xref: /openbmc/linux/security/selinux/hooks.c (revision 314dabb83a547ec4da819e8cbc78fac9cec605cd)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *		Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>		/* for local_port_range[] */
52 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>	/* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>		/* for Unix socket types */
67 #include <net/af_unix.h>	/* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88 
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91 
92 #define NUM_SEL_MNT_OPTS 5
93 
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97 
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100 
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103 
104 static int __init enforcing_setup(char *str)
105 {
106 	unsigned long enforcing;
107 	if (!strict_strtoul(str, 0, &enforcing))
108 		selinux_enforcing = enforcing ? 1 : 0;
109 	return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113 
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116 
117 static int __init selinux_enabled_setup(char *str)
118 {
119 	unsigned long enabled;
120 	if (!strict_strtoul(str, 0, &enabled))
121 		selinux_enabled = enabled ? 1 : 0;
122 	return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128 
129 
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135 
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140 
141 static struct kmem_cache *sel_inode_cache;
142 
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155 	return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157 
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163 	struct cred *cred = (struct cred *) current->real_cred;
164 	struct task_security_struct *tsec;
165 
166 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167 	if (!tsec)
168 		panic("SELinux:  Failed to initialize initial task.\n");
169 
170 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
171 	cred->security = tsec;
172 }
173 
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179 	const struct task_security_struct *tsec;
180 
181 	tsec = cred->security;
182 	return tsec->sid;
183 }
184 
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190 	u32 sid;
191 
192 	rcu_read_lock();
193 	sid = cred_sid(__task_cred(task));
194 	rcu_read_unlock();
195 	return sid;
196 }
197 
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203 	const struct task_security_struct *tsec = current_cred()->security;
204 
205 	return tsec->sid;
206 }
207 
208 /* Allocate and free functions for each kind of security blob. */
209 
210 static int inode_alloc_security(struct inode *inode)
211 {
212 	struct inode_security_struct *isec;
213 	u32 sid = current_sid();
214 
215 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216 	if (!isec)
217 		return -ENOMEM;
218 
219 	mutex_init(&isec->lock);
220 	INIT_LIST_HEAD(&isec->list);
221 	isec->inode = inode;
222 	isec->sid = SECINITSID_UNLABELED;
223 	isec->sclass = SECCLASS_FILE;
224 	isec->task_sid = sid;
225 	inode->i_security = isec;
226 
227 	return 0;
228 }
229 
230 static void inode_free_security(struct inode *inode)
231 {
232 	struct inode_security_struct *isec = inode->i_security;
233 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234 
235 	spin_lock(&sbsec->isec_lock);
236 	if (!list_empty(&isec->list))
237 		list_del_init(&isec->list);
238 	spin_unlock(&sbsec->isec_lock);
239 
240 	inode->i_security = NULL;
241 	kmem_cache_free(sel_inode_cache, isec);
242 }
243 
244 static int file_alloc_security(struct file *file)
245 {
246 	struct file_security_struct *fsec;
247 	u32 sid = current_sid();
248 
249 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250 	if (!fsec)
251 		return -ENOMEM;
252 
253 	fsec->sid = sid;
254 	fsec->fown_sid = sid;
255 	file->f_security = fsec;
256 
257 	return 0;
258 }
259 
260 static void file_free_security(struct file *file)
261 {
262 	struct file_security_struct *fsec = file->f_security;
263 	file->f_security = NULL;
264 	kfree(fsec);
265 }
266 
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269 	struct superblock_security_struct *sbsec;
270 
271 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272 	if (!sbsec)
273 		return -ENOMEM;
274 
275 	mutex_init(&sbsec->lock);
276 	INIT_LIST_HEAD(&sbsec->list);
277 	INIT_LIST_HEAD(&sbsec->isec_head);
278 	spin_lock_init(&sbsec->isec_lock);
279 	sbsec->sb = sb;
280 	sbsec->sid = SECINITSID_UNLABELED;
281 	sbsec->def_sid = SECINITSID_FILE;
282 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283 	sb->s_security = sbsec;
284 
285 	return 0;
286 }
287 
288 static void superblock_free_security(struct super_block *sb)
289 {
290 	struct superblock_security_struct *sbsec = sb->s_security;
291 
292 	spin_lock(&sb_security_lock);
293 	if (!list_empty(&sbsec->list))
294 		list_del_init(&sbsec->list);
295 	spin_unlock(&sb_security_lock);
296 
297 	sb->s_security = NULL;
298 	kfree(sbsec);
299 }
300 
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303 	struct sk_security_struct *ssec;
304 
305 	ssec = kzalloc(sizeof(*ssec), priority);
306 	if (!ssec)
307 		return -ENOMEM;
308 
309 	ssec->peer_sid = SECINITSID_UNLABELED;
310 	ssec->sid = SECINITSID_UNLABELED;
311 	sk->sk_security = ssec;
312 
313 	selinux_netlbl_sk_security_reset(ssec);
314 
315 	return 0;
316 }
317 
318 static void sk_free_security(struct sock *sk)
319 {
320 	struct sk_security_struct *ssec = sk->sk_security;
321 
322 	sk->sk_security = NULL;
323 	selinux_netlbl_sk_security_free(ssec);
324 	kfree(ssec);
325 }
326 
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330 
331 /* The file system's label must be initialized prior to use. */
332 
333 static char *labeling_behaviors[6] = {
334 	"uses xattr",
335 	"uses transition SIDs",
336 	"uses task SIDs",
337 	"uses genfs_contexts",
338 	"not configured for labeling",
339 	"uses mountpoint labeling",
340 };
341 
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343 
344 static inline int inode_doinit(struct inode *inode)
345 {
346 	return inode_doinit_with_dentry(inode, NULL);
347 }
348 
349 enum {
350 	Opt_error = -1,
351 	Opt_context = 1,
352 	Opt_fscontext = 2,
353 	Opt_defcontext = 3,
354 	Opt_rootcontext = 4,
355 	Opt_labelsupport = 5,
356 };
357 
358 static const match_table_t tokens = {
359 	{Opt_context, CONTEXT_STR "%s"},
360 	{Opt_fscontext, FSCONTEXT_STR "%s"},
361 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
362 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363 	{Opt_labelsupport, LABELSUPP_STR},
364 	{Opt_error, NULL},
365 };
366 
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368 
369 static int may_context_mount_sb_relabel(u32 sid,
370 			struct superblock_security_struct *sbsec,
371 			const struct cred *cred)
372 {
373 	const struct task_security_struct *tsec = cred->security;
374 	int rc;
375 
376 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377 			  FILESYSTEM__RELABELFROM, NULL);
378 	if (rc)
379 		return rc;
380 
381 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382 			  FILESYSTEM__RELABELTO, NULL);
383 	return rc;
384 }
385 
386 static int may_context_mount_inode_relabel(u32 sid,
387 			struct superblock_security_struct *sbsec,
388 			const struct cred *cred)
389 {
390 	const struct task_security_struct *tsec = cred->security;
391 	int rc;
392 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393 			  FILESYSTEM__RELABELFROM, NULL);
394 	if (rc)
395 		return rc;
396 
397 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398 			  FILESYSTEM__ASSOCIATE, NULL);
399 	return rc;
400 }
401 
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404 	struct superblock_security_struct *sbsec = sb->s_security;
405 	struct dentry *root = sb->s_root;
406 	struct inode *root_inode = root->d_inode;
407 	int rc = 0;
408 
409 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410 		/* Make sure that the xattr handler exists and that no
411 		   error other than -ENODATA is returned by getxattr on
412 		   the root directory.  -ENODATA is ok, as this may be
413 		   the first boot of the SELinux kernel before we have
414 		   assigned xattr values to the filesystem. */
415 		if (!root_inode->i_op->getxattr) {
416 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417 			       "xattr support\n", sb->s_id, sb->s_type->name);
418 			rc = -EOPNOTSUPP;
419 			goto out;
420 		}
421 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422 		if (rc < 0 && rc != -ENODATA) {
423 			if (rc == -EOPNOTSUPP)
424 				printk(KERN_WARNING "SELinux: (dev %s, type "
425 				       "%s) has no security xattr handler\n",
426 				       sb->s_id, sb->s_type->name);
427 			else
428 				printk(KERN_WARNING "SELinux: (dev %s, type "
429 				       "%s) getxattr errno %d\n", sb->s_id,
430 				       sb->s_type->name, -rc);
431 			goto out;
432 		}
433 	}
434 
435 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436 
437 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439 		       sb->s_id, sb->s_type->name);
440 	else
441 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442 		       sb->s_id, sb->s_type->name,
443 		       labeling_behaviors[sbsec->behavior-1]);
444 
445 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
448 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449 		sbsec->flags &= ~SE_SBLABELSUPP;
450 
451 	/* Initialize the root inode. */
452 	rc = inode_doinit_with_dentry(root_inode, root);
453 
454 	/* Initialize any other inodes associated with the superblock, e.g.
455 	   inodes created prior to initial policy load or inodes created
456 	   during get_sb by a pseudo filesystem that directly
457 	   populates itself. */
458 	spin_lock(&sbsec->isec_lock);
459 next_inode:
460 	if (!list_empty(&sbsec->isec_head)) {
461 		struct inode_security_struct *isec =
462 				list_entry(sbsec->isec_head.next,
463 					   struct inode_security_struct, list);
464 		struct inode *inode = isec->inode;
465 		spin_unlock(&sbsec->isec_lock);
466 		inode = igrab(inode);
467 		if (inode) {
468 			if (!IS_PRIVATE(inode))
469 				inode_doinit(inode);
470 			iput(inode);
471 		}
472 		spin_lock(&sbsec->isec_lock);
473 		list_del_init(&isec->list);
474 		goto next_inode;
475 	}
476 	spin_unlock(&sbsec->isec_lock);
477 out:
478 	return rc;
479 }
480 
481 /*
482  * This function should allow an FS to ask what it's mount security
483  * options were so it can use those later for submounts, displaying
484  * mount options, or whatever.
485  */
486 static int selinux_get_mnt_opts(const struct super_block *sb,
487 				struct security_mnt_opts *opts)
488 {
489 	int rc = 0, i;
490 	struct superblock_security_struct *sbsec = sb->s_security;
491 	char *context = NULL;
492 	u32 len;
493 	char tmp;
494 
495 	security_init_mnt_opts(opts);
496 
497 	if (!(sbsec->flags & SE_SBINITIALIZED))
498 		return -EINVAL;
499 
500 	if (!ss_initialized)
501 		return -EINVAL;
502 
503 	tmp = sbsec->flags & SE_MNTMASK;
504 	/* count the number of mount options for this sb */
505 	for (i = 0; i < 8; i++) {
506 		if (tmp & 0x01)
507 			opts->num_mnt_opts++;
508 		tmp >>= 1;
509 	}
510 	/* Check if the Label support flag is set */
511 	if (sbsec->flags & SE_SBLABELSUPP)
512 		opts->num_mnt_opts++;
513 
514 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
515 	if (!opts->mnt_opts) {
516 		rc = -ENOMEM;
517 		goto out_free;
518 	}
519 
520 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
521 	if (!opts->mnt_opts_flags) {
522 		rc = -ENOMEM;
523 		goto out_free;
524 	}
525 
526 	i = 0;
527 	if (sbsec->flags & FSCONTEXT_MNT) {
528 		rc = security_sid_to_context(sbsec->sid, &context, &len);
529 		if (rc)
530 			goto out_free;
531 		opts->mnt_opts[i] = context;
532 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
533 	}
534 	if (sbsec->flags & CONTEXT_MNT) {
535 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
536 		if (rc)
537 			goto out_free;
538 		opts->mnt_opts[i] = context;
539 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
540 	}
541 	if (sbsec->flags & DEFCONTEXT_MNT) {
542 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
543 		if (rc)
544 			goto out_free;
545 		opts->mnt_opts[i] = context;
546 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
547 	}
548 	if (sbsec->flags & ROOTCONTEXT_MNT) {
549 		struct inode *root = sbsec->sb->s_root->d_inode;
550 		struct inode_security_struct *isec = root->i_security;
551 
552 		rc = security_sid_to_context(isec->sid, &context, &len);
553 		if (rc)
554 			goto out_free;
555 		opts->mnt_opts[i] = context;
556 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
557 	}
558 	if (sbsec->flags & SE_SBLABELSUPP) {
559 		opts->mnt_opts[i] = NULL;
560 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
561 	}
562 
563 	BUG_ON(i != opts->num_mnt_opts);
564 
565 	return 0;
566 
567 out_free:
568 	security_free_mnt_opts(opts);
569 	return rc;
570 }
571 
572 static int bad_option(struct superblock_security_struct *sbsec, char flag,
573 		      u32 old_sid, u32 new_sid)
574 {
575 	char mnt_flags = sbsec->flags & SE_MNTMASK;
576 
577 	/* check if the old mount command had the same options */
578 	if (sbsec->flags & SE_SBINITIALIZED)
579 		if (!(sbsec->flags & flag) ||
580 		    (old_sid != new_sid))
581 			return 1;
582 
583 	/* check if we were passed the same options twice,
584 	 * aka someone passed context=a,context=b
585 	 */
586 	if (!(sbsec->flags & SE_SBINITIALIZED))
587 		if (mnt_flags & flag)
588 			return 1;
589 	return 0;
590 }
591 
592 /*
593  * Allow filesystems with binary mount data to explicitly set mount point
594  * labeling information.
