1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 14 * <dgoeddel@trustedcs.com> 15 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 16 * Paul Moore <paul.moore@hp.com> 17 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 18 * Yuichi Nakamura <ynakam@hitachisoft.jp> 19 * 20 * This program is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License version 2, 22 * as published by the Free Software Foundation. 23 */ 24 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/ptrace.h> 28 #include <linux/errno.h> 29 #include <linux/sched.h> 30 #include <linux/security.h> 31 #include <linux/xattr.h> 32 #include <linux/capability.h> 33 #include <linux/unistd.h> 34 #include <linux/mm.h> 35 #include <linux/mman.h> 36 #include <linux/slab.h> 37 #include <linux/pagemap.h> 38 #include <linux/swap.h> 39 #include <linux/spinlock.h> 40 #include <linux/syscalls.h> 41 #include <linux/file.h> 42 #include <linux/namei.h> 43 #include <linux/mount.h> 44 #include <linux/ext2_fs.h> 45 #include <linux/proc_fs.h> 46 #include <linux/kd.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <asm/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 79 #include "avc.h" 80 #include "objsec.h" 81 #include "netif.h" 82 #include "netnode.h" 83 #include "netport.h" 84 #include "xfrm.h" 85 #include "netlabel.h" 86 #include "audit.h" 87 88 #define XATTR_SELINUX_SUFFIX "selinux" 89 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 90 91 #define NUM_SEL_MNT_OPTS 4 92 93 extern unsigned int policydb_loaded_version; 94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 95 extern int selinux_compat_net; 96 extern struct security_operations *security_ops; 97 98 /* SECMARK reference count */ 99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 100 101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 102 int selinux_enforcing; 103 104 static int __init enforcing_setup(char *str) 105 { 106 selinux_enforcing = simple_strtol(str, NULL, 0); 107 return 1; 108 } 109 __setup("enforcing=", enforcing_setup); 110 #endif 111 112 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 113 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 114 115 static int __init selinux_enabled_setup(char *str) 116 { 117 selinux_enabled = simple_strtol(str, NULL, 0); 118 return 1; 119 } 120 __setup("selinux=", selinux_enabled_setup); 121 #else 122 int selinux_enabled = 1; 123 #endif 124 125 /* Original (dummy) security module. */ 126 static struct security_operations *original_ops; 127 128 /* Minimal support for a secondary security module, 129 just to allow the use of the dummy or capability modules. 130 The owlsm module can alternatively be used as a secondary 131 module as long as CONFIG_OWLSM_FD is not enabled. */ 132 static struct security_operations *secondary_ops; 133 134 /* Lists of inode and superblock security structures initialized 135 before the policy was loaded. */ 136 static LIST_HEAD(superblock_security_head); 137 static DEFINE_SPINLOCK(sb_security_lock); 138 139 static struct kmem_cache *sel_inode_cache; 140 141 /** 142 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 143 * 144 * Description: 145 * This function checks the SECMARK reference counter to see if any SECMARK 146 * targets are currently configured, if the reference counter is greater than 147 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 148 * enabled, false (0) if SECMARK is disabled. 149 * 150 */ 151 static int selinux_secmark_enabled(void) 152 { 153 return (atomic_read(&selinux_secmark_refcount) > 0); 154 } 155 156 /* Allocate and free functions for each kind of security blob. */ 157 158 static int task_alloc_security(struct task_struct *task) 159 { 160 struct task_security_struct *tsec; 161 162 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 163 if (!tsec) 164 return -ENOMEM; 165 166 tsec->osid = tsec->sid = SECINITSID_UNLABELED; 167 task->security = tsec; 168 169 return 0; 170 } 171 172 static void task_free_security(struct task_struct *task) 173 { 174 struct task_security_struct *tsec = task->security; 175 task->security = NULL; 176 kfree(tsec); 177 } 178 179 static int inode_alloc_security(struct inode *inode) 180 { 181 struct task_security_struct *tsec = current->security; 182 struct inode_security_struct *isec; 183 184 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 185 if (!isec) 186 return -ENOMEM; 187 188 mutex_init(&isec->lock); 189 INIT_LIST_HEAD(&isec->list); 190 isec->inode = inode; 191 isec->sid = SECINITSID_UNLABELED; 192 isec->sclass = SECCLASS_FILE; 193 isec->task_sid = tsec->sid; 194 inode->i_security = isec; 195 196 return 0; 197 } 198 199 static void inode_free_security(struct inode *inode) 200 { 201 struct inode_security_struct *isec = inode->i_security; 202 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 203 204 spin_lock(&sbsec->isec_lock); 205 if (!list_empty(&isec->list)) 206 list_del_init(&isec->list); 207 spin_unlock(&sbsec->isec_lock); 208 209 inode->i_security = NULL; 210 kmem_cache_free(sel_inode_cache, isec); 211 } 212 213 static int file_alloc_security(struct file *file) 214 { 215 struct task_security_struct *tsec = current->security; 216 struct file_security_struct *fsec; 217 218 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 219 if (!fsec) 220 return -ENOMEM; 221 222 fsec->sid = tsec->sid; 223 fsec->fown_sid = tsec->sid; 224 file->f_security = fsec; 225 226 return 0; 227 } 228 229 static void file_free_security(struct file *file) 230 { 231 struct file_security_struct *fsec = file->f_security; 232 file->f_security = NULL; 233 kfree(fsec); 234 } 235 236 static int superblock_alloc_security(struct super_block *sb) 237 { 238 struct superblock_security_struct *sbsec; 239 240 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 241 if (!sbsec) 242 return -ENOMEM; 243 244 mutex_init(&sbsec->lock); 245 INIT_LIST_HEAD(&sbsec->list); 246 INIT_LIST_HEAD(&sbsec->isec_head); 247 spin_lock_init(&sbsec->isec_lock); 248 sbsec->sb = sb; 249 sbsec->sid = SECINITSID_UNLABELED; 250 sbsec->def_sid = SECINITSID_FILE; 251 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 252 sb->s_security = sbsec; 253 254 return 0; 255 } 256 257 static void superblock_free_security(struct super_block *sb) 258 { 259 struct superblock_security_struct *sbsec = sb->s_security; 260 261 spin_lock(&sb_security_lock); 262 if (!list_empty(&sbsec->list)) 263 list_del_init(&sbsec->list); 264 spin_unlock(&sb_security_lock); 265 266 sb->s_security = NULL; 267 kfree(sbsec); 268 } 269 270 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 271 { 272 struct sk_security_struct *ssec; 273 274 ssec = kzalloc(sizeof(*ssec), priority); 275 if (!ssec) 276 return -ENOMEM; 277 278 ssec->peer_sid = SECINITSID_UNLABELED; 279 ssec->sid = SECINITSID_UNLABELED; 280 sk->sk_security = ssec; 281 282 selinux_netlbl_sk_security_reset(ssec, family); 283 284 return 0; 285 } 286 287 static void sk_free_security(struct sock *sk) 288 { 289 struct sk_security_struct *ssec = sk->sk_security; 290 291 sk->sk_security = NULL; 292 kfree(ssec); 293 } 294 295 /* The security server must be initialized before 296 any labeling or access decisions can be provided. */ 297 extern int ss_initialized; 298 299 /* The file system's label must be initialized prior to use. */ 300 301 static char *labeling_behaviors[6] = { 302 "uses xattr", 303 "uses transition SIDs", 304 "uses task SIDs", 305 "uses genfs_contexts", 306 "not configured for labeling", 307 "uses mountpoint labeling", 308 }; 309 310 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 311 312 static inline int inode_doinit(struct inode *inode) 313 { 314 return inode_doinit_with_dentry(inode, NULL); 315 } 316 317 enum { 318 Opt_error = -1, 319 Opt_context = 1, 320 Opt_fscontext = 2, 321 Opt_defcontext = 3, 322 Opt_rootcontext = 4, 323 }; 324 325 static match_table_t tokens = { 326 {Opt_context, CONTEXT_STR "%s"}, 327 {Opt_fscontext, FSCONTEXT_STR "%s"}, 328 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 329 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 330 {Opt_error, NULL}, 331 }; 332 333 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 334 335 static int may_context_mount_sb_relabel(u32 sid, 336 struct superblock_security_struct *sbsec, 337 struct task_security_struct *tsec) 338 { 339 int rc; 340 341 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 342 FILESYSTEM__RELABELFROM, NULL); 343 if (rc) 344 return rc; 345 346 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 347 FILESYSTEM__RELABELTO, NULL); 348 return rc; 349 } 350 351 static int may_context_mount_inode_relabel(u32 sid, 352 struct superblock_security_struct *sbsec, 353 struct task_security_struct *tsec) 354 { 355 int rc; 356 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 357 FILESYSTEM__RELABELFROM, NULL); 358 if (rc) 359 return rc; 360 361 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 362 FILESYSTEM__ASSOCIATE, NULL); 363 return rc; 364 } 365 366 static int sb_finish_set_opts(struct super_block *sb) 367 { 368 struct superblock_security_struct *sbsec = sb->s_security; 369 struct dentry *root = sb->s_root; 370 struct inode *root_inode = root->d_inode; 371 int rc = 0; 372 373 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 374 /* Make sure that the xattr handler exists and that no 375 error other than -ENODATA is returned by getxattr on 376 the root directory. -ENODATA is ok, as this may be 377 the first boot of the SELinux kernel before we have 378 assigned xattr values to the filesystem. */ 379 if (!root_inode->i_op->getxattr) { 380 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 381 "xattr support\n", sb->s_id, sb->s_type->name); 382 rc = -EOPNOTSUPP; 383 goto out; 384 } 385 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 386 if (rc < 0 && rc != -ENODATA) { 387 if (rc == -EOPNOTSUPP) 388 printk(KERN_WARNING "SELinux: (dev %s, type " 389 "%s) has no security xattr handler\n", 390 sb->s_id, sb->s_type->name); 391 else 392 printk(KERN_WARNING "SELinux: (dev %s, type " 393 "%s) getxattr errno %d\n", sb->s_id, 394 sb->s_type->name, -rc); 395 goto out; 396 } 397 } 398 399 sbsec->initialized = 1; 400 401 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 402 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 403 sb->s_id, sb->s_type->name); 404 else 405 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 406 sb->s_id, sb->s_type->name, 407 labeling_behaviors[sbsec->behavior-1]); 408 409 /* Initialize the root inode. */ 410 rc = inode_doinit_with_dentry(root_inode, root); 411 412 /* Initialize any other inodes associated with the superblock, e.g. 413 inodes created prior to initial policy load or inodes created 414 during get_sb by a pseudo filesystem that directly 415 populates itself. */ 416 spin_lock(&sbsec->isec_lock); 417 next_inode: 418 if (!list_empty(&sbsec->isec_head)) { 419 struct inode_security_struct *isec = 420 list_entry(sbsec->isec_head.next, 421 struct inode_security_struct, list); 422 struct inode *inode = isec->inode; 423 spin_unlock(&sbsec->isec_lock); 424 inode = igrab(inode); 425 if (inode) { 426 if (!IS_PRIVATE(inode)) 427 inode_doinit(inode); 428 iput(inode); 429 } 430 spin_lock(&sbsec->isec_lock); 431 list_del_init(&isec->list); 432 goto next_inode; 433 } 434 spin_unlock(&sbsec->isec_lock); 435 out: 436 return rc; 437 } 438 439 /* 440 * This function should allow an FS to ask what it's mount security 441 * options were so it can use those later for submounts, displaying 442 * mount options, or whatever. 443 */ 444 static int selinux_get_mnt_opts(const struct super_block *sb, 445 struct security_mnt_opts *opts) 446 { 447 int rc = 0, i; 448 struct superblock_security_struct *sbsec = sb->s_security; 449 char *context = NULL; 450 u32 len; 451 char tmp; 452 453 security_init_mnt_opts(opts); 454 455 if (!sbsec->initialized) 456 return -EINVAL; 457 458 if (!ss_initialized) 459 return -EINVAL; 460 461 /* 462 * if we ever use sbsec flags for anything other than tracking mount 463 * settings this is going to need a mask 464 */ 465 tmp = sbsec->flags; 466 /* count the number of mount options for this sb */ 467 for (i = 0; i < 8; i++) { 468 if (tmp & 0x01) 469 opts->num_mnt_opts++; 470 tmp >>= 1; 471 } 472 473 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 474 if (!opts->mnt_opts) { 475 rc = -ENOMEM; 476 goto out_free; 477 } 478 479 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 480 if (!opts->mnt_opts_flags) { 481 rc = -ENOMEM; 482 goto out_free; 483 } 484 485 i = 0; 486 if (sbsec->flags & FSCONTEXT_MNT) { 487 rc = security_sid_to_context(sbsec->sid, &context, &len); 488 if (rc) 489 goto out_free; 490 opts->mnt_opts[i] = context; 491 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 492 } 493 if (sbsec->flags & CONTEXT_MNT) { 494 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 495 if (rc) 496 goto out_free; 497 opts->mnt_opts[i] = context; 498 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 499 } 500 if (sbsec->flags & DEFCONTEXT_MNT) { 501 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 502 if (rc) 503 goto out_free; 504 opts->mnt_opts[i] = context; 505 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 506 } 507 if (sbsec->flags & ROOTCONTEXT_MNT) { 508 struct inode *root = sbsec->sb->s_root->d_inode; 509 struct inode_security_struct *isec = root->i_security; 510 511 rc = security_sid_to_context(isec->sid, &context, &len); 512 if (rc) 513 goto out_free; 514 opts->mnt_opts[i] = context; 515 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 516 } 517 518 BUG_ON(i != opts->num_mnt_opts); 519 520 return 0; 521 522 out_free: 523 security_free_mnt_opts(opts); 524 return rc; 525 } 526 527 static int bad_option(struct superblock_security_struct *sbsec, char flag, 528 u32 old_sid, u32 new_sid) 529 { 530 /* check if the old mount command had the same options */ 531 if (sbsec->initialized) 532 if (!(sbsec->flags & flag) || 533 (old_sid != new_sid)) 534 return 1; 535 536 /* check if we were passed the same options twice, 537 * aka someone passed context=a,context=b 538 */ 539 if (!sbsec->initialized) 540 if (sbsec->flags & flag) 541 return 1; 542 return 0; 543 } 544 545 /* 546 * Allow filesystems with binary mount data to explicitly set mount point 547 * labeling information. 548 */ 549 static int selinux_set_mnt_opts(struct super_block *sb, 550 struct security_mnt_opts *opts) 551 { 552 int rc = 0, i; 553 struct task_security_struct *tsec = current->security; 554 struct superblock_security_struct *sbsec = sb->s_security; 555 const char *name = sb->s_type->name; 556 struct inode *inode = sbsec->sb->s_root->d_inode; 557 struct inode_security_struct *root_isec = inode->i_security; 558 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 559 u32 defcontext_sid = 0; 560 char **mount_options = opts->mnt_opts; 561 int *flags = opts->mnt_opts_flags; 562 int num_opts = opts->num_mnt_opts; 563 564 mutex_lock(&sbsec->lock); 565 566 if (!ss_initialized) { 567 if (!num_opts) { 568 /* Defer initialization until selinux_complete_init, 569 after the initial policy is loaded and the security 570 server is ready to handle calls. */ 571 spin_lock(&sb_security_lock); 572 if (list_empty(&sbsec->list)) 573 list_add(&sbsec->list, &superblock_security_head); 574 spin_unlock(&sb_security_lock); 575 goto out; 576 } 577 rc = -EINVAL; 578 printk(KERN_WARNING "SELinux: Unable to set superblock options " 579 "before the security server is initialized\n"); 580 goto out; 581 } 582 583 /* 584 * Binary mount data FS will come through this function twice. Once 585 * from an explicit call and once from the generic calls from the vfs. 586 * Since the generic VFS calls will not contain any security mount data 587 * we need to skip the double mount verification. 588 * 589 * This does open a hole in which we will not notice if the first 590 * mount using this sb set explict options and a second mount using 591 * this sb does not set any security options. (The first options 592 * will be used for both mounts) 593 */ 594 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 595 && (num_opts == 0)) 596 goto out; 597 598 /* 599 * parse the mount options, check if they are valid sids. 600 * also check if someone is trying to mount the same sb more 601 * than once with different security options. 602 */ 603 for (i = 0; i < num_opts; i++) { 604 u32 sid; 605 rc = security_context_to_sid(mount_options[i], 606 strlen(mount_options[i]), &sid); 607 if (rc) { 608 printk(KERN_WARNING "SELinux: security_context_to_sid" 609 "(%s) failed for (dev %s, type %s) errno=%d\n", 610 mount_options[i], sb->s_id, name, rc); 611 goto out; 612 } 613 switch (flags[i]) { 614 case FSCONTEXT_MNT: 615 fscontext_sid = sid; 616 617 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 618 fscontext_sid)) 619 goto out_double_mount; 620 621 sbsec->flags |= FSCONTEXT_MNT; 622 break; 623 case CONTEXT_MNT: 624 context_sid = sid; 625 626 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 627 context_sid)) 628 goto out_double_mount; 629 630 sbsec->flags |= CONTEXT_MNT; 631 break; 632 case ROOTCONTEXT_MNT: 633 rootcontext_sid = sid; 634 635 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 636 rootcontext_sid)) 637 goto out_double_mount; 638 639 sbsec->flags |= ROOTCONTEXT_MNT; 640 641 break; 642 case DEFCONTEXT_MNT: 643 defcontext_sid = sid; 644 645 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 646 defcontext_sid)) 647 goto out_double_mount; 648 649 sbsec->flags |= DEFCONTEXT_MNT; 650 651 break; 652 default: 653 rc = -EINVAL; 654 goto out; 655 } 656 } 657 658 if (sbsec->initialized) { 659 /* previously mounted with options, but not on this attempt? */ 660 if (sbsec->flags && !num_opts) 661 goto out_double_mount; 662 rc = 0; 663 goto out; 664 } 665 666 if (strcmp(sb->s_type->name, "proc") == 0) 667 sbsec->proc = 1; 668 669 /* Determine the labeling behavior to use for this filesystem type. */ 670 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid); 671 if (rc) { 672 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 673 __func__, sb->s_type->name, rc); 674 goto out; 675 } 676 677 /* sets the context of the superblock for the fs being mounted. */ 678 if (fscontext_sid) { 679 680 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec); 681 if (rc) 682 goto out; 683 684 sbsec->sid = fscontext_sid; 685 } 686 687 /* 688 * Switch to using mount point labeling behavior. 