILE__APPEND;
1785 		else if (mask & MAY_WRITE)
1786 			av |= FILE__WRITE;
1787 
1788 	} else {
1789 		if (mask & MAY_EXEC)
1790 			av |= DIR__SEARCH;
1791 		if (mask & MAY_WRITE)
1792 			av |= DIR__WRITE;
1793 		if (mask & MAY_READ)
1794 			av |= DIR__READ;
1795 	}
1796 
1797 	return av;
1798 }
1799 
1800 /* Convert a Linux file to an access vector. */
1801 static inline u32 file_to_av(struct file *file)
1802 {
1803 	u32 av = 0;
1804 
1805 	if (file->f_mode & FMODE_READ)
1806 		av |= FILE__READ;
1807 	if (file->f_mode & FMODE_WRITE) {
1808 		if (file->f_flags & O_APPEND)
1809 			av |= FILE__APPEND;
1810 		else
1811 			av |= FILE__WRITE;
1812 	}
1813 	if (!av) {
1814 		/*
1815 		 * Special file opened with flags 3 for ioctl-only use.
1816 		 */
1817 		av = FILE__IOCTL;
1818 	}
1819 
1820 	return av;
1821 }
1822 
1823 /*
1824  * Convert a file to an access vector and include the correct open
1825  * open permission.
1826  */
1827 static inline u32 open_file_to_av(struct file *file)
1828 {
1829 	u32 av = file_to_av(file);
1830 
1831 	if (selinux_policycap_openperm) {
1832 		mode_t mode = file->f_path.dentry->d_inode->i_mode;
1833 		/*
1834 		 * lnk files and socks do not really have an 'open'
1835 		 */
1836 		if (S_ISREG(mode))
1837 			av |= FILE__OPEN;
1838 		else if (S_ISCHR(mode))
1839 			av |= CHR_FILE__OPEN;
1840 		else if (S_ISBLK(mode))
1841 			av |= BLK_FILE__OPEN;
1842 		else if (S_ISFIFO(mode))
1843 			av |= FIFO_FILE__OPEN;
1844 		else if (S_ISDIR(mode))
1845 			av |= DIR__OPEN;
1846 		else if (S_ISSOCK(mode))
1847 			av |= SOCK_FILE__OPEN;
1848 		else
1849 			printk(KERN_ERR "SELinux: WARNING: inside %s with "
1850 				"unknown mode:%o\n", __func__, mode);
1851 	}
1852 	return av;
1853 }
1854 
1855 /* Hook functions begin here. */
1856 
1857 static int selinux_ptrace_access_check(struct task_struct *child,
1858 				     unsigned int mode)
1859 {
1860 	int rc;
1861 
1862 	rc = cap_ptrace_access_check(child, mode);
1863 	if (rc)
1864 		return rc;
1865 
1866 	if (mode == PTRACE_MODE_READ) {
1867 		u32 sid = current_sid();
1868 		u32 csid = task_sid(child);
1869 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1870 	}
1871 
1872 	return current_has_perm(child, PROCESS__PTRACE);
1873 }
1874 
1875 static int selinux_ptrace_traceme(struct task_struct *parent)
1876 {
1877 	int rc;
1878 
1879 	rc = cap_ptrace_traceme(parent);
1880 	if (rc)
1881 		return rc;
1882 
1883 	return task_has_perm(parent, current, PROCESS__PTRACE);
1884 }
1885 
1886 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1887 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1888 {
1889 	int error;
1890 
1891 	error = current_has_perm(target, PROCESS__GETCAP);
1892 	if (error)
1893 		return error;
1894 
1895 	return cap_capget(target, effective, inheritable, permitted);
1896 }
1897 
1898 static int selinux_capset(struct cred *new, const struct cred *old,
1899 			  const kernel_cap_t *effective,
1900 			  const kernel_cap_t *inheritable,
1901 			  const kernel_cap_t *permitted)
1902 {
1903 	int error;
1904 
1905 	error = cap_capset(new, old,
1906 				      effective, inheritable, permitted);
1907 	if (error)
1908 		return error;
1909 
1910 	return cred_has_perm(old, new, PROCESS__SETCAP);
1911 }
1912 
1913 /*
1914  * (This comment used to live with the selinux_task_setuid hook,
1915  * which was removed).
1916  *
1917  * Since setuid only affects the current process, and since the SELinux
1918  * controls are not based on the Linux identity attributes, SELinux does not
1919  * need to control this operation.  However, SELinux does control the use of
1920  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1921  */
1922 
1923 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1924 			   int cap, int audit)
1925 {
1926 	int rc;
1927 
1928 	rc = cap_capable(tsk, cred, cap, audit);
1929 	if (rc)
1930 		return rc;
1931 
1932 	return task_has_capability(tsk, cred, cap, audit);
1933 }
1934 
1935 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1936 {
1937 	int buflen, rc;
1938 	char *buffer, *path, *end;
1939 
1940 	rc = -ENOMEM;
1941 	buffer = (char *)__get_free_page(GFP_KERNEL);
1942 	if (!buffer)
1943 		goto out;
1944 
1945 	buflen = PAGE_SIZE;
1946 	end = buffer+buflen;
1947 	*--end = '\0';
1948 	buflen--;
1949 	path = end-1;
1950 	*path = '/';
1951 	while (table) {
1952 		const char *name = table->procname;
1953 		size_t namelen = strlen(name);
1954 		buflen -= namelen + 1;
1955 		if (buflen < 0)
1956 			goto out_free;
1957 		end -= namelen;
1958 		memcpy(end, name, namelen);
1959 		*--end = '/';
1960 		path = end;
1961 		table = table->parent;
1962 	}
1963 	buflen -= 4;
1964 	if (buflen < 0)
1965 		goto out_free;
1966 	end -= 4;
1967 	memcpy(end, "/sys", 4);
1968 	path = end;
1969 	rc = security_genfs_sid("proc", path, tclass, sid);
1970 out_free:
1971 	free_page((unsigned long)buffer);
1972 out:
1973 	return rc;
1974 }
1975 
1976 static int selinux_sysctl(ctl_table *table, int op)
1977 {
1978 	int error = 0;
1979 	u32 av;
1980 	u32 tsid, sid;
1981 	int rc;
1982 
1983 	sid = current_sid();
1984 
1985 	rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1986 				    SECCLASS_DIR : SECCLASS_FILE, &tsid);
1987 	if (rc) {
1988 		/* Default to the well-defined sysctl SID. */
1989 		tsid = SECINITSID_SYSCTL;
1990 	}
1991 
1992 	/* The op values are "defined" in sysctl.c, thereby creating
1993 	 * a bad coupling between this module and sysctl.c */
1994 	if (op == 001) {
1995 		error = avc_has_perm(sid, tsid,
1996 				     SECCLASS_DIR, DIR__SEARCH, NULL);
1997 	} else {
1998 		av = 0;
1999 		if (op & 004)
2000 			av |= FILE__READ;
2001 		if (op & 002)
2002 			av |= FILE__WRITE;
2003 		if (av)
2004 			error = avc_has_perm(sid, tsid,
2005 					     SECCLASS_FILE, av, NULL);
2006 	}
2007 
2008 	return error;
2009 }
2010 
2011 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2012 {
2013 	const struct cred *cred = current_cred();
2014 	int rc = 0;
2015 
2016 	if (!sb)
2017 		return 0;
2018 
2019 	switch (cmds) {
2020 	case Q_SYNC:
2021 	case Q_QUOTAON:
2022 	case Q_QUOTAOFF:
2023 	case Q_SETINFO:
2024 	case Q_SETQUOTA:
2025 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2026 		break;
2027 	case Q_GETFMT:
2028 	case Q_GETINFO:
2029 	case Q_GETQUOTA:
2030 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2031 		break;
2032 	default:
2033 		rc = 0;  /* let the kernel handle invalid cmds */
2034 		break;
2035 	}
2036 	return rc;
2037 }
2038 
2039 static int selinux_quota_on(struct dentry *dentry)
2040 {
2041 	const struct cred *cred = current_cred();
2042 
2043 	return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2044 }
2045 
2046 static int selinux_syslog(int type)
2047 {
2048 	int rc;
2049 
2050 	rc = cap_syslog(type);
2051 	if (rc)
2052 		return rc;
2053 
2054 	switch (type) {
2055 	case 3:		/* Read last kernel messages */
2056 	case 10:	/* Return size of the log buffer */
2057 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2058 		break;
2059 	case 6:		/* Disable logging to console */
2060 	case 7:		/* Enable logging to console */
2061 	case 8:		/* Set level of messages printed to console */
2062 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2063 		break;
2064 	case 0:		/* Close log */
2065 	case 1:		/* Open log */
2066 	case 2:		/* Read from log */
2067 	case 4:		/* Read/clear last kernel messages */
2068 	case 5:		/* Clear ring buffer */
2069 	default:
2070 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2071 		break;
2072 	}
2073 	return rc;
2074 }
2075 
2076 /*
2077  * Check that a process has enough memory to allocate a new virtual
2078  * mapping. 0 means there is enough memory for the allocation to
2079  * succeed and -ENOMEM implies there is not.
2080  *
2081  * Do not audit the selinux permission check, as this is applied to all
2082  * processes that allocate mappings.
2083  */
2084 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2085 {
2086 	int rc, cap_sys_admin = 0;
2087 
2088 	rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2089 			     SECURITY_CAP_NOAUDIT);
2090 	if (rc == 0)
2091 		cap_sys_admin = 1;
2092 
2093 	return __vm_enough_memory(mm, pages, cap_sys_admin);
2094 }
2095 
2096 /* binprm security operations */
2097 
2098 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2099 {
2100 	const struct task_security_struct *old_tsec;
2101 	struct task_security_struct *new_tsec;
2102 	struct inode_security_struct *isec;
2103 	struct avc_audit_data ad;
2104 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
2105 	int rc;
2106 
2107 	rc = cap_bprm_set_creds(bprm);
2108 	if (rc)
2109 		return rc;
2110 
2111 	/* SELinux context only depends on initial program or script and not
2112 	 * the script interpreter */
2113 	if (bprm->cred_prepared)
2114 		return 0;
2115 
2116 	old_tsec = current_security();
2117 	new_tsec = bprm->cred->security;
2118 	isec = inode->i_security;
2119 
2120 	/* Default to the current task SID. */
2121 	new_tsec->sid = old_tsec->sid;
2122 	new_tsec->osid = old_tsec->sid;
2123 
2124 	/* Reset fs, key, and sock SIDs on execve. */
2125 	new_tsec->create_sid = 0;
2126 	new_tsec->keycreate_sid = 0;
2127 	new_tsec->sockcreate_sid = 0;
2128 
2129 	if (old_tsec->exec_sid) {
2130 		new_tsec->sid = old_tsec->exec_sid;
2131 		/* Reset exec SID on execve. */
2132 		new_tsec->exec_sid = 0;
2133 	} else {
2134 		/* Check for a default transition on this program. */
2135 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2136 					     SECCLASS_PROCESS, &new_tsec->sid);
2137 		if (rc)
2138 			return rc;
2139 	}
2140 
2141 	AVC_AUDIT_DATA_INIT(&ad, FS);
2142 	ad.u.fs.path = bprm->file->f_path;
2143 
2144 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2145 		new_tsec->sid = old_tsec->sid;
2146 
2147 	if (new_tsec->sid == old_tsec->sid) {
2148 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2149 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2150 		if (rc)
2151 			return rc;
2152 	} else {
2153 		/* Check permissions for the transition. */
2154 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2155 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2156 		if (rc)
2157 			return rc;
2158 
2159 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2160 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2161 		if (rc)
2162 			return rc;
2163 
2164 		/* Check for shared state */
2165 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2167 					  SECCLASS_PROCESS, PROCESS__SHARE,
2168 					  NULL);
2169 			if (rc)
2170 				return -EPERM;
2171 		}
2172 
2173 		/* Make sure that anyone attempting to ptrace over a task that
2174 		 * changes its SID has the appropriate permit */
2175 		if (bprm->unsafe &
2176 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177 			struct task_struct *tracer;
2178 			struct task_security_struct *sec;
2179 			u32 ptsid = 0;
2180 
2181 			rcu_read_lock();
2182 			tracer = tracehook_tracer_task(current);
2183 			if (likely(tracer != NULL)) {
2184 				sec = __task_cred(tracer)->security;
2185 				ptsid = sec->sid;
2186 			}
2187 			rcu_read_unlock();
2188 
2189 			if (ptsid != 0) {
2190 				rc = avc_has_perm(ptsid, new_tsec->sid,
2191 						  SECCLASS_PROCESS,
2192 						  PROCESS__PTRACE, NULL);
2193 				if (rc)
2194 					return -EPERM;
2195 			}
2196 		}
2197 
2198 		/* Clear any possibly unsafe personality bits on exec: */
2199 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2206 {
2207 	const struct cred *cred = current_cred();
2208 	const struct task_security_struct *tsec = cred->security;
2209 	u32 sid, osid;
2210 	int atsecure = 0;
2211 
2212 	sid = tsec->sid;
2213 	osid = tsec->osid;
2214 
2215 	if (osid != sid) {
2216 		/* Enable secure mode for SIDs transitions unless
2217 		   the noatsecure permission is granted between
2218 		   the two SIDs, i.e. ahp returns 0. */
2219 		atsecure = avc_has_perm(osid, sid,
2220 					SECCLASS_PROCESS,
2221 					PROCESS__NOATSECURE, NULL);
2222 	}
2223 
2224 	return (atsecure || cap_bprm_secureexec(bprm));
2225 }
2226 
2227 extern struct vfsmount *selinuxfs_mount;
2228 extern struct dentry *selinux_null;
2229 
2230 /* Derived from fs/exec.c:flush_old_files. */
2231 static inline void flush_unauthorized_files(const struct cred *cred,
2232 					    struct files_struct *files)
2233 {
2234 	struct avc_audit_data ad;
2235 	struct file *file, *devnull = NULL;
2236 	struct tty_struct *tty;
2237 	struct fdtable *fdt;
2238 	long j = -1;
2239 	int drop_tty = 0;
2240 
2241 	tty = get_current_tty();
2242 	if (tty) {
2243 		file_list_lock();
2244 		if (!list_empty(&tty->tty_files)) {
2245 			struct inode *inode;
2246 
2247 			/* Revalidate access to controlling tty.
