1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 79 #include "avc.h" 80 #include "objsec.h" 81 #include "netif.h" 82 #include "netnode.h" 83 #include "netport.h" 84 #include "xfrm.h" 85 #include "netlabel.h" 86 #include "audit.h" 87 88 #define XATTR_SELINUX_SUFFIX "selinux" 89 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 90 91 #define NUM_SEL_MNT_OPTS 4 92 93 extern unsigned int policydb_loaded_version; 94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 95 extern int selinux_compat_net; 96 extern struct security_operations *security_ops; 97 98 /* SECMARK reference count */ 99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 100 101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 102 int selinux_enforcing; 103 104 static int __init enforcing_setup(char *str) 105 { 106 unsigned long enforcing; 107 if (!strict_strtoul(str, 0, &enforcing)) 108 selinux_enforcing = enforcing ? 1 : 0; 109 return 1; 110 } 111 __setup("enforcing=", enforcing_setup); 112 #endif 113 114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 116 117 static int __init selinux_enabled_setup(char *str) 118 { 119 unsigned long enabled; 120 if (!strict_strtoul(str, 0, &enabled)) 121 selinux_enabled = enabled ? 1 : 0; 122 return 1; 123 } 124 __setup("selinux=", selinux_enabled_setup); 125 #else 126 int selinux_enabled = 1; 127 #endif 128 129 130 /* 131 * Minimal support for a secondary security module, 132 * just to allow the use of the capability module. 133 */ 134 static struct security_operations *secondary_ops; 135 136 /* Lists of inode and superblock security structures initialized 137 before the policy was loaded. */ 138 static LIST_HEAD(superblock_security_head); 139 static DEFINE_SPINLOCK(sb_security_lock); 140 141 static struct kmem_cache *sel_inode_cache; 142 143 /** 144 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 145 * 146 * Description: 147 * This function checks the SECMARK reference counter to see if any SECMARK 148 * targets are currently configured, if the reference counter is greater than 149 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 150 * enabled, false (0) if SECMARK is disabled. 151 * 152 */ 153 static int selinux_secmark_enabled(void) 154 { 155 return (atomic_read(&selinux_secmark_refcount) > 0); 156 } 157 158 /* Allocate and free functions for each kind of security blob. */ 159 160 static int task_alloc_security(struct task_struct *task) 161 { 162 struct task_security_struct *tsec; 163 164 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 165 if (!tsec) 166 return -ENOMEM; 167 168 tsec->osid = tsec->sid = SECINITSID_UNLABELED; 169 task->security = tsec; 170 171 return 0; 172 } 173 174 static void task_free_security(struct task_struct *task) 175 { 176 struct task_security_struct *tsec = task->security; 177 task->security = NULL; 178 kfree(tsec); 179 } 180 181 static int inode_alloc_security(struct inode *inode) 182 { 183 struct task_security_struct *tsec = current->security; 184 struct inode_security_struct *isec; 185 186 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 187 if (!isec) 188 return -ENOMEM; 189 190 mutex_init(&isec->lock); 191 INIT_LIST_HEAD(&isec->list); 192 isec->inode = inode; 193 isec->sid = SECINITSID_UNLABELED; 194 isec->sclass = SECCLASS_FILE; 195 isec->task_sid = tsec->sid; 196 inode->i_security = isec; 197 198 return 0; 199 } 200 201 static void inode_free_security(struct inode *inode) 202 { 203 struct inode_security_struct *isec = inode->i_security; 204 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 205 206 spin_lock(&sbsec->isec_lock); 207 if (!list_empty(&isec->list)) 208 list_del_init(&isec->list); 209 spin_unlock(&sbsec->isec_lock); 210 211 inode->i_security = NULL; 212 kmem_cache_free(sel_inode_cache, isec); 213 } 214 215 static int file_alloc_security(struct file *file) 216 { 217 struct task_security_struct *tsec = current->security; 218 struct file_security_struct *fsec; 219 220 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 221 if (!fsec) 222 return -ENOMEM; 223 224 fsec->sid = tsec->sid; 225 fsec->fown_sid = tsec->sid; 226 file->f_security = fsec; 227 228 return 0; 229 } 230 231 static void file_free_security(struct file *file) 232 { 233 struct file_security_struct *fsec = file->f_security; 234 file->f_security = NULL; 235 kfree(fsec); 236 } 237 238 static int superblock_alloc_security(struct super_block *sb) 239 { 240 struct superblock_security_struct *sbsec; 241 242 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 243 if (!sbsec) 244 return -ENOMEM; 245 246 mutex_init(&sbsec->lock); 247 INIT_LIST_HEAD(&sbsec->list); 248 INIT_LIST_HEAD(&sbsec->isec_head); 249 spin_lock_init(&sbsec->isec_lock); 250 sbsec->sb = sb; 251 sbsec->sid = SECINITSID_UNLABELED; 252 sbsec->def_sid = SECINITSID_FILE; 253 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 254 sb->s_security = sbsec; 255 256 return 0; 257 } 258 259 static void superblock_free_security(struct super_block *sb) 260 { 261 struct superblock_security_struct *sbsec = sb->s_security; 262 263 spin_lock(&sb_security_lock); 264 if (!list_empty(&sbsec->list)) 265 list_del_init(&sbsec->list); 266 spin_unlock(&sb_security_lock); 267 268 sb->s_security = NULL; 269 kfree(sbsec); 270 } 271 272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 273 { 274 struct sk_security_struct *ssec; 275 276 ssec = kzalloc(sizeof(*ssec), priority); 277 if (!ssec) 278 return -ENOMEM; 279 280 ssec->peer_sid = SECINITSID_UNLABELED; 281 ssec->sid = SECINITSID_UNLABELED; 282 sk->sk_security = ssec; 283 284 selinux_netlbl_sk_security_reset(ssec, family); 285 286 return 0; 287 } 288 289 static void sk_free_security(struct sock *sk) 290 { 291 struct sk_security_struct *ssec = sk->sk_security; 292 293 sk->sk_security = NULL; 294 kfree(ssec); 295 } 296 297 /* The security server must be initialized before 298 any labeling or access decisions can be provided. */ 299 extern int ss_initialized; 300 301 /* The file system's label must be initialized prior to use. */ 302 303 static char *labeling_behaviors[6] = { 304 "uses xattr", 305 "uses transition SIDs", 306 "uses task SIDs", 307 "uses genfs_contexts", 308 "not configured for labeling", 309 "uses mountpoint labeling", 310 }; 311 312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 313 314 static inline int inode_doinit(struct inode *inode) 315 { 316 return inode_doinit_with_dentry(inode, NULL); 317 } 318 319 enum { 320 Opt_error = -1, 321 Opt_context = 1, 322 Opt_fscontext = 2, 323 Opt_defcontext = 3, 324 Opt_rootcontext = 4, 325 }; 326 327 static match_table_t tokens = { 328 {Opt_context, CONTEXT_STR "%s"}, 329 {Opt_fscontext, FSCONTEXT_STR "%s"}, 330 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 331 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 332 {Opt_error, NULL}, 333 }; 334 335 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 336 337 static int may_context_mount_sb_relabel(u32 sid, 338 struct superblock_security_struct *sbsec, 339 struct task_security_struct *tsec) 340 { 341 int rc; 342 343 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 344 FILESYSTEM__RELABELFROM, NULL); 345 if (rc) 346 return rc; 347 348 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 349 FILESYSTEM__RELABELTO, NULL); 350 return rc; 351 } 352 353 static int may_context_mount_inode_relabel(u32 sid, 354 struct superblock_security_struct *sbsec, 355 struct task_security_struct *tsec) 356 { 357 int rc; 358 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 359 FILESYSTEM__RELABELFROM, NULL); 360 if (rc) 361 return rc; 362 363 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 364 FILESYSTEM__ASSOCIATE, NULL); 365 return rc; 366 } 367 368 static int sb_finish_set_opts(struct super_block *sb) 369 { 370 struct superblock_security_struct *sbsec = sb->s_security; 371 struct dentry *root = sb->s_root; 372 struct inode *root_inode = root->d_inode; 373 int rc = 0; 374 375 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 376 /* Make sure that the xattr handler exists and that no 377 error other than -ENODATA is returned by getxattr on 378 the root directory. -ENODATA is ok, as this may be 379 the first boot of the SELinux kernel before we have 380 assigned xattr values to the filesystem. */ 381 if (!root_inode->i_op->getxattr) { 382 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 383 "xattr support\n", sb->s_id, sb->s_type->name); 384 rc = -EOPNOTSUPP; 385 goto out; 386 } 387 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 388 if (rc < 0 && rc != -ENODATA) { 389 if (rc == -EOPNOTSUPP) 390 printk(KERN_WARNING "SELinux: (dev %s, type " 391 "%s) has no security xattr handler\n", 392 sb->s_id, sb->s_type->name); 393 else 394 printk(KERN_WARNING "SELinux: (dev %s, type " 395 "%s) getxattr errno %d\n", sb->s_id, 396 sb->s_type->name, -rc); 397 goto out; 398 } 399 } 400 401 sbsec->initialized = 1; 402 403 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 404 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 405 sb->s_id, sb->s_type->name); 406 else 407 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 408 sb->s_id, sb->s_type->name, 409 labeling_behaviors[sbsec->behavior-1]); 410 411 /* Initialize the root inode. */ 412 rc = inode_doinit_with_dentry(root_inode, root); 413 414 /* Initialize any other inodes associated with the superblock, e.g. 415 inodes created prior to initial policy load or inodes created 416 during get_sb by a pseudo filesystem that directly 417 populates itself. */ 418 spin_lock(&sbsec->isec_lock); 419 next_inode: 420 if (!list_empty(&sbsec->isec_head)) { 421 struct inode_security_struct *isec = 422 list_entry(sbsec->isec_head.next, 423 struct inode_security_struct, list); 424 struct inode *inode = isec->inode; 425 spin_unlock(&sbsec->isec_lock); 426 inode = igrab(inode); 427 if (inode) { 428 if (!IS_PRIVATE(inode)) 429 inode_doinit(inode); 430 iput(inode); 431 } 432 spin_lock(&sbsec->isec_lock); 433 list_del_init(&isec->list); 434 goto next_inode; 435 } 436 spin_unlock(&sbsec->isec_lock); 437 out: 438 return rc; 439 } 440 441 /* 442 * This function should allow an FS to ask what it's mount security 443 * options were so it can use those later for submounts, displaying 444 * mount options, or whatever. 445 */ 446 static int selinux_get_mnt_opts(const struct super_block *sb, 447 struct security_mnt_opts *opts) 448 { 449 int rc = 0, i; 450 struct superblock_security_struct *sbsec = sb->s_security; 451 char *context = NULL; 452 u32 len; 453 char tmp; 454 455 security_init_mnt_opts(opts); 456 457 if (!sbsec->initialized) 458 return -EINVAL; 459 460 if (!ss_initialized) 461 return -EINVAL; 462 463 /* 464 * if we ever use sbsec flags for anything other than tracking mount 465 * settings this is going to need a mask 466 */ 467 tmp = sbsec->flags; 468 /* count the number of mount options for this sb */ 469 for (i = 0; i < 8; i++) { 470 if (tmp & 0x01) 471 opts->num_mnt_opts++; 472 tmp >>= 1; 473 } 474 475 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 476 if (!opts->mnt_opts) { 477 rc = -ENOMEM; 478 goto out_free; 479 } 480 481 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 482 if (!opts->mnt_opts_flags) { 483 rc = -ENOMEM; 484 goto out_free; 485 } 486 487 i = 0; 488 if (sbsec->flags & FSCONTEXT_MNT) { 489 rc = security_sid_to_context(sbsec->sid, &context, &len); 490 if (rc) 491 goto out_free; 492 opts->mnt_opts[i] = context; 493 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 494 } 495 if (sbsec->flags & CONTEXT_MNT) { 496 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 497 if (rc) 498 goto out_free; 499 opts->mnt_opts[i] = context; 500 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 501 } 502 if (sbsec->flags & DEFCONTEXT_MNT) { 503 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 504 if (rc) 505 goto out_free; 506 opts->mnt_opts[i] = context; 507 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 508 } 509 if (sbsec->flags & ROOTCONTEXT_MNT) { 510 struct inode *root = sbsec->sb->s_root->d_inode; 511 struct inode_security_struct *isec = root->i_security; 512 513 rc = security_sid_to_context(isec->sid, &context, &len); 514 if (rc) 515 goto out_free; 516 opts->mnt_opts[i] = context; 517 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 518 } 519 520 BUG_ON(i != opts->num_mnt_opts); 521 522 return 0; 523 524 out_free: 525 security_free_mnt_opts(opts); 526 return rc; 527 } 528 529 static int bad_option(struct superblock_security_struct *sbsec, char flag, 530 u32 old_sid, u32 new_sid) 531 { 532 /* check if the old mount command had the same options */ 533 if (sbsec->initialized) 534 if (!(sbsec->flags & flag) || 535 (old_sid != new_sid)) 536 return 1; 537 538 /* check if we were passed the same options twice, 539 * aka someone passed context=a,context=b 540 */ 541 if (!sbsec->initialized) 542 if (sbsec->flags & flag) 543 return 1; 544 return 0; 545 } 546 547 /* 548 * Allow filesystems with binary mount data to explicitly set mount point 549 * labeling information. 550 */ 551 static int selinux_set_mnt_opts(struct super_block *sb, 552 struct security_mnt_opts *opts) 553 { 554 int rc = 0, i; 555 struct task_security_struct *tsec = current->security; 556 struct superblock_security_struct *sbsec = sb->s_security; 557 const char *name = sb->s_type->name; 558 struct inode *inode = sbsec->sb->s_root->d_inode; 559 struct inode_security_struct *root_isec = inode->i_security; 560 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 561 u32 defcontext_sid = 0; 562 char **mount_options = opts->mnt_opts; 563 int *flags = opts->mnt_opts_flags; 564 int num_opts = opts->num_mnt_opts; 565 566 mutex_lock(&sbsec->lock); 567 568 if (!ss_initialized) { 569 if (!num_opts) { 570 /* Defer initialization until selinux_complete_init, 571 after the initial policy is loaded and the security 572 server is ready to handle calls. */ 573 spin_lock(&sb_security_lock); 574 if (list_empty(&sbsec->list)) 575 list_add(&sbsec->list, &superblock_security_head); 576 spin_unlock(&sb_security_lock); 577 goto out; 578 } 579 rc = -EINVAL; 580 printk(KERN_WARNING "SELinux: Unable to set superblock options " 581 "before the security server is initialized\n"); 582 goto out; 583 } 584 585 /* 586 * Binary mount data FS will come through this function twice. Once 587 * from an explicit call and once from the generic calls from the vfs. 588 * Since the generic VFS calls will not contain any security mount data 589 * we need to skip the double mount verification. 590 * 591 * This does open a hole in which we will not notice if the first 592 * mount using this sb set explict options and a second mount using 593 * this sb does not set any security options. (The first options 594 * will be used for both mounts) 595 */ 596 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 597 && (num_opts == 0)) 598 goto out; 599 600 /* 601 * parse the mount options, check if they are valid sids. 602 * also check if someone is trying to mount the same sb more 603 * than once with different security options. 604 */ 605 for (i = 0; i < num_opts; i++) { 606 u32 sid; 607 rc = security_context_to_sid(mount_options[i], 608 strlen(mount_options[i]), &sid); 609 if (rc) { 610 printk(KERN_WARNING "SELinux: security_context_to_sid" 611 "(%s) failed for (dev %s, type %s) errno=%d\n", 612 mount_options[i], sb->s_id, name, rc); 613 goto out; 614 } 615 switch (flags[i]) { 616 case FSCONTEXT_MNT: 617 fscontext_sid = sid; 618 619 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 620 fscontext_sid)) 621 goto out_double_mount; 622 623 sbsec->flags |= FSCONTEXT_MNT; 624 break; 625 case CONTEXT_MNT: 626 context_sid = sid; 627 628 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 629 context_sid)) 630 goto out_double_mount; 631 632 sbsec->flags |= CONTEXT_MNT; 633 break; 634 case ROOTCONTEXT_MNT: 635 rootcontext_sid = sid; 636 637 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 638 rootcontext_sid)) 639 goto out_double_mount; 640 641 sbsec->flags |= ROOTCONTEXT_MNT; 642 643 break; 644 case DEFCONTEXT_MNT: 645 defcontext_sid = sid; 646 647 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 648 defcontext_sid)) 649 goto out_double_mount; 650 651 sbsec->flags |= DEFCONTEXT_MNT; 652 653 break; 654 default: 655 rc = -EINVAL; 656 goto out; 657 } 658 } 659 660 if (sbsec->initialized) { 661 /* previously mounted with options, but not on this attempt? */ 662 if (sbsec->flags && !num_opts) 663 goto out_double_mount; 664 rc = 0; 665 goto out; 666 } 667 668 if (strcmp(sb->s_type->name, "proc") == 0) 669 sbsec->proc = 1; 670 671 /* Determine the labeling behavior to use for this filesystem type. */ 672 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid); 673 if (rc) { 674 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 675 __func__, sb->s_type->name, rc); 676 goto out; 677 } 678 679 /* sets the context of the superblock for the fs being mounted. */ 680 if (fscontext_sid) { 681 682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec); 683 if (rc) 684 goto out; 685 686 sbsec->sid = fscontext_sid; 687 } 688 689 /* 690 * Switch to using mount point labeling behavior. 691 * sets the label used on all file below the mountpoint, and will set 692 * the superblock context if not already set. 693 */ 694 if (context_sid) { 695 if (!fscontext_sid) { 696 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec); 697 if (rc) 698 goto out; 699 sbsec->sid = context_sid; 700 } else { 701 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec); 702 if (rc) 703 goto out; 704 } 705 if (!rootcontext_sid) 706 rootcontext_sid = context_sid; 707 708 sbsec->mntpoint_sid = context_sid; 709 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 710 } 711 712 if (rootcontext_sid) { 713 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec); 714 if (rc) 715 goto out; 716 717 root_isec->sid = rootcontext_sid; 718 root_isec->initialized = 1; 719 } 720 721 if (defcontext_sid) { 722 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 723 rc = -EINVAL; 724 printk(KERN_WARNING "SELinux: defcontext option is " 725 "invalid for this filesystem type\n"); 726 goto out; 727 } 728 729 if (defcontext_sid != sbsec->def_sid) { 730 rc = may_context_mount_inode_relabel(defcontext_sid, 731 sbsec, tsec); 732 if (rc) 733 goto out; 734 } 735 736 sbsec->def_sid = defcontext_sid; 737 } 738 739 rc = sb_finish_set_opts(sb); 740 out: 741 mutex_unlock(&sbsec->lock); 742 return rc; 743 out_double_mount: 744 rc = -EINVAL; 745 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 746 "security settings for (dev %s, type %s)\n", sb->s_id, name); 747 goto out; 748 } 749 750 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 751 struct super_block *newsb) 752 { 753 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 754 struct superblock_security_struct *newsbsec = newsb->s_security; 755 756 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 757 int set_context = (oldsbsec->flags & CONTEXT_MNT); 758 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 759 760 /* 761 * if the parent was able to be mounted it clearly had no special lsm 762 * mount options. thus we can safely put this sb on the list and deal 763 * with it later 764 */ 765 if (!ss_initialized) { 766 spin_lock(&sb_security_lock); 767 if (list_empty(&newsbsec->list)) 768 list_add(&newsbsec->list, &superblock_security_head); 769 spin_unlock(&sb_security_lock); 770 return; 771 } 772 773 /* how can we clone if the old one wasn't set up?? */ 774 BUG_ON(!oldsbsec->initialized); 775 776 /* if fs is reusing a sb, just let its options stand... */ 777 if (newsbsec->initialized) 778 return; 779 780 mutex_lock(&newsbsec->lock); 781 782 newsbsec->flags = oldsbsec->flags; 783 784 newsbsec->sid = oldsbsec->sid; 785 newsbsec->def_sid = oldsbsec->def_sid; 786 newsbsec->behavior = oldsbsec->behavior; 787 788 if (set_context) { 789 u32 sid = oldsbsec->mntpoint_sid; 790 791 if (!set_fscontext) 792 newsbsec->sid = sid; 793 if (!set_rootcontext) { 794 struct inode *newinode = newsb->s_root->d_inode; 795 struct inode_security_struct *newisec = newinode->i_security; 796 newisec->sid = sid; 797 } 798 newsbsec->mntpoint_sid = sid; 799 } 800 if (set_rootcontext) { 801 const struct inode *oldinode = oldsb->s_root->d_inode; 802 const struct inode_security_struct *oldisec = oldinode->i_security; 803 struct inode *newinode = newsb->s_root->d_inode; 804 struct inode_security_struct *newisec = newinode->i_security; 805 806 newisec->sid = oldisec->sid; 807 } 808 809 sb_finish_set_opts(newsb); 810 mutex_unlock(&newsbsec->lock); 811 } 812 813 static int selinux_parse_opts_str(char *options, 814 struct security_mnt_opts *opts) 815 { 816 char *p; 817 char *context = NULL, *defcontext = NULL; 818 char *fscontext = NULL, *rootcontext = NULL; 819 int rc, num_mnt_opts = 0; 820 821 opts->num_mnt_opts = 0; 822 823 /* Standard string-based options. */ 824 while ((p = strsep(&options, "|")) != NULL) { 825 int token; 826 substring_t args[MAX_OPT_ARGS]; 827 828 if (!