689 * sets the label used on all file below the mountpoint, and will set 690 * the superblock context if not already set. 691 */ 692 if (context_sid) { 693 if (!fscontext_sid) { 694 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec); 695 if (rc) 696 goto out; 697 sbsec->sid = context_sid; 698 } else { 699 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec); 700 if (rc) 701 goto out; 702 } 703 if (!rootcontext_sid) 704 rootcontext_sid = context_sid; 705 706 sbsec->mntpoint_sid = context_sid; 707 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 708 } 709 710 if (rootcontext_sid) { 711 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec); 712 if (rc) 713 goto out; 714 715 root_isec->sid = rootcontext_sid; 716 root_isec->initialized = 1; 717 } 718 719 if (defcontext_sid) { 720 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 721 rc = -EINVAL; 722 printk(KERN_WARNING "SELinux: defcontext option is " 723 "invalid for this filesystem type\n"); 724 goto out; 725 } 726 727 if (defcontext_sid != sbsec->def_sid) { 728 rc = may_context_mount_inode_relabel(defcontext_sid, 729 sbsec, tsec); 730 if (rc) 731 goto out; 732 } 733 734 sbsec->def_sid = defcontext_sid; 735 } 736 737 rc = sb_finish_set_opts(sb); 738 out: 739 mutex_unlock(&sbsec->lock); 740 return rc; 741 out_double_mount: 742 rc = -EINVAL; 743 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 744 "security settings for (dev %s, type %s)\n", sb->s_id, name); 745 goto out; 746 } 747 748 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 749 struct super_block *newsb) 750 { 751 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 752 struct superblock_security_struct *newsbsec = newsb->s_security; 753 754 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 755 int set_context = (oldsbsec->flags & CONTEXT_MNT); 756 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 757 758 /* 759 * if the parent was able to be mounted it clearly had no special lsm 760 * mount options. thus we can safely put this sb on the list and deal 761 * with it later 762 */ 763 if (!ss_initialized) { 764 spin_lock(&sb_security_lock); 765 if (list_empty(&newsbsec->list)) 766 list_add(&newsbsec->list, &superblock_security_head); 767 spin_unlock(&sb_security_lock); 768 return; 769 } 770 771 /* how can we clone if the old one wasn't set up?? */ 772 BUG_ON(!oldsbsec->initialized); 773 774 /* if fs is reusing a sb, just let its options stand... */ 775 if (newsbsec->initialized) 776 return; 777 778 mutex_lock(&newsbsec->lock); 779 780 newsbsec->flags = oldsbsec->flags; 781 782 newsbsec->sid = oldsbsec->sid; 783 newsbsec->def_sid = oldsbsec->def_sid; 784 newsbsec->behavior = oldsbsec->behavior; 785 786 if (set_context) { 787 u32 sid = oldsbsec->mntpoint_sid; 788 789 if (!set_fscontext) 790 newsbsec->sid = sid; 791 if (!set_rootcontext) { 792 struct inode *newinode = newsb->s_root->d_inode; 793 struct inode_security_struct *newisec = newinode->i_security; 794 newisec->sid = sid; 795 } 796 newsbsec->mntpoint_sid = sid; 797 } 798 if (set_rootcontext) { 799 const struct inode *oldinode = oldsb->s_root->d_inode; 800 const struct inode_security_struct *oldisec = oldinode->i_security; 801 struct inode *newinode = newsb->s_root->d_inode; 802 struct inode_security_struct *newisec = newinode->i_security; 803 804 newisec->sid = oldisec->sid; 805 } 806 807 sb_finish_set_opts(newsb); 808 mutex_unlock(&newsbsec->lock); 809 } 810 811 static int selinux_parse_opts_str(char *options, 812 struct security_mnt_opts *opts) 813 { 814 char *p; 815 char *context = NULL, *defcontext = NULL; 816 char *fscontext = NULL, *rootcontext = NULL; 817 int rc, num_mnt_opts = 0; 818 819 opts->num_mnt_opts = 0; 820 821 /* Standard string-based options. */ 822 while ((p = strsep(&options, "|")) != NULL) { 823 int token; 824 substring_t args[MAX_OPT_ARGS]; 825 826 if (!*p) 827 continue; 828 829 token = match_token(p, tokens, args); 830 831 switch (token) { 832 case Opt_context: 833 if (context || defcontext) { 834 rc = -EINVAL; 835 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 836 goto out_err; 837 } 838 context = match_strdup(&args[0]); 839 if (!context) { 840 rc = -ENOMEM; 841 goto out_err; 842 } 843 break; 844 845 case Opt_fscontext: 846 if (fscontext) { 847 rc = -EINVAL; 848 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 849 goto out_err; 850 } 851 fscontext = match_strdup(&args[0]); 852 if (!fscontext) { 853 rc = -ENOMEM; 854 goto out_err; 855 } 856 break; 857 858 case Opt_rootcontext: 859 if (rootcontext) { 860 rc = -EINVAL; 861 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 862 goto out_err; 863 } 864 rootcontext = match_strdup(&args[0]); 865 if (!rootcontext) { 866 rc = -ENOMEM; 867 goto out_err; 868 } 869 break; 870 871 case Opt_defcontext: 872 if (context || defcontext) { 873 rc = -EINVAL; 874 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 875 goto out_err; 876 } 877 defcontext = match_strdup(&args[0]); 878 if (!defcontext) { 879 rc = -ENOMEM; 880 goto out_err; 881 } 882 break; 883 884 default: 885 rc = -EINVAL; 886 printk(KERN_WARNING "SELinux: unknown mount option\n"); 887 goto out_err; 888 889 } 890 } 891 892 rc = -ENOMEM; 893 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 894 if (!opts->mnt_opts) 895 goto out_err; 896 897 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 898 if (!opts->mnt_opts_flags) { 899 kfree(opts->mnt_opts); 900 goto out_err; 901 } 902 903 if (fscontext) { 904 opts->mnt_opts[num_mnt_opts] = fscontext; 905 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 906 } 907 if (context) { 908 opts->mnt_opts[num_mnt_opts] = context; 909 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 910 } 911 if (rootcontext) { 912 opts->mnt_opts[num_mnt_opts] = rootcontext; 913 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 914 } 915 if (defcontext) { 916 opts->mnt_opts[num_mnt_opts] = defcontext; 917 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 918 } 919 920 opts->num_mnt_opts = num_mnt_opts; 921 return 0; 922 923 out_err: 924 kfree(context); 925 kfree(defcontext); 926 kfree(fscontext); 927 kfree(rootcontext); 928 return rc; 929 } 930 /* 931 * string mount options parsing and call set the sbsec 932 */ 933 static int superblock_doinit(struct super_block *sb, void *data) 934 { 935 int rc = 0; 936 char *options = data; 937 struct security_mnt_opts opts; 938 939 security_init_mnt_opts(&opts); 940 941 if (!data) 942 goto out; 943 944 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 945 946 rc = selinux_parse_opts_str(options, &opts); 947 if (rc) 948 goto out_err; 949 950 out: 951 rc = selinux_set_mnt_opts(sb, &opts); 952 953 out_err: 954 security_free_mnt_opts(&opts); 955 return rc; 956 } 957 958 static inline u16 inode_mode_to_security_class(umode_t mode) 959 { 960 switch (mode & S_IFMT) { 961 case S_IFSOCK: 962 return SECCLASS_SOCK_FILE; 963 case S_IFLNK: 964 return SECCLASS_LNK_FILE; 965 case S_IFREG: 966 return SECCLASS_FILE; 967 case S_IFBLK: 968 return SECCLASS_BLK_FILE; 969 case S_IFDIR: 970 return SECCLASS_DIR; 971 case S_IFCHR: 972 return SECCLASS_CHR_FILE; 973 case S_IFIFO: 974 return SECCLASS_FIFO_FILE; 975 976 } 977 978 return SECCLASS_FILE; 979 } 980 981 static inline int default_protocol_stream(int protocol) 982 { 983 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 984 } 985 986 static inline int default_protocol_dgram(int protocol) 987 { 988 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 989 } 990 991 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 992 { 993 switch (family) { 994 case PF_UNIX: 995 switch (type) { 996 case SOCK_STREAM: 997 case SOCK_SEQPACKET: 998 return SECCLASS_UNIX_STREAM_SOCKET; 999 case SOCK_DGRAM: 1000 return SECCLASS_UNIX_DGRAM_SOCKET; 1001 } 1002 break; 1003 case PF_INET: 1004 case PF_INET6: 1005 switch (type) { 1006 case SOCK_STREAM: 1007 if (default_protocol_stream(protocol)) 1008 return SECCLASS_TCP_SOCKET; 1009 else 1010 return SECCLASS_RAWIP_SOCKET; 1011 case SOCK_DGRAM: 1012 if (default_protocol_dgram(protocol)) 1013 return SECCLASS_UDP_SOCKET; 1014 else 1015 return SECCLASS_RAWIP_SOCKET; 1016 case SOCK_DCCP: 1017 return SECCLASS_DCCP_SOCKET; 1018 default: 1019 return SECCLASS_RAWIP_SOCKET; 1020 } 1021 break; 1022 case PF_NETLINK: 1023 switch (protocol) { 1024 case NETLINK_ROUTE: 1025 return SECCLASS_NETLINK_ROUTE_SOCKET; 1026 case NETLINK_FIREWALL: 1027 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1028 case NETLINK_INET_DIAG: 1029 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1030 case NETLINK_NFLOG: 1031 return SECCLASS_NETLINK_NFLOG_SOCKET; 1032 case NETLINK_XFRM: 1033 return SECCLASS_NETLINK_XFRM_SOCKET; 1034 case NETLINK_SELINUX: 1035 return SECCLASS_NETLINK_SELINUX_SOCKET; 1036 case NETLINK_AUDIT: 1037 return SECCLASS_NETLINK_AUDIT_SOCKET; 1038 case NETLINK_IP6_FW: 1039 return SECCLASS_NETLINK_IP6FW_SOCKET; 1040 case NETLINK_DNRTMSG: 1041 return SECCLASS_NETLINK_DNRT_SOCKET; 1042 case NETLINK_KOBJECT_UEVENT: 1043 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1044 default: 1045 return SECCLASS_NETLINK_SOCKET; 1046 } 1047 case PF_PACKET: 1048 return SECCLASS_PACKET_SOCKET; 1049 case PF_KEY: 1050 return SECCLASS_KEY_SOCKET; 1051 case PF_APPLETALK: 1052 return SECCLASS_APPLETALK_SOCKET; 1053 } 1054 1055 return SECCLASS_SOCKET; 1056 } 1057 1058 #ifdef CONFIG_PROC_FS 1059 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1060 u16 tclass, 1061 u32 *sid) 1062 { 1063 int buflen, rc; 1064 char *buffer, *path, *end; 1065 1066 buffer = (char *)__get_free_page(GFP_KERNEL); 1067 if (!buffer) 1068 return -ENOMEM; 1069 1070 buflen = PAGE_SIZE; 1071 end = buffer+buflen; 1072 *--end = '\0'; 1073 buflen--; 1074 path = end-1; 1075 *path = '/'; 1076 while (de && de != de->parent) { 1077 buflen -= de->namelen + 1; 1078 if (buflen < 0) 1079 break; 1080 end -= de->namelen; 1081 memcpy(end, de->name, de->namelen); 1082 *--end = '/'; 1083 path = end; 1084 de = de->parent; 1085 } 1086 rc = security_genfs_sid("proc", path, tclass, sid); 1087 free_page((unsigned long)buffer); 1088 return rc; 1089 } 1090 #else 1091 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1092 u16 tclass, 1093 u32 *sid) 1094 { 1095 return -EINVAL; 1096 } 1097 #endif 1098 1099 /* The inode's security attributes must be initialized before first use. */ 1100 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1101 { 1102 struct superblock_security_struct *sbsec = NULL; 1103 struct inode_security_struct *isec = inode->i_security; 1104 u32 sid; 1105 struct dentry *dentry; 1106 #define INITCONTEXTLEN 255 1107 char *context = NULL; 1108 unsigned len = 0; 1109 int rc = 0; 1110 1111 if (isec->initialized) 1112 goto out; 1113 1114 mutex_lock(&isec->lock); 1115 if (isec->initialized) 1116 goto out_unlock; 1117 1118 sbsec = inode->i_sb->s_security; 1119 if (!sbsec->initialized) { 1120 /* Defer initialization until selinux_complete_init, 1121 after the initial policy is loaded and the security 1122 server is ready to handle calls. */ 1123 spin_lock(&sbsec->isec_lock); 1124 if (list_empty(&isec->list)) 1125 list_add(&isec->list, &sbsec->isec_head); 1126 spin_unlock(&sbsec->isec_lock); 1127 goto out_unlock; 1128 } 1129 1130 switch (sbsec->behavior) { 1131 case SECURITY_FS_USE_XATTR: 1132 if (!inode->i_op->getxattr) { 1133 isec->sid = sbsec->def_sid; 1134 break; 1135 } 1136 1137 /* Need a dentry, since the xattr API requires one. 1138 Life would be simpler if we could just pass the inode. */ 1139 if (opt_dentry) { 1140 /* Called from d_instantiate or d_splice_alias. */ 1141 dentry = dget(opt_dentry); 1142 } else { 1143 /* Called from selinux_complete_init, try to find a dentry. */ 1144 dentry = d_find_alias(inode); 1145 } 1146 if (!dentry) { 1147 printk(KERN_WARNING "SELinux: %s: no dentry for dev=%s " 1148 "ino=%ld\n", __func__, inode->i_sb->s_id, 1149 inode->i_ino); 1150 goto out_unlock; 1151 } 1152 1153 len = INITCONTEXTLEN; 1154 context = kmalloc(len, GFP_NOFS); 1155 if (!context) { 1156 rc = -ENOMEM; 1157 dput(dentry); 1158 goto out_unlock; 1159 } 1160 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1161 context, len); 1162 if (rc == -ERANGE) { 1163 /* Need a larger buffer. Query for the right size. */ 1164 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1165 NULL, 0); 1166 if (rc < 0) { 1167 dput(dentry); 1168 goto out_unlock; 1169 } 1170 kfree(context); 1171 len = rc; 1172 context = kmalloc(len, GFP_NOFS); 1173 if (!context) { 1174 rc = -ENOMEM; 1175 dput(dentry); 1176 goto out_unlock; 1177 } 1178 rc = inode->i_op->getxattr(dentry, 1179 XATTR_NAME_SELINUX, 1180 context, len); 1181 } 1182 dput(dentry); 1183 if (rc < 0) { 1184 if (rc != -ENODATA) { 1185 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1186 "%d for dev=%s ino=%ld\n", __func__, 1187 -rc, inode->i_sb->s_id, inode->i_ino); 1188 kfree(context); 1189 goto out_unlock; 1190 } 1191 /* Map ENODATA to the default file SID */ 1192 sid = sbsec->def_sid; 1193 rc = 0; 1194 } else { 1195 rc = security_context_to_sid_default(context, rc, &sid, 1196 sbsec->def_sid, 1197 GFP_NOFS); 1198 if (rc) { 1199 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1200 "returned %d for dev=%s ino=%ld\n", 1201 __func__, context, -rc, 1202 inode->i_sb->s_id, inode->i_ino); 1203 kfree(context); 1204 /* Leave with the unlabeled SID */ 1205 rc = 0; 1206 break; 1207 } 1208 } 1209 kfree(context); 1210 isec->sid = sid; 1211 break; 1212 case SECURITY_FS_USE_TASK: 1213 isec->sid = isec->task_sid; 1214 break; 1215 case SECURITY_FS_USE_TRANS: 1216 /* Default to the fs SID. */ 1217 isec->sid = sbsec->sid; 1218 1219 /* Try to obtain a transition SID. */ 1220 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1221 rc = security_transition_sid(isec->task_sid, 1222 sbsec->sid, 1223 isec->sclass, 1224 &sid); 1225 if (rc) 1226 goto out_unlock; 1227 isec->sid = sid; 1228 break; 1229 case SECURITY_FS_USE_MNTPOINT: 1230 isec->sid = sbsec->mntpoint_sid; 1231 break; 1232 default: 1233 /* Default to the fs superblock SID. */ 1234 isec->sid = sbsec->sid; 1235 1236 if (sbsec->proc) { 1237 struct proc_inode *proci = PROC_I(inode); 1238 if (proci->pde) { 1239 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1240 rc = selinux_proc_get_sid(proci->pde, 1241 isec->sclass, 1242 &sid); 1243 if (rc) 1244 goto out_unlock; 1245 isec->sid = sid; 1246 } 1247 } 1248 break; 1249 } 1250 1251 isec->initialized = 1; 1252 1253 out_unlock: 1254 mutex_unlock(&isec->lock); 1255 out: 1256 if (isec->sclass == SECCLASS_FILE) 1257 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1258 return rc; 1259 } 1260 1261 /* Convert a Linux signal to an access vector. */ 1262 static inline u32 signal_to_av(int sig) 1263 { 1264 u32 perm = 0; 1265 1266 switch (sig) { 1267 case SIGCHLD: 1268 /* Commonly granted from child to parent. */ 1269 perm = PROCESS__SIGCHLD; 1270 break; 1271 case SIGKILL: 1272 /* Cannot be caught or ignored */ 1273 perm = PROCESS__SIGKILL; 1274 break; 1275 case SIGSTOP: 1276 /* Cannot be caught or ignored */ 1277 perm = PROCESS__SIGSTOP; 1278 break; 1279 default: 1280 /* All other signals. */ 1281 perm = PROCESS__SIGNAL; 1282 break; 1283 } 1284 1285 return perm; 1286 } 1287 1288 /* Check permission betweeen a pair of tasks, e.g. signal checks, 1289 fork check, ptrace check, etc. */ 1290 static int task_has_perm(struct task_struct *tsk1, 1291 struct task_struct *tsk2, 1292 u32 perms) 1293 { 1294 struct task_security_struct *tsec1, *tsec2; 1295 1296 tsec1 = tsk1->security; 1297 tsec2 = tsk2->security; 1298 return avc_has_perm(tsec1->sid, tsec2->sid, 1299 SECCLASS_PROCESS, perms, NULL); 1300 } 1301 1302 #if CAP_LAST_CAP > 63 1303 #error Fix SELinux to handle capabilities > 63. 1304 #endif 1305 1306 /* Check whether a task is allowed to use a capability. */ 1307 static int task_has_capability(struct task_struct *tsk, 1308 int cap) 1309 { 1310 struct task_security_struct *tsec; 1311 struct avc_audit_data ad; 1312 u16 sclass; 1313 u32 av = CAP_TO_MASK(cap); 1314 1315 tsec = tsk->security; 1316 1317 AVC_AUDIT_DATA_INIT(&ad, CAP); 1318 ad.tsk = tsk; 1319 ad.u.cap = cap; 1320 1321 switch (CAP_TO_INDEX(cap)) { 1322 case 0: 1323 sclass = SECCLASS_CAPABILITY; 1324 break; 1325 case 1: 1326 sclass = SECCLASS_CAPABILITY2; 1327 break; 1328 default: 1329 printk(KERN_ERR 1330 "SELinux: out of range capability %d\n", cap); 1331 BUG(); 1332 } 1333 return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad); 1334 } 1335 1336 /* Check whether a task is allowed to use a system operation. */ 1337 static int task_has_system(struct task_struct *tsk, 1338 u32 perms) 1339 { 1340 struct task_security_struct *tsec; 1341 1342 tsec = tsk->security; 1343 1344 return avc_has_perm(tsec->sid, SECINITSID_KERNEL, 1345 SECCLASS_SYSTEM, perms, NULL); 1346 } 1347 1348 /* Check whether a task has a particular permission to an inode. 1349 The 'adp' parameter is optional and allows other audit 1350 data to be passed (e.g. the dentry). */ 1351 static int inode_has_perm(struct task_struct *tsk, 1352 struct inode *inode, 1353 u32 perms, 1354 struct avc_audit_data *adp) 1355 { 1356 struct task_security_struct *tsec; 1357 struct inode_security_struct *isec; 1358 struct avc_audit_data ad; 1359 1360 if (unlikely(IS_PRIVATE(inode))) 1361 return 0; 1362 1363 tsec = tsk->security; 1364 isec = inode->i_security; 1365 1366 if (!adp) { 1367 adp = &ad; 1368 AVC_AUDIT_DATA_INIT(&ad, FS); 1369 ad.u.fs.inode = inode; 1370 } 1371 1372 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp); 1373 } 1374 1375 /* Same as inode_has_perm, but pass explicit audit data containing 1376 the dentry to help the auditing code to more easily generate the 1377 pathname if needed. */ 1378 static inline int dentry_has_perm(struct task_struct *tsk, 1379 struct vfsmount *mnt, 1380 struct dentry *dentry, 1381 u32 av) 1382 { 1383 struct inode *inode = dentry->d_inode; 1384 struct avc_audit_data ad; 1385 AVC_AUDIT_DATA_INIT(&ad, FS); 1386 ad.u.fs.path.mnt = mnt; 1387 ad.u.fs.path.dentry = dentry; 1388 return inode_has_perm(tsk, inode, av, &ad); 1389 } 1390 1391 /* Check whether a task can use an open file descriptor to 1392 access an inode in a given way. Check access to the 1393 descriptor itself, and then use dentry_has_perm to 1394 check a particular permission to the file. 1395 Access to the descriptor is implicitly granted if it 1396 has the same SID as the process. If av is zero, then 1397 access to the file is not checked, e.g. for cases 1398 where only the descriptor is affected like seek. */ 1399 static int file_has_perm(struct task_struct *tsk, 1400 struct file *file, 1401 u32 av) 1402 { 1403 struct task_security_struct *tsec = tsk->security; 1404 struct file_security_struct *fsec = file->f_security; 1405 struct inode *inode = file->f_path.dentry->d_inode; 1406 struct avc_audit_data ad; 1407 int rc; 1408 1409 AVC_AUDIT_DATA_INIT(&ad, FS); 1410 ad.u.fs.path = file->f_path; 1411 1412 if (tsec->sid != fsec->sid) { 1413 rc = avc_has_perm(tsec->sid, fsec->sid, 1414 SECCLASS_FD, 1415 FD__USE, 1416 &ad); 1417 if (rc) 1418 return rc; 1419 } 1420 1421 /* av is zero if only checking access to the descriptor. */ 1422 if (av) 1423 return inode_has_perm(tsk, inode, av, &ad); 1424 1425 return 0; 1426 } 1427 1428 /* Check whether a task can create a file. */ 1429 static int may_create(struct inode *dir, 1430 struct dentry *dentry, 1431 u16 tclass) 1432 { 1433 struct task_security_struct *tsec; 1434 struct inode_security_struct *dsec; 1435 struct superblock_security_struct *sbsec; 1436 u32 newsid; 1437 struct avc_audit_data ad; 1438 int rc; 1439 1440 tsec = current->security; 1441 dsec = dir->i_security; 1442 sbsec = dir->i_sb->s_security; 1443 1444 AVC_AUDIT_DATA_INIT(&ad, FS); 1445 ad.u.fs.path.dentry = dentry; 1446 1447 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, 1448 DIR__ADD_NAME | DIR__SEARCH, 1449 &ad); 1450 if (rc) 1451 return rc; 1452 1453 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1454 newsid = tsec->create_sid; 1455 } else { 1456 rc = security_transition_sid(tsec->sid, dsec->sid, tclass, 1457 &newsid); 1458 if (rc) 1459 return rc; 1460 } 1461 1462 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad); 1463 if (rc) 