xref: /openbmc/linux/security/selinux/hooks.c (revision 6b4f3d01052a479c7ebbe99d52a663558dc1be2a)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *  Copyright (C) 2016 Mellanox Technologies
21  *
22  *	This program is free software; you can redistribute it and/or modify
23  *	it under the terms of the GNU General Public License version 2,
24  *	as published by the Free Software Foundation.
25  */
26 
27 #include <linux/init.h>
28 #include <linux/kd.h>
29 #include <linux/kernel.h>
30 #include <linux/tracehook.h>
31 #include <linux/errno.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/task.h>
34 #include <linux/lsm_hooks.h>
35 #include <linux/xattr.h>
36 #include <linux/capability.h>
37 #include <linux/unistd.h>
38 #include <linux/mm.h>
39 #include <linux/mman.h>
40 #include <linux/slab.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/swap.h>
44 #include <linux/spinlock.h>
45 #include <linux/syscalls.h>
46 #include <linux/dcache.h>
47 #include <linux/file.h>
48 #include <linux/fdtable.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 #include <linux/netfilter_ipv4.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/tty.h>
54 #include <net/icmp.h>
55 #include <net/ip.h>		/* for local_port_range[] */
56 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
57 #include <net/inet_connection_sock.h>
58 #include <net/net_namespace.h>
59 #include <net/netlabel.h>
60 #include <linux/uaccess.h>
61 #include <asm/ioctls.h>
62 #include <linux/atomic.h>
63 #include <linux/bitops.h>
64 #include <linux/interrupt.h>
65 #include <linux/netdevice.h>	/* for network interface checks */
66 #include <net/netlink.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/dccp.h>
70 #include <linux/quota.h>
71 #include <linux/un.h>		/* for Unix socket types */
72 #include <net/af_unix.h>	/* for Unix socket types */
73 #include <linux/parser.h>
74 #include <linux/nfs_mount.h>
75 #include <net/ipv6.h>
76 #include <linux/hugetlb.h>
77 #include <linux/personality.h>
78 #include <linux/audit.h>
79 #include <linux/string.h>
80 #include <linux/selinux.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 
90 #include "avc.h"
91 #include "objsec.h"
92 #include "netif.h"
93 #include "netnode.h"
94 #include "netport.h"
95 #include "ibpkey.h"
96 #include "xfrm.h"
97 #include "netlabel.h"
98 #include "audit.h"
99 #include "avc_ss.h"
100 
101 /* SECMARK reference count */
102 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
103 
104 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
105 int selinux_enforcing;
106 
107 static int __init enforcing_setup(char *str)
108 {
109 	unsigned long enforcing;
110 	if (!kstrtoul(str, 0, &enforcing))
111 		selinux_enforcing = enforcing ? 1 : 0;
112 	return 1;
113 }
114 __setup("enforcing=", enforcing_setup);
115 #endif
116 
117 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
118 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
119 
120 static int __init selinux_enabled_setup(char *str)
121 {
122 	unsigned long enabled;
123 	if (!kstrtoul(str, 0, &enabled))
124 		selinux_enabled = enabled ? 1 : 0;
125 	return 1;
126 }
127 __setup("selinux=", selinux_enabled_setup);
128 #else
129 int selinux_enabled = 1;
130 #endif
131 
132 static struct kmem_cache *sel_inode_cache;
133 static struct kmem_cache *file_security_cache;
134 
135 /**
136  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
137  *
138  * Description:
139  * This function checks the SECMARK reference counter to see if any SECMARK
140  * targets are currently configured, if the reference counter is greater than
141  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
142  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
143  * policy capability is enabled, SECMARK is always considered enabled.
144  *
145  */
146 static int selinux_secmark_enabled(void)
147 {
148 	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
149 }
150 
151 /**
152  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
153  *
154  * Description:
155  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
156  * (1) if any are enabled or false (0) if neither are enabled.  If the
157  * always_check_network policy capability is enabled, peer labeling
158  * is always considered enabled.
159  *
160  */
161 static int selinux_peerlbl_enabled(void)
162 {
163 	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
164 }
165 
166 static int selinux_netcache_avc_callback(u32 event)
167 {
168 	if (event == AVC_CALLBACK_RESET) {
169 		sel_netif_flush();
170 		sel_netnode_flush();
171 		sel_netport_flush();
172 		synchronize_net();
173 	}
174 	return 0;
175 }
176 
177 static int selinux_lsm_notifier_avc_callback(u32 event)
178 {
179 	if (event == AVC_CALLBACK_RESET) {
180 		sel_ib_pkey_flush();
181 		call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
182 	}
183 
184 	return 0;
185 }
186 
187 /*
188  * initialise the security for the init task
189  */
190 static void cred_init_security(void)
191 {
192 	struct cred *cred = (struct cred *) current->real_cred;
193 	struct task_security_struct *tsec;
194 
195 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
196 	if (!tsec)
197 		panic("SELinux:  Failed to initialize initial task.\n");
198 
199 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
200 	cred->security = tsec;
201 }
202 
203 /*
204  * get the security ID of a set of credentials
205  */
206 static inline u32 cred_sid(const struct cred *cred)
207 {
208 	const struct task_security_struct *tsec;
209 
210 	tsec = cred->security;
211 	return tsec->sid;
212 }
213 
214 /*
215  * get the objective security ID of a task
216  */
217 static inline u32 task_sid(const struct task_struct *task)
218 {
219 	u32 sid;
220 
221 	rcu_read_lock();
222 	sid = cred_sid(__task_cred(task));
223 	rcu_read_unlock();
224 	return sid;
225 }
226 
227 /* Allocate and free functions for each kind of security blob. */
228 
229 static int inode_alloc_security(struct inode *inode)
230 {
231 	struct inode_security_struct *isec;
232 	u32 sid = current_sid();
233 
234 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
235 	if (!isec)
236 		return -ENOMEM;
237 
238 	spin_lock_init(&isec->lock);
239 	INIT_LIST_HEAD(&isec->list);
240 	isec->inode = inode;
241 	isec->sid = SECINITSID_UNLABELED;
242 	isec->sclass = SECCLASS_FILE;
243 	isec->task_sid = sid;
244 	isec->initialized = LABEL_INVALID;
245 	inode->i_security = isec;
246 
247 	return 0;
248 }
249 
250 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
251 
252 /*
253  * Try reloading inode security labels that have been marked as invalid.  The
254  * @may_sleep parameter indicates when sleeping and thus reloading labels is
255  * allowed; when set to false, returns -ECHILD when the label is
256  * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
257  * when no dentry is available, set it to NULL instead.
258  */
259 static int __inode_security_revalidate(struct inode *inode,
260 				       struct dentry *opt_dentry,
261 				       bool may_sleep)
262 {
263 	struct inode_security_struct *isec = inode->i_security;
264 
265 	might_sleep_if(may_sleep);
266 
267 	if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
268 		if (!may_sleep)
269 			return -ECHILD;
270 
271 		/*
272 		 * Try reloading the inode security label.  This will fail if
273 		 * @opt_dentry is NULL and no dentry for this inode can be
274 		 * found; in that case, continue using the old label.
275 		 */
276 		inode_doinit_with_dentry(inode, opt_dentry);
277 	}
278 	return 0;
279 }
280 
281 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
282 {
283 	return inode->i_security;
284 }
285 
286 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
287 {
288 	int error;
289 
290 	error = __inode_security_revalidate(inode, NULL, !rcu);
291 	if (error)
292 		return ERR_PTR(error);
293 	return inode->i_security;
294 }
295 
296 /*
297  * Get the security label of an inode.
298  */
299 static struct inode_security_struct *inode_security(struct inode *inode)
300 {
301 	__inode_security_revalidate(inode, NULL, true);
302 	return inode->i_security;
303 }
304 
305 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
306 {
307 	struct inode *inode = d_backing_inode(dentry);
308 
309 	return inode->i_security;
310 }
311 
312 /*
313  * Get the security label of a dentry's backing inode.
314  */
315 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
316 {
317 	struct inode *inode = d_backing_inode(dentry);
318 
319 	__inode_security_revalidate(inode, dentry, true);
320 	return inode->i_security;
321 }
322 
323 static void inode_free_rcu(struct rcu_head *head)
324 {
325 	struct inode_security_struct *isec;
326 
327 	isec = container_of(head, struct inode_security_struct, rcu);
328 	kmem_cache_free(sel_inode_cache, isec);
329 }
330 
331 static void inode_free_security(struct inode *inode)
332 {
333 	struct inode_security_struct *isec = inode->i_security;
334 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
335 
336 	/*
337 	 * As not all inode security structures are in a list, we check for
338 	 * empty list outside of the lock to make sure that we won't waste
339 	 * time taking a lock doing nothing.
340 	 *
341 	 * The list_del_init() function can be safely called more than once.
342 	 * It should not be possible for this function to be called with
343 	 * concurrent list_add(), but for better safety against future changes
344 	 * in the code, we use list_empty_careful() here.
345 	 */
346 	if (!list_empty_careful(&isec->list)) {
347 		spin_lock(&sbsec->isec_lock);
348 		list_del_init(&isec->list);
349 		spin_unlock(&sbsec->isec_lock);
350 	}
351 
352 	/*
353 	 * The inode may still be referenced in a path walk and
354 	 * a call to selinux_inode_permission() can be made
355 	 * after inode_free_security() is called. Ideally, the VFS
356 	 * wouldn't do this, but fixing that is a much harder
357 	 * job. For now, simply free the i_security via RCU, and
358 	 * leave the current inode->i_security pointer intact.
359 	 * The inode will be freed after the RCU grace period too.
360 	 */
361 	call_rcu(&isec->rcu, inode_free_rcu);
362 }
363 
364 static int file_alloc_security(struct file *file)
365 {
366 	struct file_security_struct *fsec;
367 	u32 sid = current_sid();
368 
369 	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
370 	if (!fsec)
371 		return -ENOMEM;
372 
373 	fsec->sid = sid;
374 	fsec->fown_sid = sid;
375 	file->f_security = fsec;
376 
377 	return 0;
378 }
379 
380 static void file_free_security(struct file *file)
381 {
382 	struct file_security_struct *fsec = file->f_security;
383 	file->f_security = NULL;
384 	kmem_cache_free(file_security_cache, fsec);
385 }
386 
387 static int superblock_alloc_security(struct super_block *sb)
388 {
389 	struct superblock_security_struct *sbsec;
390 
391 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
392 	if (!sbsec)
393 		return -ENOMEM;
394 
395 	mutex_init(&sbsec->lock);
396 	INIT_LIST_HEAD(&sbsec->isec_head);
397 	spin_lock_init(&sbsec->isec_lock);
398 	sbsec->sb = sb;
399 	sbsec->sid = SECINITSID_UNLABELED;
400 	sbsec->def_sid = SECINITSID_FILE;
401 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
402 	sb->s_security = sbsec;
403 
404 	return 0;
405 }
406 
407 static void superblock_free_security(struct super_block *sb)
408 {
409 	struct superblock_security_struct *sbsec = sb->s_security;
410 	sb->s_security = NULL;
411 	kfree(sbsec);
412 }
413 
414 static inline int inode_doinit(struct inode *inode)
415 {
416 	return inode_doinit_with_dentry(inode, NULL);
417 }
418 
419 enum {
420 	Opt_error = -1,
421 	Opt_context = 1,
422 	Opt_fscontext = 2,
423 	Opt_defcontext = 3,
424 	Opt_rootcontext = 4,
425 	Opt_labelsupport = 5,
426 	Opt_nextmntopt = 6,
427 };
428 
429 #define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
430 
431 static const match_table_t tokens = {
432 	{Opt_context, CONTEXT_STR "%s"},
433 	{Opt_fscontext, FSCONTEXT_STR "%s"},
434 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
435 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
436 	{Opt_labelsupport, LABELSUPP_STR},
437 	{Opt_error, NULL},
438 };
439 
440 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
441 
442 static int may_context_mount_sb_relabel(u32 sid,
443 			struct superblock_security_struct *sbsec,
444 			const struct cred *cred)
445 {
446 	const struct task_security_struct *tsec = cred->security;
447 	int rc;
448 
449 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
450 			  FILESYSTEM__RELABELFROM, NULL);
451 	if (rc)
452 		return rc;
453 
454 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
455 			  FILESYSTEM__RELABELTO, NULL);
456 	return rc;
457 }
458 
459 static int may_context_mount_inode_relabel(u32 sid,
460 			struct superblock_security_struct *sbsec,
461 			const struct cred *cred)
462 {
463 	const struct task_security_struct *tsec = cred->security;
464 	int rc;
465 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
466 			  FILESYSTEM__RELABELFROM, NULL);
467 	if (rc)
468 		return rc;
469 
470 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 			  FILESYSTEM__ASSOCIATE, NULL);
472 	return rc;
473 }
474 
475 static int selinux_is_sblabel_mnt(struct super_block *sb)
476 {
477 	struct superblock_security_struct *sbsec = sb->s_security;
478 
479 	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
480 		sbsec->behavior == SECURITY_FS_USE_TRANS ||
481 		sbsec->behavior == SECURITY_FS_USE_TASK ||
482 		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
483 		/* Special handling. Genfs but also in-core setxattr handler */
484 		!strcmp(sb->s_type->name, "sysfs") ||
485 		!strcmp(sb->s_type->name, "pstore") ||
486 		!strcmp(sb->s_type->name, "debugfs") ||
487 		!strcmp(sb->s_type->name, "tracefs") ||
488 		!strcmp(sb->s_type->name, "rootfs") ||
489 		(selinux_policycap_cgroupseclabel &&
490 		 (!strcmp(sb->s_type->name, "cgroup") ||
491 		  !strcmp(sb->s_type->name, "cgroup2")));
492 }
493 
494 static int sb_finish_set_opts(struct super_block *sb)
495 {
496 	struct superblock_security_struct *sbsec = sb->s_security;
497 	struct dentry *root = sb->s_root;
498 	struct inode *root_inode = d_backing_inode(root);
499 	int rc = 0;
500 
501 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
502 		/* Make sure that the xattr handler exists and that no
503 		   error other than -ENODATA is returned by getxattr on
504 		   the root directory.  -ENODATA is ok, as this may be
505 		   the first boot of the SELinux kernel before we have
506 		   assigned xattr values to the filesystem. */
507 		if (!(root_inode->i_opflags & IOP_XATTR)) {
508 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
509 			       "xattr support\n", sb->s_id, sb->s_type->name);
510 			rc = -EOPNOTSUPP;
511 			goto out;
512 		}
513 
514 		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
515 		if (rc < 0 && rc != -ENODATA) {
516 			if (rc == -EOPNOTSUPP)
517 				printk(KERN_WARNING "SELinux: (dev %s, type "
518 				       "%s) has no security xattr handler\n",
519 				       sb->s_id, sb->s_type->name);
520 			else
521 				printk(KERN_WARNING "SELinux: (dev %s, type "
522 				       "%s) getxattr errno %d\n", sb->s_id,
523 				       sb->s_type->name, -rc);
524 			goto out;
525 		}
526 	}
527 
528 	sbsec->flags |= SE_SBINITIALIZED;
529 
530 	/*
531 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
532 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
533 	 * us a superblock that needs the flag to be cleared.
534 	 */
535 	if (selinux_is_sblabel_mnt(sb))
536 		sbsec->flags |= SBLABEL_MNT;
537 	else
538 		sbsec->flags &= ~SBLABEL_MNT;
539 
540 	/* Initialize the root inode. */
541 	rc = inode_doinit_with_dentry(root_inode, root);
542 
543 	/* Initialize any other inodes associated with the superblock, e.g.
544 	   inodes created prior to initial policy load or inodes created
545 	   during get_sb by a pseudo filesystem that directly
546 	   populates itself. */
547 	spin_lock(&sbsec->isec_lock);
548 next_inode:
549 	if (!list_empty(&sbsec->isec_head)) {
550 		struct inode_security_struct *isec =
551 				list_entry(sbsec->isec_head.next,
552 					   struct inode_security_struct, list);
553 		struct inode *inode = isec->inode;
554 		list_del_init(&isec->list);
555 		spin_unlock(&sbsec->isec_lock);
556 		inode = igrab(inode);
557 		if (inode) {
558 			if (!IS_PRIVATE(inode))
559 				inode_doinit(inode);
560 			iput(inode);
561 		}
562 		spin_lock(&sbsec->isec_lock);
563 		goto next_inode;
564 	}
565 	spin_unlock(&sbsec->isec_lock);
566 out:
567 	return rc;
568 }
569 
570 /*
571  * This function should allow an FS to ask what it's mount security
572  * options were so it can use those later for submounts, displaying
573  * mount options, or whatever.
574  */
575 static int selinux_get_mnt_opts(const struct super_block *sb,
576 				struct security_mnt_opts *opts)
577 {
578 	int rc = 0, i;
579 	struct superblock_security_struct *sbsec = sb->s_security;
580 	char *context = NULL;
581 	u32 len;
582 	char tmp;
583 
584 	security_init_mnt_opts(opts);
585 
586 	if (!(sbsec->flags & SE_SBINITIALIZED))
587 		return -EINVAL;
588 
589 	if (!ss_initialized)
590 		return -EINVAL;
591 
592 	/* make sure we always check enough bits to cover the mask */
593 	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
594 
595 	tmp = sbsec->flags & SE_MNTMASK;
596 	/* count the number of mount options for this sb */
597 	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
598 		if (tmp & 0x01)
599 			opts->num_mnt_opts++;
600 		tmp >>= 1;
601 	}
602 	/* Check if the Label support flag is set */
603 	if (sbsec->flags & SBLABEL_MNT)
604 		opts->num_mnt_opts++;
605 
606 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
607 	if (!opts->mnt_opts) {
608 		rc = -ENOMEM;
609 		goto out_free;
610 	}
611 
612 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
613 	if (!opts->mnt_opts_flags) {
614 		rc = -ENOMEM;
615 		goto out_free;
616 	}
617 
618 	i = 0;
619 	if (sbsec->flags & FSCONTEXT_MNT) {
620 		rc = security_sid_to_context(sbsec->sid, &context, &len);
621 		if (rc)
622 			goto out_free;
623 		opts->mnt_opts[i] = context;
624 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
625 	}
626 	if (sbsec->flags & CONTEXT_MNT) {
627 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
628 		if (rc)
629 			goto out_free;
630 		opts->mnt_opts[i] = context;
631 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
632 	}
633 	if (sbsec->flags & DEFCONTEXT_MNT) {
634 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
635 		if (rc)
636 			goto out_free;
637 		opts->mnt_opts[i] = context;
638 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
639 	}
640 	if (sbsec->flags & ROOTCONTEXT_MNT) {
641 		struct dentry *root = sbsec->sb->s_root;
642 		struct inode_security_struct *isec = backing_inode_security(root);
643 
644 		rc = security_sid_to_context(isec->sid, &context, &len);
645 		if (rc)
646 			goto out_free;
647 		opts->mnt_opts[i] = context;
648 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
649 	}
650 	if (sbsec->flags & SBLABEL_MNT) {
651 		opts->mnt_opts[i] = NULL;
652 		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
653 	}
654 
655 	BUG_ON(i != opts->num_mnt_opts);
656 
657 	return 0;
658 
659 out_free:
660 	security_free_mnt_opts(opts);
661 	return rc;
662 }
663 
664 static int bad_option(struct superblock_security_struct *sbsec, char flag,
665 		      u32 old_sid, u32 new_sid)
666 {
667 	char mnt_flags = sbsec->flags & SE_MNTMASK;
668 
669 	/* check if the old mount command had the same options */
670 	if (sbsec->flags & SE_SBINITIALIZED)
671 		if (!(sbsec->flags & flag) ||
672 		    (old_sid != new_sid))
673 			return 1;
674 
675 	/* check if we were passed the same options twice,
676 	 * aka someone passed context=a,context=b
677 	 */
678 	if (!(sbsec->flags & SE_SBINITIALIZED))
679 		if (mnt_flags & flag)
680 			return 1;
681 	return 0;
682 }
683 
684 /*
685  * Allow filesystems with binary mount data to explicitly set mount point
686  * labeling information.
687  */
688 static int selinux_set_mnt_opts(struct super_block *sb,
689 				struct security_mnt_opts *opts,
690 				unsigned long kern_flags,
691 				unsigned long *set_kern_flags)
692 {
693 	const struct cred *cred = current_cred();
694 	int rc = 0, i;
695 	struct superblock_security_struct *sbsec = sb->s_security;
696 	const char *name = sb->s_type->name;
697 	struct dentry *root = sbsec->sb->s_root;
698 	struct inode_security_struct *root_isec;
699 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
700 	u32 defcontext_sid = 0;
701 	char **mount_options = opts->mnt_opts;
702 	int *flags = opts->mnt_opts_flags;
703 	int num_opts = opts->num_mnt_opts;
704 
705 	mutex_lock(&sbsec->lock);
706 
707 	if (!ss_initialized) {
708 		if (!num_opts) {
709 			/* Defer initialization until selinux_complete_init,
710 			   after the initial policy is loaded and the security
711 			   server is ready to handle calls. */
712 			goto out;
713 		}
714 		rc = -EINVAL;
715 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
716 			"before the security server is initialized\n");
717 		goto out;
718 	}
719 	if (kern_flags && !set_kern_flags) {
720 		/* Specifying internal flags without providing a place to
721 		 * place the results is not allowed */
722 		rc = -EINVAL;
723 		goto out;
724 	}
725 
726 	/*
727 	 * Binary mount data FS will come through this function twice.  Once
728 	 * from an explicit call and once from the generic calls from the vfs.
729 	 * Since the generic VFS calls will not contain any security mount data
730 	 * we need to skip the double mount verification.
731 	 *
732 	 * This does open a hole in which we will not notice if the first
733 	 * mount using this sb set explict options and a second mount using
734 	 * this sb does not set any security options.  (The first options
735 	 * will be used for both mounts)
736 	 */
737 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
738 	    && (num_opts == 0))
739 		goto out;
740 
741 	root_isec = backing_inode_security_novalidate(root);
742 
743 	/*
744 	 * parse the mount options, check if they are valid sids.
745 	 * also check if someone is trying to mount the same sb more
746 	 * than once with different security options.
747 	 */
748 	for (i = 0; i < num_opts; i++) {
749 		u32 sid;
750 
751 		if (flags[i] == SBLABEL_MNT)
752 			continue;
753 		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
754 		if (rc) {
755 			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
756 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
757 			       mount_options[i], sb->s_id, name, rc);
758 			goto out;
759 		}
760 		switch (flags[i]) {
761 		case FSCONTEXT_MNT:
762 			fscontext_sid = sid;
763 
764 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
765 					fscontext_sid))
766 				goto out_double_mount;
767 
768 			sbsec->flags |= FSCONTEXT_MNT;
769 			break;
770 		case CONTEXT_MNT:
771 			context_sid = sid;
772 
773 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
774 					context_sid))
775 				goto out_double_mount;
776 
777 			sbsec->flags |= CONTEXT_MNT;
778 			break;
779 		case ROOTCONTEXT_MNT:
780 			rootcontext_sid = sid;
781 
782 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
783 					rootcontext_sid))
784 				goto out_double_mount;
785 
786 			sbsec->flags |= ROOTCONTEXT_MNT;
787 
788 			break;
789 		case DEFCONTEXT_MNT:
790 			defcontext_sid = sid;
791 
792 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
793 					defcontext_sid))
794 				goto out_double_mount;
795 
796 			sbsec->flags |= DEFCONTEXT_MNT;
797 
798 			break;
799 		default:
800 			rc = -EINVAL;
801 			goto out;
802 		}
803 	}
804 
805 	if (sbsec->flags & SE_SBINITIALIZED) {
806 		/* previously mounted with options, but not on this attempt? */
807 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
808 			goto out_double_mount;
809 		rc = 0;
810 		goto out;
811 	}
812 
813 	if (strcmp(sb->s_type->name, "proc") == 0)
814 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
815 
816 	if (!strcmp(sb->s_type->name, "debugfs") ||
817 	    !strcmp(sb->s_type->name, "tracefs") ||
818 	    !strcmp(sb->s_type->name, "sysfs") ||
819 	    !strcmp(sb->s_type->name, "pstore") ||
820 	    !strcmp(sb->s_type->name, "cgroup") ||
821 	    !strcmp(sb->s_type->name, "cgroup2"))
822 		sbsec->flags |= SE_SBGENFS;
823 
824 	if (!sbsec->behavior) {
825 		/*
826 		 * Determine the labeling behavior to use for this
827 		 * filesystem type.
828 		 */
829 		rc = security_fs_use(sb);
830 		if (rc) {
831 			printk(KERN_WARNING
832 				"%s: security_fs_use(%s) returned %d\n",
833 					__func__, sb->s_type->name, rc);
834 			goto out;
835 		}
836 	}
837 
838 	/*
839 	 * If this is a user namespace mount and the filesystem type is not
840 	 * explicitly whitelisted, then no contexts are allowed on the command
841 	 * line and security labels must be ignored.