*p) 829 continue; 830 831 token = match_token(p, tokens, args); 832 833 switch (token) { 834 case Opt_context: 835 if (context || defcontext) { 836 rc = -EINVAL; 837 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 838 goto out_err; 839 } 840 context = match_strdup(&args[0]); 841 if (!context) { 842 rc = -ENOMEM; 843 goto out_err; 844 } 845 break; 846 847 case Opt_fscontext: 848 if (fscontext) { 849 rc = -EINVAL; 850 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 851 goto out_err; 852 } 853 fscontext = match_strdup(&args[0]); 854 if (!fscontext) { 855 rc = -ENOMEM; 856 goto out_err; 857 } 858 break; 859 860 case Opt_rootcontext: 861 if (rootcontext) { 862 rc = -EINVAL; 863 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 864 goto out_err; 865 } 866 rootcontext = match_strdup(&args[0]); 867 if (!rootcontext) { 868 rc = -ENOMEM; 869 goto out_err; 870 } 871 break; 872 873 case Opt_defcontext: 874 if (context || defcontext) { 875 rc = -EINVAL; 876 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 877 goto out_err; 878 } 879 defcontext = match_strdup(&args[0]); 880 if (!defcontext) { 881 rc = -ENOMEM; 882 goto out_err; 883 } 884 break; 885 886 default: 887 rc = -EINVAL; 888 printk(KERN_WARNING "SELinux: unknown mount option\n"); 889 goto out_err; 890 891 } 892 } 893 894 rc = -ENOMEM; 895 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 896 if (!opts->mnt_opts) 897 goto out_err; 898 899 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 900 if (!opts->mnt_opts_flags) { 901 kfree(opts->mnt_opts); 902 goto out_err; 903 } 904 905 if (fscontext) { 906 opts->mnt_opts[num_mnt_opts] = fscontext; 907 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 908 } 909 if (context) { 910 opts->mnt_opts[num_mnt_opts] = context; 911 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 912 } 913 if (rootcontext) { 914 opts->mnt_opts[num_mnt_opts] = rootcontext; 915 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 916 } 917 if (defcontext) { 918 opts->mnt_opts[num_mnt_opts] = defcontext; 919 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 920 } 921 922 opts->num_mnt_opts = num_mnt_opts; 923 return 0; 924 925 out_err: 926 kfree(context); 927 kfree(defcontext); 928 kfree(fscontext); 929 kfree(rootcontext); 930 return rc; 931 } 932 /* 933 * string mount options parsing and call set the sbsec 934 */ 935 static int superblock_doinit(struct super_block *sb, void *data) 936 { 937 int rc = 0; 938 char *options = data; 939 struct security_mnt_opts opts; 940 941 security_init_mnt_opts(&opts); 942 943 if (!data) 944 goto out; 945 946 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 947 948 rc = selinux_parse_opts_str(options, &opts); 949 if (rc) 950 goto out_err; 951 952 out: 953 rc = selinux_set_mnt_opts(sb, &opts); 954 955 out_err: 956 security_free_mnt_opts(&opts); 957 return rc; 958 } 959 960 static void selinux_write_opts(struct seq_file *m, 961 struct security_mnt_opts *opts) 962 { 963 int i; 964 char *prefix; 965 966 for (i = 0; i < opts->num_mnt_opts; i++) { 967 char *has_comma = strchr(opts->mnt_opts[i], ','); 968 969 switch (opts->mnt_opts_flags[i]) { 970 case CONTEXT_MNT: 971 prefix = CONTEXT_STR; 972 break; 973 case FSCONTEXT_MNT: 974 prefix = FSCONTEXT_STR; 975 break; 976 case ROOTCONTEXT_MNT: 977 prefix = ROOTCONTEXT_STR; 978 break; 979 case DEFCONTEXT_MNT: 980 prefix = DEFCONTEXT_STR; 981 break; 982 default: 983 BUG(); 984 }; 985 /* we need a comma before each option */ 986 seq_putc(m, ','); 987 seq_puts(m, prefix); 988 if (has_comma) 989 seq_putc(m, '\"'); 990 seq_puts(m, opts->mnt_opts[i]); 991 if (has_comma) 992 seq_putc(m, '\"'); 993 } 994 } 995 996 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 997 { 998 struct security_mnt_opts opts; 999 int rc; 1000 1001 rc = selinux_get_mnt_opts(sb, &opts); 1002 if (rc) { 1003 /* before policy load we may get EINVAL, don't show anything */ 1004 if (rc == -EINVAL) 1005 rc = 0; 1006 return rc; 1007 } 1008 1009 selinux_write_opts(m, &opts); 1010 1011 security_free_mnt_opts(&opts); 1012 1013 return rc; 1014 } 1015 1016 static inline u16 inode_mode_to_security_class(umode_t mode) 1017 { 1018 switch (mode & S_IFMT) { 1019 case S_IFSOCK: 1020 return SECCLASS_SOCK_FILE; 1021 case S_IFLNK: 1022 return SECCLASS_LNK_FILE; 1023 case S_IFREG: 1024 return SECCLASS_FILE; 1025 case S_IFBLK: 1026 return SECCLASS_BLK_FILE; 1027 case S_IFDIR: 1028 return SECCLASS_DIR; 1029 case S_IFCHR: 1030 return SECCLASS_CHR_FILE; 1031 case S_IFIFO: 1032 return SECCLASS_FIFO_FILE; 1033 1034 } 1035 1036 return SECCLASS_FILE; 1037 } 1038 1039 static inline int default_protocol_stream(int protocol) 1040 { 1041 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1042 } 1043 1044 static inline int default_protocol_dgram(int protocol) 1045 { 1046 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1047 } 1048 1049 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1050 { 1051 switch (family) { 1052 case PF_UNIX: 1053 switch (type) { 1054 case SOCK_STREAM: 1055 case SOCK_SEQPACKET: 1056 return SECCLASS_UNIX_STREAM_SOCKET; 1057 case SOCK_DGRAM: 1058 return SECCLASS_UNIX_DGRAM_SOCKET; 1059 } 1060 break; 1061 case PF_INET: 1062 case PF_INET6: 1063 switch (type) { 1064 case SOCK_STREAM: 1065 if (default_protocol_stream(protocol)) 1066 return SECCLASS_TCP_SOCKET; 1067 else 1068 return SECCLASS_RAWIP_SOCKET; 1069 case SOCK_DGRAM: 1070 if (default_protocol_dgram(protocol)) 1071 return SECCLASS_UDP_SOCKET; 1072 else 1073 return SECCLASS_RAWIP_SOCKET; 1074 case SOCK_DCCP: 1075 return SECCLASS_DCCP_SOCKET; 1076 default: 1077 return SECCLASS_RAWIP_SOCKET; 1078 } 1079 break; 1080 case PF_NETLINK: 1081 switch (protocol) { 1082 case NETLINK_ROUTE: 1083 return SECCLASS_NETLINK_ROUTE_SOCKET; 1084 case NETLINK_FIREWALL: 1085 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1086 case NETLINK_INET_DIAG: 1087 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1088 case NETLINK_NFLOG: 1089 return SECCLASS_NETLINK_NFLOG_SOCKET; 1090 case NETLINK_XFRM: 1091 return SECCLASS_NETLINK_XFRM_SOCKET; 1092 case NETLINK_SELINUX: 1093 return SECCLASS_NETLINK_SELINUX_SOCKET; 1094 case NETLINK_AUDIT: 1095 return SECCLASS_NETLINK_AUDIT_SOCKET; 1096 case NETLINK_IP6_FW: 1097 return SECCLASS_NETLINK_IP6FW_SOCKET; 1098 case NETLINK_DNRTMSG: 1099 return SECCLASS_NETLINK_DNRT_SOCKET; 1100 case NETLINK_KOBJECT_UEVENT: 1101 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1102 default: 1103 return SECCLASS_NETLINK_SOCKET; 1104 } 1105 case PF_PACKET: 1106 return SECCLASS_PACKET_SOCKET; 1107 case PF_KEY: 1108 return SECCLASS_KEY_SOCKET; 1109 case PF_APPLETALK: 1110 return SECCLASS_APPLETALK_SOCKET; 1111 } 1112 1113 return SECCLASS_SOCKET; 1114 } 1115 1116 #ifdef CONFIG_PROC_FS 1117 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1118 u16 tclass, 1119 u32 *sid) 1120 { 1121 int buflen, rc; 1122 char *buffer, *path, *end; 1123 1124 buffer = (char *)__get_free_page(GFP_KERNEL); 1125 if (!buffer) 1126 return -ENOMEM; 1127 1128 buflen = PAGE_SIZE; 1129 end = buffer+buflen; 1130 *--end = '\0'; 1131 buflen--; 1132 path = end-1; 1133 *path = '/'; 1134 while (de && de != de->parent) { 1135 buflen -= de->namelen + 1; 1136 if (buflen < 0) 1137 break; 1138 end -= de->namelen; 1139 memcpy(end, de->name, de->namelen); 1140 *--end = '/'; 1141 path = end; 1142 de = de->parent; 1143 } 1144 rc = security_genfs_sid("proc", path, tclass, sid); 1145 free_page((unsigned long)buffer); 1146 return rc; 1147 } 1148 #else 1149 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1150 u16 tclass, 1151 u32 *sid) 1152 { 1153 return -EINVAL; 1154 } 1155 #endif 1156 1157 /* The inode's security attributes must be initialized before first use. */ 1158 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1159 { 1160 struct superblock_security_struct *sbsec = NULL; 1161 struct inode_security_struct *isec = inode->i_security; 1162 u32 sid; 1163 struct dentry *dentry; 1164 #define INITCONTEXTLEN 255 1165 char *context = NULL; 1166 unsigned len = 0; 1167 int rc = 0; 1168 1169 if (isec->initialized) 1170 goto out; 1171 1172 mutex_lock(&isec->lock); 1173 if (isec->initialized) 1174 goto out_unlock; 1175 1176 sbsec = inode->i_sb->s_security; 1177 if (!sbsec->initialized) { 1178 /* Defer initialization until selinux_complete_init, 1179 after the initial policy is loaded and the security 1180 server is ready to handle calls. */ 1181 spin_lock(&sbsec->isec_lock); 1182 if (list_empty(&isec->list)) 1183 list_add(&isec->list, &sbsec->isec_head); 1184 spin_unlock(&sbsec->isec_lock); 1185 goto out_unlock; 1186 } 1187 1188 switch (sbsec->behavior) { 1189 case SECURITY_FS_USE_XATTR: 1190 if (!inode->i_op->getxattr) { 1191 isec->sid = sbsec->def_sid; 1192 break; 1193 } 1194 1195 /* Need a dentry, since the xattr API requires one. 1196 Life would be simpler if we could just pass the inode. */ 1197 if (opt_dentry) { 1198 /* Called from d_instantiate or d_splice_alias. */ 1199 dentry = dget(opt_dentry); 1200 } else { 1201 /* Called from selinux_complete_init, try to find a dentry. */ 1202 dentry = d_find_alias(inode); 1203 } 1204 if (!dentry) { 1205 printk(KERN_WARNING "SELinux: %s: no dentry for dev=%s " 1206 "ino=%ld\n", __func__, inode->i_sb->s_id, 1207 inode->i_ino); 1208 goto out_unlock; 1209 } 1210 1211 len = INITCONTEXTLEN; 1212 context = kmalloc(len, GFP_NOFS); 1213 if (!context) { 1214 rc = -ENOMEM; 1215 dput(dentry); 1216 goto out_unlock; 1217 } 1218 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1219 context, len); 1220 if (rc == -ERANGE) { 1221 /* Need a larger buffer. Query for the right size. */ 1222 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1223 NULL, 0); 1224 if (rc < 0) { 1225 dput(dentry); 1226 goto out_unlock; 1227 } 1228 kfree(context); 1229 len = rc; 1230 context = kmalloc(len, GFP_NOFS); 1231 if (!context) { 1232 rc = -ENOMEM; 1233 dput(dentry); 1234 goto out_unlock; 1235 } 1236 rc = inode->i_op->getxattr(dentry, 1237 XATTR_NAME_SELINUX, 1238 context, len); 1239 } 1240 dput(dentry); 1241 if (rc < 0) { 1242 if (rc != -ENODATA) { 1243 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1244 "%d for dev=%s ino=%ld\n", __func__, 1245 -rc, inode->i_sb->s_id, inode->i_ino); 1246 kfree(context); 1247 goto out_unlock; 1248 } 1249 /* Map ENODATA to the default file SID */ 1250 sid = sbsec->def_sid; 1251 rc = 0; 1252 } else { 1253 rc = security_context_to_sid_default(context, rc, &sid, 1254 sbsec->def_sid, 1255 GFP_NOFS); 1256 if (rc) { 1257 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1258 "returned %d for dev=%s ino=%ld\n", 1259 __func__, context, -rc, 1260 inode->i_sb->s_id, inode->i_ino); 1261 kfree(context); 1262 /* Leave with the unlabeled SID */ 1263 rc = 0; 1264 break; 1265 } 1266 } 1267 kfree(context); 1268 isec->sid = sid; 1269 break; 1270 case SECURITY_FS_USE_TASK: 1271 isec->sid = isec->task_sid; 1272 break; 1273 case SECURITY_FS_USE_TRANS: 1274 /* Default to the fs SID. */ 1275 isec->sid = sbsec->sid; 1276 1277 /* Try to obtain a transition SID. */ 1278 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1279 rc = security_transition_sid(isec->task_sid, 1280 sbsec->sid, 1281 isec->sclass, 1282 &sid); 1283 if (rc) 1284 goto out_unlock; 1285 isec->sid = sid; 1286 break; 1287 case SECURITY_FS_USE_MNTPOINT: 1288 isec->sid = sbsec->mntpoint_sid; 1289 break; 1290 default: 1291 /* Default to the fs superblock SID. */ 1292 isec->sid = sbsec->sid; 1293 1294 if (sbsec->proc) { 1295 struct proc_inode *proci = PROC_I(inode); 1296 if (proci->pde) { 1297 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1298 rc = selinux_proc_get_sid(proci->pde, 1299 isec->sclass, 1300 &sid); 1301 if (rc) 1302 goto out_unlock; 1303 isec->sid = sid; 1304 } 1305 } 1306 break; 1307 } 1308 1309 isec->initialized = 1; 1310 1311 out_unlock: 1312 mutex_unlock(&isec->lock); 1313 out: 1314 if (isec->sclass == SECCLASS_FILE) 1315 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1316 return rc; 1317 } 1318 1319 /* Convert a Linux signal to an access vector. */ 1320 static inline u32 signal_to_av(int sig) 1321 { 1322 u32 perm = 0; 1323 1324 switch (sig) { 1325 case SIGCHLD: 1326 /* Commonly granted from child to parent. */ 1327 perm = PROCESS__SIGCHLD; 1328 break; 1329 case SIGKILL: 1330 /* Cannot be caught or ignored */ 1331 perm = PROCESS__SIGKILL; 1332 break; 1333 case SIGSTOP: 1334 /* Cannot be caught or ignored */ 1335 perm = PROCESS__SIGSTOP; 1336 break; 1337 default: 1338 /* All other signals. */ 1339 perm = PROCESS__SIGNAL; 1340 break; 1341 } 1342 1343 return perm; 1344 } 1345 1346 /* Check permission betweeen a pair of tasks, e.g. signal checks, 1347 fork check, ptrace check, etc. */ 1348 static int task_has_perm(struct task_struct *tsk1, 1349 struct task_struct *tsk2, 1350 u32 perms) 1351 { 1352 struct task_security_struct *tsec1, *tsec2; 1353 1354 tsec1 = tsk1->security; 1355 tsec2 = tsk2->security; 1356 return avc_has_perm(tsec1->sid, tsec2->sid, 1357 SECCLASS_PROCESS, perms, NULL); 1358 } 1359 1360 #if CAP_LAST_CAP > 63 1361 #error Fix SELinux to handle capabilities > 63. 1362 #endif 1363 1364 /* Check whether a task is allowed to use a capability. */ 1365 static int task_has_capability(struct task_struct *tsk, 1366 int cap) 1367 { 1368 struct task_security_struct *tsec; 1369 struct avc_audit_data ad; 1370 u16 sclass; 1371 u32 av = CAP_TO_MASK(cap); 1372 1373 tsec = tsk->security; 1374 1375 AVC_AUDIT_DATA_INIT(&ad, CAP); 1376 ad.tsk = tsk; 1377 ad.u.cap = cap; 1378 1379 switch (CAP_TO_INDEX(cap)) { 1380 case 0: 1381 sclass = SECCLASS_CAPABILITY; 1382 break; 1383 case 1: 1384 sclass = SECCLASS_CAPABILITY2; 1385 break; 1386 default: 1387 printk(KERN_ERR 1388 "SELinux: out of range capability %d\n", cap); 1389 BUG(); 1390 } 1391 return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad); 1392 } 1393 1394 /* Check whether a task is allowed to use a system operation. */ 1395 static int task_has_system(struct task_struct *tsk, 1396 u32 perms) 1397 { 1398 struct task_security_struct *tsec; 1399 1400 tsec = tsk->security; 1401 1402 return avc_has_perm(tsec->sid, SECINITSID_KERNEL, 1403 SECCLASS_SYSTEM, perms, NULL); 1404 } 1405 1406 /* Check whether a task has a particular permission to an inode. 1407 The 'adp' parameter is optional and allows other audit 1408 data to be passed (e.g. the dentry). */ 1409 static int inode_has_perm(struct task_struct *tsk, 1410 struct inode *inode, 1411 u32 perms, 1412 struct avc_audit_data *adp) 1413 { 1414 struct task_security_struct *tsec; 1415 struct inode_security_struct *isec; 1416 struct avc_audit_data ad; 1417 1418 if (unlikely(IS_PRIVATE(inode))) 1419 return 0; 1420 1421 tsec = tsk->security; 1422 isec = inode->i_security; 1423 1424 if (!adp) { 1425 adp = &ad; 1426 AVC_AUDIT_DATA_INIT(&ad, FS); 1427 ad.u.fs.inode = inode; 1428 } 1429 1430 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp); 1431 } 1432 1433 /* Same as inode_has_perm, but pass explicit audit data containing 1434 the dentry to help the auditing code to more easily generate the 1435 pathname if needed. */ 1436 static inline int dentry_has_perm(struct task_struct *tsk, 1437 struct vfsmount *mnt, 1438 struct dentry *dentry, 1439 u32 av) 1440 { 1441 struct inode *inode = dentry->d_inode; 1442 struct avc_audit_data ad; 1443 AVC_AUDIT_DATA_INIT(&ad, FS); 1444 ad.u.fs.path.mnt = mnt; 1445 ad.u.fs.path.dentry = dentry; 1446 return inode_has_perm(tsk, inode, av, &ad); 1447 } 1448 1449 /* Check whether a task can use an open file descriptor to 1450 access an inode in a given way. Check access to the 1451 descriptor itself, and then use dentry_has_perm to 1452 check a particular permission to the file. 1453 Access to the descriptor is implicitly granted if it 1454 has the same SID as the process. If av is zero, then 1455 access to the file is not checked, e.g. for cases 1456 where only the descriptor is affected like seek. */ 1457 static int file_has_perm(struct task_struct *tsk, 1458 struct file *file, 1459 u32 av) 1460 { 1461 struct task_security_struct *tsec = tsk->security; 1462 struct file_security_struct *fsec = file->f_security; 1463 struct inode *inode = file->f_path.dentry->d_inode; 1464 struct avc_audit_data ad; 1465 int rc; 1466 1467 AVC_AUDIT_DATA_INIT(&ad, FS); 1468 ad.u.fs.path = file->f_path; 1469 1470 if (tsec->sid != fsec->sid) { 1471 rc = avc_has_perm(tsec->sid, fsec->sid, 1472 SECCLASS_FD, 1473 FD__USE, 1474 &ad); 1475 if (rc) 1476 return rc; 1477 } 1478 1479 /* av is zero if only checking access to the descriptor. */ 1480 if (av) 1481 return inode_has_perm(tsk, inode, av, &ad); 1482 1483 return 0; 1484 } 1485 1486 /* Check whether a task can create a file. */ 1487 static int may_create(struct inode *dir, 1488 struct dentry *dentry, 1489 u16 tclass) 1490 { 1491 struct task_security_struct *tsec; 1492 struct inode_security_struct *dsec; 1493 struct superblock_security_struct *sbsec; 1494 u32 newsid; 1495 struct avc_audit_data ad; 1496 int rc; 1497 1498 tsec = current->security; 1499 dsec = dir->i_security; 1500 sbsec = dir->i_sb->s_security; 1501 1502 AVC_AUDIT_DATA_INIT(&ad, FS); 1503 ad.u.fs.path.dentry = dentry; 1504 1505 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, 1506 DIR__ADD_NAME | DIR__SEARCH, 1507 &ad); 1508 if (rc) 1509 return