1464 return rc; 1465 1466 return avc_has_perm(newsid, sbsec->sid, 1467 SECCLASS_FILESYSTEM, 1468 FILESYSTEM__ASSOCIATE, &ad); 1469 } 1470 1471 /* Check whether a task can create a key. */ 1472 static int may_create_key(u32 ksid, 1473 struct task_struct *ctx) 1474 { 1475 struct task_security_struct *tsec; 1476 1477 tsec = ctx->security; 1478 1479 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1480 } 1481 1482 #define MAY_LINK 0 1483 #define MAY_UNLINK 1 1484 #define MAY_RMDIR 2 1485 1486 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1487 static int may_link(struct inode *dir, 1488 struct dentry *dentry, 1489 int kind) 1490 1491 { 1492 struct task_security_struct *tsec; 1493 struct inode_security_struct *dsec, *isec; 1494 struct avc_audit_data ad; 1495 u32 av; 1496 int rc; 1497 1498 tsec = current->security; 1499 dsec = dir->i_security; 1500 isec = dentry->d_inode->i_security; 1501 1502 AVC_AUDIT_DATA_INIT(&ad, FS); 1503 ad.u.fs.path.dentry = dentry; 1504 1505 av = DIR__SEARCH; 1506 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1507 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad); 1508 if (rc) 1509 return rc; 1510 1511 switch (kind) { 1512 case MAY_LINK: 1513 av = FILE__LINK; 1514 break; 1515 case MAY_UNLINK: 1516 av = FILE__UNLINK; 1517 break; 1518 case MAY_RMDIR: 1519 av = DIR__RMDIR; 1520 break; 1521 default: 1522 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1523 __func__, kind); 1524 return 0; 1525 } 1526 1527 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad); 1528 return rc; 1529 } 1530 1531 static inline int may_rename(struct inode *old_dir, 1532 struct dentry *old_dentry, 1533 struct inode *new_dir, 1534 struct dentry *new_dentry) 1535 { 1536 struct task_security_struct *tsec; 1537 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1538 struct avc_audit_data ad; 1539 u32 av; 1540 int old_is_dir, new_is_dir; 1541 int rc; 1542 1543 tsec = current->security; 1544 old_dsec = old_dir->i_security; 1545 old_isec = old_dentry->d_inode->i_security; 1546 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1547 new_dsec = new_dir->i_security; 1548 1549 AVC_AUDIT_DATA_INIT(&ad, FS); 1550 1551 ad.u.fs.path.dentry = old_dentry; 1552 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR, 1553 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1554 if (rc) 1555 return rc; 1556 rc = avc_has_perm(tsec->sid, old_isec->sid, 1557 old_isec->sclass, FILE__RENAME, &ad); 1558 if (rc) 1559 return rc; 1560 if (old_is_dir && new_dir != old_dir) { 1561 rc = avc_has_perm(tsec->sid, old_isec->sid, 1562 old_isec->sclass, DIR__REPARENT, &ad); 1563 if (rc) 1564 return rc; 1565 } 1566 1567 ad.u.fs.path.dentry = new_dentry; 1568 av = DIR__ADD_NAME | DIR__SEARCH; 1569 if (new_dentry->d_inode) 1570 av |= DIR__REMOVE_NAME; 1571 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1572 if (rc) 1573 return rc; 1574 if (new_dentry->d_inode) { 1575 new_isec = new_dentry->d_inode->i_security; 1576 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1577 rc = avc_has_perm(tsec->sid, new_isec->sid, 1578 new_isec->sclass, 1579 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1580 if (rc) 1581 return rc; 1582 } 1583 1584 return 0; 1585 } 1586 1587 /* Check whether a task can perform a filesystem operation. */ 1588 static int superblock_has_perm(struct task_struct *tsk, 1589 struct super_block *sb, 1590 u32 perms, 1591 struct avc_audit_data *ad) 1592 { 1593 struct task_security_struct *tsec; 1594 struct superblock_security_struct *sbsec; 1595 1596 tsec = tsk->security; 1597 sbsec = sb->s_security; 1598 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 1599 perms, ad); 1600 } 1601 1602 /* Convert a Linux mode and permission mask to an access vector. */ 1603 static inline u32 file_mask_to_av(int mode, int mask) 1604 { 1605 u32 av = 0; 1606 1607 if ((mode & S_IFMT) != S_IFDIR) { 1608 if (mask & MAY_EXEC) 1609 av |= FILE__EXECUTE; 1610 if (mask & MAY_READ) 1611 av |= FILE__READ; 1612 1613 if (mask & MAY_APPEND) 1614 av |= FILE__APPEND; 1615 else if (mask & MAY_WRITE) 1616 av |= FILE__WRITE; 1617 1618 } else { 1619 if (mask & MAY_EXEC) 1620 av |= DIR__SEARCH; 1621 if (mask & MAY_WRITE) 1622 av |= DIR__WRITE; 1623 if (mask & MAY_READ) 1624 av |= DIR__READ; 1625 } 1626 1627 return av; 1628 } 1629 1630 /* 1631 * Convert a file mask to an access vector and include the correct open 1632 * open permission. 1633 */ 1634 static inline u32 open_file_mask_to_av(int mode, int mask) 1635 { 1636 u32 av = file_mask_to_av(mode, mask); 1637 1638 if (selinux_policycap_openperm) { 1639 /* 1640 * lnk files and socks do not really have an 'open' 1641 */ 1642 if (S_ISREG(mode)) 1643 av |= FILE__OPEN; 1644 else if (S_ISCHR(mode)) 1645 av |= CHR_FILE__OPEN; 1646 else if (S_ISBLK(mode)) 1647 av |= BLK_FILE__OPEN; 1648 else if (S_ISFIFO(mode)) 1649 av |= FIFO_FILE__OPEN; 1650 else if (S_ISDIR(mode)) 1651 av |= DIR__OPEN; 1652 else 1653 printk(KERN_ERR "SELinux: WARNING: inside %s with " 1654 "unknown mode:%x\n", __func__, mode); 1655 } 1656 return av; 1657 } 1658 1659 /* Convert a Linux file to an access vector. */ 1660 static inline u32 file_to_av(struct file *file) 1661 { 1662 u32 av = 0; 1663 1664 if (file->f_mode & FMODE_READ) 1665 av |= FILE__READ; 1666 if (file->f_mode & FMODE_WRITE) { 1667 if (file->f_flags & O_APPEND) 1668 av |= FILE__APPEND; 1669 else 1670 av |= FILE__WRITE; 1671 } 1672 if (!av) { 1673 /* 1674 * Special file opened with flags 3 for ioctl-only use. 1675 */ 1676 av = FILE__IOCTL; 1677 } 1678 1679 return av; 1680 } 1681 1682 /* Hook functions begin here. */ 1683 1684 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child) 1685 { 1686 int rc; 1687 1688 rc = secondary_ops->ptrace(parent, child); 1689 if (rc) 1690 return rc; 1691 1692 return task_has_perm(parent, child, PROCESS__PTRACE); 1693 } 1694 1695 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1696 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1697 { 1698 int error; 1699 1700 error = task_has_perm(current, target, PROCESS__GETCAP); 1701 if (error) 1702 return error; 1703 1704 return secondary_ops->capget(target, effective, inheritable, permitted); 1705 } 1706 1707 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective, 1708 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1709 { 1710 int error; 1711 1712 error = secondary_ops->capset_check(target, effective, inheritable, permitted); 1713 if (error) 1714 return error; 1715 1716 return task_has_perm(current, target, PROCESS__SETCAP); 1717 } 1718 1719 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective, 1720 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1721 { 1722 secondary_ops->capset_set(target, effective, inheritable, permitted); 1723 } 1724 1725 static int selinux_capable(struct task_struct *tsk, int cap) 1726 { 1727 int rc; 1728 1729 rc = secondary_ops->capable(tsk, cap); 1730 if (rc) 1731 return rc; 1732 1733 return task_has_capability(tsk, cap); 1734 } 1735 1736 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1737 { 1738 int buflen, rc; 1739 char *buffer, *path, *end; 1740 1741 rc = -ENOMEM; 1742 buffer = (char *)__get_free_page(GFP_KERNEL); 1743 if (!buffer) 1744 goto out; 1745 1746 buflen = PAGE_SIZE; 1747 end = buffer+buflen; 1748 *--end = '\0'; 1749 buflen--; 1750 path = end-1; 1751 *path = '/'; 1752 while (table) { 1753 const char *name = table->procname; 1754 size_t namelen = strlen(name); 1755 buflen -= namelen + 1; 1756 if (buflen < 0) 1757 goto out_free; 1758 end -= namelen; 1759 memcpy(end, name, namelen); 1760 *--end = '/'; 1761 path = end; 1762 table = table->parent; 1763 } 1764 buflen -= 4; 1765 if (buflen < 0) 1766 goto out_free; 1767 end -= 4; 1768 memcpy(end, "/sys", 4); 1769 path = end; 1770 rc = security_genfs_sid("proc", path, tclass, sid); 1771 out_free: 1772 free_page((unsigned long)buffer); 1773 out: 1774 return rc; 1775 } 1776 1777 static int selinux_sysctl(ctl_table *table, int op) 1778 { 1779 int error = 0; 1780 u32 av; 1781 struct task_security_struct *tsec; 1782 u32 tsid; 1783 int rc; 1784 1785 rc = secondary_ops->sysctl(table, op); 1786 if (rc) 1787 return rc; 1788 1789 tsec = current->security; 1790 1791 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1792 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1793 if (rc) { 1794 /* Default to the well-defined sysctl SID. */ 1795 tsid = SECINITSID_SYSCTL; 1796 } 1797 1798 /* The op values are "defined" in sysctl.c, thereby creating 1799 * a bad coupling between this module and sysctl.c */ 1800 if (op == 001) { 1801 error = avc_has_perm(tsec->sid, tsid, 1802 SECCLASS_DIR, DIR__SEARCH, NULL); 1803 } else { 1804 av = 0; 1805 if (op & 004) 1806 av |= FILE__READ; 1807 if (op & 002) 1808 av |= FILE__WRITE; 1809 if (av) 1810 error = avc_has_perm(tsec->sid, tsid, 1811 SECCLASS_FILE, av, NULL); 1812 } 1813 1814 return error; 1815 } 1816 1817 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1818 { 1819 int rc = 0; 1820 1821 if (!sb) 1822 return 0; 1823 1824 switch (cmds) { 1825 case Q_SYNC: 1826 case Q_QUOTAON: 1827 case Q_QUOTAOFF: 1828 case Q_SETINFO: 1829 case Q_SETQUOTA: 1830 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD, 1831 NULL); 1832 break; 1833 case Q_GETFMT: 1834 case Q_GETINFO: 1835 case Q_GETQUOTA: 1836 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET, 1837 NULL); 1838 break; 1839 default: 1840 rc = 0; /* let the kernel handle invalid cmds */ 1841 break; 1842 } 1843 return rc; 1844 } 1845 1846 static int selinux_quota_on(struct dentry *dentry) 1847 { 1848 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON); 1849 } 1850 1851 static int selinux_syslog(int type) 1852 { 1853 int rc; 1854 1855 rc = secondary_ops->syslog(type); 1856 if (rc) 1857 return rc; 1858 1859 switch (type) { 1860 case 3: /* Read last kernel messages */ 1861 case 10: /* Return size of the log buffer */ 1862 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1863 break; 1864 case 6: /* Disable logging to console */ 1865 case 7: /* Enable logging to console */ 1866 case 8: /* Set level of messages printed to console */ 1867 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1868 break; 1869 case 0: /* Close log */ 1870 case 1: /* Open log */ 1871 case 2: /* Read from log */ 1872 case 4: /* Read/clear last kernel messages */ 1873 case 5: /* Clear ring buffer */ 1874 default: 1875 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1876 break; 1877 } 1878 return rc; 1879 } 1880 1881 /* 1882 * Check that a process has enough memory to allocate a new virtual 1883 * mapping. 0 means there is enough memory for the allocation to 1884 * succeed and -ENOMEM implies there is not. 1885 * 1886 * Note that secondary_ops->capable and task_has_perm_noaudit return 0 1887 * if the capability is granted, but __vm_enough_memory requires 1 if 1888 * the capability is granted. 1889 * 1890 * Do not audit the selinux permission check, as this is applied to all 1891 * processes that allocate mappings. 1892 */ 1893 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 1894 { 1895 int rc, cap_sys_admin = 0; 1896 struct task_security_struct *tsec = current->security; 1897 1898 rc = secondary_ops->capable(current, CAP_SYS_ADMIN); 1899 if (rc == 0) 1900 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, 1901 SECCLASS_CAPABILITY, 1902 CAP_TO_MASK(CAP_SYS_ADMIN), 1903 0, 1904 NULL); 1905 1906 if (rc == 0) 1907 cap_sys_admin = 1; 1908 1909 return __vm_enough_memory(mm, pages, cap_sys_admin); 1910 } 1911 1912 /** 1913 * task_tracer_task - return the task that is tracing the given task 1914 * @task: task to consider 1915 * 1916 * Returns NULL if noone is tracing @task, or the &struct task_struct 1917 * pointer to its tracer. 1918 * 1919 * Must be called under rcu_read_lock(). 1920 */ 1921 static struct task_struct *task_tracer_task(struct task_struct *task) 1922 { 1923 if (task->ptrace & PT_PTRACED) 1924 return rcu_dereference(task->parent); 1925 return NULL; 1926 } 1927 1928 /* binprm security operations */ 1929 1930 static int selinux_bprm_alloc_security(struct linux_binprm *bprm) 1931 { 1932 struct bprm_security_struct *bsec; 1933 1934 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL); 1935 if (!bsec) 1936 return -ENOMEM; 1937 1938 bsec->sid = SECINITSID_UNLABELED; 1939 bsec->set = 0; 1940 1941 bprm->security = bsec; 1942 return 0; 1943 } 1944 1945 static int selinux_bprm_set_security(struct linux_binprm *bprm) 1946 { 1947 struct task_security_struct *tsec; 1948 struct inode *inode = bprm->file->f_path.dentry->d_inode; 1949 struct inode_security_struct *isec; 1950 struct bprm_security_struct *bsec; 1951 u32 newsid; 1952 struct avc_audit_data ad; 1953 int rc; 1954 1955 rc = secondary_ops->bprm_set_security(bprm); 1956 if (rc) 1957 return rc; 1958 1959 bsec = bprm->security; 1960 1961 if (bsec->set) 1962 return 0; 1963 1964 tsec = current->security; 1965 isec = inode->i_security; 1966 1967 /* Default to the current task SID. */ 1968 bsec->sid = tsec->sid; 1969 1970 /* Reset fs, key, and sock SIDs on execve. */ 1971 tsec->create_sid = 0; 1972 tsec->keycreate_sid = 0; 1973 tsec->sockcreate_sid = 0; 1974 1975 if (tsec->exec_sid) { 1976 newsid = tsec->exec_sid; 1977 /* Reset exec SID on execve. */ 1978 tsec->exec_sid = 0; 1979 } else { 1980 /* Check for a default transition on this program. */ 1981 rc = security_transition_sid(tsec->sid, isec->sid, 1982 SECCLASS_PROCESS, &newsid); 1983 if (rc) 1984 return rc; 1985 } 1986 1987 AVC_AUDIT_DATA_INIT(&ad, FS); 1988 ad.u.fs.path = bprm->file->f_path; 1989 1990 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 1991 newsid = tsec->sid; 1992 1993 if (tsec->sid == newsid) { 1994 rc = avc_has_perm(tsec->sid, isec->sid, 1995 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 1996 if (rc) 1997 return rc; 1998 } else { 1999 /* Check permissions for the transition. */ 2000 rc = avc_has_perm(tsec->sid, newsid, 2001 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2002 if (rc) 2003 return rc; 2004 2005 rc = avc_has_perm(newsid, isec->sid, 2006 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2007 if (rc) 2008 return rc; 2009 2010 /* Clear any possibly unsafe personality bits on exec: */ 2011 current->personality &= ~PER_CLEAR_ON_SETID; 2012 2013 /* Set the security field to the new SID. */ 2014 bsec->sid = newsid; 2015 } 2016 2017 bsec->set = 1; 2018 return 0; 2019 } 2020 2021 static int selinux_bprm_check_security(struct linux_binprm *bprm) 2022 { 2023 return secondary_ops->bprm_check_security(bprm); 2024 } 2025 2026 2027 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2028 { 2029 struct task_security_struct *tsec = current->security; 2030 int atsecure = 0; 2031 2032 if (tsec->osid != tsec->sid) { 2033 /* Enable secure mode for SIDs transitions unless 2034 the noatsecure permission is granted between 2035 the two SIDs, i.e. ahp returns 0. */ 2036 atsecure = avc_has_perm(tsec->osid, tsec->sid, 2037 SECCLASS_PROCESS, 2038 PROCESS__NOATSECURE, NULL); 2039 } 2040 2041 return (atsecure || secondary_ops->bprm_secureexec(bprm)); 2042 } 2043 2044 static void selinux_bprm_free_security(struct linux_binprm *bprm) 2045 { 2046 kfree(bprm->security); 2047 bprm->security = NULL; 2048 } 2049 2050 extern struct vfsmount *selinuxfs_mount; 2051 extern struct dentry *selinux_null; 2052 2053 /* Derived from fs/exec.c:flush_old_files. */ 2054 static inline void flush_unauthorized_files(struct files_struct *files) 2055 { 2056 struct avc_audit_data ad; 2057 struct file *file, *devnull = NULL; 2058 struct tty_struct *tty; 2059 struct fdtable *fdt; 2060 long j = -1; 2061 int drop_tty = 0; 2062 2063 mutex_lock(&tty_mutex); 2064 tty = get_current_tty(); 2065 if (tty) { 2066 file_list_lock(); 2067 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list); 2068 if (file) { 2069 /* Revalidate access to controlling tty. 2070 Use inode_has_perm on the tty inode directly rather 2071 than using file_has_perm, as this particular open 2072 file may belong to another process and we are only 2073 interested in the inode-based check here. */ 2074 struct inode *inode = file->f_path.dentry->d_inode; 2075 if (inode_has_perm(current, inode, 2076 FILE__READ | FILE__WRITE, NULL)) { 2077 drop_tty = 1; 2078 } 2079 } 2080 file_list_unlock(); 2081 } 2082 mutex_unlock(&tty_mutex); 2083 /* Reset controlling tty. */ 2084 if (drop_tty) 2085 no_tty(); 2086 2087 /* Revalidate access to inherited open files. */ 2088 2089 AVC_AUDIT_DATA_INIT(&ad, FS); 2090 2091 spin_lock(&files->file_lock); 2092 for (;;) { 2093 unsigned long set, i; 2094 int fd; 2095 2096 j++; 2097 i = j * __NFDBITS; 2098 fdt = files_fdtable(files); 2099 if (i >= fdt->max_fds) 2100 break; 2101 set = fdt->open_fds->fds_bits[j]; 2102 if (!set) 2103 continue; 2104 spin_unlock(&files->file_lock); 2105 for ( ; set ; i++, set >>= 1) { 2106 if (set & 1) { 2107 file = fget(i); 2108 if (!file) 2109 continue; 2110 if (file_has_perm(current, 2111 file, 2112 file_to_av(file))) { 2113 sys_close(i); 2114 fd = get_unused_fd(); 2115 if (fd != i) { 2116 if (fd >= 0) 2117 put_unused_fd(fd); 2118 fput(file); 2119 continue; 2120 } 2121 if (devnull) { 2122 get_file(devnull); 2123 } else { 2124 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR); 2125 if (IS_ERR(devnull)) { 2126 devnull = NULL; 2127 put_unused_fd(fd); 2128 fput(file); 2129 continue; 2130 } 2131 } 2132 fd_install(fd, devnull); 2133 } 2134 fput(file); 2135 } 2136 } 2137 spin_lock(&files->file_lock); 2138 2139 } 2140 spin_unlock(&files->file_lock); 2141 } 2142 2143 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 2144 { 2145 struct task_security_struct *tsec; 2146 struct bprm_security_struct *bsec; 2147 u32 sid; 2148 int rc; 2149 2150 secondary_ops->bprm_apply_creds(bprm, unsafe); 2151 2152 tsec = current->security; 2153 2154 bsec = bprm->security; 2155 sid = bsec->sid; 2156 2157 tsec->osid = tsec->sid; 2158 bsec->unsafe = 0; 2159 if (tsec->sid != sid) { 2160 /* Check for shared state. If not ok, leave SID 2161 unchanged and kill. */ 2162 if (unsafe & LSM_UNSAFE_SHARE) { 2163 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 2164 PROCESS__SHARE, NULL); 2165 if (rc) { 2166 bsec->unsafe = 1; 2167 return; 2168 } 2169 } 2170 2171 /* Check for ptracing, and update the task SID if ok. 2172 Otherwise, leave SID unchanged and kill. */ 2173 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2174 struct task_struct *tracer; 2175 struct task_security_struct *sec; 2176 u32 ptsid = 0; 2177 2178 rcu_read_lock(); 2179 tracer = task_tracer_task(current); 2180 if (likely(tracer != NULL)) { 2181 sec = tracer->security; 2182 ptsid = sec->sid; 2183 } 2184 rcu_read_unlock(); 2185 2186 if (ptsid != 0) { 2187 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 2188 PROCESS__PTRACE, NULL); 2189 if (rc) { 2190 bsec->unsafe = 1; 2191 return; 2192 } 2193 } 2194 } 2195 tsec->sid = sid; 2196 } 2197 } 2198 2199 /* 2200 * called after apply_creds without the task lock held 2201 */ 2202 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm) 2203 { 2204 struct task_security_struct *tsec; 2205 struct rlimit *rlim, *initrlim; 2206 struct itimerval itimer; 2207 struct bprm_security_struct *bsec; 2208 int rc, i; 2209 2210 tsec = current->security; 2211 bsec = bprm->security; 2212 2213 if (bsec->unsafe) { 2214 force_sig_specific(SIGKILL, current); 2215 return; 2216 } 2217 if (tsec->osid == tsec->sid) 2218 return; 2219 2220 /* Close files for which the new task SID is not authorized. */ 2221 flush_unauthorized_files(current->files); 2222 2223 /* Check whether the new SID can inherit signal state 2224 from the old SID. If not, clear itimers to avoid 2225 subsequent signal generation and flush and unblock 2226 signals. This must occur _after_ the task SID has 2227 been updated so that any kill done after the flush 2228 will be checked against the new SID. */ 2229 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2230 PROCESS__SIGINH, NULL); 2231 if (rc) { 2232 memset(&itimer, 0, sizeof itimer); 2233 for (i = 0; i < 3; i++) 2234 do_setitimer(i, &itimer, NULL); 2235 flush_signals(current); 2236 spin_lock_irq(¤t->sighand->siglock); 2237 flush_signal_handlers(current, 1); 2238 sigemptyset(¤t->blocked); 2239 recalc_sigpending(); 2240 spin_unlock_irq(¤t->sighand->siglock); 2241 } 2242 2243 /* Always clear parent death signal on SID transitions. */ 2244 current->pdeath_signal = 0; 2245 2246 /* Check whether the new SID can inherit resource limits 2247 from the old SID. If not, reset all soft limits to 2248 the lower of the current task's hard limit and the init 2249 task's soft limit. Note that the setting of hard limits 2250 (even to lower them) can be controlled by the setrlimit 2251 check. The inclusion of the init task's soft limit into 2252 the computation is to avoid resetting soft limits higher 2253 than the default soft limit for cases where the default 2254 is lower than the hard limit, e.g. RLIMIT_CORE or 2255 RLIMIT_STACK.