842 	 */
843 	if (sb->s_user_ns != &init_user_ns &&
844 	    strcmp(sb->s_type->name, "tmpfs") &&
845 	    strcmp(sb->s_type->name, "ramfs") &&
846 	    strcmp(sb->s_type->name, "devpts")) {
847 		if (context_sid || fscontext_sid || rootcontext_sid ||
848 		    defcontext_sid) {
849 			rc = -EACCES;
850 			goto out;
851 		}
852 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
853 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
854 			rc = security_transition_sid(current_sid(), current_sid(),
855 						     SECCLASS_FILE, NULL,
856 						     &sbsec->mntpoint_sid);
857 			if (rc)
858 				goto out;
859 		}
860 		goto out_set_opts;
861 	}
862 
863 	/* sets the context of the superblock for the fs being mounted. */
864 	if (fscontext_sid) {
865 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
866 		if (rc)
867 			goto out;
868 
869 		sbsec->sid = fscontext_sid;
870 	}
871 
872 	/*
873 	 * Switch to using mount point labeling behavior.
874 	 * sets the label used on all file below the mountpoint, and will set
875 	 * the superblock context if not already set.
876 	 */
877 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
878 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
879 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
880 	}
881 
882 	if (context_sid) {
883 		if (!fscontext_sid) {
884 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
885 							  cred);
886 			if (rc)
887 				goto out;
888 			sbsec->sid = context_sid;
889 		} else {
890 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
891 							     cred);
892 			if (rc)
893 				goto out;
894 		}
895 		if (!rootcontext_sid)
896 			rootcontext_sid = context_sid;
897 
898 		sbsec->mntpoint_sid = context_sid;
899 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
900 	}
901 
902 	if (rootcontext_sid) {
903 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
904 						     cred);
905 		if (rc)
906 			goto out;
907 
908 		root_isec->sid = rootcontext_sid;
909 		root_isec->initialized = LABEL_INITIALIZED;
910 	}
911 
912 	if (defcontext_sid) {
913 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
914 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
915 			rc = -EINVAL;
916 			printk(KERN_WARNING "SELinux: defcontext option is "
917 			       "invalid for this filesystem type\n");
918 			goto out;
919 		}
920 
921 		if (defcontext_sid != sbsec->def_sid) {
922 			rc = may_context_mount_inode_relabel(defcontext_sid,
923 							     sbsec, cred);
924 			if (rc)
925 				goto out;
926 		}
927 
928 		sbsec->def_sid = defcontext_sid;
929 	}
930 
931 out_set_opts:
932 	rc = sb_finish_set_opts(sb);
933 out:
934 	mutex_unlock(&sbsec->lock);
935 	return rc;
936 out_double_mount:
937 	rc = -EINVAL;
938 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
939 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
940 	goto out;
941 }
942 
943 static int selinux_cmp_sb_context(const struct super_block *oldsb,
944 				    const struct super_block *newsb)
945 {
946 	struct superblock_security_struct *old = oldsb->s_security;
947 	struct superblock_security_struct *new = newsb->s_security;
948 	char oldflags = old->flags & SE_MNTMASK;
949 	char newflags = new->flags & SE_MNTMASK;
950 
951 	if (oldflags != newflags)
952 		goto mismatch;
953 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
954 		goto mismatch;
955 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
956 		goto mismatch;
957 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
958 		goto mismatch;
959 	if (oldflags & ROOTCONTEXT_MNT) {
960 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
961 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
962 		if (oldroot->sid != newroot->sid)
963 			goto mismatch;
964 	}
965 	return 0;
966 mismatch:
967 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
968 			    "different security settings for (dev %s, "
969 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
970 	return -EBUSY;
971 }
972 
973 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
974 					struct super_block *newsb,
975 					unsigned long kern_flags,
976 					unsigned long *set_kern_flags)
977 {
978 	int rc = 0;
979 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
980 	struct superblock_security_struct *newsbsec = newsb->s_security;
981 
982 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
983 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
984 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
985 
986 	/*
987 	 * if the parent was able to be mounted it clearly had no special lsm
988 	 * mount options.  thus we can safely deal with this superblock later
989 	 */
990 	if (!ss_initialized)
991 		return 0;
992 
993 	/*
994 	 * Specifying internal flags without providing a place to
995 	 * place the results is not allowed.
996 	 */
997 	if (kern_flags && !set_kern_flags)
998 		return -EINVAL;
999 
1000 	/* how can we clone if the old one wasn't set up?? */
1001 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1002 
1003 	/* if fs is reusing a sb, make sure that the contexts match */
1004 	if (newsbsec->flags & SE_SBINITIALIZED)
1005 		return selinux_cmp_sb_context(oldsb, newsb);
1006 
1007 	mutex_lock(&newsbsec->lock);
1008 
1009 	newsbsec->flags = oldsbsec->flags;
1010 
1011 	newsbsec->sid = oldsbsec->sid;
1012 	newsbsec->def_sid = oldsbsec->def_sid;
1013 	newsbsec->behavior = oldsbsec->behavior;
1014 
1015 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1016 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1017 		rc = security_fs_use(newsb);
1018 		if (rc)
1019 			goto out;
1020 	}
1021 
1022 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1023 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1024 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1025 	}
1026 
1027 	if (set_context) {
1028 		u32 sid = oldsbsec->mntpoint_sid;
1029 
1030 		if (!set_fscontext)
1031 			newsbsec->sid = sid;
1032 		if (!set_rootcontext) {
1033 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1034 			newisec->sid = sid;
1035 		}
1036 		newsbsec->mntpoint_sid = sid;
1037 	}
1038 	if (set_rootcontext) {
1039 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1040 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1041 
1042 		newisec->sid = oldisec->sid;
1043 	}
1044 
1045 	sb_finish_set_opts(newsb);
1046 out:
1047 	mutex_unlock(&newsbsec->lock);
1048 	return rc;
1049 }
1050 
1051 static int selinux_parse_opts_str(char *options,
1052 				  struct security_mnt_opts *opts)
1053 {
1054 	char *p;
1055 	char *context = NULL, *defcontext = NULL;
1056 	char *fscontext = NULL, *rootcontext = NULL;
1057 	int rc, num_mnt_opts = 0;
1058 
1059 	opts->num_mnt_opts = 0;
1060 
1061 	/* Standard string-based options. */
1062 	while ((p = strsep(&options, "|")) != NULL) {
1063 		int token;
1064 		substring_t args[MAX_OPT_ARGS];
1065 
1066 		if (!*p)
1067 			continue;
1068 
1069 		token = match_token(p, tokens, args);
1070 
1071 		switch (token) {
1072 		case Opt_context:
1073 			if (context || defcontext) {
1074 				rc = -EINVAL;
1075 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1076 				goto out_err;
1077 			}
1078 			context = match_strdup(&args[0]);
1079 			if (!context) {
1080 				rc = -ENOMEM;
1081 				goto out_err;
1082 			}
1083 			break;
1084 
1085 		case Opt_fscontext:
1086 			if (fscontext) {
1087 				rc = -EINVAL;
1088 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1089 				goto out_err;
1090 			}
1091 			fscontext = match_strdup(&args[0]);
1092 			if (!fscontext) {
1093 				rc = -ENOMEM;
1094 				goto out_err;
1095 			}
1096 			break;
1097 
1098 		case Opt_rootcontext:
1099 			if (rootcontext) {
1100 				rc = -EINVAL;
1101 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1102 				goto out_err;
1103 			}
1104 			rootcontext = match_strdup(&args[0]);
1105 			if (!rootcontext) {
1106 				rc = -ENOMEM;
1107 				goto out_err;
1108 			}
1109 			break;
1110 
1111 		case Opt_defcontext:
1112 			if (context || defcontext) {
1113 				rc = -EINVAL;
1114 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1115 				goto out_err;
1116 			}
1117 			defcontext = match_strdup(&args[0]);
1118 			if (!defcontext) {
1119 				rc = -ENOMEM;
1120 				goto out_err;
1121 			}
1122 			break;
1123 		case Opt_labelsupport:
1124 			break;
1125 		default:
1126 			rc = -EINVAL;
1127 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1128 			goto out_err;
1129 
1130 		}
1131 	}
1132 
1133 	rc = -ENOMEM;
1134 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1135 	if (!opts->mnt_opts)
1136 		goto out_err;
1137 
1138 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1139 				       GFP_KERNEL);
1140 	if (!opts->mnt_opts_flags)
1141 		goto out_err;
1142 
1143 	if (fscontext) {
1144 		opts->mnt_opts[num_mnt_opts] = fscontext;
1145 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1146 	}
1147 	if (context) {
1148 		opts->mnt_opts[num_mnt_opts] = context;
1149 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1150 	}
1151 	if (rootcontext) {
1152 		opts->mnt_opts[num_mnt_opts] = rootcontext;
1153 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1154 	}
1155 	if (defcontext) {
1156 		opts->mnt_opts[num_mnt_opts] = defcontext;
1157 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1158 	}
1159 
1160 	opts->num_mnt_opts = num_mnt_opts;
1161 	return 0;
1162 
1163 out_err:
1164 	security_free_mnt_opts(opts);
1165 	kfree(context);
1166 	kfree(defcontext);
1167 	kfree(fscontext);
1168 	kfree(rootcontext);
1169 	return rc;
1170 }
1171 /*
1172  * string mount options parsing and call set the sbsec
1173  */
1174 static int superblock_doinit(struct super_block *sb, void *data)
1175 {
1176 	int rc = 0;
1177 	char *options = data;
1178 	struct security_mnt_opts opts;
1179 
1180 	security_init_mnt_opts(&opts);
1181 
1182 	if (!data)
1183 		goto out;
1184 
1185 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1186 
1187 	rc = selinux_parse_opts_str(options, &opts);
1188 	if (rc)
1189 		goto out_err;
1190 
1191 out:
1192 	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1193 
1194 out_err:
1195 	security_free_mnt_opts(&opts);
1196 	return rc;
1197 }
1198 
1199 static void selinux_write_opts(struct seq_file *m,
1200 			       struct security_mnt_opts *opts)
1201 {
1202 	int i;
1203 	char *prefix;
1204 
1205 	for (i = 0; i < opts->num_mnt_opts; i++) {
1206 		char *has_comma;
1207 
1208 		if (opts->mnt_opts[i])
1209 			has_comma = strchr(opts->mnt_opts[i], ',');
1210 		else
1211 			has_comma = NULL;
1212 
1213 		switch (opts->mnt_opts_flags[i]) {
1214 		case CONTEXT_MNT:
1215 			prefix = CONTEXT_STR;
1216 			break;
1217 		case FSCONTEXT_MNT:
1218 			prefix = FSCONTEXT_STR;
1219 			break;
1220 		case ROOTCONTEXT_MNT:
1221 			prefix = ROOTCONTEXT_STR;
1222 			break;
1223 		case DEFCONTEXT_MNT:
1224 			prefix = DEFCONTEXT_STR;
1225 			break;
1226 		case SBLABEL_MNT:
1227 			seq_putc(m, ',');
1228 			seq_puts(m, LABELSUPP_STR);
1229 			continue;
1230 		default:
1231 			BUG();
1232 			return;
1233 		};
1234 		/* we need a comma before each option */
1235 		seq_putc(m, ',');
1236 		seq_puts(m, prefix);
1237 		if (has_comma)
1238 			seq_putc(m, '\"');
1239 		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1240 		if (has_comma)
1241 			seq_putc(m, '\"');
1242 	}
1243 }
1244 
1245 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1246 {
1247 	struct security_mnt_opts opts;
1248 	int rc;
1249 
1250 	rc = selinux_get_mnt_opts(sb, &opts);
1251 	if (rc) {
1252 		/* before policy load we may get EINVAL, don't show anything */
1253 		if (rc == -EINVAL)
1254 			rc = 0;
1255 		return rc;
1256 	}
1257 
1258 	selinux_write_opts(m, &opts);
1259 
1260 	security_free_mnt_opts(&opts);
1261 
1262 	return rc;
1263 }
1264 
1265 static inline u16 inode_mode_to_security_class(umode_t mode)
1266 {
1267 	switch (mode & S_IFMT) {
1268 	case S_IFSOCK:
1269 		return SECCLASS_SOCK_FILE;
1270 	case S_IFLNK:
1271 		return SECCLASS_LNK_FILE;
1272 	case S_IFREG:
1273 		return SECCLASS_FILE;
1274 	case S_IFBLK:
1275 		return SECCLASS_BLK_FILE;
1276 	case S_IFDIR:
1277 		return SECCLASS_DIR;
1278 	case S_IFCHR:
1279 		return SECCLASS_CHR_FILE;
1280 	case S_IFIFO:
1281 		return SECCLASS_FIFO_FILE;
1282 
1283 	}
1284 
1285 	return SECCLASS_FILE;
1286 }
1287 
1288 static inline int default_protocol_stream(int protocol)
1289 {
1290 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1291 }
1292 
1293 static inline int default_protocol_dgram(int protocol)
1294 {
1295 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1296 }
1297 
1298 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1299 {
1300 	int extsockclass = selinux_policycap_extsockclass;
1301 
1302 	switch (family) {
1303 	case PF_UNIX:
1304 		switch (type) {
1305 		case SOCK_STREAM:
1306 		case SOCK_SEQPACKET:
1307 			return SECCLASS_UNIX_STREAM_SOCKET;
1308 		case SOCK_DGRAM:
1309 		case SOCK_RAW:
1310 			return SECCLASS_UNIX_DGRAM_SOCKET;
1311 		}
1312 		break;
1313 	case PF_INET:
1314 	case PF_INET6:
1315 		switch (type) {
1316 		case SOCK_STREAM:
1317 		case SOCK_SEQPACKET:
1318 			if (default_protocol_stream(protocol))
1319 				return SECCLASS_TCP_SOCKET;
1320 			else if (extsockclass && protocol == IPPROTO_SCTP)
1321 				return SECCLASS_SCTP_SOCKET;
1322 			else
1323 				return SECCLASS_RAWIP_SOCKET;
1324 		case SOCK_DGRAM:
1325 			if (default_protocol_dgram(protocol))
1326 				return SECCLASS_UDP_SOCKET;
1327 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1328 						  protocol == IPPROTO_ICMPV6))
1329 				return SECCLASS_ICMP_SOCKET;
1330 			else
1331 				return SECCLASS_RAWIP_SOCKET;
1332 		case SOCK_DCCP:
1333 			return SECCLASS_DCCP_SOCKET;
1334 		default:
1335 			return SECCLASS_RAWIP_SOCKET;
1336 		}
1337 		break;
1338 	case PF_NETLINK:
1339 		switch (protocol) {
1340 		case NETLINK_ROUTE:
1341 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1342 		case NETLINK_SOCK_DIAG:
1343 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1344 		case NETLINK_NFLOG:
1345 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1346 		case NETLINK_XFRM:
1347 			return SECCLASS_NETLINK_XFRM_SOCKET;
1348 		case NETLINK_SELINUX:
1349 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1350 		case NETLINK_ISCSI:
1351 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1352 		case NETLINK_AUDIT:
1353 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1354 		case NETLINK_FIB_LOOKUP:
1355 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1356 		case NETLINK_CONNECTOR:
1357 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1358 		case NETLINK_NETFILTER:
1359 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1360 		case NETLINK_DNRTMSG:
1361 			return SECCLASS_NETLINK_DNRT_SOCKET;
1362 		case NETLINK_KOBJECT_UEVENT:
1363 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1364 		case NETLINK_GENERIC:
1365 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1366 		case NETLINK_SCSITRANSPORT:
1367 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1368 		case NETLINK_RDMA:
1369 			return SECCLASS_NETLINK_RDMA_SOCKET;
1370 		case NETLINK_CRYPTO:
1371 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1372 		default:
1373 			return SECCLASS_NETLINK_SOCKET;
1374 		}
1375 	case PF_PACKET:
1376 		return SECCLASS_PACKET_SOCKET;
1377 	case PF_KEY:
1378 		return SECCLASS_KEY_SOCKET;
1379 	case PF_APPLETALK:
1380 		return SECCLASS_APPLETALK_SOCKET;
1381 	}
1382 
1383 	if (extsockclass) {
1384 		switch (family) {
1385 		case PF_AX25:
1386 			return SECCLASS_AX25_SOCKET;
1387 		case PF_IPX:
1388 			return SECCLASS_IPX_SOCKET;
1389 		case PF_NETROM:
1390 			return SECCLASS_NETROM_SOCKET;
1391 		case PF_ATMPVC:
1392 			return SECCLASS_ATMPVC_SOCKET;
1393 		case PF_X25:
1394 			return SECCLASS_X25_SOCKET;
1395 		case PF_ROSE:
1396 			return SECCLASS_ROSE_SOCKET;
1397 		case PF_DECnet:
1398 			return SECCLASS_DECNET_SOCKET;
1399 		case PF_ATMSVC:
1400 			return SECCLASS_ATMSVC_SOCKET;
1401 		case PF_RDS:
1402 			return SECCLASS_RDS_SOCKET;
1403 		case PF_IRDA:
1404 			return SECCLASS_IRDA_SOCKET;
1405 		case PF_PPPOX:
1406 			return SECCLASS_PPPOX_SOCKET;
1407 		case PF_LLC:
1408 			return SECCLASS_LLC_SOCKET;
1409 		case PF_CAN:
1410 			return SECCLASS_CAN_SOCKET;
1411 		case PF_TIPC:
1412 			return SECCLASS_TIPC_SOCKET;
1413 		case PF_BLUETOOTH:
1414 			return SECCLASS_BLUETOOTH_SOCKET;
1415 		case PF_IUCV:
1416 			return SECCLASS_IUCV_SOCKET;
1417 		case PF_RXRPC:
1418 			return SECCLASS_RXRPC_SOCKET;
1419 		case PF_ISDN:
1420 			return SECCLASS_ISDN_SOCKET;
1421 		case PF_PHONET:
1422 			return SECCLASS_PHONET_SOCKET;
1423 		case PF_IEEE802154:
1424 			return SECCLASS_IEEE802154_SOCKET;
1425 		case PF_CAIF:
1426 			return SECCLASS_CAIF_SOCKET;
1427 		case PF_ALG:
1428 			return SECCLASS_ALG_SOCKET;
1429 		case PF_NFC:
1430 			return SECCLASS_NFC_SOCKET;
1431 		case PF_VSOCK:
1432 			return SECCLASS_VSOCK_SOCKET;
1433 		case PF_KCM:
1434 			return SECCLASS_KCM_SOCKET;
1435 		case PF_QIPCRTR:
1436 			return SECCLASS_QIPCRTR_SOCKET;
1437 		case PF_SMC:
1438 			return SECCLASS_SMC_SOCKET;
1439 #if PF_MAX > 44
1440 #error New address family defined, please update this function.
1441 #endif
1442 		}
1443 	}
1444 
1445 	return SECCLASS_SOCKET;
1446 }
1447 
1448 static int selinux_genfs_get_sid(struct dentry *dentry,
1449 				 u16 tclass,
1450 				 u16 flags,
1451 				 u32 *sid)
1452 {
1453 	int rc;
1454 	struct super_block *sb = dentry->d_sb;
1455 	char *buffer, *path;
1456 
1457 	buffer = (char *)__get_free_page(GFP_KERNEL);
1458 	if (!buffer)
1459 		return -ENOMEM;
1460 
1461 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1462 	if (IS_ERR(path))
1463 		rc = PTR_ERR(path);
1464 	else {
1465 		if (flags & SE_SBPROC) {
1466 			/* each process gets a /proc/PID/ entry. Strip off the
1467 			 * PID part to get a valid selinux labeling.
1468 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1469 			while (path[1] >= '0' && path[1] <= '9') {
1470 				path[1] = '/';
1471 				path++;
1472 			}
1473 		}
1474 		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1475 	}
1476 	free_page((unsigned long)buffer);
1477 	return rc;
1478 }
1479 
1480 /* The inode's security attributes must be initialized before first use. */
1481 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1482 {
1483 	struct superblock_security_struct *sbsec = NULL;
1484 	struct inode_security_struct *isec = inode->i_security;
1485 	u32 task_sid, sid = 0;
1486 	u16 sclass;
1487 	struct dentry *dentry;
1488 #define INITCONTEXTLEN 255
1489 	char *context = NULL;
1490 	unsigned len = 0;
1491 	int rc = 0;
1492 
1493 	if (isec->initialized == LABEL_INITIALIZED)
1494 		return 0;
1495 
1496 	spin_lock(&isec->lock);
1497 	if (isec->initialized == LABEL_INITIALIZED)
1498 		goto out_unlock;
1499 
1500 	if (isec->sclass == SECCLASS_FILE)
1501 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1502 
1503 	sbsec = inode->i_sb->s_security;
1504 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1505 		/* Defer initialization until selinux_complete_init,
1506 		   after the initial policy is loaded and the security
1507 		   server is ready to handle calls. */
1508 		spin_lock(&sbsec->isec_lock);
1509 		if (list_empty(&isec->list))
1510 			list_add(&isec->list, &sbsec->isec_head);
1511 		spin_unlock(&sbsec->isec_lock);
1512 		goto out_unlock;
1513 	}
1514 
1515 	sclass = isec->sclass;
1516 	task_sid = isec->task_sid;
1517 	sid = isec->sid;
1518 	isec->initialized = LABEL_PENDING;
1519 	spin_unlock(&isec->lock);
1520 
1521 	switch (sbsec->behavior) {
1522 	case SECURITY_FS_USE_NATIVE:
1523 		break;
1524 	case SECURITY_FS_USE_XATTR:
1525 		if (!(inode->i_opflags & IOP_XATTR)) {
1526 			sid = sbsec->def_sid;
1527 			break;
1528 		}
1529 		/* Need a dentry, since the xattr API requires one.
1530 		   Life would be simpler if we could just pass the inode. */
1531 		if (opt_dentry) {
1532 			/* Called from d_instantiate or d_splice_alias. */
1533 			dentry = dget(opt_dentry);
1534 		} else {
1535 			/* Called from selinux_complete_init, try to find a dentry. */
1536 			dentry = d_find_alias(inode);
1537 		}
1538 		if (!dentry) {
1539 			/*
1540 			 * this is can be hit on boot when a file is accessed
1541 			 * before the policy is loaded.  When we load policy we
1542 			 * may find inodes that have no dentry on the
1543 			 * sbsec->isec_head list.  No reason to complain as these
1544 			 * will get fixed up the next time we go through
1545 			 * inode_doinit with a dentry, before these inodes could
1546 			 * be used again by userspace.
1547 			 */
1548 			goto out;
1549 		}
1550 
1551 		len = INITCONTEXTLEN;
1552 		context = kmalloc(len+1, GFP_NOFS);
1553 		if (!context) {
1554 			rc = -ENOMEM;
1555 			dput(dentry);
1556 			goto out;
1557 		}
1558 		context[len] = '\0';
1559 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1560 		if (rc == -ERANGE) {
1561 			kfree(context);
1562 
1563 			/* Need a larger buffer.  Query for the right size. */
1564 			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1565 			if (rc < 0) {
1566 				dput(dentry);
1567 				goto out;
1568 			}
1569 			len = rc;
1570 			context = kmalloc(len+1, GFP_NOFS);
1571 			if (!context) {
1572 				rc = -ENOMEM;
1573 				dput(dentry);
1574 				goto out;
1575 			}
1576 			context[len] = '\0';
1577 			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1578 		}
1579 		dput(dentry);
1580 		if (rc < 0) {
1581 			if (rc != -ENODATA) {
1582 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1583 				       "%d for dev=%s ino=%ld\n", __func__,
1584 				       -rc, inode->i_sb->s_id, inode->i_ino);
1585 				kfree(context);
1586 				goto out;
1587 			}
1588 			/* Map ENODATA to the default file SID */
1589 			sid = sbsec->def_sid;
1590 			rc = 0;
1591 		} else {
1592 			rc = security_context_to_sid_default(context, rc, &sid,
1593 							     sbsec->def_sid,
1594 							     GFP_NOFS);
1595 			if (rc) {
1596 				char *dev = inode->i_sb->s_id;
1597 				unsigned long ino = inode->i_ino;
1598 
1599 				if (rc == -EINVAL) {
1600 					if (printk_ratelimit())
1601 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1602 							"context=%s.  This indicates you may need to relabel the inode or the "
1603 							"filesystem in question.\n", ino, dev, context);
1604 				} else {
1605 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1606 					       "returned %d for dev=%s ino=%ld\n",
1607 					       __func__, context, -rc, dev, ino);
1608 				}
1609 				kfree(context);
1610 				/* Leave with the unlabeled SID */
1611 				rc = 0;
1612 				break;
1613 			}
1614 		}
1615 		kfree(context);
1616 		break;
1617 	case SECURITY_FS_USE_TASK:
1618 		sid = task_sid;
1619 		break;
1620 	case SECURITY_FS_USE_TRANS:
1621 		/* Default to the fs SID. */
1622 		sid = sbsec->sid;
1623 
1624 		/* Try to obtain a transition SID. */
1625 		rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
1626 		if (rc)
1627 			goto out;
1628 		break;
1629 	case SECURITY_FS_USE_MNTPOINT:
1630 		sid = sbsec->mntpoint_sid;
1631 		break;
1632 	default:
1633 		/* Default to the fs superblock SID. */
1634 		sid = sbsec->sid;
1635 
1636 		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1637 			/* We must have a dentry to determine the label on
1638 			 * procfs inodes */
1639 			if (opt_dentry)
1640 				/* Called from d_instantiate or
1641 				 * d_splice_alias. */
1642 				dentry = dget(opt_dentry);
1643 			else
1644 				/* Called from selinux_complete_init, try to
1645 				 * find a dentry. */
1646 				dentry = d_find_alias(inode);
1647 			/*
1648 			 * This can be hit on boot when a file is accessed
1649 			 * before the policy is loaded.  When we load policy we
1650 			 * may find inodes that have no dentry on the
1651 			 * sbsec->isec_head list.  No reason to complain as
1652 			 * these will get fixed up the next time we go through
1653 			 * inode_doinit() with a dentry, before these inodes
1654 			 * could be used again by userspace.