rc; 1510 1511 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1512 newsid = tsec->create_sid; 1513 } else { 1514 rc = security_transition_sid(tsec->sid, dsec->sid, tclass, 1515 &newsid); 1516 if (rc) 1517 return rc; 1518 } 1519 1520 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad); 1521 if (rc) 1522 return rc; 1523 1524 return avc_has_perm(newsid, sbsec->sid, 1525 SECCLASS_FILESYSTEM, 1526 FILESYSTEM__ASSOCIATE, &ad); 1527 } 1528 1529 /* Check whether a task can create a key. */ 1530 static int may_create_key(u32 ksid, 1531 struct task_struct *ctx) 1532 { 1533 struct task_security_struct *tsec; 1534 1535 tsec = ctx->security; 1536 1537 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1538 } 1539 1540 #define MAY_LINK 0 1541 #define MAY_UNLINK 1 1542 #define MAY_RMDIR 2 1543 1544 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1545 static int may_link(struct inode *dir, 1546 struct dentry *dentry, 1547 int kind) 1548 1549 { 1550 struct task_security_struct *tsec; 1551 struct inode_security_struct *dsec, *isec; 1552 struct avc_audit_data ad; 1553 u32 av; 1554 int rc; 1555 1556 tsec = current->security; 1557 dsec = dir->i_security; 1558 isec = dentry->d_inode->i_security; 1559 1560 AVC_AUDIT_DATA_INIT(&ad, FS); 1561 ad.u.fs.path.dentry = dentry; 1562 1563 av = DIR__SEARCH; 1564 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1565 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad); 1566 if (rc) 1567 return rc; 1568 1569 switch (kind) { 1570 case MAY_LINK: 1571 av = FILE__LINK; 1572 break; 1573 case MAY_UNLINK: 1574 av = FILE__UNLINK; 1575 break; 1576 case MAY_RMDIR: 1577 av = DIR__RMDIR; 1578 break; 1579 default: 1580 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1581 __func__, kind); 1582 return 0; 1583 } 1584 1585 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad); 1586 return rc; 1587 } 1588 1589 static inline int may_rename(struct inode *old_dir, 1590 struct dentry *old_dentry, 1591 struct inode *new_dir, 1592 struct dentry *new_dentry) 1593 { 1594 struct task_security_struct *tsec; 1595 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1596 struct avc_audit_data ad; 1597 u32 av; 1598 int old_is_dir, new_is_dir; 1599 int rc; 1600 1601 tsec = current->security; 1602 old_dsec = old_dir->i_security; 1603 old_isec = old_dentry->d_inode->i_security; 1604 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1605 new_dsec = new_dir->i_security; 1606 1607 AVC_AUDIT_DATA_INIT(&ad, FS); 1608 1609 ad.u.fs.path.dentry = old_dentry; 1610 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR, 1611 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1612 if (rc) 1613 return rc; 1614 rc = avc_has_perm(tsec->sid, old_isec->sid, 1615 old_isec->sclass, FILE__RENAME, &ad); 1616 if (rc) 1617 return rc; 1618 if (old_is_dir && new_dir != old_dir) { 1619 rc = avc_has_perm(tsec->sid, old_isec->sid, 1620 old_isec->sclass, DIR__REPARENT, &ad); 1621 if (rc) 1622 return rc; 1623 } 1624 1625 ad.u.fs.path.dentry = new_dentry; 1626 av = DIR__ADD_NAME | DIR__SEARCH; 1627 if (new_dentry->d_inode) 1628 av |= DIR__REMOVE_NAME; 1629 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1630 if (rc) 1631 return rc; 1632 if (new_dentry->d_inode) { 1633 new_isec = new_dentry->d_inode->i_security; 1634 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1635 rc = avc_has_perm(tsec->sid, new_isec->sid, 1636 new_isec->sclass, 1637 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1638 if (rc) 1639 return rc; 1640 } 1641 1642 return 0; 1643 } 1644 1645 /* Check whether a task can perform a filesystem operation. */ 1646 static int superblock_has_perm(struct task_struct *tsk, 1647 struct super_block *sb, 1648 u32 perms, 1649 struct avc_audit_data *ad) 1650 { 1651 struct task_security_struct *tsec; 1652 struct superblock_security_struct *sbsec; 1653 1654 tsec = tsk->security; 1655 sbsec = sb->s_security; 1656 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 1657 perms, ad); 1658 } 1659 1660 /* Convert a Linux mode and permission mask to an access vector. */ 1661 static inline u32 file_mask_to_av(int mode, int mask) 1662 { 1663 u32 av = 0; 1664 1665 if ((mode & S_IFMT) != S_IFDIR) { 1666 if (mask & MAY_EXEC) 1667 av |= FILE__EXECUTE; 1668 if (mask & MAY_READ) 1669 av |= FILE__READ; 1670 1671 if (mask & MAY_APPEND) 1672 av |= FILE__APPEND; 1673 else if (mask & MAY_WRITE) 1674 av |= FILE__WRITE; 1675 1676 } else { 1677 if (mask & MAY_EXEC) 1678 av |= DIR__SEARCH; 1679 if (mask & MAY_WRITE) 1680 av |= DIR__WRITE; 1681 if (mask & MAY_READ) 1682 av |= DIR__READ; 1683 } 1684 1685 return av; 1686 } 1687 1688 /* 1689 * Convert a file mask to an access vector and include the correct open 1690 * open permission. 1691 */ 1692 static inline u32 open_file_mask_to_av(int mode, int mask) 1693 { 1694 u32 av = file_mask_to_av(mode, mask); 1695 1696 if (selinux_policycap_openperm) { 1697 /* 1698 * lnk files and socks do not really have an 'open' 1699 */ 1700 if (S_ISREG(mode)) 1701 av |= FILE__OPEN; 1702 else if (S_ISCHR(mode)) 1703 av |= CHR_FILE__OPEN; 1704 else if (S_ISBLK(mode)) 1705 av |= BLK_FILE__OPEN; 1706 else if (S_ISFIFO(mode)) 1707 av |= FIFO_FILE__OPEN; 1708 else if (S_ISDIR(mode)) 1709 av |= DIR__OPEN; 1710 else 1711 printk(KERN_ERR "SELinux: WARNING: inside %s with " 1712 "unknown mode:%x\n", __func__, mode); 1713 } 1714 return av; 1715 } 1716 1717 /* Convert a Linux file to an access vector. */ 1718 static inline u32 file_to_av(struct file *file) 1719 { 1720 u32 av = 0; 1721 1722 if (file->f_mode & FMODE_READ) 1723 av |= FILE__READ; 1724 if (file->f_mode & FMODE_WRITE) { 1725 if (file->f_flags & O_APPEND) 1726 av |= FILE__APPEND; 1727 else 1728 av |= FILE__WRITE; 1729 } 1730 if (!av) { 1731 /* 1732 * Special file opened with flags 3 for ioctl-only use. 1733 */ 1734 av = FILE__IOCTL; 1735 } 1736 1737 return av; 1738 } 1739 1740 /* Hook functions begin here. */ 1741 1742 static int selinux_ptrace(struct task_struct *parent, 1743 struct task_struct *child, 1744 unsigned int mode) 1745 { 1746 int rc; 1747 1748 rc = secondary_ops->ptrace(parent, child, mode); 1749 if (rc) 1750 return rc; 1751 1752 if (mode == PTRACE_MODE_READ) { 1753 struct task_security_struct *tsec = parent->security; 1754 struct task_security_struct *csec = child->security; 1755 return avc_has_perm(tsec->sid, csec->sid, 1756 SECCLASS_FILE, FILE__READ, NULL); 1757 } 1758 1759 return task_has_perm(parent, child, PROCESS__PTRACE); 1760 } 1761 1762 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1763 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1764 { 1765 int error; 1766 1767 error = task_has_perm(current, target, PROCESS__GETCAP); 1768 if (error) 1769 return error; 1770 1771 return secondary_ops->capget(target, effective, inheritable, permitted); 1772 } 1773 1774 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective, 1775 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1776 { 1777 int error; 1778 1779 error = secondary_ops->capset_check(target, effective, inheritable, permitted); 1780 if (error) 1781 return error; 1782 1783 return task_has_perm(current, target, PROCESS__SETCAP); 1784 } 1785 1786 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective, 1787 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1788 { 1789 secondary_ops->capset_set(target, effective, inheritable, permitted); 1790 } 1791 1792 static int selinux_capable(struct task_struct *tsk, int cap) 1793 { 1794 int rc; 1795 1796 rc = secondary_ops->capable(tsk, cap); 1797 if (rc) 1798 return rc; 1799 1800 return task_has_capability(tsk, cap); 1801 } 1802 1803 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1804 { 1805 int buflen, rc; 1806 char *buffer, *path, *end; 1807 1808 rc = -ENOMEM; 1809 buffer = (char *)__get_free_page(GFP_KERNEL); 1810 if (!buffer) 1811 goto out; 1812 1813 buflen = PAGE_SIZE; 1814 end = buffer+buflen; 1815 *--end = '\0'; 1816 buflen--; 1817 path = end-1; 1818 *path = '/'; 1819 while (table) { 1820 const char *name = table->procname; 1821 size_t namelen = strlen(name); 1822 buflen -= namelen + 1; 1823 if (buflen < 0) 1824 goto out_free; 1825 end -= namelen; 1826 memcpy(end, name, namelen); 1827 *--end = '/'; 1828 path = end; 1829 table = table->parent; 1830 } 1831 buflen -= 4; 1832 if (buflen < 0) 1833 goto out_free; 1834 end -= 4; 1835 memcpy(end, "/sys", 4); 1836 path = end; 1837 rc = security_genfs_sid("proc", path, tclass, sid); 1838 out_free: 1839 free_page((unsigned long)buffer); 1840 out: 1841 return rc; 1842 } 1843 1844 static int selinux_sysctl(ctl_table *table, int op) 1845 { 1846 int error = 0; 1847 u32 av; 1848 struct task_security_struct *tsec; 1849 u32 tsid; 1850 int rc; 1851 1852 rc = secondary_ops->sysctl(table, op); 1853 if (rc) 1854 return rc; 1855 1856 tsec = current->security; 1857 1858 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1859 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1860 if (rc) { 1861 /* Default to the well-defined sysctl SID. */ 1862 tsid = SECINITSID_SYSCTL; 1863 } 1864 1865 /* The op values are "defined" in sysctl.c, thereby creating 1866 * a bad coupling between this module and sysctl.c */ 1867 if (op == 001) { 1868 error = avc_has_perm(tsec->sid, tsid, 1869 SECCLASS_DIR, DIR__SEARCH, NULL); 1870 } else { 1871 av = 0; 1872 if (op & 004) 1873 av |= FILE__READ; 1874 if (op & 002) 1875 av |= FILE__WRITE; 1876 if (av) 1877 error = avc_has_perm(tsec->sid, tsid, 1878 SECCLASS_FILE, av, NULL); 1879 } 1880 1881 return error; 1882 } 1883 1884 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1885 { 1886 int rc = 0; 1887 1888 if (!sb) 1889 return 0; 1890 1891 switch (cmds) { 1892 case Q_SYNC: 1893 case Q_QUOTAON: 1894 case Q_QUOTAOFF: 1895 case Q_SETINFO: 1896 case Q_SETQUOTA: 1897 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD, 1898 NULL); 1899 break; 1900 case Q_GETFMT: 1901 case Q_GETINFO: 1902 case Q_GETQUOTA: 1903 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET, 1904 NULL); 1905 break; 1906 default: 1907 rc = 0; /* let the kernel handle invalid cmds */ 1908 break; 1909 } 1910 return rc; 1911 } 1912 1913 static int selinux_quota_on(struct dentry *dentry) 1914 { 1915 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON); 1916 } 1917 1918 static int selinux_syslog(int type) 1919 { 1920 int rc; 1921 1922 rc = secondary_ops->syslog(type); 1923 if (rc) 1924 return rc; 1925 1926 switch (type) { 1927 case 3: /* Read last kernel messages */ 1928 case 10: /* Return size of the log buffer */ 1929 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1930 break; 1931 case 6: /* Disable logging to console */ 1932 case 7: /* Enable logging to console */ 1933 case 8: /* Set level of messages printed to console */ 1934 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1935 break; 1936 case 0: /* Close log */ 1937 case 1: /* Open log */ 1938 case 2: /* Read from log */ 1939 case 4: /* Read/clear last kernel messages */ 1940 case 5: /* Clear ring buffer */ 1941 default: 1942 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1943 break; 1944 } 1945 return rc; 1946 } 1947 1948 /* 1949 * Check that a process has enough memory to allocate a new virtual 1950 * mapping. 0 means there is enough memory for the allocation to 1951 * succeed and -ENOMEM implies there is not. 1952 * 1953 * Note that secondary_ops->capable and task_has_perm_noaudit return 0 1954 * if the capability is granted, but __vm_enough_memory requires 1 if 1955 * the capability is granted. 1956 * 1957 * Do not audit the selinux permission check, as this is applied to all 1958 * processes that allocate mappings. 1959 */ 1960 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 1961 { 1962 int rc, cap_sys_admin = 0; 1963 struct task_security_struct *tsec = current->security; 1964 1965 rc = secondary_ops->capable(current, CAP_SYS_ADMIN); 1966 if (rc == 0) 1967 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, 1968 SECCLASS_CAPABILITY, 1969 CAP_TO_MASK(CAP_SYS_ADMIN), 1970 0, 1971 NULL); 1972 1973 if (rc == 0) 1974 cap_sys_admin = 1; 1975 1976 return __vm_enough_memory(mm, pages, cap_sys_admin); 1977 } 1978 1979 /* binprm security operations */ 1980 1981 static int selinux_bprm_alloc_security(struct linux_binprm *bprm) 1982 { 1983 struct bprm_security_struct *bsec; 1984 1985 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL); 1986 if (!bsec) 1987 return -ENOMEM; 1988 1989 bsec->sid = SECINITSID_UNLABELED; 1990 bsec->set = 0; 1991 1992 bprm->security = bsec; 1993 return 0; 1994 } 1995 1996 static int selinux_bprm_set_security(struct linux_binprm *bprm) 1997 { 1998 struct task_security_struct *tsec; 1999 struct inode *inode = bprm->file->f_path.dentry->d_inode; 2000 struct inode_security_struct *isec; 2001 struct bprm_security_struct *bsec; 2002 u32 newsid; 2003 struct avc_audit_data ad; 2004 int rc; 2005 2006 rc = secondary_ops->bprm_set_security(bprm); 2007 if (rc) 2008 return rc; 2009 2010 bsec = bprm->security; 2011 2012 if (bsec->set) 2013 return 0; 2014 2015 tsec = current->security; 2016 isec = inode->i_security; 2017 2018 /* Default to the current task SID. */ 2019 bsec->sid = tsec->sid; 2020 2021 /* Reset fs, key, and sock SIDs on execve. */ 2022 tsec->create_sid = 0; 2023 tsec->keycreate_sid = 0; 2024 tsec->sockcreate_sid = 0; 2025 2026 if (tsec->exec_sid) { 2027 newsid = tsec->exec_sid; 2028 /* Reset exec SID on execve. */ 2029 tsec->exec_sid = 0; 2030 } else { 2031 /* Check for a default transition on this program. */ 2032 rc = security_transition_sid(tsec->sid, isec->sid, 2033 SECCLASS_PROCESS, &newsid); 2034 if (rc) 2035 return rc; 2036 } 2037 2038 AVC_AUDIT_DATA_INIT(&ad, FS); 2039 ad.u.fs.path = bprm->file->f_path; 2040 2041 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2042 newsid = tsec->sid; 2043 2044 if (tsec->sid == newsid) { 2045 rc = avc_has_perm(tsec->sid, isec->sid, 2046 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2047 if (rc) 2048 return rc; 2049 } else { 2050 /* Check permissions for the transition. */ 2051 rc = avc_has_perm(tsec->sid, newsid, 2052 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2053 if (rc) 2054 return rc; 2055 2056 rc = avc_has_perm(newsid, isec->sid, 2057 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2058 if (rc) 2059 return rc; 2060 2061 /* Clear any possibly unsafe personality bits on exec: */ 2062 current->personality &= ~PER_CLEAR_ON_SETID; 2063 2064 /* Set the security field to the new SID. */ 2065 bsec->sid = newsid; 2066 } 2067 2068 bsec->set = 1; 2069 return 0; 2070 } 2071 2072 static int selinux_bprm_check_security(struct linux_binprm *bprm) 2073 { 2074 return secondary_ops->bprm_check_security(bprm); 2075 } 2076 2077 2078 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2079 { 2080 struct task_security_struct *tsec = current->security; 2081 int atsecure = 0; 2082 2083 if (tsec->osid != tsec->sid) { 2084 /* Enable secure mode for SIDs transitions unless 2085 the noatsecure permission is granted between 2086 the two SIDs, i.e. ahp returns 0. */ 2087 atsecure = avc_has_perm(tsec->osid, tsec->sid, 2088 SECCLASS_PROCESS, 2089 PROCESS__NOATSECURE, NULL); 2090 } 2091 2092 return (atsecure || secondary_ops->bprm_secureexec(bprm)); 2093 } 2094 2095 static void selinux_bprm_free_security(struct linux_binprm *bprm) 2096 { 2097 kfree(bprm->security); 2098 bprm->security = NULL; 2099 } 2100 2101 extern struct vfsmount *selinuxfs_mount; 2102 extern struct dentry *selinux_null; 2103 2104 /* Derived from fs/exec.c:flush_old_files. */ 2105 static inline void flush_unauthorized_files(struct files_struct *files) 2106 { 2107 struct avc_audit_data ad; 2108 struct file *file, *devnull = NULL; 2109 struct tty_struct *tty; 2110 struct fdtable *fdt; 2111 long j = -1; 2112 int drop_tty = 0; 2113 2114 mutex_lock(&tty_mutex); 2115 tty = get_current_tty(); 2116 if (tty) { 2117 file_list_lock(); 2118 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list); 2119 if (file) { 2120 /* Revalidate access to controlling tty. 2121 Use inode_has_perm on the tty inode directly rather 2122 than using file_has_perm, as this particular open 2123 file may belong to another process and we are only 2124 interested in the inode-based check here. */ 2125 struct inode *inode = file->f_path.dentry->d_inode; 2126 if (inode_has_perm(current, inode, 2127 FILE__READ | FILE__WRITE, NULL)) { 2128 drop_tty = 1; 2129 } 2130 } 2131 file_list_unlock(); 2132 } 2133 mutex_unlock(&tty_mutex); 2134 /* Reset controlling tty. */ 2135 if (drop_tty) 2136 no_tty(); 2137 2138 /* Revalidate access to inherited open files. */ 2139 2140 AVC_AUDIT_DATA_INIT(&ad, FS); 2141 2142 spin_lock(&files->file_lock); 2143 for (;;) { 2144 unsigned long set, i; 2145 int fd; 2146 2147 j++; 2148 i = j * __NFDBITS; 2149 fdt = files_fdtable(files); 2150 if (i >= fdt->max_fds) 2151 break; 2152 set = fdt->open_fds->fds_bits[j]; 2153 if (!set) 2154 continue; 2155 spin_unlock(&files->file_lock); 2156 for ( ; set ; i++, set >>= 1) { 2157 if (set & 1) { 2158 file = fget(i); 2159 if (!file) 2160 continue; 2161 if (file_has_perm(current, 2162 file, 2163 file_to_av(file))) { 2164 sys_close(i); 2165 fd = get_unused_fd(); 2166 if (fd != i) { 2167 if (fd >= 0) 2168 put_unused_fd(fd); 2169 fput(file); 2170 continue; 2171 } 2172 if (devnull) { 2173 get_file(devnull); 2174 } else { 2175 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR); 2176 if (IS_ERR(devnull)) { 2177 devnull = NULL; 2178 put_unused_fd(fd); 2179 fput(file); 2180 continue; 2181 } 2182 } 2183 fd_install(fd, devnull); 2184 } 2185 fput(file); 2186 } 2187 } 2188 spin_lock(&files->file_lock); 2189 2190 } 2191 spin_unlock(&files->file_lock); 2192 } 2193 2194 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 2195 { 2196 struct task_security_struct *tsec; 2197 struct bprm_security_struct *bsec; 2198 u32 sid; 2199 int rc; 2200 2201 secondary_ops->bprm_apply_creds(bprm, unsafe); 2202 2203 tsec = current->security; 2204 2205 bsec = bprm->security; 2206 sid = bsec->sid; 2207 2208 tsec->osid = tsec->sid; 2209 bsec->unsafe = 0; 2210 if (tsec->sid != sid) { 2211 /* Check for shared state. If not ok, leave SID 2212 unchanged and kill. */ 2213 if (unsafe & LSM_UNSAFE_SHARE) { 2214 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 2215 PROCESS__SHARE, NULL); 2216 if (rc) { 2217 bsec->unsafe = 1; 2218 return; 2219 } 2220 } 2221 2222 /* Check for ptracing, and update the task SID if ok. 2223 Otherwise, leave SID unchanged and kill. */ 2224 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2225 struct task_struct *tracer; 2226 struct task_security_struct *sec; 2227 u32 ptsid = 0; 2228 2229 rcu_read_lock(); 2230 tracer = tracehook_tracer_task(current); 2231 if (likely(tracer != NULL)) { 2232 sec = tracer->security; 2233 ptsid = sec->sid; 2234 } 2235 rcu_read_unlock(); 2236 2237 if (ptsid != 0) { 2238 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 2239 PROCESS__PTRACE, NULL); 2240 if (rc) { 2241 bsec->unsafe = 1; 2242 return; 2243 } 2244 } 2245 } 2246 tsec->sid = sid; 2247 } 2248 } 2249 2250 /* 2251 * called after apply_creds without the task lock held 2252 */ 2253 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm) 2254 { 2255 struct task_security_struct *tsec; 2256 struct rlimit *rlim, *initrlim; 2257 struct itimerval itimer; 2258 struct bprm_security_struct *bsec; 2259 int rc, i; 2260 2261 tsec = current->security; 2262 bsec = bprm->security; 2263 2264 if (bsec->unsafe) { 2265 force_sig_specific(SIGKILL, current); 2266 return; 2267 } 2268 if (tsec->osid == tsec->sid) 2269 return; 2270 2271 /* Close files for which the new task SID is not authorized. */ 2272 flush_unauthorized_files(current->files); 2273 2274 /* Check whether the new SID can inherit signal state 2275 from the old SID. If not, clear itimers to avoid 2276 subsequent signal generation and flush and unblock 2277 signals. This must occur _after_ the task SID has 2278 been updated so that any kill done after the flush 2279 will be checked against the new SID. */ 2280 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2281 PROCESS__SIGINH, NULL); 2282 if (rc) { 2283 memset(&itimer, 0, sizeof itimer); 2284 for (i = 0; i < 3; i++) 2285 do_setitimer(i, &itimer, NULL); 2286 flush_signals(current); 2287 spin_lock_irq(¤t->sighand->siglock); 2288 flush_signal_handlers(current, 1); 2289 sigemptyset(¤t->blocked); 2290 recalc_sigpending(); 2291 spin_unlock_irq(¤t->sighand->siglock); 2292 } 2293 2294 /* Always clear parent death signal on SID transitions. */ 2295 current->pdeath_signal = 0; 2296 2297 /* Check whether the new SID can inherit resource limits 2298 from the old SID. If not, reset all soft limits to 2299 the lower of the current task's hard limit and the init 2300 task's soft limit. Note that the setting of hard limits 2301 (even to lower them) can be controlled by the setrlimit 2302 check. The inclusion of the init task's soft limit into 2303 the computation is to avoid resetting soft limits higher 2304 than the default soft limit for cases where the default 2305 is lower than the hard limit, e.g. RLIMIT_CORE or 2306 RLIMIT_STACK.