2248 			   Use inode_has_perm on the tty inode directly rather
2249 			   than using file_has_perm, as this particular open
2250 			   file may belong to another process and we are only
2251 			   interested in the inode-based check here. */
2252 			file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2253 			inode = file->f_path.dentry->d_inode;
2254 			if (inode_has_perm(cred, inode,
2255 					   FILE__READ | FILE__WRITE, NULL)) {
2256 				drop_tty = 1;
2257 			}
2258 		}
2259 		file_list_unlock();
2260 		tty_kref_put(tty);
2261 	}
2262 	/* Reset controlling tty. */
2263 	if (drop_tty)
2264 		no_tty();
2265 
2266 	/* Revalidate access to inherited open files. */
2267 
2268 	AVC_AUDIT_DATA_INIT(&ad, FS);
2269 
2270 	spin_lock(&files->file_lock);
2271 	for (;;) {
2272 		unsigned long set, i;
2273 		int fd;
2274 
2275 		j++;
2276 		i = j * __NFDBITS;
2277 		fdt = files_fdtable(files);
2278 		if (i >= fdt->max_fds)
2279 			break;
2280 		set = fdt->open_fds->fds_bits[j];
2281 		if (!set)
2282 			continue;
2283 		spin_unlock(&files->file_lock);
2284 		for ( ; set ; i++, set >>= 1) {
2285 			if (set & 1) {
2286 				file = fget(i);
2287 				if (!file)
2288 					continue;
2289 				if (file_has_perm(cred,
2290 						  file,
2291 						  file_to_av(file))) {
2292 					sys_close(i);
2293 					fd = get_unused_fd();
2294 					if (fd != i) {
2295 						if (fd >= 0)
2296 							put_unused_fd(fd);
2297 						fput(file);
2298 						continue;
2299 					}
2300 					if (devnull) {
2301 						get_file(devnull);
2302 					} else {
2303 						devnull = dentry_open(
2304 							dget(selinux_null),
2305 							mntget(selinuxfs_mount),
2306 							O_RDWR, cred);
2307 						if (IS_ERR(devnull)) {
2308 							devnull = NULL;
2309 							put_unused_fd(fd);
2310 							fput(file);
2311 							continue;
2312 						}
2313 					}
2314 					fd_install(fd, devnull);
2315 				}
2316 				fput(file);
2317 			}
2318 		}
2319 		spin_lock(&files->file_lock);
2320 
2321 	}
2322 	spin_unlock(&files->file_lock);
2323 }
2324 
2325 /*
2326  * Prepare a process for imminent new credential changes due to exec
2327  */
2328 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2329 {
2330 	struct task_security_struct *new_tsec;
2331 	struct rlimit *rlim, *initrlim;
2332 	int rc, i;
2333 
2334 	new_tsec = bprm->cred->security;
2335 	if (new_tsec->sid == new_tsec->osid)
2336 		return;
2337 
2338 	/* Close files for which the new task SID is not authorized. */
2339 	flush_unauthorized_files(bprm->cred, current->files);
2340 
2341 	/* Always clear parent death signal on SID transitions. */
2342 	current->pdeath_signal = 0;
2343 
2344 	/* Check whether the new SID can inherit resource limits from the old
2345 	 * SID.  If not, reset all soft limits to the lower of the current
2346 	 * task's hard limit and the init task's soft limit.
2347 	 *
2348 	 * Note that the setting of hard limits (even to lower them) can be
2349 	 * controlled by the setrlimit check.  The inclusion of the init task's
2350 	 * soft limit into the computation is to avoid resetting soft limits
2351 	 * higher than the default soft limit for cases where the default is
2352 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2353 	 */
2354 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2355 			  PROCESS__RLIMITINH, NULL);
2356 	if (rc) {
2357 		for (i = 0; i < RLIM_NLIMITS; i++) {
2358 			rlim = current->signal->rlim + i;
2359 			initrlim = init_task.signal->rlim + i;
2360 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2361 		}
2362 		update_rlimit_cpu(rlim->rlim_cur);
2363 	}
2364 }
2365 
2366 /*
2367  * Clean up the process immediately after the installation of new credentials
2368  * due to exec
2369  */
2370 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2371 {
2372 	const struct task_security_struct *tsec = current_security();
2373 	struct itimerval itimer;
2374 	u32 osid, sid;
2375 	int rc, i;
2376 
2377 	osid = tsec->osid;
2378 	sid = tsec->sid;
2379 
2380 	if (sid == osid)
2381 		return;
2382 
2383 	/* Check whether the new SID can inherit signal state from the old SID.
2384 	 * If not, clear itimers to avoid subsequent signal generation and
2385 	 * flush and unblock signals.
2386 	 *
2387 	 * This must occur _after_ the task SID has been updated so that any
2388 	 * kill done after the flush will be checked against the new SID.
2389 	 */
2390 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2391 	if (rc) {
2392 		memset(&itimer, 0, sizeof itimer);
2393 		for (i = 0; i < 3; i++)
2394 			do_setitimer(i, &itimer, NULL);
2395 		spin_lock_irq(&current->sighand->siglock);
2396 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2397 			__flush_signals(current);
2398 			flush_signal_handlers(current, 1);
2399 			sigemptyset(&current->blocked);
2400 		}
2401 		spin_unlock_irq(&current->sighand->siglock);
2402 	}
2403 
2404 	/* Wake up the parent if it is waiting so that it can recheck
2405 	 * wait permission to the new task SID. */
2406 	read_lock(&tasklist_lock);
2407 	wake_up_interruptible(&current->real_parent->signal->wait_chldexit);
2408 	read_unlock(&tasklist_lock);
2409 }
2410 
2411 /* superblock security operations */
2412 
2413 static int selinux_sb_alloc_security(struct super_block *sb)
2414 {
2415 	return superblock_alloc_security(sb);
2416 }
2417 
2418 static void selinux_sb_free_security(struct super_block *sb)
2419 {
2420 	superblock_free_security(sb);
2421 }
2422 
2423 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2424 {
2425 	if (plen > olen)
2426 		return 0;
2427 
2428 	return !memcmp(prefix, option, plen);
2429 }
2430 
2431 static inline int selinux_option(char *option, int len)
2432 {
2433 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2434 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2435 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2436 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2437 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2438 }
2439 
2440 static inline void take_option(char **to, char *from, int *first, int len)
2441 {
2442 	if (!*first) {
2443 		**to = ',';
2444 		*to += 1;
2445 	} else
2446 		*first = 0;
2447 	memcpy(*to, from, len);
2448 	*to += len;
2449 }
2450 
2451 static inline void take_selinux_option(char **to, char *from, int *first,
2452 				       int len)
2453 {
2454 	int current_size = 0;
2455 
2456 	if (!*first) {
2457 		**to = '|';
2458 		*to += 1;
2459 	} else
2460 		*first = 0;
2461 
2462 	while (current_size < len) {
2463 		if (*from != '"') {
2464 			**to = *from;
2465 			*to += 1;
2466 		}
2467 		from += 1;
2468 		current_size += 1;
2469 	}
2470 }
2471 
2472 static int selinux_sb_copy_data(char *orig, char *copy)
2473 {
2474 	int fnosec, fsec, rc = 0;
2475 	char *in_save, *in_curr, *in_end;
2476 	char *sec_curr, *nosec_save, *nosec;
2477 	int open_quote = 0;
2478 
2479 	in_curr = orig;
2480 	sec_curr = copy;
2481 
2482 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2483 	if (!nosec) {
2484 		rc = -ENOMEM;
2485 		goto out;
2486 	}
2487 
2488 	nosec_save = nosec;
2489 	fnosec = fsec = 1;
2490 	in_save = in_end = orig;
2491 
2492 	do {
2493 		if (*in_end == '"')
2494 			open_quote = !open_quote;
2495 		if ((*in_end == ',' && open_quote == 0) ||
2496 				*in_end == '\0') {
2497 			int len = in_end - in_curr;
2498 
2499 			if (selinux_option(in_curr, len))
2500 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2501 			else
2502 				take_option(&nosec, in_curr, &fnosec, len);
2503 
2504 			in_curr = in_end + 1;
2505 		}
2506 	} while (*in_end++);
2507 
2508 	strcpy(in_save, nosec_save);
2509 	free_page((unsigned long)nosec_save);
2510 out:
2511 	return rc;
2512 }
2513 
2514 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2515 {
2516 	const struct cred *cred = current_cred();
2517 	struct avc_audit_data ad;
2518 	int rc;
2519 
2520 	rc = superblock_doinit(sb, data);
2521 	if (rc)
2522 		return rc;
2523 
2524 	/* Allow all mounts performed by the kernel */
2525 	if (flags & MS_KERNMOUNT)
2526 		return 0;
2527 
2528 	AVC_AUDIT_DATA_INIT(&ad, FS);
2529 	ad.u.fs.path.dentry = sb->s_root;
2530 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2531 }
2532 
2533 static int selinux_sb_statfs(struct dentry *dentry)
2534 {
2535 	const struct cred *cred = current_cred();
2536 	struct avc_audit_data ad;
2537 
2538 	AVC_AUDIT_DATA_INIT(&ad, FS);
2539 	ad.u.fs.path.dentry = dentry->d_sb->s_root;
2540 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2541 }
2542 
2543 static int selinux_mount(char *dev_name,
2544 			 struct path *path,
2545 			 char *type,
2546 			 unsigned long flags,
2547 			 void *data)
2548 {
2549 	const struct cred *cred = current_cred();
2550 
2551 	if (flags & MS_REMOUNT)
2552 		return superblock_has_perm(cred, path->mnt->mnt_sb,
2553 					   FILESYSTEM__REMOUNT, NULL);
2554 	else
2555 		return dentry_has_perm(cred, path->mnt, path->dentry,
2556 				       FILE__MOUNTON);
2557 }
2558 
2559 static int selinux_umount(struct vfsmount *mnt, int flags)
2560 {
2561 	const struct cred *cred = current_cred();
2562 
2563 	return superblock_has_perm(cred, mnt->mnt_sb,
2564 				   FILESYSTEM__UNMOUNT, NULL);
2565 }
2566 
2567 /* inode security operations */
2568 
2569 static int selinux_inode_alloc_security(struct inode *inode)
2570 {
2571 	return inode_alloc_security(inode);
2572 }
2573 
2574 static void selinux_inode_free_security(struct inode *inode)
2575 {
2576 	inode_free_security(inode);
2577 }
2578 
2579 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2580 				       char **name, void **value,
2581 				       size_t *len)
2582 {
2583 	const struct cred *cred = current_cred();
2584 	const struct task_security_struct *tsec = cred->security;
2585 	struct inode_security_struct *dsec;
2586 	struct superblock_security_struct *sbsec;
2587 	u32 sid, newsid, clen;
2588 	int rc;
2589 	char *namep = NULL, *context;
2590 
2591 	dsec = dir->i_security;
2592 	sbsec = dir->i_sb->s_security;
2593 
2594 	sid = tsec->sid;
2595 	newsid = tsec->create_sid;
2596 
2597 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2598 		rc = security_transition_sid(sid, dsec->sid,
2599 					     inode_mode_to_security_class(inode->i_mode),
2600 					     &newsid);
2601 		if (rc) {
2602 			printk(KERN_WARNING "%s:  "
2603 			       "security_transition_sid failed, rc=%d (dev=%s "
2604 			       "ino=%ld)\n",
2605 			       __func__,
2606 			       -rc, inode->i_sb->s_id, inode->i_ino);
2607 			return rc;
2608 		}
2609 	}
2610 
2611 	/* Possibly defer initialization to selinux_complete_init. */
2612 	if (sbsec->flags & SE_SBINITIALIZED) {
2613 		struct inode_security_struct *isec = inode->i_security;
2614 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2615 		isec->sid = newsid;
2616 		isec->initialized = 1;
2617 	}
2618 
2619 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2620 		return -EOPNOTSUPP;
2621 
2622 	if (name) {
2623 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2624 		if (!namep)
2625 			return -ENOMEM;
2626 		*name = namep;
2627 	}
2628 
2629 	if (value && len) {
2630 		rc = security_sid_to_context_force(newsid, &context, &clen);
2631 		if (rc) {
2632 			kfree(namep);
2633 			return rc;
2634 		}
2635 		*value = context;
2636 		*len = clen;
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2643 {
2644 	return may_create(dir, dentry, SECCLASS_FILE);
2645 }
2646 
2647 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2648 {
2649 	return may_link(dir, old_dentry, MAY_LINK);
2650 }
2651 
2652 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2653 {
2654 	return may_link(dir, dentry, MAY_UNLINK);
2655 }
2656 
2657 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2658 {
2659 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2660 }
2661 
2662 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2663 {
2664 	return may_create(dir, dentry, SECCLASS_DIR);
2665 }
2666 
2667 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2668 {
2669 	return may_link(dir, dentry, MAY_RMDIR);
2670 }
2671 
2672 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2673 {
2674 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2675 }
2676 
2677 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2678 				struct inode *new_inode, struct dentry *new_dentry)
2679 {
2680 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2681 }
2682 
2683 static int selinux_inode_readlink(struct dentry *dentry)
2684 {
2685 	const struct cred *cred = current_cred();
2686 
2687 	return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2688 }
2689 
2690 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2691 {
2692 	const struct cred *cred = current_cred();
2693 
2694 	return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2695 }
2696 
2697 static int selinux_inode_permission(struct inode *inode, int mask)
2698 {
2699 	const struct cred *cred = current_cred();
2700 
2701 	if (!mask) {
2702 		/* No permission to check.  Existence test. */
2703 		return 0;
2704 	}
2705 
2706 	return inode_has_perm(cred, inode,
2707 			      file_mask_to_av(inode->i_mode, mask), NULL);
2708 }
2709 
2710 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2711 {
2712 	const struct cred *cred = current_cred();
2713 
2714 	if (iattr->ia_valid & ATTR_FORCE)
2715 		return 0;
2716 
2717 	if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2718 			       ATTR_ATIME_SET | ATTR_MTIME_SET))
2719 		return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2720 
2721 	return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2722 }
2723 
2724 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2725 {
2726 	const struct cred *cred = current_cred();
2727 
2728 	return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2729 }
2730 
2731 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2732 {
2733 	const struct cred *cred = current_cred();
2734 
2735 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2736 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2737 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2738 			if (!capable(CAP_SETFCAP))
2739 				return -EPERM;
2740 		} else if (!capable(CAP_SYS_ADMIN)) {
2741 			/* A different attribute in the security namespace.