*/ 2256 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2257 PROCESS__RLIMITINH, NULL); 2258 if (rc) { 2259 for (i = 0; i < RLIM_NLIMITS; i++) { 2260 rlim = current->signal->rlim + i; 2261 initrlim = init_task.signal->rlim+i; 2262 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2263 } 2264 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 2265 /* 2266 * This will cause RLIMIT_CPU calculations 2267 * to be refigured. 2268 */ 2269 current->it_prof_expires = jiffies_to_cputime(1); 2270 } 2271 } 2272 2273 /* Wake up the parent if it is waiting so that it can 2274 recheck wait permission to the new task SID. */ 2275 wake_up_interruptible(¤t->parent->signal->wait_chldexit); 2276 } 2277 2278 /* superblock security operations */ 2279 2280 static int selinux_sb_alloc_security(struct super_block *sb) 2281 { 2282 return superblock_alloc_security(sb); 2283 } 2284 2285 static void selinux_sb_free_security(struct super_block *sb) 2286 { 2287 superblock_free_security(sb); 2288 } 2289 2290 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2291 { 2292 if (plen > olen) 2293 return 0; 2294 2295 return !memcmp(prefix, option, plen); 2296 } 2297 2298 static inline int selinux_option(char *option, int len) 2299 { 2300 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2301 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2302 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2303 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len)); 2304 } 2305 2306 static inline void take_option(char **to, char *from, int *first, int len) 2307 { 2308 if (!*first) { 2309 **to = ','; 2310 *to += 1; 2311 } else 2312 *first = 0; 2313 memcpy(*to, from, len); 2314 *to += len; 2315 } 2316 2317 static inline void take_selinux_option(char **to, char *from, int *first, 2318 int len) 2319 { 2320 int current_size = 0; 2321 2322 if (!*first) { 2323 **to = '|'; 2324 *to += 1; 2325 } else 2326 *first = 0; 2327 2328 while (current_size < len) { 2329 if (*from != '"') { 2330 **to = *from; 2331 *to += 1; 2332 } 2333 from += 1; 2334 current_size += 1; 2335 } 2336 } 2337 2338 static int selinux_sb_copy_data(char *orig, char *copy) 2339 { 2340 int fnosec, fsec, rc = 0; 2341 char *in_save, *in_curr, *in_end; 2342 char *sec_curr, *nosec_save, *nosec; 2343 int open_quote = 0; 2344 2345 in_curr = orig; 2346 sec_curr = copy; 2347 2348 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2349 if (!nosec) { 2350 rc = -ENOMEM; 2351 goto out; 2352 } 2353 2354 nosec_save = nosec; 2355 fnosec = fsec = 1; 2356 in_save = in_end = orig; 2357 2358 do { 2359 if (*in_end == '"') 2360 open_quote = !open_quote; 2361 if ((*in_end == ',' && open_quote == 0) || 2362 *in_end == '\0') { 2363 int len = in_end - in_curr; 2364 2365 if (selinux_option(in_curr, len)) 2366 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2367 else 2368 take_option(&nosec, in_curr, &fnosec, len); 2369 2370 in_curr = in_end + 1; 2371 } 2372 } while (*in_end++); 2373 2374 strcpy(in_save, nosec_save); 2375 free_page((unsigned long)nosec_save); 2376 out: 2377 return rc; 2378 } 2379 2380 static int selinux_sb_kern_mount(struct super_block *sb, void *data) 2381 { 2382 struct avc_audit_data ad; 2383 int rc; 2384 2385 rc = superblock_doinit(sb, data); 2386 if (rc) 2387 return rc; 2388 2389 AVC_AUDIT_DATA_INIT(&ad, FS); 2390 ad.u.fs.path.dentry = sb->s_root; 2391 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad); 2392 } 2393 2394 static int selinux_sb_statfs(struct dentry *dentry) 2395 { 2396 struct avc_audit_data ad; 2397 2398 AVC_AUDIT_DATA_INIT(&ad, FS); 2399 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2400 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2401 } 2402 2403 static int selinux_mount(char *dev_name, 2404 struct path *path, 2405 char *type, 2406 unsigned long flags, 2407 void *data) 2408 { 2409 int rc; 2410 2411 rc = secondary_ops->sb_mount(dev_name, path, type, flags, data); 2412 if (rc) 2413 return rc; 2414 2415 if (flags & MS_REMOUNT) 2416 return superblock_has_perm(current, path->mnt->mnt_sb, 2417 FILESYSTEM__REMOUNT, NULL); 2418 else 2419 return dentry_has_perm(current, path->mnt, path->dentry, 2420 FILE__MOUNTON); 2421 } 2422 2423 static int selinux_umount(struct vfsmount *mnt, int flags) 2424 { 2425 int rc; 2426 2427 rc = secondary_ops->sb_umount(mnt, flags); 2428 if (rc) 2429 return rc; 2430 2431 return superblock_has_perm(current, mnt->mnt_sb, 2432 FILESYSTEM__UNMOUNT, NULL); 2433 } 2434 2435 /* inode security operations */ 2436 2437 static int selinux_inode_alloc_security(struct inode *inode) 2438 { 2439 return inode_alloc_security(inode); 2440 } 2441 2442 static void selinux_inode_free_security(struct inode *inode) 2443 { 2444 inode_free_security(inode); 2445 } 2446 2447 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2448 char **name, void **value, 2449 size_t *len) 2450 { 2451 struct task_security_struct *tsec; 2452 struct inode_security_struct *dsec; 2453 struct superblock_security_struct *sbsec; 2454 u32 newsid, clen; 2455 int rc; 2456 char *namep = NULL, *context; 2457 2458 tsec = current->security; 2459 dsec = dir->i_security; 2460 sbsec = dir->i_sb->s_security; 2461 2462 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2463 newsid = tsec->create_sid; 2464 } else { 2465 rc = security_transition_sid(tsec->sid, dsec->sid, 2466 inode_mode_to_security_class(inode->i_mode), 2467 &newsid); 2468 if (rc) { 2469 printk(KERN_WARNING "%s: " 2470 "security_transition_sid failed, rc=%d (dev=%s " 2471 "ino=%ld)\n", 2472 __func__, 2473 -rc, inode->i_sb->s_id, inode->i_ino); 2474 return rc; 2475 } 2476 } 2477 2478 /* Possibly defer initialization to selinux_complete_init. */ 2479 if (sbsec->initialized) { 2480 struct inode_security_struct *isec = inode->i_security; 2481 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2482 isec->sid = newsid; 2483 isec->initialized = 1; 2484 } 2485 2486 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2487 return -EOPNOTSUPP; 2488 2489 if (name) { 2490 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2491 if (!namep) 2492 return -ENOMEM; 2493 *name = namep; 2494 } 2495 2496 if (value && len) { 2497 rc = security_sid_to_context(newsid, &context, &clen); 2498 if (rc) { 2499 kfree(namep); 2500 return rc; 2501 } 2502 *value = context; 2503 *len = clen; 2504 } 2505 2506 return 0; 2507 } 2508 2509 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2510 { 2511 return may_create(dir, dentry, SECCLASS_FILE); 2512 } 2513 2514 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2515 { 2516 int rc; 2517 2518 rc = secondary_ops->inode_link(old_dentry, dir, new_dentry); 2519 if (rc) 2520 return rc; 2521 return may_link(dir, old_dentry, MAY_LINK); 2522 } 2523 2524 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2525 { 2526 int rc; 2527 2528 rc = secondary_ops->inode_unlink(dir, dentry); 2529 if (rc) 2530 return rc; 2531 return may_link(dir, dentry, MAY_UNLINK); 2532 } 2533 2534 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2535 { 2536 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2537 } 2538 2539 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2540 { 2541 return may_create(dir, dentry, SECCLASS_DIR); 2542 } 2543 2544 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2545 { 2546 return may_link(dir, dentry, MAY_RMDIR); 2547 } 2548 2549 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2550 { 2551 int rc; 2552 2553 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev); 2554 if (rc) 2555 return rc; 2556 2557 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2558 } 2559 2560 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2561 struct inode *new_inode, struct dentry *new_dentry) 2562 { 2563 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2564 } 2565 2566 static int selinux_inode_readlink(struct dentry *dentry) 2567 { 2568 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2569 } 2570 2571 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2572 { 2573 int rc; 2574 2575 rc = secondary_ops->inode_follow_link(dentry, nameidata); 2576 if (rc) 2577 return rc; 2578 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2579 } 2580 2581 static int selinux_inode_permission(struct inode *inode, int mask, 2582 struct nameidata *nd) 2583 { 2584 int rc; 2585 2586 rc = secondary_ops->inode_permission(inode, mask, nd); 2587 if (rc) 2588 return rc; 2589 2590 if (!mask) { 2591 /* No permission to check. Existence test. */ 2592 return 0; 2593 } 2594 2595 return inode_has_perm(current, inode, 2596 open_file_mask_to_av(inode->i_mode, mask), NULL); 2597 } 2598 2599 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2600 { 2601 int rc; 2602 2603 rc = secondary_ops->inode_setattr(dentry, iattr); 2604 if (rc) 2605 return rc; 2606 2607 if (iattr->ia_valid & ATTR_FORCE) 2608 return 0; 2609 2610 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2611 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2612 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2613 2614 return dentry_has_perm(current, NULL, dentry, FILE__WRITE); 2615 } 2616 2617 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2618 { 2619 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR); 2620 } 2621 2622 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2623 { 2624 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2625 sizeof XATTR_SECURITY_PREFIX - 1)) { 2626 if (!strcmp(name, XATTR_NAME_CAPS)) { 2627 if (!capable(CAP_SETFCAP)) 2628 return -EPERM; 2629 } else if (!capable(CAP_SYS_ADMIN)) { 2630 /* A different attribute in the security namespace. 2631 Restrict to administrator. */ 2632 return -EPERM; 2633 } 2634 } 2635 2636 /* Not an attribute we recognize, so just check the 2637 ordinary setattr permission. */ 2638 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2639 } 2640 2641 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2642 const void *value, size_t size, int flags) 2643 { 2644 struct task_security_struct *tsec = current->security; 2645 struct inode *inode = dentry->d_inode; 2646 struct inode_security_struct *isec = inode->i_security; 2647 struct superblock_security_struct *sbsec; 2648 struct avc_audit_data ad; 2649 u32 newsid; 2650 int rc = 0; 2651 2652 if (strcmp(name, XATTR_NAME_SELINUX)) 2653 return selinux_inode_setotherxattr(dentry, name); 2654 2655 sbsec = inode->i_sb->s_security; 2656 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2657 return -EOPNOTSUPP; 2658 2659 if (!is_owner_or_cap(inode)) 2660 return -EPERM; 2661 2662 AVC_AUDIT_DATA_INIT(&ad, FS); 2663 ad.u.fs.path.dentry = dentry; 2664 2665 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, 2666 FILE__RELABELFROM, &ad); 2667 if (rc) 2668 return rc; 2669 2670 rc = security_context_to_sid(value, size, &newsid); 2671 if (rc) 2672 return rc; 2673 2674 rc = avc_has_perm(tsec->sid, newsid, isec->sclass, 2675 FILE__RELABELTO, &ad); 2676 if (rc) 2677 return rc; 2678 2679 rc = security_validate_transition(isec->sid, newsid, tsec->sid, 2680 isec->sclass); 2681 if (rc) 2682 return rc; 2683 2684 return avc_has_perm(newsid, 2685 sbsec->sid, 2686 SECCLASS_FILESYSTEM, 2687 FILESYSTEM__ASSOCIATE, 2688 &ad); 2689 } 2690 2691 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2692 const void *value, size_t size, 2693 int flags) 2694 { 2695 struct inode *inode = dentry->d_inode; 2696 struct inode_security_struct *isec = inode->i_security; 2697 u32 newsid; 2698 int rc; 2699 2700 if (strcmp(name, XATTR_NAME_SELINUX)) { 2701 /* Not an attribute we recognize, so nothing to do. */ 2702 return; 2703 } 2704 2705 rc = security_context_to_sid(value, size, &newsid); 2706 if (rc) { 2707 printk(KERN_WARNING "%s: unable to obtain SID for context " 2708 "%s, rc=%d\n", __func__, (char *)value, -rc); 2709 return; 2710 } 2711 2712 isec->sid = newsid; 2713 return; 2714 } 2715 2716 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2717 { 2718 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2719 } 2720 2721 static int selinux_inode_listxattr(struct dentry *dentry) 2722 { 2723 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2724 } 2725 2726 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2727 { 2728 if (strcmp(name, XATTR_NAME_SELINUX)) 2729 return selinux_inode_setotherxattr(dentry, name); 2730 2731 /* No one is allowed to remove a SELinux security label. 2732 You can change the label, but all data must be labeled. */ 2733 return -EACCES; 2734 } 2735 2736 /* 2737 * Copy the in-core inode security context value to the user. If the 2738 * getxattr() prior to this succeeded, check to see if we need to 2739 * canonicalize the value to be finally returned to the user. 2740 * 2741 * Permission check is handled by selinux_inode_getxattr hook. 2742 */ 2743 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2744 { 2745 u32 size; 2746 int error; 2747 char *context = NULL; 2748 struct inode_security_struct *isec = inode->i_security; 2749 2750 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2751 return -EOPNOTSUPP; 2752 2753 error = security_sid_to_context(isec->sid, &context, &size); 2754 if (error) 2755 return error; 2756 error = size; 2757 if (alloc) { 2758 *buffer = context; 2759 goto out_nofree; 2760 } 2761 kfree(context); 2762 out_nofree: 2763 return error; 2764 } 2765 2766 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2767 const void *value, size_t size, int flags) 2768 { 2769 struct inode_security_struct *isec = inode->i_security; 2770 u32 newsid; 2771 int rc; 2772 2773 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2774 return -EOPNOTSUPP; 2775 2776 if (!value || !size) 2777 return -EACCES; 2778 2779 rc = security_context_to_sid((void *)value, size, &newsid); 2780 if (rc) 2781 return rc; 2782 2783 isec->sid = newsid; 2784 return 0; 2785 } 2786 2787 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2788 { 2789 const int len = sizeof(XATTR_NAME_SELINUX); 2790 if (buffer && len <= buffer_size) 2791 memcpy(buffer, XATTR_NAME_SELINUX, len); 2792 return len; 2793 } 2794 2795 static int selinux_inode_need_killpriv(struct dentry *dentry) 2796 { 2797 return secondary_ops->inode_need_killpriv(dentry); 2798 } 2799 2800 static int selinux_inode_killpriv(struct dentry *dentry) 2801 { 2802 return secondary_ops->inode_killpriv(dentry); 2803 } 2804 2805 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2806 { 2807 struct inode_security_struct *isec = inode->i_security; 2808 *secid = isec->sid; 2809 } 2810 2811 /* file security operations */ 2812 2813 static int selinux_revalidate_file_permission(struct file *file, int mask) 2814 { 2815 int rc; 2816 struct inode *inode = file->f_path.dentry->d_inode; 2817 2818 if (!mask) { 2819 /* No permission to check. Existence test. */ 2820 return 0; 2821 } 2822 2823 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2824 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2825 mask |= MAY_APPEND; 2826 2827 rc = file_has_perm(current, file, 2828 file_mask_to_av(inode->i_mode, mask)); 2829 if (rc) 2830 return rc; 2831 2832 return selinux_netlbl_inode_permission(inode, mask); 2833 } 2834 2835 static int selinux_file_permission(struct file *file, int mask) 2836 { 2837 struct inode *inode = file->f_path.dentry->d_inode; 2838 struct task_security_struct *tsec = current->security; 2839 struct file_security_struct *fsec = file->f_security; 2840 struct inode_security_struct *isec = inode->i_security; 2841 2842 if (!mask) { 2843 /* No permission to check. Existence test. */ 2844 return 0; 2845 } 2846 2847 if (tsec->sid == fsec->sid && fsec->isid == isec->sid 2848 && fsec->pseqno == avc_policy_seqno()) 2849 return selinux_netlbl_inode_permission(inode, mask); 2850 2851 return selinux_revalidate_file_permission(file, mask); 2852 } 2853 2854 static int selinux_file_alloc_security(struct file *file) 2855 { 2856 return file_alloc_security(file); 2857 } 2858 2859 static void selinux_file_free_security(struct file *file) 2860 { 2861 file_free_security(file); 2862 } 2863 2864 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2865 unsigned long arg) 2866 { 2867 int error = 0; 2868 2869 switch (cmd) { 2870 case FIONREAD: 2871 /* fall through */ 2872 case FIBMAP: 2873 /* fall through */ 2874 case FIGETBSZ: 2875 /* fall through */ 2876 case EXT2_IOC_GETFLAGS: 2877 /* fall through */ 2878 case EXT2_IOC_GETVERSION: 2879 error = file_has_perm(current, file, FILE__GETATTR); 2880 break; 2881 2882 case EXT2_IOC_SETFLAGS: 2883 /* fall through */ 2884 case EXT2_IOC_SETVERSION: 2885 error = file_has_perm(current, file, FILE__SETATTR); 2886 break; 2887 2888 /* sys_ioctl() checks */ 2889 case FIONBIO: 2890 /* fall through */ 2891 case FIOASYNC: 2892 error = file_has_perm(current, file, 0); 2893 break; 2894 2895 case KDSKBENT: 2896 case KDSKBSENT: 2897 error = task_has_capability(current, CAP_SYS_TTY_CONFIG); 2898 break; 2899 2900 /* default case assumes that the command will go 2901 * to the file's ioctl() function. 2902 */ 2903 default: 2904 error = file_has_perm(current, file, FILE__IOCTL); 2905 } 2906 return error; 2907 } 2908 2909 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2910 { 2911 #ifndef CONFIG_PPC32 2912 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2913 /* 2914 * We are making executable an anonymous mapping or a 2915 * private file mapping that will also be writable. 2916 * This has an additional check. 