*/ 2307 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2308 PROCESS__RLIMITINH, NULL); 2309 if (rc) { 2310 for (i = 0; i < RLIM_NLIMITS; i++) { 2311 rlim = current->signal->rlim + i; 2312 initrlim = init_task.signal->rlim+i; 2313 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2314 } 2315 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 2316 /* 2317 * This will cause RLIMIT_CPU calculations 2318 * to be refigured. 2319 */ 2320 current->it_prof_expires = jiffies_to_cputime(1); 2321 } 2322 } 2323 2324 /* Wake up the parent if it is waiting so that it can 2325 recheck wait permission to the new task SID. */ 2326 wake_up_interruptible(¤t->parent->signal->wait_chldexit); 2327 } 2328 2329 /* superblock security operations */ 2330 2331 static int selinux_sb_alloc_security(struct super_block *sb) 2332 { 2333 return superblock_alloc_security(sb); 2334 } 2335 2336 static void selinux_sb_free_security(struct super_block *sb) 2337 { 2338 superblock_free_security(sb); 2339 } 2340 2341 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2342 { 2343 if (plen > olen) 2344 return 0; 2345 2346 return !memcmp(prefix, option, plen); 2347 } 2348 2349 static inline int selinux_option(char *option, int len) 2350 { 2351 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2352 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2353 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2354 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len)); 2355 } 2356 2357 static inline void take_option(char **to, char *from, int *first, int len) 2358 { 2359 if (!*first) { 2360 **to = ','; 2361 *to += 1; 2362 } else 2363 *first = 0; 2364 memcpy(*to, from, len); 2365 *to += len; 2366 } 2367 2368 static inline void take_selinux_option(char **to, char *from, int *first, 2369 int len) 2370 { 2371 int current_size = 0; 2372 2373 if (!*first) { 2374 **to = '|'; 2375 *to += 1; 2376 } else 2377 *first = 0; 2378 2379 while (current_size < len) { 2380 if (*from != '"') { 2381 **to = *from; 2382 *to += 1; 2383 } 2384 from += 1; 2385 current_size += 1; 2386 } 2387 } 2388 2389 static int selinux_sb_copy_data(char *orig, char *copy) 2390 { 2391 int fnosec, fsec, rc = 0; 2392 char *in_save, *in_curr, *in_end; 2393 char *sec_curr, *nosec_save, *nosec; 2394 int open_quote = 0; 2395 2396 in_curr = orig; 2397 sec_curr = copy; 2398 2399 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2400 if (!nosec) { 2401 rc = -ENOMEM; 2402 goto out; 2403 } 2404 2405 nosec_save = nosec; 2406 fnosec = fsec = 1; 2407 in_save = in_end = orig; 2408 2409 do { 2410 if (*in_end == '"') 2411 open_quote = !open_quote; 2412 if ((*in_end == ',' && open_quote == 0) || 2413 *in_end == '\0') { 2414 int len = in_end - in_curr; 2415 2416 if (selinux_option(in_curr, len)) 2417 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2418 else 2419 take_option(&nosec, in_curr, &fnosec, len); 2420 2421 in_curr = in_end + 1; 2422 } 2423 } while (*in_end++); 2424 2425 strcpy(in_save, nosec_save); 2426 free_page((unsigned long)nosec_save); 2427 out: 2428 return rc; 2429 } 2430 2431 static int selinux_sb_kern_mount(struct super_block *sb, void *data) 2432 { 2433 struct avc_audit_data ad; 2434 int rc; 2435 2436 rc = superblock_doinit(sb, data); 2437 if (rc) 2438 return rc; 2439 2440 AVC_AUDIT_DATA_INIT(&ad, FS); 2441 ad.u.fs.path.dentry = sb->s_root; 2442 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad); 2443 } 2444 2445 static int selinux_sb_statfs(struct dentry *dentry) 2446 { 2447 struct avc_audit_data ad; 2448 2449 AVC_AUDIT_DATA_INIT(&ad, FS); 2450 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2451 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2452 } 2453 2454 static int selinux_mount(char *dev_name, 2455 struct path *path, 2456 char *type, 2457 unsigned long flags, 2458 void *data) 2459 { 2460 int rc; 2461 2462 rc = secondary_ops->sb_mount(dev_name, path, type, flags, data); 2463 if (rc) 2464 return rc; 2465 2466 if (flags & MS_REMOUNT) 2467 return superblock_has_perm(current, path->mnt->mnt_sb, 2468 FILESYSTEM__REMOUNT, NULL); 2469 else 2470 return dentry_has_perm(current, path->mnt, path->dentry, 2471 FILE__MOUNTON); 2472 } 2473 2474 static int selinux_umount(struct vfsmount *mnt, int flags) 2475 { 2476 int rc; 2477 2478 rc = secondary_ops->sb_umount(mnt, flags); 2479 if (rc) 2480 return rc; 2481 2482 return superblock_has_perm(current, mnt->mnt_sb, 2483 FILESYSTEM__UNMOUNT, NULL); 2484 } 2485 2486 /* inode security operations */ 2487 2488 static int selinux_inode_alloc_security(struct inode *inode) 2489 { 2490 return inode_alloc_security(inode); 2491 } 2492 2493 static void selinux_inode_free_security(struct inode *inode) 2494 { 2495 inode_free_security(inode); 2496 } 2497 2498 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2499 char **name, void **value, 2500 size_t *len) 2501 { 2502 struct task_security_struct *tsec; 2503 struct inode_security_struct *dsec; 2504 struct superblock_security_struct *sbsec; 2505 u32 newsid, clen; 2506 int rc; 2507 char *namep = NULL, *context; 2508 2509 tsec = current->security; 2510 dsec = dir->i_security; 2511 sbsec = dir->i_sb->s_security; 2512 2513 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2514 newsid = tsec->create_sid; 2515 } else { 2516 rc = security_transition_sid(tsec->sid, dsec->sid, 2517 inode_mode_to_security_class(inode->i_mode), 2518 &newsid); 2519 if (rc) { 2520 printk(KERN_WARNING "%s: " 2521 "security_transition_sid failed, rc=%d (dev=%s " 2522 "ino=%ld)\n", 2523 __func__, 2524 -rc, inode->i_sb->s_id, inode->i_ino); 2525 return rc; 2526 } 2527 } 2528 2529 /* Possibly defer initialization to selinux_complete_init. */ 2530 if (sbsec->initialized) { 2531 struct inode_security_struct *isec = inode->i_security; 2532 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2533 isec->sid = newsid; 2534 isec->initialized = 1; 2535 } 2536 2537 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2538 return -EOPNOTSUPP; 2539 2540 if (name) { 2541 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2542 if (!namep) 2543 return -ENOMEM; 2544 *name = namep; 2545 } 2546 2547 if (value && len) { 2548 rc = security_sid_to_context_force(newsid, &context, &clen); 2549 if (rc) { 2550 kfree(namep); 2551 return rc; 2552 } 2553 *value = context; 2554 *len = clen; 2555 } 2556 2557 return 0; 2558 } 2559 2560 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2561 { 2562 return may_create(dir, dentry, SECCLASS_FILE); 2563 } 2564 2565 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2566 { 2567 int rc; 2568 2569 rc = secondary_ops->inode_link(old_dentry, dir, new_dentry); 2570 if (rc) 2571 return rc; 2572 return may_link(dir, old_dentry, MAY_LINK); 2573 } 2574 2575 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2576 { 2577 int rc; 2578 2579 rc = secondary_ops->inode_unlink(dir, dentry); 2580 if (rc) 2581 return rc; 2582 return may_link(dir, dentry, MAY_UNLINK); 2583 } 2584 2585 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2586 { 2587 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2588 } 2589 2590 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2591 { 2592 return may_create(dir, dentry, SECCLASS_DIR); 2593 } 2594 2595 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2596 { 2597 return may_link(dir, dentry, MAY_RMDIR); 2598 } 2599 2600 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2601 { 2602 int rc; 2603 2604 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev); 2605 if (rc) 2606 return rc; 2607 2608 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2609 } 2610 2611 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2612 struct inode *new_inode, struct dentry *new_dentry) 2613 { 2614 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2615 } 2616 2617 static int selinux_inode_readlink(struct dentry *dentry) 2618 { 2619 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2620 } 2621 2622 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2623 { 2624 int rc; 2625 2626 rc = secondary_ops->inode_follow_link(dentry, nameidata); 2627 if (rc) 2628 return rc; 2629 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2630 } 2631 2632 static int selinux_inode_permission(struct inode *inode, int mask) 2633 { 2634 int rc; 2635 2636 rc = secondary_ops->inode_permission(inode, mask); 2637 if (rc) 2638 return rc; 2639 2640 if (!mask) { 2641 /* No permission to check. Existence test. */ 2642 return 0; 2643 } 2644 2645 return inode_has_perm(current, inode, 2646 open_file_mask_to_av(inode->i_mode, mask), NULL); 2647 } 2648 2649 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2650 { 2651 int rc; 2652 2653 rc = secondary_ops->inode_setattr(dentry, iattr); 2654 if (rc) 2655 return rc; 2656 2657 if (iattr->ia_valid & ATTR_FORCE) 2658 return 0; 2659 2660 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2661 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2662 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2663 2664 return dentry_has_perm(current, NULL, dentry, FILE__WRITE); 2665 } 2666 2667 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2668 { 2669 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR); 2670 } 2671 2672 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2673 { 2674 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2675 sizeof XATTR_SECURITY_PREFIX - 1)) { 2676 if (!strcmp(name, XATTR_NAME_CAPS)) { 2677 if (!capable(CAP_SETFCAP)) 2678 return -EPERM; 2679 } else if (!capable(CAP_SYS_ADMIN)) { 2680 /* A different attribute in the security namespace. 2681 Restrict to administrator. */ 2682 return -EPERM; 2683 } 2684 } 2685 2686 /* Not an attribute we recognize, so just check the 2687 ordinary setattr permission. */ 2688 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2689 } 2690 2691 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2692 const void *value, size_t size, int flags) 2693 { 2694 struct task_security_struct *tsec = current->security; 2695 struct inode *inode = dentry->d_inode; 2696 struct inode_security_struct *isec = inode->i_security; 2697 struct superblock_security_struct *sbsec; 2698 struct avc_audit_data ad; 2699 u32 newsid; 2700 int rc = 0; 2701 2702 if (strcmp(name, XATTR_NAME_SELINUX)) 2703 return selinux_inode_setotherxattr(dentry, name); 2704 2705 sbsec = inode->i_sb->s_security; 2706 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2707 return -EOPNOTSUPP; 2708 2709 if (!is_owner_or_cap(inode)) 2710 return -EPERM; 2711 2712 AVC_AUDIT_DATA_INIT(&ad, FS); 2713 ad.u.fs.path.dentry = dentry; 2714 2715 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, 2716 FILE__RELABELFROM, &ad); 2717 if (rc) 2718 return rc; 2719 2720 rc = security_context_to_sid(value, size, &newsid); 2721 if (rc == -EINVAL) { 2722 if (!capable(CAP_MAC_ADMIN)) 2723 return rc; 2724 rc = security_context_to_sid_force(value, size, &newsid); 2725 } 2726 if (rc) 2727 return rc; 2728 2729 rc = avc_has_perm(tsec->sid, newsid, isec->sclass, 2730 FILE__RELABELTO, &ad); 2731 if (rc) 2732 return rc; 2733 2734 rc = security_validate_transition(isec->sid, newsid, tsec->sid, 2735 isec->sclass); 2736 if (rc) 2737 return rc; 2738 2739 return avc_has_perm(newsid, 2740 sbsec->sid, 2741 SECCLASS_FILESYSTEM, 2742 FILESYSTEM__ASSOCIATE, 2743 &ad); 2744 } 2745 2746 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2747 const void *value, size_t size, 2748 int flags) 2749 { 2750 struct inode *inode = dentry->d_inode; 2751 struct inode_security_struct *isec = inode->i_security; 2752 u32 newsid; 2753 int rc; 2754 2755 if (strcmp(name, XATTR_NAME_SELINUX)) { 2756 /* Not an attribute we recognize, so nothing to do. */ 2757 return; 2758 } 2759 2760 rc = security_context_to_sid_force(value, size, &newsid); 2761 if (rc) { 2762 printk(KERN_ERR "SELinux: unable to map context to SID" 2763 "for (%s, %lu), rc=%d\n", 2764 inode->i_sb->s_id, inode->i_ino, -rc); 2765 return; 2766 } 2767 2768 isec->sid = newsid; 2769 return; 2770 } 2771 2772 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2773 { 2774 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2775 } 2776 2777 static int selinux_inode_listxattr(struct dentry *dentry) 2778 { 2779 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2780 } 2781 2782 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2783 { 2784 if (strcmp(name, XATTR_NAME_SELINUX)) 2785 return selinux_inode_setotherxattr(dentry, name); 2786 2787 /* No one is allowed to remove a SELinux security label. 2788 You can change the label, but all data must be labeled. */ 2789 return -EACCES; 2790 } 2791 2792 /* 2793 * Copy the inode security context value to the user. 2794 * 2795 * Permission check is handled by selinux_inode_getxattr hook. 2796 */ 2797 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2798 { 2799 u32 size; 2800 int error; 2801 char *context = NULL; 2802 struct task_security_struct *tsec = current->security; 2803 struct inode_security_struct *isec = inode->i_security; 2804 2805 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2806 return -EOPNOTSUPP; 2807 2808 /* 2809 * If the caller has CAP_MAC_ADMIN, then get the raw context 2810 * value even if it is not defined by current policy; otherwise, 2811 * use the in-core value under current policy. 2812 * Use the non-auditing forms of the permission checks since 2813 * getxattr may be called by unprivileged processes commonly 2814 * and lack of permission just means that we fall back to the 2815 * in-core context value, not a denial. 2816 */ 2817 error = secondary_ops->capable(current, CAP_MAC_ADMIN); 2818 if (!error) 2819 error = avc_has_perm_noaudit(tsec->sid, tsec->sid, 2820 SECCLASS_CAPABILITY2, 2821 CAPABILITY2__MAC_ADMIN, 2822 0, 2823 NULL); 2824 if (!error) 2825 error = security_sid_to_context_force(isec->sid, &context, 2826 &size); 2827 else 2828 error = security_sid_to_context(isec->sid, &context, &size); 2829 if (error) 2830 return error; 2831 error = size; 2832 if (alloc) { 2833 *buffer = context; 2834 goto out_nofree; 2835 } 2836 kfree(context); 2837 out_nofree: 2838 return error; 2839 } 2840 2841 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2842 const void *value, size_t size, int flags) 2843 { 2844 struct inode_security_struct *isec = inode->i_security; 2845 u32 newsid; 2846 int rc; 2847 2848 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2849 return -EOPNOTSUPP; 2850 2851 if (!value || !size) 2852 return -EACCES; 2853 2854 rc = security_context_to_sid((void *)value, size, &newsid); 2855 if (rc) 2856 return rc; 2857 2858 isec->sid = newsid; 2859 return 0; 2860 } 2861 2862 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2863 { 2864 const int len = sizeof(XATTR_NAME_SELINUX); 2865 if (buffer && len <= buffer_size) 2866 memcpy(buffer, XATTR_NAME_SELINUX, len); 2867 return len; 2868 } 2869 2870 static int selinux_inode_need_killpriv(struct dentry *dentry) 2871 { 2872 return secondary_ops->inode_need_killpriv(dentry); 2873 } 2874 2875 static int selinux_inode_killpriv(struct dentry *dentry) 2876 { 2877 return secondary_ops->inode_killpriv(dentry); 2878 } 2879 2880 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2881 { 2882 struct inode_security_struct *isec = inode->i_security; 2883 *secid = isec->sid; 2884 } 2885 2886 /* file security operations */ 2887 2888 static int selinux_revalidate_file_permission(struct file *file, int mask) 2889 { 2890 int rc; 2891 struct inode *inode = file->f_path.dentry->d_inode; 2892 2893 if (!mask) { 2894 /* No permission to check. Existence test. */ 2895 return 0; 2896 } 2897 2898 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2899 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2900 mask |= MAY_APPEND; 2901 2902 rc = file_has_perm(current, file, 2903 file_mask_to_av(inode->i_mode, mask)); 2904 if (rc) 2905 return rc; 2906 2907 return selinux_netlbl_inode_permission(inode, mask); 2908 } 2909 2910 static int selinux_file_permission(struct file *file, int mask) 2911 { 2912 struct inode *inode = file->f_path.dentry->d_inode; 2913 struct task_security_struct *tsec = current->security; 2914 struct file_security_struct *fsec = file->f_security; 2915 struct inode_security_struct *isec = inode->i_security; 2916 2917 if (!mask) { 2918 /* No permission to check. Existence test. */ 2919 return 0; 2920 } 2921 2922 if (tsec->sid == fsec->sid && fsec->isid == isec->sid 2923 && fsec->pseqno == avc_policy_seqno()) 2924 return selinux_netlbl_inode_permission(inode, mask); 2925 2926 return selinux_revalidate_file_permission(file, mask); 2927 } 2928 2929 static int selinux_file_alloc_security(struct file *file) 2930 { 2931 return file_alloc_security(file); 2932 } 2933 2934 static void selinux_file_free_security(struct file *file) 2935 { 2936 file_free_security(file); 2937 } 2938 2939 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2940 unsigned long arg) 2941 { 2942 u32 av = 0; 2943 2944 if (_IOC_DIR(cmd) & _IOC_WRITE) 2945 av |= FILE__WRITE; 2946 if (_IOC_DIR(cmd) & _IOC_READ) 2947 av |= FILE__READ; 2948 if (!av) 2949 av = FILE__IOCTL; 2950 2951 return file_has_perm(current, file, av); 2952 } 2953 2954 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2955 { 2956 #ifndef CONFIG_PPC32 2957 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2958 /* 2959 * We are making executable an anonymous mapping or a 2960 * private file mapping that will also be writable. 