2742 			   Restrict to administrator. */
2743 			return -EPERM;
2744 		}
2745 	}
2746 
2747 	/* Not an attribute we recognize, so just check the
2748 	   ordinary setattr permission. */
2749 	return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2750 }
2751 
2752 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2753 				  const void *value, size_t size, int flags)
2754 {
2755 	struct inode *inode = dentry->d_inode;
2756 	struct inode_security_struct *isec = inode->i_security;
2757 	struct superblock_security_struct *sbsec;
2758 	struct avc_audit_data ad;
2759 	u32 newsid, sid = current_sid();
2760 	int rc = 0;
2761 
2762 	if (strcmp(name, XATTR_NAME_SELINUX))
2763 		return selinux_inode_setotherxattr(dentry, name);
2764 
2765 	sbsec = inode->i_sb->s_security;
2766 	if (!(sbsec->flags & SE_SBLABELSUPP))
2767 		return -EOPNOTSUPP;
2768 
2769 	if (!is_owner_or_cap(inode))
2770 		return -EPERM;
2771 
2772 	AVC_AUDIT_DATA_INIT(&ad, FS);
2773 	ad.u.fs.path.dentry = dentry;
2774 
2775 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2776 			  FILE__RELABELFROM, &ad);
2777 	if (rc)
2778 		return rc;
2779 
2780 	rc = security_context_to_sid(value, size, &newsid);
2781 	if (rc == -EINVAL) {
2782 		if (!capable(CAP_MAC_ADMIN))
2783 			return rc;
2784 		rc = security_context_to_sid_force(value, size, &newsid);
2785 	}
2786 	if (rc)
2787 		return rc;
2788 
2789 	rc = avc_has_perm(sid, newsid, isec->sclass,
2790 			  FILE__RELABELTO, &ad);
2791 	if (rc)
2792 		return rc;
2793 
2794 	rc = security_validate_transition(isec->sid, newsid, sid,
2795 					  isec->sclass);
2796 	if (rc)
2797 		return rc;
2798 
2799 	return avc_has_perm(newsid,
2800 			    sbsec->sid,
2801 			    SECCLASS_FILESYSTEM,
2802 			    FILESYSTEM__ASSOCIATE,
2803 			    &ad);
2804 }
2805 
2806 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2807 					const void *value, size_t size,
2808 					int flags)
2809 {
2810 	struct inode *inode = dentry->d_inode;
2811 	struct inode_security_struct *isec = inode->i_security;
2812 	u32 newsid;
2813 	int rc;
2814 
2815 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2816 		/* Not an attribute we recognize, so nothing to do. */
2817 		return;
2818 	}
2819 
2820 	rc = security_context_to_sid_force(value, size, &newsid);
2821 	if (rc) {
2822 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2823 		       "for (%s, %lu), rc=%d\n",
2824 		       inode->i_sb->s_id, inode->i_ino, -rc);
2825 		return;
2826 	}
2827 
2828 	isec->sid = newsid;
2829 	return;
2830 }
2831 
2832 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2833 {
2834 	const struct cred *cred = current_cred();
2835 
2836 	return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2837 }
2838 
2839 static int selinux_inode_listxattr(struct dentry *dentry)
2840 {
2841 	const struct cred *cred = current_cred();
2842 
2843 	return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2844 }
2845 
2846 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2847 {
2848 	if (strcmp(name, XATTR_NAME_SELINUX))
2849 		return selinux_inode_setotherxattr(dentry, name);
2850 
2851 	/* No one is allowed to remove a SELinux security label.
2852 	   You can change the label, but all data must be labeled. */
2853 	return -EACCES;
2854 }
2855 
2856 /*
2857  * Copy the inode security context value to the user.
2858  *
2859  * Permission check is handled by selinux_inode_getxattr hook.
2860  */
2861 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2862 {
2863 	u32 size;
2864 	int error;
2865 	char *context = NULL;
2866 	struct inode_security_struct *isec = inode->i_security;
2867 
2868 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2869 		return -EOPNOTSUPP;
2870 
2871 	/*
2872 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2873 	 * value even if it is not defined by current policy; otherwise,
2874 	 * use the in-core value under current policy.
2875 	 * Use the non-auditing forms of the permission checks since
2876 	 * getxattr may be called by unprivileged processes commonly
2877 	 * and lack of permission just means that we fall back to the
2878 	 * in-core context value, not a denial.
2879 	 */
2880 	error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2881 				SECURITY_CAP_NOAUDIT);
2882 	if (!error)
2883 		error = security_sid_to_context_force(isec->sid, &context,
2884 						      &size);
2885 	else
2886 		error = security_sid_to_context(isec->sid, &context, &size);
2887 	if (error)
2888 		return error;
2889 	error = size;
2890 	if (alloc) {
2891 		*buffer = context;
2892 		goto out_nofree;
2893 	}
2894 	kfree(context);
2895 out_nofree:
2896 	return error;
2897 }
2898 
2899 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2900 				     const void *value, size_t size, int flags)
2901 {
2902 	struct inode_security_struct *isec = inode->i_security;
2903 	u32 newsid;
2904 	int rc;
2905 
2906 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2907 		return -EOPNOTSUPP;
2908 
2909 	if (!value || !size)
2910 		return -EACCES;
2911 
2912 	rc = security_context_to_sid((void *)value, size, &newsid);
2913 	if (rc)
2914 		return rc;
2915 
2916 	isec->sid = newsid;
2917 	return 0;
2918 }
2919 
2920 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2921 {
2922 	const int len = sizeof(XATTR_NAME_SELINUX);
2923 	if (buffer && len <= buffer_size)
2924 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2925 	return len;
2926 }
2927 
2928 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2929 {
2930 	struct inode_security_struct *isec = inode->i_security;
2931 	*secid = isec->sid;
2932 }
2933 
2934 /* file security operations */
2935 
2936 static int selinux_revalidate_file_permission(struct file *file, int mask)
2937 {
2938 	const struct cred *cred = current_cred();
2939 	struct inode *inode = file->f_path.dentry->d_inode;
2940 
2941 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2942 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2943 		mask |= MAY_APPEND;
2944 
2945 	return file_has_perm(cred, file,
2946 			     file_mask_to_av(inode->i_mode, mask));
2947 }
2948 
2949 static int selinux_file_permission(struct file *file, int mask)
2950 {
2951 	struct inode *inode = file->f_path.dentry->d_inode;
2952 	struct file_security_struct *fsec = file->f_security;
2953 	struct inode_security_struct *isec = inode->i_security;
2954 	u32 sid = current_sid();
2955 
2956 	if (!mask)
2957 		/* No permission to check.  Existence test. */
2958 		return 0;
2959 
2960 	if (sid == fsec->sid && fsec->isid == isec->sid &&
2961 	    fsec->pseqno == avc_policy_seqno())
2962 		/* No change since dentry_open check. */
2963 		return 0;
2964 
2965 	return selinux_revalidate_file_permission(file, mask);
2966 }
2967 
2968 static int selinux_file_alloc_security(struct file *file)
2969 {
2970 	return file_alloc_security(file);
2971 }
2972 
2973 static void selinux_file_free_security(struct file *file)
2974 {
2975 	file_free_security(file);
2976 }
2977 
2978 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2979 			      unsigned long arg)
2980 {
2981 	const struct cred *cred = current_cred();
2982 	u32 av = 0;
2983 
2984 	if (_IOC_DIR(cmd) & _IOC_WRITE)
2985 		av |= FILE__WRITE;
2986 	if (_IOC_DIR(cmd) & _IOC_READ)
2987 		av |= FILE__READ;
2988 	if (!av)
2989 		av = FILE__IOCTL;
2990 
2991 	return file_has_perm(cred, file, av);
2992 }
2993 
2994 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2995 {
2996 	const struct cred *cred = current_cred();
2997 	int rc = 0;
2998 
2999 #ifndef CONFIG_PPC32
3000 	if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3001 		/*
3002 		 * We are making executable an anonymous mapping or a
3003 		 * private file mapping that will also be writable.
3004 		 * This has an additional check.
3005 		 */
3006 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3007 		if (rc)
3008 			goto error;
3009 	}
3010 #endif
3011 
3012 	if (file) {
3013 		/* read access is always possible with a mapping */
3014 		u32 av = FILE__READ;
3015 
3016 		/* write access only matters if the mapping is shared */
3017 		if (shared && (prot & PROT_WRITE))
3018 			av |= FILE__WRITE;
3019 
3020 		if (prot & PROT_EXEC)
3021 			av |= FILE__EXECUTE;
3022 
3023 		return file_has_perm(cred, file, av);
3024 	}
3025 
3026 error:
3027 	return rc;
3028 }
3029 
3030 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3031 			     unsigned long prot, unsigned long flags,
3032 			     unsigned long addr, unsigned long addr_only)
3033 {
3034 	int rc = 0;
3035 	u32 sid = current_sid();
3036 
3037 	/*
3038 	 * notice that we are intentionally putting the SELinux check before
3039 	 * the secondary cap_file_mmap check.  This is such a likely attempt
3040 	 * at bad behaviour/exploit that we always want to get the AVC, even
3041 	 * if DAC would have also denied the operation.
3042 	 */
3043 	if (addr < mmap_min_addr) {
3044 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3045 				  MEMPROTECT__MMAP_ZERO, NULL);
3046 		if (rc)
3047 			return rc;
3048 	}
3049 
3050 	/* do DAC check on address space usage */
3051 	rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3052 	if (rc || addr_only)
3053 		return rc;
3054 
3055 	if (selinux_checkreqprot)
3056 		prot = reqprot;
3057 
3058 	return file_map_prot_check(file, prot,
3059 				   (flags & MAP_TYPE) == MAP_SHARED);
3060 }
3061 
3062 static int selinux_file_mprotect(struct vm_area_struct *vma,
3063 				 unsigned long reqprot,
3064 				 unsigned long prot)
3065 {
3066 	const struct cred *cred = current_cred();
3067 
3068 	if (selinux_checkreqprot)
3069 		prot = reqprot;
3070 
3071 #ifndef CONFIG_PPC32
3072 	if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3073 		int rc = 0;
3074 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3075 		    vma->vm_end <= vma->vm_mm->brk) {
3076 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3077 		} else if (!vma->vm_file &&
3078 			   vma->vm_start <= vma->vm_mm->start_stack &&
3079 			   vma->vm_end >= vma->vm_mm->start_stack) {
3080 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3081 		} else if (vma->vm_file && vma->anon_vma) {
3082 			/*
3083 			 * We are making executable a file mapping that has
3084 			 * had some COW done. Since pages might have been
3085 			 * written, check ability to execute the possibly
3086 			 * modified content.  This typically should only
3087 			 * occur for text relocations.
3088 			 */
3089 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3090 		}
3091 		if (rc)
3092 			return rc;
3093 	}
3094 #endif
3095 
3096 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3097 }
3098 
3099 static int selinux_file_lock(struct file *file, unsigned int cmd)
3100 {
3101 	const struct cred *cred = current_cred();
3102 
3103 	return file_has_perm(cred, file, FILE__LOCK);
3104 }
3105 
3106 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3107 			      unsigned long arg)
3108 {
3109 	const struct cred *cred = current_cred();
3110 	int err = 0;
3111 
3112 	switch (cmd) {
3113 	case F_SETFL:
3114 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3115 			err = -EINVAL;
3116 			break;
3117 		}
3118 
3119 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3120 			err = file_has_perm(cred, file, FILE__WRITE);
3121 			break;
3122 		}
3123 		/* fall through */
3124 	case F_SETOWN:
3125 	case F_SETSIG:
3126 	case F_GETFL:
3127 	case F_GETOWN:
3128 	case F_GETSIG:
3129 		/* Just check FD__USE permission */
3130 		err = file_has_perm(cred, file, 0);
3131 		break;
3132 	case F_GETLK:
3133 	case F_SETLK:
3134 	case F_SETLKW:
3135 #if BITS_PER_LONG == 32
3136 	case F_GETLK64:
3137 	case F_SETLK64:
3138 	case F_SETLKW64:
3139 #endif
3140 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3141 			err = -EINVAL;
3142 			break;
3143 		}
3144 		err = file_has_perm(cred, file, FILE__LOCK);
3145 		break;
3146 	}
3147 
3148 	return err;
3149 }
3150 
3151 static int selinux_file_set_fowner(struct file *file)
3152 {
3153 	struct file_security_struct *fsec;
3154 
3155 	fsec = file->f_security;
3156 	fsec->fown_sid = current_sid();
3157 
3158 	return 0;
3159 }
3160 
3161 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3162 				       struct fown_struct *fown, int signum)
3163 {
3164 	struct file *file;
3165 	u32 sid = task_sid(tsk);
3166 	u32 perm;
3167 	struct file_security_struct *fsec;
3168 
3169 	/* struct fown_struct is never outside the context of a struct file */
3170 	file = container_of(fown, struct file, f_owner);
3171 
3172 	fsec = file->f_security;
3173 
3174 	if (!signum)
3175 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3176 	else
3177 		perm = signal_to_av(signum);
3178 
3179 	return avc_has_perm(fsec->fown_sid, sid,
3180 			    SECCLASS_PROCESS, perm, NULL);
3181 }
3182 
3183 static int selinux_file_receive(struct file *file)
3184 {
3185 	const struct cred *cred = current_cred();
3186 
3187 	return file_has_perm(cred, file, file_to_av(file));
3188 }
3189 
3190 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3191 {
3192 	struct file_security_struct *fsec;
3193 	struct inode *inode;
3194 	struct inode_security_struct *isec;
3195 
3196 	inode = file->f_path.dentry->d_inode;
3197 	fsec = file->f_security;
3198 	isec = inode->i_security;
3199 	/*
3200 	 * Save inode label and policy sequence number
3201 	 * at open-time so that selinux_file_permission
3202 	 * can determine whether revalidation is necessary.
3203 	 * Task label is already saved in the file security
3204 	 * struct as its SID.
3205 	 */
3206 	fsec->isid = isec->sid;
3207 	fsec->pseqno = avc_policy_seqno();
3208 	/*
3209 	 * Since the inode label or policy seqno may have changed
3210 	 * between the selinux_inode_permission check and the saving
3211 	 * of state above, recheck that access is still permitted.
3212 	 * Otherwise, access might never be revalidated against the
3213 	 * new inode label or new policy.
3214 	 * This check is not redundant - do not remove.