1655 			 */
1656 			if (!dentry)
1657 				goto out;
1658 			rc = selinux_genfs_get_sid(dentry, sclass,
1659 						   sbsec->flags, &sid);
1660 			dput(dentry);
1661 			if (rc)
1662 				goto out;
1663 		}
1664 		break;
1665 	}
1666 
1667 out:
1668 	spin_lock(&isec->lock);
1669 	if (isec->initialized == LABEL_PENDING) {
1670 		if (!sid || rc) {
1671 			isec->initialized = LABEL_INVALID;
1672 			goto out_unlock;
1673 		}
1674 
1675 		isec->initialized = LABEL_INITIALIZED;
1676 		isec->sid = sid;
1677 	}
1678 
1679 out_unlock:
1680 	spin_unlock(&isec->lock);
1681 	return rc;
1682 }
1683 
1684 /* Convert a Linux signal to an access vector. */
1685 static inline u32 signal_to_av(int sig)
1686 {
1687 	u32 perm = 0;
1688 
1689 	switch (sig) {
1690 	case SIGCHLD:
1691 		/* Commonly granted from child to parent. */
1692 		perm = PROCESS__SIGCHLD;
1693 		break;
1694 	case SIGKILL:
1695 		/* Cannot be caught or ignored */
1696 		perm = PROCESS__SIGKILL;
1697 		break;
1698 	case SIGSTOP:
1699 		/* Cannot be caught or ignored */
1700 		perm = PROCESS__SIGSTOP;
1701 		break;
1702 	default:
1703 		/* All other signals. */
1704 		perm = PROCESS__SIGNAL;
1705 		break;
1706 	}
1707 
1708 	return perm;
1709 }
1710 
1711 #if CAP_LAST_CAP > 63
1712 #error Fix SELinux to handle capabilities > 63.
1713 #endif
1714 
1715 /* Check whether a task is allowed to use a capability. */
1716 static int cred_has_capability(const struct cred *cred,
1717 			       int cap, int audit, bool initns)
1718 {
1719 	struct common_audit_data ad;
1720 	struct av_decision avd;
1721 	u16 sclass;
1722 	u32 sid = cred_sid(cred);
1723 	u32 av = CAP_TO_MASK(cap);
1724 	int rc;
1725 
1726 	ad.type = LSM_AUDIT_DATA_CAP;
1727 	ad.u.cap = cap;
1728 
1729 	switch (CAP_TO_INDEX(cap)) {
1730 	case 0:
1731 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1732 		break;
1733 	case 1:
1734 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1735 		break;
1736 	default:
1737 		printk(KERN_ERR
1738 		       "SELinux:  out of range capability %d\n", cap);
1739 		BUG();
1740 		return -EINVAL;
1741 	}
1742 
1743 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1744 	if (audit == SECURITY_CAP_AUDIT) {
1745 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1746 		if (rc2)
1747 			return rc2;
1748 	}
1749 	return rc;
1750 }
1751 
1752 /* Check whether a task has a particular permission to an inode.
1753    The 'adp' parameter is optional and allows other audit
1754    data to be passed (e.g. the dentry). */
1755 static int inode_has_perm(const struct cred *cred,
1756 			  struct inode *inode,
1757 			  u32 perms,
1758 			  struct common_audit_data *adp)
1759 {
1760 	struct inode_security_struct *isec;
1761 	u32 sid;
1762 
1763 	validate_creds(cred);
1764 
1765 	if (unlikely(IS_PRIVATE(inode)))
1766 		return 0;
1767 
1768 	sid = cred_sid(cred);
1769 	isec = inode->i_security;
1770 
1771 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1772 }
1773 
1774 /* Same as inode_has_perm, but pass explicit audit data containing
1775    the dentry to help the auditing code to more easily generate the
1776    pathname if needed. */
1777 static inline int dentry_has_perm(const struct cred *cred,
1778 				  struct dentry *dentry,
1779 				  u32 av)
1780 {
1781 	struct inode *inode = d_backing_inode(dentry);
1782 	struct common_audit_data ad;
1783 
1784 	ad.type = LSM_AUDIT_DATA_DENTRY;
1785 	ad.u.dentry = dentry;
1786 	__inode_security_revalidate(inode, dentry, true);
1787 	return inode_has_perm(cred, inode, av, &ad);
1788 }
1789 
1790 /* Same as inode_has_perm, but pass explicit audit data containing
1791    the path to help the auditing code to more easily generate the
1792    pathname if needed. */
1793 static inline int path_has_perm(const struct cred *cred,
1794 				const struct path *path,
1795 				u32 av)
1796 {
1797 	struct inode *inode = d_backing_inode(path->dentry);
1798 	struct common_audit_data ad;
1799 
1800 	ad.type = LSM_AUDIT_DATA_PATH;
1801 	ad.u.path = *path;
1802 	__inode_security_revalidate(inode, path->dentry, true);
1803 	return inode_has_perm(cred, inode, av, &ad);
1804 }
1805 
1806 /* Same as path_has_perm, but uses the inode from the file struct. */
1807 static inline int file_path_has_perm(const struct cred *cred,
1808 				     struct file *file,
1809 				     u32 av)
1810 {
1811 	struct common_audit_data ad;
1812 
1813 	ad.type = LSM_AUDIT_DATA_FILE;
1814 	ad.u.file = file;
1815 	return inode_has_perm(cred, file_inode(file), av, &ad);
1816 }
1817 
1818 #ifdef CONFIG_BPF_SYSCALL
1819 static int bpf_fd_pass(struct file *file, u32 sid);
1820 #endif
1821 
1822 /* Check whether a task can use an open file descriptor to
1823    access an inode in a given way.  Check access to the
1824    descriptor itself, and then use dentry_has_perm to
1825    check a particular permission to the file.
1826    Access to the descriptor is implicitly granted if it
1827    has the same SID as the process.  If av is zero, then
1828    access to the file is not checked, e.g. for cases
1829    where only the descriptor is affected like seek. */
1830 static int file_has_perm(const struct cred *cred,
1831 			 struct file *file,
1832 			 u32 av)
1833 {
1834 	struct file_security_struct *fsec = file->f_security;
1835 	struct inode *inode = file_inode(file);
1836 	struct common_audit_data ad;
1837 	u32 sid = cred_sid(cred);
1838 	int rc;
1839 
1840 	ad.type = LSM_AUDIT_DATA_FILE;
1841 	ad.u.file = file;
1842 
1843 	if (sid != fsec->sid) {
1844 		rc = avc_has_perm(sid, fsec->sid,
1845 				  SECCLASS_FD,
1846 				  FD__USE,
1847 				  &ad);
1848 		if (rc)
1849 			goto out;
1850 	}
1851 
1852 #ifdef CONFIG_BPF_SYSCALL
1853 	rc = bpf_fd_pass(file, cred_sid(cred));
1854 	if (rc)
1855 		return rc;
1856 #endif
1857 
1858 	/* av is zero if only checking access to the descriptor. */
1859 	rc = 0;
1860 	if (av)
1861 		rc = inode_has_perm(cred, inode, av, &ad);
1862 
1863 out:
1864 	return rc;
1865 }
1866 
1867 /*
1868  * Determine the label for an inode that might be unioned.
1869  */
1870 static int
1871 selinux_determine_inode_label(const struct task_security_struct *tsec,
1872 				 struct inode *dir,
1873 				 const struct qstr *name, u16 tclass,
1874 				 u32 *_new_isid)
1875 {
1876 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1877 
1878 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1879 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1880 		*_new_isid = sbsec->mntpoint_sid;
1881 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1882 		   tsec->create_sid) {
1883 		*_new_isid = tsec->create_sid;
1884 	} else {
1885 		const struct inode_security_struct *dsec = inode_security(dir);
1886 		return security_transition_sid(tsec->sid, dsec->sid, tclass,
1887 					       name, _new_isid);
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 /* Check whether a task can create a file. */
1894 static int may_create(struct inode *dir,
1895 		      struct dentry *dentry,
1896 		      u16 tclass)
1897 {
1898 	const struct task_security_struct *tsec = current_security();
1899 	struct inode_security_struct *dsec;
1900 	struct superblock_security_struct *sbsec;
1901 	u32 sid, newsid;
1902 	struct common_audit_data ad;
1903 	int rc;
1904 
1905 	dsec = inode_security(dir);
1906 	sbsec = dir->i_sb->s_security;
1907 
1908 	sid = tsec->sid;
1909 
1910 	ad.type = LSM_AUDIT_DATA_DENTRY;
1911 	ad.u.dentry = dentry;
1912 
1913 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1914 			  DIR__ADD_NAME | DIR__SEARCH,
1915 			  &ad);
1916 	if (rc)
1917 		return rc;
1918 
1919 	rc = selinux_determine_inode_label(current_security(), dir,
1920 					   &dentry->d_name, tclass, &newsid);
1921 	if (rc)
1922 		return rc;
1923 
1924 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1925 	if (rc)
1926 		return rc;
1927 
1928 	return avc_has_perm(newsid, sbsec->sid,
1929 			    SECCLASS_FILESYSTEM,
1930 			    FILESYSTEM__ASSOCIATE, &ad);
1931 }
1932 
1933 #define MAY_LINK	0
1934 #define MAY_UNLINK	1
1935 #define MAY_RMDIR	2
1936 
1937 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1938 static int may_link(struct inode *dir,
1939 		    struct dentry *dentry,
1940 		    int kind)
1941 
1942 {
1943 	struct inode_security_struct *dsec, *isec;
1944 	struct common_audit_data ad;
1945 	u32 sid = current_sid();
1946 	u32 av;
1947 	int rc;
1948 
1949 	dsec = inode_security(dir);
1950 	isec = backing_inode_security(dentry);
1951 
1952 	ad.type = LSM_AUDIT_DATA_DENTRY;
1953 	ad.u.dentry = dentry;
1954 
1955 	av = DIR__SEARCH;
1956 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1957 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1958 	if (rc)
1959 		return rc;
1960 
1961 	switch (kind) {
1962 	case MAY_LINK:
1963 		av = FILE__LINK;
1964 		break;
1965 	case MAY_UNLINK:
1966 		av = FILE__UNLINK;
1967 		break;
1968 	case MAY_RMDIR:
1969 		av = DIR__RMDIR;
1970 		break;
1971 	default:
1972 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1973 			__func__, kind);
1974 		return 0;
1975 	}
1976 
1977 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1978 	return rc;
1979 }
1980 
1981 static inline int may_rename(struct inode *old_dir,
1982 			     struct dentry *old_dentry,
1983 			     struct inode *new_dir,
1984 			     struct dentry *new_dentry)
1985 {
1986 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1987 	struct common_audit_data ad;
1988 	u32 sid = current_sid();
1989 	u32 av;
1990 	int old_is_dir, new_is_dir;
1991 	int rc;
1992 
1993 	old_dsec = inode_security(old_dir);
1994 	old_isec = backing_inode_security(old_dentry);
1995 	old_is_dir = d_is_dir(old_dentry);
1996 	new_dsec = inode_security(new_dir);
1997 
1998 	ad.type = LSM_AUDIT_DATA_DENTRY;
1999 
2000 	ad.u.dentry = old_dentry;
2001 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
2002 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2003 	if (rc)
2004 		return rc;
2005 	rc = avc_has_perm(sid, old_isec->sid,
2006 			  old_isec->sclass, FILE__RENAME, &ad);
2007 	if (rc)
2008 		return rc;
2009 	if (old_is_dir && new_dir != old_dir) {
2010 		rc = avc_has_perm(sid, old_isec->sid,
2011 				  old_isec->sclass, DIR__REPARENT, &ad);
2012 		if (rc)
2013 			return rc;
2014 	}
2015 
2016 	ad.u.dentry = new_dentry;
2017 	av = DIR__ADD_NAME | DIR__SEARCH;
2018 	if (d_is_positive(new_dentry))
2019 		av |= DIR__REMOVE_NAME;
2020 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2021 	if (rc)
2022 		return rc;
2023 	if (d_is_positive(new_dentry)) {
2024 		new_isec = backing_inode_security(new_dentry);
2025 		new_is_dir = d_is_dir(new_dentry);
2026 		rc = avc_has_perm(sid, new_isec->sid,
2027 				  new_isec->sclass,
2028 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2029 		if (rc)
2030 			return rc;
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 /* Check whether a task can perform a filesystem operation. */
2037 static int superblock_has_perm(const struct cred *cred,
2038 			       struct super_block *sb,
2039 			       u32 perms,
2040 			       struct common_audit_data *ad)
2041 {
2042 	struct superblock_security_struct *sbsec;
2043 	u32 sid = cred_sid(cred);
2044 
2045 	sbsec = sb->s_security;
2046 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2047 }
2048 
2049 /* Convert a Linux mode and permission mask to an access vector. */
2050 static inline u32 file_mask_to_av(int mode, int mask)
2051 {
2052 	u32 av = 0;
2053 
2054 	if (!S_ISDIR(mode)) {
2055 		if (mask & MAY_EXEC)
2056 			av |= FILE__EXECUTE;
2057 		if (mask & MAY_READ)
2058 			av |= FILE__READ;
2059 
2060 		if (mask & MAY_APPEND)
2061 			av |= FILE__APPEND;
2062 		else if (mask & MAY_WRITE)
2063 			av |= FILE__WRITE;
2064 
2065 	} else {
2066 		if (mask & MAY_EXEC)
2067 			av |= DIR__SEARCH;
2068 		if (mask & MAY_WRITE)
2069 			av |= DIR__WRITE;
2070 		if (mask & MAY_READ)
2071 			av |= DIR__READ;
2072 	}
2073 
2074 	return av;
2075 }
2076 
2077 /* Convert a Linux file to an access vector. */
2078 static inline u32 file_to_av(struct file *file)
2079 {
2080 	u32 av = 0;
2081 
2082 	if (file->f_mode & FMODE_READ)
2083 		av |= FILE__READ;
2084 	if (file->f_mode & FMODE_WRITE) {
2085 		if (file->f_flags & O_APPEND)
2086 			av |= FILE__APPEND;
2087 		else
2088 			av |= FILE__WRITE;
2089 	}
2090 	if (!av) {
2091 		/*
2092 		 * Special file opened with flags 3 for ioctl-only use.
2093 		 */
2094 		av = FILE__IOCTL;
2095 	}
2096 
2097 	return av;
2098 }
2099 
2100 /*
2101  * Convert a file to an access vector and include the correct open
2102  * open permission.
2103  */
2104 static inline u32 open_file_to_av(struct file *file)
2105 {
2106 	u32 av = file_to_av(file);
2107 	struct inode *inode = file_inode(file);
2108 
2109 	if (selinux_policycap_openperm && inode->i_sb->s_magic != SOCKFS_MAGIC)
2110 		av |= FILE__OPEN;
2111 
2112 	return av;
2113 }
2114 
2115 /* Hook functions begin here. */
2116 
2117 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2118 {
2119 	u32 mysid = current_sid();
2120 	u32 mgrsid = task_sid(mgr);
2121 
2122 	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2123 			    BINDER__SET_CONTEXT_MGR, NULL);
2124 }
2125 
2126 static int selinux_binder_transaction(struct task_struct *from,
2127 				      struct task_struct *to)
2128 {
2129 	u32 mysid = current_sid();
2130 	u32 fromsid = task_sid(from);
2131 	u32 tosid = task_sid(to);
2132 	int rc;
2133 
2134 	if (mysid != fromsid) {
2135 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2136 				  BINDER__IMPERSONATE, NULL);
2137 		if (rc)
2138 			return rc;
2139 	}
2140 
2141 	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2142 			    NULL);
2143 }
2144 
2145 static int selinux_binder_transfer_binder(struct task_struct *from,
2146 					  struct task_struct *to)
2147 {
2148 	u32 fromsid = task_sid(from);
2149 	u32 tosid = task_sid(to);
2150 
2151 	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2152 			    NULL);
2153 }
2154 
2155 static int selinux_binder_transfer_file(struct task_struct *from,
2156 					struct task_struct *to,
2157 					struct file *file)
2158 {
2159 	u32 sid = task_sid(to);
2160 	struct file_security_struct *fsec = file->f_security;
2161 	struct dentry *dentry = file->f_path.dentry;
2162 	struct inode_security_struct *isec;
2163 	struct common_audit_data ad;
2164 	int rc;
2165 
2166 	ad.type = LSM_AUDIT_DATA_PATH;
2167 	ad.u.path = file->f_path;
2168 
2169 	if (sid != fsec->sid) {
2170 		rc = avc_has_perm(sid, fsec->sid,
2171 				  SECCLASS_FD,
2172 				  FD__USE,
2173 				  &ad);
2174 		if (rc)
2175 			return rc;
2176 	}
2177 
2178 #ifdef CONFIG_BPF_SYSCALL
2179 	rc = bpf_fd_pass(file, sid);
2180 	if (rc)
2181 		return rc;
2182 #endif
2183 
2184 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2185 		return 0;
2186 
2187 	isec = backing_inode_security(dentry);
2188 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2189 			    &ad);
2190 }
2191 
2192 static int selinux_ptrace_access_check(struct task_struct *child,
2193 				     unsigned int mode)
2194 {
2195 	u32 sid = current_sid();
2196 	u32 csid = task_sid(child);
2197 
2198 	if (mode & PTRACE_MODE_READ)
2199 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2200 
2201 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2202 }
2203 
2204 static int selinux_ptrace_traceme(struct task_struct *parent)
2205 {
2206 	return avc_has_perm(task_sid(parent), current_sid(), SECCLASS_PROCESS,
2207 			    PROCESS__PTRACE, NULL);
2208 }
2209 
2210 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2211 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2212 {
2213 	return avc_has_perm(current_sid(), task_sid(target), SECCLASS_PROCESS,
2214 			    PROCESS__GETCAP, NULL);
2215 }
2216 
2217 static int selinux_capset(struct cred *new, const struct cred *old,
2218 			  const kernel_cap_t *effective,
2219 			  const kernel_cap_t *inheritable,
2220 			  const kernel_cap_t *permitted)
2221 {
2222 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2223 			    PROCESS__SETCAP, NULL);
2224 }
2225 
2226 /*
2227  * (This comment used to live with the selinux_task_setuid hook,
2228  * which was removed).
2229  *
2230  * Since setuid only affects the current process, and since the SELinux
2231  * controls are not based on the Linux identity attributes, SELinux does not
2232  * need to control this operation.  However, SELinux does control the use of
2233  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2234  */
2235 
2236 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2237 			   int cap, int audit)
2238 {
2239 	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2240 }
2241 
2242 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2243 {
2244 	const struct cred *cred = current_cred();
2245 	int rc = 0;
2246 
2247 	if (!sb)
2248 		return 0;
2249 
2250 	switch (cmds) {
2251 	case Q_SYNC:
2252 	case Q_QUOTAON:
2253 	case Q_QUOTAOFF:
2254 	case Q_SETINFO:
2255 	case Q_SETQUOTA:
2256 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2257 		break;
2258 	case Q_GETFMT:
2259 	case Q_GETINFO:
2260 	case Q_GETQUOTA:
2261 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2262 		break;
2263 	default:
2264 		rc = 0;  /* let the kernel handle invalid cmds */
2265 		break;
2266 	}
2267 	return rc;
2268 }
2269 
2270 static int selinux_quota_on(struct dentry *dentry)
2271 {
2272 	const struct cred *cred = current_cred();
2273 
2274 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2275 }
2276 
2277 static int selinux_syslog(int type)
2278 {
2279 	switch (type) {
2280 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2281 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2282 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2283 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2284 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2285 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2286 	/* Set level of messages printed to console */
2287 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2288 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2289 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2290 				    NULL);
2291 	}
2292 	/* All other syslog types */
2293 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2294 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2295 }
2296 
2297 /*
2298  * Check that a process has enough memory to allocate a new virtual
2299  * mapping. 0 means there is enough memory for the allocation to
2300  * succeed and -ENOMEM implies there is not.
2301  *
2302  * Do not audit the selinux permission check, as this is applied to all
2303  * processes that allocate mappings.
2304  */
2305 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2306 {
2307 	int rc, cap_sys_admin = 0;
2308 
2309 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2310 				 SECURITY_CAP_NOAUDIT, true);
2311 	if (rc == 0)
2312 		cap_sys_admin = 1;
2313 
2314 	return cap_sys_admin;
2315 }
2316 
2317 /* binprm security operations */
2318 
2319 static u32 ptrace_parent_sid(void)
2320 {
2321 	u32 sid = 0;
2322 	struct task_struct *tracer;
2323 
2324 	rcu_read_lock();
2325 	tracer = ptrace_parent(current);
2326 	if (tracer)
2327 		sid = task_sid(tracer);
2328 	rcu_read_unlock();
2329 
2330 	return sid;
2331 }
2332 
2333 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2334 			    const struct task_security_struct *old_tsec,
2335 			    const struct task_security_struct *new_tsec)
2336 {
2337 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2338 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2339 	int rc;
2340 	u32 av;
2341 
2342 	if (!nnp && !nosuid)
2343 		return 0; /* neither NNP nor nosuid */
2344 
2345 	if (new_tsec->sid == old_tsec->sid)
2346 		return 0; /* No change in credentials */
2347 
2348 	/*
2349 	 * If the policy enables the nnp_nosuid_transition policy capability,
2350 	 * then we permit transitions under NNP or nosuid if the
2351 	 * policy allows the corresponding permission between
2352 	 * the old and new contexts.
2353 	 */
2354 	if (selinux_policycap_nnp_nosuid_transition) {
2355 		av = 0;
2356 		if (nnp)
2357 			av |= PROCESS2__NNP_TRANSITION;
2358 		if (nosuid)
2359 			av |= PROCESS2__NOSUID_TRANSITION;
2360 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2361 				  SECCLASS_PROCESS2, av, NULL);
2362 		if (!rc)
2363 			return 0;
2364 	}
2365 
2366 	/*
2367 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2368 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2369 	 * of the permissions of the current SID.
2370 	 */
2371 	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2372 	if (!rc)
2373 		return 0;
2374 
2375 	/*
2376 	 * On failure, preserve the errno values for NNP vs nosuid.
2377 	 * NNP:  Operation not permitted for caller.
2378 	 * nosuid:  Permission denied to file.
2379 	 */
2380 	if (nnp)
2381 		return -EPERM;
2382 	return -EACCES;
2383 }
2384 
2385 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2386 {
2387 	const struct task_security_struct *old_tsec;
2388 	struct task_security_struct *new_tsec;
2389 	struct inode_security_struct *isec;
2390 	struct common_audit_data ad;
2391 	struct inode *inode = file_inode(bprm->file);
2392 	int rc;
2393 
2394 	/* SELinux context only depends on initial program or script and not
2395 	 * the script interpreter */
2396 	if (bprm->called_set_creds)
2397 		return 0;
2398 
2399 	old_tsec = current_security();
2400 	new_tsec = bprm->cred->security;
2401 	isec = inode_security(inode);
2402 
2403 	/* Default to the current task SID. */
2404 	new_tsec->sid = old_tsec->sid;
2405 	new_tsec->osid = old_tsec->sid;
2406 
2407 	/* Reset fs, key, and sock SIDs on execve. */
2408 	new_tsec->create_sid = 0;
2409 	new_tsec->keycreate_sid = 0;
2410 	new_tsec->sockcreate_sid = 0;
2411 
2412 	if (old_tsec->exec_sid) {
2413 		new_tsec->sid = old_tsec->exec_sid;
2414 		/* Reset exec SID on execve. */
2415 		new_tsec->exec_sid = 0;
2416 
2417 		/* Fail on NNP or nosuid if not an allowed transition. */
2418 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2419 		if (rc)
2420 			return rc;
2421 	} else {
2422 		/* Check for a default transition on this program. */
2423 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2424 					     SECCLASS_PROCESS, NULL,
2425 					     &new_tsec->sid);
2426 		if (rc)
2427 			return rc;
2428 
2429 		/*
2430 		 * Fallback to old SID on NNP or nosuid if not an allowed
2431 		 * transition.