2961 * This has an additional check. 2962 */ 2963 int rc = task_has_perm(current, current, PROCESS__EXECMEM); 2964 if (rc) 2965 return rc; 2966 } 2967 #endif 2968 2969 if (file) { 2970 /* read access is always possible with a mapping */ 2971 u32 av = FILE__READ; 2972 2973 /* write access only matters if the mapping is shared */ 2974 if (shared && (prot & PROT_WRITE)) 2975 av |= FILE__WRITE; 2976 2977 if (prot & PROT_EXEC) 2978 av |= FILE__EXECUTE; 2979 2980 return file_has_perm(current, file, av); 2981 } 2982 return 0; 2983 } 2984 2985 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2986 unsigned long prot, unsigned long flags, 2987 unsigned long addr, unsigned long addr_only) 2988 { 2989 int rc = 0; 2990 u32 sid = ((struct task_security_struct *)(current->security))->sid; 2991 2992 if (addr < mmap_min_addr) 2993 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 2994 MEMPROTECT__MMAP_ZERO, NULL); 2995 if (rc || addr_only) 2996 return rc; 2997 2998 if (selinux_checkreqprot) 2999 prot = reqprot; 3000 3001 return file_map_prot_check(file, prot, 3002 (flags & MAP_TYPE) == MAP_SHARED); 3003 } 3004 3005 static int selinux_file_mprotect(struct vm_area_struct *vma, 3006 unsigned long reqprot, 3007 unsigned long prot) 3008 { 3009 int rc; 3010 3011 rc = secondary_ops->file_mprotect(vma, reqprot, prot); 3012 if (rc) 3013 return rc; 3014 3015 if (selinux_checkreqprot) 3016 prot = reqprot; 3017 3018 #ifndef CONFIG_PPC32 3019 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3020 rc = 0; 3021 if (vma->vm_start >= vma->vm_mm->start_brk && 3022 vma->vm_end <= vma->vm_mm->brk) { 3023 rc = task_has_perm(current, current, 3024 PROCESS__EXECHEAP); 3025 } else if (!vma->vm_file && 3026 vma->vm_start <= vma->vm_mm->start_stack && 3027 vma->vm_end >= vma->vm_mm->start_stack) { 3028 rc = task_has_perm(current, current, PROCESS__EXECSTACK); 3029 } else if (vma->vm_file && vma->anon_vma) { 3030 /* 3031 * We are making executable a file mapping that has 3032 * had some COW done. Since pages might have been 3033 * written, check ability to execute the possibly 3034 * modified content. This typically should only 3035 * occur for text relocations. 3036 */ 3037 rc = file_has_perm(current, vma->vm_file, 3038 FILE__EXECMOD); 3039 } 3040 if (rc) 3041 return rc; 3042 } 3043 #endif 3044 3045 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3046 } 3047 3048 static int selinux_file_lock(struct file *file, unsigned int cmd) 3049 { 3050 return file_has_perm(current, file, FILE__LOCK); 3051 } 3052 3053 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3054 unsigned long arg) 3055 { 3056 int err = 0; 3057 3058 switch (cmd) { 3059 case F_SETFL: 3060 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3061 err = -EINVAL; 3062 break; 3063 } 3064 3065 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3066 err = file_has_perm(current, file, FILE__WRITE); 3067 break; 3068 } 3069 /* fall through */ 3070 case F_SETOWN: 3071 case F_SETSIG: 3072 case F_GETFL: 3073 case F_GETOWN: 3074 case F_GETSIG: 3075 /* Just check FD__USE permission */ 3076 err = file_has_perm(current, file, 0); 3077 break; 3078 case F_GETLK: 3079 case F_SETLK: 3080 case F_SETLKW: 3081 #if BITS_PER_LONG == 32 3082 case F_GETLK64: 3083 case F_SETLK64: 3084 case F_SETLKW64: 3085 #endif 3086 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3087 err = -EINVAL; 3088 break; 3089 } 3090 err = file_has_perm(current, file, FILE__LOCK); 3091 break; 3092 } 3093 3094 return err; 3095 } 3096 3097 static int selinux_file_set_fowner(struct file *file) 3098 { 3099 struct task_security_struct *tsec; 3100 struct file_security_struct *fsec; 3101 3102 tsec = current->security; 3103 fsec = file->f_security; 3104 fsec->fown_sid = tsec->sid; 3105 3106 return 0; 3107 } 3108 3109 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3110 struct fown_struct *fown, int signum) 3111 { 3112 struct file *file; 3113 u32 perm; 3114 struct task_security_struct *tsec; 3115 struct file_security_struct *fsec; 3116 3117 /* struct fown_struct is never outside the context of a struct file */ 3118 file = container_of(fown, struct file, f_owner); 3119 3120 tsec = tsk->security; 3121 fsec = file->f_security; 3122 3123 if (!signum) 3124 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3125 else 3126 perm = signal_to_av(signum); 3127 3128 return avc_has_perm(fsec->fown_sid, tsec->sid, 3129 SECCLASS_PROCESS, perm, NULL); 3130 } 3131 3132 static int selinux_file_receive(struct file *file) 3133 { 3134 return file_has_perm(current, file, file_to_av(file)); 3135 } 3136 3137 static int selinux_dentry_open(struct file *file) 3138 { 3139 struct file_security_struct *fsec; 3140 struct inode *inode; 3141 struct inode_security_struct *isec; 3142 inode = file->f_path.dentry->d_inode; 3143 fsec = file->f_security; 3144 isec = inode->i_security; 3145 /* 3146 * Save inode label and policy sequence number 3147 * at open-time so that selinux_file_permission 3148 * can determine whether revalidation is necessary. 3149 * Task label is already saved in the file security 3150 * struct as its SID. 3151 */ 3152 fsec->isid = isec->sid; 3153 fsec->pseqno = avc_policy_seqno(); 3154 /* 3155 * Since the inode label or policy seqno may have changed 3156 * between the selinux_inode_permission check and the saving 3157 * of state above, recheck that access is still permitted. 3158 * Otherwise, access might never be revalidated against the 3159 * new inode label or new policy. 3160 * This check is not redundant - do not remove. 3161 */ 3162 return inode_has_perm(current, inode, file_to_av(file), NULL); 3163 } 3164 3165 /* task security operations */ 3166 3167 static int selinux_task_create(unsigned long clone_flags) 3168 { 3169 int rc; 3170 3171 rc = secondary_ops->task_create(clone_flags); 3172 if (rc) 3173 return rc; 3174 3175 return task_has_perm(current, current, PROCESS__FORK); 3176 } 3177 3178 static int selinux_task_alloc_security(struct task_struct *tsk) 3179 { 3180 struct task_security_struct *tsec1, *tsec2; 3181 int rc; 3182 3183 tsec1 = current->security; 3184 3185 rc = task_alloc_security(tsk); 3186 if (rc) 3187 return rc; 3188 tsec2 = tsk->security; 3189 3190 tsec2->osid = tsec1->osid; 3191 tsec2->sid = tsec1->sid; 3192 3193 /* Retain the exec, fs, key, and sock SIDs across fork */ 3194 tsec2->exec_sid = tsec1->exec_sid; 3195 tsec2->create_sid = tsec1->create_sid; 3196 tsec2->keycreate_sid = tsec1->keycreate_sid; 3197 tsec2->sockcreate_sid = tsec1->sockcreate_sid; 3198 3199 return 0; 3200 } 3201 3202 static void selinux_task_free_security(struct task_struct *tsk) 3203 { 3204 task_free_security(tsk); 3205 } 3206 3207 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3208 { 3209 /* Since setuid only affects the current process, and 3210 since the SELinux controls are not based on the Linux 3211 identity attributes, SELinux does not need to control 3212 this operation. However, SELinux does control the use 3213 of the CAP_SETUID and CAP_SETGID capabilities using the 3214 capable hook. */ 3215 return 0; 3216 } 3217 3218 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3219 { 3220 return secondary_ops->task_post_setuid(id0, id1, id2, flags); 3221 } 3222 3223 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 3224 { 3225 /* See the comment for setuid above. */ 3226 return 0; 3227 } 3228 3229 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3230 { 3231 return task_has_perm(current, p, PROCESS__SETPGID); 3232 } 3233 3234 static int selinux_task_getpgid(struct task_struct *p) 3235 { 3236 return task_has_perm(current, p, PROCESS__GETPGID); 3237 } 3238 3239 static int selinux_task_getsid(struct task_struct *p) 3240 { 3241 return task_has_perm(current, p, PROCESS__GETSESSION); 3242 } 3243 3244 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3245 { 3246 struct task_security_struct *tsec = p->security; 3247 *secid = tsec->sid; 3248 } 3249 3250 static int selinux_task_setgroups(struct group_info *group_info) 3251 { 3252 /* See the comment for setuid above. */ 3253 return 0; 3254 } 3255 3256 static int selinux_task_setnice(struct task_struct *p, int nice) 3257 { 3258 int rc; 3259 3260 rc = secondary_ops->task_setnice(p, nice); 3261 if (rc) 3262 return rc; 3263 3264 return task_has_perm(current, p, PROCESS__SETSCHED); 3265 } 3266 3267 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3268 { 3269 int rc; 3270 3271 rc = secondary_ops->task_setioprio(p, ioprio); 3272 if (rc) 3273 return rc; 3274 3275 return task_has_perm(current, p, PROCESS__SETSCHED); 3276 } 3277 3278 static int selinux_task_getioprio(struct task_struct *p) 3279 { 3280 return task_has_perm(current, p, PROCESS__GETSCHED); 3281 } 3282 3283 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3284 { 3285 struct rlimit *old_rlim = current->signal->rlim + resource; 3286 int rc; 3287 3288 rc = secondary_ops->task_setrlimit(resource, new_rlim); 3289 if (rc) 3290 return rc; 3291 3292 /* Control the ability to change the hard limit (whether 3293 lowering or raising it), so that the hard limit can 3294 later be used as a safe reset point for the soft limit 3295 upon context transitions. See selinux_bprm_apply_creds. */ 3296 if (old_rlim->rlim_max != new_rlim->rlim_max) 3297 return task_has_perm(current, current, PROCESS__SETRLIMIT); 3298 3299 return 0; 3300 } 3301 3302 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3303 { 3304 int rc; 3305 3306 rc = secondary_ops->task_setscheduler(p, policy, lp); 3307 if (rc) 3308 return rc; 3309 3310 return task_has_perm(current, p, PROCESS__SETSCHED); 3311 } 3312 3313 static int selinux_task_getscheduler(struct task_struct *p) 3314 { 3315 return task_has_perm(current, p, PROCESS__GETSCHED); 3316 } 3317 3318 static int selinux_task_movememory(struct task_struct *p) 3319 { 3320 return task_has_perm(current, p, PROCESS__SETSCHED); 3321 } 3322 3323 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3324 int sig, u32 secid) 3325 { 3326 u32 perm; 3327 int rc; 3328 struct task_security_struct *tsec; 3329 3330 rc = secondary_ops->task_kill(p, info, sig, secid); 3331 if (rc) 3332 return rc; 3333 3334 if (!sig) 3335 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3336 else 3337 perm = signal_to_av(sig); 3338 tsec = p->security; 3339 if (secid) 3340 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL); 3341 else 3342 rc = task_has_perm(current, p, perm); 3343 return rc; 3344 } 3345 3346 static int selinux_task_prctl(int option, 3347 unsigned long arg2, 3348 unsigned long arg3, 3349 unsigned long arg4, 3350 unsigned long arg5, 3351 long *rc_p) 3352 { 3353 /* The current prctl operations do not appear to require 3354 any SELinux controls since they merely observe or modify 3355 the state of the current process. */ 3356 return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 3357 } 3358 3359 static int selinux_task_wait(struct task_struct *p) 3360 { 3361 return task_has_perm(p, current, PROCESS__SIGCHLD); 3362 } 3363 3364 static void selinux_task_reparent_to_init(struct task_struct *p) 3365 { 3366 struct task_security_struct *tsec; 3367 3368 secondary_ops->task_reparent_to_init(p); 3369 3370 tsec = p->security; 3371 tsec->osid = tsec->sid; 3372 tsec->sid = SECINITSID_KERNEL; 3373 return; 3374 } 3375 3376 static void selinux_task_to_inode(struct task_struct *p, 3377 struct inode *inode) 3378 { 3379 struct task_security_struct *tsec = p->security; 3380 struct inode_security_struct *isec = inode->i_security; 3381 3382 isec->sid = tsec->sid; 3383 isec->initialized = 1; 3384 return; 3385 } 3386 3387 /* Returns error only if unable to parse addresses */ 3388 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3389 struct avc_audit_data *ad, u8 *proto) 3390 { 3391 int offset, ihlen, ret = -EINVAL; 3392 struct iphdr _iph, *ih; 3393 3394 offset = skb_network_offset(skb); 3395 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3396 if (ih == NULL) 3397 goto out; 3398 3399 ihlen = ih->ihl * 4; 3400 if (ihlen < sizeof(_iph)) 3401 goto out; 3402 3403 ad->u.net.v4info.saddr = ih->saddr; 3404 ad->u.net.v4info.daddr = ih->daddr; 3405 ret = 0; 3406 3407 if (proto) 3408 *proto = ih->protocol; 3409 3410 switch (ih->protocol) { 3411 case IPPROTO_TCP: { 3412 struct tcphdr _tcph, *th; 3413 3414 if (ntohs(ih->frag_off) & IP_OFFSET) 3415 break; 3416 3417 offset += ihlen; 3418 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3419 if (th == NULL) 3420 break; 3421 3422 ad->u.net.sport = th->source; 3423 ad->u.net.dport = th->dest; 3424 break; 3425 } 3426 3427 case IPPROTO_UDP: { 3428 struct udphdr _udph, *uh; 3429 3430 if (ntohs(ih->frag_off) & IP_OFFSET) 3431 break; 3432 3433 offset += ihlen; 3434 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3435 if (uh == NULL) 3436 break; 3437 3438 ad->u.net.sport = uh->source; 3439 ad->u.net.dport = uh->dest; 3440 break; 3441 } 3442 3443 case IPPROTO_DCCP: { 3444 struct dccp_hdr _dccph, *dh; 3445 3446 if (ntohs(ih->frag_off) & IP_OFFSET) 3447 break; 3448 3449 offset += ihlen; 3450 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3451 if (dh == NULL) 3452 break; 3453 3454 ad->u.net.sport = dh->dccph_sport; 3455 ad->u.net.dport = dh->dccph_dport; 3456 break; 3457 } 3458 3459 default: 3460 break; 3461 } 3462 out: 3463 return ret; 3464 } 3465 3466 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3467 3468 /* Returns error only if unable to parse addresses */ 3469 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3470 struct avc_audit_data *ad, u8 *proto) 3471 { 3472 u8 nexthdr; 3473 int ret = -EINVAL, offset; 3474 struct ipv6hdr _ipv6h, *ip6; 3475 3476 offset = skb_network_offset(skb); 3477 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3478 if (ip6 == NULL) 3479 goto out; 3480 3481 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3482 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3483 ret = 0; 3484 3485 nexthdr = ip6->nexthdr; 3486 offset += sizeof(_ipv6h); 3487 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3488 if (offset < 0) 3489 goto out; 3490 3491 if (proto) 3492 *proto = nexthdr; 3493 3494 switch (nexthdr) { 3495 case IPPROTO_TCP: { 3496 struct tcphdr _tcph, *th; 3497 3498 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3499 if (th == NULL) 3500 break; 3501 3502 ad->u.net.sport = th->source; 3503 ad->u.net.dport = th->dest; 3504 break; 3505 } 3506 3507 case IPPROTO_UDP: { 3508 struct udphdr _udph, *uh; 3509 3510 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3511 if (uh == NULL) 3512 break; 3513 3514 ad->u.net.sport = uh->source; 3515 ad->u.net.dport = uh->dest; 3516 break; 3517 } 3518 3519 case IPPROTO_DCCP: { 3520 struct dccp_hdr _dccph, *dh; 3521 3522 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3523 if (dh == NULL) 3524 break; 3525 3526 ad->u.net.sport = dh->dccph_sport; 3527 ad->u.net.dport = dh->dccph_dport; 3528 break; 3529 } 3530 3531 /* includes fragments */ 3532 default: 3533 break; 3534 } 3535 out: 3536 return ret; 3537 } 3538 3539 #endif /* IPV6 */ 3540 3541 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3542 char **addrp, int src, u8 *proto) 3543 { 3544 int ret = 0; 3545 3546 switch (ad->u.net.family) { 3547 case PF_INET: 3548 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3549 if (ret || !addrp) 3550 break; 3551 *addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3552 &ad->u.net.v4info.daddr); 3553 break; 3554 3555 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3556 case PF_INET6: 3557 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3558 if (ret || !addrp) 3559 break; 3560 *addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3561 &ad->u.net.v6info.daddr); 3562 break; 3563 #endif /* IPV6 */ 3564 default: 3565 break; 3566 } 3567 3568 if (unlikely(ret)) 3569 printk(KERN_WARNING 3570 "SELinux: failure in selinux_parse_skb()," 3571 " unable to parse packet\n"); 3572 3573 return ret; 3574 } 3575 3576 /** 3577 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3578 * @skb: the packet 3579 * @family: protocol family 3580 * @sid: the packet's peer label SID 3581 * 3582 * Description: 3583 * Check the various different forms of network peer labeling and determine 3584 * the peer label/SID for the packet; most of the magic actually occurs in 3585 * the security server function security_net_peersid_cmp(). The function 3586 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3587 * or -EACCES if @sid is invalid due to inconsistencies with the different 3588 * peer labels. 