2917 */ 2918 int rc = task_has_perm(current, current, PROCESS__EXECMEM); 2919 if (rc) 2920 return rc; 2921 } 2922 #endif 2923 2924 if (file) { 2925 /* read access is always possible with a mapping */ 2926 u32 av = FILE__READ; 2927 2928 /* write access only matters if the mapping is shared */ 2929 if (shared && (prot & PROT_WRITE)) 2930 av |= FILE__WRITE; 2931 2932 if (prot & PROT_EXEC) 2933 av |= FILE__EXECUTE; 2934 2935 return file_has_perm(current, file, av); 2936 } 2937 return 0; 2938 } 2939 2940 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2941 unsigned long prot, unsigned long flags, 2942 unsigned long addr, unsigned long addr_only) 2943 { 2944 int rc = 0; 2945 u32 sid = ((struct task_security_struct *)(current->security))->sid; 2946 2947 if (addr < mmap_min_addr) 2948 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 2949 MEMPROTECT__MMAP_ZERO, NULL); 2950 if (rc || addr_only) 2951 return rc; 2952 2953 if (selinux_checkreqprot) 2954 prot = reqprot; 2955 2956 return file_map_prot_check(file, prot, 2957 (flags & MAP_TYPE) == MAP_SHARED); 2958 } 2959 2960 static int selinux_file_mprotect(struct vm_area_struct *vma, 2961 unsigned long reqprot, 2962 unsigned long prot) 2963 { 2964 int rc; 2965 2966 rc = secondary_ops->file_mprotect(vma, reqprot, prot); 2967 if (rc) 2968 return rc; 2969 2970 if (selinux_checkreqprot) 2971 prot = reqprot; 2972 2973 #ifndef CONFIG_PPC32 2974 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 2975 rc = 0; 2976 if (vma->vm_start >= vma->vm_mm->start_brk && 2977 vma->vm_end <= vma->vm_mm->brk) { 2978 rc = task_has_perm(current, current, 2979 PROCESS__EXECHEAP); 2980 } else if (!vma->vm_file && 2981 vma->vm_start <= vma->vm_mm->start_stack && 2982 vma->vm_end >= vma->vm_mm->start_stack) { 2983 rc = task_has_perm(current, current, PROCESS__EXECSTACK); 2984 } else if (vma->vm_file && vma->anon_vma) { 2985 /* 2986 * We are making executable a file mapping that has 2987 * had some COW done. Since pages might have been 2988 * written, check ability to execute the possibly 2989 * modified content. This typically should only 2990 * occur for text relocations. 2991 */ 2992 rc = file_has_perm(current, vma->vm_file, 2993 FILE__EXECMOD); 2994 } 2995 if (rc) 2996 return rc; 2997 } 2998 #endif 2999 3000 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3001 } 3002 3003 static int selinux_file_lock(struct file *file, unsigned int cmd) 3004 { 3005 return file_has_perm(current, file, FILE__LOCK); 3006 } 3007 3008 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3009 unsigned long arg) 3010 { 3011 int err = 0; 3012 3013 switch (cmd) { 3014 case F_SETFL: 3015 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3016 err = -EINVAL; 3017 break; 3018 } 3019 3020 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3021 err = file_has_perm(current, file, FILE__WRITE); 3022 break; 3023 } 3024 /* fall through */ 3025 case F_SETOWN: 3026 case F_SETSIG: 3027 case F_GETFL: 3028 case F_GETOWN: 3029 case F_GETSIG: 3030 /* Just check FD__USE permission */ 3031 err = file_has_perm(current, file, 0); 3032 break; 3033 case F_GETLK: 3034 case F_SETLK: 3035 case F_SETLKW: 3036 #if BITS_PER_LONG == 32 3037 case F_GETLK64: 3038 case F_SETLK64: 3039 case F_SETLKW64: 3040 #endif 3041 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3042 err = -EINVAL; 3043 break; 3044 } 3045 err = file_has_perm(current, file, FILE__LOCK); 3046 break; 3047 } 3048 3049 return err; 3050 } 3051 3052 static int selinux_file_set_fowner(struct file *file) 3053 { 3054 struct task_security_struct *tsec; 3055 struct file_security_struct *fsec; 3056 3057 tsec = current->security; 3058 fsec = file->f_security; 3059 fsec->fown_sid = tsec->sid; 3060 3061 return 0; 3062 } 3063 3064 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3065 struct fown_struct *fown, int signum) 3066 { 3067 struct file *file; 3068 u32 perm; 3069 struct task_security_struct *tsec; 3070 struct file_security_struct *fsec; 3071 3072 /* struct fown_struct is never outside the context of a struct file */ 3073 file = container_of(fown, struct file, f_owner); 3074 3075 tsec = tsk->security; 3076 fsec = file->f_security; 3077 3078 if (!signum) 3079 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3080 else 3081 perm = signal_to_av(signum); 3082 3083 return avc_has_perm(fsec->fown_sid, tsec->sid, 3084 SECCLASS_PROCESS, perm, NULL); 3085 } 3086 3087 static int selinux_file_receive(struct file *file) 3088 { 3089 return file_has_perm(current, file, file_to_av(file)); 3090 } 3091 3092 static int selinux_dentry_open(struct file *file) 3093 { 3094 struct file_security_struct *fsec; 3095 struct inode *inode; 3096 struct inode_security_struct *isec; 3097 inode = file->f_path.dentry->d_inode; 3098 fsec = file->f_security; 3099 isec = inode->i_security; 3100 /* 3101 * Save inode label and policy sequence number 3102 * at open-time so that selinux_file_permission 3103 * can determine whether revalidation is necessary. 3104 * Task label is already saved in the file security 3105 * struct as its SID. 3106 */ 3107 fsec->isid = isec->sid; 3108 fsec->pseqno = avc_policy_seqno(); 3109 /* 3110 * Since the inode label or policy seqno may have changed 3111 * between the selinux_inode_permission check and the saving 3112 * of state above, recheck that access is still permitted. 3113 * Otherwise, access might never be revalidated against the 3114 * new inode label or new policy. 3115 * This check is not redundant - do not remove. 3116 */ 3117 return inode_has_perm(current, inode, file_to_av(file), NULL); 3118 } 3119 3120 /* task security operations */ 3121 3122 static int selinux_task_create(unsigned long clone_flags) 3123 { 3124 int rc; 3125 3126 rc = secondary_ops->task_create(clone_flags); 3127 if (rc) 3128 return rc; 3129 3130 return task_has_perm(current, current, PROCESS__FORK); 3131 } 3132 3133 static int selinux_task_alloc_security(struct task_struct *tsk) 3134 { 3135 struct task_security_struct *tsec1, *tsec2; 3136 int rc; 3137 3138 tsec1 = current->security; 3139 3140 rc = task_alloc_security(tsk); 3141 if (rc) 3142 return rc; 3143 tsec2 = tsk->security; 3144 3145 tsec2->osid = tsec1->osid; 3146 tsec2->sid = tsec1->sid; 3147 3148 /* Retain the exec, fs, key, and sock SIDs across fork */ 3149 tsec2->exec_sid = tsec1->exec_sid; 3150 tsec2->create_sid = tsec1->create_sid; 3151 tsec2->keycreate_sid = tsec1->keycreate_sid; 3152 tsec2->sockcreate_sid = tsec1->sockcreate_sid; 3153 3154 return 0; 3155 } 3156 3157 static void selinux_task_free_security(struct task_struct *tsk) 3158 { 3159 task_free_security(tsk); 3160 } 3161 3162 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3163 { 3164 /* Since setuid only affects the current process, and 3165 since the SELinux controls are not based on the Linux 3166 identity attributes, SELinux does not need to control 3167 this operation. However, SELinux does control the use 3168 of the CAP_SETUID and CAP_SETGID capabilities using the 3169 capable hook. */ 3170 return 0; 3171 } 3172 3173 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3174 { 3175 return secondary_ops->task_post_setuid(id0, id1, id2, flags); 3176 } 3177 3178 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 3179 { 3180 /* See the comment for setuid above. */ 3181 return 0; 3182 } 3183 3184 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3185 { 3186 return task_has_perm(current, p, PROCESS__SETPGID); 3187 } 3188 3189 static int selinux_task_getpgid(struct task_struct *p) 3190 { 3191 return task_has_perm(current, p, PROCESS__GETPGID); 3192 } 3193 3194 static int selinux_task_getsid(struct task_struct *p) 3195 { 3196 return task_has_perm(current, p, PROCESS__GETSESSION); 3197 } 3198 3199 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3200 { 3201 struct task_security_struct *tsec = p->security; 3202 *secid = tsec->sid; 3203 } 3204 3205 static int selinux_task_setgroups(struct group_info *group_info) 3206 { 3207 /* See the comment for setuid above. */ 3208 return 0; 3209 } 3210 3211 static int selinux_task_setnice(struct task_struct *p, int nice) 3212 { 3213 int rc; 3214 3215 rc = secondary_ops->task_setnice(p, nice); 3216 if (rc) 3217 return rc; 3218 3219 return task_has_perm(current, p, PROCESS__SETSCHED); 3220 } 3221 3222 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3223 { 3224 int rc; 3225 3226 rc = secondary_ops->task_setioprio(p, ioprio); 3227 if (rc) 3228 return rc; 3229 3230 return task_has_perm(current, p, PROCESS__SETSCHED); 3231 } 3232 3233 static int selinux_task_getioprio(struct task_struct *p) 3234 { 3235 return task_has_perm(current, p, PROCESS__GETSCHED); 3236 } 3237 3238 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3239 { 3240 struct rlimit *old_rlim = current->signal->rlim + resource; 3241 int rc; 3242 3243 rc = secondary_ops->task_setrlimit(resource, new_rlim); 3244 if (rc) 3245 return rc; 3246 3247 /* Control the ability to change the hard limit (whether 3248 lowering or raising it), so that the hard limit can 3249 later be used as a safe reset point for the soft limit 3250 upon context transitions. See selinux_bprm_apply_creds. */ 3251 if (old_rlim->rlim_max != new_rlim->rlim_max) 3252 return task_has_perm(current, current, PROCESS__SETRLIMIT); 3253 3254 return 0; 3255 } 3256 3257 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3258 { 3259 int rc; 3260 3261 rc = secondary_ops->task_setscheduler(p, policy, lp); 3262 if (rc) 3263 return rc; 3264 3265 return task_has_perm(current, p, PROCESS__SETSCHED); 3266 } 3267 3268 static int selinux_task_getscheduler(struct task_struct *p) 3269 { 3270 return task_has_perm(current, p, PROCESS__GETSCHED); 3271 } 3272 3273 static int selinux_task_movememory(struct task_struct *p) 3274 { 3275 return task_has_perm(current, p, PROCESS__SETSCHED); 3276 } 3277 3278 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3279 int sig, u32 secid) 3280 { 3281 u32 perm; 3282 int rc; 3283 struct task_security_struct *tsec; 3284 3285 rc = secondary_ops->task_kill(p, info, sig, secid); 3286 if (rc) 3287 return rc; 3288 3289 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 3290 return 0; 3291 3292 if (!sig) 3293 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3294 else 3295 perm = signal_to_av(sig); 3296 tsec = p->security; 3297 if (secid) 3298 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL); 3299 else 3300 rc = task_has_perm(current, p, perm); 3301 return rc; 3302 } 3303 3304 static int selinux_task_prctl(int option, 3305 unsigned long arg2, 3306 unsigned long arg3, 3307 unsigned long arg4, 3308 unsigned long arg5, 3309 long *rc_p) 3310 { 3311 /* The current prctl operations do not appear to require 3312 any SELinux controls since they merely observe or modify 3313 the state of the current process. */ 3314 return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 3315 } 3316 3317 static int selinux_task_wait(struct task_struct *p) 3318 { 3319 return task_has_perm(p, current, PROCESS__SIGCHLD); 3320 } 3321 3322 static void selinux_task_reparent_to_init(struct task_struct *p) 3323 { 3324 struct task_security_struct *tsec; 3325 3326 secondary_ops->task_reparent_to_init(p); 3327 3328 tsec = p->security; 3329 tsec->osid = tsec->sid; 3330 tsec->sid = SECINITSID_KERNEL; 3331 return; 3332 } 3333 3334 static void selinux_task_to_inode(struct task_struct *p, 3335 struct inode *inode) 3336 { 3337 struct task_security_struct *tsec = p->security; 3338 struct inode_security_struct *isec = inode->i_security; 3339 3340 isec->sid = tsec->sid; 3341 isec->initialized = 1; 3342 return; 3343 } 3344 3345 /* Returns error only if unable to parse addresses */ 3346 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3347 struct avc_audit_data *ad, u8 *proto) 3348 { 3349 int offset, ihlen, ret = -EINVAL; 3350 struct iphdr _iph, *ih; 3351 3352 offset = skb_network_offset(skb); 3353 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3354 if (ih == NULL) 3355 goto out; 3356 3357 ihlen = ih->ihl * 4; 3358 if (ihlen < sizeof(_iph)) 3359 goto out; 3360 3361 ad->u.net.v4info.saddr = ih->saddr; 3362 ad->u.net.v4info.daddr = ih->daddr; 3363 ret = 0; 3364 3365 if (proto) 3366 *proto = ih->protocol; 3367 3368 switch (ih->protocol) { 3369 case IPPROTO_TCP: { 3370 struct tcphdr _tcph, *th; 3371 3372 if (ntohs(ih->frag_off) & IP_OFFSET) 3373 break; 3374 3375 offset += ihlen; 3376 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3377 if (th == NULL) 3378 break; 3379 3380 ad->u.net.sport = th->source; 3381 ad->u.net.dport = th->dest; 3382 break; 3383 } 3384 3385 case IPPROTO_UDP: { 3386 struct udphdr _udph, *uh; 3387 3388 if (ntohs(ih->frag_off) & IP_OFFSET) 3389 break; 3390 3391 offset += ihlen; 3392 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3393 if (uh == NULL) 3394 break; 3395 3396 ad->u.net.sport = uh->source; 3397 ad->u.net.dport = uh->dest; 3398 break; 3399 } 3400 3401 case IPPROTO_DCCP: { 3402 struct dccp_hdr _dccph, *dh; 3403 3404 if (ntohs(ih->frag_off) & IP_OFFSET) 3405 break; 3406 3407 offset += ihlen; 3408 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3409 if (dh == NULL) 3410 break; 3411 3412 ad->u.net.sport = dh->dccph_sport; 3413 ad->u.net.dport = dh->dccph_dport; 3414 break; 3415 } 3416 3417 default: 3418 break; 3419 } 3420 out: 3421 return ret; 3422 } 3423 3424 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3425 3426 /* Returns error only if unable to parse addresses */ 3427 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3428 struct avc_audit_data *ad, u8 *proto) 3429 { 3430 u8 nexthdr; 3431 int ret = -EINVAL, offset; 3432 struct ipv6hdr _ipv6h, *ip6; 3433 3434 offset = skb_network_offset(skb); 3435 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3436 if (ip6 == NULL) 3437 goto out; 3438 3439 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3440 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3441 ret = 0; 3442 3443 nexthdr = ip6->nexthdr; 3444 offset += sizeof(_ipv6h); 3445 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3446 if (offset < 0) 3447 goto out; 3448 3449 if (proto) 3450 *proto = nexthdr; 3451 3452 switch (nexthdr) { 3453 case IPPROTO_TCP: { 3454 struct tcphdr _tcph, *th; 3455 3456 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3457 if (th == NULL) 3458 break; 3459 3460 ad->u.net.sport = th->source; 3461 ad->u.net.dport = th->dest; 3462 break; 3463 } 3464 3465 case IPPROTO_UDP: { 3466 struct udphdr _udph, *uh; 3467 3468 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3469 if (uh == NULL) 3470 break; 3471 3472 ad->u.net.sport = uh->source; 3473 ad->u.net.dport = uh->dest; 3474 break; 3475 } 3476 3477 case IPPROTO_DCCP: { 3478 struct dccp_hdr _dccph, *dh; 3479 3480 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3481 if (dh == NULL) 3482 break; 3483 3484 ad->u.net.sport = dh->dccph_sport; 3485 ad->u.net.dport = dh->dccph_dport; 3486 break; 3487 } 3488 3489 /* includes fragments */ 3490 default: 3491 break; 3492 } 3493 out: 3494 return ret; 3495 } 3496 3497 #endif /* IPV6 */ 3498 3499 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3500 char **addrp, int src, u8 *proto) 3501 { 3502 int ret = 0; 3503 3504 switch (ad->u.net.family) { 3505 case PF_INET: 3506 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3507 if (ret || !addrp) 3508 break; 3509 *addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3510 &ad->u.net.v4info.daddr); 3511 break; 3512 3513 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3514 case PF_INET6: 3515 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3516 if (ret || !addrp) 3517 break; 3518 *addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3519 &ad->u.net.v6info.daddr); 3520 break; 3521 #endif /* IPV6 */ 3522 default: 3523 break; 3524 } 3525 3526 if (unlikely(ret)) 3527 printk(KERN_WARNING 3528 "SELinux: failure in selinux_parse_skb()," 3529 " unable to parse packet\n"); 3530 3531 return ret; 3532 } 3533 3534 /** 3535 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3536 * @skb: the packet 3537 * @family: protocol family 3538 * @sid: the packet's peer label SID 3539 * 3540 * Description: 3541 * Check the various different forms of network peer labeling and determine 3542 * the peer label/SID for the packet; most of the magic actually occurs in 3543 * the security server function security_net_peersid_cmp(). The function 3544 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3545 * or -EACCES if @sid is invalid due to inconsistencies with the different 3546 * peer labels. 3547 * 3548 */ 3549 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3550 { 3551 int err; 3552 u32 xfrm_sid; 3553 u32 nlbl_sid; 3554 u32 nlbl_type; 3555 3556 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3557 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3558 3559 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3560 if (unlikely(err)) { 3561 printk(KERN_WARNING 3562 "SELinux: failure in selinux_skb_peerlbl_sid()," 3563 " unable to determine packet's peer label\n"); 3564 return -EACCES; 3565 } 3566 3567 return 0; 3568 } 3569 3570 /* socket security operations */ 3571 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3572 u32 perms) 3573 { 3574 struct inode_security_struct *isec; 3575 struct task_security_struct *tsec; 3576 struct avc_audit_data ad; 3577 int err = 0; 3578 3579 tsec = task->security; 3580 isec = SOCK_INODE(sock)->i_security; 3581 3582 if (isec->sid == SECINITSID_KERNEL) 3583 goto out; 3584 3585 AVC_AUDIT_DATA_INIT(&ad, NET); 3586 ad.u.net.sk = sock->sk; 3587 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 3588 3589 out: 3590 return err; 3591 } 3592 3593 static int selinux_socket_create(int family, int type, 3594 int protocol, int kern) 3595 { 3596 int err = 0; 3597 struct task_security_struct *tsec; 3598 u32 newsid; 3599 3600 if (kern) 3601 goto out; 3602 3603 tsec = current->security; 3604 newsid = tsec->sockcreate_sid ? : tsec->sid; 3605 err = avc_has_perm(tsec->sid, newsid, 3606 socket_type_to_security_class(family, type, 3607 protocol), SOCKET__CREATE, NULL); 3608 3609 out: 3610 return err; 3611 } 3612 3613 static int selinux_socket_post_create(struct socket *sock, int family, 3614 int type, int protocol, int kern) 3615 { 3616 int err = 0; 3617 struct inode_security_struct *isec; 3618 struct task_security_struct *tsec; 3619 struct sk_security_struct *sksec; 3620 u32 newsid; 3621 3622 isec = SOCK_INODE(sock)->i_security; 3623 3624 tsec = current->security; 3625 newsid = tsec->sockcreate_sid ? : tsec->sid; 3626 isec->sclass = socket_type_to_security_class(family, type, protocol); 3627 isec->sid = kern ? SECINITSID_KERNEL : newsid; 3628 isec->initialized = 1; 3629 3630 if (sock->sk) { 3631 sksec = sock->sk->sk_security; 3632 sksec->sid = isec->sid; 3633 sksec->sclass = isec->sclass; 3634 err = selinux_netlbl_socket_post_create(sock); 3635 } 3636 3637 return err; 3638 } 3639 3640 /* Range of port numbers used to automatically bind. 3641 Need to determine whether we should perform a name_bind 3642 permission check between the socket and the port number. */ 3643 3644 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3645 { 3646 u16 family; 3647 int err; 3648 3649 err = socket_has_perm(current, sock, SOCKET__BIND); 3650 if (err) 3651 goto out; 3652 3653 /* 3654 * If PF_INET or PF_INET6, check name_bind permission for the port. 3655 * Multiple address binding for SCTP is not supported yet: we just 3656 * check the first address now. 3657 */ 3658 family = sock->sk->sk_family; 3659 if (family == PF_INET || family == PF_INET6) { 3660 char *addrp; 3661 struct