595  */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597 				struct security_mnt_opts *opts)
598 {
599 	const struct cred *cred = current_cred();
600 	int rc = 0, i;
601 	struct superblock_security_struct *sbsec = sb->s_security;
602 	const char *name = sb->s_type->name;
603 	struct inode *inode = sbsec->sb->s_root->d_inode;
604 	struct inode_security_struct *root_isec = inode->i_security;
605 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606 	u32 defcontext_sid = 0;
607 	char **mount_options = opts->mnt_opts;
608 	int *flags = opts->mnt_opts_flags;
609 	int num_opts = opts->num_mnt_opts;
610 
611 	mutex_lock(&sbsec->lock);
612 
613 	if (!ss_initialized) {
614 		if (!num_opts) {
615 			/* Defer initialization until selinux_complete_init,
616 			   after the initial policy is loaded and the security
617 			   server is ready to handle calls. */
618 			spin_lock(&sb_security_lock);
619 			if (list_empty(&sbsec->list))
620 				list_add(&sbsec->list, &superblock_security_head);
621 			spin_unlock(&sb_security_lock);
622 			goto out;
623 		}
624 		rc = -EINVAL;
625 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
626 			"before the security server is initialized\n");
627 		goto out;
628 	}
629 
630 	/*
631 	 * Binary mount data FS will come through this function twice.  Once
632 	 * from an explicit call and once from the generic calls from the vfs.
633 	 * Since the generic VFS calls will not contain any security mount data
634 	 * we need to skip the double mount verification.
635 	 *
636 	 * This does open a hole in which we will not notice if the first
637 	 * mount using this sb set explict options and a second mount using
638 	 * this sb does not set any security options.  (The first options
639 	 * will be used for both mounts)
640 	 */
641 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642 	    && (num_opts == 0))
643 		goto out;
644 
645 	/*
646 	 * parse the mount options, check if they are valid sids.
647 	 * also check if someone is trying to mount the same sb more
648 	 * than once with different security options.
649 	 */
650 	for (i = 0; i < num_opts; i++) {
651 		u32 sid;
652 
653 		if (flags[i] == SE_SBLABELSUPP)
654 			continue;
655 		rc = security_context_to_sid(mount_options[i],
656 					     strlen(mount_options[i]), &sid);
657 		if (rc) {
658 			printk(KERN_WARNING "SELinux: security_context_to_sid"
659 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
660 			       mount_options[i], sb->s_id, name, rc);
661 			goto out;
662 		}
663 		switch (flags[i]) {
664 		case FSCONTEXT_MNT:
665 			fscontext_sid = sid;
666 
667 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
668 					fscontext_sid))
669 				goto out_double_mount;
670 
671 			sbsec->flags |= FSCONTEXT_MNT;
672 			break;
673 		case CONTEXT_MNT:
674 			context_sid = sid;
675 
676 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
677 					context_sid))
678 				goto out_double_mount;
679 
680 			sbsec->flags |= CONTEXT_MNT;
681 			break;
682 		case ROOTCONTEXT_MNT:
683 			rootcontext_sid = sid;
684 
685 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
686 					rootcontext_sid))
687 				goto out_double_mount;
688 
689 			sbsec->flags |= ROOTCONTEXT_MNT;
690 
691 			break;
692 		case DEFCONTEXT_MNT:
693 			defcontext_sid = sid;
694 
695 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
696 					defcontext_sid))
697 				goto out_double_mount;
698 
699 			sbsec->flags |= DEFCONTEXT_MNT;
700 
701 			break;
702 		default:
703 			rc = -EINVAL;
704 			goto out;
705 		}
706 	}
707 
708 	if (sbsec->flags & SE_SBINITIALIZED) {
709 		/* previously mounted with options, but not on this attempt? */
710 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
711 			goto out_double_mount;
712 		rc = 0;
713 		goto out;
714 	}
715 
716 	if (strcmp(sb->s_type->name, "proc") == 0)
717 		sbsec->flags |= SE_SBPROC;
718 
719 	/* Determine the labeling behavior to use for this filesystem type. */
720 	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
721 	if (rc) {
722 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
723 		       __func__, sb->s_type->name, rc);
724 		goto out;
725 	}
726 
727 	/* sets the context of the superblock for the fs being mounted. */
728 	if (fscontext_sid) {
729 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
730 		if (rc)
731 			goto out;
732 
733 		sbsec->sid = fscontext_sid;
734 	}
735 
736 	/*
737 	 * Switch to using mount point labeling behavior.
738 	 * sets the label used on all file below the mountpoint, and will set
739 	 * the superblock context if not already set.
740 	 */
741 	if (context_sid) {
742 		if (!fscontext_sid) {
743 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
744 							  cred);
745 			if (rc)
746 				goto out;
747 			sbsec->sid = context_sid;
748 		} else {
749 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
750 							     cred);
751 			if (rc)
752 				goto out;
753 		}
754 		if (!rootcontext_sid)
755 			rootcontext_sid = context_sid;
756 
757 		sbsec->mntpoint_sid = context_sid;
758 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
759 	}
760 
761 	if (rootcontext_sid) {
762 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
763 						     cred);
764 		if (rc)
765 			goto out;
766 
767 		root_isec->sid = rootcontext_sid;
768 		root_isec->initialized = 1;
769 	}
770 
771 	if (defcontext_sid) {
772 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
773 			rc = -EINVAL;
774 			printk(KERN_WARNING "SELinux: defcontext option is "
775 			       "invalid for this filesystem type\n");
776 			goto out;
777 		}
778 
779 		if (defcontext_sid != sbsec->def_sid) {
780 			rc = may_context_mount_inode_relabel(defcontext_sid,
781 							     sbsec, cred);
782 			if (rc)
783 				goto out;
784 		}
785 
786 		sbsec->def_sid = defcontext_sid;
787 	}
788 
789 	rc = sb_finish_set_opts(sb);
790 out:
791 	mutex_unlock(&sbsec->lock);
792 	return rc;
793 out_double_mount:
794 	rc = -EINVAL;
795 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
796 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
797 	goto out;
798 }
799 
800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
801 					struct super_block *newsb)
802 {
803 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
804 	struct superblock_security_struct *newsbsec = newsb->s_security;
805 
806 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
807 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
808 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
809 
810 	/*
811 	 * if the parent was able to be mounted it clearly had no special lsm
812 	 * mount options.  thus we can safely put this sb on the list and deal
813 	 * with it later
814 	 */
815 	if (!ss_initialized) {
816 		spin_lock(&sb_security_lock);
817 		if (list_empty(&newsbsec->list))
818 			list_add(&newsbsec->list, &superblock_security_head);
819 		spin_unlock(&sb_security_lock);
820 		return;
821 	}
822 
823 	/* how can we clone if the old one wasn't set up?? */
824 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
825 
826 	/* if fs is reusing a sb, just let its options stand... */
827 	if (newsbsec->flags & SE_SBINITIALIZED)
828 		return;
829 
830 	mutex_lock(&newsbsec->lock);
831 
832 	newsbsec->flags = oldsbsec->flags;
833 
834 	newsbsec->sid = oldsbsec->sid;
835 	newsbsec->def_sid = oldsbsec->def_sid;
836 	newsbsec->behavior = oldsbsec->behavior;
837 
838 	if (set_context) {
839 		u32 sid = oldsbsec->mntpoint_sid;
840 
841 		if (!set_fscontext)
842 			newsbsec->sid = sid;
843 		if (!set_rootcontext) {
844 			struct inode *newinode = newsb->s_root->d_inode;
845 			struct inode_security_struct *newisec = newinode->i_security;
846 			newisec->sid = sid;
847 		}
848 		newsbsec->mntpoint_sid = sid;
849 	}
850 	if (set_rootcontext) {
851 		const struct inode *oldinode = oldsb->s_root->d_inode;
852 		const struct inode_security_struct *oldisec = oldinode->i_security;
853 		struct inode *newinode = newsb->s_root->d_inode;
854 		struct inode_security_struct *newisec = newinode->i_security;
855 
856 		newisec->sid = oldisec->sid;
857 	}
858 
859 	sb_finish_set_opts(newsb);
860 	mutex_unlock(&newsbsec->lock);
861 }
862 
863 static int selinux_parse_opts_str(char *options,
864 				  struct security_mnt_opts *opts)
865 {
866 	char *p;
867 	char *context = NULL, *defcontext = NULL;
868 	char *fscontext = NULL, *rootcontext = NULL;
869 	int rc, num_mnt_opts = 0;
870 
871 	opts->num_mnt_opts = 0;
872 
873 	/* Standard string-based options. */
874 	while ((p = strsep(&options, "|")) != NULL) {
875 		int token;
876 		substring_t args[MAX_OPT_ARGS];
877 
878 		if (!*p)
879 			continue;
880 
881 		token = match_token(p, tokens, args);
882 
883 		switch (token) {
884 		case Opt_context:
885 			if (context || defcontext) {
886 				rc = -EINVAL;
887 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
888 				goto out_err;
889 			}
890 			context = match_strdup(&args[0]);
891 			if (!context) {
892 				rc = -ENOMEM;
893 				goto out_err;
894 			}
895 			break;
896 
897 		case Opt_fscontext:
898 			if (fscontext) {
899 				rc = -EINVAL;
900 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
901 				goto out_err;
902 			}
903 			fscontext = match_strdup(&args[0]);
904 			if (!fscontext) {
905 				rc = -ENOMEM;
906 				goto out_err;
907 			}
908 			break;
909 
910 		case Opt_rootcontext:
911 			if (rootcontext) {
912 				rc = -EINVAL;
913 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
914 				goto out_err;
915 			}
916 			rootcontext = match_strdup(&args[0]);
917 			if (!rootcontext) {
918 				rc = -ENOMEM;
919 				goto out_err;
920 			}
921 			break;
922 
923 		case Opt_defcontext:
924 			if (context || defcontext) {
925 				rc = -EINVAL;
926 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
927 				goto out_err;
928 			}
929 			defcontext = match_strdup(&args[0]);
930 			if (!defcontext) {
931 				rc = -ENOMEM;
932 				goto out_err;
933 			}
934 			break;
935 		case Opt_labelsupport:
936 			break;
937 		default:
938 			rc = -EINVAL;
939 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
940 			goto out_err;
941 
942 		}
943 	}
944 
945 	rc = -ENOMEM;
946 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
947 	if (!opts->mnt_opts)
948 		goto out_err;
949 
950 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
951 	if (!opts->mnt_opts_flags) {
952 		kfree(opts->mnt_opts);
953 		goto out_err;
954 	}
955 
956 	if (fscontext) {
957 		opts->mnt_opts[num_mnt_opts] = fscontext;
958 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
959 	}
960 	if (context) {
961 		opts->mnt_opts[num_mnt_opts] = context;
962 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
963 	}
964 	if (rootcontext) {
965 		opts->mnt_opts[num_mnt_opts] = rootcontext;
966 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
967 	}
968 	if (defcontext) {
969 		opts->mnt_opts[num_mnt_opts] = defcontext;
970 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
971 	}
972 
973 	opts->num_mnt_opts = num_mnt_opts;
974 	return 0;
975 
976 out_err:
977 	kfree(context);
978 	kfree(defcontext);
979 	kfree(fscontext);
980 	kfree(rootcontext);
981 	return rc;
982 }
983 /*
984  * string mount options parsing and call set the sbsec
985  */
986 static int superblock_doinit(struct super_block *sb, void *data)
987 {
988 	int rc = 0;
989 	char *options = data;
990 	struct security_mnt_opts opts;
991 
992 	security_init_mnt_opts(&opts);
993 
994 	if (!data)
995 		goto out;
996 
997 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
998 
999 	rc = selinux_parse_opts_str(options, &opts);
1000 	if (rc)
1001 		goto out_err;
1002 
1003 out:
1004 	rc = selinux_set_mnt_opts(sb, &opts);
1005 
1006 out_err:
1007 	security_free_mnt_opts(&opts);
1008 	return rc;
1009 }
1010 
1011 static void selinux_write_opts(struct seq_file *m,
1012 			       struct security_mnt_opts *opts)
1013 {
1014 	int i;
1015 	char *prefix;
1016 
1017 	for (i = 0; i < opts->num_mnt_opts; i++) {
1018 		char *has_comma;
1019 
1020 		if (opts->mnt_opts[i])
1021 			has_comma = strchr(opts->mnt_opts[i], ',');
1022 		else
1023 			has_comma = NULL;
1024 
1025 		switch (opts->mnt_opts_flags[i]) {
1026 		case CONTEXT_MNT:
1027 			prefix = CONTEXT_STR;
1028 			break;
1029 		case FSCONTEXT_MNT:
1030 			prefix = FSCONTEXT_STR;
1031 			break;
1032 		case ROOTCONTEXT_MNT:
1033 			prefix = ROOTCONTEXT_STR;
1034 			break;
1035 		case DEFCONTEXT_MNT:
1036 			prefix = DEFCONTEXT_STR;
1037 			break;
1038 		case SE_SBLABELSUPP:
1039 			seq_putc(m, ',');
1040 			seq_puts(m, LABELSUPP_STR);
1041 			continue;
1042 		default:
1043 			BUG();
1044 		};
1045 		/* we need a comma before each option */
1046 		seq_putc(m, ',');
1047 		seq_puts(m, prefix);
1048 		if (has_comma)
1049 			seq_putc(m, '\"');
1050 		seq_puts(m, opts->mnt_opts[i]);
1051 		if (has_comma)
1052 			seq_putc(m, '\"');
1053 	}
1054 }
1055 
1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1057 {
1058 	struct security_mnt_opts opts;
1059 	int rc;
1060 
1061 	rc = selinux_get_mnt_opts(sb, &opts);
1062 	if (rc) {
1063 		/* before policy load we may get EINVAL, don't show anything */
1064 		if (rc == -EINVAL)
1065 			rc = 0;
1066 		return rc;
1067 	}
1068 
1069 	selinux_write_opts(m, &opts);
1070 
1071 	security_free_mnt_opts(&opts);
1072 
1073 	return rc;
1074 }
1075 
1076 static inline u16 inode_mode_to_security_class(umode_t mode)
1077 {
1078 	switch (mode & S_IFMT) {
1079 	case S_IFSOCK:
1080 		return SECCLASS_SOCK_FILE;
1081 	case S_IFLNK:
1082 		return SECCLASS_LNK_FILE;
1083 	case S_IFREG:
1084 		return SECCLASS_FILE;
1085 	case S_IFBLK:
1086 		return SECCLASS_BLK_FILE;
1087 	case S_IFDIR:
1088 		return SECCLASS_DIR;
1089 	case S_IFCHR:
1090 		return SECCLASS_CHR_FILE;
1091 	case S_IFIFO:
1092 		return SECCLASS_FIFO_FILE;
1093 
1094 	}
1095 
1096 	return SECCLASS_FILE;
1097 }
1098 
1099 static inline int default_protocol_stream(int protocol)
1100 {
1101 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1102 }
1103 
1104 static inline int default_protocol_dgram(int protocol)
1105 {
1106 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1107 }
1108 
1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1110 {
1111 	switch (family) {
1112 	case PF_UNIX:
1113 		switch (type) {
1114 		case SOCK_STREAM:
1115 		case SOCK_SEQPACKET:
1116 			return SECCLASS_UNIX_STREAM_SOCKET;
1117 		case SOCK_DGRAM:
1118 			return SECCLASS_UNIX_DGRAM_SOCKET;
1119 		}
1120 		break;
1121 	case PF_INET:
1122 	case PF_INET6:
1123 		switch (type) {
1124 		case SOCK_STREAM:
1125 			if (default_protocol_stream(protocol))
1126 				return SECCLASS_TCP_SOCKET;
1127 			else
1128 				return SECCLASS_RAWIP_SOCKET;
1129 		case SOCK_DGRAM:
1130 			if (default_protocol_dgram(protocol))
1131 				return SECCLASS_UDP_SOCKET;
1132 			else
1133 				return SECCLASS_RAWIP_SOCKET;
1134 		case SOCK_DCCP:
1135 			return SECCLASS_DCCP_SOCKET;
1136 		default:
1137 			return SECCLASS_RAWIP_SOCKET;
1138 		}
1139 		break;
1140 	case PF_NETLINK:
1141 		switch (protocol) {
1142 		case NETLINK_ROUTE:
1143 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1144 		case NETLINK_FIREWALL:
1145 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1146 		case NETLINK_INET_DIAG:
1147 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1148 		case NETLINK_NFLOG:
1149 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1150 		case NETLINK_XFRM:
1151 			return SECCLASS_NETLINK_XFRM_SOCKET;
1152 		case NETLINK_SELINUX:
1153 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1154 		case NETLINK_AUDIT:
1155 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1156 		case NETLINK_IP6_FW:
1157 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1158 		case NETLINK_DNRTMSG:
1159 			return SECCLASS_NETLINK_DNRT_SOCKET;
1160 		case NETLINK_KOBJECT_UEVENT:
1161 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1162 		default:
1163 			return SECCLASS_NETLINK_SOCKET;
1164 		}
1165 	case PF_PACKET:
1166 		return SECCLASS_PACKET_SOCKET;
1167 	case PF_KEY:
1168 		return SECCLASS_KEY_SOCKET;
1169 	case PF_APPLETALK:
1170 		return SECCLASS_APPLETALK_SOCKET;
1171 	}
1172 
1173 	return SECCLASS_SOCKET;
1174 }
1175 
1176 #ifdef CONFIG_PROC_FS
1177 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1178 				u16 tclass,
1179 				u32 *sid)
1180 {
1181 	int buflen, rc;
1182 	char *buffer, *path, *end;
1183 
1184 	buffer = (char *)__get_free_page(GFP_KERNEL);
1185 	if (!buffer)
1186 		return -ENOMEM;
1187 
1188 	buflen = PAGE_SIZE;
1189 	end = buffer+buflen;
1190 	*--end = '\0';
1191 	buflen--;
1192 	path = end-1;
1193 	*path = '/';
1194 	while (de && de != de->parent) {
1195 		buflen -= de->namelen + 1;
1196 		if (buflen < 0)
1197 			break;
1198 		end -= de->namelen;
1199 		memcpy(end, de->name, de->namelen);
1200 		*--end = '/';
1201 		path = end;
1202 		de = de->parent;
1203 	}
1204 	rc = security_genfs_sid("proc", path, tclass, sid);
1205 	free_page((unsigned long)buffer);
1206 	return rc;
1207 }
1208 #else
1209 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1210 				u16 tclass,
1211 				u32 *sid)
1212 {
1213 	return -EINVAL;
1214 }
1215 #endif
1216 
1217 /* The inode's security attributes must be initialized before first use. */
1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1219 {
1220 	struct superblock_security_struct *sbsec = NULL;
1221 	struct inode_security_struct *isec = inode->i_security;
1222 	u32 sid;
1223 	struct dentry *dentry;
1224 #define INITCONTEXTLEN 255
1225 	char *context = NULL;
1226 	unsigned len = 0;
1227 	int rc = 0;
1228 
1229 	if (isec->initialized)
1230 		goto out;
1231 
1232 	mutex_lock(&isec->lock);
1233 	if (isec->initialized)
1234 		goto out_unlock;
1235 
1236 	sbsec = inode->i_sb->s_security;
1237 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1238 		/* Defer initialization until selinux_complete_init,
1239 		   after the initial policy is loaded and the security
1240 		   server is ready to handle calls. */
1241 		spin_lock(&sbsec->isec_lock);
1242 		if (list_empty(&isec->list))
1243 			list_add(&isec->list, &sbsec->isec_head);
1244 		spin_unlock(&sbsec->isec_lock);
1245 		goto out_unlock;
1246 	}
1247 
1248 	switch (sbsec->behavior) {
1249 	case SECURITY_FS_USE_XATTR:
1250 		if (!inode->i_op->getxattr) {
1251 			isec->sid = sbsec->def_sid;
1252 			break;
1253 		}
1254 
1255 		/* Need a dentry, since the xattr API requires one.
1256 		   Life would be simpler if we could just pass the inode. */
1257 		if (opt_dentry) {
1258 			/* Called from d_instantiate or d_splice_alias. */
1259 			dentry = dget(opt_dentry);
1260 		} else {
1261 			/* Called from selinux_complete_init, try to find a dentry. */
1262 			dentry = d_find_alias(inode);
1263 		}
1264 		if (!dentry) {
1265 			/*
1266 			 * this is can be hit on boot when a file is accessed
1267 			 * before the policy is loaded.  When we load policy we
1268 			 * may find inodes that have no dentry on the
1269 			 * sbsec->isec_head list.  No reason to complain as these
1270 			 * will get fixed up the next time we go through
1271 			 * inode_doinit with a dentry, before these inodes could
1272 			 * be used again by userspace.
1273 			 */
1274 			goto out_unlock;
1275 		}
1276 
1277 		len = INITCONTEXTLEN;
1278 		context = kmalloc(len+1, GFP_NOFS);
1279 		if (!context) {
1280 			rc = -ENOMEM;
1281 			dput(dentry);
1282 			goto out_unlock;
1283 		}
1284 		context[len] = '\0';
1285 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1286 					   context, len);
1287 		if (rc == -ERANGE) {
1288 			kfree(context);
1289 
1290 			/* Need a larger buffer.  Query for the right size. */
1291 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1292 						   NULL, 0);
1293 			if (rc < 0) {
1294 				dput(dentry);
1295 				goto out_unlock;
1296 			}
1297 			len = rc;
1298 			context = kmalloc(len+1, GFP_NOFS);
1299 			if (!context) {
1300 				rc = -ENOMEM;
1301 				dput(dentry);
1302 				goto out_unlock;
1303 			}
1304 			context[len] = '\0';
1305 			rc = inode->i_op->getxattr(dentry,
1306 						   XATTR_NAME_SELINUX,
1307 						   context, len);
1308 		}
1309 		dput(dentry);
1310 		if (rc < 0) {
1311 			if (rc != -ENODATA) {
1312 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1313 				       "%d for dev=%s ino=%ld\n", __func__,
1314 				       -rc, inode->i_sb->s_id, inode->i_ino);
1315 				kfree(context);
1316 				goto out_unlock;
1317 			}
1318 			/* Map ENODATA to the default file SID */
1319 			sid = sbsec->def_sid;
1320 			rc = 0;
1321 		} else {
1322 			rc = security_context_to_sid_default(context, rc, &sid,
1323 							     sbsec->def_sid,
1324 							     GFP_NOFS);
1325 			if (rc) {
1326 				char *dev = inode->i_sb->s_id;
1327 				unsigned long ino = inode->i_ino;
1328 
1329 				if (rc == -EINVAL) {
1330 					if (printk_ratelimit())
1331 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1332 							"context=%s.  This indicates you may need to relabel the inode or the "
1333 							"filesystem in question.\n", ino, dev, context);
1334 				} else {
1335 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1336 					       "returned %d for dev=%s ino=%ld\n",
1337 					       __func__, context, -rc, dev, ino);
1338 				}
1339 				kfree(context);
1340 				/* Leave with the unlabeled SID */
1341 				rc = 0;
1342 				break;
1343 			}
1344 		}
1345 		kfree(context);
1346 		isec->sid = sid;
1347 		break;
1348 	case SECURITY_FS_USE_TASK:
1349 		isec->sid = isec->task_sid;
1350 		break;
1351 	case SECURITY_FS_USE_TRANS:
1352 		/* Default to the fs SID. */
1353 		isec->sid = sbsec->sid;
1354 
1355 		/* Try to obtain a transition SID. */
1356 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1357 		rc = security_transition_sid(isec->task_sid,
1358 					     sbsec->sid,
1359 					     isec->sclass,
1360 					     &sid);
1361 		if (rc)
1362 			goto out_unlock;
1363 		isec->sid = sid;
1364 		break;
1365 	case SECURITY_FS_USE_MNTPOINT:
1366 		isec->sid = sbsec->mntpoint_sid;
1367 		break;
1368 	default:
1369 		/* Default to the fs superblock SID. */
1370 		isec->sid = sbsec->sid;
1371 
1372 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1373 			struct proc_inode *proci = PROC_I(inode);
1374 			if (proci->pde) {
1375 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1376 				rc = selinux_proc_get_sid(proci->pde,
1377 							  isec->sclass,
1378 							  &sid);
1379 				if (rc)
1380 					goto out_unlock;
1381 				isec->sid = sid;
1382 			}
1383 		}
1384 		break;
1385 	}
1386 
1387 	isec->initialized = 1;
1388 
1389 out_unlock:
1390 	mutex_unlock(&isec->lock);
1391 out:
1392 	if (isec->sclass == SECCLASS_FILE)
1393 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1394 	return rc;
1395 }
1396 
1397 /* Convert a Linux signal to an access vector. */
1398 static inline u32 signal_to_av(int sig)
1399 {
1400 	u32 perm = 0;
1401 
1402 	switch (sig) {
1403 	case SIGCHLD:
1404 		/* Commonly granted from child to parent. */
1405 		perm = PROCESS__SIGCHLD;
1406 		break;
1407 	case SIGKILL:
1408 		/* Cannot be caught or ignored */
1409 		perm = PROCESS__SIGKILL;
1410 		break;
1411 	case SIGSTOP:
1412 		/* Cannot be caught or ignored */
1413 		perm = PROCESS__SIGSTOP;
1414 		break;
1415 	default:
1416 		/* All other signals. */
1417 		perm = PROCESS__SIGNAL;
1418 		break;
1419 	}
1420 
1421 	return perm;
1422 }
1423 
1424 /*
1425  * Check permission between a pair of credentials
1426  * fork check, ptrace check, etc.