3215 	 */
3216 	return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3217 }
3218 
3219 /* task security operations */
3220 
3221 static int selinux_task_create(unsigned long clone_flags)
3222 {
3223 	return current_has_perm(current, PROCESS__FORK);
3224 }
3225 
3226 /*
3227  * detach and free the LSM part of a set of credentials
3228  */
3229 static void selinux_cred_free(struct cred *cred)
3230 {
3231 	struct task_security_struct *tsec = cred->security;
3232 	cred->security = NULL;
3233 	kfree(tsec);
3234 }
3235 
3236 /*
3237  * prepare a new set of credentials for modification
3238  */
3239 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3240 				gfp_t gfp)
3241 {
3242 	const struct task_security_struct *old_tsec;
3243 	struct task_security_struct *tsec;
3244 
3245 	old_tsec = old->security;
3246 
3247 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3248 	if (!tsec)
3249 		return -ENOMEM;
3250 
3251 	new->security = tsec;
3252 	return 0;
3253 }
3254 
3255 /*
3256  * set the security data for a kernel service
3257  * - all the creation contexts are set to unlabelled
3258  */
3259 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3260 {
3261 	struct task_security_struct *tsec = new->security;
3262 	u32 sid = current_sid();
3263 	int ret;
3264 
3265 	ret = avc_has_perm(sid, secid,
3266 			   SECCLASS_KERNEL_SERVICE,
3267 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3268 			   NULL);
3269 	if (ret == 0) {
3270 		tsec->sid = secid;
3271 		tsec->create_sid = 0;
3272 		tsec->keycreate_sid = 0;
3273 		tsec->sockcreate_sid = 0;
3274 	}
3275 	return ret;
3276 }
3277 
3278 /*
3279  * set the file creation context in a security record to the same as the
3280  * objective context of the specified inode
3281  */
3282 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3283 {
3284 	struct inode_security_struct *isec = inode->i_security;
3285 	struct task_security_struct *tsec = new->security;
3286 	u32 sid = current_sid();
3287 	int ret;
3288 
3289 	ret = avc_has_perm(sid, isec->sid,
3290 			   SECCLASS_KERNEL_SERVICE,
3291 			   KERNEL_SERVICE__CREATE_FILES_AS,
3292 			   NULL);
3293 
3294 	if (ret == 0)
3295 		tsec->create_sid = isec->sid;
3296 	return 0;
3297 }
3298 
3299 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3300 {
3301 	return current_has_perm(p, PROCESS__SETPGID);
3302 }
3303 
3304 static int selinux_task_getpgid(struct task_struct *p)
3305 {
3306 	return current_has_perm(p, PROCESS__GETPGID);
3307 }
3308 
3309 static int selinux_task_getsid(struct task_struct *p)
3310 {
3311 	return current_has_perm(p, PROCESS__GETSESSION);
3312 }
3313 
3314 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3315 {
3316 	*secid = task_sid(p);
3317 }
3318 
3319 static int selinux_task_setnice(struct task_struct *p, int nice)
3320 {
3321 	int rc;
3322 
3323 	rc = cap_task_setnice(p, nice);
3324 	if (rc)
3325 		return rc;
3326 
3327 	return current_has_perm(p, PROCESS__SETSCHED);
3328 }
3329 
3330 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3331 {
3332 	int rc;
3333 
3334 	rc = cap_task_setioprio(p, ioprio);
3335 	if (rc)
3336 		return rc;
3337 
3338 	return current_has_perm(p, PROCESS__SETSCHED);
3339 }
3340 
3341 static int selinux_task_getioprio(struct task_struct *p)
3342 {
3343 	return current_has_perm(p, PROCESS__GETSCHED);
3344 }
3345 
3346 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3347 {
3348 	struct rlimit *old_rlim = current->signal->rlim + resource;
3349 
3350 	/* Control the ability to change the hard limit (whether
3351 	   lowering or raising it), so that the hard limit can
3352 	   later be used as a safe reset point for the soft limit
3353 	   upon context transitions.  See selinux_bprm_committing_creds. */
3354 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3355 		return current_has_perm(current, PROCESS__SETRLIMIT);
3356 
3357 	return 0;
3358 }
3359 
3360 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3361 {
3362 	int rc;
3363 
3364 	rc = cap_task_setscheduler(p, policy, lp);
3365 	if (rc)
3366 		return rc;
3367 
3368 	return current_has_perm(p, PROCESS__SETSCHED);
3369 }
3370 
3371 static int selinux_task_getscheduler(struct task_struct *p)
3372 {
3373 	return current_has_perm(p, PROCESS__GETSCHED);
3374 }
3375 
3376 static int selinux_task_movememory(struct task_struct *p)
3377 {
3378 	return current_has_perm(p, PROCESS__SETSCHED);
3379 }
3380 
3381 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3382 				int sig, u32 secid)
3383 {
3384 	u32 perm;
3385 	int rc;
3386 
3387 	if (!sig)
3388 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3389 	else
3390 		perm = signal_to_av(sig);
3391 	if (secid)
3392 		rc = avc_has_perm(secid, task_sid(p),
3393 				  SECCLASS_PROCESS, perm, NULL);
3394 	else
3395 		rc = current_has_perm(p, perm);
3396 	return rc;
3397 }
3398 
3399 static int selinux_task_wait(struct task_struct *p)
3400 {
3401 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3402 }
3403 
3404 static void selinux_task_to_inode(struct task_struct *p,
3405 				  struct inode *inode)
3406 {
3407 	struct inode_security_struct *isec = inode->i_security;
3408 	u32 sid = task_sid(p);
3409 
3410 	isec->sid = sid;
3411 	isec->initialized = 1;
3412 }
3413 
3414 /* Returns error only if unable to parse addresses */
3415 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3416 			struct avc_audit_data *ad, u8 *proto)
3417 {
3418 	int offset, ihlen, ret = -EINVAL;
3419 	struct iphdr _iph, *ih;
3420 
3421 	offset = skb_network_offset(skb);
3422 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3423 	if (ih == NULL)
3424 		goto out;
3425 
3426 	ihlen = ih->ihl * 4;
3427 	if (ihlen < sizeof(_iph))
3428 		goto out;
3429 
3430 	ad->u.net.v4info.saddr = ih->saddr;
3431 	ad->u.net.v4info.daddr = ih->daddr;
3432 	ret = 0;
3433 
3434 	if (proto)
3435 		*proto = ih->protocol;
3436 
3437 	switch (ih->protocol) {
3438 	case IPPROTO_TCP: {
3439 		struct tcphdr _tcph, *th;
3440 
3441 		if (ntohs(ih->frag_off) & IP_OFFSET)
3442 			break;
3443 
3444 		offset += ihlen;
3445 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3446 		if (th == NULL)
3447 			break;
3448 
3449 		ad->u.net.sport = th->source;
3450 		ad->u.net.dport = th->dest;
3451 		break;
3452 	}
3453 
3454 	case IPPROTO_UDP: {
3455 		struct udphdr _udph, *uh;
3456 
3457 		if (ntohs(ih->frag_off) & IP_OFFSET)
3458 			break;
3459 
3460 		offset += ihlen;
3461 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3462 		if (uh == NULL)
3463 			break;
3464 
3465 		ad->u.net.sport = uh->source;
3466 		ad->u.net.dport = uh->dest;
3467 		break;
3468 	}
3469 
3470 	case IPPROTO_DCCP: {
3471 		struct dccp_hdr _dccph, *dh;
3472 
3473 		if (ntohs(ih->frag_off) & IP_OFFSET)
3474 			break;
3475 
3476 		offset += ihlen;
3477 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3478 		if (dh == NULL)
3479 			break;
3480 
3481 		ad->u.net.sport = dh->dccph_sport;
3482 		ad->u.net.dport = dh->dccph_dport;
3483 		break;
3484 	}
3485 
3486 	default:
3487 		break;
3488 	}
3489 out:
3490 	return ret;
3491 }
3492 
3493 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3494 
3495 /* Returns error only if unable to parse addresses */
3496 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3497 			struct avc_audit_data *ad, u8 *proto)
3498 {
3499 	u8 nexthdr;
3500 	int ret = -EINVAL, offset;
3501 	struct ipv6hdr _ipv6h, *ip6;
3502 
3503 	offset = skb_network_offset(skb);
3504 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3505 	if (ip6 == NULL)
3506 		goto out;
3507 
3508 	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3509 	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3510 	ret = 0;
3511 
3512 	nexthdr = ip6->nexthdr;
3513 	offset += sizeof(_ipv6h);
3514 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3515 	if (offset < 0)
3516 		goto out;
3517 
3518 	if (proto)
3519 		*proto = nexthdr;
3520 
3521 	switch (nexthdr) {
3522 	case IPPROTO_TCP: {
3523 		struct tcphdr _tcph, *th;
3524 
3525 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3526 		if (th == NULL)
3527 			break;
3528 
3529 		ad->u.net.sport = th->source;
3530 		ad->u.net.dport = th->dest;
3531 		break;
3532 	}
3533 
3534 	case IPPROTO_UDP: {
3535 		struct udphdr _udph, *uh;
3536 
3537 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3538 		if (uh == NULL)
3539 			break;
3540 
3541 		ad->u.net.sport = uh->source;
3542 		ad->u.net.dport = uh->dest;
3543 		break;
3544 	}
3545 
3546 	case IPPROTO_DCCP: {
3547 		struct dccp_hdr _dccph, *dh;
3548 
3549 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3550 		if (dh == NULL)
3551 			break;
3552 
3553 		ad->u.net.sport = dh->dccph_sport;
3554 		ad->u.net.dport = dh->dccph_dport;
3555 		break;
3556 	}
3557 
3558 	/* includes fragments */
3559 	default:
3560 		break;
3561 	}
3562 out:
3563 	return ret;
3564 }
3565 
3566 #endif /* IPV6 */
3567 
3568 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3569 			     char **_addrp, int src, u8 *proto)
3570 {
3571 	char *addrp;
3572 	int ret;
3573 
3574 	switch (ad->u.net.family) {
3575 	case PF_INET:
3576 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3577 		if (ret)
3578 			goto parse_error;
3579 		addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3580 				       &ad->u.net.v4info.daddr);
3581 		goto okay;
3582 
3583 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3584 	case PF_INET6:
3585 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3586 		if (ret)
3587 			goto parse_error;
3588 		addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3589 				       &ad->u.net.v6info.daddr);
3590 		goto okay;
3591 #endif	/* IPV6 */
3592 	default:
3593 		addrp = NULL;
3594 		goto okay;
3595 	}
3596 
3597 parse_error:
3598 	printk(KERN_WARNING
3599 	       "SELinux: failure in selinux_parse_skb(),"
3600 	       " unable to parse packet\n");
3601 	return ret;
3602 
3603 okay:
3604 	if (_addrp)
3605 		*_addrp = addrp;
3606 	return 0;
3607 }
3608 
3609 /**
3610  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3611  * @skb: the packet
3612  * @family: protocol family
3613  * @sid: the packet's peer label SID
3614  *
3615  * Description:
3616  * Check the various different forms of network peer labeling and determine
3617  * the peer label/SID for the packet; most of the magic actually occurs in
3618  * the security server function security_net_peersid_cmp().  The function
3619  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3620  * or -EACCES if @sid is invalid due to inconsistencies with the different
3621  * peer labels.
3622  *
3623  */
3624 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3625 {
3626 	int err;
3627 	u32 xfrm_sid;
3628 	u32 nlbl_sid;
3629 	u32 nlbl_type;
3630 
3631 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3632 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3633 
3634 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3635 	if (unlikely(err)) {
3636 		printk(KERN_WARNING
3637 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3638 		       " unable to determine packet's peer label\n");
3639 		return -EACCES;
3640 	}
3641 
3642 	return 0;
3643 }
3644 
3645 /* socket security operations */
3646 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3647 			   u32 perms)
3648 {
3649 	struct inode_security_struct *isec;
3650 	struct avc_audit_data ad;
3651 	u32 sid;
3652 	int err = 0;
3653 
3654 	isec = SOCK_INODE(sock)->i_security;
3655 
3656 	if (isec->sid == SECINITSID_KERNEL)
3657 		goto out;
3658 	sid = task_sid(task);
3659 
3660 	AVC_AUDIT_DATA_INIT(&ad, NET);
3661 	ad.u.net.sk = sock->sk;
3662 	err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3663 
3664 out:
3665 	return err;
3666 }
3667 
3668 static int selinux_socket_create(int family, int type,
3669 				 int protocol, int kern)
3670 {
3671 	const struct cred *cred = current_cred();
3672 	const struct task_security_struct *tsec = cred->security;
3673 	u32 sid, newsid;
3674 	u16 secclass;
3675 	int err = 0;
3676 
3677 	if (kern)
3678 		goto out;
3679 
3680 	sid = tsec->sid;
3681 	newsid = tsec->sockcreate_sid ?: sid;
3682 
3683 	secclass = socket_type_to_security_class(family, type, protocol);
3684 	err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3685 
3686 out:
3687 	return err;
3688 }
3689 
3690 static int selinux_socket_post_create(struct socket *sock, int family,
3691 				      int type, int protocol, int kern)
3692 {
3693 	const struct cred *cred = current_cred();
3694 	const struct task_security_struct *tsec = cred->security;
3695 	struct inode_security_struct *isec;
3696 	struct sk_security_struct *sksec;
3697 	u32 sid, newsid;
3698 	int err = 0;
3699 
3700 	sid = tsec->sid;
3701 	newsid = tsec->sockcreate_sid;
3702 
3703 	isec = SOCK_INODE(sock)->i_security;
3704 
3705 	if (kern)
3706 		isec->sid = SECINITSID_KERNEL;
3707 	else if (newsid)
3708 		isec->sid = newsid;
3709 	else
3710 		isec->sid = sid;
3711 
3712 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3713 	isec->initialized = 1;
3714 
3715 	if (sock->sk) {
3716 		sksec = sock->sk->sk_security;
3717 		sksec->sid = isec->sid;
3718 		sksec->sclass = isec->sclass;
3719 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3720 	}
3721 
3722 	return err;
3723 }
3724 
3725 /* Range of port numbers used to automatically bind.
3726    Need to determine whether we should perform a name_bind
3727    permission check between the socket and the port number. */
3728 
3729 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3730 {
3731 	u16 family;
3732 	int err;
3733 
3734 	err = socket_has_perm(current, sock, SOCKET__BIND);
3735 	if (err)
3736 		goto out;
3737 
3738 	/*
3739 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3740 	 * Multiple address binding for SCTP is not supported yet: we just
3741 	 * check the first address now.