2432 		 */
2433 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2434 		if (rc)
2435 			new_tsec->sid = old_tsec->sid;
2436 	}
2437 
2438 	ad.type = LSM_AUDIT_DATA_FILE;
2439 	ad.u.file = bprm->file;
2440 
2441 	if (new_tsec->sid == old_tsec->sid) {
2442 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2443 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2444 		if (rc)
2445 			return rc;
2446 	} else {
2447 		/* Check permissions for the transition. */
2448 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2449 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2450 		if (rc)
2451 			return rc;
2452 
2453 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2454 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2455 		if (rc)
2456 			return rc;
2457 
2458 		/* Check for shared state */
2459 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2460 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2461 					  SECCLASS_PROCESS, PROCESS__SHARE,
2462 					  NULL);
2463 			if (rc)
2464 				return -EPERM;
2465 		}
2466 
2467 		/* Make sure that anyone attempting to ptrace over a task that
2468 		 * changes its SID has the appropriate permit */
2469 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2470 			u32 ptsid = ptrace_parent_sid();
2471 			if (ptsid != 0) {
2472 				rc = avc_has_perm(ptsid, new_tsec->sid,
2473 						  SECCLASS_PROCESS,
2474 						  PROCESS__PTRACE, NULL);
2475 				if (rc)
2476 					return -EPERM;
2477 			}
2478 		}
2479 
2480 		/* Clear any possibly unsafe personality bits on exec: */
2481 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2482 
2483 		/* Enable secure mode for SIDs transitions unless
2484 		   the noatsecure permission is granted between
2485 		   the two SIDs, i.e. ahp returns 0. */
2486 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2487 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2488 				  NULL);
2489 		bprm->secureexec |= !!rc;
2490 	}
2491 
2492 	return 0;
2493 }
2494 
2495 static int match_file(const void *p, struct file *file, unsigned fd)
2496 {
2497 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2498 }
2499 
2500 /* Derived from fs/exec.c:flush_old_files. */
2501 static inline void flush_unauthorized_files(const struct cred *cred,
2502 					    struct files_struct *files)
2503 {
2504 	struct file *file, *devnull = NULL;
2505 	struct tty_struct *tty;
2506 	int drop_tty = 0;
2507 	unsigned n;
2508 
2509 	tty = get_current_tty();
2510 	if (tty) {
2511 		spin_lock(&tty->files_lock);
2512 		if (!list_empty(&tty->tty_files)) {
2513 			struct tty_file_private *file_priv;
2514 
2515 			/* Revalidate access to controlling tty.
2516 			   Use file_path_has_perm on the tty path directly
2517 			   rather than using file_has_perm, as this particular
2518 			   open file may belong to another process and we are
2519 			   only interested in the inode-based check here. */
2520 			file_priv = list_first_entry(&tty->tty_files,
2521 						struct tty_file_private, list);
2522 			file = file_priv->file;
2523 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2524 				drop_tty = 1;
2525 		}
2526 		spin_unlock(&tty->files_lock);
2527 		tty_kref_put(tty);
2528 	}
2529 	/* Reset controlling tty. */
2530 	if (drop_tty)
2531 		no_tty();
2532 
2533 	/* Revalidate access to inherited open files. */
2534 	n = iterate_fd(files, 0, match_file, cred);
2535 	if (!n) /* none found? */
2536 		return;
2537 
2538 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2539 	if (IS_ERR(devnull))
2540 		devnull = NULL;
2541 	/* replace all the matching ones with this */
2542 	do {
2543 		replace_fd(n - 1, devnull, 0);
2544 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2545 	if (devnull)
2546 		fput(devnull);
2547 }
2548 
2549 /*
2550  * Prepare a process for imminent new credential changes due to exec
2551  */
2552 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2553 {
2554 	struct task_security_struct *new_tsec;
2555 	struct rlimit *rlim, *initrlim;
2556 	int rc, i;
2557 
2558 	new_tsec = bprm->cred->security;
2559 	if (new_tsec->sid == new_tsec->osid)
2560 		return;
2561 
2562 	/* Close files for which the new task SID is not authorized. */
2563 	flush_unauthorized_files(bprm->cred, current->files);
2564 
2565 	/* Always clear parent death signal on SID transitions. */
2566 	current->pdeath_signal = 0;
2567 
2568 	/* Check whether the new SID can inherit resource limits from the old
2569 	 * SID.  If not, reset all soft limits to the lower of the current
2570 	 * task's hard limit and the init task's soft limit.
2571 	 *
2572 	 * Note that the setting of hard limits (even to lower them) can be
2573 	 * controlled by the setrlimit check.  The inclusion of the init task's
2574 	 * soft limit into the computation is to avoid resetting soft limits
2575 	 * higher than the default soft limit for cases where the default is
2576 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2577 	 */
2578 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2579 			  PROCESS__RLIMITINH, NULL);
2580 	if (rc) {
2581 		/* protect against do_prlimit() */
2582 		task_lock(current);
2583 		for (i = 0; i < RLIM_NLIMITS; i++) {
2584 			rlim = current->signal->rlim + i;
2585 			initrlim = init_task.signal->rlim + i;
2586 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2587 		}
2588 		task_unlock(current);
2589 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2590 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2591 	}
2592 }
2593 
2594 /*
2595  * Clean up the process immediately after the installation of new credentials
2596  * due to exec
2597  */
2598 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2599 {
2600 	const struct task_security_struct *tsec = current_security();
2601 	struct itimerval itimer;
2602 	u32 osid, sid;
2603 	int rc, i;
2604 
2605 	osid = tsec->osid;
2606 	sid = tsec->sid;
2607 
2608 	if (sid == osid)
2609 		return;
2610 
2611 	/* Check whether the new SID can inherit signal state from the old SID.
2612 	 * If not, clear itimers to avoid subsequent signal generation and
2613 	 * flush and unblock signals.
2614 	 *
2615 	 * This must occur _after_ the task SID has been updated so that any
2616 	 * kill done after the flush will be checked against the new SID.
2617 	 */
2618 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2619 	if (rc) {
2620 		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2621 			memset(&itimer, 0, sizeof itimer);
2622 			for (i = 0; i < 3; i++)
2623 				do_setitimer(i, &itimer, NULL);
2624 		}
2625 		spin_lock_irq(&current->sighand->siglock);
2626 		if (!fatal_signal_pending(current)) {
2627 			flush_sigqueue(&current->pending);
2628 			flush_sigqueue(&current->signal->shared_pending);
2629 			flush_signal_handlers(current, 1);
2630 			sigemptyset(&current->blocked);
2631 			recalc_sigpending();
2632 		}
2633 		spin_unlock_irq(&current->sighand->siglock);
2634 	}
2635 
2636 	/* Wake up the parent if it is waiting so that it can recheck
2637 	 * wait permission to the new task SID. */
2638 	read_lock(&tasklist_lock);
2639 	__wake_up_parent(current, current->real_parent);
2640 	read_unlock(&tasklist_lock);
2641 }
2642 
2643 /* superblock security operations */
2644 
2645 static int selinux_sb_alloc_security(struct super_block *sb)
2646 {
2647 	return superblock_alloc_security(sb);
2648 }
2649 
2650 static void selinux_sb_free_security(struct super_block *sb)
2651 {
2652 	superblock_free_security(sb);
2653 }
2654 
2655 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2656 {
2657 	if (plen > olen)
2658 		return 0;
2659 
2660 	return !memcmp(prefix, option, plen);
2661 }
2662 
2663 static inline int selinux_option(char *option, int len)
2664 {
2665 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2666 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2667 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2668 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2669 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2670 }
2671 
2672 static inline void take_option(char **to, char *from, int *first, int len)
2673 {
2674 	if (!*first) {
2675 		**to = ',';
2676 		*to += 1;
2677 	} else
2678 		*first = 0;
2679 	memcpy(*to, from, len);
2680 	*to += len;
2681 }
2682 
2683 static inline void take_selinux_option(char **to, char *from, int *first,
2684 				       int len)
2685 {
2686 	int current_size = 0;
2687 
2688 	if (!*first) {
2689 		**to = '|';
2690 		*to += 1;
2691 	} else
2692 		*first = 0;
2693 
2694 	while (current_size < len) {
2695 		if (*from != '"') {
2696 			**to = *from;
2697 			*to += 1;
2698 		}
2699 		from += 1;
2700 		current_size += 1;
2701 	}
2702 }
2703 
2704 static int selinux_sb_copy_data(char *orig, char *copy)
2705 {
2706 	int fnosec, fsec, rc = 0;
2707 	char *in_save, *in_curr, *in_end;
2708 	char *sec_curr, *nosec_save, *nosec;
2709 	int open_quote = 0;
2710 
2711 	in_curr = orig;
2712 	sec_curr = copy;
2713 
2714 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2715 	if (!nosec) {
2716 		rc = -ENOMEM;
2717 		goto out;
2718 	}
2719 
2720 	nosec_save = nosec;
2721 	fnosec = fsec = 1;
2722 	in_save = in_end = orig;
2723 
2724 	do {
2725 		if (*in_end == '"')
2726 			open_quote = !open_quote;
2727 		if ((*in_end == ',' && open_quote == 0) ||
2728 				*in_end == '\0') {
2729 			int len = in_end - in_curr;
2730 
2731 			if (selinux_option(in_curr, len))
2732 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2733 			else
2734 				take_option(&nosec, in_curr, &fnosec, len);
2735 
2736 			in_curr = in_end + 1;
2737 		}
2738 	} while (*in_end++);
2739 
2740 	strcpy(in_save, nosec_save);
2741 	free_page((unsigned long)nosec_save);
2742 out:
2743 	return rc;
2744 }
2745 
2746 static int selinux_sb_remount(struct super_block *sb, void *data)
2747 {
2748 	int rc, i, *flags;
2749 	struct security_mnt_opts opts;
2750 	char *secdata, **mount_options;
2751 	struct superblock_security_struct *sbsec = sb->s_security;
2752 
2753 	if (!(sbsec->flags & SE_SBINITIALIZED))
2754 		return 0;
2755 
2756 	if (!data)
2757 		return 0;
2758 
2759 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2760 		return 0;
2761 
2762 	security_init_mnt_opts(&opts);
2763 	secdata = alloc_secdata();
2764 	if (!secdata)
2765 		return -ENOMEM;
2766 	rc = selinux_sb_copy_data(data, secdata);
2767 	if (rc)
2768 		goto out_free_secdata;
2769 
2770 	rc = selinux_parse_opts_str(secdata, &opts);
2771 	if (rc)
2772 		goto out_free_secdata;
2773 
2774 	mount_options = opts.mnt_opts;
2775 	flags = opts.mnt_opts_flags;
2776 
2777 	for (i = 0; i < opts.num_mnt_opts; i++) {
2778 		u32 sid;
2779 
2780 		if (flags[i] == SBLABEL_MNT)
2781 			continue;
2782 		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2783 		if (rc) {
2784 			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2785 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2786 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2787 			goto out_free_opts;
2788 		}
2789 		rc = -EINVAL;
2790 		switch (flags[i]) {
2791 		case FSCONTEXT_MNT:
2792 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2793 				goto out_bad_option;
2794 			break;
2795 		case CONTEXT_MNT:
2796 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2797 				goto out_bad_option;
2798 			break;
2799 		case ROOTCONTEXT_MNT: {
2800 			struct inode_security_struct *root_isec;
2801 			root_isec = backing_inode_security(sb->s_root);
2802 
2803 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2804 				goto out_bad_option;
2805 			break;
2806 		}
2807 		case DEFCONTEXT_MNT:
2808 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2809 				goto out_bad_option;
2810 			break;
2811 		default:
2812 			goto out_free_opts;
2813 		}
2814 	}
2815 
2816 	rc = 0;
2817 out_free_opts:
2818 	security_free_mnt_opts(&opts);
2819 out_free_secdata:
2820 	free_secdata(secdata);
2821 	return rc;
2822 out_bad_option:
2823 	printk(KERN_WARNING "SELinux: unable to change security options "
2824 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2825 	       sb->s_type->name);
2826 	goto out_free_opts;
2827 }
2828 
2829 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2830 {
2831 	const struct cred *cred = current_cred();
2832 	struct common_audit_data ad;
2833 	int rc;
2834 
2835 	rc = superblock_doinit(sb, data);
2836 	if (rc)
2837 		return rc;
2838 
2839 	/* Allow all mounts performed by the kernel */
2840 	if (flags & MS_KERNMOUNT)
2841 		return 0;
2842 
2843 	ad.type = LSM_AUDIT_DATA_DENTRY;
2844 	ad.u.dentry = sb->s_root;
2845 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2846 }
2847 
2848 static int selinux_sb_statfs(struct dentry *dentry)
2849 {
2850 	const struct cred *cred = current_cred();
2851 	struct common_audit_data ad;
2852 
2853 	ad.type = LSM_AUDIT_DATA_DENTRY;
2854 	ad.u.dentry = dentry->d_sb->s_root;
2855 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2856 }
2857 
2858 static int selinux_mount(const char *dev_name,
2859 			 const struct path *path,
2860 			 const char *type,
2861 			 unsigned long flags,
2862 			 void *data)
2863 {
2864 	const struct cred *cred = current_cred();
2865 
2866 	if (flags & MS_REMOUNT)
2867 		return superblock_has_perm(cred, path->dentry->d_sb,
2868 					   FILESYSTEM__REMOUNT, NULL);
2869 	else
2870 		return path_has_perm(cred, path, FILE__MOUNTON);
2871 }
2872 
2873 static int selinux_umount(struct vfsmount *mnt, int flags)
2874 {
2875 	const struct cred *cred = current_cred();
2876 
2877 	return superblock_has_perm(cred, mnt->mnt_sb,
2878 				   FILESYSTEM__UNMOUNT, NULL);
2879 }
2880 
2881 /* inode security operations */
2882 
2883 static int selinux_inode_alloc_security(struct inode *inode)
2884 {
2885 	return inode_alloc_security(inode);
2886 }
2887 
2888 static void selinux_inode_free_security(struct inode *inode)
2889 {
2890 	inode_free_security(inode);
2891 }
2892 
2893 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2894 					const struct qstr *name, void **ctx,
2895 					u32 *ctxlen)
2896 {
2897 	u32 newsid;
2898 	int rc;
2899 
2900 	rc = selinux_determine_inode_label(current_security(),
2901 					   d_inode(dentry->d_parent), name,
2902 					   inode_mode_to_security_class(mode),
2903 					   &newsid);
2904 	if (rc)
2905 		return rc;
2906 
2907 	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2908 }
2909 
2910 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2911 					  struct qstr *name,
2912 					  const struct cred *old,
2913 					  struct cred *new)
2914 {
2915 	u32 newsid;
2916 	int rc;
2917 	struct task_security_struct *tsec;
2918 
2919 	rc = selinux_determine_inode_label(old->security,
2920 					   d_inode(dentry->d_parent), name,
2921 					   inode_mode_to_security_class(mode),
2922 					   &newsid);
2923 	if (rc)
2924 		return rc;
2925 
2926 	tsec = new->security;
2927 	tsec->create_sid = newsid;
2928 	return 0;
2929 }
2930 
2931 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2932 				       const struct qstr *qstr,
2933 				       const char **name,
2934 				       void **value, size_t *len)
2935 {
2936 	const struct task_security_struct *tsec = current_security();
2937 	struct superblock_security_struct *sbsec;
2938 	u32 newsid, clen;
2939 	int rc;
2940 	char *context;
2941 
2942 	sbsec = dir->i_sb->s_security;
2943 
2944 	newsid = tsec->create_sid;
2945 
2946 	rc = selinux_determine_inode_label(current_security(),
2947 		dir, qstr,
2948 		inode_mode_to_security_class(inode->i_mode),
2949 		&newsid);
2950 	if (rc)
2951 		return rc;
2952 
2953 	/* Possibly defer initialization to selinux_complete_init. */
2954 	if (sbsec->flags & SE_SBINITIALIZED) {
2955 		struct inode_security_struct *isec = inode->i_security;
2956 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2957 		isec->sid = newsid;
2958 		isec->initialized = LABEL_INITIALIZED;
2959 	}
2960 
2961 	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2962 		return -EOPNOTSUPP;
2963 
2964 	if (name)
2965 		*name = XATTR_SELINUX_SUFFIX;
2966 
2967 	if (value && len) {
2968 		rc = security_sid_to_context_force(newsid, &context, &clen);
2969 		if (rc)
2970 			return rc;
2971 		*value = context;
2972 		*len = clen;
2973 	}
2974 
2975 	return 0;
2976 }
2977 
2978 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2979 {
2980 	return may_create(dir, dentry, SECCLASS_FILE);
2981 }
2982 
2983 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2984 {
2985 	return may_link(dir, old_dentry, MAY_LINK);
2986 }
2987 
2988 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2989 {
2990 	return may_link(dir, dentry, MAY_UNLINK);
2991 }
2992 
2993 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2994 {
2995 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2996 }
2997 
2998 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2999 {
3000 	return may_create(dir, dentry, SECCLASS_DIR);
3001 }
3002 
3003 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3004 {
3005 	return may_link(dir, dentry, MAY_RMDIR);
3006 }
3007 
3008 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3009 {
3010 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3011 }
3012 
3013 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3014 				struct inode *new_inode, struct dentry *new_dentry)
3015 {
3016 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3017 }
3018 
3019 static int selinux_inode_readlink(struct dentry *dentry)
3020 {
3021 	const struct cred *cred = current_cred();
3022 
3023 	return dentry_has_perm(cred, dentry, FILE__READ);
3024 }
3025 
3026 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3027 				     bool rcu)
3028 {
3029 	const struct cred *cred = current_cred();
3030 	struct common_audit_data ad;
3031 	struct inode_security_struct *isec;
3032 	u32 sid;
3033 
3034 	validate_creds(cred);
3035 
3036 	ad.type = LSM_AUDIT_DATA_DENTRY;
3037 	ad.u.dentry = dentry;
3038 	sid = cred_sid(cred);
3039 	isec = inode_security_rcu(inode, rcu);
3040 	if (IS_ERR(isec))
3041 		return PTR_ERR(isec);
3042 
3043 	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
3044 				  rcu ? MAY_NOT_BLOCK : 0);
3045 }
3046 
3047 static noinline int audit_inode_permission(struct inode *inode,
3048 					   u32 perms, u32 audited, u32 denied,
3049 					   int result,
3050 					   unsigned flags)
3051 {
3052 	struct common_audit_data ad;
3053 	struct inode_security_struct *isec = inode->i_security;
3054 	int rc;
3055 
3056 	ad.type = LSM_AUDIT_DATA_INODE;
3057 	ad.u.inode = inode;
3058 
3059 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3060 			    audited, denied, result, &ad, flags);
3061 	if (rc)
3062 		return rc;
3063 	return 0;
3064 }
3065 
3066 static int selinux_inode_permission(struct inode *inode, int mask)
3067 {
3068 	const struct cred *cred = current_cred();
3069 	u32 perms;
3070 	bool from_access;
3071 	unsigned flags = mask & MAY_NOT_BLOCK;
3072 	struct inode_security_struct *isec;
3073 	u32 sid;
3074 	struct av_decision avd;
3075 	int rc, rc2;
3076 	u32 audited, denied;
3077 
3078 	from_access = mask & MAY_ACCESS;
3079 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3080 
3081 	/* No permission to check.  Existence test. */
3082 	if (!mask)
3083 		return 0;
3084 
3085 	validate_creds(cred);
3086 
3087 	if (unlikely(IS_PRIVATE(inode)))
3088 		return 0;
3089 
3090 	perms = file_mask_to_av(inode->i_mode, mask);
3091 
3092 	sid = cred_sid(cred);
3093 	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3094 	if (IS_ERR(isec))
3095 		return PTR_ERR(isec);
3096 
3097 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
3098 	audited = avc_audit_required(perms, &avd, rc,
3099 				     from_access ? FILE__AUDIT_ACCESS : 0,
3100 				     &denied);
3101 	if (likely(!audited))
3102 		return rc;
3103 
3104 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3105 	if (rc2)
3106 		return rc2;
3107 	return rc;
3108 }
3109 
3110 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3111 {
3112 	const struct cred *cred = current_cred();
3113 	struct inode *inode = d_backing_inode(dentry);
3114 	unsigned int ia_valid = iattr->ia_valid;
3115 	__u32 av = FILE__WRITE;
3116 
3117 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3118 	if (ia_valid & ATTR_FORCE) {
3119 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3120 			      ATTR_FORCE);
3121 		if (!ia_valid)
3122 			return 0;
3123 	}
3124 
3125 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3126 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3127 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3128 
3129 	if (selinux_policycap_openperm &&
3130 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3131 	    (ia_valid & ATTR_SIZE) &&
3132 	    !(ia_valid & ATTR_FILE))
3133 		av |= FILE__OPEN;
3134 
3135 	return dentry_has_perm(cred, dentry, av);
3136 }
3137 
3138 static int selinux_inode_getattr(const struct path *path)
3139 {
3140 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3141 }
3142 
3143 static bool has_cap_mac_admin(bool audit)
3144 {
3145 	const struct cred *cred = current_cred();
3146 	int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3147 
3148 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3149 		return false;
3150 	if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3151 		return false;
3152 	return true;
3153 }
3154 
3155 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3156 				  const void *value, size_t size, int flags)
3157 {
3158 	struct inode *inode = d_backing_inode(dentry);
3159 	struct inode_security_struct *isec;
3160 	struct superblock_security_struct *sbsec;
3161 	struct common_audit_data ad;
3162 	u32 newsid, sid = current_sid();
3163 	int rc = 0;
3164 
3165 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3166 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3167 		if (rc)
3168 			return rc;
3169 
3170 		/* Not an attribute we recognize, so just check the
3171 		   ordinary setattr permission. */
3172 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3173 	}
3174 
3175 	sbsec = inode->i_sb->s_security;
3176 	if (!(sbsec->flags & SBLABEL_MNT))
3177 		return -EOPNOTSUPP;
3178 
3179 	if (!inode_owner_or_capable(inode))
3180 		return -EPERM;
3181 
3182 	ad.type = LSM_AUDIT_DATA_DENTRY;
3183 	ad.u.dentry = dentry;
3184 
3185 	isec = backing_inode_security(dentry);
3186 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3187 			  FILE__RELABELFROM, &ad);
3188 	if (rc)
3189 		return rc;
3190 
3191 	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3192 	if (rc == -EINVAL) {
3193 		if (!has_cap_mac_admin(true)) {
3194 			struct audit_buffer *ab;
3195 			size_t audit_size;
3196 
3197 			/* We strip a nul only if it is at the end, otherwise the
3198 			 * context contains a nul and we should audit that */
3199 			if (value) {
3200 				const char *str = value;
3201 
3202 				if (str[size - 1] == '\0')
3203 					audit_size = size - 1;
3204 				else
3205 					audit_size = size;
3206 			} else {
3207 				audit_size = 0;
3208 			}
3209 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3210 			audit_log_format(ab, "op=setxattr invalid_context=");
3211 			audit_log_n_untrustedstring(ab, value, audit_size);
3212 			audit_log_end(ab);
3213 
3214 			return rc;
3215 		}
3216 		rc = security_context_to_sid_force(value, size, &newsid);
3217 	}
3218 	if (rc)
3219 		return rc;
3220 
3221 	rc = avc_has_perm(sid, newsid, isec->sclass,
3222 			  FILE__RELABELTO, &ad);
3223 	if (rc)
3224 		return rc;
3225 
3226 	rc = security_validate_transition(isec->sid, newsid, sid,
3227 					  isec->sclass);
3228 	if (rc)
3229 		return rc;
3230 
3231 	return avc_has_perm(newsid,
3232 			    sbsec->sid,
3233 			    SECCLASS_FILESYSTEM,
3234 			    FILESYSTEM__ASSOCIATE,
3235 			    &ad);
3236 }
3237 
3238 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3239 					const void *value, size_t size,
3240 					int flags)
3241 {
3242 	struct inode *inode = d_backing_inode(dentry);
3243 	struct inode_security_struct *isec;
3244 	u32 newsid;
3245 	int rc;
3246 
3247 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3248 		/* Not an attribute we recognize, so nothing to do. */
3249 		return;
3250 	}
3251 
3252 	rc = security_context_to_sid_force(value, size, &newsid);
3253 	if (rc) {
3254 		printk(KERN_ERR "SELinux:  unable to map context to SID"
3255 		       "for (%s, %lu), rc=%d\n",
3256 		       inode->i_sb->s_id, inode->i_ino, -rc);
3257 		return;
3258 	}
3259 
3260 	isec = backing_inode_security(dentry);
3261 	spin_lock(&isec->lock);
3262 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3263 	isec->sid = newsid;
3264 	isec->initialized = LABEL_INITIALIZED;
3265 	spin_unlock(&isec->lock);
3266 
3267 	return;
3268 }
3269 
3270 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3271 {
3272 	const struct cred *cred = current_cred();
3273 
3274 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3275 }
3276 
3277 static int selinux_inode_listxattr(struct dentry *dentry)
3278 {
3279 	const struct cred *cred = current_cred();
3280 
3281 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3282 }
3283 
3284 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3285 {
3286 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3287 		int rc = cap_inode_removexattr(dentry, name);
3288 		if (rc)
3289 			return rc;
3290 
3291 		/* Not an attribute we recognize, so just check the
3292 		   ordinary setattr permission. */
3293 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3294 	}
3295 
3296 	/* No one is allowed to remove a SELinux security label.
3297 	   You can change the label, but all data must be labeled. */
3298 	return -EACCES;
3299 }
3300 
3301 /*
3302  * Copy the inode security context value to the user.
3303  *
3304  * Permission check is handled by selinux_inode_getxattr hook.