1427  */
1428 static int cred_has_perm(const struct cred *actor,
1429 			 const struct cred *target,
1430 			 u32 perms)
1431 {
1432 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1433 
1434 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1435 }
1436 
1437 /*
1438  * Check permission between a pair of tasks, e.g. signal checks,
1439  * fork check, ptrace check, etc.
1440  * tsk1 is the actor and tsk2 is the target
1441  * - this uses the default subjective creds of tsk1
1442  */
1443 static int task_has_perm(const struct task_struct *tsk1,
1444 			 const struct task_struct *tsk2,
1445 			 u32 perms)
1446 {
1447 	const struct task_security_struct *__tsec1, *__tsec2;
1448 	u32 sid1, sid2;
1449 
1450 	rcu_read_lock();
1451 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1452 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1453 	rcu_read_unlock();
1454 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1455 }
1456 
1457 /*
1458  * Check permission between current and another task, e.g. signal checks,
1459  * fork check, ptrace check, etc.
1460  * current is the actor and tsk2 is the target
1461  * - this uses current's subjective creds
1462  */
1463 static int current_has_perm(const struct task_struct *tsk,
1464 			    u32 perms)
1465 {
1466 	u32 sid, tsid;
1467 
1468 	sid = current_sid();
1469 	tsid = task_sid(tsk);
1470 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1471 }
1472 
1473 #if CAP_LAST_CAP > 63
1474 #error Fix SELinux to handle capabilities > 63.
1475 #endif
1476 
1477 /* Check whether a task is allowed to use a capability. */
1478 static int task_has_capability(struct task_struct *tsk,
1479 			       const struct cred *cred,
1480 			       int cap, int audit)
1481 {
1482 	struct avc_audit_data ad;
1483 	struct av_decision avd;
1484 	u16 sclass;
1485 	u32 sid = cred_sid(cred);
1486 	u32 av = CAP_TO_MASK(cap);
1487 	int rc;
1488 
1489 	AVC_AUDIT_DATA_INIT(&ad, CAP);
1490 	ad.tsk = tsk;
1491 	ad.u.cap = cap;
1492 
1493 	switch (CAP_TO_INDEX(cap)) {
1494 	case 0:
1495 		sclass = SECCLASS_CAPABILITY;
1496 		break;
1497 	case 1:
1498 		sclass = SECCLASS_CAPABILITY2;
1499 		break;
1500 	default:
1501 		printk(KERN_ERR
1502 		       "SELinux:  out of range capability %d\n", cap);
1503 		BUG();
1504 	}
1505 
1506 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1507 	if (audit == SECURITY_CAP_AUDIT)
1508 		avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1509 	return rc;
1510 }
1511 
1512 /* Check whether a task is allowed to use a system operation. */
1513 static int task_has_system(struct task_struct *tsk,
1514 			   u32 perms)
1515 {
1516 	u32 sid = task_sid(tsk);
1517 
1518 	return avc_has_perm(sid, SECINITSID_KERNEL,
1519 			    SECCLASS_SYSTEM, perms, NULL);
1520 }
1521 
1522 /* Check whether a task has a particular permission to an inode.
1523    The 'adp' parameter is optional and allows other audit
1524    data to be passed (e.g. the dentry). */
1525 static int inode_has_perm(const struct cred *cred,
1526 			  struct inode *inode,
1527 			  u32 perms,
1528 			  struct avc_audit_data *adp)
1529 {
1530 	struct inode_security_struct *isec;
1531 	struct avc_audit_data ad;
1532 	u32 sid;
1533 
1534 	if (unlikely(IS_PRIVATE(inode)))
1535 		return 0;
1536 
1537 	sid = cred_sid(cred);
1538 	isec = inode->i_security;
1539 
1540 	if (!adp) {
1541 		adp = &ad;
1542 		AVC_AUDIT_DATA_INIT(&ad, FS);
1543 		ad.u.fs.inode = inode;
1544 	}
1545 
1546 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1547 }
1548 
1549 /* Same as inode_has_perm, but pass explicit audit data containing
1550    the dentry to help the auditing code to more easily generate the
1551    pathname if needed. */
1552 static inline int dentry_has_perm(const struct cred *cred,
1553 				  struct vfsmount *mnt,
1554 				  struct dentry *dentry,
1555 				  u32 av)
1556 {
1557 	struct inode *inode = dentry->d_inode;
1558 	struct avc_audit_data ad;
1559 
1560 	AVC_AUDIT_DATA_INIT(&ad, FS);
1561 	ad.u.fs.path.mnt = mnt;
1562 	ad.u.fs.path.dentry = dentry;
1563 	return inode_has_perm(cred, inode, av, &ad);
1564 }
1565 
1566 /* Check whether a task can use an open file descriptor to
1567    access an inode in a given way.  Check access to the
1568    descriptor itself, and then use dentry_has_perm to
1569    check a particular permission to the file.
1570    Access to the descriptor is implicitly granted if it
1571    has the same SID as the process.  If av is zero, then
1572    access to the file is not checked, e.g. for cases
1573    where only the descriptor is affected like seek. */
1574 static int file_has_perm(const struct cred *cred,
1575 			 struct file *file,
1576 			 u32 av)
1577 {
1578 	struct file_security_struct *fsec = file->f_security;
1579 	struct inode *inode = file->f_path.dentry->d_inode;
1580 	struct avc_audit_data ad;
1581 	u32 sid = cred_sid(cred);
1582 	int rc;
1583 
1584 	AVC_AUDIT_DATA_INIT(&ad, FS);
1585 	ad.u.fs.path = file->f_path;
1586 
1587 	if (sid != fsec->sid) {
1588 		rc = avc_has_perm(sid, fsec->sid,
1589 				  SECCLASS_FD,
1590 				  FD__USE,
1591 				  &ad);
1592 		if (rc)
1593 			goto out;
1594 	}
1595 
1596 	/* av is zero if only checking access to the descriptor. */
1597 	rc = 0;
1598 	if (av)
1599 		rc = inode_has_perm(cred, inode, av, &ad);
1600 
1601 out:
1602 	return rc;
1603 }
1604 
1605 /* Check whether a task can create a file. */
1606 static int may_create(struct inode *dir,
1607 		      struct dentry *dentry,
1608 		      u16 tclass)
1609 {
1610 	const struct cred *cred = current_cred();
1611 	const struct task_security_struct *tsec = cred->security;
1612 	struct inode_security_struct *dsec;
1613 	struct superblock_security_struct *sbsec;
1614 	u32 sid, newsid;
1615 	struct avc_audit_data ad;
1616 	int rc;
1617 
1618 	dsec = dir->i_security;
1619 	sbsec = dir->i_sb->s_security;
1620 
1621 	sid = tsec->sid;
1622 	newsid = tsec->create_sid;
1623 
1624 	AVC_AUDIT_DATA_INIT(&ad, FS);
1625 	ad.u.fs.path.dentry = dentry;
1626 
1627 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1628 			  DIR__ADD_NAME | DIR__SEARCH,
1629 			  &ad);
1630 	if (rc)
1631 		return rc;
1632 
1633 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1634 		rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1635 		if (rc)
1636 			return rc;
1637 	}
1638 
1639 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1640 	if (rc)
1641 		return rc;
1642 
1643 	return avc_has_perm(newsid, sbsec->sid,
1644 			    SECCLASS_FILESYSTEM,
1645 			    FILESYSTEM__ASSOCIATE, &ad);
1646 }
1647 
1648 /* Check whether a task can create a key. */
1649 static int may_create_key(u32 ksid,
1650 			  struct task_struct *ctx)
1651 {
1652 	u32 sid = task_sid(ctx);
1653 
1654 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1655 }
1656 
1657 #define MAY_LINK	0
1658 #define MAY_UNLINK	1
1659 #define MAY_RMDIR	2
1660 
1661 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1662 static int may_link(struct inode *dir,
1663 		    struct dentry *dentry,
1664 		    int kind)
1665 
1666 {
1667 	struct inode_security_struct *dsec, *isec;
1668 	struct avc_audit_data ad;
1669 	u32 sid = current_sid();
1670 	u32 av;
1671 	int rc;
1672 
1673 	dsec = dir->i_security;
1674 	isec = dentry->d_inode->i_security;
1675 
1676 	AVC_AUDIT_DATA_INIT(&ad, FS);
1677 	ad.u.fs.path.dentry = dentry;
1678 
1679 	av = DIR__SEARCH;
1680 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1681 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1682 	if (rc)
1683 		return rc;
1684 
1685 	switch (kind) {
1686 	case MAY_LINK:
1687 		av = FILE__LINK;
1688 		break;
1689 	case MAY_UNLINK:
1690 		av = FILE__UNLINK;
1691 		break;
1692 	case MAY_RMDIR:
1693 		av = DIR__RMDIR;
1694 		break;
1695 	default:
1696 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1697 			__func__, kind);
1698 		return 0;
1699 	}
1700 
1701 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1702 	return rc;
1703 }
1704 
1705 static inline int may_rename(struct inode *old_dir,
1706 			     struct dentry *old_dentry,
1707 			     struct inode *new_dir,
1708 			     struct dentry *new_dentry)
1709 {
1710 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1711 	struct avc_audit_data ad;
1712 	u32 sid = current_sid();
1713 	u32 av;
1714 	int old_is_dir, new_is_dir;
1715 	int rc;
1716 
1717 	old_dsec = old_dir->i_security;
1718 	old_isec = old_dentry->d_inode->i_security;
1719 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1720 	new_dsec = new_dir->i_security;
1721 
1722 	AVC_AUDIT_DATA_INIT(&ad, FS);
1723 
1724 	ad.u.fs.path.dentry = old_dentry;
1725 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1726 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1727 	if (rc)
1728 		return rc;
1729 	rc = avc_has_perm(sid, old_isec->sid,
1730 			  old_isec->sclass, FILE__RENAME, &ad);
1731 	if (rc)
1732 		return rc;
1733 	if (old_is_dir && new_dir != old_dir) {
1734 		rc = avc_has_perm(sid, old_isec->sid,
1735 				  old_isec->sclass, DIR__REPARENT, &ad);
1736 		if (rc)
1737 			return rc;
1738 	}
1739 
1740 	ad.u.fs.path.dentry = new_dentry;
1741 	av = DIR__ADD_NAME | DIR__SEARCH;
1742 	if (new_dentry->d_inode)
1743 		av |= DIR__REMOVE_NAME;
1744 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1745 	if (rc)
1746 		return rc;
1747 	if (new_dentry->d_inode) {
1748 		new_isec = new_dentry->d_inode->i_security;
1749 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1750 		rc = avc_has_perm(sid, new_isec->sid,
1751 				  new_isec->sclass,
1752 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1753 		if (rc)
1754 			return rc;
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 /* Check whether a task can perform a filesystem operation. */
1761 static int superblock_has_perm(const struct cred *cred,
1762 			       struct super_block *sb,
1763 			       u32 perms,
1764 			       struct avc_audit_data *ad)
1765 {
1766 	struct superblock_security_struct *sbsec;
1767 	u32 sid = cred_sid(cred);
1768 
1769 	sbsec = sb->s_security;
1770 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1771 }
1772 
1773 /* Convert a Linux mode and permission mask to an access vector. */
1774 static inline u32 file_mask_to_av(int mode, int mask)
1775 {
1776 	u32 av = 0;
1777 
1778 	if ((mode & S_IFMT) != S_IFDIR) {
1779 		if (mask & MAY_EXEC)
1780 			av |= FILE__EXECUTE;
1781 		if (mask & MAY_READ)
1782 			av |= FILE__READ;
1783 
1784 		if (mask & MAY_APPEND)
1785 			av |= FILE__APPEND;
1786 		else if (mask & MAY_WRITE)
1787 			av |= FILE__WRITE;
1788 
1789 	} else {
1790 		if (mask & MAY_EXEC)
1791 			av |= DIR__SEARCH;
1792 		if (mask & MAY_WRITE)
1793 			av |= DIR__WRITE;
1794 		if (mask & MAY_READ)
1795 			av |= DIR__READ;
1796 	}
1797 
1798 	return av;
1799 }
1800 
1801 /* Convert a Linux file to an access vector. */
1802 static inline u32 file_to_av(struct file *file)
1803 {
1804 	u32 av = 0;
1805 
1806 	if (file->f_mode & FMODE_READ)
1807 		av |= FILE__READ;
1808 	if (file->f_mode & FMODE_WRITE) {
1809 		if (file->f_flags & O_APPEND)
1810 			av |= FILE__APPEND;
1811 		else
1812 			av |= FILE__WRITE;
1813 	}
1814 	if (!av) {
1815 		/*
1816 		 * Special file opened with flags 3 for ioctl-only use.
1817 		 */
1818 		av = FILE__IOCTL;
1819 	}
1820 
1821 	return av;
1822 }
1823 
1824 /*
1825  * Convert a file to an access vector and include the correct open
1826  * open permission.