3742 	 */
3743 	family = sock->sk->sk_family;
3744 	if (family == PF_INET || family == PF_INET6) {
3745 		char *addrp;
3746 		struct inode_security_struct *isec;
3747 		struct avc_audit_data ad;
3748 		struct sockaddr_in *addr4 = NULL;
3749 		struct sockaddr_in6 *addr6 = NULL;
3750 		unsigned short snum;
3751 		struct sock *sk = sock->sk;
3752 		u32 sid, node_perm;
3753 
3754 		isec = SOCK_INODE(sock)->i_security;
3755 
3756 		if (family == PF_INET) {
3757 			addr4 = (struct sockaddr_in *)address;
3758 			snum = ntohs(addr4->sin_port);
3759 			addrp = (char *)&addr4->sin_addr.s_addr;
3760 		} else {
3761 			addr6 = (struct sockaddr_in6 *)address;
3762 			snum = ntohs(addr6->sin6_port);
3763 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3764 		}
3765 
3766 		if (snum) {
3767 			int low, high;
3768 
3769 			inet_get_local_port_range(&low, &high);
3770 
3771 			if (snum < max(PROT_SOCK, low) || snum > high) {
3772 				err = sel_netport_sid(sk->sk_protocol,
3773 						      snum, &sid);
3774 				if (err)
3775 					goto out;
3776 				AVC_AUDIT_DATA_INIT(&ad, NET);
3777 				ad.u.net.sport = htons(snum);
3778 				ad.u.net.family = family;
3779 				err = avc_has_perm(isec->sid, sid,
3780 						   isec->sclass,
3781 						   SOCKET__NAME_BIND, &ad);
3782 				if (err)
3783 					goto out;
3784 			}
3785 		}
3786 
3787 		switch (isec->sclass) {
3788 		case SECCLASS_TCP_SOCKET:
3789 			node_perm = TCP_SOCKET__NODE_BIND;
3790 			break;
3791 
3792 		case SECCLASS_UDP_SOCKET:
3793 			node_perm = UDP_SOCKET__NODE_BIND;
3794 			break;
3795 
3796 		case SECCLASS_DCCP_SOCKET:
3797 			node_perm = DCCP_SOCKET__NODE_BIND;
3798 			break;
3799 
3800 		default:
3801 			node_perm = RAWIP_SOCKET__NODE_BIND;
3802 			break;
3803 		}
3804 
3805 		err = sel_netnode_sid(addrp, family, &sid);
3806 		if (err)
3807 			goto out;
3808 
3809 		AVC_AUDIT_DATA_INIT(&ad, NET);
3810 		ad.u.net.sport = htons(snum);
3811 		ad.u.net.family = family;
3812 
3813 		if (family == PF_INET)
3814 			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3815 		else
3816 			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3817 
3818 		err = avc_has_perm(isec->sid, sid,
3819 				   isec->sclass, node_perm, &ad);
3820 		if (err)
3821 			goto out;
3822 	}
3823 out:
3824 	return err;
3825 }
3826 
3827 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3828 {
3829 	struct sock *sk = sock->sk;
3830 	struct inode_security_struct *isec;
3831 	int err;
3832 
3833 	err = socket_has_perm(current, sock, SOCKET__CONNECT);
3834 	if (err)
3835 		return err;
3836 
3837 	/*
3838 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3839 	 */
3840 	isec = SOCK_INODE(sock)->i_security;
3841 	if (isec->sclass == SECCLASS_TCP_SOCKET ||
3842 	    isec->sclass == SECCLASS_DCCP_SOCKET) {
3843 		struct avc_audit_data ad;
3844 		struct sockaddr_in *addr4 = NULL;
3845 		struct sockaddr_in6 *addr6 = NULL;
3846 		unsigned short snum;
3847 		u32 sid, perm;
3848 
3849 		if (sk->sk_family == PF_INET) {
3850 			addr4 = (struct sockaddr_in *)address;
3851 			if (addrlen < sizeof(struct sockaddr_in))
3852 				return -EINVAL;
3853 			snum = ntohs(addr4->sin_port);
3854 		} else {
3855 			addr6 = (struct sockaddr_in6 *)address;
3856 			if (addrlen < SIN6_LEN_RFC2133)
3857 				return -EINVAL;
3858 			snum = ntohs(addr6->sin6_port);
3859 		}
3860 
3861 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3862 		if (err)
3863 			goto out;
3864 
3865 		perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3866 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3867 
3868 		AVC_AUDIT_DATA_INIT(&ad, NET);
3869 		ad.u.net.dport = htons(snum);
3870 		ad.u.net.family = sk->sk_family;
3871 		err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3872 		if (err)
3873 			goto out;
3874 	}
3875 
3876 	err = selinux_netlbl_socket_connect(sk, address);
3877 
3878 out:
3879 	return err;
3880 }
3881 
3882 static int selinux_socket_listen(struct socket *sock, int backlog)
3883 {
3884 	return socket_has_perm(current, sock, SOCKET__LISTEN);
3885 }
3886 
3887 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3888 {
3889 	int err;
3890 	struct inode_security_struct *isec;
3891 	struct inode_security_struct *newisec;
3892 
3893 	err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3894 	if (err)
3895 		return err;
3896 
3897 	newisec = SOCK_INODE(newsock)->i_security;
3898 
3899 	isec = SOCK_INODE(sock)->i_security;
3900 	newisec->sclass = isec->sclass;
3901 	newisec->sid = isec->sid;
3902 	newisec->initialized = 1;
3903 
3904 	return 0;
3905 }
3906 
3907 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3908 				  int size)
3909 {
3910 	return socket_has_perm(current, sock, SOCKET__WRITE);
3911 }
3912 
3913 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3914 				  int size, int flags)
3915 {
3916 	return socket_has_perm(current, sock, SOCKET__READ);
3917 }
3918 
3919 static int selinux_socket_getsockname(struct socket *sock)
3920 {
3921 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3922 }
3923 
3924 static int selinux_socket_getpeername(struct socket *sock)
3925 {
3926 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3927 }
3928 
3929 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3930 {
3931 	int err;
3932 
3933 	err = socket_has_perm(current, sock, SOCKET__SETOPT);
3934 	if (err)
3935 		return err;
3936 
3937 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
3938 }
3939 
3940 static int selinux_socket_getsockopt(struct socket *sock, int level,
3941 				     int optname)
3942 {
3943 	return socket_has_perm(current, sock, SOCKET__GETOPT);
3944 }
3945 
3946 static int selinux_socket_shutdown(struct socket *sock, int how)
3947 {
3948 	return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3949 }
3950 
3951 static int selinux_socket_unix_stream_connect(struct socket *sock,
3952 					      struct socket *other,
3953 					      struct sock *newsk)
3954 {
3955 	struct sk_security_struct *ssec;
3956 	struct inode_security_struct *isec;
3957 	struct inode_security_struct *other_isec;
3958 	struct avc_audit_data ad;
3959 	int err;
3960 
3961 	isec = SOCK_INODE(sock)->i_security;
3962 	other_isec = SOCK_INODE(other)->i_security;
3963 
3964 	AVC_AUDIT_DATA_INIT(&ad, NET);
3965 	ad.u.net.sk = other->sk;
3966 
3967 	err = avc_has_perm(isec->sid, other_isec->sid,
3968 			   isec->sclass,
3969 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3970 	if (err)
3971 		return err;
3972 
3973 	/* connecting socket */
3974 	ssec = sock->sk->sk_security;
3975 	ssec->peer_sid = other_isec->sid;
3976 
3977 	/* server child socket */
3978 	ssec = newsk->sk_security;
3979 	ssec->peer_sid = isec->sid;
3980 	err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3981 
3982 	return err;
3983 }
3984 
3985 static int selinux_socket_unix_may_send(struct socket *sock,
3986 					struct socket *other)
3987 {
3988 	struct inode_security_struct *isec;
3989 	struct inode_security_struct *other_isec;
3990 	struct avc_audit_data ad;
3991 	int err;
3992 
3993 	isec = SOCK_INODE(sock)->i_security;
3994 	other_isec = SOCK_INODE(other)->i_security;
3995 
3996 	AVC_AUDIT_DATA_INIT(&ad, NET);
3997 	ad.u.net.sk = other->sk;
3998 
3999 	err = avc_has_perm(isec->sid, other_isec->sid,
4000 			   isec->sclass, SOCKET__SENDTO, &ad);
4001 	if (err)
4002 		return err;
4003 
4004 	return 0;
4005 }
4006 
4007 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4008 				    u32 peer_sid,
4009 				    struct avc_audit_data *ad)
4010 {
4011 	int err;
4012 	u32 if_sid;
4013 	u32 node_sid;
4014 
4015 	err = sel_netif_sid(ifindex, &if_sid);
4016 	if (err)
4017 		return err;
4018 	err = avc_has_perm(peer_sid, if_sid,
4019 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4020 	if (err)
4021 		return err;
4022 
4023 	err = sel_netnode_sid(addrp, family, &node_sid);
4024 	if (err)
4025 		return err;
4026 	return avc_has_perm(peer_sid, node_sid,
4027 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4028 }
4029 
4030 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4031 				       u16 family)
4032 {
4033 	int err = 0;
4034 	struct sk_security_struct *sksec = sk->sk_security;
4035 	u32 peer_sid;
4036 	u32 sk_sid = sksec->sid;
4037 	struct avc_audit_data ad;
4038 	char *addrp;
4039 
4040 	AVC_AUDIT_DATA_INIT(&ad, NET);
4041 	ad.u.net.netif = skb->iif;
4042 	ad.u.net.family = family;
4043 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4044 	if (err)
4045 		return err;
4046 
4047 	if (selinux_secmark_enabled()) {
4048 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4049 				   PACKET__RECV, &ad);
4050 		if (err)
4051 			return err;
4052 	}
4053 
4054 	if (selinux_policycap_netpeer) {
4055 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4056 		if (err)
4057 			return err;
4058 		err = avc_has_perm(sk_sid, peer_sid,
4059 				   SECCLASS_PEER, PEER__RECV, &ad);
4060 		if (err)
4061 			selinux_netlbl_err(skb, err, 0);
4062 	} else {
4063 		err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4064 		if (err)
4065 			return err;
4066 		err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4067 	}
4068 
4069 	return err;
4070 }
4071 
4072 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4073 {
4074 	int err;
4075 	struct sk_security_struct *sksec = sk->sk_security;
4076 	u16 family = sk->sk_family;
4077 	u32 sk_sid = sksec->sid;
4078 	struct avc_audit_data ad;
4079 	char *addrp;
4080 	u8 secmark_active;
4081 	u8 peerlbl_active;
4082 
4083 	if (family != PF_INET && family != PF_INET6)
4084 		return 0;
4085 
4086 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4087 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4088 		family = PF_INET;
4089 
4090 	/* If any sort of compatibility mode is enabled then handoff processing
4091 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4092 	 * special handling.  We do this in an attempt to keep this function
4093 	 * as fast and as clean as possible. */
4094 	if (!selinux_policycap_netpeer)
4095 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4096 
4097 	secmark_active = selinux_secmark_enabled();
4098 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4099 	if (!secmark_active && !peerlbl_active)
4100 		return 0;
4101 
4102 	AVC_AUDIT_DATA_INIT(&ad, NET);
4103 	ad.u.net.netif = skb->iif;
4104 	ad.u.net.family = family;
4105 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4106 	if (err)
4107 		return err;
4108 
4109 	if (peerlbl_active) {
4110 		u32 peer_sid;
4111 
4112 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4113 		if (err)
4114 			return err;
4115 		err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4116 					       peer_sid, &ad);
4117 		if (err) {
4118 			selinux_netlbl_err(skb, err, 0);
4119 			return err;
4120 		}
4121 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4122 				   PEER__RECV, &ad);
4123 		if (err)
4124 			selinux_netlbl_err(skb, err, 0);
4125 	}
4126 
4127 	if (secmark_active) {
4128 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4129 				   PACKET__RECV, &ad);
4130 		if (err)
4131 			return err;
4132 	}
4133 
4134 	return err;
4135 }
4136 
4137 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4138 					    int __user *optlen, unsigned len)
4139 {
4140 	int err = 0;
4141 	char *scontext;
4142 	u32 scontext_len;
4143 	struct sk_security_struct *ssec;
4144 	struct inode_security_struct *isec;
4145 	u32 peer_sid = SECSID_NULL;
4146 
4147 	isec = SOCK_INODE(sock)->i_security;
4148 
4149 	if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4150 	    isec->sclass == SECCLASS_TCP_SOCKET) {
4151 		ssec = sock->sk->sk_security;
4152 		peer_sid = ssec->peer_sid;
4153 	}
4154 	if (peer_sid == SECSID_NULL) {
4155 		err = -ENOPROTOOPT;
4156 		goto out;
4157 	}
4158 
4159 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4160 
4161 	if (err)
4162 		goto out;
4163 
4164 	if (scontext_len > len) {
4165 		err = -ERANGE;
4166 		goto out_len;
4167 	}
4168 
4169 	if (copy_to_user(optval, scontext, scontext_len))
4170 		err = -EFAULT;
4171 
4172 out_len:
4173 	if (put_user(scontext_len, optlen))
4174 		err = -EFAULT;
4175 
4176 	kfree(scontext);
4177 out:
4178 	return err;
4179 }
4180 
4181 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4182 {
4183 	u32 peer_secid = SECSID_NULL;
4184 	u16 family;
4185 
4186 	if (skb && skb->protocol == htons(ETH_P_IP))
4187 		family = PF_INET;
4188 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4189 		family = PF_INET6;
4190 	else if (sock)
4191 		family = sock->sk->sk_family;
4192 	else
4193 		goto out;
4194 
4195 	if (sock && family == PF_UNIX)
4196 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4197 	else if (skb)
4198 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4199 
4200 out:
4201 	*secid = peer_secid;
4202 	if (peer_secid == SECSID_NULL)
4203 		return -EINVAL;
4204 	return 0;
4205 }
4206 
4207 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4208 {
4209 	return sk_alloc_security(sk, family, priority);
4210 }
4211 
4212 static void selinux_sk_free_security(struct sock *sk)
4213 {
4214 	sk_free_security(sk);
4215 }
4216 
4217 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4218 {
4219 	struct sk_security_struct *ssec = sk->sk_security;
4220 	struct sk_security_struct *newssec = newsk->sk_security;
4221 
4222 	newssec->sid = ssec->sid;
4223 	newssec->peer_sid = ssec->peer_sid;
4224 	newssec->sclass = ssec->sclass;
4225 
4226 	selinux_netlbl_sk_security_reset(newssec);
4227 }
4228 
4229 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4230 {
4231 	if (!sk)
4232 		*secid = SECINITSID_ANY_SOCKET;
4233 	else {
4234 		struct sk_security_struct *sksec = sk->sk_security;
4235 
4236 		*secid = sksec->sid;
4237 	}
4238 }
4239 
4240 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4241 {
4242 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4243 	struct sk_security_struct *sksec = sk->sk_security;
4244 
4245 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4246 	    sk->sk_family == PF_UNIX)
4247 		isec->sid = sksec->sid;
4248 	sksec->sclass = isec->sclass;
4249 }
4250 
4251 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4252 				     struct request_sock *req)
4253 {
4254 	struct sk_security_struct *sksec = sk->sk_security;
4255 	int err;
4256 	u16 family = sk->sk_family;
4257 	u32 newsid;
4258 	u32 peersid;
4259 
4260 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4261 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4262 		family = PF_INET;
4263 
4264 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4265 	if (err)
4266 		return err;
4267 	if (peersid == SECSID_NULL) {
4268 		req->secid = sksec->sid;
4269 		req->peer_secid = SECSID_NULL;
4270 	} else {
4271 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4272 		if (err)
4273 			return err;
4274 		req->secid = newsid;
4275 		req->peer_secid = peersid;
4276 	}
4277 
4278 	return selinux_netlbl_inet_conn_request(req, family);
4279 }
4280 
4281 static void selinux_inet_csk_clone(struct sock *newsk,
4282 				   const struct request_sock *req)
4283 {
4284 	struct sk_security_struct *newsksec = newsk->sk_security;
4285 
4286 	newsksec->sid = req->secid;
4287 	newsksec->peer_sid = req->peer_secid;
4288 	/* NOTE: Ideally, we should also get the isec->sid for the
4289 	   new socket in sync, but we don't have the isec available yet.