3589 * 3590 */ 3591 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3592 { 3593 int err; 3594 u32 xfrm_sid; 3595 u32 nlbl_sid; 3596 u32 nlbl_type; 3597 3598 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3599 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3600 3601 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3602 if (unlikely(err)) { 3603 printk(KERN_WARNING 3604 "SELinux: failure in selinux_skb_peerlbl_sid()," 3605 " unable to determine packet's peer label\n"); 3606 return -EACCES; 3607 } 3608 3609 return 0; 3610 } 3611 3612 /* socket security operations */ 3613 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3614 u32 perms) 3615 { 3616 struct inode_security_struct *isec; 3617 struct task_security_struct *tsec; 3618 struct avc_audit_data ad; 3619 int err = 0; 3620 3621 tsec = task->security; 3622 isec = SOCK_INODE(sock)->i_security; 3623 3624 if (isec->sid == SECINITSID_KERNEL) 3625 goto out; 3626 3627 AVC_AUDIT_DATA_INIT(&ad, NET); 3628 ad.u.net.sk = sock->sk; 3629 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 3630 3631 out: 3632 return err; 3633 } 3634 3635 static int selinux_socket_create(int family, int type, 3636 int protocol, int kern) 3637 { 3638 int err = 0; 3639 struct task_security_struct *tsec; 3640 u32 newsid; 3641 3642 if (kern) 3643 goto out; 3644 3645 tsec = current->security; 3646 newsid = tsec->sockcreate_sid ? : tsec->sid; 3647 err = avc_has_perm(tsec->sid, newsid, 3648 socket_type_to_security_class(family, type, 3649 protocol), SOCKET__CREATE, NULL); 3650 3651 out: 3652 return err; 3653 } 3654 3655 static int selinux_socket_post_create(struct socket *sock, int family, 3656 int type, int protocol, int kern) 3657 { 3658 int err = 0; 3659 struct inode_security_struct *isec; 3660 struct task_security_struct *tsec; 3661 struct sk_security_struct *sksec; 3662 u32 newsid; 3663 3664 isec = SOCK_INODE(sock)->i_security; 3665 3666 tsec = current->security; 3667 newsid = tsec->sockcreate_sid ? : tsec->sid; 3668 isec->sclass = socket_type_to_security_class(family, type, protocol); 3669 isec->sid = kern ? SECINITSID_KERNEL : newsid; 3670 isec->initialized = 1; 3671 3672 if (sock->sk) { 3673 sksec = sock->sk->sk_security; 3674 sksec->sid = isec->sid; 3675 sksec->sclass = isec->sclass; 3676 err = selinux_netlbl_socket_post_create(sock); 3677 } 3678 3679 return err; 3680 } 3681 3682 /* Range of port numbers used to automatically bind. 3683 Need to determine whether we should perform a name_bind 3684 permission check between the socket and the port number. */ 3685 3686 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3687 { 3688 u16 family; 3689 int err; 3690 3691 err = socket_has_perm(current, sock, SOCKET__BIND); 3692 if (err) 3693 goto out; 3694 3695 /* 3696 * If PF_INET or PF_INET6, check name_bind permission for the port. 3697 * Multiple address binding for SCTP is not supported yet: we just 3698 * check the first address now. 3699 */ 3700 family = sock->sk->sk_family; 3701 if (family == PF_INET || family == PF_INET6) { 3702 char *addrp; 3703 struct inode_security_struct *isec; 3704 struct task_security_struct *tsec; 3705 struct avc_audit_data ad; 3706 struct sockaddr_in *addr4 = NULL; 3707 struct sockaddr_in6 *addr6 = NULL; 3708 unsigned short snum; 3709 struct sock *sk = sock->sk; 3710 u32 sid, node_perm; 3711 3712 tsec = current->security; 3713 isec = SOCK_INODE(sock)->i_security; 3714 3715 if (family == PF_INET) { 3716 addr4 = (struct sockaddr_in *)address; 3717 snum = ntohs(addr4->sin_port); 3718 addrp = (char *)&addr4->sin_addr.s_addr; 3719 } else { 3720 addr6 = (struct sockaddr_in6 *)address; 3721 snum = ntohs(addr6->sin6_port); 3722 addrp = (char *)&addr6->sin6_addr.s6_addr; 3723 } 3724 3725 if (snum) { 3726 int low, high; 3727 3728 inet_get_local_port_range(&low, &high); 3729 3730 if (snum < max(PROT_SOCK, low) || snum > high) { 3731 err = sel_netport_sid(sk->sk_protocol, 3732 snum, &sid); 3733 if (err) 3734 goto out; 3735 AVC_AUDIT_DATA_INIT(&ad, NET); 3736 ad.u.net.sport = htons(snum); 3737 ad.u.net.family = family; 3738 err = avc_has_perm(isec->sid, sid, 3739 isec->sclass, 3740 SOCKET__NAME_BIND, &ad); 3741 if (err) 3742 goto out; 3743 } 3744 } 3745 3746 switch (isec->sclass) { 3747 case SECCLASS_TCP_SOCKET: 3748 node_perm = TCP_SOCKET__NODE_BIND; 3749 break; 3750 3751 case SECCLASS_UDP_SOCKET: 3752 node_perm = UDP_SOCKET__NODE_BIND; 3753 break; 3754 3755 case SECCLASS_DCCP_SOCKET: 3756 node_perm = DCCP_SOCKET__NODE_BIND; 3757 break; 3758 3759 default: 3760 node_perm = RAWIP_SOCKET__NODE_BIND; 3761 break; 3762 } 3763 3764 err = sel_netnode_sid(addrp, family, &sid); 3765 if (err) 3766 goto out; 3767 3768 AVC_AUDIT_DATA_INIT(&ad, NET); 3769 ad.u.net.sport = htons(snum); 3770 ad.u.net.family = family; 3771 3772 if (family == PF_INET) 3773 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3774 else 3775 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3776 3777 err = avc_has_perm(isec->sid, sid, 3778 isec->sclass, node_perm, &ad); 3779 if (err) 3780 goto out; 3781 } 3782 out: 3783 return err; 3784 } 3785 3786 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3787 { 3788 struct inode_security_struct *isec; 3789 int err; 3790 3791 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3792 if (err) 3793 return err; 3794 3795 /* 3796 * If a TCP or DCCP socket, check name_connect permission for the port. 3797 */ 3798 isec = SOCK_INODE(sock)->i_security; 3799 if (isec->sclass == SECCLASS_TCP_SOCKET || 3800 isec->sclass == SECCLASS_DCCP_SOCKET) { 3801 struct sock *sk = sock->sk; 3802 struct avc_audit_data ad; 3803 struct sockaddr_in *addr4 = NULL; 3804 struct sockaddr_in6 *addr6 = NULL; 3805 unsigned short snum; 3806 u32 sid, perm; 3807 3808 if (sk->sk_family == PF_INET) { 3809 addr4 = (struct sockaddr_in *)address; 3810 if (addrlen < sizeof(struct sockaddr_in)) 3811 return -EINVAL; 3812 snum = ntohs(addr4->sin_port); 3813 } else { 3814 addr6 = (struct sockaddr_in6 *)address; 3815 if (addrlen < SIN6_LEN_RFC2133) 3816 return -EINVAL; 3817 snum = ntohs(addr6->sin6_port); 3818 } 3819 3820 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3821 if (err) 3822 goto out; 3823 3824 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3825 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3826 3827 AVC_AUDIT_DATA_INIT(&ad, NET); 3828 ad.u.net.dport = htons(snum); 3829 ad.u.net.family = sk->sk_family; 3830 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3831 if (err) 3832 goto out; 3833 } 3834 3835 out: 3836 return err; 3837 } 3838 3839 static int selinux_socket_listen(struct socket *sock, int backlog) 3840 { 3841 return socket_has_perm(current, sock, SOCKET__LISTEN); 3842 } 3843 3844 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3845 { 3846 int err; 3847 struct inode_security_struct *isec; 3848 struct inode_security_struct *newisec; 3849 3850 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3851 if (err) 3852 return err; 3853 3854 newisec = SOCK_INODE(newsock)->i_security; 3855 3856 isec = SOCK_INODE(sock)->i_security; 3857 newisec->sclass = isec->sclass; 3858 newisec->sid = isec->sid; 3859 newisec->initialized = 1; 3860 3861 return 0; 3862 } 3863 3864 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3865 int size) 3866 { 3867 int rc; 3868 3869 rc = socket_has_perm(current, sock, SOCKET__WRITE); 3870 if (rc) 3871 return rc; 3872 3873 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE); 3874 } 3875 3876 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3877 int size, int flags) 3878 { 3879 return socket_has_perm(current, sock, SOCKET__READ); 3880 } 3881 3882 static int selinux_socket_getsockname(struct socket *sock) 3883 { 3884 return socket_has_perm(current, sock, SOCKET__GETATTR); 3885 } 3886 3887 static int selinux_socket_getpeername(struct socket *sock) 3888 { 3889 return socket_has_perm(current, sock, SOCKET__GETATTR); 3890 } 3891 3892 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3893 { 3894 int err; 3895 3896 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3897 if (err) 3898 return err; 3899 3900 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3901 } 3902 3903 static int selinux_socket_getsockopt(struct socket *sock, int level, 3904 int optname) 3905 { 3906 return socket_has_perm(current, sock, SOCKET__GETOPT); 3907 } 3908 3909 static int selinux_socket_shutdown(struct socket *sock, int how) 3910 { 3911 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3912 } 3913 3914 static int selinux_socket_unix_stream_connect(struct socket *sock, 3915 struct socket *other, 3916 struct sock *newsk) 3917 { 3918 struct sk_security_struct *ssec; 3919 struct inode_security_struct *isec; 3920 struct inode_security_struct *other_isec; 3921 struct avc_audit_data ad; 3922 int err; 3923 3924 err = secondary_ops->unix_stream_connect(sock, other, newsk); 3925 if (err) 3926 return err; 3927 3928 isec = SOCK_INODE(sock)->i_security; 3929 other_isec = SOCK_INODE(other)->i_security; 3930 3931 AVC_AUDIT_DATA_INIT(&ad, NET); 3932 ad.u.net.sk = other->sk; 3933 3934 err = avc_has_perm(isec->sid, other_isec->sid, 3935 isec->sclass, 3936 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3937 if (err) 3938 return err; 3939 3940 /* connecting socket */ 3941 ssec = sock->sk->sk_security; 3942 ssec->peer_sid = other_isec->sid; 3943 3944 /* server child socket */ 3945 ssec = newsk->sk_security; 3946 ssec->peer_sid = isec->sid; 3947 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3948 3949 return err; 3950 } 3951 3952 static int selinux_socket_unix_may_send(struct socket *sock, 3953 struct socket *other) 3954 { 3955 struct inode_security_struct *isec; 3956 struct inode_security_struct *other_isec; 3957 struct avc_audit_data ad; 3958 int err; 3959 3960 isec = SOCK_INODE(sock)->i_security; 3961 other_isec = SOCK_INODE(other)->i_security; 3962 3963 AVC_AUDIT_DATA_INIT(&ad, NET); 3964 ad.u.net.sk = other->sk; 3965 3966 err = avc_has_perm(isec->sid, other_isec->sid, 3967 isec->sclass, SOCKET__SENDTO, &ad); 3968 if (err) 3969 return err; 3970 3971 return 0; 3972 } 3973 3974 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 3975 u32 peer_sid, 3976 struct avc_audit_data *ad) 3977 { 3978 int err; 3979 u32 if_sid; 3980 u32 node_sid; 3981 3982 err = sel_netif_sid(ifindex, &if_sid); 3983 if (err) 3984 return err; 3985 err = avc_has_perm(peer_sid, if_sid, 3986 SECCLASS_NETIF, NETIF__INGRESS, ad); 3987 if (err) 3988 return err; 3989 3990 err = sel_netnode_sid(addrp, family, &node_sid); 3991 if (err) 3992 return err; 3993 return avc_has_perm(peer_sid, node_sid, 3994 SECCLASS_NODE, NODE__RECVFROM, ad); 3995 } 3996 3997 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk, 3998 struct sk_buff *skb, 3999 struct avc_audit_data *ad, 4000 u16 family, 4001 char *addrp) 4002 { 4003 int err; 4004 struct sk_security_struct *sksec = sk->sk_security; 4005 u16 sk_class; 4006 u32 netif_perm, node_perm, recv_perm; 4007 u32 port_sid, node_sid, if_sid, sk_sid; 4008 4009 sk_sid = sksec->sid; 4010 sk_class = sksec->sclass; 4011 4012 switch (sk_class) { 4013 case SECCLASS_UDP_SOCKET: 4014 netif_perm = NETIF__UDP_RECV; 4015 node_perm = NODE__UDP_RECV; 4016 recv_perm = UDP_SOCKET__RECV_MSG; 4017 break; 4018 case SECCLASS_TCP_SOCKET: 4019 netif_perm = NETIF__TCP_RECV; 4020 node_perm = NODE__TCP_RECV; 4021 recv_perm = TCP_SOCKET__RECV_MSG; 4022 break; 4023 case SECCLASS_DCCP_SOCKET: 4024 netif_perm = NETIF__DCCP_RECV; 4025 node_perm = NODE__DCCP_RECV; 4026 recv_perm = DCCP_SOCKET__RECV_MSG; 4027 break; 4028 default: 4029 netif_perm = NETIF__RAWIP_RECV; 4030 node_perm = NODE__RAWIP_RECV; 4031 recv_perm = 0; 4032 break; 4033 } 4034 4035 err = sel_netif_sid(skb->iif, &if_sid); 4036 if (err) 4037 return err; 4038 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 4039 if (err) 4040 return err; 4041 4042 err = sel_netnode_sid(addrp, family, &node_sid); 4043 if (err) 4044 return err; 4045 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad); 4046 if (err) 4047 return err; 4048 4049 if (!recv_perm) 4050 return 0; 4051 err = sel_netport_sid(sk->sk_protocol, 4052 ntohs(ad->u.net.sport), &port_sid); 4053 if (unlikely(err)) { 4054 printk(KERN_WARNING 4055 "SELinux: failure in" 4056 " selinux_sock_rcv_skb_iptables_compat()," 4057 " network port label not found\n"); 4058 return err; 4059 } 4060 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad); 4061 } 4062 4063 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4064 struct avc_audit_data *ad, 4065 u16 family, char *addrp) 4066 { 4067 int err; 4068 struct sk_security_struct *sksec = sk->sk_security; 4069 u32 peer_sid; 4070 u32 sk_sid = sksec->sid; 4071 4072 if (selinux_compat_net) 4073 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad, 4074 family, addrp); 4075 else 4076 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4077 PACKET__RECV, ad); 4078 if (err) 4079 return err; 4080 4081 if (selinux_policycap_netpeer) { 4082 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4083 if (err) 4084 return err; 4085 err = avc_has_perm(sk_sid, peer_sid, 4086 SECCLASS_PEER, PEER__RECV, ad); 4087 } else { 4088 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad); 4089 if (err) 4090 return err; 4091 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad); 4092 } 4093 4094 return err; 4095 } 4096 4097 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4098 { 4099 int err; 4100 struct sk_security_struct *sksec = sk->sk_security; 4101 u16 family = sk->sk_family; 4102 u32 sk_sid = sksec->sid; 4103 struct avc_audit_data ad; 4104 char *addrp; 4105 4106 if (family != PF_INET && family != PF_INET6) 4107 return 0; 4108 4109 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4110 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4111 family = PF_INET; 4112 4113 AVC_AUDIT_DATA_INIT(&ad, NET); 4114 ad.u.net.netif = skb->iif; 4115 ad.u.net.family = family; 4116 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4117 if (err) 4118 return err; 4119 4120 /* If any sort of compatibility mode is enabled then handoff processing 4121 * to the selinux_sock_rcv_skb_compat() function to deal with the 4122 * special handling. We do this in an attempt to keep this function 4123 * as fast and as clean as possible. */ 4124 if (selinux_compat_net || !selinux_policycap_netpeer) 4125 return selinux_sock_rcv_skb_compat(sk, skb, &ad, 4126 family, addrp); 4127 4128 if (netlbl_enabled() || selinux_xfrm_enabled()) { 4129 u32 peer_sid; 4130 4131 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4132 if (err) 4133 return err; 4134 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family, 4135 peer_sid, &ad); 4136 if (err) 4137 return err; 4138 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4139 PEER__RECV, &ad); 4140 } 4141 4142 if (selinux_secmark_enabled()) { 4143 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4144 PACKET__RECV, &ad); 4145 if (err) 4146 return err; 4147 } 4148 4149 return err; 4150 } 4151 4152 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4153 int __user *optlen, unsigned len) 4154 { 4155 int err = 0; 4156 char *scontext; 4157 u32 scontext_len; 4158 struct sk_security_struct *ssec; 4159 struct inode_security_struct *isec; 4160 u32 peer_sid = SECSID_NULL; 4161 4162 isec = SOCK_INODE(sock)->i_security; 4163 4164 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4165 isec->sclass == SECCLASS_TCP_SOCKET) { 4166 ssec = sock->sk->sk_security; 4167 peer_sid = ssec->peer_sid; 4168 } 4169 if (peer_sid == SECSID_NULL) { 4170 err = -ENOPROTOOPT; 4171 goto out; 4172 } 4173 4174 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4175 4176 if (err) 4177 goto out; 4178 4179 if (scontext_len > len) { 4180 err = -ERANGE; 4181 goto out_len; 4182 } 4183 4184 if (copy_to_user(optval, scontext, scontext_len)) 4185 err = -EFAULT; 4186 4187 out_len: 4188 if (put_user(scontext_len, optlen)) 4189 err = -EFAULT; 4190 4191 kfree(scontext); 4192 out: 4193 return err; 4194 } 4195 4196 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4197 { 4198 u32 peer_secid = SECSID_NULL; 4199 u16 family; 4200 4201 if (sock) 4202 family = sock->sk->sk_family; 4203 else if (skb && skb->sk) 4204 family = skb->sk->sk_family; 4205 else 4206 goto out; 4207 4208 if (sock && family == PF_UNIX) 4209 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4210 else if (skb) 4211 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4212 4213 out: 4214 *secid = peer_secid; 4215 if (peer_secid == SECSID_NULL) 4216 return -EINVAL; 4217 return 0; 4218 } 4219 4220 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4221 { 4222 return sk_alloc_security(sk, family, priority); 4223 } 4224 4225 static void selinux_sk_free_security(struct sock *sk) 4226 { 4227 sk_free_security(sk); 4228 } 4229 4230 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4231 { 4232 struct sk_security_struct *ssec = sk->sk_security; 4233 struct sk_security_struct *newssec = newsk->sk_security; 4234 4235 newssec->sid = ssec->sid; 4236 newssec->peer_sid = ssec->peer_sid; 4237 newssec->sclass = ssec->sclass; 4238 4239 selinux_netlbl_sk_security_reset(newssec, newsk->sk_family); 4240 } 4241 4242 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4243 { 4244 if (!sk) 4245 *secid = SECINITSID_ANY_SOCKET; 4246 else { 4247 struct sk_security_struct *sksec = sk->sk_security; 4248 4249 *secid = sksec->sid; 4250 } 4251 } 4252 4253 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4254 { 4255 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4256 struct sk_security_struct *sksec = sk->sk_security; 4257 4258 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4259 sk->sk_family == PF_UNIX) 4260 isec->sid = sksec->sid; 4261 sksec->sclass = isec->sclass; 4262 4263 selinux_netlbl_sock_graft(sk, parent); 4264 } 4265 4266 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4267 struct request_sock *req) 4268 { 4269 struct sk_security_struct *sksec = sk->sk_security; 4270 int err; 4271 u32 newsid; 4272 u32 peersid; 4273 4274 err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid); 4275 if (err) 4276 return err; 4277 if (peersid == SECSID_NULL) { 4278 req->secid = sksec->sid; 4279 req->peer_secid = SECSID_NULL; 4280 return 0; 4281 } 4282 4283 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4284 if (err) 4285 return err; 4286 4287 req->secid = newsid; 4288 req->peer_secid = peersid; 4289 return 0; 4290 } 4291 4292 static void selinux_inet_csk_clone(struct sock *newsk, 4293 const struct request_sock *req) 4294 { 4295 struct sk_security_struct *newsksec = newsk->sk_security; 4296 4297 newsksec->sid = req->secid; 4298 newsksec->peer_sid = req->peer_secid; 4299 /* NOTE: Ideally, we should also get the isec->sid for the 4300 new socket in sync, but we don't have the isec available yet. 4301 So we will wait until sock_graft to do it, by which 4302 time it will have been created and available. */ 4303 4304 /* We don't need to take any sort of lock here as we are the only 4305 * thread with access to newsksec */ 4306 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family); 4307 } 4308 4309 static void selinux_inet_conn_established(struct sock *sk, 4310 struct sk_buff *skb) 4311 { 4312 struct sk_security_struct *sksec = sk->sk_security; 4313 4314 selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid); 4315 } 4316 4317 static void selinux_req_classify_flow(const struct request_sock *req, 4318 struct flowi *fl) 4319 { 4320 fl->secid = req->secid; 4321 } 4322 4323 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4324 { 4325 int err = 0; 4326 u32 perm; 4327 struct nlmsghdr *nlh; 4328 struct socket *sock = sk->sk_socket; 4329 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4330 4331 if (skb->len < NLMSG_SPACE(0)) { 4332 err = -EINVAL; 4333 goto out; 4334 } 4335 nlh = nlmsg_hdr(skb); 4336 4337 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4338 if (err) { 4339 if (err == -EINVAL) { 4340 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4341 "SELinux: unrecognized netlink message" 4342 " type=%hu for sclass=%hu\n", 4343 nlh->nlmsg_type, isec->sclass); 4344 if (!selinux_enforcing) 4345 err = 0; 4346 } 4347 4348 /* Ignore */ 4349 if (err == -ENOENT) 4350 err = 0; 4351 goto out; 4352 } 4353 4354 err = socket_has_perm(current, sock, perm); 4355 out: 4356 return err; 4357 } 4358 4359 #ifdef CONFIG_NETFILTER 4360 4361 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4362 u16 family) 4363 { 4364 char *addrp; 4365 u32 peer_sid; 4366 struct avc_audit_data ad; 4367 u8 secmark_active; 4368 u8 peerlbl_active; 4369 4370 if (!selinux_policycap_netpeer) 4371 return NF_ACCEPT; 4372 4373 secmark_active = selinux_secmark_enabled(); 4374 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4375 if (!secmark_active && !peerlbl_active) 4376 return NF_ACCEPT; 4377 4378 AVC_AUDIT_DATA_INIT(&ad, NET); 4379 ad.u.net.netif = ifindex; 4380 ad.u.net.family = family; 4381 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4382 return NF_DROP; 4383 4384 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4385 return NF_DROP; 4386 4387 if (peerlbl_active) 4388 if (selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4389 peer_sid, &ad) != 0) 4390 return NF_DROP; 4391 4392 if (secmark_active) 4393 if (avc_has_perm(peer_sid, skb->secmark, 4394 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4395 return NF_DROP; 4396 4397 return NF_ACCEPT; 4398 } 4399 4400 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4401 struct sk_buff *skb, 4402 const struct net_device *in, 4403 const struct net_device *out, 4404 int (*okfn)(struct sk_buff *)) 4405 { 4406 