1827  */
1828 static inline u32 open_file_to_av(struct file *file)
1829 {
1830 	u32 av = file_to_av(file);
1831 
1832 	if (selinux_policycap_openperm) {
1833 		mode_t mode = file->f_path.dentry->d_inode->i_mode;
1834 		/*
1835 		 * lnk files and socks do not really have an 'open'
1836 		 */
1837 		if (S_ISREG(mode))
1838 			av |= FILE__OPEN;
1839 		else if (S_ISCHR(mode))
1840 			av |= CHR_FILE__OPEN;
1841 		else if (S_ISBLK(mode))
1842 			av |= BLK_FILE__OPEN;
1843 		else if (S_ISFIFO(mode))
1844 			av |= FIFO_FILE__OPEN;
1845 		else if (S_ISDIR(mode))
1846 			av |= DIR__OPEN;
1847 		else if (S_ISSOCK(mode))
1848 			av |= SOCK_FILE__OPEN;
1849 		else
1850 			printk(KERN_ERR "SELinux: WARNING: inside %s with "
1851 				"unknown mode:%o\n", __func__, mode);
1852 	}
1853 	return av;
1854 }
1855 
1856 /* Hook functions begin here. */
1857 
1858 static int selinux_ptrace_may_access(struct task_struct *child,
1859 				     unsigned int mode)
1860 {
1861 	int rc;
1862 
1863 	rc = cap_ptrace_may_access(child, mode);
1864 	if (rc)
1865 		return rc;
1866 
1867 	if (mode == PTRACE_MODE_READ) {
1868 		u32 sid = current_sid();
1869 		u32 csid = task_sid(child);
1870 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1871 	}
1872 
1873 	return current_has_perm(child, PROCESS__PTRACE);
1874 }
1875 
1876 static int selinux_ptrace_traceme(struct task_struct *parent)
1877 {
1878 	int rc;
1879 
1880 	rc = cap_ptrace_traceme(parent);
1881 	if (rc)
1882 		return rc;
1883 
1884 	return task_has_perm(parent, current, PROCESS__PTRACE);
1885 }
1886 
1887 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1888 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1889 {
1890 	int error;
1891 
1892 	error = current_has_perm(target, PROCESS__GETCAP);
1893 	if (error)
1894 		return error;
1895 
1896 	return cap_capget(target, effective, inheritable, permitted);
1897 }
1898 
1899 static int selinux_capset(struct cred *new, const struct cred *old,
1900 			  const kernel_cap_t *effective,
1901 			  const kernel_cap_t *inheritable,
1902 			  const kernel_cap_t *permitted)
1903 {
1904 	int error;
1905 
1906 	error = cap_capset(new, old,
1907 				      effective, inheritable, permitted);
1908 	if (error)
1909 		return error;
1910 
1911 	return cred_has_perm(old, new, PROCESS__SETCAP);
1912 }
1913 
1914 /*
1915  * (This comment used to live with the selinux_task_setuid hook,
1916  * which was removed).
1917  *
1918  * Since setuid only affects the current process, and since the SELinux
1919  * controls are not based on the Linux identity attributes, SELinux does not
1920  * need to control this operation.  However, SELinux does control the use of
1921  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1922  */
1923 
1924 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1925 			   int cap, int audit)
1926 {
1927 	int rc;
1928 
1929 	rc = cap_capable(tsk, cred, cap, audit);
1930 	if (rc)
1931 		return rc;
1932 
1933 	return task_has_capability(tsk, cred, cap, audit);
1934 }
1935 
1936 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1937 {
1938 	int buflen, rc;
1939 	char *buffer, *path, *end;
1940 
1941 	rc = -ENOMEM;
1942 	buffer = (char *)__get_free_page(GFP_KERNEL);
1943 	if (!buffer)
1944 		goto out;
1945 
1946 	buflen = PAGE_SIZE;
1947 	end = buffer+buflen;
1948 	*--end = '\0';
1949 	buflen--;
1950 	path = end-1;
1951 	*path = '/';
1952 	while (table) {
1953 		const char *name = table->procname;
1954 		size_t namelen = strlen(name);
1955 		buflen -= namelen + 1;
1956 		if (buflen < 0)
1957 			goto out_free;
1958 		end -= namelen;
1959 		memcpy(end, name, namelen);
1960 		*--end = '/';
1961 		path = end;
1962 		table = table->parent;
1963 	}
1964 	buflen -= 4;
1965 	if (buflen < 0)
1966 		goto out_free;
1967 	end -= 4;
1968 	memcpy(end, "/sys", 4);
1969 	path = end;
1970 	rc = security_genfs_sid("proc", path, tclass, sid);
1971 out_free:
1972 	free_page((unsigned long)buffer);
1973 out:
1974 	return rc;
1975 }
1976 
1977 static int selinux_sysctl(ctl_table *table, int op)
1978 {
1979 	int error = 0;
1980 	u32 av;
1981 	u32 tsid, sid;
1982 	int rc;
1983 
1984 	sid = current_sid();
1985 
1986 	rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1987 				    SECCLASS_DIR : SECCLASS_FILE, &tsid);
1988 	if (rc) {
1989 		/* Default to the well-defined sysctl SID. */
1990 		tsid = SECINITSID_SYSCTL;
1991 	}
1992 
1993 	/* The op values are "defined" in sysctl.c, thereby creating
1994 	 * a bad coupling between this module and sysctl.c */
1995 	if (op == 001) {
1996 		error = avc_has_perm(sid, tsid,
1997 				     SECCLASS_DIR, DIR__SEARCH, NULL);
1998 	} else {
1999 		av = 0;
2000 		if (op & 004)
2001 			av |= FILE__READ;
2002 		if (op & 002)
2003 			av |= FILE__WRITE;
2004 		if (av)
2005 			error = avc_has_perm(sid, tsid,
2006 					     SECCLASS_FILE, av, NULL);
2007 	}
2008 
2009 	return error;
2010 }
2011 
2012 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2013 {
2014 	const struct cred *cred = current_cred();
2015 	int rc = 0;
2016 
2017 	if (!sb)
2018 		return 0;
2019 
2020 	switch (cmds) {
2021 	case Q_SYNC:
2022 	case Q_QUOTAON:
2023 	case Q_QUOTAOFF:
2024 	case Q_SETINFO:
2025 	case Q_SETQUOTA:
2026 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2027 		break;
2028 	case Q_GETFMT:
2029 	case Q_GETINFO:
2030 	case Q_GETQUOTA:
2031 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2032 		break;
2033 	default:
2034 		rc = 0;  /* let the kernel handle invalid cmds */
2035 		break;
2036 	}
2037 	return rc;
2038 }
2039 
2040 static int selinux_quota_on(struct dentry *dentry)
2041 {
2042 	const struct cred *cred = current_cred();
2043 
2044 	return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2045 }
2046 
2047 static int selinux_syslog(int type)
2048 {
2049 	int rc;
2050 
2051 	rc = cap_syslog(type);
2052 	if (rc)
2053 		return rc;
2054 
2055 	switch (type) {
2056 	case 3:		/* Read last kernel messages */
2057 	case 10:	/* Return size of the log buffer */
2058 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2059 		break;
2060 	case 6:		/* Disable logging to console */
2061 	case 7:		/* Enable logging to console */
2062 	case 8:		/* Set level of messages printed to console */
2063 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2064 		break;
2065 	case 0:		/* Close log */
2066 	case 1:		/* Open log */
2067 	case 2:		/* Read from log */
2068 	case 4:		/* Read/clear last kernel messages */
2069 	case 5:		/* Clear ring buffer */
2070 	default:
2071 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2072 		break;
2073 	}
2074 	return rc;
2075 }
2076 
2077 /*
2078  * Check that a process has enough memory to allocate a new virtual
2079  * mapping. 0 means there is enough memory for the allocation to
2080  * succeed and -ENOMEM implies there is not.
2081  *
2082  * Do not audit the selinux permission check, as this is applied to all
2083  * processes that allocate mappings.
2084  */
2085 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2086 {
2087 	int rc, cap_sys_admin = 0;
2088 
2089 	rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2090 			     SECURITY_CAP_NOAUDIT);
2091 	if (rc == 0)
2092 		cap_sys_admin = 1;
2093 
2094 	return __vm_enough_memory(mm, pages, cap_sys_admin);
2095 }
2096 
2097 /* binprm security operations */
2098 
2099 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2100 {
2101 	const struct task_security_struct *old_tsec;
2102 	struct task_security_struct *new_tsec;
2103 	struct inode_security_struct *isec;
2104 	struct avc_audit_data ad;
2105 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
2106 	int rc;
2107 
2108 	rc = cap_bprm_set_creds(bprm);
2109 	if (rc)
2110 		return rc;
2111 
2112 	/* SELinux context only depends on initial program or script and not
2113 	 * the script interpreter */
2114 	if (bprm->cred_prepared)
2115 		return 0;
2116 
2117 	old_tsec = current_security();
2118 	new_tsec = bprm->cred->security;
2119 	isec = inode->i_security;
2120 
2121 	/* Default to the current task SID. */
2122 	new_tsec->sid = old_tsec->sid;
2123 	new_tsec->osid = old_tsec->sid;
2124 
2125 	/* Reset fs, key, and sock SIDs on execve. */
2126 	new_tsec->create_sid = 0;
2127 	new_tsec->keycreate_sid = 0;
2128 	new_tsec->sockcreate_sid = 0;
2129 
2130 	if (old_tsec->exec_sid) {
2131 		new_tsec->sid = old_tsec->exec_sid;
2132 		/* Reset exec SID on execve. */
2133 		new_tsec->exec_sid = 0;
2134 	} else {
2135 		/* Check for a default transition on this program. */
2136 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2137 					     SECCLASS_PROCESS, &new_tsec->sid);
2138 		if (rc)
2139 			return rc;
2140 	}
2141 
2142 	AVC_AUDIT_DATA_INIT(&ad, FS);
2143 	ad.u.fs.path = bprm->file->f_path;
2144 
2145 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2146 		new_tsec->sid = old_tsec->sid;
2147 
2148 	if (new_tsec->sid == old_tsec->sid) {
2149 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2150 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2151 		if (rc)
2152 			return rc;
2153 	} else {
2154 		/* Check permissions for the transition. */
2155 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2156 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2157 		if (rc)
2158 			return rc;
2159 
2160 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2161 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2162 		if (rc)
2163 			return rc;
2164 
2165 		/* Check for shared state */
2166 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2167 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2168 					  SECCLASS_PROCESS, PROCESS__SHARE,
2169 					  NULL);
2170 			if (rc)
2171 				return -EPERM;
2172 		}
2173 
2174 		/* Make sure that anyone attempting to ptrace over a task that
2175 		 * changes its SID has the appropriate permit */
2176 		if (bprm->unsafe &
2177 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2178 			struct task_struct *tracer;
2179 			struct task_security_struct *sec;
2180 			u32 ptsid = 0;
2181 
2182 			rcu_read_lock();
2183 			tracer = tracehook_tracer_task(current);
2184 			if (likely(tracer != NULL)) {
2185 				sec = __task_cred(tracer)->security;
2186 				ptsid = sec->sid;
2187 			}
2188 			rcu_read_unlock();
2189 
2190 			if (ptsid != 0) {
2191 				rc = avc_has_perm(ptsid, new_tsec->sid,
2192 						  SECCLASS_PROCESS,
2193 						  PROCESS__PTRACE, NULL);
2194 				if (rc)
2195 					return -EPERM;
2196 			}
2197 		}
2198 
2199 		/* Clear any possibly unsafe personality bits on exec: */
2200 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2207 {
2208 	const struct cred *cred = current_cred();
2209 	const struct task_security_struct *tsec = cred->security;
2210 	u32 sid, osid;
2211 	int atsecure = 0;
2212 
2213 	sid = tsec->sid;
2214 	osid = tsec->osid;
2215 
2216 	if (osid != sid) {
2217 		/* Enable secure mode for SIDs transitions unless
2218 		   the noatsecure permission is granted between
2219 		   the two SIDs, i.e. ahp returns 0. */
2220 		atsecure = avc_has_perm(osid, sid,
2221 					SECCLASS_PROCESS,
2222 					PROCESS__NOATSECURE, NULL);
2223 	}
2224 
2225 	return (atsecure || cap_bprm_secureexec(bprm));
2226 }
2227 
2228 extern struct vfsmount *selinuxfs_mount;
2229 extern struct dentry *selinux_null;
2230 
2231 /* Derived from fs/exec.c:flush_old_files. */
2232 static inline void flush_unauthorized_files(const struct cred *cred,
2233 					    struct files_struct *files)
2234 {
2235 	struct avc_audit_data ad;
2236 	struct file *file, *devnull = NULL;
2237 	struct tty_struct *tty;
2238 	struct fdtable *fdt;
2239 	long j = -1;
2240 	int drop_tty = 0;
2241 
2242 	tty = get_current_tty();
2243 	if (tty) {
2244 		file_list_lock();
2245 		if (!list_empty(&tty->tty_files)) {
2246 			struct inode *inode;
2247 
2248 			/* Revalidate access to controlling tty.