inode_security_struct *isec; 3662 struct task_security_struct *tsec; 3663 struct avc_audit_data ad; 3664 struct sockaddr_in *addr4 = NULL; 3665 struct sockaddr_in6 *addr6 = NULL; 3666 unsigned short snum; 3667 struct sock *sk = sock->sk; 3668 u32 sid, node_perm, addrlen; 3669 3670 tsec = current->security; 3671 isec = SOCK_INODE(sock)->i_security; 3672 3673 if (family == PF_INET) { 3674 addr4 = (struct sockaddr_in *)address; 3675 snum = ntohs(addr4->sin_port); 3676 addrlen = sizeof(addr4->sin_addr.s_addr); 3677 addrp = (char *)&addr4->sin_addr.s_addr; 3678 } else { 3679 addr6 = (struct sockaddr_in6 *)address; 3680 snum = ntohs(addr6->sin6_port); 3681 addrlen = sizeof(addr6->sin6_addr.s6_addr); 3682 addrp = (char *)&addr6->sin6_addr.s6_addr; 3683 } 3684 3685 if (snum) { 3686 int low, high; 3687 3688 inet_get_local_port_range(&low, &high); 3689 3690 if (snum < max(PROT_SOCK, low) || snum > high) { 3691 err = sel_netport_sid(sk->sk_protocol, 3692 snum, &sid); 3693 if (err) 3694 goto out; 3695 AVC_AUDIT_DATA_INIT(&ad, NET); 3696 ad.u.net.sport = htons(snum); 3697 ad.u.net.family = family; 3698 err = avc_has_perm(isec->sid, sid, 3699 isec->sclass, 3700 SOCKET__NAME_BIND, &ad); 3701 if (err) 3702 goto out; 3703 } 3704 } 3705 3706 switch (isec->sclass) { 3707 case SECCLASS_TCP_SOCKET: 3708 node_perm = TCP_SOCKET__NODE_BIND; 3709 break; 3710 3711 case SECCLASS_UDP_SOCKET: 3712 node_perm = UDP_SOCKET__NODE_BIND; 3713 break; 3714 3715 case SECCLASS_DCCP_SOCKET: 3716 node_perm = DCCP_SOCKET__NODE_BIND; 3717 break; 3718 3719 default: 3720 node_perm = RAWIP_SOCKET__NODE_BIND; 3721 break; 3722 } 3723 3724 err = sel_netnode_sid(addrp, family, &sid); 3725 if (err) 3726 goto out; 3727 3728 AVC_AUDIT_DATA_INIT(&ad, NET); 3729 ad.u.net.sport = htons(snum); 3730 ad.u.net.family = family; 3731 3732 if (family == PF_INET) 3733 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3734 else 3735 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3736 3737 err = avc_has_perm(isec->sid, sid, 3738 isec->sclass, node_perm, &ad); 3739 if (err) 3740 goto out; 3741 } 3742 out: 3743 return err; 3744 } 3745 3746 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3747 { 3748 struct inode_security_struct *isec; 3749 int err; 3750 3751 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3752 if (err) 3753 return err; 3754 3755 /* 3756 * If a TCP or DCCP socket, check name_connect permission for the port. 3757 */ 3758 isec = SOCK_INODE(sock)->i_security; 3759 if (isec->sclass == SECCLASS_TCP_SOCKET || 3760 isec->sclass == SECCLASS_DCCP_SOCKET) { 3761 struct sock *sk = sock->sk; 3762 struct avc_audit_data ad; 3763 struct sockaddr_in *addr4 = NULL; 3764 struct sockaddr_in6 *addr6 = NULL; 3765 unsigned short snum; 3766 u32 sid, perm; 3767 3768 if (sk->sk_family == PF_INET) { 3769 addr4 = (struct sockaddr_in *)address; 3770 if (addrlen < sizeof(struct sockaddr_in)) 3771 return -EINVAL; 3772 snum = ntohs(addr4->sin_port); 3773 } else { 3774 addr6 = (struct sockaddr_in6 *)address; 3775 if (addrlen < SIN6_LEN_RFC2133) 3776 return -EINVAL; 3777 snum = ntohs(addr6->sin6_port); 3778 } 3779 3780 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3781 if (err) 3782 goto out; 3783 3784 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3785 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3786 3787 AVC_AUDIT_DATA_INIT(&ad, NET); 3788 ad.u.net.dport = htons(snum); 3789 ad.u.net.family = sk->sk_family; 3790 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3791 if (err) 3792 goto out; 3793 } 3794 3795 out: 3796 return err; 3797 } 3798 3799 static int selinux_socket_listen(struct socket *sock, int backlog) 3800 { 3801 return socket_has_perm(current, sock, SOCKET__LISTEN); 3802 } 3803 3804 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3805 { 3806 int err; 3807 struct inode_security_struct *isec; 3808 struct inode_security_struct *newisec; 3809 3810 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3811 if (err) 3812 return err; 3813 3814 newisec = SOCK_INODE(newsock)->i_security; 3815 3816 isec = SOCK_INODE(sock)->i_security; 3817 newisec->sclass = isec->sclass; 3818 newisec->sid = isec->sid; 3819 newisec->initialized = 1; 3820 3821 return 0; 3822 } 3823 3824 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3825 int size) 3826 { 3827 int rc; 3828 3829 rc = socket_has_perm(current, sock, SOCKET__WRITE); 3830 if (rc) 3831 return rc; 3832 3833 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE); 3834 } 3835 3836 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3837 int size, int flags) 3838 { 3839 return socket_has_perm(current, sock, SOCKET__READ); 3840 } 3841 3842 static int selinux_socket_getsockname(struct socket *sock) 3843 { 3844 return socket_has_perm(current, sock, SOCKET__GETATTR); 3845 } 3846 3847 static int selinux_socket_getpeername(struct socket *sock) 3848 { 3849 return socket_has_perm(current, sock, SOCKET__GETATTR); 3850 } 3851 3852 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3853 { 3854 int err; 3855 3856 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3857 if (err) 3858 return err; 3859 3860 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3861 } 3862 3863 static int selinux_socket_getsockopt(struct socket *sock, int level, 3864 int optname) 3865 { 3866 return socket_has_perm(current, sock, SOCKET__GETOPT); 3867 } 3868 3869 static int selinux_socket_shutdown(struct socket *sock, int how) 3870 { 3871 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3872 } 3873 3874 static int selinux_socket_unix_stream_connect(struct socket *sock, 3875 struct socket *other, 3876 struct sock *newsk) 3877 { 3878 struct sk_security_struct *ssec; 3879 struct inode_security_struct *isec; 3880 struct inode_security_struct *other_isec; 3881 struct avc_audit_data ad; 3882 int err; 3883 3884 err = secondary_ops->unix_stream_connect(sock, other, newsk); 3885 if (err) 3886 return err; 3887 3888 isec = SOCK_INODE(sock)->i_security; 3889 other_isec = SOCK_INODE(other)->i_security; 3890 3891 AVC_AUDIT_DATA_INIT(&ad, NET); 3892 ad.u.net.sk = other->sk; 3893 3894 err = avc_has_perm(isec->sid, other_isec->sid, 3895 isec->sclass, 3896 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3897 if (err) 3898 return err; 3899 3900 /* connecting socket */ 3901 ssec = sock->sk->sk_security; 3902 ssec->peer_sid = other_isec->sid; 3903 3904 /* server child socket */ 3905 ssec = newsk->sk_security; 3906 ssec->peer_sid = isec->sid; 3907 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3908 3909 return err; 3910 } 3911 3912 static int selinux_socket_unix_may_send(struct socket *sock, 3913 struct socket *other) 3914 { 3915 struct inode_security_struct *isec; 3916 struct inode_security_struct *other_isec; 3917 struct avc_audit_data ad; 3918 int err; 3919 3920 isec = SOCK_INODE(sock)->i_security; 3921 other_isec = SOCK_INODE(other)->i_security; 3922 3923 AVC_AUDIT_DATA_INIT(&ad, NET); 3924 ad.u.net.sk = other->sk; 3925 3926 err = avc_has_perm(isec->sid, other_isec->sid, 3927 isec->sclass, SOCKET__SENDTO, &ad); 3928 if (err) 3929 return err; 3930 3931 return 0; 3932 } 3933 3934 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 3935 u32 peer_sid, 3936 struct avc_audit_data *ad) 3937 { 3938 int err; 3939 u32 if_sid; 3940 u32 node_sid; 3941 3942 err = sel_netif_sid(ifindex, &if_sid); 3943 if (err) 3944 return err; 3945 err = avc_has_perm(peer_sid, if_sid, 3946 SECCLASS_NETIF, NETIF__INGRESS, ad); 3947 if (err) 3948 return err; 3949 3950 err = sel_netnode_sid(addrp, family, &node_sid); 3951 if (err) 3952 return err; 3953 return avc_has_perm(peer_sid, node_sid, 3954 SECCLASS_NODE, NODE__RECVFROM, ad); 3955 } 3956 3957 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk, 3958 struct sk_buff *skb, 3959 struct avc_audit_data *ad, 3960 u16 family, 3961 char *addrp) 3962 { 3963 int err; 3964 struct sk_security_struct *sksec = sk->sk_security; 3965 u16 sk_class; 3966 u32 netif_perm, node_perm, recv_perm; 3967 u32 port_sid, node_sid, if_sid, sk_sid; 3968 3969 sk_sid = sksec->sid; 3970 sk_class = sksec->sclass; 3971 3972 switch (sk_class) { 3973 case SECCLASS_UDP_SOCKET: 3974 netif_perm = NETIF__UDP_RECV; 3975 node_perm = NODE__UDP_RECV; 3976 recv_perm = UDP_SOCKET__RECV_MSG; 3977 break; 3978 case SECCLASS_TCP_SOCKET: 3979 netif_perm = NETIF__TCP_RECV; 3980 node_perm = NODE__TCP_RECV; 3981 recv_perm = TCP_SOCKET__RECV_MSG; 3982 break; 3983 case SECCLASS_DCCP_SOCKET: 3984 netif_perm = NETIF__DCCP_RECV; 3985 node_perm = NODE__DCCP_RECV; 3986 recv_perm = DCCP_SOCKET__RECV_MSG; 3987 break; 3988 default: 3989 netif_perm = NETIF__RAWIP_RECV; 3990 node_perm = NODE__RAWIP_RECV; 3991 recv_perm = 0; 3992 break; 3993 } 3994 3995 err = sel_netif_sid(skb->iif, &if_sid); 3996 if (err) 3997 return err; 3998 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 3999 if (err) 4000 return err; 4001 4002 err = sel_netnode_sid(addrp, family, &node_sid); 4003 if (err) 4004 return err; 4005 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad); 4006 if (err) 4007 return err; 4008 4009 if (!recv_perm) 4010 return 0; 4011 err = sel_netport_sid(sk->sk_protocol, 4012 ntohs(ad->u.net.sport), &port_sid); 4013 if (unlikely(err)) { 4014 printk(KERN_WARNING 4015 "SELinux: failure in" 4016 " selinux_sock_rcv_skb_iptables_compat()," 4017 " network port label not found\n"); 4018 return err; 4019 } 4020 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad); 4021 } 4022 4023 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4024 struct avc_audit_data *ad, 4025 u16 family, char *addrp) 4026 { 4027 int err; 4028 struct sk_security_struct *sksec = sk->sk_security; 4029 u32 peer_sid; 4030 u32 sk_sid = sksec->sid; 4031 4032 if (selinux_compat_net) 4033 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad, 4034 family, addrp); 4035 else 4036 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4037 PACKET__RECV, ad); 4038 if (err) 4039 return err; 4040 4041 if (selinux_policycap_netpeer) { 4042 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4043 if (err) 4044 return err; 4045 err = avc_has_perm(sk_sid, peer_sid, 4046 SECCLASS_PEER, PEER__RECV, ad); 4047 } else { 4048 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad); 4049 if (err) 4050 return err; 4051 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad); 4052 } 4053 4054 return err; 4055 } 4056 4057 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4058 { 4059 int err; 4060 struct sk_security_struct *sksec = sk->sk_security; 4061 u16 family = sk->sk_family; 4062 u32 sk_sid = sksec->sid; 4063 struct avc_audit_data ad; 4064 char *addrp; 4065 4066 if (family != PF_INET && family != PF_INET6) 4067 return 0; 4068 4069 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4070 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4071 family = PF_INET; 4072 4073 AVC_AUDIT_DATA_INIT(&ad, NET); 4074 ad.u.net.netif = skb->iif; 4075 ad.u.net.family = family; 4076 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4077 if (err) 4078 return err; 4079 4080 /* If any sort of compatibility mode is enabled then handoff processing 4081 * to the selinux_sock_rcv_skb_compat() function to deal with the 4082 * special handling. We do this in an attempt to keep this function 4083 * as fast and as clean as possible. */ 4084 if (selinux_compat_net || !selinux_policycap_netpeer) 4085 return selinux_sock_rcv_skb_compat(sk, skb, &ad, 4086 family, addrp); 4087 4088 if (netlbl_enabled() || selinux_xfrm_enabled()) { 4089 u32 peer_sid; 4090 4091 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4092 if (err) 4093 return err; 4094 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family, 4095 peer_sid, &ad); 4096 if (err) 4097 return err; 4098 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4099 PEER__RECV, &ad); 4100 } 4101 4102 if (selinux_secmark_enabled()) { 4103 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4104 PACKET__RECV, &ad); 4105 if (err) 4106 return err; 4107 } 4108 4109 return err; 4110 } 4111 4112 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4113 int __user *optlen, unsigned len) 4114 { 4115 int err = 0; 4116 char *scontext; 4117 u32 scontext_len; 4118 struct sk_security_struct *ssec; 4119 struct inode_security_struct *isec; 4120 u32 peer_sid = SECSID_NULL; 4121 4122 isec = SOCK_INODE(sock)->i_security; 4123 4124 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4125 isec->sclass == SECCLASS_TCP_SOCKET) { 4126 ssec = sock->sk->sk_security; 4127 peer_sid = ssec->peer_sid; 4128 } 4129 if (peer_sid == SECSID_NULL) { 4130 err = -ENOPROTOOPT; 4131 goto out; 4132 } 4133 4134 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4135 4136 if (err) 4137 goto out; 4138 4139 if (scontext_len > len) { 4140 err = -ERANGE; 4141 goto out_len; 4142 } 4143 4144 if (copy_to_user(optval, scontext, scontext_len)) 4145 err = -EFAULT; 4146 4147 out_len: 4148 if (put_user(scontext_len, optlen)) 4149 err = -EFAULT; 4150 4151 kfree(scontext); 4152 out: 4153 return err; 4154 } 4155 4156 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4157 { 4158 u32 peer_secid = SECSID_NULL; 4159 u16 family; 4160 4161 if (sock) 4162 family = sock->sk->sk_family; 4163 else if (skb && skb->sk) 4164 family = skb->sk->sk_family; 4165 else 4166 goto out; 4167 4168 if (sock && family == PF_UNIX) 4169 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4170 else if (skb) 4171 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4172 4173 out: 4174 *secid = peer_secid; 4175 if (peer_secid == SECSID_NULL) 4176 return -EINVAL; 4177 return 0; 4178 } 4179 4180 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4181 { 4182 return sk_alloc_security(sk, family, priority); 4183 } 4184 4185 static void selinux_sk_free_security(struct sock *sk) 4186 { 4187 sk_free_security(sk); 4188 } 4189 4190 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4191 { 4192 struct sk_security_struct *ssec = sk->sk_security; 4193 struct sk_security_struct *newssec = newsk->sk_security; 4194 4195 newssec->sid = ssec->sid; 4196 newssec->peer_sid = ssec->peer_sid; 4197 newssec->sclass = ssec->sclass; 4198 4199 selinux_netlbl_sk_security_reset(newssec, newsk->sk_family); 4200 } 4201 4202 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4203 { 4204 if (!sk) 4205 *secid = SECINITSID_ANY_SOCKET; 4206 else { 4207 struct sk_security_struct *sksec = sk->sk_security; 4208 4209 *secid = sksec->sid; 4210 } 4211 } 4212 4213 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4214 { 4215 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4216 struct sk_security_struct *sksec = sk->sk_security; 4217 4218 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4219 sk->sk_family == PF_UNIX) 4220 isec->sid = sksec->sid; 4221 sksec->sclass = isec->sclass; 4222 4223 selinux_netlbl_sock_graft(sk, parent); 4224 } 4225 4226 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4227 struct request_sock *req) 4228 { 4229 struct sk_security_struct *sksec = sk->sk_security; 4230 int err; 4231 u32 newsid; 4232 u32 peersid; 4233 4234 err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid); 4235 if (err) 4236 return err; 4237 if (peersid == SECSID_NULL) { 4238 req->secid = sksec->sid; 4239 req->peer_secid = SECSID_NULL; 4240 return 0; 4241 } 4242 4243 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4244 if (err) 4245 return err; 4246 4247 req->secid = newsid; 4248 req->peer_secid = peersid; 4249 return 0; 4250 } 4251 4252 static void selinux_inet_csk_clone(struct sock *newsk, 4253 const struct request_sock *req) 4254 { 4255 struct sk_security_struct *newsksec = newsk->sk_security; 4256 4257 newsksec->sid = req->secid; 4258 newsksec->peer_sid = req->peer_secid; 4259 /* NOTE: Ideally, we should also get the isec->sid for the 4260 new socket in sync, but we don't have the isec available yet. 4261 So we will wait until sock_graft to do it, by which 4262 time it will have been created and available. */ 4263 4264 /* We don't need to take any sort of lock here as we are the only 4265 * thread with access to newsksec */ 4266 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family); 4267 } 4268 4269 static void selinux_inet_conn_established(struct sock *sk, 4270 struct sk_buff *skb) 4271 { 4272 struct sk_security_struct *sksec = sk->sk_security; 4273 4274 selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid); 4275 } 4276 4277 static void selinux_req_classify_flow(const struct request_sock *req, 4278 struct flowi *fl) 4279 { 4280 fl->secid = req->secid; 4281 } 4282 4283 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4284 { 4285 int err = 0; 4286 u32 perm; 4287 struct nlmsghdr *nlh; 4288 struct socket *sock = sk->sk_socket; 4289 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4290 4291 if (skb->len < NLMSG_SPACE(0)) { 4292 err = -EINVAL; 4293 goto out; 4294 } 4295 nlh = nlmsg_hdr(skb); 4296 4297 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4298 if (err) { 4299 if (err == -EINVAL) { 4300 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4301 "SELinux: unrecognized netlink message" 4302 " type=%hu for sclass=%hu\n", 4303 nlh->nlmsg_type, isec->sclass); 4304 if (!selinux_enforcing) 4305 err = 0; 4306 } 4307 4308 /* Ignore */ 4309 if (err == -ENOENT) 4310 err = 0; 4311 goto out; 4312 } 4313 4314 err = socket_has_perm(current, sock, perm); 4315 out: 4316 return err; 4317 } 4318 4319 #ifdef CONFIG_NETFILTER 4320 4321 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4322 u16 family) 4323 { 4324 char *addrp; 4325 u32 peer_sid; 4326 struct avc_audit_data ad; 4327 u8 secmark_active; 4328 u8 peerlbl_active; 4329 4330 if (!selinux_policycap_netpeer) 4331 return NF_ACCEPT; 4332 4333 secmark_active = selinux_secmark_enabled(); 4334 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4335 if (!secmark_active && !peerlbl_active) 4336 return NF_ACCEPT; 4337 4338 AVC_AUDIT_DATA_INIT(&ad, NET); 4339 ad.u.net.netif = ifindex; 4340 ad.u.net.family = family; 4341 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4342 return NF_DROP; 4343 4344 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4345 return NF_DROP; 4346 4347 if (peerlbl_active) 4348 if (selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4349 peer_sid, &ad) != 0) 4350 return NF_DROP; 4351 4352 if (secmark_active) 4353 if (avc_has_perm(peer_sid, skb->secmark, 4354 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4355 return NF_DROP; 4356 4357 return NF_ACCEPT; 4358 } 4359 4360 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4361 struct sk_buff *skb, 4362 const struct net_device *in, 4363 const struct net_device *out, 4364 int (*okfn)(struct sk_buff *)) 4365 { 4366 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4367 } 4368 4369 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4370 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4371 struct sk_buff *skb, 4372 const struct net_device *in, 4373 const struct net_device *out, 4374 int (*okfn)(struct sk_buff *)) 4375 { 4376 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4377 } 4378 #endif /* IPV6 */ 4379 4380 static int selinux_ip_postroute_iptables_compat(struct sock *sk, 4381 int ifindex, 4382 struct avc_audit_data *ad, 4383 u16 family, char *addrp) 4384 { 4385 int err; 4386 struct sk_security_struct *sksec = sk->sk_security; 4387 u16 sk_class; 