4290 	   So we will wait until sock_graft to do it, by which
4291 	   time it will have been created and available. */
4292 
4293 	/* We don't need to take any sort of lock here as we are the only
4294 	 * thread with access to newsksec */
4295 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4296 }
4297 
4298 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4299 {
4300 	u16 family = sk->sk_family;
4301 	struct sk_security_struct *sksec = sk->sk_security;
4302 
4303 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4304 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4305 		family = PF_INET;
4306 
4307 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4308 }
4309 
4310 static void selinux_req_classify_flow(const struct request_sock *req,
4311 				      struct flowi *fl)
4312 {
4313 	fl->secid = req->secid;
4314 }
4315 
4316 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4317 {
4318 	int err = 0;
4319 	u32 perm;
4320 	struct nlmsghdr *nlh;
4321 	struct socket *sock = sk->sk_socket;
4322 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4323 
4324 	if (skb->len < NLMSG_SPACE(0)) {
4325 		err = -EINVAL;
4326 		goto out;
4327 	}
4328 	nlh = nlmsg_hdr(skb);
4329 
4330 	err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4331 	if (err) {
4332 		if (err == -EINVAL) {
4333 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4334 				  "SELinux:  unrecognized netlink message"
4335 				  " type=%hu for sclass=%hu\n",
4336 				  nlh->nlmsg_type, isec->sclass);
4337 			if (!selinux_enforcing || security_get_allow_unknown())
4338 				err = 0;
4339 		}
4340 
4341 		/* Ignore */
4342 		if (err == -ENOENT)
4343 			err = 0;
4344 		goto out;
4345 	}
4346 
4347 	err = socket_has_perm(current, sock, perm);
4348 out:
4349 	return err;
4350 }
4351 
4352 #ifdef CONFIG_NETFILTER
4353 
4354 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4355 				       u16 family)
4356 {
4357 	int err;
4358 	char *addrp;
4359 	u32 peer_sid;
4360 	struct avc_audit_data ad;
4361 	u8 secmark_active;
4362 	u8 netlbl_active;
4363 	u8 peerlbl_active;
4364 
4365 	if (!selinux_policycap_netpeer)
4366 		return NF_ACCEPT;
4367 
4368 	secmark_active = selinux_secmark_enabled();
4369 	netlbl_active = netlbl_enabled();
4370 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4371 	if (!secmark_active && !peerlbl_active)
4372 		return NF_ACCEPT;
4373 
4374 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4375 		return NF_DROP;
4376 
4377 	AVC_AUDIT_DATA_INIT(&ad, NET);
4378 	ad.u.net.netif = ifindex;
4379 	ad.u.net.family = family;
4380 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4381 		return NF_DROP;
4382 
4383 	if (peerlbl_active) {
4384 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4385 					       peer_sid, &ad);
4386 		if (err) {
4387 			selinux_netlbl_err(skb, err, 1);
4388 			return NF_DROP;
4389 		}
4390 	}
4391 
4392 	if (secmark_active)
4393 		if (avc_has_perm(peer_sid, skb->secmark,
4394 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4395 			return NF_DROP;
4396 
4397 	if (netlbl_active)
4398 		/* we do this in the FORWARD path and not the POST_ROUTING
4399 		 * path because we want to make sure we apply the necessary
4400 		 * labeling before IPsec is applied so we can leverage AH
4401 		 * protection */
4402 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4403 			return NF_DROP;
4404 
4405 	return NF_ACCEPT;
4406 }
4407 
4408 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4409 					 struct sk_buff *skb,
4410 					 const struct net_device *in,
4411 					 const struct net_device *out,
4412 					 int (*okfn)(struct sk_buff *))
4413 {
4414 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4415 }
4416 
4417 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4418 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4419 					 struct sk_buff *skb,
4420 					 const struct net_device *in,
4421 					 const struct net_device *out,
4422 					 int (*okfn)(struct sk_buff *))
4423 {
4424 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4425 }
4426 #endif	/* IPV6 */
4427 
4428 static unsigned int selinux_ip_output(struct sk_buff *skb,
4429 				      u16 family)
4430 {
4431 	u32 sid;
4432 
4433 	if (!netlbl_enabled())
4434 		return NF_ACCEPT;
4435 
4436 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4437 	 * because we want to make sure we apply the necessary labeling
4438 	 * before IPsec is applied so we can leverage AH protection */
4439 	if (skb->sk) {
4440 		struct sk_security_struct *sksec = skb->sk->sk_security;
4441 		sid = sksec->sid;
4442 	} else
4443 		sid = SECINITSID_KERNEL;
4444 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4445 		return NF_DROP;
4446 
4447 	return NF_ACCEPT;
4448 }
4449 
4450 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4451 					struct sk_buff *skb,
4452 					const struct net_device *in,
4453 					const struct net_device *out,
4454 					int (*okfn)(struct sk_buff *))
4455 {
4456 	return selinux_ip_output(skb, PF_INET);
4457 }
4458 
4459 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4460 						int ifindex,
4461 						u16 family)
4462 {
4463 	struct sock *sk = skb->sk;
4464 	struct sk_security_struct *sksec;
4465 	struct avc_audit_data ad;
4466 	char *addrp;
4467 	u8 proto;
4468 
4469 	if (sk == NULL)
4470 		return NF_ACCEPT;
4471 	sksec = sk->sk_security;
4472 
4473 	AVC_AUDIT_DATA_INIT(&ad, NET);
4474 	ad.u.net.netif = ifindex;
4475 	ad.u.net.family = family;
4476 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4477 		return NF_DROP;
4478 
4479 	if (selinux_secmark_enabled())
4480 		if (avc_has_perm(sksec->sid, skb->secmark,
4481 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4482 			return NF_DROP;
4483 
4484 	if (selinux_policycap_netpeer)
4485 		if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4486 			return NF_DROP;
4487 
4488 	return NF_ACCEPT;
4489 }
4490 
4491 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4492 					 u16 family)
4493 {
4494 	u32 secmark_perm;
4495 	u32 peer_sid;
4496 	struct sock *sk;
4497 	struct avc_audit_data ad;
4498 	char *addrp;
4499 	u8 secmark_active;
4500 	u8 peerlbl_active;
4501 
4502 	/* If any sort of compatibility mode is enabled then handoff processing
4503 	 * to the selinux_ip_postroute_compat() function to deal with the
4504 	 * special handling.  We do this in an attempt to keep this function
4505 	 * as fast and as clean as possible. */
4506 	if (!selinux_policycap_netpeer)
4507 		return selinux_ip_postroute_compat(skb, ifindex, family);
4508 #ifdef CONFIG_XFRM
4509 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4510 	 * packet transformation so allow the packet to pass without any checks
4511 	 * since we'll have another chance to perform access control checks
4512 	 * when the packet is on it's final way out.
4513 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4514 	 *       is NULL, in this case go ahead and apply access control. */
4515 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4516 		return NF_ACCEPT;
4517 #endif
4518 	secmark_active = selinux_secmark_enabled();
4519 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4520 	if (!secmark_active && !peerlbl_active)
4521 		return NF_ACCEPT;
4522 
4523 	/* if the packet is being forwarded then get the peer label from the
4524 	 * packet itself; otherwise check to see if it is from a local
4525 	 * application or the kernel, if from an application get the peer label
4526 	 * from the sending socket, otherwise use the kernel's sid */
4527 	sk = skb->sk;
4528 	if (sk == NULL) {
4529 		switch (family) {
4530 		case PF_INET:
4531 			if (IPCB(skb)->flags & IPSKB_FORWARDED)
4532 				secmark_perm = PACKET__FORWARD_OUT;
4533 			else
4534 				secmark_perm = PACKET__SEND;
4535 			break;
4536 		case PF_INET6:
4537 			if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4538 				secmark_perm = PACKET__FORWARD_OUT;
4539 			else
4540 				secmark_perm = PACKET__SEND;
4541 			break;
4542 		default:
4543 			return NF_DROP;
4544 		}
4545 		if (secmark_perm == PACKET__FORWARD_OUT) {
4546 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4547 				return NF_DROP;
4548 		} else
4549 			peer_sid = SECINITSID_KERNEL;
4550 	} else {
4551 		struct sk_security_struct *sksec = sk->sk_security;
4552 		peer_sid = sksec->sid;
4553 		secmark_perm = PACKET__SEND;
4554 	}
4555 
4556 	AVC_AUDIT_DATA_INIT(&ad, NET);
4557 	ad.u.net.netif = ifindex;
4558 	ad.u.net.family = family;
4559 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4560 		return NF_DROP;
4561 
4562 	if (secmark_active)
4563 		if (avc_has_perm(peer_sid, skb->secmark,
4564 				 SECCLASS_PACKET, secmark_perm, &ad))
4565 			return NF_DROP;
4566 
4567 	if (peerlbl_active) {
4568 		u32 if_sid;
4569 		u32 node_sid;
4570 
4571 		if (sel_netif_sid(ifindex, &if_sid))
4572 			return NF_DROP;
4573 		if (avc_has_perm(peer_sid, if_sid,
4574 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4575 			return NF_DROP;
4576 
4577 		if (sel_netnode_sid(addrp, family, &node_sid))
4578 			return NF_DROP;
4579 		if (avc_has_perm(peer_sid, node_sid,
4580 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4581 			return NF_DROP;
4582 	}
4583 
4584 	return NF_ACCEPT;
4585 }
4586 
4587 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4588 					   struct sk_buff *skb,
4589 					   const struct net_device *in,
4590 					   const struct net_device *out,
4591 					   int (*okfn)(struct sk_buff *))
4592 {
4593 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4594 }
4595 
4596 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4597 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4598 					   struct sk_buff *skb,
4599 					   const struct net_device *in,
4600 					   const struct net_device *out,
4601 					   int (*okfn)(struct sk_buff *))
4602 {
4603 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4604 }
4605 #endif	/* IPV6 */
4606 
4607 #endif	/* CONFIG_NETFILTER */
4608 
4609 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4610 {
4611 	int err;
4612 
4613 	err = cap_netlink_send(sk, skb);
4614 	if (err)
4615 		return err;
4616 
4617 	if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4618 		err = selinux_nlmsg_perm(sk, skb);
4619 
4620 	return err;
4621 }
4622 
4623 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4624 {
4625 	int err;
4626 	struct avc_audit_data ad;
4627 
4628 	err = cap_netlink_recv(skb, capability);
4629 	if (err)
4630 		return err;
4631 
4632 	AVC_AUDIT_DATA_INIT(&ad, CAP);
4633 	ad.u.cap = capability;
4634 
4635 	return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4636 			    SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4637 }
4638 
4639 static int ipc_alloc_security(struct task_struct *task,
4640 			      struct kern_ipc_perm *perm,
4641 			      u16 sclass)
4642 {
4643 	struct ipc_security_struct *isec;
4644 	u32 sid;
4645 
4646 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4647 	if (!isec)
4648 		return -ENOMEM;
4649 
4650 	sid = task_sid(task);
4651 	isec->sclass = sclass;
4652 	isec->sid = sid;
4653 	perm->security = isec;
4654 
4655 	return 0;
4656 }
4657 
4658 static void ipc_free_security(struct kern_ipc_perm *perm)
4659 {
4660 	struct ipc_security_struct *isec = perm->security;
4661 	perm->security = NULL;
4662 	kfree(isec);
4663 }
4664 
4665 static int msg_msg_alloc_security(struct msg_msg *msg)
4666 {
4667 	struct msg_security_struct *msec;
4668 
4669 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4670 	if (!msec)
4671 		return -ENOMEM;
4672 
4673 	msec->sid = SECINITSID_UNLABELED;
4674 	msg->security = msec;
4675 
4676 	return 0;
4677 }
4678 
4679 static void msg_msg_free_security(struct msg_msg *msg)
4680 {
4681 	struct msg_security_struct *msec = msg->security;
4682 
4683 	msg->security = NULL;
4684 	kfree(msec);
4685 }
4686 
4687 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4688 			u32 perms)
4689 {
4690 	struct ipc_security_struct *isec;
4691 	struct avc_audit_data ad;
4692 	u32 sid = current_sid();
4693 
4694 	isec = ipc_perms->security;
4695 
4696 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4697 	ad.u.ipc_id = ipc_perms->key;
4698 
4699 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4700 }
4701 
4702 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4703 {
4704 	return msg_msg_alloc_security(msg);
4705 }
4706 
4707 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4708 {
4709 	msg_msg_free_security(msg);
4710 }
4711 
4712 /* message queue security operations */
4713 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4714 {
4715 	struct ipc_security_struct *isec;
4716 	struct avc_audit_data ad;
4717 	u32 sid = current_sid();
4718 	int rc;
4719 
4720 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4721 	if (rc)
4722 		return rc;
4723 
4724 	isec = msq->q_perm.security;
4725 
4726 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4727 	ad.u.ipc_id = msq->q_perm.key;
4728 
4729 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4730 			  MSGQ__CREATE, &ad);
4731 	if (rc) {
4732 		ipc_free_security(&msq->q_perm);
4733 		return rc;
4734 	}