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4407 } 4408 4409 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4410 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4411 struct sk_buff *skb, 4412 const struct net_device *in, 4413 const struct net_device *out, 4414 int (*okfn)(struct sk_buff *)) 4415 { 4416 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4417 } 4418 #endif /* IPV6 */ 4419 4420 static int selinux_ip_postroute_iptables_compat(struct sock *sk, 4421 int ifindex, 4422 struct avc_audit_data *ad, 4423 u16 family, char *addrp) 4424 { 4425 int err; 4426 struct sk_security_struct *sksec = sk->sk_security; 4427 u16 sk_class; 4428 u32 netif_perm, node_perm, send_perm; 4429 u32 port_sid, node_sid, if_sid, sk_sid; 4430 4431 sk_sid = sksec->sid; 4432 sk_class = sksec->sclass; 4433 4434 switch (sk_class) { 4435 case SECCLASS_UDP_SOCKET: 4436 netif_perm = NETIF__UDP_SEND; 4437 node_perm = NODE__UDP_SEND; 4438 send_perm = UDP_SOCKET__SEND_MSG; 4439 break; 4440 case SECCLASS_TCP_SOCKET: 4441 netif_perm = NETIF__TCP_SEND; 4442 node_perm = NODE__TCP_SEND; 4443 send_perm = TCP_SOCKET__SEND_MSG; 4444 break; 4445 case SECCLASS_DCCP_SOCKET: 4446 netif_perm = NETIF__DCCP_SEND; 4447 node_perm = NODE__DCCP_SEND; 4448 send_perm = DCCP_SOCKET__SEND_MSG; 4449 break; 4450 default: 4451 netif_perm = NETIF__RAWIP_SEND; 4452 node_perm = NODE__RAWIP_SEND; 4453 send_perm = 0; 4454 break; 4455 } 4456 4457 err = sel_netif_sid(ifindex, &if_sid); 4458 if (err) 4459 return err; 4460 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 4461 return err; 4462 4463 err = sel_netnode_sid(addrp, family, &node_sid); 4464 if (err) 4465 return err; 4466 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad); 4467 if (err) 4468 return err; 4469 4470 if (send_perm != 0) 4471 return 0; 4472 4473 err = sel_netport_sid(sk->sk_protocol, 4474 ntohs(ad->u.net.dport), &port_sid); 4475 if (unlikely(err)) { 4476 printk(KERN_WARNING 4477 "SELinux: failure in" 4478 " selinux_ip_postroute_iptables_compat()," 4479 " network port label not found\n"); 4480 return err; 4481 } 4482 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad); 4483 } 4484 4485 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4486 int ifindex, 4487 struct avc_audit_data *ad, 4488 u16 family, 4489 char *addrp, 4490 u8 proto) 4491 { 4492 struct sock *sk = skb->sk; 4493 struct sk_security_struct *sksec; 4494 4495 if (sk == NULL) 4496 return NF_ACCEPT; 4497 sksec = sk->sk_security; 4498 4499 if (selinux_compat_net) { 4500 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex, 4501 ad, family, addrp)) 4502 return NF_DROP; 4503 } else { 4504 if (avc_has_perm(sksec->sid, skb->secmark, 4505 SECCLASS_PACKET, PACKET__SEND, ad)) 4506 return NF_DROP; 4507 } 4508 4509 if (selinux_policycap_netpeer) 4510 if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto)) 4511 return NF_DROP; 4512 4513 return NF_ACCEPT; 4514 } 4515 4516 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4517 u16 family) 4518 { 4519 u32 secmark_perm; 4520 u32 peer_sid; 4521 struct sock *sk; 4522 struct avc_audit_data ad; 4523 char *addrp; 4524 u8 proto; 4525 u8 secmark_active; 4526 u8 peerlbl_active; 4527 4528 AVC_AUDIT_DATA_INIT(&ad, NET); 4529 ad.u.net.netif = ifindex; 4530 ad.u.net.family = family; 4531 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4532 return NF_DROP; 4533 4534 /* If any sort of compatibility mode is enabled then handoff processing 4535 * to the selinux_ip_postroute_compat() function to deal with the 4536 * special handling. We do this in an attempt to keep this function 4537 * as fast and as clean as possible. */ 4538 if (selinux_compat_net || !selinux_policycap_netpeer) 4539 return selinux_ip_postroute_compat(skb, ifindex, &ad, 4540 family, addrp, proto); 4541 4542 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4543 * packet transformation so allow the packet to pass without any checks 4544 * since we'll have another chance to perform access control checks 4545 * when the packet is on it's final way out. 4546 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4547 * is NULL, in this case go ahead and apply access control. */ 4548 if (skb->dst != NULL && skb->dst->xfrm != NULL) 4549 return NF_ACCEPT; 4550 4551 secmark_active = selinux_secmark_enabled(); 4552 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4553 if (!secmark_active && !peerlbl_active) 4554 return NF_ACCEPT; 4555 4556 /* if the packet is locally generated (skb->sk != NULL) then use the 4557 * socket's label as the peer label, otherwise the packet is being 4558 * forwarded through this system and we need to fetch the peer label 4559 * directly from the packet */ 4560 sk = skb->sk; 4561 if (sk) { 4562 struct sk_security_struct *sksec = sk->sk_security; 4563 peer_sid = sksec->sid; 4564 secmark_perm = PACKET__SEND; 4565 } else { 4566 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4567 return NF_DROP; 4568 secmark_perm = PACKET__FORWARD_OUT; 4569 } 4570 4571 if (secmark_active) 4572 if (avc_has_perm(peer_sid, skb->secmark, 4573 SECCLASS_PACKET, secmark_perm, &ad)) 4574 return NF_DROP; 4575 4576 if (peerlbl_active) { 4577 u32 if_sid; 4578 u32 node_sid; 4579 4580 if (sel_netif_sid(ifindex, &if_sid)) 4581 return NF_DROP; 4582 if (avc_has_perm(peer_sid, if_sid, 4583 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4584 return NF_DROP; 4585 4586 if (sel_netnode_sid(addrp, family, &node_sid)) 4587 return NF_DROP; 4588 if (avc_has_perm(peer_sid, node_sid, 4589 SECCLASS_NODE, NODE__SENDTO, &ad)) 4590 return NF_DROP; 4591 } 4592 4593 return NF_ACCEPT; 4594 } 4595 4596 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4597 struct sk_buff *skb, 4598 const struct net_device *in, 4599 const struct net_device *out, 4600 int (*okfn)(struct sk_buff *)) 4601 { 4602 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4603 } 4604 4605 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4606 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4607 struct sk_buff *skb, 4608 const struct net_device *in, 4609 const struct net_device *out, 4610 int (*okfn)(struct sk_buff *)) 4611 { 4612 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4613 } 4614 #endif /* IPV6 */ 4615 4616 #endif /* CONFIG_NETFILTER */ 4617 4618 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4619 { 4620 int err; 4621 4622 err = secondary_ops->netlink_send(sk, skb); 4623 if (err) 4624 return err; 4625 4626 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4627 err = selinux_nlmsg_perm(sk, skb); 4628 4629 return err; 4630 } 4631 4632 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4633 { 4634 int err; 4635 struct avc_audit_data ad; 4636 4637 err = secondary_ops->netlink_recv(skb, capability); 4638 if (err) 4639 return err; 4640 4641 AVC_AUDIT_DATA_INIT(&ad, CAP); 4642 ad.u.cap = capability; 4643 4644 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4645 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4646 } 4647 4648 static int ipc_alloc_security(struct task_struct *task, 4649 struct kern_ipc_perm *perm, 4650 u16 sclass) 4651 { 4652 struct task_security_struct *tsec = task->security; 4653 struct ipc_security_struct *isec; 4654 4655 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4656 if (!isec) 4657 return -ENOMEM; 4658 4659 isec->sclass = sclass; 4660 isec->sid = tsec->sid; 4661 perm->security = isec; 4662 4663 return 0; 4664 } 4665 4666 static void ipc_free_security(struct kern_ipc_perm *perm) 4667 { 4668 struct ipc_security_struct *isec = perm->security; 4669 perm->security = NULL; 4670 kfree(isec); 4671 } 4672 4673 static int msg_msg_alloc_security(struct msg_msg *msg) 4674 { 4675 struct msg_security_struct *msec; 4676 4677 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4678 if (!msec) 4679 return -ENOMEM; 4680 4681 msec->sid = SECINITSID_UNLABELED; 4682 msg->security = msec; 4683 4684 return 0; 4685 } 4686 4687 static void msg_msg_free_security(struct msg_msg *msg) 4688 { 4689 struct msg_security_struct *msec = msg->security; 4690 4691 msg->security = NULL; 4692 kfree(msec); 4693 } 4694 4695 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4696 u32 perms) 4697 { 4698 struct task_security_struct *tsec; 4699 struct ipc_security_struct *isec; 4700 struct avc_audit_data ad; 4701 4702 tsec = current->security; 4703 isec = ipc_perms->security; 4704 4705 AVC_AUDIT_DATA_INIT(&ad, IPC); 4706 ad.u.ipc_id = ipc_perms->key; 4707 4708 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 4709 } 4710 4711 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4712 { 4713 return msg_msg_alloc_security(msg); 4714 } 4715 4716 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4717 { 4718 msg_msg_free_security(msg); 4719 } 4720 4721 /* message queue security operations */ 4722 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4723 { 4724 struct task_security_struct *tsec; 4725 struct ipc_security_struct *isec; 4726 struct avc_audit_data ad; 4727 int rc; 4728 4729 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4730 if (rc) 4731 return rc; 4732 4733 tsec = current->security; 4734 isec = msq->q_perm.security; 4735 4736 AVC_AUDIT_DATA_INIT(&ad, IPC); 4737 ad.u.ipc_id = msq->q_perm.key; 4738 4739 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4740 MSGQ__CREATE, &ad); 4741 if (rc) { 4742 ipc_free_security(&msq->q_perm); 4743 return rc; 4744 } 4745 return 0; 4746 } 4747 4748 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4749 { 4750 ipc_free_security(&msq->q_perm); 4751 } 4752 4753 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4754 { 4755 struct task_security_struct *tsec; 4756 struct ipc_security_struct *isec; 4757 struct avc_audit_data ad; 4758 4759 tsec = current->security; 4760 isec = msq->q_perm.security; 4761 4762 AVC_AUDIT_DATA_INIT(&ad, IPC); 4763 ad.u.ipc_id = msq->q_perm.key; 4764 4765 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4766 MSGQ__ASSOCIATE, &ad); 4767 } 4768 4769 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4770 { 4771 int err; 4772 int perms; 4773 4774 switch (cmd) { 4775 case IPC_INFO: 4776 case MSG_INFO: 4777 /* No specific object, just general system-wide information. */ 4778 return task_has_system(current, SYSTEM__IPC_INFO); 4779 case IPC_STAT: 4780 case MSG_STAT: 4781 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4782 break; 4783 case IPC_SET: 4784 perms = MSGQ__SETATTR; 4785 break; 4786 case IPC_RMID: 4787 perms = MSGQ__DESTROY; 4788 break; 4789 default: 4790 return 0; 4791 } 4792 4793 err = ipc_has_perm(&msq->q_perm, perms); 4794 return err; 4795 } 4796 4797 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4798 { 4799 struct task_security_struct *tsec; 4800 struct ipc_security_struct *isec; 4801 struct msg_security_struct *msec; 4802 struct avc_audit_data ad; 4803 int rc; 4804 4805 tsec = current->security; 4806 isec = msq->q_perm.security; 4807 msec = msg->security; 4808 4809 /* 4810 * First time through, need to assign label to the message 4811 */ 4812 if (msec->sid == SECINITSID_UNLABELED) { 4813 /* 4814 * Compute new sid based on current process and 4815 * message queue this message will be stored in 4816 */ 4817 rc = security_transition_sid(tsec->sid, 4818 isec->sid, 4819 SECCLASS_MSG, 4820 &msec->sid); 4821 if (rc) 4822 return rc; 4823 } 4824 4825 AVC_AUDIT_DATA_INIT(&ad, IPC); 4826 ad.u.ipc_id = msq->q_perm.key; 4827 4828 /* Can this process write to the queue? */ 4829 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4830 MSGQ__WRITE, &ad); 4831 if (!rc) 4832 /* Can this process send the message */ 4833 rc = avc_has_perm(tsec->sid, msec->sid, 4834 SECCLASS_MSG, MSG__SEND, &ad); 4835 if (!rc) 4836 /* Can the message be put in the queue? */ 4837 rc = avc_has_perm(msec->sid, isec->sid, 4838 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); 4839 4840 return rc; 4841 } 4842 4843 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4844 struct task_struct *target, 4845 long type, int mode) 4846 { 4847 struct task_security_struct *tsec; 4848 struct ipc_security_struct *isec; 4849 struct msg_security_struct *msec; 4850 struct avc_audit_data ad; 4851 int rc; 4852 4853 tsec = target->security; 4854 isec = msq->q_perm.security; 4855 msec = msg->security; 4856 4857 AVC_AUDIT_DATA_INIT(&ad, IPC); 4858 ad.u.ipc_id = msq->q_perm.key; 4859 4860 rc = avc_has_perm(tsec->sid, isec->sid, 4861 SECCLASS_MSGQ, MSGQ__READ, &ad); 4862 if (!rc) 4863 rc = avc_has_perm(tsec->sid, msec->sid, 4864 SECCLASS_MSG, MSG__RECEIVE, &ad); 4865 return rc; 4866 } 4867 4868 /* Shared Memory security operations */ 4869 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4870 { 4871 struct task_security_struct *tsec; 4872 struct ipc_security_struct *isec; 4873 struct avc_audit_data ad; 4874 int rc; 4875 4876 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4877 if (rc) 4878 return rc; 4879 4880 tsec = current->security; 4881 isec = shp->shm_perm.security; 4882 4883 AVC_AUDIT_DATA_INIT(&ad, IPC); 4884 ad.u.ipc_id = shp->shm_perm.key; 4885 4886 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4887 SHM__CREATE, &ad); 4888 if (rc) { 4889 ipc_free_security(&shp->shm_perm); 4890 return rc; 4891 } 4892 return 0; 4893 } 4894 4895 static void selinux_shm_free_security(struct shmid_kernel *shp) 4896 { 4897 ipc_free_security(&shp->shm_perm); 4898 } 4899 4900 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4901 { 4902 struct task_security_struct *tsec; 4903 struct ipc_security_struct *isec; 4904 struct avc_audit_data ad; 4905 4906 tsec = current->security; 4907 isec = shp->shm_perm.security; 4908 4909 AVC_AUDIT_DATA_INIT(&ad, IPC); 4910 ad.u.ipc_id = shp->shm_perm.key; 4911 4912 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4913 SHM__ASSOCIATE, &ad); 4914 } 4915 4916 /* Note, at this point, shp is locked down */ 4917 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4918 { 4919 int perms; 4920 int err; 4921 4922 switch (cmd) { 4923 case IPC_INFO: 4924 case SHM_INFO: 4925 /* No specific object, just general system-wide information. */ 4926 return task_has_system(current, SYSTEM__IPC_INFO); 4927 case IPC_STAT: 4928 case SHM_STAT: 4929 perms = SHM__GETATTR | SHM__ASSOCIATE; 4930 break; 4931 case IPC_SET: 4932 perms = SHM__SETATTR; 4933 break; 4934 case SHM_LOCK: 4935 case SHM_UNLOCK: 4936 perms = SHM__LOCK; 4937 break; 4938 case IPC_RMID: 4939 perms = SHM__DESTROY; 4940 break; 4941 default: 4942 return 0; 4943 } 4944 4945 err = ipc_has_perm(&shp->shm_perm, perms); 4946 return err; 4947 } 4948 4949 static int selinux_shm_shmat(struct shmid_kernel *shp, 4950 char __user *shmaddr, int shmflg) 4951 { 4952 u32 perms; 4953 int rc; 4954 4955 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg); 4956 if (rc) 4957 return rc; 4958 4959 if (shmflg & SHM_RDONLY) 4960 perms = SHM__READ; 4961 else 4962 perms = SHM__READ | SHM__WRITE; 4963 4964 return ipc_has_perm(&shp->shm_perm, perms); 4965 } 4966 4967 /* Semaphore security operations */ 4968 static int selinux_sem_alloc_security(struct sem_array *sma) 4969 { 4970 struct task_security_struct *tsec; 4971 struct ipc_security_struct *isec; 4972 struct avc_audit_data ad; 4973 int rc; 4974 4975 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4976 if (rc) 4977 return rc; 4978 4979 tsec = current->security; 4980 isec = sma->sem_perm.security; 4981 4982 AVC_AUDIT_DATA_INIT(&ad, IPC); 4983 ad.u.ipc_id = sma->sem_perm.key; 4984 4985 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4986 SEM__CREATE, &ad); 4987 if (rc) { 4988 ipc_free_security(&sma->sem_perm); 4989 return rc; 4990 } 4991 return 0; 4992 } 4993 4994 static void selinux_sem_free_security(struct sem_array *sma) 4995 { 4996 ipc_free_security(&sma->sem_perm); 4997 } 4998 4999 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5000 { 5001 struct task_security_struct *tsec; 5002 struct ipc_security_struct *isec; 5003 struct avc_audit_data ad; 5004 5005 tsec = current->security; 5006 isec = sma->sem_perm.security; 5007 5008 AVC_AUDIT_DATA_INIT(&ad, IPC); 5009 ad.u.ipc_id = sma->sem_perm.key; 5010 5011 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 5012 SEM__ASSOCIATE, &ad); 5013 } 5014 5015 /* Note, at this point, sma is locked down */ 5016 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5017 { 5018 int err; 5019 u32 perms; 5020 5021 switch (cmd) { 5022 case IPC_INFO: 5023 case SEM_INFO: 5024 /* No specific object, just general system-wide information. */ 5025 return task_has_system(current, SYSTEM__IPC_INFO); 5026 case GETPID: 5027 case GETNCNT: 5028 case GETZCNT: 5029 perms = SEM__GETATTR; 5030 break; 5031 case GETVAL: 5032 case GETALL: 5033 perms = SEM__READ; 5034 break; 5035 case SETVAL: 5036 case SETALL: 5037 perms = SEM__WRITE; 5038 break; 5039 case IPC_RMID: 5040 perms = SEM__DESTROY; 5041 break; 5042 case IPC_SET: 5043 perms = SEM__SETATTR; 5044 break; 5045 case IPC_STAT: 5046 case SEM_STAT: 5047 perms = SEM__GETATTR | SEM__ASSOCIATE; 5048 break; 5049 default: 5050 return 0; 5051 } 5052 5053 err = ipc_has_perm(&sma->sem_perm, perms); 5054 return err; 5055 } 5056 5057 static int selinux_sem_semop(struct sem_array *sma, 5058 struct sembuf *sops, unsigned nsops, int alter) 5059 { 5060 u32 perms; 5061 5062 if (alter) 5063 perms = SEM__READ | SEM__WRITE; 5064 else 5065 perms = SEM__READ; 5066 5067 return ipc_has_perm(&sma->sem_perm, perms); 5068 } 5069 5070 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5071 { 5072 u32 av = 0; 5073 5074 av = 0; 5075 if (flag & S_IRUGO) 5076 av |= IPC__UNIX_READ; 5077 if (flag & S_IWUGO) 5078 av |= IPC__UNIX_WRITE; 5079 5080 if (av == 0) 5081 return 0; 5082 5083 return ipc_has_perm(ipcp, av); 5084 } 5085 5086 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5087 { 5088 struct ipc_security_struct *isec = ipcp->security; 5089 *secid = isec->sid; 5090 } 5091 5092 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5093 { 5094 if (inode) 5095 inode_doinit_with_dentry(inode, dentry); 5096 } 5097 5098 static int selinux_getprocattr(struct task_struct *p, 5099 char *name, char **value) 5100 { 5101 struct task_security_struct *tsec; 5102 u32 sid; 5103 int error; 5104 unsigned len; 5105 5106 if (current != p) { 5107 error = task_has_perm(current, p, PROCESS__GETATTR); 5108 if (error) 5109 return error; 5110 } 5111 5112 tsec = p->security; 5113 5114 if (!strcmp(name, "current")) 5115 sid = tsec->sid; 5116 else if (!strcmp(name, "prev")) 5117 sid = tsec->osid; 5118 else if (!strcmp(name, "exec")) 5119 sid = tsec->exec_sid; 5120 else if (!strcmp(name, "fscreate")) 5121 sid = tsec->create_sid; 5122 else if (!strcmp(name, "keycreate")) 5123 sid = tsec->keycreate_sid; 5124 else if (!strcmp(name, "sockcreate")) 5125 sid = tsec->sockcreate_sid; 5126 else 5127 return -EINVAL; 5128 5129 if (!sid) 5130 return 0; 5131 5132 error = security_sid_to_context(sid, value, &len); 5133 if (error) 5134 return error; 5135 return len; 5136 } 5137 5138 static int selinux_setprocattr(struct task_struct *p, 5139 char *name, void *value, size_t size) 5140 { 5141 struct task_security_struct *tsec; 5142 struct task_struct *tracer; 5143 u32 sid = 0; 5144 int error; 5145 char *str = value; 5146 5147 if (current != p) { 5148 /* SELinux only allows a process to change its own 5149 security attributes. */ 5150 return -EACCES; 5151 } 5152 5153 /* 5154 * Basic control over ability to set these attributes at all. 5155 * current == p, but we'll pass them separately in case the 5156 * above restriction is ever removed. 