2249 			   Use inode_has_perm on the tty inode directly rather
2250 			   than using file_has_perm, as this particular open
2251 			   file may belong to another process and we are only
2252 			   interested in the inode-based check here. */
2253 			file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2254 			inode = file->f_path.dentry->d_inode;
2255 			if (inode_has_perm(cred, inode,
2256 					   FILE__READ | FILE__WRITE, NULL)) {
2257 				drop_tty = 1;
2258 			}
2259 		}
2260 		file_list_unlock();
2261 		tty_kref_put(tty);
2262 	}
2263 	/* Reset controlling tty. */
2264 	if (drop_tty)
2265 		no_tty();
2266 
2267 	/* Revalidate access to inherited open files. */
2268 
2269 	AVC_AUDIT_DATA_INIT(&ad, FS);
2270 
2271 	spin_lock(&files->file_lock);
2272 	for (;;) {
2273 		unsigned long set, i;
2274 		int fd;
2275 
2276 		j++;
2277 		i = j * __NFDBITS;
2278 		fdt = files_fdtable(files);
2279 		if (i >= fdt->max_fds)
2280 			break;
2281 		set = fdt->open_fds->fds_bits[j];
2282 		if (!set)
2283 			continue;
2284 		spin_unlock(&files->file_lock);
2285 		for ( ; set ; i++, set >>= 1) {
2286 			if (set & 1) {
2287 				file = fget(i);
2288 				if (!file)
2289 					continue;
2290 				if (file_has_perm(cred,
2291 						  file,
2292 						  file_to_av(file))) {
2293 					sys_close(i);
2294 					fd = get_unused_fd();
2295 					if (fd != i) {
2296 						if (fd >= 0)
2297 							put_unused_fd(fd);
2298 						fput(file);
2299 						continue;
2300 					}
2301 					if (devnull) {
2302 						get_file(devnull);
2303 					} else {
2304 						devnull = dentry_open(
2305 							dget(selinux_null),
2306 							mntget(selinuxfs_mount),
2307 							O_RDWR, cred);
2308 						if (IS_ERR(devnull)) {
2309 							devnull = NULL;
2310 							put_unused_fd(fd);
2311 							fput(file);
2312 							continue;
2313 						}
2314 					}
2315 					fd_install(fd, devnull);
2316 				}
2317 				fput(file);
2318 			}
2319 		}
2320 		spin_lock(&files->file_lock);
2321 
2322 	}
2323 	spin_unlock(&files->file_lock);
2324 }
2325 
2326 /*
2327  * Prepare a process for imminent new credential changes due to exec
2328  */
2329 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2330 {
2331 	struct task_security_struct *new_tsec;
2332 	struct rlimit *rlim, *initrlim;
2333 	int rc, i;
2334 
2335 	new_tsec = bprm->cred->security;
2336 	if (new_tsec->sid == new_tsec->osid)
2337 		return;
2338 
2339 	/* Close files for which the new task SID is not authorized. */
2340 	flush_unauthorized_files(bprm->cred, current->files);
2341 
2342 	/* Always clear parent death signal on SID transitions. */
2343 	current->pdeath_signal = 0;
2344 
2345 	/* Check whether the new SID can inherit resource limits from the old
2346 	 * SID.  If not, reset all soft limits to the lower of the current
2347 	 * task's hard limit and the init task's soft limit.
2348 	 *
2349 	 * Note that the setting of hard limits (even to lower them) can be
2350 	 * controlled by the setrlimit check.  The inclusion of the init task's
2351 	 * soft limit into the computation is to avoid resetting soft limits
2352 	 * higher than the default soft limit for cases where the default is
2353 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2354 	 */
2355 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2356 			  PROCESS__RLIMITINH, NULL);
2357 	if (rc) {
2358 		for (i = 0; i < RLIM_NLIMITS; i++) {
2359 			rlim = current->signal->rlim + i;
2360 			initrlim = init_task.signal->rlim + i;
2361 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2362 		}
2363 		update_rlimit_cpu(rlim->rlim_cur);
2364 	}
2365 }
2366 
2367 /*
2368  * Clean up the process immediately after the installation of new credentials
2369  * due to exec
2370  */
2371 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2372 {
2373 	const struct task_security_struct *tsec = current_security();
2374 	struct itimerval itimer;
2375 	u32 osid, sid;
2376 	int rc, i;
2377 
2378 	osid = tsec->osid;
2379 	sid = tsec->sid;
2380 
2381 	if (sid == osid)
2382 		return;
2383 
2384 	/* Check whether the new SID can inherit signal state from the old SID.
2385 	 * If not, clear itimers to avoid subsequent signal generation and
2386 	 * flush and unblock signals.
2387 	 *
2388 	 * This must occur _after_ the task SID has been updated so that any
2389 	 * kill done after the flush will be checked against the new SID.
2390 	 */
2391 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2392 	if (rc) {
2393 		memset(&itimer, 0, sizeof itimer);
2394 		for (i = 0; i < 3; i++)
2395 			do_setitimer(i, &itimer, NULL);
2396 		spin_lock_irq(&current->sighand->siglock);
2397 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2398 			__flush_signals(current);
2399 			flush_signal_handlers(current, 1);
2400 			sigemptyset(&current->blocked);
2401 		}
2402 		spin_unlock_irq(&current->sighand->siglock);
2403 	}
2404 
2405 	/* Wake up the parent if it is waiting so that it can recheck
2406 	 * wait permission to the new task SID. */
2407 	read_lock(&tasklist_lock);
2408 	wake_up_interruptible(&current->real_parent->signal->wait_chldexit);
2409 	read_unlock(&tasklist_lock);
2410 }
2411 
2412 /* superblock security operations */
2413 
2414 static int selinux_sb_alloc_security(struct super_block *sb)
2415 {
2416 	return superblock_alloc_security(sb);
2417 }
2418 
2419 static void selinux_sb_free_security(struct super_block *sb)
2420 {
2421 	superblock_free_security(sb);
2422 }
2423 
2424 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2425 {
2426 	if (plen > olen)
2427 		return 0;
2428 
2429 	return !memcmp(prefix, option, plen);
2430 }
2431 
2432 static inline int selinux_option(char *option, int len)
2433 {
2434 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2435 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2436 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2437 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2438 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2439 }
2440 
2441 static inline void take_option(char **to, char *from, int *first, int len)
2442 {
2443 	if (!*first) {
2444 		**to = ',';
2445 		*to += 1;
2446 	} else
2447 		*first = 0;
2448 	memcpy(*to, from, len);
2449 	*to += len;
2450 }
2451 
2452 static inline void take_selinux_option(char **to, char *from, int *first,
2453 				       int len)
2454 {
2455 	int current_size = 0;
2456 
2457 	if (!*first) {
2458 		**to = '|';
2459 		*to += 1;
2460 	} else
2461 		*first = 0;
2462 
2463 	while (current_size < len) {
2464 		if (*from != '"') {
2465 			**to = *from;
2466 			*to += 1;
2467 		}
2468 		from += 1;
2469 		current_size += 1;
2470 	}
2471 }
2472 
2473 static int selinux_sb_copy_data(char *orig, char *copy)
2474 {
2475 	int fnosec, fsec, rc = 0;
2476 	char *in_save, *in_curr, *in_end;
2477 	char *sec_curr, *nosec_save, *nosec;
2478 	int open_quote = 0;
2479 
2480 	in_curr = orig;
2481 	sec_curr = copy;
2482 
2483 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2484 	if (!nosec) {
2485 		rc = -ENOMEM;
2486 		goto out;
2487 	}
2488 
2489 	nosec_save = nosec;
2490 	fnosec = fsec = 1;
2491 	in_save = in_end = orig;
2492 
2493 	do {
2494 		if (*in_end == '"')
2495 			open_quote = !open_quote;
2496 		if ((*in_end == ',' && open_quote == 0) ||
2497 				*in_end == '\0') {
2498 			int len = in_end - in_curr;
2499 
2500 			if (selinux_option(in_curr, len))
2501 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2502 			else
2503 				take_option(&nosec, in_curr, &fnosec, len);
2504 
2505 			in_curr = in_end + 1;
2506 		}
2507 	} while (*in_end++);
2508 
2509 	strcpy(in_save, nosec_save);
2510 	free_page((unsigned long)nosec_save);
2511 out:
2512 	return rc;
2513 }
2514 
2515 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2516 {
2517 	const struct cred *cred = current_cred();
2518 	struct avc_audit_data ad;
2519 	int rc;
2520 
2521 	rc = superblock_doinit(sb, data);
2522 	if (rc)
2523 		return rc;
2524 
2525 	/* Allow all mounts performed by the kernel */
2526 	if (flags & MS_KERNMOUNT)
2527 		return 0;
2528 
2529 	AVC_AUDIT_DATA_INIT(&ad, FS);
2530 	ad.u.fs.path.dentry = sb->s_root;
2531 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2532 }
2533 
2534 static int selinux_sb_statfs(struct dentry *dentry)
2535 {
2536 	const struct cred *cred = current_cred();
2537 	struct avc_audit_data ad;
2538 
2539 	AVC_AUDIT_DATA_INIT(&ad, FS);
2540 	ad.u.fs.path.dentry = dentry->d_sb->s_root;
2541 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2542 }
2543 
2544 static int selinux_mount(char *dev_name,
2545 			 struct path *path,
2546 			 char *type,
2547 			 unsigned long flags,
2548 			 void *data)
2549 {
2550 	const struct cred *cred = current_cred();
2551 
2552 	if (flags & MS_REMOUNT)
2553 		return superblock_has_perm(cred, path->mnt->mnt_sb,
2554 					   FILESYSTEM__REMOUNT, NULL);
2555 	else
2556 		return dentry_has_perm(cred, path->mnt, path->dentry,
2557 				       FILE__MOUNTON);
2558 }
2559 
2560 static int selinux_umount(struct vfsmount *mnt, int flags)
2561 {
2562 	const struct cred *cred = current_cred();
2563 
2564 	return superblock_has_perm(cred, mnt->mnt_sb,
2565 				   FILESYSTEM__UNMOUNT, NULL);
2566 }
2567 
2568 /* inode security operations */
2569 
2570 static int selinux_inode_alloc_security(struct inode *inode)
2571 {
2572 	return inode_alloc_security(inode);
2573 }
2574 
2575 static void selinux_inode_free_security(struct inode *inode)
2576 {
2577 	inode_free_security(inode);
2578 }
2579 
2580 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2581 				       char **name, void **value,
2582 				       size_t *len)
2583 {
2584 	const struct cred *cred = current_cred();
2585 	const struct task_security_struct *tsec = cred->security;
2586 	struct inode_security_struct *dsec;
2587 	struct superblock_security_struct *sbsec;
2588 	u32 sid, newsid, clen;
2589 	int rc;
2590 	char *namep = NULL, *context;
2591 
2592 	dsec = dir->i_security;
2593 	sbsec = dir->i_sb->s_security;
2594 
2595 	sid = tsec->sid;
2596 	newsid = tsec->create_sid;
2597 
2598 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2599 		rc = security_transition_sid(sid, dsec->sid,
2600 					     inode_mode_to_security_class(inode->i_mode),
2601 					     &newsid);
2602 		if (rc) {
2603 			printk(KERN_WARNING "%s:  "
2604 			       "security_transition_sid failed, rc=%d (dev=%s "
2605 			       "ino=%ld)\n",
2606 			       __func__,
2607 			       -rc, inode->i_sb->s_id, inode->i_ino);
2608 			return rc;
2609 		}
2610 	}
2611 
2612 	/* Possibly defer initialization to selinux_complete_init. */
2613 	if (sbsec->flags & SE_SBINITIALIZED) {
2614 		struct inode_security_struct *isec = inode->i_security;
2615 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2616 		isec->sid = newsid;
2617 		isec->initialized = 1;
2618 	}
2619 
2620 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2621 		return -EOPNOTSUPP;
2622 
2623 	if (name) {
2624 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2625 		if (!namep)
2626 			return -ENOMEM;
2627 		*name = namep;
2628 	}
2629 
2630 	if (value && len) {
2631 		rc = security_sid_to_context_force(newsid, &context, &clen);
2632 		if (rc) {
2633 			kfree(namep);
2634 			return rc;
2635 		}
2636 		*value = context;
2637 		*len = clen;
2638 	}
2639 
2640 	return 0;
2641 }
2642 
2643 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2644 {
2645 	return may_create(dir, dentry, SECCLASS_FILE);
2646 }
2647 
2648 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2649 {
2650 	return may_link(dir, old_dentry, MAY_LINK);
2651 }
2652 
2653 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2654 {
2655 	return may_link(dir, dentry, MAY_UNLINK);
2656 }
2657 
2658 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2659 {
2660 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2661 }
2662 
2663 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2664 {
2665 	return may_create(dir, dentry, SECCLASS_DIR);
2666 }
2667 
2668 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2669 {
2670 	return may_link(dir, dentry, MAY_RMDIR);
2671 }
2672 
2673 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2674 {
2675 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2676 }
2677 
2678 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2679 				struct inode *new_inode, struct dentry *new_dentry)
2680 {
2681 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2682 }
2683 
2684 static int selinux_inode_readlink(struct dentry *dentry)
2685 {
2686 	const struct cred *cred = current_cred();
2687 
2688 	return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2689 }
2690 
2691 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2692 {
2693 	const struct cred *cred = current_cred();
2694 
2695 	return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2696 }
2697 
2698 static int selinux_inode_permission(struct inode *inode, int mask)
2699 {
2700 	const struct cred *cred = current_cred();
2701 
2702 	if (!mask) {
2703 		/* No permission to check.  Existence test. */
2704 		return 0;
2705 	}
2706 
2707 	return inode_has_perm(cred, inode,
2708 			      file_mask_to_av(inode->i_mode, mask), NULL);
2709 }
2710 
2711 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2712 {
2713 	const struct cred *cred = current_cred();
2714 
2715 	if (iattr->ia_valid & ATTR_FORCE)
2716 		return 0;
2717 
2718 	if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2719 			       ATTR_ATIME_SET | ATTR_MTIME_SET))
2720 		return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2721 
2722 	return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2723 }
2724 
2725 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2726 {
2727 	const struct cred *cred = current_cred();
2728 
2729 	return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2730 }
2731 
2732 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2733 {
2734 	const struct cred *cred = current_cred();
2735 
2736 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2737 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2738 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2739 			if (!capable(CAP_SETFCAP))
2740 				return -EPERM;
2741 		} else if (!capable(CAP_SYS_ADMIN)) {
2742 			/* A different attribute in the security namespace.