4735 	return 0;
4736 }
4737 
4738 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4739 {
4740 	ipc_free_security(&msq->q_perm);
4741 }
4742 
4743 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4744 {
4745 	struct ipc_security_struct *isec;
4746 	struct avc_audit_data ad;
4747 	u32 sid = current_sid();
4748 
4749 	isec = msq->q_perm.security;
4750 
4751 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4752 	ad.u.ipc_id = msq->q_perm.key;
4753 
4754 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4755 			    MSGQ__ASSOCIATE, &ad);
4756 }
4757 
4758 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4759 {
4760 	int err;
4761 	int perms;
4762 
4763 	switch (cmd) {
4764 	case IPC_INFO:
4765 	case MSG_INFO:
4766 		/* No specific object, just general system-wide information. */
4767 		return task_has_system(current, SYSTEM__IPC_INFO);
4768 	case IPC_STAT:
4769 	case MSG_STAT:
4770 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4771 		break;
4772 	case IPC_SET:
4773 		perms = MSGQ__SETATTR;
4774 		break;
4775 	case IPC_RMID:
4776 		perms = MSGQ__DESTROY;
4777 		break;
4778 	default:
4779 		return 0;
4780 	}
4781 
4782 	err = ipc_has_perm(&msq->q_perm, perms);
4783 	return err;
4784 }
4785 
4786 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4787 {
4788 	struct ipc_security_struct *isec;
4789 	struct msg_security_struct *msec;
4790 	struct avc_audit_data ad;
4791 	u32 sid = current_sid();
4792 	int rc;
4793 
4794 	isec = msq->q_perm.security;
4795 	msec = msg->security;
4796 
4797 	/*
4798 	 * First time through, need to assign label to the message
4799 	 */
4800 	if (msec->sid == SECINITSID_UNLABELED) {
4801 		/*
4802 		 * Compute new sid based on current process and
4803 		 * message queue this message will be stored in
4804 		 */
4805 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4806 					     &msec->sid);
4807 		if (rc)
4808 			return rc;
4809 	}
4810 
4811 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4812 	ad.u.ipc_id = msq->q_perm.key;
4813 
4814 	/* Can this process write to the queue? */
4815 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4816 			  MSGQ__WRITE, &ad);
4817 	if (!rc)
4818 		/* Can this process send the message */
4819 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4820 				  MSG__SEND, &ad);
4821 	if (!rc)
4822 		/* Can the message be put in the queue? */
4823 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4824 				  MSGQ__ENQUEUE, &ad);
4825 
4826 	return rc;
4827 }
4828 
4829 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4830 				    struct task_struct *target,
4831 				    long type, int mode)
4832 {
4833 	struct ipc_security_struct *isec;
4834 	struct msg_security_struct *msec;
4835 	struct avc_audit_data ad;
4836 	u32 sid = task_sid(target);
4837 	int rc;
4838 
4839 	isec = msq->q_perm.security;
4840 	msec = msg->security;
4841 
4842 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4843 	ad.u.ipc_id = msq->q_perm.key;
4844 
4845 	rc = avc_has_perm(sid, isec->sid,
4846 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4847 	if (!rc)
4848 		rc = avc_has_perm(sid, msec->sid,
4849 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4850 	return rc;
4851 }
4852 
4853 /* Shared Memory security operations */
4854 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4855 {
4856 	struct ipc_security_struct *isec;
4857 	struct avc_audit_data ad;
4858 	u32 sid = current_sid();
4859 	int rc;
4860 
4861 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4862 	if (rc)
4863 		return rc;
4864 
4865 	isec = shp->shm_perm.security;
4866 
4867 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4868 	ad.u.ipc_id = shp->shm_perm.key;
4869 
4870 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4871 			  SHM__CREATE, &ad);
4872 	if (rc) {
4873 		ipc_free_security(&shp->shm_perm);
4874 		return rc;
4875 	}
4876 	return 0;
4877 }
4878 
4879 static void selinux_shm_free_security(struct shmid_kernel *shp)
4880 {
4881 	ipc_free_security(&shp->shm_perm);
4882 }
4883 
4884 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4885 {
4886 	struct ipc_security_struct *isec;
4887 	struct avc_audit_data ad;
4888 	u32 sid = current_sid();
4889 
4890 	isec = shp->shm_perm.security;
4891 
4892 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4893 	ad.u.ipc_id = shp->shm_perm.key;
4894 
4895 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4896 			    SHM__ASSOCIATE, &ad);
4897 }
4898 
4899 /* Note, at this point, shp is locked down */
4900 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4901 {
4902 	int perms;
4903 	int err;
4904 
4905 	switch (cmd) {
4906 	case IPC_INFO:
4907 	case SHM_INFO:
4908 		/* No specific object, just general system-wide information. */
4909 		return task_has_system(current, SYSTEM__IPC_INFO);
4910 	case IPC_STAT:
4911 	case SHM_STAT:
4912 		perms = SHM__GETATTR | SHM__ASSOCIATE;
4913 		break;
4914 	case IPC_SET:
4915 		perms = SHM__SETATTR;
4916 		break;
4917 	case SHM_LOCK:
4918 	case SHM_UNLOCK:
4919 		perms = SHM__LOCK;
4920 		break;
4921 	case IPC_RMID:
4922 		perms = SHM__DESTROY;
4923 		break;
4924 	default:
4925 		return 0;
4926 	}
4927 
4928 	err = ipc_has_perm(&shp->shm_perm, perms);
4929 	return err;
4930 }
4931 
4932 static int selinux_shm_shmat(struct shmid_kernel *shp,
4933 			     char __user *shmaddr, int shmflg)
4934 {
4935 	u32 perms;
4936 
4937 	if (shmflg & SHM_RDONLY)
4938 		perms = SHM__READ;
4939 	else
4940 		perms = SHM__READ | SHM__WRITE;
4941 
4942 	return ipc_has_perm(&shp->shm_perm, perms);
4943 }
4944 
4945 /* Semaphore security operations */
4946 static int selinux_sem_alloc_security(struct sem_array *sma)
4947 {
4948 	struct ipc_security_struct *isec;
4949 	struct avc_audit_data ad;
4950 	u32 sid = current_sid();
4951 	int rc;
4952 
4953 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4954 	if (rc)
4955 		return rc;
4956 
4957 	isec = sma->sem_perm.security;
4958 
4959 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4960 	ad.u.ipc_id = sma->sem_perm.key;
4961 
4962 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4963 			  SEM__CREATE, &ad);
4964 	if (rc) {
4965 		ipc_free_security(&sma->sem_perm);
4966 		return rc;
4967 	}
4968 	return 0;
4969 }
4970 
4971 static void selinux_sem_free_security(struct sem_array *sma)
4972 {
4973 	ipc_free_security(&sma->sem_perm);
4974 }
4975 
4976 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4977 {
4978 	struct ipc_security_struct *isec;
4979 	struct avc_audit_data ad;
4980 	u32 sid = current_sid();
4981 
4982 	isec = sma->sem_perm.security;
4983 
4984 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4985 	ad.u.ipc_id = sma->sem_perm.key;
4986 
4987 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4988 			    SEM__ASSOCIATE, &ad);
4989 }
4990 
4991 /* Note, at this point, sma is locked down */
4992 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4993 {
4994 	int err;
4995 	u32 perms;
4996 
4997 	switch (cmd) {
4998 	case IPC_INFO:
4999 	case SEM_INFO:
5000 		/* No specific object, just general system-wide information. */
5001 		return task_has_system(current, SYSTEM__IPC_INFO);
5002 	case GETPID:
5003 	case GETNCNT:
5004 	case GETZCNT:
5005 		perms = SEM__GETATTR;
5006 		break;
5007 	case GETVAL:
5008 	case GETALL:
5009 		perms = SEM__READ;
5010 		break;
5011 	case SETVAL:
5012 	case SETALL:
5013 		perms = SEM__WRITE;
5014 		break;
5015 	case IPC_RMID:
5016 		perms = SEM__DESTROY;
5017 		break;
5018 	case IPC_SET:
5019 		perms = SEM__SETATTR;
5020 		break;
5021 	case IPC_STAT:
5022 	case SEM_STAT:
5023 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5024 		break;
5025 	default:
5026 		return 0;
5027 	}
5028 
5029 	err = ipc_has_perm(&sma->sem_perm, perms);
5030 	return err;
5031 }
5032 
5033 static int selinux_sem_semop(struct sem_array *sma,
5034 			     struct sembuf *sops, unsigned nsops, int alter)
5035 {
5036 	u32 perms;
5037 
5038 	if (alter)
5039 		perms = SEM__READ | SEM__WRITE;
5040 	else
5041 		perms = SEM__READ;
5042 
5043 	return ipc_has_perm(&sma->sem_perm, perms);
5044 }
5045 
5046 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5047 {
5048 	u32 av = 0;
5049 
5050 	av = 0;
5051 	if (flag & S_IRUGO)
5052 		av |= IPC__UNIX_READ;
5053 	if (flag & S_IWUGO)
5054 		av |= IPC__UNIX_WRITE;
5055 
5056 	if (av == 0)
5057 		return 0;
5058 
5059 	return ipc_has_perm(ipcp, av);
5060 }
5061 
5062 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5063 {
5064 	struct ipc_security_struct *isec = ipcp->security;
5065 	*secid = isec->sid;
5066 }
5067 
5068 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5069 {
5070 	if (inode)
5071 		inode_doinit_with_dentry(inode, dentry);
5072 }
5073 
5074 static int selinux_getprocattr(struct task_struct *p,
5075 			       char *name, char **value)
5076 {
5077 	const struct task_security_struct *__tsec;
5078 	u32 sid;
5079 	int error;
5080 	unsigned len;
5081 
5082 	if (current != p) {
5083 		error = current_has_perm(p, PROCESS__GETATTR);
5084 		if (error)
5085 			return error;
5086 	}
5087 
5088 	rcu_read_lock();
5089 	__tsec = __task_cred(p)->security;
5090 
5091 	if (!strcmp(name, "current"))
5092 		sid = __tsec->sid;
5093 	else if (!strcmp(name, "prev"))
5094 		sid = __tsec->osid;
5095 	else if (!strcmp(name, "exec"))
5096 		sid = __tsec->exec_sid;
5097 	else if (!strcmp(name, "fscreate"))
5098 		sid = __tsec->create_sid;
5099 	else if (!strcmp(name, "keycreate"))
5100 		sid = __tsec->keycreate_sid;
5101 	else if (!strcmp(name, "sockcreate"))
5102 		sid = __tsec->sockcreate_sid;
5103 	else
5104 		goto invalid;
5105 	rcu_read_unlock();
5106 
5107 	if (!sid)
5108 		return 0;
5109 
5110 	error = security_sid_to_context(sid, value, &len);
5111 	if (error)
5112 		return error;
5113 	return len;
5114 
5115 invalid:
5116 	rcu_read_unlock();
5117 	return -EINVAL;
5118 }
5119 
5120 static int selinux_setprocattr(struct task_struct *p,
5121 			       char *name, void *value, size_t size)
5122 {
5123 	struct task_security_struct *tsec;
5124 	struct task_struct *tracer;
5125 	struct cred *new;
5126 	u32 sid = 0, ptsid;
5127 	int error;
5128 	char *str = value;
5129 
5130 	if (current != p) {
5131 		/* SELinux only allows a process to change its own
5132 		   security attributes. */
5133 		return -EACCES;
5134 	}
5135 
5136 	/*
5137 	 * Basic control over ability to set these attributes at all.
5138 	 * current == p, but we'll pass them separately in case the
5139 	 * above restriction is ever removed.
5140 	 */
5141 	if (!strcmp(name, "exec"))
5142 		error = current_has_perm(p, PROCESS__SETEXEC);
5143 	else if (!strcmp(name, "fscreate"))
5144 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5145 	else if (!strcmp(name, "keycreate"))
5146 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5147 	else if (!strcmp(name, "sockcreate"))
5148 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5149 	else if (!strcmp(name, "current"))
5150 		error = current_has_perm(p, PROCESS__SETCURRENT);
5151 	else
5152 		error = -EINVAL;
5153 	if (error)
5154 		return error;
5155 
5156 	/* Obtain a SID for the context, if one was specified. */
5157 	if (size && str[1] && str[1] != '\n') {
5158 		if (str[size-1] == '\n') {
5159 			str[size-1] = 0;
5160 			size--;
5161 		}
5162 		error = security_context_to_sid(value, size, &sid);
5163 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5164 			if (!capable(CAP_MAC_ADMIN))
5165 				return error;
5166 			error = security_context_to_sid_force(value, size,
5167 							      &sid);
5168 		}
5169 		if (error)
5170 			return error;
5171 	}
5172 
5173 	new = prepare_creds();
5174 	if (!new)
5175 		return -ENOMEM;
5176 
5177 	/* Permission checking based on the specified context is
5178 	   performed during the actual operation (execve,
5179 	   open/mkdir/...), when we know the full context of the
5180 	   operation.  See selinux_bprm_set_creds for the execve
5181 	   checks and may_create for the file creation checks. The
5182 	   operation will then fail if the context is not permitted. */
5183 	tsec = new->security;
5184 	if (!strcmp(name, "exec")) {
5185 		tsec->exec_sid = sid;
5186 	} else if (!strcmp(name, "fscreate")) {
5187 		tsec->create_sid = sid;
5188 	} else if (!strcmp(name, "keycreate")) {
5189 		error = may_create_key(sid, p);
5190 		if (error)
5191 			goto abort_change;
5192 		tsec->keycreate_sid = sid;
5193 	} else if (!strcmp(name, "sockcreate")) {
5194 		tsec->sockcreate_sid = sid;
5195 	} else if (!strcmp(name, "current")) {
5196 		error = -EINVAL;
5197 		if (sid == 0)
5198 			goto abort_change;
5199 
5200 		/* Only allow single threaded processes to change context */
5201 		error = -EPERM;
5202 		if (!current_is_single_threaded()) {
5203 			error = security_bounded_transition(tsec->sid, sid);
5204 			if (error)
5205 				goto abort_change;
5206 		}
5207 
5208 		/* Check permissions for the transition. */
5209 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5210 				     PROCESS__DYNTRANSITION, NULL);
5211 		if (error)
5212 			goto abort_change;
5213 
5214 		/* Check for ptracing, and update the task SID if ok.