4388 u32 netif_perm, node_perm, send_perm; 4389 u32 port_sid, node_sid, if_sid, sk_sid; 4390 4391 sk_sid = sksec->sid; 4392 sk_class = sksec->sclass; 4393 4394 switch (sk_class) { 4395 case SECCLASS_UDP_SOCKET: 4396 netif_perm = NETIF__UDP_SEND; 4397 node_perm = NODE__UDP_SEND; 4398 send_perm = UDP_SOCKET__SEND_MSG; 4399 break; 4400 case SECCLASS_TCP_SOCKET: 4401 netif_perm = NETIF__TCP_SEND; 4402 node_perm = NODE__TCP_SEND; 4403 send_perm = TCP_SOCKET__SEND_MSG; 4404 break; 4405 case SECCLASS_DCCP_SOCKET: 4406 netif_perm = NETIF__DCCP_SEND; 4407 node_perm = NODE__DCCP_SEND; 4408 send_perm = DCCP_SOCKET__SEND_MSG; 4409 break; 4410 default: 4411 netif_perm = NETIF__RAWIP_SEND; 4412 node_perm = NODE__RAWIP_SEND; 4413 send_perm = 0; 4414 break; 4415 } 4416 4417 err = sel_netif_sid(ifindex, &if_sid); 4418 if (err) 4419 return err; 4420 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 4421 return err; 4422 4423 err = sel_netnode_sid(addrp, family, &node_sid); 4424 if (err) 4425 return err; 4426 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad); 4427 if (err) 4428 return err; 4429 4430 if (send_perm != 0) 4431 return 0; 4432 4433 err = sel_netport_sid(sk->sk_protocol, 4434 ntohs(ad->u.net.dport), &port_sid); 4435 if (unlikely(err)) { 4436 printk(KERN_WARNING 4437 "SELinux: failure in" 4438 " selinux_ip_postroute_iptables_compat()," 4439 " network port label not found\n"); 4440 return err; 4441 } 4442 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad); 4443 } 4444 4445 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4446 int ifindex, 4447 struct avc_audit_data *ad, 4448 u16 family, 4449 char *addrp, 4450 u8 proto) 4451 { 4452 struct sock *sk = skb->sk; 4453 struct sk_security_struct *sksec; 4454 4455 if (sk == NULL) 4456 return NF_ACCEPT; 4457 sksec = sk->sk_security; 4458 4459 if (selinux_compat_net) { 4460 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex, 4461 ad, family, addrp)) 4462 return NF_DROP; 4463 } else { 4464 if (avc_has_perm(sksec->sid, skb->secmark, 4465 SECCLASS_PACKET, PACKET__SEND, ad)) 4466 return NF_DROP; 4467 } 4468 4469 if (selinux_policycap_netpeer) 4470 if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto)) 4471 return NF_DROP; 4472 4473 return NF_ACCEPT; 4474 } 4475 4476 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4477 u16 family) 4478 { 4479 u32 secmark_perm; 4480 u32 peer_sid; 4481 struct sock *sk; 4482 struct avc_audit_data ad; 4483 char *addrp; 4484 u8 proto; 4485 u8 secmark_active; 4486 u8 peerlbl_active; 4487 4488 AVC_AUDIT_DATA_INIT(&ad, NET); 4489 ad.u.net.netif = ifindex; 4490 ad.u.net.family = family; 4491 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4492 return NF_DROP; 4493 4494 /* If any sort of compatibility mode is enabled then handoff processing 4495 * to the selinux_ip_postroute_compat() function to deal with the 4496 * special handling. We do this in an attempt to keep this function 4497 * as fast and as clean as possible. */ 4498 if (selinux_compat_net || !selinux_policycap_netpeer) 4499 return selinux_ip_postroute_compat(skb, ifindex, &ad, 4500 family, addrp, proto); 4501 4502 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4503 * packet transformation so allow the packet to pass without any checks 4504 * since we'll have another chance to perform access control checks 4505 * when the packet is on it's final way out. 4506 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4507 * is NULL, in this case go ahead and apply access control. */ 4508 if (skb->dst != NULL && skb->dst->xfrm != NULL) 4509 return NF_ACCEPT; 4510 4511 secmark_active = selinux_secmark_enabled(); 4512 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4513 if (!secmark_active && !peerlbl_active) 4514 return NF_ACCEPT; 4515 4516 /* if the packet is locally generated (skb->sk != NULL) then use the 4517 * socket's label as the peer label, otherwise the packet is being 4518 * forwarded through this system and we need to fetch the peer label 4519 * directly from the packet */ 4520 sk = skb->sk; 4521 if (sk) { 4522 struct sk_security_struct *sksec = sk->sk_security; 4523 peer_sid = sksec->sid; 4524 secmark_perm = PACKET__SEND; 4525 } else { 4526 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4527 return NF_DROP; 4528 secmark_perm = PACKET__FORWARD_OUT; 4529 } 4530 4531 if (secmark_active) 4532 if (avc_has_perm(peer_sid, skb->secmark, 4533 SECCLASS_PACKET, secmark_perm, &ad)) 4534 return NF_DROP; 4535 4536 if (peerlbl_active) { 4537 u32 if_sid; 4538 u32 node_sid; 4539 4540 if (sel_netif_sid(ifindex, &if_sid)) 4541 return NF_DROP; 4542 if (avc_has_perm(peer_sid, if_sid, 4543 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4544 return NF_DROP; 4545 4546 if (sel_netnode_sid(addrp, family, &node_sid)) 4547 return NF_DROP; 4548 if (avc_has_perm(peer_sid, node_sid, 4549 SECCLASS_NODE, NODE__SENDTO, &ad)) 4550 return NF_DROP; 4551 } 4552 4553 return NF_ACCEPT; 4554 } 4555 4556 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4557 struct sk_buff *skb, 4558 const struct net_device *in, 4559 const struct net_device *out, 4560 int (*okfn)(struct sk_buff *)) 4561 { 4562 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4563 } 4564 4565 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4566 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4567 struct sk_buff *skb, 4568 const struct net_device *in, 4569 const struct net_device *out, 4570 int (*okfn)(struct sk_buff *)) 4571 { 4572 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4573 } 4574 #endif /* IPV6 */ 4575 4576 #endif /* CONFIG_NETFILTER */ 4577 4578 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4579 { 4580 int err; 4581 4582 err = secondary_ops->netlink_send(sk, skb); 4583 if (err) 4584 return err; 4585 4586 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4587 err = selinux_nlmsg_perm(sk, skb); 4588 4589 return err; 4590 } 4591 4592 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4593 { 4594 int err; 4595 struct avc_audit_data ad; 4596 4597 err = secondary_ops->netlink_recv(skb, capability); 4598 if (err) 4599 return err; 4600 4601 AVC_AUDIT_DATA_INIT(&ad, CAP); 4602 ad.u.cap = capability; 4603 4604 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4605 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4606 } 4607 4608 static int ipc_alloc_security(struct task_struct *task, 4609 struct kern_ipc_perm *perm, 4610 u16 sclass) 4611 { 4612 struct task_security_struct *tsec = task->security; 4613 struct ipc_security_struct *isec; 4614 4615 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4616 if (!isec) 4617 return -ENOMEM; 4618 4619 isec->sclass = sclass; 4620 isec->sid = tsec->sid; 4621 perm->security = isec; 4622 4623 return 0; 4624 } 4625 4626 static void ipc_free_security(struct kern_ipc_perm *perm) 4627 { 4628 struct ipc_security_struct *isec = perm->security; 4629 perm->security = NULL; 4630 kfree(isec); 4631 } 4632 4633 static int msg_msg_alloc_security(struct msg_msg *msg) 4634 { 4635 struct msg_security_struct *msec; 4636 4637 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4638 if (!msec) 4639 return -ENOMEM; 4640 4641 msec->sid = SECINITSID_UNLABELED; 4642 msg->security = msec; 4643 4644 return 0; 4645 } 4646 4647 static void msg_msg_free_security(struct msg_msg *msg) 4648 { 4649 struct msg_security_struct *msec = msg->security; 4650 4651 msg->security = NULL; 4652 kfree(msec); 4653 } 4654 4655 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4656 u32 perms) 4657 { 4658 struct task_security_struct *tsec; 4659 struct ipc_security_struct *isec; 4660 struct avc_audit_data ad; 4661 4662 tsec = current->security; 4663 isec = ipc_perms->security; 4664 4665 AVC_AUDIT_DATA_INIT(&ad, IPC); 4666 ad.u.ipc_id = ipc_perms->key; 4667 4668 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 4669 } 4670 4671 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4672 { 4673 return msg_msg_alloc_security(msg); 4674 } 4675 4676 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4677 { 4678 msg_msg_free_security(msg); 4679 } 4680 4681 /* message queue security operations */ 4682 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4683 { 4684 struct task_security_struct *tsec; 4685 struct ipc_security_struct *isec; 4686 struct avc_audit_data ad; 4687 int rc; 4688 4689 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4690 if (rc) 4691 return rc; 4692 4693 tsec = current->security; 4694 isec = msq->q_perm.security; 4695 4696 AVC_AUDIT_DATA_INIT(&ad, IPC); 4697 ad.u.ipc_id = msq->q_perm.key; 4698 4699 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4700 MSGQ__CREATE, &ad); 4701 if (rc) { 4702 ipc_free_security(&msq->q_perm); 4703 return rc; 4704 } 4705 return 0; 4706 } 4707 4708 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4709 { 4710 ipc_free_security(&msq->q_perm); 4711 } 4712 4713 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4714 { 4715 struct task_security_struct *tsec; 4716 struct ipc_security_struct *isec; 4717 struct avc_audit_data ad; 4718 4719 tsec = current->security; 4720 isec = msq->q_perm.security; 4721 4722 AVC_AUDIT_DATA_INIT(&ad, IPC); 4723 ad.u.ipc_id = msq->q_perm.key; 4724 4725 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4726 MSGQ__ASSOCIATE, &ad); 4727 } 4728 4729 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4730 { 4731 int err; 4732 int perms; 4733 4734 switch (cmd) { 4735 case IPC_INFO: 4736 case MSG_INFO: 4737 /* No specific object, just general system-wide information. */ 4738 return task_has_system(current, SYSTEM__IPC_INFO); 4739 case IPC_STAT: 4740 case MSG_STAT: 4741 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4742 break; 4743 case IPC_SET: 4744 perms = MSGQ__SETATTR; 4745 break; 4746 case IPC_RMID: 4747 perms = MSGQ__DESTROY; 4748 break; 4749 default: 4750 return 0; 4751 } 4752 4753 err = ipc_has_perm(&msq->q_perm, perms); 4754 return err; 4755 } 4756 4757 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4758 { 4759 struct task_security_struct *tsec; 4760 struct ipc_security_struct *isec; 4761 struct msg_security_struct *msec; 4762 struct avc_audit_data ad; 4763 int rc; 4764 4765 tsec = current->security; 4766 isec = msq->q_perm.security; 4767 msec = msg->security; 4768 4769 /* 4770 * First time through, need to assign label to the message 4771 */ 4772 if (msec->sid == SECINITSID_UNLABELED) { 4773 /* 4774 * Compute new sid based on current process and 4775 * message queue this message will be stored in 4776 */ 4777 rc = security_transition_sid(tsec->sid, 4778 isec->sid, 4779 SECCLASS_MSG, 4780 &msec->sid); 4781 if (rc) 4782 return rc; 4783 } 4784 4785 AVC_AUDIT_DATA_INIT(&ad, IPC); 4786 ad.u.ipc_id = msq->q_perm.key; 4787 4788 /* Can this process write to the queue? */ 4789 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4790 MSGQ__WRITE, &ad); 4791 if (!rc) 4792 /* Can this process send the message */ 4793 rc = avc_has_perm(tsec->sid, msec->sid, 4794 SECCLASS_MSG, MSG__SEND, &ad); 4795 if (!rc) 4796 /* Can the message be put in the queue? */ 4797 rc = avc_has_perm(msec->sid, isec->sid, 4798 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); 4799 4800 return rc; 4801 } 4802 4803 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4804 struct task_struct *target, 4805 long type, int mode) 4806 { 4807 struct task_security_struct *tsec; 4808 struct ipc_security_struct *isec; 4809 struct msg_security_struct *msec; 4810 struct avc_audit_data ad; 4811 int rc; 4812 4813 tsec = target->security; 4814 isec = msq->q_perm.security; 4815 msec = msg->security; 4816 4817 AVC_AUDIT_DATA_INIT(&ad, IPC); 4818 ad.u.ipc_id = msq->q_perm.key; 4819 4820 rc = avc_has_perm(tsec->sid, isec->sid, 4821 SECCLASS_MSGQ, MSGQ__READ, &ad); 4822 if (!rc) 4823 rc = avc_has_perm(tsec->sid, msec->sid, 4824 SECCLASS_MSG, MSG__RECEIVE, &ad); 4825 return rc; 4826 } 4827 4828 /* Shared Memory security operations */ 4829 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4830 { 4831 struct task_security_struct *tsec; 4832 struct ipc_security_struct *isec; 4833 struct avc_audit_data ad; 4834 int rc; 4835 4836 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4837 if (rc) 4838 return rc; 4839 4840 tsec = current->security; 4841 isec = shp->shm_perm.security; 4842 4843 AVC_AUDIT_DATA_INIT(&ad, IPC); 4844 ad.u.ipc_id = shp->shm_perm.key; 4845 4846 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4847 SHM__CREATE, &ad); 4848 if (rc) { 4849 ipc_free_security(&shp->shm_perm); 4850 return rc; 4851 } 4852 return 0; 4853 } 4854 4855 static void selinux_shm_free_security(struct shmid_kernel *shp) 4856 { 4857 ipc_free_security(&shp->shm_perm); 4858 } 4859 4860 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4861 { 4862 struct task_security_struct *tsec; 4863 struct ipc_security_struct *isec; 4864 struct avc_audit_data ad; 4865 4866 tsec = current->security; 4867 isec = shp->shm_perm.security; 4868 4869 AVC_AUDIT_DATA_INIT(&ad, IPC); 4870 ad.u.ipc_id = shp->shm_perm.key; 4871 4872 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4873 SHM__ASSOCIATE, &ad); 4874 } 4875 4876 /* Note, at this point, shp is locked down */ 4877 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4878 { 4879 int perms; 4880 int err; 4881 4882 switch (cmd) { 4883 case IPC_INFO: 4884 case SHM_INFO: 4885 /* No specific object, just general system-wide information. */ 4886 return task_has_system(current, SYSTEM__IPC_INFO); 4887 case IPC_STAT: 4888 case SHM_STAT: 4889 perms = SHM__GETATTR | SHM__ASSOCIATE; 4890 break; 4891 case IPC_SET: 4892 perms = SHM__SETATTR; 4893 break; 4894 case SHM_LOCK: 4895 case SHM_UNLOCK: 4896 perms = SHM__LOCK; 4897 break; 4898 case IPC_RMID: 4899 perms = SHM__DESTROY; 4900 break; 4901 default: 4902 return 0; 4903 } 4904 4905 err = ipc_has_perm(&shp->shm_perm, perms); 4906 return err; 4907 } 4908 4909 static int selinux_shm_shmat(struct shmid_kernel *shp, 4910 char __user *shmaddr, int shmflg) 4911 { 4912 u32 perms; 4913 int rc; 4914 4915 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg); 4916 if (rc) 4917 return rc; 4918 4919 if (shmflg & SHM_RDONLY) 4920 perms = SHM__READ; 4921 else 4922 perms = SHM__READ | SHM__WRITE; 4923 4924 return ipc_has_perm(&shp->shm_perm, perms); 4925 } 4926 4927 /* Semaphore security operations */ 4928 static int selinux_sem_alloc_security(struct sem_array *sma) 4929 { 4930 struct task_security_struct *tsec; 4931 struct ipc_security_struct *isec; 4932 struct avc_audit_data ad; 4933 int rc; 4934 4935 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4936 if (rc) 4937 return rc; 4938 4939 tsec = current->security; 4940 isec = sma->sem_perm.security; 4941 4942 AVC_AUDIT_DATA_INIT(&ad, IPC); 4943 ad.u.ipc_id = sma->sem_perm.key; 4944 4945 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4946 SEM__CREATE, &ad); 4947 if (rc) { 4948 ipc_free_security(&sma->sem_perm); 4949 return rc; 4950 } 4951 return 0; 4952 } 4953 4954 static void selinux_sem_free_security(struct sem_array *sma) 4955 { 4956 ipc_free_security(&sma->sem_perm); 4957 } 4958 4959 static int selinux_sem_associate(struct sem_array *sma, int semflg) 4960 { 4961 struct task_security_struct *tsec; 4962 struct ipc_security_struct *isec; 4963 struct avc_audit_data ad; 4964 4965 tsec = current->security; 4966 isec = sma->sem_perm.security; 4967 4968 AVC_AUDIT_DATA_INIT(&ad, IPC); 4969 ad.u.ipc_id = sma->sem_perm.key; 4970 4971 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4972 SEM__ASSOCIATE, &ad); 4973 } 4974 4975 /* Note, at this point, sma is locked down */ 4976 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 4977 { 4978 int err; 4979 u32 perms; 4980 4981 switch (cmd) { 4982 case IPC_INFO: 4983 case SEM_INFO: 4984 /* No specific object, just general system-wide information. */ 4985 return task_has_system(current, SYSTEM__IPC_INFO); 4986 case GETPID: 4987 case GETNCNT: 4988 case GETZCNT: 4989 perms = SEM__GETATTR; 4990 break; 4991 case GETVAL: 4992 case GETALL: 4993 perms = SEM__READ; 4994 break; 4995 case SETVAL: 4996 case SETALL: 4997 perms = SEM__WRITE; 4998 break; 4999 case IPC_RMID: 5000 perms = SEM__DESTROY; 5001 break; 5002 case IPC_SET: 5003 perms = SEM__SETATTR; 5004 break; 5005 case IPC_STAT: 5006 case SEM_STAT: 5007 perms = SEM__GETATTR | SEM__ASSOCIATE; 5008 break; 5009 default: 5010 return 0; 5011 } 5012 5013 err = ipc_has_perm(&sma->sem_perm, perms); 5014 return err; 5015 } 5016 5017 static int selinux_sem_semop(struct sem_array *sma, 5018 struct sembuf *sops, unsigned nsops, int alter) 5019 { 5020 u32 perms; 5021 5022 if (alter) 5023 perms = SEM__READ | SEM__WRITE; 5024 else 5025 perms = SEM__READ; 5026 5027 return ipc_has_perm(&sma->sem_perm, perms); 5028 } 5029 5030 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5031 { 5032 u32 av = 0; 5033 5034 av = 0; 5035 if (flag & S_IRUGO) 5036 av |= IPC__UNIX_READ; 5037 if (flag & S_IWUGO) 5038 av |= IPC__UNIX_WRITE; 5039 5040 if (av == 0) 5041 return 0; 5042 5043 return ipc_has_perm(ipcp, av); 5044 } 5045 5046 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5047 { 5048 struct ipc_security_struct *isec = ipcp->security; 5049 *secid = isec->sid; 5050 } 5051 5052 /* module stacking operations */ 5053 static int selinux_register_security(const char *name, struct security_operations *ops) 5054 { 5055 if (secondary_ops != original_ops) { 5056 printk(KERN_ERR "%s: There is already a secondary security " 5057 "module registered.\n", __func__); 5058 return -EINVAL; 5059 } 5060 5061 secondary_ops = ops; 5062 5063 printk(KERN_INFO "%s: Registering secondary module %s\n", 5064 __func__, 5065 name); 5066 5067 return 0; 5068 } 5069 5070 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5071 { 5072 if (inode) 5073 inode_doinit_with_dentry(inode, dentry); 5074 } 5075 5076 static int selinux_getprocattr(struct task_struct *p, 5077 char *name, char **value) 5078 { 5079 struct task_security_struct *tsec; 5080 u32 sid; 5081 int error; 5082 unsigned len; 5083 5084 if (current != p) { 5085 error = task_has_perm(current, p, PROCESS__GETATTR); 5086 if (error) 5087 return error; 5088 } 5089 5090 tsec = p->security; 5091 5092 if (!strcmp(name, "current")) 5093 sid = tsec->sid; 5094 else if (!strcmp(name, "prev")) 5095 sid = tsec->osid; 5096 else if (!strcmp(name, "exec")) 5097 sid = tsec->exec_sid; 5098 else if (!strcmp(name, "fscreate")) 5099 sid = tsec->create_sid; 5100 else if (!strcmp(name, "keycreate")) 5101 sid = tsec->keycreate_sid; 5102 else if (!strcmp(name, "sockcreate")) 5103 sid = tsec->sockcreate_sid; 5104 else 5105 return -EINVAL; 5106 5107 if (!sid) 5108 return 0; 5109 5110 error = security_sid_to_context(sid, value, &len); 5111 if (error) 5112 return error; 5113 return len; 5114 } 5115 5116 static int selinux_setprocattr(struct task_struct *p, 5117 char *name, void *value, size_t size) 5118 { 5119 struct task_security_struct *tsec; 5120 struct task_struct *tracer; 5121 u32 sid = 0; 5122 int error; 5123 char *str = value; 5124 5125 if (current != p) { 5126 /* SELinux only allows a process to change its own 5127 security attributes. */ 5128 return -EACCES; 5129 } 5130 5131 /* 5132 * Basic control over ability to set these attributes at all. 5133 * current == p, but we'll pass them separately in case the 5134 * above restriction is ever removed. 