2743 			   Restrict to administrator. */
2744 			return -EPERM;
2745 		}
2746 	}
2747 
2748 	/* Not an attribute we recognize, so just check the
2749 	   ordinary setattr permission. */
2750 	return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2751 }
2752 
2753 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2754 				  const void *value, size_t size, int flags)
2755 {
2756 	struct inode *inode = dentry->d_inode;
2757 	struct inode_security_struct *isec = inode->i_security;
2758 	struct superblock_security_struct *sbsec;
2759 	struct avc_audit_data ad;
2760 	u32 newsid, sid = current_sid();
2761 	int rc = 0;
2762 
2763 	if (strcmp(name, XATTR_NAME_SELINUX))
2764 		return selinux_inode_setotherxattr(dentry, name);
2765 
2766 	sbsec = inode->i_sb->s_security;
2767 	if (!(sbsec->flags & SE_SBLABELSUPP))
2768 		return -EOPNOTSUPP;
2769 
2770 	if (!is_owner_or_cap(inode))
2771 		return -EPERM;
2772 
2773 	AVC_AUDIT_DATA_INIT(&ad, FS);
2774 	ad.u.fs.path.dentry = dentry;
2775 
2776 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2777 			  FILE__RELABELFROM, &ad);
2778 	if (rc)
2779 		return rc;
2780 
2781 	rc = security_context_to_sid(value, size, &newsid);
2782 	if (rc == -EINVAL) {
2783 		if (!capable(CAP_MAC_ADMIN))
2784 			return rc;
2785 		rc = security_context_to_sid_force(value, size, &newsid);
2786 	}
2787 	if (rc)
2788 		return rc;
2789 
2790 	rc = avc_has_perm(sid, newsid, isec->sclass,
2791 			  FILE__RELABELTO, &ad);
2792 	if (rc)
2793 		return rc;
2794 
2795 	rc = security_validate_transition(isec->sid, newsid, sid,
2796 					  isec->sclass);
2797 	if (rc)
2798 		return rc;
2799 
2800 	return avc_has_perm(newsid,
2801 			    sbsec->sid,
2802 			    SECCLASS_FILESYSTEM,
2803 			    FILESYSTEM__ASSOCIATE,
2804 			    &ad);
2805 }
2806 
2807 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2808 					const void *value, size_t size,
2809 					int flags)
2810 {
2811 	struct inode *inode = dentry->d_inode;
2812 	struct inode_security_struct *isec = inode->i_security;
2813 	u32 newsid;
2814 	int rc;
2815 
2816 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2817 		/* Not an attribute we recognize, so nothing to do. */
2818 		return;
2819 	}
2820 
2821 	rc = security_context_to_sid_force(value, size, &newsid);
2822 	if (rc) {
2823 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2824 		       "for (%s, %lu), rc=%d\n",
2825 		       inode->i_sb->s_id, inode->i_ino, -rc);
2826 		return;
2827 	}
2828 
2829 	isec->sid = newsid;
2830 	return;
2831 }
2832 
2833 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2834 {
2835 	const struct cred *cred = current_cred();
2836 
2837 	return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2838 }
2839 
2840 static int selinux_inode_listxattr(struct dentry *dentry)
2841 {
2842 	const struct cred *cred = current_cred();
2843 
2844 	return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2845 }
2846 
2847 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2848 {
2849 	if (strcmp(name, XATTR_NAME_SELINUX))
2850 		return selinux_inode_setotherxattr(dentry, name);
2851 
2852 	/* No one is allowed to remove a SELinux security label.
2853 	   You can change the label, but all data must be labeled. */
2854 	return -EACCES;
2855 }
2856 
2857 /*
2858  * Copy the inode security context value to the user.
2859  *
2860  * Permission check is handled by selinux_inode_getxattr hook.
2861  */
2862 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2863 {
2864 	u32 size;
2865 	int error;
2866 	char *context = NULL;
2867 	struct inode_security_struct *isec = inode->i_security;
2868 
2869 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2870 		return -EOPNOTSUPP;
2871 
2872 	/*
2873 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2874 	 * value even if it is not defined by current policy; otherwise,
2875 	 * use the in-core value under current policy.
2876 	 * Use the non-auditing forms of the permission checks since
2877 	 * getxattr may be called by unprivileged processes commonly
2878 	 * and lack of permission just means that we fall back to the
2879 	 * in-core context value, not a denial.
2880 	 */
2881 	error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2882 				SECURITY_CAP_NOAUDIT);
2883 	if (!error)
2884 		error = security_sid_to_context_force(isec->sid, &context,
2885 						      &size);
2886 	else
2887 		error = security_sid_to_context(isec->sid, &context, &size);
2888 	if (error)
2889 		return error;
2890 	error = size;
2891 	if (alloc) {
2892 		*buffer = context;
2893 		goto out_nofree;
2894 	}
2895 	kfree(context);
2896 out_nofree:
2897 	return error;
2898 }
2899 
2900 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2901 				     const void *value, size_t size, int flags)
2902 {
2903 	struct inode_security_struct *isec = inode->i_security;
2904 	u32 newsid;
2905 	int rc;
2906 
2907 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2908 		return -EOPNOTSUPP;
2909 
2910 	if (!value || !size)
2911 		return -EACCES;
2912 
2913 	rc = security_context_to_sid((void *)value, size, &newsid);
2914 	if (rc)
2915 		return rc;
2916 
2917 	isec->sid = newsid;
2918 	return 0;
2919 }
2920 
2921 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2922 {
2923 	const int len = sizeof(XATTR_NAME_SELINUX);
2924 	if (buffer && len <= buffer_size)
2925 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2926 	return len;
2927 }
2928 
2929 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2930 {
2931 	struct inode_security_struct *isec = inode->i_security;
2932 	*secid = isec->sid;
2933 }
2934 
2935 /* file security operations */
2936 
2937 static int selinux_revalidate_file_permission(struct file *file, int mask)
2938 {
2939 	const struct cred *cred = current_cred();
2940 	struct inode *inode = file->f_path.dentry->d_inode;
2941 
2942 	if (!mask) {
2943 		/* No permission to check.  Existence test. */
2944 		return 0;
2945 	}
2946 
2947 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2948 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2949 		mask |= MAY_APPEND;
2950 
2951 	return file_has_perm(cred, file,
2952 			     file_mask_to_av(inode->i_mode, mask));
2953 }
2954 
2955 static int selinux_file_permission(struct file *file, int mask)
2956 {
2957 	if (!mask)
2958 		/* No permission to check.  Existence test. */
2959 		return 0;
2960 
2961 	return selinux_revalidate_file_permission(file, mask);
2962 }
2963 
2964 static int selinux_file_alloc_security(struct file *file)
2965 {
2966 	return file_alloc_security(file);
2967 }
2968 
2969 static void selinux_file_free_security(struct file *file)
2970 {
2971 	file_free_security(file);
2972 }
2973 
2974 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2975 			      unsigned long arg)
2976 {
2977 	const struct cred *cred = current_cred();
2978 	u32 av = 0;
2979 
2980 	if (_IOC_DIR(cmd) & _IOC_WRITE)
2981 		av |= FILE__WRITE;
2982 	if (_IOC_DIR(cmd) & _IOC_READ)
2983 		av |= FILE__READ;
2984 	if (!av)
2985 		av = FILE__IOCTL;
2986 
2987 	return file_has_perm(cred, file, av);
2988 }
2989 
2990 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2991 {
2992 	const struct cred *cred = current_cred();
2993 	int rc = 0;
2994 
2995 #ifndef CONFIG_PPC32
2996 	if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2997 		/*
2998 		 * We are making executable an anonymous mapping or a
2999 		 * private file mapping that will also be writable.
3000 		 * This has an additional check.
3001 		 */
3002 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3003 		if (rc)
3004 			goto error;
3005 	}
3006 #endif
3007 
3008 	if (file) {
3009 		/* read access is always possible with a mapping */
3010 		u32 av = FILE__READ;
3011 
3012 		/* write access only matters if the mapping is shared */
3013 		if (shared && (prot & PROT_WRITE))
3014 			av |= FILE__WRITE;
3015 
3016 		if (prot & PROT_EXEC)
3017 			av |= FILE__EXECUTE;
3018 
3019 		return file_has_perm(cred, file, av);
3020 	}
3021 
3022 error:
3023 	return rc;
3024 }
3025 
3026 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3027 			     unsigned long prot, unsigned long flags,
3028 			     unsigned long addr, unsigned long addr_only)
3029 {
3030 	int rc = 0;
3031 	u32 sid = current_sid();
3032 
3033 	if (addr < mmap_min_addr)
3034 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3035 				  MEMPROTECT__MMAP_ZERO, NULL);
3036 	if (rc || addr_only)
3037 		return rc;
3038 
3039 	if (selinux_checkreqprot)
3040 		prot = reqprot;
3041 
3042 	return file_map_prot_check(file, prot,
3043 				   (flags & MAP_TYPE) == MAP_SHARED);
3044 }
3045 
3046 static int selinux_file_mprotect(struct vm_area_struct *vma,
3047 				 unsigned long reqprot,
3048 				 unsigned long prot)
3049 {
3050 	const struct cred *cred = current_cred();
3051 
3052 	if (selinux_checkreqprot)
3053 		prot = reqprot;
3054 
3055 #ifndef CONFIG_PPC32
3056 	if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3057 		int rc = 0;
3058 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3059 		    vma->vm_end <= vma->vm_mm->brk) {
3060 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3061 		} else if (!vma->vm_file &&
3062 			   vma->vm_start <= vma->vm_mm->start_stack &&
3063 			   vma->vm_end >= vma->vm_mm->start_stack) {
3064 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3065 		} else if (vma->vm_file && vma->anon_vma) {
3066 			/*
3067 			 * We are making executable a file mapping that has
3068 			 * had some COW done. Since pages might have been
3069 			 * written, check ability to execute the possibly
3070 			 * modified content.  This typically should only
3071 			 * occur for text relocations.
3072 			 */
3073 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3074 		}
3075 		if (rc)
3076 			return rc;
3077 	}
3078 #endif
3079 
3080 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3081 }
3082 
3083 static int selinux_file_lock(struct file *file, unsigned int cmd)
3084 {
3085 	const struct cred *cred = current_cred();
3086 
3087 	return file_has_perm(cred, file, FILE__LOCK);
3088 }
3089 
3090 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3091 			      unsigned long arg)
3092 {
3093 	const struct cred *cred = current_cred();
3094 	int err = 0;
3095 
3096 	switch (cmd) {
3097 	case F_SETFL:
3098 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3099 			err = -EINVAL;
3100 			break;
3101 		}
3102 
3103 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3104 			err = file_has_perm(cred, file, FILE__WRITE);
3105 			break;
3106 		}
3107 		/* fall through */
3108 	case F_SETOWN:
3109 	case F_SETSIG:
3110 	case F_GETFL:
3111 	case F_GETOWN:
3112 	case F_GETSIG:
3113 		/* Just check FD__USE permission */
3114 		err = file_has_perm(cred, file, 0);
3115 		break;
3116 	case F_GETLK:
3117 	case F_SETLK:
3118 	case F_SETLKW:
3119 #if BITS_PER_LONG == 32
3120 	case F_GETLK64:
3121 	case F_SETLK64:
3122 	case F_SETLKW64:
3123 #endif
3124 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3125 			err = -EINVAL;
3126 			break;
3127 		}
3128 		err = file_has_perm(cred, file, FILE__LOCK);
3129 		break;
3130 	}
3131 
3132 	return err;
3133 }
3134 
3135 static int selinux_file_set_fowner(struct file *file)
3136 {
3137 	struct file_security_struct *fsec;
3138 
3139 	fsec = file->f_security;
3140 	fsec->fown_sid = current_sid();
3141 
3142 	return 0;
3143 }
3144 
3145 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3146 				       struct fown_struct *fown, int signum)
3147 {
3148 	struct file *file;
3149 	u32 sid = task_sid(tsk);
3150 	u32 perm;
3151 	struct file_security_struct *fsec;
3152 
3153 	/* struct fown_struct is never outside the context of a struct file */
3154 	file = container_of(fown, struct file, f_owner);
3155 
3156 	fsec = file->f_security;
3157 
3158 	if (!signum)
3159 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3160 	else
3161 		perm = signal_to_av(signum);
3162 
3163 	return avc_has_perm(fsec->fown_sid, sid,
3164 			    SECCLASS_PROCESS, perm, NULL);
3165 }
3166 
3167 static int selinux_file_receive(struct file *file)
3168 {
3169 	const struct cred *cred = current_cred();
3170 
3171 	return file_has_perm(cred, file, file_to_av(file));
3172 }
3173 
3174 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3175 {
3176 	struct file_security_struct *fsec;
3177 	struct inode *inode;
3178 	struct inode_security_struct *isec;
3179 
3180 	inode = file->f_path.dentry->d_inode;
3181 	fsec = file->f_security;
3182 	isec = inode->i_security;
3183 	/*
3184 	 * Save inode label and policy sequence number
3185 	 * at open-time so that selinux_file_permission
3186 	 * can determine whether revalidation is necessary.