5157 */ 5158 if (!strcmp(name, "exec")) 5159 error = task_has_perm(current, p, PROCESS__SETEXEC); 5160 else if (!strcmp(name, "fscreate")) 5161 error = task_has_perm(current, p, PROCESS__SETFSCREATE); 5162 else if (!strcmp(name, "keycreate")) 5163 error = task_has_perm(current, p, PROCESS__SETKEYCREATE); 5164 else if (!strcmp(name, "sockcreate")) 5165 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE); 5166 else if (!strcmp(name, "current")) 5167 error = task_has_perm(current, p, PROCESS__SETCURRENT); 5168 else 5169 error = -EINVAL; 5170 if (error) 5171 return error; 5172 5173 /* Obtain a SID for the context, if one was specified. */ 5174 if (size && str[1] && str[1] != '\n') { 5175 if (str[size-1] == '\n') { 5176 str[size-1] = 0; 5177 size--; 5178 } 5179 error = security_context_to_sid(value, size, &sid); 5180 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5181 if (!capable(CAP_MAC_ADMIN)) 5182 return error; 5183 error = security_context_to_sid_force(value, size, 5184 &sid); 5185 } 5186 if (error) 5187 return error; 5188 } 5189 5190 /* Permission checking based on the specified context is 5191 performed during the actual operation (execve, 5192 open/mkdir/...), when we know the full context of the 5193 operation. See selinux_bprm_set_security for the execve 5194 checks and may_create for the file creation checks. The 5195 operation will then fail if the context is not permitted. */ 5196 tsec = p->security; 5197 if (!strcmp(name, "exec")) 5198 tsec->exec_sid = sid; 5199 else if (!strcmp(name, "fscreate")) 5200 tsec->create_sid = sid; 5201 else if (!strcmp(name, "keycreate")) { 5202 error = may_create_key(sid, p); 5203 if (error) 5204 return error; 5205 tsec->keycreate_sid = sid; 5206 } else if (!strcmp(name, "sockcreate")) 5207 tsec->sockcreate_sid = sid; 5208 else if (!strcmp(name, "current")) { 5209 struct av_decision avd; 5210 5211 if (sid == 0) 5212 return -EINVAL; 5213 5214 /* Only allow single threaded processes to change context */ 5215 if (atomic_read(&p->mm->mm_users) != 1) { 5216 struct task_struct *g, *t; 5217 struct mm_struct *mm = p->mm; 5218 read_lock(&tasklist_lock); 5219 do_each_thread(g, t) { 5220 if (t->mm == mm && t != p) { 5221 read_unlock(&tasklist_lock); 5222 return -EPERM; 5223 } 5224 } while_each_thread(g, t); 5225 read_unlock(&tasklist_lock); 5226 } 5227 5228 /* Check permissions for the transition. */ 5229 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5230 PROCESS__DYNTRANSITION, NULL); 5231 if (error) 5232 return error; 5233 5234 /* Check for ptracing, and update the task SID if ok. 5235 Otherwise, leave SID unchanged and fail. */ 5236 task_lock(p); 5237 rcu_read_lock(); 5238 tracer = tracehook_tracer_task(p); 5239 if (tracer != NULL) { 5240 struct task_security_struct *ptsec = tracer->security; 5241 u32 ptsid = ptsec->sid; 5242 rcu_read_unlock(); 5243 error = avc_has_perm_noaudit(ptsid, sid, 5244 SECCLASS_PROCESS, 5245 PROCESS__PTRACE, 0, &avd); 5246 if (!error) 5247 tsec->sid = sid; 5248 task_unlock(p); 5249 avc_audit(ptsid, sid, SECCLASS_PROCESS, 5250 PROCESS__PTRACE, &avd, error, NULL); 5251 if (error) 5252 return error; 5253 } else { 5254 rcu_read_unlock(); 5255 tsec->sid = sid; 5256 task_unlock(p); 5257 } 5258 } else 5259 return -EINVAL; 5260 5261 return size; 5262 } 5263 5264 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5265 { 5266 return security_sid_to_context(secid, secdata, seclen); 5267 } 5268 5269 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5270 { 5271 return security_context_to_sid(secdata, seclen, secid); 5272 } 5273 5274 static void selinux_release_secctx(char *secdata, u32 seclen) 5275 { 5276 kfree(secdata); 5277 } 5278 5279 #ifdef CONFIG_KEYS 5280 5281 static int selinux_key_alloc(struct key *k, struct task_struct *tsk, 5282 unsigned long flags) 5283 { 5284 struct task_security_struct *tsec = tsk->security; 5285 struct key_security_struct *ksec; 5286 5287 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5288 if (!ksec) 5289 return -ENOMEM; 5290 5291 if (tsec->keycreate_sid) 5292 ksec->sid = tsec->keycreate_sid; 5293 else 5294 ksec->sid = tsec->sid; 5295 k->security = ksec; 5296 5297 return 0; 5298 } 5299 5300 static void selinux_key_free(struct key *k) 5301 { 5302 struct key_security_struct *ksec = k->security; 5303 5304 k->security = NULL; 5305 kfree(ksec); 5306 } 5307 5308 static int selinux_key_permission(key_ref_t key_ref, 5309 struct task_struct *ctx, 5310 key_perm_t perm) 5311 { 5312 struct key *key; 5313 struct task_security_struct *tsec; 5314 struct key_security_struct *ksec; 5315 5316 key = key_ref_to_ptr(key_ref); 5317 5318 tsec = ctx->security; 5319 ksec = key->security; 5320 5321 /* if no specific permissions are requested, we skip the 5322 permission check. No serious, additional covert channels 5323 appear to be created. */ 5324 if (perm == 0) 5325 return 0; 5326 5327 return avc_has_perm(tsec->sid, ksec->sid, 5328 SECCLASS_KEY, perm, NULL); 5329 } 5330 5331 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5332 { 5333 struct key_security_struct *ksec = key->security; 5334 char *context = NULL; 5335 unsigned len; 5336 int rc; 5337 5338 rc = security_sid_to_context(ksec->sid, &context, &len); 5339 if (!rc) 5340 rc = len; 5341 *_buffer = context; 5342 return rc; 5343 } 5344 5345 #endif 5346 5347 static struct security_operations selinux_ops = { 5348 .name = "selinux", 5349 5350 .ptrace = selinux_ptrace, 5351 .capget = selinux_capget, 5352 .capset_check = selinux_capset_check, 5353 .capset_set = selinux_capset_set, 5354 .sysctl = selinux_sysctl, 5355 .capable = selinux_capable, 5356 .quotactl = selinux_quotactl, 5357 .quota_on = selinux_quota_on, 5358 .syslog = selinux_syslog, 5359 .vm_enough_memory = selinux_vm_enough_memory, 5360 5361 .netlink_send = selinux_netlink_send, 5362 .netlink_recv = selinux_netlink_recv, 5363 5364 .bprm_alloc_security = selinux_bprm_alloc_security, 5365 .bprm_free_security = selinux_bprm_free_security, 5366 .bprm_apply_creds = selinux_bprm_apply_creds, 5367 .bprm_post_apply_creds = selinux_bprm_post_apply_creds, 5368 .bprm_set_security = selinux_bprm_set_security, 5369 .bprm_check_security = selinux_bprm_check_security, 5370 .bprm_secureexec = selinux_bprm_secureexec, 5371 5372 .sb_alloc_security = selinux_sb_alloc_security, 5373 .sb_free_security = selinux_sb_free_security, 5374 .sb_copy_data = selinux_sb_copy_data, 5375 .sb_kern_mount = selinux_sb_kern_mount, 5376 .sb_show_options = selinux_sb_show_options, 5377 .sb_statfs = selinux_sb_statfs, 5378 .sb_mount = selinux_mount, 5379 .sb_umount = selinux_umount, 5380 .sb_set_mnt_opts = selinux_set_mnt_opts, 5381 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5382 .sb_parse_opts_str = selinux_parse_opts_str, 5383 5384 5385 .inode_alloc_security = selinux_inode_alloc_security, 5386 .inode_free_security = selinux_inode_free_security, 5387 .inode_init_security = selinux_inode_init_security, 5388 .inode_create = selinux_inode_create, 5389 .inode_link = selinux_inode_link, 5390 .inode_unlink = selinux_inode_unlink, 5391 .inode_symlink = selinux_inode_symlink, 5392 .inode_mkdir = selinux_inode_mkdir, 5393 .inode_rmdir = selinux_inode_rmdir, 5394 .inode_mknod = selinux_inode_mknod, 5395 .inode_rename = selinux_inode_rename, 5396 .inode_readlink = selinux_inode_readlink, 5397 .inode_follow_link = selinux_inode_follow_link, 5398 .inode_permission = selinux_inode_permission, 5399 .inode_setattr = selinux_inode_setattr, 5400 .inode_getattr = selinux_inode_getattr, 5401 .inode_setxattr = selinux_inode_setxattr, 5402 .inode_post_setxattr = selinux_inode_post_setxattr, 5403 .inode_getxattr = selinux_inode_getxattr, 5404 .inode_listxattr = selinux_inode_listxattr, 5405 .inode_removexattr = selinux_inode_removexattr, 5406 .inode_getsecurity = selinux_inode_getsecurity, 5407 .inode_setsecurity = selinux_inode_setsecurity, 5408 .inode_listsecurity = selinux_inode_listsecurity, 5409 .inode_need_killpriv = selinux_inode_need_killpriv, 5410 .inode_killpriv = selinux_inode_killpriv, 5411 .inode_getsecid = selinux_inode_getsecid, 5412 5413 .file_permission = selinux_file_permission, 5414 .file_alloc_security = selinux_file_alloc_security, 5415 .file_free_security = selinux_file_free_security, 5416 .file_ioctl = selinux_file_ioctl, 5417 .file_mmap = selinux_file_mmap, 5418 .file_mprotect = selinux_file_mprotect, 5419 .file_lock = selinux_file_lock, 5420 .file_fcntl = selinux_file_fcntl, 5421 .file_set_fowner = selinux_file_set_fowner, 5422 .file_send_sigiotask = selinux_file_send_sigiotask, 5423 .file_receive = selinux_file_receive, 5424 5425 .dentry_open = selinux_dentry_open, 5426 5427 .task_create = selinux_task_create, 5428 .task_alloc_security = selinux_task_alloc_security, 5429 .task_free_security = selinux_task_free_security, 5430 .task_setuid = selinux_task_setuid, 5431 .task_post_setuid = selinux_task_post_setuid, 5432 .task_setgid = selinux_task_setgid, 5433 .task_setpgid = selinux_task_setpgid, 5434 .task_getpgid = selinux_task_getpgid, 5435 .task_getsid = selinux_task_getsid, 5436 .task_getsecid = selinux_task_getsecid, 5437 .task_setgroups = selinux_task_setgroups, 5438 .task_setnice = selinux_task_setnice, 5439 .task_setioprio = selinux_task_setioprio, 5440 .task_getioprio = selinux_task_getioprio, 5441 .task_setrlimit = selinux_task_setrlimit, 5442 .task_setscheduler = selinux_task_setscheduler, 5443 .task_getscheduler = selinux_task_getscheduler, 5444 .task_movememory = selinux_task_movememory, 5445 .task_kill = selinux_task_kill, 5446 .task_wait = selinux_task_wait, 5447 .task_prctl = selinux_task_prctl, 5448 .task_reparent_to_init = selinux_task_reparent_to_init, 5449 .task_to_inode = selinux_task_to_inode, 5450 5451 .ipc_permission = selinux_ipc_permission, 5452 .ipc_getsecid = selinux_ipc_getsecid, 5453 5454 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5455 .msg_msg_free_security = selinux_msg_msg_free_security, 5456 5457 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5458 .msg_queue_free_security = selinux_msg_queue_free_security, 5459 .msg_queue_associate = selinux_msg_queue_associate, 5460 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5461 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5462 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5463 5464 .shm_alloc_security = selinux_shm_alloc_security, 5465 .shm_free_security = selinux_shm_free_security, 5466 .shm_associate = selinux_shm_associate, 5467 .shm_shmctl = selinux_shm_shmctl, 5468 .shm_shmat = selinux_shm_shmat, 5469 5470 .sem_alloc_security = selinux_sem_alloc_security, 5471 .sem_free_security = selinux_sem_free_security, 5472 .sem_associate = selinux_sem_associate, 5473 .sem_semctl = selinux_sem_semctl, 5474 .sem_semop = selinux_sem_semop, 5475 5476 .d_instantiate = selinux_d_instantiate, 5477 5478 .getprocattr = selinux_getprocattr, 5479 .setprocattr = selinux_setprocattr, 5480 5481 .secid_to_secctx = selinux_secid_to_secctx, 5482 .secctx_to_secid = selinux_secctx_to_secid, 5483 .release_secctx = selinux_release_secctx, 5484 5485 .unix_stream_connect = selinux_socket_unix_stream_connect, 5486 .unix_may_send = selinux_socket_unix_may_send, 5487 5488 .socket_create = selinux_socket_create, 5489 .socket_post_create = selinux_socket_post_create, 5490 .socket_bind = selinux_socket_bind, 5491 .socket_connect = selinux_socket_connect, 5492 .socket_listen = selinux_socket_listen, 5493 .socket_accept = selinux_socket_accept, 5494 .socket_sendmsg = selinux_socket_sendmsg, 5495 .socket_recvmsg = selinux_socket_recvmsg, 5496 .socket_getsockname = selinux_socket_getsockname, 5497 .socket_getpeername = selinux_socket_getpeername, 5498 .socket_getsockopt = selinux_socket_getsockopt, 5499 .socket_setsockopt = selinux_socket_setsockopt, 5500 .socket_shutdown = selinux_socket_shutdown, 5501 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5502 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5503 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5504 .sk_alloc_security = selinux_sk_alloc_security, 5505 .sk_free_security = selinux_sk_free_security, 5506 .sk_clone_security = selinux_sk_clone_security, 5507 .sk_getsecid = selinux_sk_getsecid, 5508 .sock_graft = selinux_sock_graft, 5509 .inet_conn_request = selinux_inet_conn_request, 5510 .inet_csk_clone = selinux_inet_csk_clone, 5511 .inet_conn_established = selinux_inet_conn_established, 5512 .req_classify_flow = selinux_req_classify_flow, 5513 5514 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5515 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5516 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5517 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5518 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5519 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5520 .xfrm_state_free_security = selinux_xfrm_state_free, 5521 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5522 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5523 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5524 .xfrm_decode_session = selinux_xfrm_decode_session, 5525 #endif 5526 5527 #ifdef CONFIG_KEYS 5528 .key_alloc = selinux_key_alloc, 5529 .key_free = selinux_key_free, 5530 .key_permission = selinux_key_permission, 5531 .key_getsecurity = selinux_key_getsecurity, 5532 #endif 5533 5534 #ifdef CONFIG_AUDIT 5535 .audit_rule_init = selinux_audit_rule_init, 5536 .audit_rule_known = selinux_audit_rule_known, 5537 .audit_rule_match = selinux_audit_rule_match, 5538 .audit_rule_free = selinux_audit_rule_free, 5539 #endif 5540 }; 5541 5542 static __init int selinux_init(void) 5543 { 5544 struct task_security_struct *tsec; 5545 5546 if (!security_module_enable(&selinux_ops)) { 5547 selinux_enabled = 0; 5548 return 0; 5549 } 5550 5551 if (!selinux_enabled) { 5552 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5553 return 0; 5554 } 5555 5556 printk(KERN_INFO "SELinux: Initializing.\n"); 5557 5558 /* Set the security state for the initial task. */ 5559 if (task_alloc_security(current)) 5560 panic("SELinux: Failed to initialize initial task.\n"); 5561 tsec = current->security; 5562 tsec->osid = tsec->sid = SECINITSID_KERNEL; 5563 5564 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5565 sizeof(struct inode_security_struct), 5566 0, SLAB_PANIC, NULL); 5567 avc_init(); 5568 5569 secondary_ops = security_ops; 5570 if (!secondary_ops) 5571 panic("SELinux: No initial security operations\n"); 5572 if (register_security(&selinux_ops)) 5573 panic("SELinux: Unable to register with kernel.\n"); 5574 5575 if (selinux_enforcing) 5576 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5577 else 5578 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5579 5580 return 0; 5581 } 5582 5583 void selinux_complete_init(void) 5584 { 5585 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5586 5587 /* Set up any superblocks initialized prior to the policy load. */ 5588 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5589 spin_lock(&sb_lock); 5590 spin_lock(&sb_security_lock); 5591 next_sb: 5592 if (!list_empty(&superblock_security_head)) { 5593 struct superblock_security_struct *sbsec = 5594 list_entry(superblock_security_head.next, 5595 struct superblock_security_struct, 5596 list); 5597 struct super_block *sb = sbsec->sb; 5598 sb->s_count++; 5599 spin_unlock(&sb_security_lock); 5600 spin_unlock(&sb_lock); 5601 down_read(&sb->s_umount); 5602 if (sb->s_root) 5603 superblock_doinit(sb, NULL); 5604 drop_super(sb); 5605 spin_lock(&sb_lock); 5606 spin_lock(&sb_security_lock); 5607 list_del_init(&sbsec->list); 5608 goto next_sb; 5609 } 5610 spin_unlock(&sb_security_lock); 5611 spin_unlock(&sb_lock); 5612 } 5613 5614 /* SELinux requires early initialization in order to label 5615 all processes and objects when they are created. */ 5616 security_initcall(selinux_init); 5617 5618 #if defined(CONFIG_NETFILTER) 5619 5620 static struct nf_hook_ops selinux_ipv4_ops[] = { 5621 { 5622 .hook = selinux_ipv4_postroute, 5623 .owner = THIS_MODULE, 5624 .pf = PF_INET, 5625 .hooknum = NF_INET_POST_ROUTING, 5626 .priority = NF_IP_PRI_SELINUX_LAST, 5627 }, 5628 { 5629 .hook = selinux_ipv4_forward, 5630 .owner = THIS_MODULE, 5631 .pf = PF_INET, 5632 .hooknum = NF_INET_FORWARD, 5633 .priority = NF_IP_PRI_SELINUX_FIRST, 5634 } 5635 }; 5636 5637 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5638 5639 static struct nf_hook_ops selinux_ipv6_ops[] = { 5640 { 5641 .hook = selinux_ipv6_postroute, 5642 .owner = THIS_MODULE, 5643 .pf = PF_INET6, 5644 .hooknum = NF_INET_POST_ROUTING, 5645 .priority = NF_IP6_PRI_SELINUX_LAST, 5646 }, 5647 { 5648 .hook = selinux_ipv6_forward, 5649 .owner = THIS_MODULE, 5650 .pf = PF_INET6, 5651 .hooknum = NF_INET_FORWARD, 5652 .priority = NF_IP6_PRI_SELINUX_FIRST, 5653 } 5654 }; 5655 5656 #endif /* IPV6 */ 5657 5658 static int __init selinux_nf_ip_init(void) 5659 { 5660 int err = 0; 5661 5662 if (!selinux_enabled) 5663 goto out; 5664 5665 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5666 5667 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5668 if (err) 5669 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5670 5671 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5672 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5673 if (err) 5674 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5675 #endif /* IPV6 */ 5676 5677 out: 5678 return err; 5679 } 5680 5681 __initcall(selinux_nf_ip_init); 5682 5683 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5684 static void selinux_nf_ip_exit(void) 5685 { 5686 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5687 5688 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5689 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5690 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5691 #endif /* IPV6 */ 5692 } 5693 #endif 5694 5695 #else /* CONFIG_NETFILTER */ 5696 5697 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5698 #define selinux_nf_ip_exit() 5699 #endif 5700 5701 #endif /* CONFIG_NETFILTER */ 5702 5703 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5704 static int selinux_disabled; 5705 5706 int selinux_disable(void) 5707 { 5708 extern void exit_sel_fs(void); 5709 5710 if (ss_initialized) { 5711 /* Not permitted after initial policy load. */ 5712 return -EINVAL; 5713 } 5714 5715 if (selinux_disabled) { 5716 /* Only do this once. */ 5717 return -EINVAL; 5718 } 5719 5720 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5721 5722 selinux_disabled = 1; 5723 selinux_enabled = 0; 5724 5725 /* Reset security_ops to the secondary module, dummy or capability. */ 5726 security_ops = secondary_ops; 5727 5728 /* Unregister netfilter hooks. */ 5729 selinux_nf_ip_exit(); 5730 5731 /* Unregister selinuxfs. */ 5732 exit_sel_fs(); 5733 5734 return 0; 5735 } 5736 #endif 5737