5215 		   Otherwise, leave SID unchanged and fail. */
5216 		ptsid = 0;
5217 		task_lock(p);
5218 		tracer = tracehook_tracer_task(p);
5219 		if (tracer)
5220 			ptsid = task_sid(tracer);
5221 		task_unlock(p);
5222 
5223 		if (tracer) {
5224 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5225 					     PROCESS__PTRACE, NULL);
5226 			if (error)
5227 				goto abort_change;
5228 		}
5229 
5230 		tsec->sid = sid;
5231 	} else {
5232 		error = -EINVAL;
5233 		goto abort_change;
5234 	}
5235 
5236 	commit_creds(new);
5237 	return size;
5238 
5239 abort_change:
5240 	abort_creds(new);
5241 	return error;
5242 }
5243 
5244 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5245 {
5246 	return security_sid_to_context(secid, secdata, seclen);
5247 }
5248 
5249 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5250 {
5251 	return security_context_to_sid(secdata, seclen, secid);
5252 }
5253 
5254 static void selinux_release_secctx(char *secdata, u32 seclen)
5255 {
5256 	kfree(secdata);
5257 }
5258 
5259 #ifdef CONFIG_KEYS
5260 
5261 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5262 			     unsigned long flags)
5263 {
5264 	const struct task_security_struct *tsec;
5265 	struct key_security_struct *ksec;
5266 
5267 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5268 	if (!ksec)
5269 		return -ENOMEM;
5270 
5271 	tsec = cred->security;
5272 	if (tsec->keycreate_sid)
5273 		ksec->sid = tsec->keycreate_sid;
5274 	else
5275 		ksec->sid = tsec->sid;
5276 
5277 	k->security = ksec;
5278 	return 0;
5279 }
5280 
5281 static void selinux_key_free(struct key *k)
5282 {
5283 	struct key_security_struct *ksec = k->security;
5284 
5285 	k->security = NULL;
5286 	kfree(ksec);
5287 }
5288 
5289 static int selinux_key_permission(key_ref_t key_ref,
5290 				  const struct cred *cred,
5291 				  key_perm_t perm)
5292 {
5293 	struct key *key;
5294 	struct key_security_struct *ksec;
5295 	u32 sid;
5296 
5297 	/* if no specific permissions are requested, we skip the
5298 	   permission check. No serious, additional covert channels
5299 	   appear to be created. */
5300 	if (perm == 0)
5301 		return 0;
5302 
5303 	sid = cred_sid(cred);
5304 
5305 	key = key_ref_to_ptr(key_ref);
5306 	ksec = key->security;
5307 
5308 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5309 }
5310 
5311 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5312 {
5313 	struct key_security_struct *ksec = key->security;
5314 	char *context = NULL;
5315 	unsigned len;
5316 	int rc;
5317 
5318 	rc = security_sid_to_context(ksec->sid, &context, &len);
5319 	if (!rc)
5320 		rc = len;
5321 	*_buffer = context;
5322 	return rc;
5323 }
5324 
5325 #endif
5326 
5327 static struct security_operations selinux_ops = {
5328 	.name =				"selinux",
5329 
5330 	.ptrace_access_check =		selinux_ptrace_access_check,
5331 	.ptrace_traceme =		selinux_ptrace_traceme,
5332 	.capget =			selinux_capget,
5333 	.capset =			selinux_capset,
5334 	.sysctl =			selinux_sysctl,
5335 	.capable =			selinux_capable,
5336 	.quotactl =			selinux_quotactl,
5337 	.quota_on =			selinux_quota_on,
5338 	.syslog =			selinux_syslog,
5339 	.vm_enough_memory =		selinux_vm_enough_memory,
5340 
5341 	.netlink_send =			selinux_netlink_send,
5342 	.netlink_recv =			selinux_netlink_recv,
5343 
5344 	.bprm_set_creds =		selinux_bprm_set_creds,
5345 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5346 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5347 	.bprm_secureexec =		selinux_bprm_secureexec,
5348 
5349 	.sb_alloc_security =		selinux_sb_alloc_security,
5350 	.sb_free_security =		selinux_sb_free_security,
5351 	.sb_copy_data =			selinux_sb_copy_data,
5352 	.sb_kern_mount =		selinux_sb_kern_mount,
5353 	.sb_show_options =		selinux_sb_show_options,
5354 	.sb_statfs =			selinux_sb_statfs,
5355 	.sb_mount =			selinux_mount,
5356 	.sb_umount =			selinux_umount,
5357 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5358 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5359 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5360 
5361 
5362 	.inode_alloc_security =		selinux_inode_alloc_security,
5363 	.inode_free_security =		selinux_inode_free_security,
5364 	.inode_init_security =		selinux_inode_init_security,
5365 	.inode_create =			selinux_inode_create,
5366 	.inode_link =			selinux_inode_link,
5367 	.inode_unlink =			selinux_inode_unlink,
5368 	.inode_symlink =		selinux_inode_symlink,
5369 	.inode_mkdir =			selinux_inode_mkdir,
5370 	.inode_rmdir =			selinux_inode_rmdir,
5371 	.inode_mknod =			selinux_inode_mknod,
5372 	.inode_rename =			selinux_inode_rename,
5373 	.inode_readlink =		selinux_inode_readlink,
5374 	.inode_follow_link =		selinux_inode_follow_link,
5375 	.inode_permission =		selinux_inode_permission,
5376 	.inode_setattr =		selinux_inode_setattr,
5377 	.inode_getattr =		selinux_inode_getattr,
5378 	.inode_setxattr =		selinux_inode_setxattr,
5379 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5380 	.inode_getxattr =		selinux_inode_getxattr,
5381 	.inode_listxattr =		selinux_inode_listxattr,
5382 	.inode_removexattr =		selinux_inode_removexattr,
5383 	.inode_getsecurity =		selinux_inode_getsecurity,
5384 	.inode_setsecurity =		selinux_inode_setsecurity,
5385 	.inode_listsecurity =		selinux_inode_listsecurity,
5386 	.inode_getsecid =		selinux_inode_getsecid,
5387 
5388 	.file_permission =		selinux_file_permission,
5389 	.file_alloc_security =		selinux_file_alloc_security,
5390 	.file_free_security =		selinux_file_free_security,
5391 	.file_ioctl =			selinux_file_ioctl,
5392 	.file_mmap =			selinux_file_mmap,
5393 	.file_mprotect =		selinux_file_mprotect,
5394 	.file_lock =			selinux_file_lock,
5395 	.file_fcntl =			selinux_file_fcntl,
5396 	.file_set_fowner =		selinux_file_set_fowner,
5397 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5398 	.file_receive =			selinux_file_receive,
5399 
5400 	.dentry_open =			selinux_dentry_open,
5401 
5402 	.task_create =			selinux_task_create,
5403 	.cred_free =			selinux_cred_free,
5404 	.cred_prepare =			selinux_cred_prepare,
5405 	.kernel_act_as =		selinux_kernel_act_as,
5406 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5407 	.task_setpgid =			selinux_task_setpgid,
5408 	.task_getpgid =			selinux_task_getpgid,
5409 	.task_getsid =			selinux_task_getsid,
5410 	.task_getsecid =		selinux_task_getsecid,
5411 	.task_setnice =			selinux_task_setnice,
5412 	.task_setioprio =		selinux_task_setioprio,
5413 	.task_getioprio =		selinux_task_getioprio,
5414 	.task_setrlimit =		selinux_task_setrlimit,
5415 	.task_setscheduler =		selinux_task_setscheduler,
5416 	.task_getscheduler =		selinux_task_getscheduler,
5417 	.task_movememory =		selinux_task_movememory,
5418 	.task_kill =			selinux_task_kill,
5419 	.task_wait =			selinux_task_wait,
5420 	.task_to_inode =		selinux_task_to_inode,
5421 
5422 	.ipc_permission =		selinux_ipc_permission,
5423 	.ipc_getsecid =			selinux_ipc_getsecid,
5424 
5425 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5426 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5427 
5428 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5429 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5430 	.msg_queue_associate =		selinux_msg_queue_associate,
5431 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5432 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5433 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5434 
5435 	.shm_alloc_security =		selinux_shm_alloc_security,
5436 	.shm_free_security =		selinux_shm_free_security,
5437 	.shm_associate =		selinux_shm_associate,
5438 	.shm_shmctl =			selinux_shm_shmctl,
5439 	.shm_shmat =			selinux_shm_shmat,
5440 
5441 	.sem_alloc_security =		selinux_sem_alloc_security,
5442 	.sem_free_security =		selinux_sem_free_security,
5443 	.sem_associate =		selinux_sem_associate,
5444 	.sem_semctl =			selinux_sem_semctl,
5445 	.sem_semop =			selinux_sem_semop,
5446 
5447 	.d_instantiate =		selinux_d_instantiate,
5448 
5449 	.getprocattr =			selinux_getprocattr,
5450 	.setprocattr =			selinux_setprocattr,
5451 
5452 	.secid_to_secctx =		selinux_secid_to_secctx,
5453 	.secctx_to_secid =		selinux_secctx_to_secid,
5454 	.release_secctx =		selinux_release_secctx,
5455 
5456 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5457 	.unix_may_send =		selinux_socket_unix_may_send,
5458 
5459 	.socket_create =		selinux_socket_create,
5460 	.socket_post_create =		selinux_socket_post_create,
5461 	.socket_bind =			selinux_socket_bind,
5462 	.socket_connect =		selinux_socket_connect,
5463 	.socket_listen =		selinux_socket_listen,
5464 	.socket_accept =		selinux_socket_accept,
5465 	.socket_sendmsg =		selinux_socket_sendmsg,
5466 	.socket_recvmsg =		selinux_socket_recvmsg,
5467 	.socket_getsockname =		selinux_socket_getsockname,
5468 	.socket_getpeername =		selinux_socket_getpeername,
5469 	.socket_getsockopt =		selinux_socket_getsockopt,
5470 	.socket_setsockopt =		selinux_socket_setsockopt,
5471 	.socket_shutdown =		selinux_socket_shutdown,
5472 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5473 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5474 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5475 	.sk_alloc_security =		selinux_sk_alloc_security,
5476 	.sk_free_security =		selinux_sk_free_security,
5477 	.sk_clone_security =		selinux_sk_clone_security,
5478 	.sk_getsecid =			selinux_sk_getsecid,
5479 	.sock_graft =			selinux_sock_graft,
5480 	.inet_conn_request =		selinux_inet_conn_request,
5481 	.inet_csk_clone =		selinux_inet_csk_clone,
5482 	.inet_conn_established =	selinux_inet_conn_established,
5483 	.req_classify_flow =		selinux_req_classify_flow,
5484 
5485 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5486 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5487 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5488 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5489 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5490 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5491 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5492 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5493 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5494 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5495 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5496 #endif
5497 
5498 #ifdef CONFIG_KEYS
5499 	.key_alloc =			selinux_key_alloc,
5500 	.key_free =			selinux_key_free,
5501 	.key_permission =		selinux_key_permission,
5502 	.key_getsecurity =		selinux_key_getsecurity,
5503 #endif
5504 
5505 #ifdef CONFIG_AUDIT
5506 	.audit_rule_init =		selinux_audit_rule_init,
5507 	.audit_rule_known =		selinux_audit_rule_known,
5508 	.audit_rule_match =		selinux_audit_rule_match,
5509 	.audit_rule_free =		selinux_audit_rule_free,
5510 #endif
5511 };
5512 
5513 static __init int selinux_init(void)
5514 {
5515 	if (!security_module_enable(&selinux_ops)) {
5516 		selinux_enabled = 0;
5517 		return 0;
5518 	}
5519 
5520 	if (!selinux_enabled) {
5521 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5522 		return 0;
5523 	}
5524 
5525 	printk(KERN_INFO "SELinux:  Initializing.\n");
5526 
5527 	/* Set the security state for the initial task. */
5528 	cred_init_security();
5529 
5530 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5531 					    sizeof(struct inode_security_struct),
5532 					    0, SLAB_PANIC, NULL);
5533 	avc_init();
5534 
5535 	secondary_ops = security_ops;
5536 	if (!secondary_ops)
5537 		panic("SELinux: No initial security operations\n");
5538 	if (register_security(&selinux_ops))
5539 		panic("SELinux: Unable to register with kernel.\n");
5540 
5541 	if (selinux_enforcing)
5542 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5543 	else
5544 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5545 
5546 	return 0;
5547 }
5548 
5549 void selinux_complete_init(void)
5550 {
5551 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5552 
5553 	/* Set up any superblocks initialized prior to the policy load. */
5554 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5555 	spin_lock(&sb_lock);
5556 	spin_lock(&sb_security_lock);
5557 next_sb:
5558 	if (!list_empty(&superblock_security_head)) {
5559 		struct superblock_security_struct *sbsec =
5560 				list_entry(superblock_security_head.next,
5561 					   struct superblock_security_struct,
5562 					   list);
5563 		struct super_block *sb = sbsec->sb;
5564 		sb->s_count++;
5565 		spin_unlock(&sb_security_lock);
5566 		spin_unlock(&sb_lock);
5567 		down_read(&sb->s_umount);
5568 		if (sb->s_root)
5569 			superblock_doinit(sb, NULL);
5570 		drop_super(sb);
5571 		spin_lock(&sb_lock);
5572 		spin_lock(&sb_security_lock);
5573 		list_del_init(&sbsec->list);
5574 		goto next_sb;
5575 	}
5576 	spin_unlock(&sb_security_lock);
5577 	spin_unlock(&sb_lock);
5578 }
5579 
5580 /* SELinux requires early initialization in order to label
5581    all processes and objects when they are created. */
5582 security_initcall(selinux_init);
5583 
5584 #if defined(CONFIG_NETFILTER)
5585 
5586 static struct nf_hook_ops selinux_ipv4_ops[] = {
5587 	{
5588 		.hook =		selinux_ipv4_postroute,
5589 		.owner =	THIS_MODULE,
5590 		.pf =		PF_INET,
5591 		.hooknum =	NF_INET_POST_ROUTING,
5592 		.priority =	NF_IP_PRI_SELINUX_LAST,
5593 	},
5594 	{
5595 		.hook =		selinux_ipv4_forward,
5596 		.owner =	THIS_MODULE,
5597 		.pf =		PF_INET,
5598 		.hooknum =	NF_INET_FORWARD,
5599 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5600 	},
5601 	{
5602 		.hook =		selinux_ipv4_output,
5603 		.owner =	THIS_MODULE,
5604 		.pf =		PF_INET,
5605 		.hooknum =	NF_INET_LOCAL_OUT,
5606 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5607 	}
5608 };
5609 
5610 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5611 
5612 static struct nf_hook_ops selinux_ipv6_ops[] = {
5613 	{
5614 		.hook =		selinux_ipv6_postroute,
5615 		.owner =	THIS_MODULE,
5616 		.pf =		PF_INET6,
5617 		.hooknum =	NF_INET_POST_ROUTING,
5618 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5619 	},
5620 	{
5621 		.hook =		selinux_ipv6_forward,
5622 		.owner =	THIS_MODULE,
5623 		.pf =		PF_INET6,
5624 		.hooknum =	NF_INET_FORWARD,
5625 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5626 	}
5627 };
5628 
5629 #endif	/* IPV6 */
5630 
5631 static int __init selinux_nf_ip_init(void)
5632 {
5633 	int err = 0;
5634 
5635 	if (!selinux_enabled)
5636 		goto out;
5637 
5638 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5639 
5640 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5641 	if (err)
5642 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5643 
5644 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5645 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5646 	if (err)
5647 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5648 #endif	/* IPV6 */
5649 
5650 out:
5651 	return err;
5652 }
5653 
5654 __initcall(selinux_nf_ip_init);
5655 
5656 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5657 static void selinux_nf_ip_exit(void)
5658 {
5659 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5660 
5661 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5662 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5663 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5664 #endif	/* IPV6 */
5665 }
5666 #endif
5667 
5668 #else /* CONFIG_NETFILTER */
5669 
5670 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5671 #define selinux_nf_ip_exit()
5672 #endif
5673 
5674 #endif /* CONFIG_NETFILTER */
5675 
5676 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5677 static int selinux_disabled;
5678 
5679 int selinux_disable(void)
5680 {
5681 	extern void exit_sel_fs(void);
5682 
5683 	if (ss_initialized) {
5684 		/* Not permitted after initial policy load. */
5685 		return -EINVAL;
5686 	}
5687 
5688 	if (selinux_disabled) {
5689 		/* Only do this once. */
5690 		return -EINVAL;
5691 	}
5692 
5693 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5694 
5695 	selinux_disabled = 1;
5696 	selinux_enabled = 0;
5697 
5698 	/* Try to destroy the avc node cache */
5699 	avc_disable();
5700 
5701 	/* Reset security_ops to the secondary module, dummy or capability. */
5702 	security_ops = secondary_ops;
5703 
5704 	/* Unregister netfilter hooks. */
5705 	selinux_nf_ip_exit();
5706 
5707 	/* Unregister selinuxfs. */
5708 	exit_sel_fs();
5709 
5710 	return 0;
5711 }
5712 #endif
5713