3305  */
3306 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3307 {
3308 	u32 size;
3309 	int error;
3310 	char *context = NULL;
3311 	struct inode_security_struct *isec;
3312 
3313 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3314 		return -EOPNOTSUPP;
3315 
3316 	/*
3317 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3318 	 * value even if it is not defined by current policy; otherwise,
3319 	 * use the in-core value under current policy.
3320 	 * Use the non-auditing forms of the permission checks since
3321 	 * getxattr may be called by unprivileged processes commonly
3322 	 * and lack of permission just means that we fall back to the
3323 	 * in-core context value, not a denial.
3324 	 */
3325 	isec = inode_security(inode);
3326 	if (has_cap_mac_admin(false))
3327 		error = security_sid_to_context_force(isec->sid, &context,
3328 						      &size);
3329 	else
3330 		error = security_sid_to_context(isec->sid, &context, &size);
3331 	if (error)
3332 		return error;
3333 	error = size;
3334 	if (alloc) {
3335 		*buffer = context;
3336 		goto out_nofree;
3337 	}
3338 	kfree(context);
3339 out_nofree:
3340 	return error;
3341 }
3342 
3343 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3344 				     const void *value, size_t size, int flags)
3345 {
3346 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3347 	u32 newsid;
3348 	int rc;
3349 
3350 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3351 		return -EOPNOTSUPP;
3352 
3353 	if (!value || !size)
3354 		return -EACCES;
3355 
3356 	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3357 	if (rc)
3358 		return rc;
3359 
3360 	spin_lock(&isec->lock);
3361 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3362 	isec->sid = newsid;
3363 	isec->initialized = LABEL_INITIALIZED;
3364 	spin_unlock(&isec->lock);
3365 	return 0;
3366 }
3367 
3368 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3369 {
3370 	const int len = sizeof(XATTR_NAME_SELINUX);
3371 	if (buffer && len <= buffer_size)
3372 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3373 	return len;
3374 }
3375 
3376 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3377 {
3378 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3379 	*secid = isec->sid;
3380 }
3381 
3382 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3383 {
3384 	u32 sid;
3385 	struct task_security_struct *tsec;
3386 	struct cred *new_creds = *new;
3387 
3388 	if (new_creds == NULL) {
3389 		new_creds = prepare_creds();
3390 		if (!new_creds)
3391 			return -ENOMEM;
3392 	}
3393 
3394 	tsec = new_creds->security;
3395 	/* Get label from overlay inode and set it in create_sid */
3396 	selinux_inode_getsecid(d_inode(src), &sid);
3397 	tsec->create_sid = sid;
3398 	*new = new_creds;
3399 	return 0;
3400 }
3401 
3402 static int selinux_inode_copy_up_xattr(const char *name)
3403 {
3404 	/* The copy_up hook above sets the initial context on an inode, but we
3405 	 * don't then want to overwrite it by blindly copying all the lower
3406 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3407 	 */
3408 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3409 		return 1; /* Discard */
3410 	/*
3411 	 * Any other attribute apart from SELINUX is not claimed, supported
3412 	 * by selinux.
3413 	 */
3414 	return -EOPNOTSUPP;
3415 }
3416 
3417 /* file security operations */
3418 
3419 static int selinux_revalidate_file_permission(struct file *file, int mask)
3420 {
3421 	const struct cred *cred = current_cred();
3422 	struct inode *inode = file_inode(file);
3423 
3424 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3425 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3426 		mask |= MAY_APPEND;
3427 
3428 	return file_has_perm(cred, file,
3429 			     file_mask_to_av(inode->i_mode, mask));
3430 }
3431 
3432 static int selinux_file_permission(struct file *file, int mask)
3433 {
3434 	struct inode *inode = file_inode(file);
3435 	struct file_security_struct *fsec = file->f_security;
3436 	struct inode_security_struct *isec;
3437 	u32 sid = current_sid();
3438 
3439 	if (!mask)
3440 		/* No permission to check.  Existence test. */
3441 		return 0;
3442 
3443 	isec = inode_security(inode);
3444 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3445 	    fsec->pseqno == avc_policy_seqno())
3446 		/* No change since file_open check. */
3447 		return 0;
3448 
3449 	return selinux_revalidate_file_permission(file, mask);
3450 }
3451 
3452 static int selinux_file_alloc_security(struct file *file)
3453 {
3454 	return file_alloc_security(file);
3455 }
3456 
3457 static void selinux_file_free_security(struct file *file)
3458 {
3459 	file_free_security(file);
3460 }
3461 
3462 /*
3463  * Check whether a task has the ioctl permission and cmd
3464  * operation to an inode.
3465  */
3466 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3467 		u32 requested, u16 cmd)
3468 {
3469 	struct common_audit_data ad;
3470 	struct file_security_struct *fsec = file->f_security;
3471 	struct inode *inode = file_inode(file);
3472 	struct inode_security_struct *isec;
3473 	struct lsm_ioctlop_audit ioctl;
3474 	u32 ssid = cred_sid(cred);
3475 	int rc;
3476 	u8 driver = cmd >> 8;
3477 	u8 xperm = cmd & 0xff;
3478 
3479 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3480 	ad.u.op = &ioctl;
3481 	ad.u.op->cmd = cmd;
3482 	ad.u.op->path = file->f_path;
3483 
3484 	if (ssid != fsec->sid) {
3485 		rc = avc_has_perm(ssid, fsec->sid,
3486 				SECCLASS_FD,
3487 				FD__USE,
3488 				&ad);
3489 		if (rc)
3490 			goto out;
3491 	}
3492 
3493 	if (unlikely(IS_PRIVATE(inode)))
3494 		return 0;
3495 
3496 	isec = inode_security(inode);
3497 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3498 			requested, driver, xperm, &ad);
3499 out:
3500 	return rc;
3501 }
3502 
3503 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3504 			      unsigned long arg)
3505 {
3506 	const struct cred *cred = current_cred();
3507 	int error = 0;
3508 
3509 	switch (cmd) {
3510 	case FIONREAD:
3511 	/* fall through */
3512 	case FIBMAP:
3513 	/* fall through */
3514 	case FIGETBSZ:
3515 	/* fall through */
3516 	case FS_IOC_GETFLAGS:
3517 	/* fall through */
3518 	case FS_IOC_GETVERSION:
3519 		error = file_has_perm(cred, file, FILE__GETATTR);
3520 		break;
3521 
3522 	case FS_IOC_SETFLAGS:
3523 	/* fall through */
3524 	case FS_IOC_SETVERSION:
3525 		error = file_has_perm(cred, file, FILE__SETATTR);
3526 		break;
3527 
3528 	/* sys_ioctl() checks */
3529 	case FIONBIO:
3530 	/* fall through */
3531 	case FIOASYNC:
3532 		error = file_has_perm(cred, file, 0);
3533 		break;
3534 
3535 	case KDSKBENT:
3536 	case KDSKBSENT:
3537 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3538 					    SECURITY_CAP_AUDIT, true);
3539 		break;
3540 
3541 	/* default case assumes that the command will go
3542 	 * to the file's ioctl() function.
3543 	 */
3544 	default:
3545 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3546 	}
3547 	return error;
3548 }
3549 
3550 static int default_noexec;
3551 
3552 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3553 {
3554 	const struct cred *cred = current_cred();
3555 	u32 sid = cred_sid(cred);
3556 	int rc = 0;
3557 
3558 	if (default_noexec &&
3559 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3560 				   (!shared && (prot & PROT_WRITE)))) {
3561 		/*
3562 		 * We are making executable an anonymous mapping or a
3563 		 * private file mapping that will also be writable.
3564 		 * This has an additional check.
3565 		 */
3566 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3567 				  PROCESS__EXECMEM, NULL);
3568 		if (rc)
3569 			goto error;
3570 	}
3571 
3572 	if (file) {
3573 		/* read access is always possible with a mapping */
3574 		u32 av = FILE__READ;
3575 
3576 		/* write access only matters if the mapping is shared */
3577 		if (shared && (prot & PROT_WRITE))
3578 			av |= FILE__WRITE;
3579 
3580 		if (prot & PROT_EXEC)
3581 			av |= FILE__EXECUTE;
3582 
3583 		return file_has_perm(cred, file, av);
3584 	}
3585 
3586 error:
3587 	return rc;
3588 }
3589 
3590 static int selinux_mmap_addr(unsigned long addr)
3591 {
3592 	int rc = 0;
3593 
3594 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3595 		u32 sid = current_sid();
3596 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3597 				  MEMPROTECT__MMAP_ZERO, NULL);
3598 	}
3599 
3600 	return rc;
3601 }
3602 
3603 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3604 			     unsigned long prot, unsigned long flags)
3605 {
3606 	struct common_audit_data ad;
3607 	int rc;
3608 
3609 	if (file) {
3610 		ad.type = LSM_AUDIT_DATA_FILE;
3611 		ad.u.file = file;
3612 		rc = inode_has_perm(current_cred(), file_inode(file),
3613 				    FILE__MAP, &ad);
3614 		if (rc)
3615 			return rc;
3616 	}
3617 
3618 	if (selinux_checkreqprot)
3619 		prot = reqprot;
3620 
3621 	return file_map_prot_check(file, prot,
3622 				   (flags & MAP_TYPE) == MAP_SHARED);
3623 }
3624 
3625 static int selinux_file_mprotect(struct vm_area_struct *vma,
3626 				 unsigned long reqprot,
3627 				 unsigned long prot)
3628 {
3629 	const struct cred *cred = current_cred();
3630 	u32 sid = cred_sid(cred);
3631 
3632 	if (selinux_checkreqprot)
3633 		prot = reqprot;
3634 
3635 	if (default_noexec &&
3636 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3637 		int rc = 0;
3638 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3639 		    vma->vm_end <= vma->vm_mm->brk) {
3640 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3641 					  PROCESS__EXECHEAP, NULL);
3642 		} else if (!vma->vm_file &&
3643 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3644 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3645 			    vma_is_stack_for_current(vma))) {
3646 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3647 					  PROCESS__EXECSTACK, NULL);
3648 		} else if (vma->vm_file && vma->anon_vma) {
3649 			/*
3650 			 * We are making executable a file mapping that has
3651 			 * had some COW done. Since pages might have been
3652 			 * written, check ability to execute the possibly
3653 			 * modified content.  This typically should only
3654 			 * occur for text relocations.
3655 			 */
3656 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3657 		}
3658 		if (rc)
3659 			return rc;
3660 	}
3661 
3662 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3663 }
3664 
3665 static int selinux_file_lock(struct file *file, unsigned int cmd)
3666 {
3667 	const struct cred *cred = current_cred();
3668 
3669 	return file_has_perm(cred, file, FILE__LOCK);
3670 }
3671 
3672 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3673 			      unsigned long arg)
3674 {
3675 	const struct cred *cred = current_cred();
3676 	int err = 0;
3677 
3678 	switch (cmd) {
3679 	case F_SETFL:
3680 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3681 			err = file_has_perm(cred, file, FILE__WRITE);
3682 			break;
3683 		}
3684 		/* fall through */
3685 	case F_SETOWN:
3686 	case F_SETSIG:
3687 	case F_GETFL:
3688 	case F_GETOWN:
3689 	case F_GETSIG:
3690 	case F_GETOWNER_UIDS:
3691 		/* Just check FD__USE permission */
3692 		err = file_has_perm(cred, file, 0);
3693 		break;
3694 	case F_GETLK:
3695 	case F_SETLK:
3696 	case F_SETLKW:
3697 	case F_OFD_GETLK:
3698 	case F_OFD_SETLK:
3699 	case F_OFD_SETLKW:
3700 #if BITS_PER_LONG == 32
3701 	case F_GETLK64:
3702 	case F_SETLK64:
3703 	case F_SETLKW64:
3704 #endif
3705 		err = file_has_perm(cred, file, FILE__LOCK);
3706 		break;
3707 	}
3708 
3709 	return err;
3710 }
3711 
3712 static void selinux_file_set_fowner(struct file *file)
3713 {
3714 	struct file_security_struct *fsec;
3715 
3716 	fsec = file->f_security;
3717 	fsec->fown_sid = current_sid();
3718 }
3719 
3720 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3721 				       struct fown_struct *fown, int signum)
3722 {
3723 	struct file *file;
3724 	u32 sid = task_sid(tsk);
3725 	u32 perm;
3726 	struct file_security_struct *fsec;
3727 
3728 	/* struct fown_struct is never outside the context of a struct file */
3729 	file = container_of(fown, struct file, f_owner);
3730 
3731 	fsec = file->f_security;
3732 
3733 	if (!signum)
3734 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3735 	else
3736 		perm = signal_to_av(signum);
3737 
3738 	return avc_has_perm(fsec->fown_sid, sid,
3739 			    SECCLASS_PROCESS, perm, NULL);
3740 }
3741 
3742 static int selinux_file_receive(struct file *file)
3743 {
3744 	const struct cred *cred = current_cred();
3745 
3746 	return file_has_perm(cred, file, file_to_av(file));
3747 }
3748 
3749 static int selinux_file_open(struct file *file, const struct cred *cred)
3750 {
3751 	struct file_security_struct *fsec;
3752 	struct inode_security_struct *isec;
3753 
3754 	fsec = file->f_security;
3755 	isec = inode_security(file_inode(file));
3756 	/*
3757 	 * Save inode label and policy sequence number
3758 	 * at open-time so that selinux_file_permission
3759 	 * can determine whether revalidation is necessary.
3760 	 * Task label is already saved in the file security
3761 	 * struct as its SID.
3762 	 */
3763 	fsec->isid = isec->sid;
3764 	fsec->pseqno = avc_policy_seqno();
3765 	/*
3766 	 * Since the inode label or policy seqno may have changed
3767 	 * between the selinux_inode_permission check and the saving
3768 	 * of state above, recheck that access is still permitted.
3769 	 * Otherwise, access might never be revalidated against the
3770 	 * new inode label or new policy.
3771 	 * This check is not redundant - do not remove.
3772 	 */
3773 	return file_path_has_perm(cred, file, open_file_to_av(file));
3774 }
3775 
3776 /* task security operations */
3777 
3778 static int selinux_task_alloc(struct task_struct *task,
3779 			      unsigned long clone_flags)
3780 {
3781 	u32 sid = current_sid();
3782 
3783 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3784 }
3785 
3786 /*
3787  * allocate the SELinux part of blank credentials
3788  */
3789 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3790 {
3791 	struct task_security_struct *tsec;
3792 
3793 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3794 	if (!tsec)
3795 		return -ENOMEM;
3796 
3797 	cred->security = tsec;
3798 	return 0;
3799 }
3800 
3801 /*
3802  * detach and free the LSM part of a set of credentials
3803  */
3804 static void selinux_cred_free(struct cred *cred)
3805 {
3806 	struct task_security_struct *tsec = cred->security;
3807 
3808 	/*
3809 	 * cred->security == NULL if security_cred_alloc_blank() or
3810 	 * security_prepare_creds() returned an error.
3811 	 */
3812 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3813 	cred->security = (void *) 0x7UL;
3814 	kfree(tsec);
3815 }
3816 
3817 /*
3818  * prepare a new set of credentials for modification
3819  */
3820 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3821 				gfp_t gfp)
3822 {
3823 	const struct task_security_struct *old_tsec;
3824 	struct task_security_struct *tsec;
3825 
3826 	old_tsec = old->security;
3827 
3828 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3829 	if (!tsec)
3830 		return -ENOMEM;
3831 
3832 	new->security = tsec;
3833 	return 0;
3834 }
3835 
3836 /*
3837  * transfer the SELinux data to a blank set of creds
3838  */
3839 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3840 {
3841 	const struct task_security_struct *old_tsec = old->security;
3842 	struct task_security_struct *tsec = new->security;
3843 
3844 	*tsec = *old_tsec;
3845 }
3846 
3847 /*
3848  * set the security data for a kernel service
3849  * - all the creation contexts are set to unlabelled
3850  */
3851 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3852 {
3853 	struct task_security_struct *tsec = new->security;
3854 	u32 sid = current_sid();
3855 	int ret;
3856 
3857 	ret = avc_has_perm(sid, secid,
3858 			   SECCLASS_KERNEL_SERVICE,
3859 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3860 			   NULL);
3861 	if (ret == 0) {
3862 		tsec->sid = secid;
3863 		tsec->create_sid = 0;
3864 		tsec->keycreate_sid = 0;
3865 		tsec->sockcreate_sid = 0;
3866 	}
3867 	return ret;
3868 }
3869 
3870 /*
3871  * set the file creation context in a security record to the same as the
3872  * objective context of the specified inode
3873  */
3874 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3875 {
3876 	struct inode_security_struct *isec = inode_security(inode);
3877 	struct task_security_struct *tsec = new->security;
3878 	u32 sid = current_sid();
3879 	int ret;
3880 
3881 	ret = avc_has_perm(sid, isec->sid,
3882 			   SECCLASS_KERNEL_SERVICE,
3883 			   KERNEL_SERVICE__CREATE_FILES_AS,
3884 			   NULL);
3885 
3886 	if (ret == 0)
3887 		tsec->create_sid = isec->sid;
3888 	return ret;
3889 }
3890 
3891 static int selinux_kernel_module_request(char *kmod_name)
3892 {
3893 	struct common_audit_data ad;
3894 
3895 	ad.type = LSM_AUDIT_DATA_KMOD;
3896 	ad.u.kmod_name = kmod_name;
3897 
3898 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3899 			    SYSTEM__MODULE_REQUEST, &ad);
3900 }
3901 
3902 static int selinux_kernel_module_from_file(struct file *file)
3903 {
3904 	struct common_audit_data ad;
3905 	struct inode_security_struct *isec;
3906 	struct file_security_struct *fsec;
3907 	u32 sid = current_sid();
3908 	int rc;
3909 
3910 	/* init_module */
3911 	if (file == NULL)
3912 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
3913 					SYSTEM__MODULE_LOAD, NULL);
3914 
3915 	/* finit_module */
3916 
3917 	ad.type = LSM_AUDIT_DATA_FILE;
3918 	ad.u.file = file;
3919 
3920 	fsec = file->f_security;
3921 	if (sid != fsec->sid) {
3922 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3923 		if (rc)
3924 			return rc;
3925 	}
3926 
3927 	isec = inode_security(file_inode(file));
3928 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
3929 				SYSTEM__MODULE_LOAD, &ad);
3930 }
3931 
3932 static int selinux_kernel_read_file(struct file *file,
3933 				    enum kernel_read_file_id id)
3934 {
3935 	int rc = 0;
3936 
3937 	switch (id) {
3938 	case READING_MODULE:
3939 		rc = selinux_kernel_module_from_file(file);
3940 		break;
3941 	default:
3942 		break;
3943 	}
3944 
3945 	return rc;
3946 }
3947 
3948 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3949 {
3950 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3951 			    PROCESS__SETPGID, NULL);
3952 }
3953 
3954 static int selinux_task_getpgid(struct task_struct *p)
3955 {
3956 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3957 			    PROCESS__GETPGID, NULL);
3958 }
3959 
3960 static int selinux_task_getsid(struct task_struct *p)
3961 {
3962 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3963 			    PROCESS__GETSESSION, NULL);
3964 }
3965 
3966 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3967 {
3968 	*secid = task_sid(p);
3969 }
3970 
3971 static int selinux_task_setnice(struct task_struct *p, int nice)
3972 {
3973 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3974 			    PROCESS__SETSCHED, NULL);
3975 }
3976 
3977 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3978 {
3979 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3980 			    PROCESS__SETSCHED, NULL);
3981 }
3982 
3983 static int selinux_task_getioprio(struct task_struct *p)
3984 {
3985 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
3986 			    PROCESS__GETSCHED, NULL);
3987 }
3988 
3989 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
3990 				unsigned int flags)
3991 {
3992 	u32 av = 0;
3993 
3994 	if (!flags)
3995 		return 0;
3996 	if (flags & LSM_PRLIMIT_WRITE)
3997 		av |= PROCESS__SETRLIMIT;
3998 	if (flags & LSM_PRLIMIT_READ)
3999 		av |= PROCESS__GETRLIMIT;
4000 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4001 			    SECCLASS_PROCESS, av, NULL);
4002 }
4003 
4004 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4005 		struct rlimit *new_rlim)
4006 {
4007 	struct rlimit *old_rlim = p->signal->rlim + resource;
4008 
4009 	/* Control the ability to change the hard limit (whether
4010 	   lowering or raising it), so that the hard limit can
4011 	   later be used as a safe reset point for the soft limit
4012 	   upon context transitions.  See selinux_bprm_committing_creds. */
4013 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4014 		return avc_has_perm(current_sid(), task_sid(p),
4015 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4016 
4017 	return 0;
4018 }
4019 
4020 static int selinux_task_setscheduler(struct task_struct *p)
4021 {
4022 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
4023 			    PROCESS__SETSCHED, NULL);
4024 }
4025 
4026 static int selinux_task_getscheduler(struct task_struct *p)
4027 {
4028 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
4029 			    PROCESS__GETSCHED, NULL);
4030 }
4031 
4032 static int selinux_task_movememory(struct task_struct *p)
4033 {
4034 	return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS,
4035 			    PROCESS__SETSCHED, NULL);
4036 }
4037 
4038 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4039 				int sig, const struct cred *cred)
4040 {
4041 	u32 secid;
4042 	u32 perm;
4043 
4044 	if (!sig)
4045 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4046 	else
4047 		perm = signal_to_av(sig);
4048 	if (!cred)
4049 		secid = current_sid();
4050 	else
4051 		secid = cred_sid(cred);
4052 	return avc_has_perm(secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4053 }
4054 
4055 static void selinux_task_to_inode(struct task_struct *p,
4056 				  struct inode *inode)
4057 {
4058 	struct inode_security_struct *isec = inode->i_security;
4059 	u32 sid = task_sid(p);
4060 
4061 	spin_lock(&isec->lock);
4062 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4063 	isec->sid = sid;
4064 	isec->initialized = LABEL_INITIALIZED;
4065 	spin_unlock(&isec->lock);
4066 }
4067 
4068 /* Returns error only if unable to parse addresses */
4069 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4070 			struct common_audit_data *ad, u8 *proto)
4071 {
4072 	int offset, ihlen, ret = -EINVAL;
4073 	struct iphdr _iph, *ih;
4074 
4075 	offset = skb_network_offset(skb);
4076 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4077 	if (ih == NULL)
4078 		goto out;
4079 
4080 	ihlen = ih->ihl * 4;
4081 	if (ihlen < sizeof(_iph))
4082 		goto out;
4083 
4084 	ad->u.net->v4info.saddr = ih->saddr;
4085 	ad->u.net->v4info.daddr = ih->daddr;
4086 	ret = 0;
4087 
4088 	if (proto)
4089 		*proto = ih->protocol;
4090 
4091 	switch (ih->protocol) {
4092 	case IPPROTO_TCP: {
4093 		struct tcphdr _tcph, *th;
4094 
4095 		if (ntohs(ih->frag_off) & IP_OFFSET)
4096 			break;
4097 
4098 		offset += ihlen;
4099 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4100 		if (th == NULL)
4101 			break;
4102 
4103 		ad->u.net->sport = th->source;
4104 		ad->u.net->dport = th->dest;
4105 		break;
4106 	}
4107 
4108 	case IPPROTO_UDP: {
4109 		struct udphdr _udph, *uh;
4110 
4111 		if (ntohs(ih->frag_off) & IP_OFFSET)
4112 			break;
4113 
4114 		offset += ihlen;
4115 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4116 		if (uh == NULL)
4117 			break;
4118 
4119 		ad->u.net->sport = uh->source;
4120 		ad->u.net->dport = uh->dest;
4121 		break;
4122 	}
4123 
4124 	case IPPROTO_DCCP: {
4125 		struct dccp_hdr _dccph, *dh;
4126 
4127 		if (ntohs(ih->frag_off) & IP_OFFSET)
4128 			break;
4129 
4130 		offset += ihlen;
4131 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4132 		if (dh == NULL)
4133 			break;
4134 
4135 		ad->u.net->sport = dh->dccph_sport;
4136 		ad->u.net->dport = dh->dccph_dport;
4137 		break;
4138 	}
4139 
4140 	default:
4141 		break;
4142 	}
4143 out:
4144 	return ret;
4145 }
4146 
4147 #if IS_ENABLED(CONFIG_IPV6)
4148 
4149 /* Returns error only if unable to parse addresses */
4150 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4151 			struct common_audit_data *ad, u8 *proto)
4152 {
4153 	u8 nexthdr;
4154 	int ret = -EINVAL, offset;
4155 	struct ipv6hdr _ipv6h, *ip6;
4156 	__be16 frag_off;
4157 
4158 	offset = skb_network_offset(skb);
4159 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4160 	if (ip6 == NULL)
4161 		goto out;
4162 
4163 	ad->u.net->v6info.saddr = ip6->saddr;
4164 	ad->u.net->v6info.daddr = ip6->daddr;
4165 	ret = 0;
4166 
4167 	nexthdr = ip6->nexthdr;
4168 	offset += sizeof(_ipv6h);
4169 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4170 	if (offset < 0)
4171 		goto out;
4172 
4173 	if (proto)
4174 		*proto = nexthdr;
4175 
4176 	switch (nexthdr) {
4177 	case IPPROTO_TCP: {
4178 		struct tcphdr _tcph, *th;
4179 
4180 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4181 		if (th == NULL)
4182 			break;
4183 
4184 		ad->u.net->sport = th->source;
4185 		ad->u.net->dport = th->dest;
4186 		break;
4187 	}
4188 
4189 	case IPPROTO_UDP: {
4190 		struct udphdr _udph, *uh;
4191 
4192 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4193 		if (uh == NULL)
4194 			break;
4195 
4196 		ad->u.net->sport = uh->source;
4197 		ad->u.net->dport = uh->dest;
4198 		break;
4199 	}
4200 
4201 	case IPPROTO_DCCP: {
4202 		struct dccp_hdr _dccph, *dh;
4203 
4204 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4205 		if (dh == NULL)
4206 			break;
4207 
4208 		ad->u.net->sport = dh->dccph_sport;
4209 		ad->u.net->dport = dh->dccph_dport;
4210 		break;
4211 	}
4212 
4213 	/* includes fragments */
4214 	default:
4215 		break;
4216 	}
4217 out:
4218 	return ret;
4219 }
4220 
4221 #endif /* IPV6 */
4222 
4223 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4224 			     char **_addrp, int src, u8 *proto)
4225 {
4226 	char *addrp;
4227 	int ret;
4228 
4229 	switch (ad->u.net->family) {
4230 	case PF_INET:
4231 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4232 		if (ret)
4233 			goto parse_error;
4234 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4235 				       &ad->u.net->v4info.daddr);
4236 		goto okay;
4237 
4238 #if IS_ENABLED(CONFIG_IPV6)
4239 	case PF_INET6:
4240 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4241 		if (ret)
4242 			goto parse_error;
4243 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4244 				       &ad->u.net->v6info.daddr);
4245 		goto okay;
4246 #endif	/* IPV6 */
4247 	default:
4248 		addrp = NULL;
4249 		goto okay;
4250 	}
4251 
4252 parse_error:
4253 	printk(KERN_WARNING
4254 	       "SELinux: failure in selinux_parse_skb(),"
4255 	       " unable to parse packet\n");
4256 	return ret;
4257 
4258 okay:
4259 	if (_addrp)
4260 		*_addrp = addrp;
4261 	return 0;
4262 }
4263 
4264 /**
4265  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4266  * @skb: the packet
4267  * @family: protocol family
4268  * @sid: the packet's peer label SID
4269  *
4270  * Description:
4271  * Check the various different forms of network peer labeling and determine
4272  * the peer label/SID for the packet; most of the magic actually occurs in
4273  * the security server function security_net_peersid_cmp().  The function
4274  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4275  * or -EACCES if @sid is invalid due to inconsistencies with the different
4276  * peer labels.