5135 */ 5136 if (!strcmp(name, "exec")) 5137 error = task_has_perm(current, p, PROCESS__SETEXEC); 5138 else if (!strcmp(name, "fscreate")) 5139 error = task_has_perm(current, p, PROCESS__SETFSCREATE); 5140 else if (!strcmp(name, "keycreate")) 5141 error = task_has_perm(current, p, PROCESS__SETKEYCREATE); 5142 else if (!strcmp(name, "sockcreate")) 5143 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE); 5144 else if (!strcmp(name, "current")) 5145 error = task_has_perm(current, p, PROCESS__SETCURRENT); 5146 else 5147 error = -EINVAL; 5148 if (error) 5149 return error; 5150 5151 /* Obtain a SID for the context, if one was specified. */ 5152 if (size && str[1] && str[1] != '\n') { 5153 if (str[size-1] == '\n') { 5154 str[size-1] = 0; 5155 size--; 5156 } 5157 error = security_context_to_sid(value, size, &sid); 5158 if (error) 5159 return error; 5160 } 5161 5162 /* Permission checking based on the specified context is 5163 performed during the actual operation (execve, 5164 open/mkdir/...), when we know the full context of the 5165 operation. See selinux_bprm_set_security for the execve 5166 checks and may_create for the file creation checks. The 5167 operation will then fail if the context is not permitted. */ 5168 tsec = p->security; 5169 if (!strcmp(name, "exec")) 5170 tsec->exec_sid = sid; 5171 else if (!strcmp(name, "fscreate")) 5172 tsec->create_sid = sid; 5173 else if (!strcmp(name, "keycreate")) { 5174 error = may_create_key(sid, p); 5175 if (error) 5176 return error; 5177 tsec->keycreate_sid = sid; 5178 } else if (!strcmp(name, "sockcreate")) 5179 tsec->sockcreate_sid = sid; 5180 else if (!strcmp(name, "current")) { 5181 struct av_decision avd; 5182 5183 if (sid == 0) 5184 return -EINVAL; 5185 5186 /* Only allow single threaded processes to change context */ 5187 if (atomic_read(&p->mm->mm_users) != 1) { 5188 struct task_struct *g, *t; 5189 struct mm_struct *mm = p->mm; 5190 read_lock(&tasklist_lock); 5191 do_each_thread(g, t) 5192 if (t->mm == mm && t != p) { 5193 read_unlock(&tasklist_lock); 5194 return -EPERM; 5195 } 5196 while_each_thread(g, t); 5197 read_unlock(&tasklist_lock); 5198 } 5199 5200 /* Check permissions for the transition. */ 5201 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5202 PROCESS__DYNTRANSITION, NULL); 5203 if (error) 5204 return error; 5205 5206 /* Check for ptracing, and update the task SID if ok. 5207 Otherwise, leave SID unchanged and fail. */ 5208 task_lock(p); 5209 rcu_read_lock(); 5210 tracer = task_tracer_task(p); 5211 if (tracer != NULL) { 5212 struct task_security_struct *ptsec = tracer->security; 5213 u32 ptsid = ptsec->sid; 5214 rcu_read_unlock(); 5215 error = avc_has_perm_noaudit(ptsid, sid, 5216 SECCLASS_PROCESS, 5217 PROCESS__PTRACE, 0, &avd); 5218 if (!error) 5219 tsec->sid = sid; 5220 task_unlock(p); 5221 avc_audit(ptsid, sid, SECCLASS_PROCESS, 5222 PROCESS__PTRACE, &avd, error, NULL); 5223 if (error) 5224 return error; 5225 } else { 5226 rcu_read_unlock(); 5227 tsec->sid = sid; 5228 task_unlock(p); 5229 } 5230 } else 5231 return -EINVAL; 5232 5233 return size; 5234 } 5235 5236 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5237 { 5238 return security_sid_to_context(secid, secdata, seclen); 5239 } 5240 5241 static int selinux_secctx_to_secid(char *secdata, u32 seclen, u32 *secid) 5242 { 5243 return security_context_to_sid(secdata, seclen, secid); 5244 } 5245 5246 static void selinux_release_secctx(char *secdata, u32 seclen) 5247 { 5248 kfree(secdata); 5249 } 5250 5251 #ifdef CONFIG_KEYS 5252 5253 static int selinux_key_alloc(struct key *k, struct task_struct *tsk, 5254 unsigned long flags) 5255 { 5256 struct task_security_struct *tsec = tsk->security; 5257 struct key_security_struct *ksec; 5258 5259 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5260 if (!ksec) 5261 return -ENOMEM; 5262 5263 if (tsec->keycreate_sid) 5264 ksec->sid = tsec->keycreate_sid; 5265 else 5266 ksec->sid = tsec->sid; 5267 k->security = ksec; 5268 5269 return 0; 5270 } 5271 5272 static void selinux_key_free(struct key *k) 5273 { 5274 struct key_security_struct *ksec = k->security; 5275 5276 k->security = NULL; 5277 kfree(ksec); 5278 } 5279 5280 static int selinux_key_permission(key_ref_t key_ref, 5281 struct task_struct *ctx, 5282 key_perm_t perm) 5283 { 5284 struct key *key; 5285 struct task_security_struct *tsec; 5286 struct key_security_struct *ksec; 5287 5288 key = key_ref_to_ptr(key_ref); 5289 5290 tsec = ctx->security; 5291 ksec = key->security; 5292 5293 /* if no specific permissions are requested, we skip the 5294 permission check. No serious, additional covert channels 5295 appear to be created. */ 5296 if (perm == 0) 5297 return 0; 5298 5299 return avc_has_perm(tsec->sid, ksec->sid, 5300 SECCLASS_KEY, perm, NULL); 5301 } 5302 5303 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5304 { 5305 struct key_security_struct *ksec = key->security; 5306 char *context = NULL; 5307 unsigned len; 5308 int rc; 5309 5310 rc = security_sid_to_context(ksec->sid, &context, &len); 5311 if (!rc) 5312 rc = len; 5313 *_buffer = context; 5314 return rc; 5315 } 5316 5317 #endif 5318 5319 static struct security_operations selinux_ops = { 5320 .name = "selinux", 5321 5322 .ptrace = selinux_ptrace, 5323 .capget = selinux_capget, 5324 .capset_check = selinux_capset_check, 5325 .capset_set = selinux_capset_set, 5326 .sysctl = selinux_sysctl, 5327 .capable = selinux_capable, 5328 .quotactl = selinux_quotactl, 5329 .quota_on = selinux_quota_on, 5330 .syslog = selinux_syslog, 5331 .vm_enough_memory = selinux_vm_enough_memory, 5332 5333 .netlink_send = selinux_netlink_send, 5334 .netlink_recv = selinux_netlink_recv, 5335 5336 .bprm_alloc_security = selinux_bprm_alloc_security, 5337 .bprm_free_security = selinux_bprm_free_security, 5338 .bprm_apply_creds = selinux_bprm_apply_creds, 5339 .bprm_post_apply_creds = selinux_bprm_post_apply_creds, 5340 .bprm_set_security = selinux_bprm_set_security, 5341 .bprm_check_security = selinux_bprm_check_security, 5342 .bprm_secureexec = selinux_bprm_secureexec, 5343 5344 .sb_alloc_security = selinux_sb_alloc_security, 5345 .sb_free_security = selinux_sb_free_security, 5346 .sb_copy_data = selinux_sb_copy_data, 5347 .sb_kern_mount = selinux_sb_kern_mount, 5348 .sb_statfs = selinux_sb_statfs, 5349 .sb_mount = selinux_mount, 5350 .sb_umount = selinux_umount, 5351 .sb_get_mnt_opts = selinux_get_mnt_opts, 5352 .sb_set_mnt_opts = selinux_set_mnt_opts, 5353 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5354 .sb_parse_opts_str = selinux_parse_opts_str, 5355 5356 5357 .inode_alloc_security = selinux_inode_alloc_security, 5358 .inode_free_security = selinux_inode_free_security, 5359 .inode_init_security = selinux_inode_init_security, 5360 .inode_create = selinux_inode_create, 5361 .inode_link = selinux_inode_link, 5362 .inode_unlink = selinux_inode_unlink, 5363 .inode_symlink = selinux_inode_symlink, 5364 .inode_mkdir = selinux_inode_mkdir, 5365 .inode_rmdir = selinux_inode_rmdir, 5366 .inode_mknod = selinux_inode_mknod, 5367 .inode_rename = selinux_inode_rename, 5368 .inode_readlink = selinux_inode_readlink, 5369 .inode_follow_link = selinux_inode_follow_link, 5370 .inode_permission = selinux_inode_permission, 5371 .inode_setattr = selinux_inode_setattr, 5372 .inode_getattr = selinux_inode_getattr, 5373 .inode_setxattr = selinux_inode_setxattr, 5374 .inode_post_setxattr = selinux_inode_post_setxattr, 5375 .inode_getxattr = selinux_inode_getxattr, 5376 .inode_listxattr = selinux_inode_listxattr, 5377 .inode_removexattr = selinux_inode_removexattr, 5378 .inode_getsecurity = selinux_inode_getsecurity, 5379 .inode_setsecurity = selinux_inode_setsecurity, 5380 .inode_listsecurity = selinux_inode_listsecurity, 5381 .inode_need_killpriv = selinux_inode_need_killpriv, 5382 .inode_killpriv = selinux_inode_killpriv, 5383 .inode_getsecid = selinux_inode_getsecid, 5384 5385 .file_permission = selinux_file_permission, 5386 .file_alloc_security = selinux_file_alloc_security, 5387 .file_free_security = selinux_file_free_security, 5388 .file_ioctl = selinux_file_ioctl, 5389 .file_mmap = selinux_file_mmap, 5390 .file_mprotect = selinux_file_mprotect, 5391 .file_lock = selinux_file_lock, 5392 .file_fcntl = selinux_file_fcntl, 5393 .file_set_fowner = selinux_file_set_fowner, 5394 .file_send_sigiotask = selinux_file_send_sigiotask, 5395 .file_receive = selinux_file_receive, 5396 5397 .dentry_open = selinux_dentry_open, 5398 5399 .task_create = selinux_task_create, 5400 .task_alloc_security = selinux_task_alloc_security, 5401 .task_free_security = selinux_task_free_security, 5402 .task_setuid = selinux_task_setuid, 5403 .task_post_setuid = selinux_task_post_setuid, 5404 .task_setgid = selinux_task_setgid, 5405 .task_setpgid = selinux_task_setpgid, 5406 .task_getpgid = selinux_task_getpgid, 5407 .task_getsid = selinux_task_getsid, 5408 .task_getsecid = selinux_task_getsecid, 5409 .task_setgroups = selinux_task_setgroups, 5410 .task_setnice = selinux_task_setnice, 5411 .task_setioprio = selinux_task_setioprio, 5412 .task_getioprio = selinux_task_getioprio, 5413 .task_setrlimit = selinux_task_setrlimit, 5414 .task_setscheduler = selinux_task_setscheduler, 5415 .task_getscheduler = selinux_task_getscheduler, 5416 .task_movememory = selinux_task_movememory, 5417 .task_kill = selinux_task_kill, 5418 .task_wait = selinux_task_wait, 5419 .task_prctl = selinux_task_prctl, 5420 .task_reparent_to_init = selinux_task_reparent_to_init, 5421 .task_to_inode = selinux_task_to_inode, 5422 5423 .ipc_permission = selinux_ipc_permission, 5424 .ipc_getsecid = selinux_ipc_getsecid, 5425 5426 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5427 .msg_msg_free_security = selinux_msg_msg_free_security, 5428 5429 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5430 .msg_queue_free_security = selinux_msg_queue_free_security, 5431 .msg_queue_associate = selinux_msg_queue_associate, 5432 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5433 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5434 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5435 5436 .shm_alloc_security = selinux_shm_alloc_security, 5437 .shm_free_security = selinux_shm_free_security, 5438 .shm_associate = selinux_shm_associate, 5439 .shm_shmctl = selinux_shm_shmctl, 5440 .shm_shmat = selinux_shm_shmat, 5441 5442 .sem_alloc_security = selinux_sem_alloc_security, 5443 .sem_free_security = selinux_sem_free_security, 5444 .sem_associate = selinux_sem_associate, 5445 .sem_semctl = selinux_sem_semctl, 5446 .sem_semop = selinux_sem_semop, 5447 5448 .register_security = selinux_register_security, 5449 5450 .d_instantiate = selinux_d_instantiate, 5451 5452 .getprocattr = selinux_getprocattr, 5453 .setprocattr = selinux_setprocattr, 5454 5455 .secid_to_secctx = selinux_secid_to_secctx, 5456 .secctx_to_secid = selinux_secctx_to_secid, 5457 .release_secctx = selinux_release_secctx, 5458 5459 .unix_stream_connect = selinux_socket_unix_stream_connect, 5460 .unix_may_send = selinux_socket_unix_may_send, 5461 5462 .socket_create = selinux_socket_create, 5463 .socket_post_create = selinux_socket_post_create, 5464 .socket_bind = selinux_socket_bind, 5465 .socket_connect = selinux_socket_connect, 5466 .socket_listen = selinux_socket_listen, 5467 .socket_accept = selinux_socket_accept, 5468 .socket_sendmsg = selinux_socket_sendmsg, 5469 .socket_recvmsg = selinux_socket_recvmsg, 5470 .socket_getsockname = selinux_socket_getsockname, 5471 .socket_getpeername = selinux_socket_getpeername, 5472 .socket_getsockopt = selinux_socket_getsockopt, 5473 .socket_setsockopt = selinux_socket_setsockopt, 5474 .socket_shutdown = selinux_socket_shutdown, 5475 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5476 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5477 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5478 .sk_alloc_security = selinux_sk_alloc_security, 5479 .sk_free_security = selinux_sk_free_security, 5480 .sk_clone_security = selinux_sk_clone_security, 5481 .sk_getsecid = selinux_sk_getsecid, 5482 .sock_graft = selinux_sock_graft, 5483 .inet_conn_request = selinux_inet_conn_request, 5484 .inet_csk_clone = selinux_inet_csk_clone, 5485 .inet_conn_established = selinux_inet_conn_established, 5486 .req_classify_flow = selinux_req_classify_flow, 5487 5488 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5489 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5490 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5491 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5492 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5493 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5494 .xfrm_state_free_security = selinux_xfrm_state_free, 5495 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5496 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5497 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5498 .xfrm_decode_session = selinux_xfrm_decode_session, 5499 #endif 5500 5501 #ifdef CONFIG_KEYS 5502 .key_alloc = selinux_key_alloc, 5503 .key_free = selinux_key_free, 5504 .key_permission = selinux_key_permission, 5505 .key_getsecurity = selinux_key_getsecurity, 5506 #endif 5507 5508 #ifdef CONFIG_AUDIT 5509 .audit_rule_init = selinux_audit_rule_init, 5510 .audit_rule_known = selinux_audit_rule_known, 5511 .audit_rule_match = selinux_audit_rule_match, 5512 .audit_rule_free = selinux_audit_rule_free, 5513 #endif 5514 }; 5515 5516 static __init int selinux_init(void) 5517 { 5518 struct task_security_struct *tsec; 5519 5520 if (!security_module_enable(&selinux_ops)) { 5521 selinux_enabled = 0; 5522 return 0; 5523 } 5524 5525 if (!selinux_enabled) { 5526 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5527 return 0; 5528 } 5529 5530 printk(KERN_INFO "SELinux: Initializing.\n"); 5531 5532 /* Set the security state for the initial task. */ 5533 if (task_alloc_security(current)) 5534 panic("SELinux: Failed to initialize initial task.\n"); 5535 tsec = current->security; 5536 tsec->osid = tsec->sid = SECINITSID_KERNEL; 5537 5538 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5539 sizeof(struct inode_security_struct), 5540 0, SLAB_PANIC, NULL); 5541 avc_init(); 5542 5543 original_ops = secondary_ops = security_ops; 5544 if (!secondary_ops) 5545 panic("SELinux: No initial security operations\n"); 5546 if (register_security(&selinux_ops)) 5547 panic("SELinux: Unable to register with kernel.\n"); 5548 5549 if (selinux_enforcing) 5550 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5551 else 5552 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5553 5554 #ifdef CONFIG_KEYS 5555 /* Add security information to initial keyrings */ 5556 selinux_key_alloc(&root_user_keyring, current, 5557 KEY_ALLOC_NOT_IN_QUOTA); 5558 selinux_key_alloc(&root_session_keyring, current, 5559 KEY_ALLOC_NOT_IN_QUOTA); 5560 #endif 5561 5562 return 0; 5563 } 5564 5565 void selinux_complete_init(void) 5566 { 5567 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5568 5569 /* Set up any superblocks initialized prior to the policy load. */ 5570 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5571 spin_lock(&sb_lock); 5572 spin_lock(&sb_security_lock); 5573 next_sb: 5574 if (!list_empty(&superblock_security_head)) { 5575 struct superblock_security_struct *sbsec = 5576 list_entry(superblock_security_head.next, 5577 struct superblock_security_struct, 5578 list); 5579 struct super_block *sb = sbsec->sb; 5580 sb->s_count++; 5581 spin_unlock(&sb_security_lock); 5582 spin_unlock(&sb_lock); 5583 down_read(&sb->s_umount); 5584 if (sb->s_root) 5585 superblock_doinit(sb, NULL); 5586 drop_super(sb); 5587 spin_lock(&sb_lock); 5588 spin_lock(&sb_security_lock); 5589 list_del_init(&sbsec->list); 5590 goto next_sb; 5591 } 5592 spin_unlock(&sb_security_lock); 5593 spin_unlock(&sb_lock); 5594 } 5595 5596 /* SELinux requires early initialization in order to label 5597 all processes and objects when they are created. */ 5598 security_initcall(selinux_init); 5599 5600 #if defined(CONFIG_NETFILTER) 5601 5602 static struct nf_hook_ops selinux_ipv4_ops[] = { 5603 { 5604 .hook = selinux_ipv4_postroute, 5605 .owner = THIS_MODULE, 5606 .pf = PF_INET, 5607 .hooknum = NF_INET_POST_ROUTING, 5608 .priority = NF_IP_PRI_SELINUX_LAST, 5609 }, 5610 { 5611 .hook = selinux_ipv4_forward, 5612 .owner = THIS_MODULE, 5613 .pf = PF_INET, 5614 .hooknum = NF_INET_FORWARD, 5615 .priority = NF_IP_PRI_SELINUX_FIRST, 5616 } 5617 }; 5618 5619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5620 5621 static struct nf_hook_ops selinux_ipv6_ops[] = { 5622 { 5623 .hook = selinux_ipv6_postroute, 5624 .owner = THIS_MODULE, 5625 .pf = PF_INET6, 5626 .hooknum = NF_INET_POST_ROUTING, 5627 .priority = NF_IP6_PRI_SELINUX_LAST, 5628 }, 5629 { 5630 .hook = selinux_ipv6_forward, 5631 .owner = THIS_MODULE, 5632 .pf = PF_INET6, 5633 .hooknum = NF_INET_FORWARD, 5634 .priority = NF_IP6_PRI_SELINUX_FIRST, 5635 } 5636 }; 5637 5638 #endif /* IPV6 */ 5639 5640 static int __init selinux_nf_ip_init(void) 5641 { 5642 int err = 0; 5643 u32 iter; 5644 5645 if (!selinux_enabled) 5646 goto out; 5647 5648 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5649 5650 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++) { 5651 err = nf_register_hook(&selinux_ipv4_ops[iter]); 5652 if (err) 5653 panic("SELinux: nf_register_hook for IPv4: error %d\n", 5654 err); 5655 } 5656 5657 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5658 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++) { 5659 err = nf_register_hook(&selinux_ipv6_ops[iter]); 5660 if (err) 5661 panic("SELinux: nf_register_hook for IPv6: error %d\n", 5662 err); 5663 } 5664 #endif /* IPV6 */ 5665 5666 out: 5667 return err; 5668 } 5669 5670 __initcall(selinux_nf_ip_init); 5671 5672 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5673 static void selinux_nf_ip_exit(void) 5674 { 5675 u32 iter; 5676 5677 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5678 5679 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv4_ops); iter++) 5680 nf_unregister_hook(&selinux_ipv4_ops[iter]); 5681 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5682 for (iter = 0; iter < ARRAY_SIZE(selinux_ipv6_ops); iter++) 5683 nf_unregister_hook(&selinux_ipv6_ops[iter]); 5684 #endif /* IPV6 */ 5685 } 5686 #endif 5687 5688 #else /* CONFIG_NETFILTER */ 5689 5690 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5691 #define selinux_nf_ip_exit() 5692 #endif 5693 5694 #endif /* CONFIG_NETFILTER */ 5695 5696 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5697 static int selinux_disabled; 5698 5699 int selinux_disable(void) 5700 { 5701 extern void exit_sel_fs(void); 5702 5703 if (ss_initialized) { 5704 /* Not permitted after initial policy load. */ 5705 return -EINVAL; 5706 } 5707 5708 if (selinux_disabled) { 5709 /* Only do this once. */ 5710 return -EINVAL; 5711 } 5712 5713 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5714 5715 selinux_disabled = 1; 5716 selinux_enabled = 0; 5717 5718 /* Reset security_ops to the secondary module, dummy or capability. */ 5719 security_ops = secondary_ops; 5720 5721 /* Unregister netfilter hooks. */ 5722 selinux_nf_ip_exit(); 5723 5724 /* Unregister selinuxfs. */ 5725 exit_sel_fs(); 5726 5727 return 0; 5728 } 5729 #endif 5730