4277  *
4278  */
4279 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4280 {
4281 	int err;
4282 	u32 xfrm_sid;
4283 	u32 nlbl_sid;
4284 	u32 nlbl_type;
4285 
4286 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4287 	if (unlikely(err))
4288 		return -EACCES;
4289 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4290 	if (unlikely(err))
4291 		return -EACCES;
4292 
4293 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4294 	if (unlikely(err)) {
4295 		printk(KERN_WARNING
4296 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4297 		       " unable to determine packet's peer label\n");
4298 		return -EACCES;
4299 	}
4300 
4301 	return 0;
4302 }
4303 
4304 /**
4305  * selinux_conn_sid - Determine the child socket label for a connection
4306  * @sk_sid: the parent socket's SID
4307  * @skb_sid: the packet's SID
4308  * @conn_sid: the resulting connection SID
4309  *
4310  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4311  * combined with the MLS information from @skb_sid in order to create
4312  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4313  * of @sk_sid.  Returns zero on success, negative values on failure.
4314  *
4315  */
4316 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4317 {
4318 	int err = 0;
4319 
4320 	if (skb_sid != SECSID_NULL)
4321 		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4322 	else
4323 		*conn_sid = sk_sid;
4324 
4325 	return err;
4326 }
4327 
4328 /* socket security operations */
4329 
4330 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4331 				 u16 secclass, u32 *socksid)
4332 {
4333 	if (tsec->sockcreate_sid > SECSID_NULL) {
4334 		*socksid = tsec->sockcreate_sid;
4335 		return 0;
4336 	}
4337 
4338 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4339 				       socksid);
4340 }
4341 
4342 static int sock_has_perm(struct sock *sk, u32 perms)
4343 {
4344 	struct sk_security_struct *sksec = sk->sk_security;
4345 	struct common_audit_data ad;
4346 	struct lsm_network_audit net = {0,};
4347 
4348 	if (sksec->sid == SECINITSID_KERNEL)
4349 		return 0;
4350 
4351 	ad.type = LSM_AUDIT_DATA_NET;
4352 	ad.u.net = &net;
4353 	ad.u.net->sk = sk;
4354 
4355 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4356 			    &ad);
4357 }
4358 
4359 static int selinux_socket_create(int family, int type,
4360 				 int protocol, int kern)
4361 {
4362 	const struct task_security_struct *tsec = current_security();
4363 	u32 newsid;
4364 	u16 secclass;
4365 	int rc;
4366 
4367 	if (kern)
4368 		return 0;
4369 
4370 	secclass = socket_type_to_security_class(family, type, protocol);
4371 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4372 	if (rc)
4373 		return rc;
4374 
4375 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4376 }
4377 
4378 static int selinux_socket_post_create(struct socket *sock, int family,
4379 				      int type, int protocol, int kern)
4380 {
4381 	const struct task_security_struct *tsec = current_security();
4382 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4383 	struct sk_security_struct *sksec;
4384 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4385 	u32 sid = SECINITSID_KERNEL;
4386 	int err = 0;
4387 
4388 	if (!kern) {
4389 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4390 		if (err)
4391 			return err;
4392 	}
4393 
4394 	isec->sclass = sclass;
4395 	isec->sid = sid;
4396 	isec->initialized = LABEL_INITIALIZED;
4397 
4398 	if (sock->sk) {
4399 		sksec = sock->sk->sk_security;
4400 		sksec->sclass = sclass;
4401 		sksec->sid = sid;
4402 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4403 	}
4404 
4405 	return err;
4406 }
4407 
4408 /* Range of port numbers used to automatically bind.
4409    Need to determine whether we should perform a name_bind
4410    permission check between the socket and the port number. */
4411 
4412 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4413 {
4414 	struct sock *sk = sock->sk;
4415 	u16 family;
4416 	int err;
4417 
4418 	err = sock_has_perm(sk, SOCKET__BIND);
4419 	if (err)
4420 		goto out;
4421 
4422 	/*
4423 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4424 	 * Multiple address binding for SCTP is not supported yet: we just
4425 	 * check the first address now.
4426 	 */
4427 	family = sk->sk_family;
4428 	if (family == PF_INET || family == PF_INET6) {
4429 		char *addrp;
4430 		struct sk_security_struct *sksec = sk->sk_security;
4431 		struct common_audit_data ad;
4432 		struct lsm_network_audit net = {0,};
4433 		struct sockaddr_in *addr4 = NULL;
4434 		struct sockaddr_in6 *addr6 = NULL;
4435 		unsigned short snum;
4436 		u32 sid, node_perm;
4437 
4438 		if (family == PF_INET) {
4439 			if (addrlen < sizeof(struct sockaddr_in)) {
4440 				err = -EINVAL;
4441 				goto out;
4442 			}
4443 			addr4 = (struct sockaddr_in *)address;
4444 			snum = ntohs(addr4->sin_port);
4445 			addrp = (char *)&addr4->sin_addr.s_addr;
4446 		} else {
4447 			if (addrlen < SIN6_LEN_RFC2133) {
4448 				err = -EINVAL;
4449 				goto out;
4450 			}
4451 			addr6 = (struct sockaddr_in6 *)address;
4452 			snum = ntohs(addr6->sin6_port);
4453 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4454 		}
4455 
4456 		if (snum) {
4457 			int low, high;
4458 
4459 			inet_get_local_port_range(sock_net(sk), &low, &high);
4460 
4461 			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4462 			    snum > high) {
4463 				err = sel_netport_sid(sk->sk_protocol,
4464 						      snum, &sid);
4465 				if (err)
4466 					goto out;
4467 				ad.type = LSM_AUDIT_DATA_NET;
4468 				ad.u.net = &net;
4469 				ad.u.net->sport = htons(snum);
4470 				ad.u.net->family = family;
4471 				err = avc_has_perm(sksec->sid, sid,
4472 						   sksec->sclass,
4473 						   SOCKET__NAME_BIND, &ad);
4474 				if (err)
4475 					goto out;
4476 			}
4477 		}
4478 
4479 		switch (sksec->sclass) {
4480 		case SECCLASS_TCP_SOCKET:
4481 			node_perm = TCP_SOCKET__NODE_BIND;
4482 			break;
4483 
4484 		case SECCLASS_UDP_SOCKET:
4485 			node_perm = UDP_SOCKET__NODE_BIND;
4486 			break;
4487 
4488 		case SECCLASS_DCCP_SOCKET:
4489 			node_perm = DCCP_SOCKET__NODE_BIND;
4490 			break;
4491 
4492 		default:
4493 			node_perm = RAWIP_SOCKET__NODE_BIND;
4494 			break;
4495 		}
4496 
4497 		err = sel_netnode_sid(addrp, family, &sid);
4498 		if (err)
4499 			goto out;
4500 
4501 		ad.type = LSM_AUDIT_DATA_NET;
4502 		ad.u.net = &net;
4503 		ad.u.net->sport = htons(snum);
4504 		ad.u.net->family = family;
4505 
4506 		if (family == PF_INET)
4507 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4508 		else
4509 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4510 
4511 		err = avc_has_perm(sksec->sid, sid,
4512 				   sksec->sclass, node_perm, &ad);
4513 		if (err)
4514 			goto out;
4515 	}
4516 out:
4517 	return err;
4518 }
4519 
4520 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4521 {
4522 	struct sock *sk = sock->sk;
4523 	struct sk_security_struct *sksec = sk->sk_security;
4524 	int err;
4525 
4526 	err = sock_has_perm(sk, SOCKET__CONNECT);
4527 	if (err)
4528 		return err;
4529 
4530 	/*
4531 	 * If a TCP or DCCP socket, check name_connect permission for the port.
4532 	 */
4533 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4534 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
4535 		struct common_audit_data ad;
4536 		struct lsm_network_audit net = {0,};
4537 		struct sockaddr_in *addr4 = NULL;
4538 		struct sockaddr_in6 *addr6 = NULL;
4539 		unsigned short snum;
4540 		u32 sid, perm;
4541 
4542 		if (sk->sk_family == PF_INET) {
4543 			addr4 = (struct sockaddr_in *)address;
4544 			if (addrlen < sizeof(struct sockaddr_in))
4545 				return -EINVAL;
4546 			snum = ntohs(addr4->sin_port);
4547 		} else {
4548 			addr6 = (struct sockaddr_in6 *)address;
4549 			if (addrlen < SIN6_LEN_RFC2133)
4550 				return -EINVAL;
4551 			snum = ntohs(addr6->sin6_port);
4552 		}
4553 
4554 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4555 		if (err)
4556 			goto out;
4557 
4558 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4559 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4560 
4561 		ad.type = LSM_AUDIT_DATA_NET;
4562 		ad.u.net = &net;
4563 		ad.u.net->dport = htons(snum);
4564 		ad.u.net->family = sk->sk_family;
4565 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4566 		if (err)
4567 			goto out;
4568 	}
4569 
4570 	err = selinux_netlbl_socket_connect(sk, address);
4571 
4572 out:
4573 	return err;
4574 }
4575 
4576 static int selinux_socket_listen(struct socket *sock, int backlog)
4577 {
4578 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4579 }
4580 
4581 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4582 {
4583 	int err;
4584 	struct inode_security_struct *isec;
4585 	struct inode_security_struct *newisec;
4586 	u16 sclass;
4587 	u32 sid;
4588 
4589 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4590 	if (err)
4591 		return err;
4592 
4593 	isec = inode_security_novalidate(SOCK_INODE(sock));
4594 	spin_lock(&isec->lock);
4595 	sclass = isec->sclass;
4596 	sid = isec->sid;
4597 	spin_unlock(&isec->lock);
4598 
4599 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4600 	newisec->sclass = sclass;
4601 	newisec->sid = sid;
4602 	newisec->initialized = LABEL_INITIALIZED;
4603 
4604 	return 0;
4605 }
4606 
4607 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4608 				  int size)
4609 {
4610 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4611 }
4612 
4613 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4614 				  int size, int flags)
4615 {
4616 	return sock_has_perm(sock->sk, SOCKET__READ);
4617 }
4618 
4619 static int selinux_socket_getsockname(struct socket *sock)
4620 {
4621 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4622 }
4623 
4624 static int selinux_socket_getpeername(struct socket *sock)
4625 {
4626 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4627 }
4628 
4629 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4630 {
4631 	int err;
4632 
4633 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4634 	if (err)
4635 		return err;
4636 
4637 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4638 }
4639 
4640 static int selinux_socket_getsockopt(struct socket *sock, int level,
4641 				     int optname)
4642 {
4643 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4644 }
4645 
4646 static int selinux_socket_shutdown(struct socket *sock, int how)
4647 {
4648 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4649 }
4650 
4651 static int selinux_socket_unix_stream_connect(struct sock *sock,
4652 					      struct sock *other,
4653 					      struct sock *newsk)
4654 {
4655 	struct sk_security_struct *sksec_sock = sock->sk_security;
4656 	struct sk_security_struct *sksec_other = other->sk_security;
4657 	struct sk_security_struct *sksec_new = newsk->sk_security;
4658 	struct common_audit_data ad;
4659 	struct lsm_network_audit net = {0,};
4660 	int err;
4661 
4662 	ad.type = LSM_AUDIT_DATA_NET;
4663 	ad.u.net = &net;
4664 	ad.u.net->sk = other;
4665 
4666 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4667 			   sksec_other->sclass,
4668 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4669 	if (err)
4670 		return err;
4671 
4672 	/* server child socket */
4673 	sksec_new->peer_sid = sksec_sock->sid;
4674 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4675 				    &sksec_new->sid);
4676 	if (err)
4677 		return err;
4678 
4679 	/* connecting socket */
4680 	sksec_sock->peer_sid = sksec_new->sid;
4681 
4682 	return 0;
4683 }
4684 
4685 static int selinux_socket_unix_may_send(struct socket *sock,
4686 					struct socket *other)
4687 {
4688 	struct sk_security_struct *ssec = sock->sk->sk_security;
4689 	struct sk_security_struct *osec = other->sk->sk_security;
4690 	struct common_audit_data ad;
4691 	struct lsm_network_audit net = {0,};
4692 
4693 	ad.type = LSM_AUDIT_DATA_NET;
4694 	ad.u.net = &net;
4695 	ad.u.net->sk = other->sk;
4696 
4697 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4698 			    &ad);
4699 }
4700 
4701 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4702 				    char *addrp, u16 family, u32 peer_sid,
4703 				    struct common_audit_data *ad)
4704 {
4705 	int err;
4706 	u32 if_sid;
4707 	u32 node_sid;
4708 
4709 	err = sel_netif_sid(ns, ifindex, &if_sid);
4710 	if (err)
4711 		return err;
4712 	err = avc_has_perm(peer_sid, if_sid,
4713 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4714 	if (err)
4715 		return err;
4716 
4717 	err = sel_netnode_sid(addrp, family, &node_sid);
4718 	if (err)
4719 		return err;
4720 	return avc_has_perm(peer_sid, node_sid,
4721 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4722 }
4723 
4724 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4725 				       u16 family)
4726 {
4727 	int err = 0;
4728 	struct sk_security_struct *sksec = sk->sk_security;
4729 	u32 sk_sid = sksec->sid;
4730 	struct common_audit_data ad;
4731 	struct lsm_network_audit net = {0,};
4732 	char *addrp;
4733 
4734 	ad.type = LSM_AUDIT_DATA_NET;
4735 	ad.u.net = &net;
4736 	ad.u.net->netif = skb->skb_iif;
4737 	ad.u.net->family = family;
4738 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4739 	if (err)
4740 		return err;
4741 
4742 	if (selinux_secmark_enabled()) {
4743 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4744 				   PACKET__RECV, &ad);
4745 		if (err)
4746 			return err;
4747 	}
4748 
4749 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4750 	if (err)
4751 		return err;
4752 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4753 
4754 	return err;
4755 }
4756 
4757 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4758 {
4759 	int err;
4760 	struct sk_security_struct *sksec = sk->sk_security;
4761 	u16 family = sk->sk_family;
4762 	u32 sk_sid = sksec->sid;
4763 	struct common_audit_data ad;
4764 	struct lsm_network_audit net = {0,};
4765 	char *addrp;
4766 	u8 secmark_active;
4767 	u8 peerlbl_active;
4768 
4769 	if (family != PF_INET && family != PF_INET6)
4770 		return 0;
4771 
4772 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4773 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4774 		family = PF_INET;
4775 
4776 	/* If any sort of compatibility mode is enabled then handoff processing
4777 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4778 	 * special handling.  We do this in an attempt to keep this function
4779 	 * as fast and as clean as possible. */
4780 	if (!selinux_policycap_netpeer)
4781 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4782 
4783 	secmark_active = selinux_secmark_enabled();
4784 	peerlbl_active = selinux_peerlbl_enabled();
4785 	if (!secmark_active && !peerlbl_active)
4786 		return 0;
4787 
4788 	ad.type = LSM_AUDIT_DATA_NET;
4789 	ad.u.net = &net;
4790 	ad.u.net->netif = skb->skb_iif;
4791 	ad.u.net->family = family;
4792 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4793 	if (err)
4794 		return err;
4795 
4796 	if (peerlbl_active) {
4797 		u32 peer_sid;
4798 
4799 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4800 		if (err)
4801 			return err;
4802 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4803 					       addrp, family, peer_sid, &ad);
4804 		if (err) {
4805 			selinux_netlbl_err(skb, family, err, 0);
4806 			return err;
4807 		}
4808 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4809 				   PEER__RECV, &ad);
4810 		if (err) {
4811 			selinux_netlbl_err(skb, family, err, 0);
4812 			return err;
4813 		}
4814 	}
4815 
4816 	if (secmark_active) {
4817 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4818 				   PACKET__RECV, &ad);
4819 		if (err)
4820 			return err;
4821 	}
4822 
4823 	return err;
4824 }
4825 
4826 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4827 					    int __user *optlen, unsigned len)
4828 {
4829 	int err = 0;
4830 	char *scontext;
4831 	u32 scontext_len;
4832 	struct sk_security_struct *sksec = sock->sk->sk_security;
4833 	u32 peer_sid = SECSID_NULL;
4834 
4835 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4836 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4837 		peer_sid = sksec->peer_sid;
4838 	if (peer_sid == SECSID_NULL)
4839 		return -ENOPROTOOPT;
4840 
4841 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4842 	if (err)
4843 		return err;
4844 
4845 	if (scontext_len > len) {
4846 		err = -ERANGE;
4847 		goto out_len;
4848 	}
4849 
4850 	if (copy_to_user(optval, scontext, scontext_len))
4851 		err = -EFAULT;
4852 
4853 out_len:
4854 	if (put_user(scontext_len, optlen))
4855 		err = -EFAULT;
4856 	kfree(scontext);
4857 	return err;
4858 }
4859 
4860 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4861 {
4862 	u32 peer_secid = SECSID_NULL;
4863 	u16 family;
4864 	struct inode_security_struct *isec;
4865 
4866 	if (skb && skb->protocol == htons(ETH_P_IP))
4867 		family = PF_INET;
4868 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4869 		family = PF_INET6;
4870 	else if (sock)
4871 		family = sock->sk->sk_family;
4872 	else
4873 		goto out;
4874 
4875 	if (sock && family == PF_UNIX) {
4876 		isec = inode_security_novalidate(SOCK_INODE(sock));
4877 		peer_secid = isec->sid;
4878 	} else if (skb)
4879 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4880 
4881 out:
4882 	*secid = peer_secid;
4883 	if (peer_secid == SECSID_NULL)
4884 		return -EINVAL;
4885 	return 0;
4886 }
4887 
4888 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4889 {
4890 	struct sk_security_struct *sksec;
4891 
4892 	sksec = kzalloc(sizeof(*sksec), priority);
4893 	if (!sksec)
4894 		return -ENOMEM;
4895 
4896 	sksec->peer_sid = SECINITSID_UNLABELED;
4897 	sksec->sid = SECINITSID_UNLABELED;
4898 	sksec->sclass = SECCLASS_SOCKET;
4899 	selinux_netlbl_sk_security_reset(sksec);
4900 	sk->sk_security = sksec;
4901 
4902 	return 0;
4903 }
4904 
4905 static void selinux_sk_free_security(struct sock *sk)
4906 {
4907 	struct sk_security_struct *sksec = sk->sk_security;
4908 
4909 	sk->sk_security = NULL;
4910 	selinux_netlbl_sk_security_free(sksec);
4911 	kfree(sksec);
4912 }
4913 
4914 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4915 {
4916 	struct sk_security_struct *sksec = sk->sk_security;
4917 	struct sk_security_struct *newsksec = newsk->sk_security;
4918 
4919 	newsksec->sid = sksec->sid;
4920 	newsksec->peer_sid = sksec->peer_sid;
4921 	newsksec->sclass = sksec->sclass;
4922 
4923 	selinux_netlbl_sk_security_reset(newsksec);
4924 }
4925 
4926 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4927 {
4928 	if (!sk)
4929 		*secid = SECINITSID_ANY_SOCKET;
4930 	else {
4931 		struct sk_security_struct *sksec = sk->sk_security;
4932 
4933 		*secid = sksec->sid;
4934 	}
4935 }
4936 
4937 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4938 {
4939 	struct inode_security_struct *isec =
4940 		inode_security_novalidate(SOCK_INODE(parent));
4941 	struct sk_security_struct *sksec = sk->sk_security;
4942 
4943 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4944 	    sk->sk_family == PF_UNIX)
4945 		isec->sid = sksec->sid;
4946 	sksec->sclass = isec->sclass;
4947 }
4948 
4949 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4950 				     struct request_sock *req)
4951 {
4952 	struct sk_security_struct *sksec = sk->sk_security;
4953 	int err;
4954 	u16 family = req->rsk_ops->family;
4955 	u32 connsid;
4956 	u32 peersid;
4957 
4958 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4959 	if (err)
4960 		return err;
4961 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4962 	if (err)
4963 		return err;
4964 	req->secid = connsid;
4965 	req->peer_secid = peersid;
4966 
4967 	return selinux_netlbl_inet_conn_request(req, family);
4968 }
4969 
4970 static void selinux_inet_csk_clone(struct sock *newsk,
4971 				   const struct request_sock *req)
4972 {
4973 	struct sk_security_struct *newsksec = newsk->sk_security;
4974 
4975 	newsksec->sid = req->secid;
4976 	newsksec->peer_sid = req->peer_secid;
4977 	/* NOTE: Ideally, we should also get the isec->sid for the
4978 	   new socket in sync, but we don't have the isec available yet.
4979 	   So we will wait until sock_graft to do it, by which
4980 	   time it will have been created and available. */
4981 
4982 	/* We don't need to take any sort of lock here as we are the only
4983 	 * thread with access to newsksec */
4984 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4985 }
4986 
4987 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4988 {
4989 	u16 family = sk->sk_family;
4990 	struct sk_security_struct *sksec = sk->sk_security;
4991 
4992 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4993 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4994 		family = PF_INET;
4995 
4996 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4997 }
4998 
4999 static int selinux_secmark_relabel_packet(u32 sid)
5000 {
5001 	const struct task_security_struct *__tsec;
5002 	u32 tsid;
5003 
5004 	__tsec = current_security();
5005 	tsid = __tsec->sid;
5006 
5007 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
5008 }
5009 
5010 static void selinux_secmark_refcount_inc(void)
5011 {
5012 	atomic_inc(&selinux_secmark_refcount);
5013 }
5014 
5015 static void selinux_secmark_refcount_dec(void)
5016 {
5017 	atomic_dec(&selinux_secmark_refcount);
5018 }
5019 
5020 static void selinux_req_classify_flow(const struct request_sock *req,
5021 				      struct flowi *fl)
5022 {
5023 	fl->flowi_secid = req->secid;
5024 }
5025 
5026 static int selinux_tun_dev_alloc_security(void **security)
5027 {
5028 	struct tun_security_struct *tunsec;
5029 
5030 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5031 	if (!tunsec)
5032 		return -ENOMEM;
5033 	tunsec->sid = current_sid();
5034 
5035 	*security = tunsec;
5036 	return 0;
5037 }
5038 
5039 static void selinux_tun_dev_free_security(void *security)
5040 {
5041 	kfree(security);
5042 }
5043 
5044 static int selinux_tun_dev_create(void)
5045 {
5046 	u32 sid = current_sid();
5047 
5048 	/* we aren't taking into account the "sockcreate" SID since the socket
5049 	 * that is being created here is not a socket in the traditional sense,
5050 	 * instead it is a private sock, accessible only to the kernel, and
5051 	 * representing a wide range of network traffic spanning multiple
5052 	 * connections unlike traditional sockets - check the TUN driver to
5053 	 * get a better understanding of why this socket is special */
5054 
5055 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5056 			    NULL);
5057 }
5058 
5059 static int selinux_tun_dev_attach_queue(void *security)
5060 {
5061 	struct tun_security_struct *tunsec = security;
5062 
5063 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5064 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5065 }
5066 
5067 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5068 {
5069 	struct tun_security_struct *tunsec = security;
5070 	struct sk_security_struct *sksec = sk->sk_security;
5071 
5072 	/* we don't currently perform any NetLabel based labeling here and it
5073 	 * isn't clear that we would want to do so anyway; while we could apply
5074 	 * labeling without the support of the TUN user the resulting labeled
5075 	 * traffic from the other end of the connection would almost certainly
5076 	 * cause confusion to the TUN user that had no idea network labeling
5077 	 * protocols were being used */
5078 
5079 	sksec->sid = tunsec->sid;
5080 	sksec->sclass = SECCLASS_TUN_SOCKET;
5081 
5082 	return 0;
5083 }
5084 
5085 static int selinux_tun_dev_open(void *security)
5086 {
5087 	struct tun_security_struct *tunsec = security;
5088 	u32 sid = current_sid();
5089 	int err;
5090 
5091 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5092 			   TUN_SOCKET__RELABELFROM, NULL);
5093 	if (err)
5094 		return err;
5095 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5096 			   TUN_SOCKET__RELABELTO, NULL);
5097 	if (err)
5098 		return err;
5099 	tunsec->sid = sid;
5100 
5101 	return 0;
5102 }
5103 
5104 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5105 {
5106 	int err = 0;
5107 	u32 perm;
5108 	struct nlmsghdr *nlh;
5109 	struct sk_security_struct *sksec = sk->sk_security;
5110 
5111 	if (skb->len < NLMSG_HDRLEN) {
5112 		err = -EINVAL;
5113 		goto out;
5114 	}
5115 	nlh = nlmsg_hdr(skb);
5116 
5117 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5118 	if (err) {
5119 		if (err == -EINVAL) {
5120 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5121 			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5122 			       " pig=%d comm=%s\n",
5123 			       sk->sk_protocol, nlh->nlmsg_type,
5124 			       secclass_map[sksec->sclass - 1].name,
5125 			       task_pid_nr(current), current->comm);
5126 			if (!selinux_enforcing || security_get_allow_unknown())
5127 				err = 0;
5128 		}
5129 
5130 		/* Ignore */
5131 		if (err == -ENOENT)
5132 			err = 0;
5133 		goto out;
5134 	}
5135 
5136 	err = sock_has_perm(sk, perm);
5137 out:
5138 	return err;
5139 }
5140 
5141 #ifdef CONFIG_NETFILTER
5142 
5143 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5144 				       const struct net_device *indev,
5145 				       u16 family)
5146 {
5147 	int err;
5148 	char *addrp;
5149 	u32 peer_sid;
5150 	struct common_audit_data ad;
5151 	struct lsm_network_audit net = {0,};
5152 	u8 secmark_active;
5153 	u8 netlbl_active;
5154 	u8 peerlbl_active;
5155 
5156 	if (!selinux_policycap_netpeer)
5157 		return NF_ACCEPT;
5158 
5159 	secmark_active = selinux_secmark_enabled();
5160 	netlbl_active = netlbl_enabled();
5161 	peerlbl_active = selinux_peerlbl_enabled();
5162 	if (!secmark_active && !peerlbl_active)
5163 		return NF_ACCEPT;
5164 
5165 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5166 		return NF_DROP;
5167 
5168 	ad.type = LSM_AUDIT_DATA_NET;
5169 	ad.u.net = &net;
5170 	ad.u.net->netif = indev->ifindex;
5171 	ad.u.net->family = family;
5172 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5173 		return NF_DROP;
5174 
5175 	if (peerlbl_active) {
5176 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5177 					       addrp, family, peer_sid, &ad);
5178 		if (err) {
5179 			selinux_netlbl_err(skb, family, err, 1);
5180 			return NF_DROP;
5181 		}
5182 	}
5183 
5184 	if (secmark_active)
5185 		if (avc_has_perm(peer_sid, skb->secmark,
5186 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5187 			return NF_DROP;
5188 
5189 	if (netlbl_active)
5190 		/* we do this in the FORWARD path and not the POST_ROUTING
5191 		 * path because we want to make sure we apply the necessary
5192 		 * labeling before IPsec is applied so we can leverage AH
5193 		 * protection */
5194 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5195 			return NF_DROP;
5196 
5197 	return NF_ACCEPT;
5198 }
5199 
5200 static unsigned int selinux_ipv4_forward(void *priv,
5201 					 struct sk_buff *skb,
5202 					 const struct nf_hook_state *state)
5203 {
5204 	return selinux_ip_forward(skb, state->in, PF_INET);
5205 }
5206 
5207 #if IS_ENABLED(CONFIG_IPV6)
5208 static unsigned int selinux_ipv6_forward(void *priv,
5209 					 struct sk_buff *skb,
5210 					 const struct nf_hook_state *state)
5211 {
5212 	return selinux_ip_forward(skb, state->in, PF_INET6);
5213 }
5214 #endif	/* IPV6 */
5215 
5216 static unsigned int selinux_ip_output(struct sk_buff *skb,
5217 				      u16 family)
5218 {
5219 	struct sock *sk;
5220 	u32 sid;
5221 
5222 	if (!netlbl_enabled())
5223 		return NF_ACCEPT;
5224 
5225 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5226 	 * because we want to make sure we apply the necessary labeling
5227 	 * before IPsec is applied so we can leverage AH protection */
5228 	sk = skb->sk;
5229 	if (sk) {
5230 		struct sk_security_struct *sksec;
5231 
5232 		if (sk_listener(sk))
5233 			/* if the socket is the listening state then this
5234 			 * packet is a SYN-ACK packet which means it needs to
5235 			 * be labeled based on the connection/request_sock and
5236 			 * not the parent socket.  unfortunately, we can't
5237 			 * lookup the request_sock yet as it isn't queued on
5238 			 * the parent socket until after the SYN-ACK is sent.
5239 			 * the "solution" is to simply pass the packet as-is
5240 			 * as any IP option based labeling should be copied
5241 			 * from the initial connection request (in the IP
5242 			 * layer).  it is far from ideal, but until we get a
5243 			 * security label in the packet itself this is the
5244 			 * best we can do. */
5245 			return NF_ACCEPT;
5246 
5247 		/* standard practice, label using the parent socket */
5248 		sksec = sk->sk_security;
5249 		sid = sksec->sid;
5250 	} else
5251 		sid = SECINITSID_KERNEL;
5252 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5253 		return NF_DROP;
5254 
5255 	return NF_ACCEPT;
5256 }
5257 
5258 static unsigned int selinux_ipv4_output(void *priv,
5259 					struct sk_buff *skb,
5260 					const struct nf_hook_state *state)
5261 {
5262 	return selinux_ip_output(skb, PF_INET);
5263 }
5264 
5265 #if IS_ENABLED(CONFIG_IPV6)
5266 static unsigned int selinux_ipv6_output(void *priv,
5267 					struct sk_buff *skb,
5268 					const struct nf_hook_state *state)
5269 {
5270 	return selinux_ip_output(skb, PF_INET6);
5271 }
5272 #endif	/* IPV6 */
5273 
5274 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5275 						int ifindex,
5276 						u16 family)
5277 {
5278 	struct sock *sk = skb_to_full_sk(skb);
5279 	struct sk_security_struct *sksec;
5280 	struct common_audit_data ad;
5281 	struct lsm_network_audit net = {0,};
5282 	char *addrp;
5283 	u8 proto;
5284 
5285 	if (sk == NULL)
5286 		return NF_ACCEPT;
5287 	sksec = sk->sk_security;
5288 
5289 	ad.type = LSM_AUDIT_DATA_NET;
5290 	ad.u.net = &net;
5291 	ad.u.net->netif = ifindex;
5292 	ad.u.net->family = family;
5293 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5294 		return NF_DROP;
5295 
5296 	if (selinux_secmark_enabled())
5297 		if (avc_has_perm(sksec->sid, skb->secmark,
5298 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5299 			return NF_DROP_ERR(-ECONNREFUSED);
5300 
5301 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5302 		return NF_DROP_ERR(-ECONNREFUSED);
5303 
5304 	return NF_ACCEPT;
5305 }
5306 
5307 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5308 					 const struct net_device *outdev,
5309 					 u16 family)
5310 {
5311 	u32 secmark_perm;
5312 	u32 peer_sid;
5313 	int ifindex = outdev->ifindex;
5314 	struct sock *sk;
5315 	struct common_audit_data ad;
5316 	struct lsm_network_audit net = {0,};
5317 	char *addrp;
5318 	u8 secmark_active;
5319 	u8 peerlbl_active;
5320 
5321 	/* If any sort of compatibility mode is enabled then handoff processing
5322 	 * to the selinux_ip_postroute_compat() function to deal with the
5323 	 * special handling.  We do this in an attempt to keep this function
5324 	 * as fast and as clean as possible. */
5325 	if (!selinux_policycap_netpeer)
5326 		return selinux_ip_postroute_compat(skb, ifindex, family);
5327 
5328 	secmark_active = selinux_secmark_enabled();
5329 	peerlbl_active = selinux_peerlbl_enabled();
5330 	if (!secmark_active && !peerlbl_active)
5331 		return NF_ACCEPT;
5332 
5333 	sk = skb_to_full_sk(skb);
5334 
5335 #ifdef CONFIG_XFRM
5336 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5337 	 * packet transformation so allow the packet to pass without any checks
5338 	 * since we'll have another chance to perform access control checks
5339 	 * when the packet is on it's final way out.
5340 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5341 	 *       is NULL, in this case go ahead and apply access control.
5342 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5343 	 *       TCP listening state we cannot wait until the XFRM processing
5344 	 *       is done as we will miss out on the SA label if we do;
5345 	 *       unfortunately, this means more work, but it is only once per
5346 	 *       connection. */
5347 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5348 	    !(sk && sk_listener(sk)))
5349 		return NF_ACCEPT;
5350 #endif
5351 
5352 	if (sk == NULL) {
5353 		/* Without an associated socket the packet is either coming
5354 		 * from the kernel or it is being forwarded; check the packet
5355 		 * to determine which and if the packet is being forwarded
5356 		 * query the packet directly to determine the security label. */
5357 		if (skb->skb_iif) {
5358 			secmark_perm = PACKET__FORWARD_OUT;
5359 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5360 				return NF_DROP;
5361 		} else {
5362 			secmark_perm = PACKET__SEND;
5363 			peer_sid = SECINITSID_KERNEL;
5364 		}
5365 	} else if (sk_listener(sk)) {
5366 		/* Locally generated packet but the associated socket is in the
5367 		 * listening state which means this is a SYN-ACK packet.  In
5368 		 * this particular case the correct security label is assigned
5369 		 * to the connection/request_sock but unfortunately we can't
5370 		 * query the request_sock as it isn't queued on the parent
5371 		 * socket until after the SYN-ACK packet is sent; the only
5372 		 * viable choice is to regenerate the label like we do in
5373 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5374 		 * for similar problems. */
5375 		u32 skb_sid;
5376 		struct sk_security_struct *sksec;
5377 
5378 		sksec = sk->sk_security;
5379 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5380 			return NF_DROP;
5381 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5382 		 * and the packet has been through at least one XFRM
5383 		 * transformation then we must be dealing with the "final"
5384 		 * form of labeled IPsec packet; since we've already applied
5385 		 * all of our access controls on this packet we can safely
5386 		 * pass the packet. */
5387 		if (skb_sid == SECSID_NULL) {
5388 			switch (family) {
5389 			case PF_INET:
5390 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5391 					return NF_ACCEPT;
5392 				break;
5393 			case PF_INET6:
5394 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5395 					return NF_ACCEPT;
5396 				break;
5397 			default:
5398 				return NF_DROP_ERR(-ECONNREFUSED);
5399 			}
5400 		}
5401 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5402 			return NF_DROP;
5403 		secmark_perm = PACKET__SEND;
5404 	} else {
5405 		/* Locally generated packet, fetch the security label from the
5406 		 * associated socket. */
5407 		struct sk_security_struct *sksec = sk->sk_security;
5408 		peer_sid = sksec->sid;
5409 		secmark_perm = PACKET__SEND;
5410 	}
5411 
5412 	ad.type = LSM_AUDIT_DATA_NET;
5413 	ad.u.net = &net;
5414 	ad.u.net->netif = ifindex;
5415 	ad.u.net->family = family;
5416 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5417 		return NF_DROP;
5418 
5419 	if (secmark_active)
5420 		if (avc_has_perm(peer_sid, skb->secmark,
5421 				 SECCLASS_PACKET, secmark_perm, &ad))
5422 			return NF_DROP_ERR(-ECONNREFUSED);
5423 
5424 	if (peerlbl_active) {
5425 		u32 if_sid;
5426 		u32 node_sid;
5427 
5428 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5429 			return NF_DROP;
5430 		if (avc_has_perm(peer_sid, if_sid,
5431 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5432 			return NF_DROP_ERR(-ECONNREFUSED);
5433 
5434 		if (sel_netnode_sid(addrp, family, &node_sid))
5435 			return NF_DROP;
5436 		if (avc_has_perm(peer_sid, node_sid,
5437 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5438 			return NF_DROP_ERR(-ECONNREFUSED);
5439 	}
5440 
5441 	return NF_ACCEPT;
5442 }
5443 
5444 static unsigned int selinux_ipv4_postroute(void *priv,
5445 					   struct sk_buff *skb,
5446 					   const struct nf_hook_state *state)
5447 {
5448 	return selinux_ip_postroute(skb, state->out, PF_INET);
5449 }
5450 
5451 #if IS_ENABLED(CONFIG_IPV6)
5452 static unsigned int selinux_ipv6_postroute(void *priv,
5453 					   struct sk_buff *skb,
5454 					   const struct nf_hook_state *state)
5455 {
5456 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5457 }
5458 #endif	/* IPV6 */
5459 
5460 #endif	/* CONFIG_NETFILTER */
5461 
5462 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5463 {
5464 	return selinux_nlmsg_perm(sk, skb);
5465 }
5466 
5467 static int ipc_alloc_security(struct kern_ipc_perm *perm,
5468 			      u16 sclass)
5469 {
5470 	struct ipc_security_struct *isec;
5471 
5472 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5473 	if (!isec)
5474 		return -ENOMEM;
5475 
5476 	isec->sclass = sclass;
5477 	isec->sid = current_sid();
5478 	perm->security = isec;
5479 
5480 	return 0;
5481 }
5482 
5483 static void ipc_free_security(struct kern_ipc_perm *perm)
5484 {
5485 	struct ipc_security_struct *isec = perm->security;
5486 	perm->security = NULL;
5487 	kfree(isec);
5488 }
5489 
5490 static int msg_msg_alloc_security(struct msg_msg *msg)
5491 {
5492 	struct msg_security_struct *msec;
5493 
5494 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5495 	if (!msec)
5496 		return -ENOMEM;
5497 
5498 	msec->sid = SECINITSID_UNLABELED;
5499 	msg->security = msec;
5500 
5501 	return 0;
5502 }
5503 
5504 static void msg_msg_free_security(struct msg_msg *msg)
5505 {
5506 	struct msg_security_struct *msec = msg->security;
5507 
5508 	msg->security = NULL;
5509 	kfree(msec);
5510 }
5511 
5512 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5513 			u32 perms)
5514 {
5515 	struct ipc_security_struct *isec;
5516 	struct common_audit_data ad;
5517 	u32 sid = current_sid();
5518 
5519 	isec = ipc_perms->security;
5520 
5521 	ad.type = LSM_AUDIT_DATA_IPC;
5522 	ad.u.ipc_id = ipc_perms->key;
5523 
5524 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5525 }
5526 
5527 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5528 {
5529 	return msg_msg_alloc_security(msg);
5530 }
5531 
5532 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5533 {
5534 	msg_msg_free_security(msg);
5535 }
5536 
5537 /* message queue security operations */
5538 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5539 {
5540 	struct ipc_security_struct *isec;
5541 	struct common_audit_data ad;
5542 	u32 sid = current_sid();
5543 	int rc;
5544 
5545 	rc = ipc_alloc_security(&msq->q_perm, SECCLASS_MSGQ);
5546 	if (rc)
5547 		return rc;
5548 
5549 	isec = msq->q_perm.security;
5550 
5551 	ad.type = LSM_AUDIT_DATA_IPC;
5552 	ad.u.ipc_id = msq->q_perm.key;
5553 
5554 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5555 			  MSGQ__CREATE, &ad);
5556 	if (rc) {
5557 		ipc_free_security(&msq->q_perm);
5558 		return rc;
5559 	}
5560 	return 0;
5561 }
5562 
5563 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5564 {
5565 	ipc_free_security(&msq->q_perm);
5566 }
5567 
5568 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5569 {
5570 	struct ipc_security_struct *isec;
5571 	struct common_audit_data ad;
5572 	u32 sid = current_sid();
5573 
5574 	isec = msq->q_perm.security;
5575 
5576 	ad.type = LSM_AUDIT_DATA_IPC;
5577 	ad.u.ipc_id = msq->q_perm.key;
5578 
5579 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5580 			    MSGQ__ASSOCIATE, &ad);
5581 }
5582 
5583 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5584 {
5585 	int err;
5586 	int perms;
5587 
5588 	switch (cmd) {
5589 	case IPC_INFO:
5590 	case MSG_INFO:
5591 		/* No specific object, just general system-wide information. */
5592 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
5593 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5594 	case IPC_STAT:
5595 	case MSG_STAT:
5596 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5597 		break;
5598 	case IPC_SET:
5599 		perms = MSGQ__SETATTR;
5600 		break;
5601 	case IPC_RMID:
5602 		perms = MSGQ__DESTROY;
5603 		break;
5604 	default:
5605 		return 0;
5606 	}
5607 
5608 	err = ipc_has_perm(&msq->q_perm, perms);
5609 	return err;
5610 }
5611 
5612 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5613 {
5614 	struct ipc_security_struct *isec;
5615 	struct msg_security_struct *msec;
5616 	struct common_audit_data ad;
5617 	u32 sid = current_sid();
5618 	int rc;
5619 
5620 	isec = msq->q_perm.security;
5621 	msec = msg->security;
5622 
5623 	/*
5624 	 * First time through, need to assign label to the message
5625 	 */
5626 	if (msec->sid == SECINITSID_UNLABELED) {
5627 		/*
5628 		 * Compute new sid based on current process and
5629 		 * message queue this message will be stored in
5630 		 */
5631 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5632 					     NULL, &msec->sid);
5633 		if (rc)
5634 			return rc;
5635 	}
5636 
5637 	ad.type = LSM_AUDIT_DATA_IPC;
5638 	ad.u.ipc_id = msq->q_perm.key;
5639 
5640 	/* Can this process write to the queue? */
5641 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5642 			  MSGQ__WRITE, &ad);
5643 	if (!rc)
5644 		/* Can this process send the message */
5645 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5646 				  MSG__SEND, &ad);
5647 	if (!rc)
5648 		/* Can the message be put in the queue? */
5649 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5650 				  MSGQ__ENQUEUE, &ad);
5651 
5652 	return rc;
5653 }
5654 
5655 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5656 				    struct task_struct *target,
5657 				    long type, int mode)
5658 {
5659 	struct ipc_security_struct *isec;
5660 	struct msg_security_struct *msec;
5661 	struct common_audit_data ad;
5662 	u32 sid = task_sid(target);
5663 	int rc;
5664 
5665 	isec = msq->q_perm.security;
5666 	msec = msg->security;
5667 
5668 	ad.type = LSM_AUDIT_DATA_IPC;
5669 	ad.u.ipc_id = msq->q_perm.key;
5670 
5671 	rc = avc_has_perm(sid, isec->sid,
5672 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5673 	if (!rc)
5674 		rc = avc_has_perm(sid, msec->sid,
5675 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5676 	return rc;
5677 }
5678 
5679 /* Shared Memory security operations */
5680 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5681 {
5682 	struct ipc_security_struct *isec;
5683 	struct common_audit_data ad;
5684 	u32 sid = current_sid();
5685 	int rc;
5686 
5687 	rc = ipc_alloc_security(&shp->shm_perm, SECCLASS_SHM);
5688 	if (rc)
5689 		return rc;
5690 
5691 	isec = shp->shm_perm.security;
5692 
5693 	ad.type = LSM_AUDIT_DATA_IPC;
5694 	ad.u.ipc_id = shp->shm_perm.key;
5695 
5696 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5697 			  SHM__CREATE, &ad);
5698 	if (rc) {
5699 		ipc_free_security(&shp->shm_perm);
5700 		return rc;
5701 	}
5702 	return 0;
5703 }
5704 
5705 static void selinux_shm_free_security(struct shmid_kernel *shp)
5706 {
5707 	ipc_free_security(&shp->shm_perm);
5708 }
5709 
5710 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5711 {
5712 	struct ipc_security_struct *isec;
5713 	struct common_audit_data ad;
5714 	u32 sid = current_sid();
5715 
5716 	isec = shp->shm_perm.security;
5717 
5718 	ad.type = LSM_AUDIT_DATA_IPC;
5719 	ad.u.ipc_id = shp->shm_perm.key;
5720 
5721 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5722 			    SHM__ASSOCIATE, &ad);
5723 }
5724 
5725 /* Note, at this point, shp is locked down */
5726 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5727 {
5728 	int perms;
5729 	int err;
5730 
5731 	switch (cmd) {
5732 	case IPC_INFO:
5733 	case SHM_INFO:
5734 		/* No specific object, just general system-wide information. */
5735 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
5736 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5737 	case IPC_STAT:
5738 	case SHM_STAT:
5739 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5740 		break;
5741 	case IPC_SET:
5742 		perms = SHM__SETATTR;
5743 		break;
5744 	case SHM_LOCK:
5745 	case SHM_UNLOCK:
5746 		perms = SHM__LOCK;
5747 		break;
5748 	case IPC_RMID:
5749 		perms = SHM__DESTROY;
5750 		break;
5751 	default:
5752 		return 0;
5753 	}
5754 
5755 	err = ipc_has_perm(&shp->shm_perm, perms);
5756 	return err;
5757 }
5758 
5759 static int selinux_shm_shmat(struct shmid_kernel *shp,
5760 			     char __user *shmaddr, int shmflg)
5761 {
5762 	u32 perms;
5763 
5764 	if (shmflg & SHM_RDONLY)
5765 		perms = SHM__READ;
5766 	else
5767 		perms = SHM__READ | SHM__WRITE;
5768 
5769 	return ipc_has_perm(&shp->shm_perm, perms);
5770 }
5771 
5772 /* Semaphore security operations */
5773 static int selinux_sem_alloc_security(struct sem_array *sma)
5774 {
5775 	struct ipc_security_struct *isec;
5776 	struct common_audit_data ad;
5777 	u32 sid = current_sid();
5778 	int rc;
5779 
5780 	rc = ipc_alloc_security(&sma->sem_perm, SECCLASS_SEM);
5781 	if (rc)
5782 		return rc;
5783 
5784 	isec = sma->sem_perm.security;
5785 
5786 	ad.type = LSM_AUDIT_DATA_IPC;
5787 	ad.u.ipc_id = sma->sem_perm.key;
5788 
5789 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5790 			  SEM__CREATE, &ad);
5791 	if (rc) {
5792 		ipc_free_security(&sma->sem_perm);
5793 		return rc;
5794 	}
5795 	return 0;
5796 }
5797 
5798 static void selinux_sem_free_security(struct sem_array *sma)
5799 {
5800 	ipc_free_security(&sma->sem_perm);
5801 }
5802 
5803 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5804 {
5805 	struct ipc_security_struct *isec;
5806 	struct common_audit_data ad;
5807 	u32 sid = current_sid();
5808 
5809 	isec = sma->sem_perm.security;
5810 
5811 	ad.type = LSM_AUDIT_DATA_IPC;
5812 	ad.u.ipc_id = sma->sem_perm.key;
5813 
5814 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5815 			    SEM__ASSOCIATE, &ad);
5816 }
5817 
5818 /* Note, at this point, sma is locked down */
5819 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5820 {
5821 	int err;
5822 	u32 perms;
5823 
5824 	switch (cmd) {
5825 	case IPC_INFO:
5826 	case SEM_INFO:
5827 		/* No specific object, just general system-wide information. */
5828 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
5829 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5830 	case GETPID:
5831 	case GETNCNT:
5832 	case GETZCNT:
5833 		perms = SEM__GETATTR;
5834 		break;
5835 	case GETVAL:
5836 	case GETALL:
5837 		perms = SEM__READ;
5838 		break;
5839 	case SETVAL:
5840 	case SETALL:
5841 		perms = SEM__WRITE;
5842 		break;
5843 	case IPC_RMID:
5844 		perms = SEM__DESTROY;
5845 		break;
5846 	case IPC_SET:
5847 		perms = SEM__SETATTR;
5848 		break;
5849 	case IPC_STAT:
5850 	case SEM_STAT:
5851 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5852 		break;
5853 	default:
5854 		return 0;
5855 	}
5856 
5857 	err = ipc_has_perm(&sma->sem_perm, perms);
5858 	return err;
5859 }
5860 
5861 static int selinux_sem_semop(struct sem_array *sma,
5862 			     struct sembuf *sops, unsigned nsops, int alter)
5863 {
5864 	u32 perms;
5865 
5866 	if (alter)
5867 		perms = SEM__READ | SEM__WRITE;
5868 	else
5869 		perms = SEM__READ;
5870 
5871 	return ipc_has_perm(&sma->sem_perm, perms);
5872 }
5873 
5874 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5875 {
5876 	u32 av = 0;
5877 
5878 	av = 0;
5879 	if (flag & S_IRUGO)
5880 		av |= IPC__UNIX_READ;
5881 	if (flag & S_IWUGO)
5882 		av |= IPC__UNIX_WRITE;
5883 
5884 	if (av == 0)
5885 		return 0;
5886 
5887 	return ipc_has_perm(ipcp, av);
5888 }
5889 
5890 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5891 {
5892 	struct ipc_security_struct *isec = ipcp->security;
5893 	*secid = isec->sid;
5894 }
5895 
5896 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5897 {
5898 	if (inode)
5899 		inode_doinit_with_dentry(inode, dentry);
5900 }
5901 
5902 static int selinux_getprocattr(struct task_struct *p,
5903 			       char *name, char **value)
5904 {
5905 	const struct task_security_struct *__tsec;
5906 	u32 sid;
5907 	int error;
5908 	unsigned len;
5909 
5910 	rcu_read_lock();
5911 	__tsec = __task_cred(p)->security;
5912 
5913 	if (current != p) {
5914 		error = avc_has_perm(current_sid(), __tsec->sid,
5915 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
5916 		if (error)
5917 			goto bad;
5918 	}
5919 
5920 	if (!strcmp(name, "current"))
5921 		sid = __tsec->sid;
5922 	else if (!strcmp(name, "prev"))
5923 		sid = __tsec->osid;
5924 	else if (!strcmp(name, "exec"))
5925 		sid = __tsec->exec_sid;
5926 	else if (!strcmp(name, "fscreate"))
5927 		sid = __tsec->create_sid;
5928 	else if (!strcmp(name, "keycreate"))
5929 		sid = __tsec->keycreate_sid;
5930 	else if (!strcmp(name, "sockcreate"))
5931 		sid = __tsec->sockcreate_sid;
5932 	else {
5933 		error = -EINVAL;
5934 		goto bad;
5935 	}
5936 	rcu_read_unlock();
5937 
5938 	if (!sid)
5939 		return 0;
5940 
5941 	error = security_sid_to_context(sid, value, &len);
5942 	if (error)
5943 		return error;
5944 	return len;
5945 
5946 bad:
5947 	rcu_read_unlock();
5948 	return error;
5949 }
5950 
5951 static int selinux_setprocattr(const char *name, void *value, size_t size)
5952 {
5953 	struct task_security_struct *tsec;
5954 	struct cred *new;
5955 	u32 mysid = current_sid(), sid = 0, ptsid;
5956 	int error;
5957 	char *str = value;
5958 
5959 	/*
5960 	 * Basic control over ability to set these attributes at all.
5961 	 */
5962 	if (!strcmp(name, "exec"))
5963 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
5964 				     PROCESS__SETEXEC, NULL);
5965 	else if (!strcmp(name, "fscreate"))
5966 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
5967 				     PROCESS__SETFSCREATE, NULL);
5968 	else if (!strcmp(name, "keycreate"))
5969 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
5970 				     PROCESS__SETKEYCREATE, NULL);
5971 	else if (!strcmp(name, "sockcreate"))
5972 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
5973 				     PROCESS__SETSOCKCREATE, NULL);
5974 	else if (!strcmp(name, "current"))
5975 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
5976 				     PROCESS__SETCURRENT, NULL);
5977 	else
5978 		error = -EINVAL;
5979 	if (error)
5980 		return error;
5981 
5982 	/* Obtain a SID for the context, if one was specified. */
5983 	if (size && str[0] && str[0] != '\n') {
5984 		if (str[size-1] == '\n') {
5985 			str[size-1] = 0;
5986 			size--;
5987 		}
5988 		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5989 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5990 			if (!has_cap_mac_admin(true)) {
5991 				struct audit_buffer *ab;
5992 				size_t audit_size;
5993 
5994 				/* We strip a nul only if it is at the end, otherwise the
5995 				 * context contains a nul and we should audit that */
5996 				if (str[size - 1] == '\0')
5997 					audit_size = size - 1;
5998 				else
5999 					audit_size = size;
6000 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6001 				audit_log_format(ab, "op=fscreate invalid_context=");
6002 				audit_log_n_untrustedstring(ab, value, audit_size);
6003 				audit_log_end(ab);
6004 
6005 				return error;
6006 			}
6007 			error = security_context_to_sid_force(value, size,
6008 							      &sid);
6009 		}
6010 		if (error)
6011 			return error;
6012 	}
6013 
6014 	new = prepare_creds();
6015 	if (!new)
6016 		return -ENOMEM;
6017 
6018 	/* Permission checking based on the specified context is
6019 	   performed during the actual operation (execve,
6020 	   open/mkdir/...), when we know the full context of the
6021 	   operation.  See selinux_bprm_set_creds for the execve
6022 	   checks and may_create for the file creation checks. The
6023 	   operation will then fail if the context is not permitted. */
6024 	tsec = new->security;
6025 	if (!strcmp(name, "exec")) {
6026 		tsec->exec_sid = sid;
6027 	} else if (!strcmp(name, "fscreate")) {
6028 		tsec->create_sid = sid;
6029 	} else if (!strcmp(name, "keycreate")) {
6030 		error = avc_has_perm(mysid, sid, SECCLASS_KEY, KEY__CREATE,
6031 				     NULL);
6032 		if (error)
6033 			goto abort_change;
6034 		tsec->keycreate_sid = sid;
6035 	} else if (!strcmp(name, "sockcreate")) {
6036 		tsec->sockcreate_sid = sid;
6037 	} else if (!strcmp(name, "current")) {
6038 		error = -EINVAL;
6039 		if (sid == 0)
6040 			goto abort_change;
6041 
6042 		/* Only allow single threaded processes to change context */
6043 		error = -EPERM;
6044 		if (!current_is_single_threaded()) {
6045 			error = security_bounded_transition(tsec->sid, sid);
6046 			if (error)
6047 				goto abort_change;
6048 		}
6049 
6050 		/* Check permissions for the transition. */
6051 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6052 				     PROCESS__DYNTRANSITION, NULL);
6053 		if (error)
6054 			goto abort_change;
6055 
6056 		/* Check for ptracing, and update the task SID if ok.
6057 		   Otherwise, leave SID unchanged and fail. */
6058 		ptsid = ptrace_parent_sid();
6059 		if (ptsid != 0) {
6060 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6061 					     PROCESS__PTRACE, NULL);
6062 			if (error)
6063 				goto abort_change;
6064 		}
6065 
6066 		tsec->sid = sid;
6067 	} else {
6068 		error = -EINVAL;
6069 		goto abort_change;
6070 	}
6071 
6072 	commit_creds(new);
6073 	return size;
6074 
6075 abort_change:
6076 	abort_creds(new);
6077 	return error;
6078 }
6079 
6080 static int selinux_ismaclabel(const char *name)
6081 {
6082 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6083 }
6084 
6085 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6086 {
6087 	return security_sid_to_context(secid, secdata, seclen);
6088 }
6089 
6090 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6091 {
6092 	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
6093 }
6094 
6095 static void selinux_release_secctx(char *secdata, u32 seclen)
6096 {
6097 	kfree(secdata);
6098 }
6099 
6100 static void selinux_inode_invalidate_secctx(struct inode *inode)
6101 {
6102 	struct inode_security_struct *isec = inode->i_security;
6103 
6104 	spin_lock(&isec->lock);
6105 	isec->initialized = LABEL_INVALID;
6106 	spin_unlock(&isec->lock);
6107 }
6108 
6109 /*
6110  *	called with inode->i_mutex locked
6111  */
6112 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6113 {
6114 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6115 }
6116 
6117 /*
6118  *	called with inode->i_mutex locked
6119  */
6120 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6121 {
6122 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6123 }
6124 
6125 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6126 {
6127 	int len = 0;
6128 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6129 						ctx, true);
6130 	if (len < 0)
6131 		return len;
6132 	*ctxlen = len;
6133 	return 0;
6134 }
6135 #ifdef CONFIG_KEYS
6136 
6137 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6138 			     unsigned long flags)
6139 {
6140 	const struct task_security_struct *tsec;
6141 	struct key_security_struct *ksec;
6142 
6143 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6144 	if (!ksec)
6145 		return -ENOMEM;
6146 
6147 	tsec = cred->security;
6148 	if (tsec->keycreate_sid)
6149 		ksec->sid = tsec->keycreate_sid;
6150 	else
6151 		ksec->sid = tsec->sid;
6152 
6153 	k->security = ksec;
6154 	return 0;
6155 }
6156 
6157 static void selinux_key_free(struct key *k)
6158 {
6159 	struct key_security_struct *ksec = k->security;
6160 
6161 	k->security = NULL;
6162 	kfree(ksec);
6163 }
6164 
6165 static int selinux_key_permission(key_ref_t key_ref,
6166 				  const struct cred *cred,
6167 				  unsigned perm)
6168 {
6169 	struct key *key;
6170 	struct key_security_struct *ksec;
6171 	u32 sid;
6172 
6173 	/* if no specific permissions are requested, we skip the
6174 	   permission check. No serious, additional covert channels
6175 	   appear to be created. */
6176 	if (perm == 0)
6177 		return 0;
6178 
6179 	sid = cred_sid(cred);
6180 
6181 	key = key_ref_to_ptr(key_ref);
6182 	ksec = key->security;
6183 
6184 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6185 }
6186 
6187 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6188 {
6189 	struct key_security_struct *ksec = key->security;
6190 	char *context = NULL;
6191 	unsigned len;
6192 	int rc;
6193 
6194 	rc = security_sid_to_context(ksec->sid, &context, &len);
6195 	if (!rc)
6196 		rc = len;
6197 	*_buffer = context;
6198 	return rc;
6199 }
6200 #endif
6201 
6202 #ifdef CONFIG_SECURITY_INFINIBAND
6203 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6204 {
6205 	struct common_audit_data ad;
6206 	int err;
6207 	u32 sid = 0;
6208 	struct ib_security_struct *sec = ib_sec;
6209 	struct lsm_ibpkey_audit ibpkey;
6210 
6211 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6212 	if (err)
6213 		return err;
6214 
6215 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6216 	ibpkey.subnet_prefix = subnet_prefix;
6217 	ibpkey.pkey = pkey_val;
6218 	ad.u.ibpkey = &ibpkey;
6219 	return avc_has_perm(sec->sid, sid,
6220 			    SECCLASS_INFINIBAND_PKEY,
6221 			    INFINIBAND_PKEY__ACCESS, &ad);
6222 }
6223 
6224 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6225 					    u8 port_num)
6226 {
6227 	struct common_audit_data ad;
6228 	int err;
6229 	u32 sid = 0;
6230 	struct ib_security_struct *sec = ib_sec;
6231 	struct lsm_ibendport_audit ibendport;
6232 
6233 	err = security_ib_endport_sid(dev_name, port_num, &sid);
6234 
6235 	if (err)
6236 		return err;
6237 
6238 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6239 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6240 	ibendport.port = port_num;
6241 	ad.u.ibendport = &ibendport;
6242 	return avc_has_perm(sec->sid, sid,
6243 			    SECCLASS_INFINIBAND_ENDPORT,
6244 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6245 }
6246 
6247 static int selinux_ib_alloc_security(void **ib_sec)
6248 {
6249 	struct ib_security_struct *sec;
6250 
6251 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6252 	if (!sec)
6253 		return -ENOMEM;
6254 	sec->sid = current_sid();
6255 
6256 	*ib_sec = sec;
6257 	return 0;
6258 }
6259 
6260 static void selinux_ib_free_security(void *ib_sec)
6261 {
6262 	kfree(ib_sec);
6263 }
6264 #endif
6265 
6266 #ifdef CONFIG_BPF_SYSCALL
6267 static int selinux_bpf(int cmd, union bpf_attr *attr,
6268 				     unsigned int size)
6269 {
6270 	u32 sid = current_sid();
6271 	int ret;
6272 
6273 	switch (cmd) {
6274 	case BPF_MAP_CREATE:
6275 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6276 				   NULL);
6277 		break;
6278 	case BPF_PROG_LOAD:
6279 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6280 				   NULL);
6281 		break;
6282 	default:
6283 		ret = 0;
6284 		break;
6285 	}
6286 
6287 	return ret;
6288 }
6289 
6290 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6291 {
6292 	u32 av = 0;
6293 
6294 	if (fmode & FMODE_READ)
6295 		av |= BPF__MAP_READ;
6296 	if (fmode & FMODE_WRITE)
6297 		av |= BPF__MAP_WRITE;
6298 	return av;
6299 }
6300 
6301 /* This function will check the file pass through unix socket or binder to see
6302  * if it is a bpf related object. And apply correspinding checks on the bpf
6303  * object based on the type. The bpf maps and programs, not like other files and
6304  * socket, are using a shared anonymous inode inside the kernel as their inode.
6305  * So checking that inode cannot identify if the process have privilege to
6306  * access the bpf object and that's why we have to add this additional check in
6307  * selinux_file_receive and selinux_binder_transfer_files.
6308  */
6309 static int bpf_fd_pass(struct file *file, u32 sid)
6310 {
6311 	struct bpf_security_struct *bpfsec;
6312 	struct bpf_prog *prog;
6313 	struct bpf_map *map;
6314 	int ret;
6315 
6316 	if (file->f_op == &bpf_map_fops) {
6317 		map = file->private_data;
6318 		bpfsec = map->security;
6319 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6320 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6321 		if (ret)
6322 			return ret;
6323 	} else if (file->f_op == &bpf_prog_fops) {
6324 		prog = file->private_data;
6325 		bpfsec = prog->aux->security;
6326 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6327 				   BPF__PROG_RUN, NULL);
6328 		if (ret)
6329 			return ret;
6330 	}
6331 	return 0;
6332 }
6333 
6334 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6335 {
6336 	u32 sid = current_sid();
6337 	struct bpf_security_struct *bpfsec;
6338 
6339 	bpfsec = map->security;
6340 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6341 			    bpf_map_fmode_to_av(fmode), NULL);
6342 }
6343 
6344 static int selinux_bpf_prog(struct bpf_prog *prog)
6345 {
6346 	u32 sid = current_sid();
6347 	struct bpf_security_struct *bpfsec;
6348 
6349 	bpfsec = prog->aux->security;
6350 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6351 			    BPF__PROG_RUN, NULL);
6352 }
6353 
6354 static int selinux_bpf_map_alloc(struct bpf_map *map)
6355 {
6356 	struct bpf_security_struct *bpfsec;
6357 
6358 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6359 	if (!bpfsec)
6360 		return -ENOMEM;
6361 
6362 	bpfsec->sid = current_sid();
6363 	map->security = bpfsec;
6364 
6365 	return 0;
6366 }
6367 
6368 static void selinux_bpf_map_free(struct bpf_map *map)
6369 {
6370 	struct bpf_security_struct *bpfsec = map->security;
6371 
6372 	map->security = NULL;
6373 	kfree(bpfsec);
6374 }
6375 
6376 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6377 {
6378 	struct bpf_security_struct *bpfsec;
6379 
6380 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6381 	if (!bpfsec)
6382 		return -ENOMEM;
6383 
6384 	bpfsec->sid = current_sid();
6385 	aux->security = bpfsec;
6386 
6387 	return 0;
6388 }
6389 
6390 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6391 {
6392 	struct bpf_security_struct *bpfsec = aux->security;
6393 
6394 	aux->security = NULL;
6395 	kfree(bpfsec);
6396 }
6397 #endif
6398 
6399 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6400 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6401 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6402 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6403 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6404 
6405 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6406 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6407 	LSM_HOOK_INIT(capget, selinux_capget),
6408 	LSM_HOOK_INIT(capset, selinux_capset),
6409 	LSM_HOOK_INIT(capable, selinux_capable),
6410 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6411 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6412 	LSM_HOOK_INIT(syslog, selinux_syslog),
6413 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6414 
6415 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6416 
6417 	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6418 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6419 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6420 
6421 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6422 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6423 	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6424 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6425 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6426 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6427 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6428 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6429 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6430 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6431 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6432 	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6433 
6434 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6435 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6436 
6437 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6438 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6439 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6440 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6441 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6442 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6443 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6444 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6445 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6446 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6447 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6448 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6449 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6450 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6451 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6452 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6453 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6454 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6455 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6456 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6457 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6458 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6459 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6460 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6461 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6462 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6463 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6464 
6465 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6466 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6467 	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6468 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6469 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6470 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6471 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6472 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6473 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6474 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6475 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6476 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6477 
6478 	LSM_HOOK_INIT(file_open, selinux_file_open),
6479 
6480 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6481 	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6482 	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6483 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6484 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6485 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6486 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6487 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6488 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6489 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6490 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6491 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6492 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6493 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6494 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6495 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6496 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6497 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6498 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6499 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6500 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6501 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6502 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6503 
6504 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6505 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6506 
6507 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6508 	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6509 
6510 	LSM_HOOK_INIT(msg_queue_alloc_security,
6511 			selinux_msg_queue_alloc_security),
6512 	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6513 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6514 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6515 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6516 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6517 
6518 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6519 	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6520 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6521 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6522 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6523 
6524 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6525 	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6526 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6527 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6528 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6529 
6530 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6531 
6532 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6533 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6534 
6535 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6536 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6537 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6538 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6539 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6540 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6541 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6542 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6543 
6544 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6545 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6546 
6547 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6548 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6549 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6550 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6551 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6552 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6553 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6554 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6555 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6556 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6557 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6558 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6559 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6560 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6561 	LSM_HOOK_INIT(socket_getpeersec_stream,
6562 			selinux_socket_getpeersec_stream),
6563 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6564 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6565 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6566 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6567 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6568 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6569 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6570 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6571 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6572 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6573 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6574 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6575 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6576 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6577 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6578 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6579 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6580 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6581 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6582 #ifdef CONFIG_SECURITY_INFINIBAND
6583 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
6584 	LSM_HOOK_INIT(ib_endport_manage_subnet,
6585 		      selinux_ib_endport_manage_subnet),
6586 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
6587 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
6588 #endif
6589 #ifdef CONFIG_SECURITY_NETWORK_XFRM
6590 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6591 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6592 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6593 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6594 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6595 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6596 			selinux_xfrm_state_alloc_acquire),
6597 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6598 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6599 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6600 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6601 			selinux_xfrm_state_pol_flow_match),
6602 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6603 #endif
6604 
6605 #ifdef CONFIG_KEYS
6606 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6607 	LSM_HOOK_INIT(key_free, selinux_key_free),
6608 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6609 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6610 #endif
6611 
6612 #ifdef CONFIG_AUDIT
6613 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6614 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6615 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6616 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6617 #endif
6618 
6619 #ifdef CONFIG_BPF_SYSCALL
6620 	LSM_HOOK_INIT(bpf, selinux_bpf),
6621 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
6622 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
6623 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
6624 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
6625 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
6626 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
6627 #endif
6628 };
6629 
6630 static __init int selinux_init(void)
6631 {
6632 	if (!security_module_enable("selinux")) {
6633 		selinux_enabled = 0;
6634 		return 0;
6635 	}
6636 
6637 	if (!selinux_enabled) {
6638 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6639 		return 0;
6640 	}
6641 
6642 	printk(KERN_INFO "SELinux:  Initializing.\n");
6643 
6644 	/* Set the security state for the initial task. */
6645 	cred_init_security();
6646 
6647 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6648 
6649 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6650 					    sizeof(struct inode_security_struct),
6651 					    0, SLAB_PANIC, NULL);
6652 	file_security_cache = kmem_cache_create("selinux_file_security",
6653 					    sizeof(struct file_security_struct),
6654 					    0, SLAB_PANIC, NULL);
6655 	avc_init();
6656 
6657 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
6658 
6659 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6660 		panic("SELinux: Unable to register AVC netcache callback\n");
6661 
6662 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
6663 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
6664 
6665 	if (selinux_enforcing)
6666 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
6667 	else
6668 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
6669 
6670 	return 0;
6671 }
6672 
6673 static void delayed_superblock_init(struct super_block *sb, void *unused)
6674 {
6675 	superblock_doinit(sb, NULL);
6676 }
6677 
6678 void selinux_complete_init(void)
6679 {
6680 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6681 
6682 	/* Set up any superblocks initialized prior to the policy load. */
6683 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6684 	iterate_supers(delayed_superblock_init, NULL);
6685 }
6686 
6687 /* SELinux requires early initialization in order to label
6688    all processes and objects when they are created. */
6689 security_initcall(selinux_init);
6690 
6691 #if defined(CONFIG_NETFILTER)
6692 
6693 static const struct nf_hook_ops selinux_nf_ops[] = {
6694 	{
6695 		.hook =		selinux_ipv4_postroute,
6696 		.pf =		NFPROTO_IPV4,
6697 		.hooknum =	NF_INET_POST_ROUTING,
6698 		.priority =	NF_IP_PRI_SELINUX_LAST,
6699 	},
6700 	{
6701 		.hook =		selinux_ipv4_forward,
6702 		.pf =		NFPROTO_IPV4,
6703 		.hooknum =	NF_INET_FORWARD,
6704 		.priority =	NF_IP_PRI_SELINUX_FIRST,
6705 	},
6706 	{
6707 		.hook =		selinux_ipv4_output,
6708 		.pf =		NFPROTO_IPV4,
6709 		.hooknum =	NF_INET_LOCAL_OUT,
6710 		.priority =	NF_IP_PRI_SELINUX_FIRST,
6711 	},
6712 #if IS_ENABLED(CONFIG_IPV6)
6713 	{
6714 		.hook =		selinux_ipv6_postroute,
6715 		.pf =		NFPROTO_IPV6,
6716 		.hooknum =	NF_INET_POST_ROUTING,
6717 		.priority =	NF_IP6_PRI_SELINUX_LAST,
6718 	},
6719 	{
6720 		.hook =		selinux_ipv6_forward,
6721 		.pf =		NFPROTO_IPV6,
6722 		.hooknum =	NF_INET_FORWARD,
6723 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6724 	},
6725 	{
6726 		.hook =		selinux_ipv6_output,
6727 		.pf =		NFPROTO_IPV6,
6728 		.hooknum =	NF_INET_LOCAL_OUT,
6729 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6730 	},
6731 #endif	/* IPV6 */
6732 };
6733 
6734 static int __net_init selinux_nf_register(struct net *net)
6735 {
6736 	return nf_register_net_hooks(net, selinux_nf_ops,
6737 				     ARRAY_SIZE(selinux_nf_ops));
6738 }
6739 
6740 static void __net_exit selinux_nf_unregister(struct net *net)
6741 {
6742 	nf_unregister_net_hooks(net, selinux_nf_ops,
6743 				ARRAY_SIZE(selinux_nf_ops));
6744 }
6745 
6746 static struct pernet_operations selinux_net_ops = {
6747 	.init = selinux_nf_register,
6748 	.exit = selinux_nf_unregister,
6749 };
6750 
6751 static int __init selinux_nf_ip_init(void)
6752 {
6753 	int err;
6754 
6755 	if (!selinux_enabled)
6756 		return 0;
6757 
6758 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6759 
6760 	err = register_pernet_subsys(&selinux_net_ops);
6761 	if (err)
6762 		panic("SELinux: register_pernet_subsys: error %d\n", err);
6763 
6764 	return 0;
6765 }
6766 __initcall(selinux_nf_ip_init);
6767 
6768 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6769 static void selinux_nf_ip_exit(void)
6770 {
6771 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6772 
6773 	unregister_pernet_subsys(&selinux_net_ops);
6774 }
6775 #endif
6776 
6777 #else /* CONFIG_NETFILTER */
6778 
6779 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6780 #define selinux_nf_ip_exit()
6781 #endif
6782 
6783 #endif /* CONFIG_NETFILTER */
6784 
6785 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6786 static int selinux_disabled;
6787 
6788 int selinux_disable(void)
6789 {
6790 	if (ss_initialized) {
6791 		/* Not permitted after initial policy load. */
6792 		return -EINVAL;
6793 	}
6794 
6795 	if (selinux_disabled) {
6796 		/* Only do this once. */
6797 		return -EINVAL;
6798 	}
6799 
6800 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6801 
6802 	selinux_disabled = 1;
6803 	selinux_enabled = 0;
6804 
6805 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6806 
6807 	/* Try to destroy the avc node cache */
6808 	avc_disable();
6809 
6810 	/* Unregister netfilter hooks. */
6811 	selinux_nf_ip_exit();
6812 
6813 	/* Unregister selinuxfs. */
6814 	exit_sel_fs();
6815 
6816 	return 0;
6817 }
6818 #endif
6819