3187 	 * Task label is already saved in the file security
3188 	 * struct as its SID.
3189 	 */
3190 	fsec->isid = isec->sid;
3191 	fsec->pseqno = avc_policy_seqno();
3192 	/*
3193 	 * Since the inode label or policy seqno may have changed
3194 	 * between the selinux_inode_permission check and the saving
3195 	 * of state above, recheck that access is still permitted.
3196 	 * Otherwise, access might never be revalidated against the
3197 	 * new inode label or new policy.
3198 	 * This check is not redundant - do not remove.
3199 	 */
3200 	return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3201 }
3202 
3203 /* task security operations */
3204 
3205 static int selinux_task_create(unsigned long clone_flags)
3206 {
3207 	return current_has_perm(current, PROCESS__FORK);
3208 }
3209 
3210 /*
3211  * detach and free the LSM part of a set of credentials
3212  */
3213 static void selinux_cred_free(struct cred *cred)
3214 {
3215 	struct task_security_struct *tsec = cred->security;
3216 	cred->security = NULL;
3217 	kfree(tsec);
3218 }
3219 
3220 /*
3221  * prepare a new set of credentials for modification
3222  */
3223 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3224 				gfp_t gfp)
3225 {
3226 	const struct task_security_struct *old_tsec;
3227 	struct task_security_struct *tsec;
3228 
3229 	old_tsec = old->security;
3230 
3231 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3232 	if (!tsec)
3233 		return -ENOMEM;
3234 
3235 	new->security = tsec;
3236 	return 0;
3237 }
3238 
3239 /*
3240  * set the security data for a kernel service
3241  * - all the creation contexts are set to unlabelled
3242  */
3243 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3244 {
3245 	struct task_security_struct *tsec = new->security;
3246 	u32 sid = current_sid();
3247 	int ret;
3248 
3249 	ret = avc_has_perm(sid, secid,
3250 			   SECCLASS_KERNEL_SERVICE,
3251 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3252 			   NULL);
3253 	if (ret == 0) {
3254 		tsec->sid = secid;
3255 		tsec->create_sid = 0;
3256 		tsec->keycreate_sid = 0;
3257 		tsec->sockcreate_sid = 0;
3258 	}
3259 	return ret;
3260 }
3261 
3262 /*
3263  * set the file creation context in a security record to the same as the
3264  * objective context of the specified inode
3265  */
3266 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3267 {
3268 	struct inode_security_struct *isec = inode->i_security;
3269 	struct task_security_struct *tsec = new->security;
3270 	u32 sid = current_sid();
3271 	int ret;
3272 
3273 	ret = avc_has_perm(sid, isec->sid,
3274 			   SECCLASS_KERNEL_SERVICE,
3275 			   KERNEL_SERVICE__CREATE_FILES_AS,
3276 			   NULL);
3277 
3278 	if (ret == 0)
3279 		tsec->create_sid = isec->sid;
3280 	return 0;
3281 }
3282 
3283 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3284 {
3285 	return current_has_perm(p, PROCESS__SETPGID);
3286 }
3287 
3288 static int selinux_task_getpgid(struct task_struct *p)
3289 {
3290 	return current_has_perm(p, PROCESS__GETPGID);
3291 }
3292 
3293 static int selinux_task_getsid(struct task_struct *p)
3294 {
3295 	return current_has_perm(p, PROCESS__GETSESSION);
3296 }
3297 
3298 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3299 {
3300 	*secid = task_sid(p);
3301 }
3302 
3303 static int selinux_task_setnice(struct task_struct *p, int nice)
3304 {
3305 	int rc;
3306 
3307 	rc = cap_task_setnice(p, nice);
3308 	if (rc)
3309 		return rc;
3310 
3311 	return current_has_perm(p, PROCESS__SETSCHED);
3312 }
3313 
3314 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3315 {
3316 	int rc;
3317 
3318 	rc = cap_task_setioprio(p, ioprio);
3319 	if (rc)
3320 		return rc;
3321 
3322 	return current_has_perm(p, PROCESS__SETSCHED);
3323 }
3324 
3325 static int selinux_task_getioprio(struct task_struct *p)
3326 {
3327 	return current_has_perm(p, PROCESS__GETSCHED);
3328 }
3329 
3330 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3331 {
3332 	struct rlimit *old_rlim = current->signal->rlim + resource;
3333 
3334 	/* Control the ability to change the hard limit (whether
3335 	   lowering or raising it), so that the hard limit can
3336 	   later be used as a safe reset point for the soft limit
3337 	   upon context transitions.  See selinux_bprm_committing_creds. */
3338 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3339 		return current_has_perm(current, PROCESS__SETRLIMIT);
3340 
3341 	return 0;
3342 }
3343 
3344 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3345 {
3346 	int rc;
3347 
3348 	rc = cap_task_setscheduler(p, policy, lp);
3349 	if (rc)
3350 		return rc;
3351 
3352 	return current_has_perm(p, PROCESS__SETSCHED);
3353 }
3354 
3355 static int selinux_task_getscheduler(struct task_struct *p)
3356 {
3357 	return current_has_perm(p, PROCESS__GETSCHED);
3358 }
3359 
3360 static int selinux_task_movememory(struct task_struct *p)
3361 {
3362 	return current_has_perm(p, PROCESS__SETSCHED);
3363 }
3364 
3365 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3366 				int sig, u32 secid)
3367 {
3368 	u32 perm;
3369 	int rc;
3370 
3371 	if (!sig)
3372 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3373 	else
3374 		perm = signal_to_av(sig);
3375 	if (secid)
3376 		rc = avc_has_perm(secid, task_sid(p),
3377 				  SECCLASS_PROCESS, perm, NULL);
3378 	else
3379 		rc = current_has_perm(p, perm);
3380 	return rc;
3381 }
3382 
3383 static int selinux_task_wait(struct task_struct *p)
3384 {
3385 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3386 }
3387 
3388 static void selinux_task_to_inode(struct task_struct *p,
3389 				  struct inode *inode)
3390 {
3391 	struct inode_security_struct *isec = inode->i_security;
3392 	u32 sid = task_sid(p);
3393 
3394 	isec->sid = sid;
3395 	isec->initialized = 1;
3396 }
3397 
3398 /* Returns error only if unable to parse addresses */
3399 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3400 			struct avc_audit_data *ad, u8 *proto)
3401 {
3402 	int offset, ihlen, ret = -EINVAL;
3403 	struct iphdr _iph, *ih;
3404 
3405 	offset = skb_network_offset(skb);
3406 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3407 	if (ih == NULL)
3408 		goto out;
3409 
3410 	ihlen = ih->ihl * 4;
3411 	if (ihlen < sizeof(_iph))
3412 		goto out;
3413 
3414 	ad->u.net.v4info.saddr = ih->saddr;
3415 	ad->u.net.v4info.daddr = ih->daddr;
3416 	ret = 0;
3417 
3418 	if (proto)
3419 		*proto = ih->protocol;
3420 
3421 	switch (ih->protocol) {
3422 	case IPPROTO_TCP: {
3423 		struct tcphdr _tcph, *th;
3424 
3425 		if (ntohs(ih->frag_off) & IP_OFFSET)
3426 			break;
3427 
3428 		offset += ihlen;
3429 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3430 		if (th == NULL)
3431 			break;
3432 
3433 		ad->u.net.sport = th->source;
3434 		ad->u.net.dport = th->dest;
3435 		break;
3436 	}
3437 
3438 	case IPPROTO_UDP: {
3439 		struct udphdr _udph, *uh;
3440 
3441 		if (ntohs(ih->frag_off) & IP_OFFSET)
3442 			break;
3443 
3444 		offset += ihlen;
3445 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3446 		if (uh == NULL)
3447 			break;
3448 
3449 		ad->u.net.sport = uh->source;
3450 		ad->u.net.dport = uh->dest;
3451 		break;
3452 	}
3453 
3454 	case IPPROTO_DCCP: {
3455 		struct dccp_hdr _dccph, *dh;
3456 
3457 		if (ntohs(ih->frag_off) & IP_OFFSET)
3458 			break;
3459 
3460 		offset += ihlen;
3461 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3462 		if (dh == NULL)
3463 			break;
3464 
3465 		ad->u.net.sport = dh->dccph_sport;
3466 		ad->u.net.dport = dh->dccph_dport;
3467 		break;
3468 	}
3469 
3470 	default:
3471 		break;
3472 	}
3473 out:
3474 	return ret;
3475 }
3476 
3477 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3478 
3479 /* Returns error only if unable to parse addresses */
3480 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3481 			struct avc_audit_data *ad, u8 *proto)
3482 {
3483 	u8 nexthdr;
3484 	int ret = -EINVAL, offset;
3485 	struct ipv6hdr _ipv6h, *ip6;
3486 
3487 	offset = skb_network_offset(skb);
3488 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3489 	if (ip6 == NULL)
3490 		goto out;
3491 
3492 	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3493 	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3494 	ret = 0;
3495 
3496 	nexthdr = ip6->nexthdr;
3497 	offset += sizeof(_ipv6h);
3498 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3499 	if (offset < 0)
3500 		goto out;
3501 
3502 	if (proto)
3503 		*proto = nexthdr;
3504 
3505 	switch (nexthdr) {
3506 	case IPPROTO_TCP: {
3507 		struct tcphdr _tcph, *th;
3508 
3509 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3510 		if (th == NULL)
3511 			break;
3512 
3513 		ad->u.net.sport = th->source;
3514 		ad->u.net.dport = th->dest;
3515 		break;
3516 	}
3517 
3518 	case IPPROTO_UDP: {
3519 		struct udphdr _udph, *uh;
3520 
3521 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3522 		if (uh == NULL)
3523 			break;
3524 
3525 		ad->u.net.sport = uh->source;
3526 		ad->u.net.dport = uh->dest;
3527 		break;
3528 	}
3529 
3530 	case IPPROTO_DCCP: {
3531 		struct dccp_hdr _dccph, *dh;
3532 
3533 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3534 		if (dh == NULL)
3535 			break;
3536 
3537 		ad->u.net.sport = dh->dccph_sport;
3538 		ad->u.net.dport = dh->dccph_dport;
3539 		break;
3540 	}
3541 
3542 	/* includes fragments */
3543 	default:
3544 		break;
3545 	}
3546 out:
3547 	return ret;
3548 }
3549 
3550 #endif /* IPV6 */
3551 
3552 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3553 			     char **_addrp, int src, u8 *proto)
3554 {
3555 	char *addrp;
3556 	int ret;
3557 
3558 	switch (ad->u.net.family) {
3559 	case PF_INET:
3560 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3561 		if (ret)
3562 			goto parse_error;
3563 		addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3564 				       &ad->u.net.v4info.daddr);
3565 		goto okay;
3566 
3567 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3568 	case PF_INET6:
3569 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3570 		if (ret)
3571 			goto parse_error;
3572 		addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3573 				       &ad->u.net.v6info.daddr);
3574 		goto okay;
3575 #endif	/* IPV6 */
3576 	default:
3577 		addrp = NULL;
3578 		goto okay;
3579 	}
3580 
3581 parse_error:
3582 	printk(KERN_WARNING
3583 	       "SELinux: failure in selinux_parse_skb(),"
3584 	       " unable to parse packet\n");
3585 	return ret;
3586 
3587 okay:
3588 	if (_addrp)
3589 		*_addrp = addrp;
3590 	return 0;
3591 }
3592 
3593 /**
3594  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3595  * @skb: the packet
3596  * @family: protocol family
3597  * @sid: the packet's peer label SID
3598  *
3599  * Description:
3600  * Check the various different forms of network peer labeling and determine
3601  * the peer label/SID for the packet; most of the magic actually occurs in
3602  * the security server function security_net_peersid_cmp().  The function
3603  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3604  * or -EACCES if @sid is invalid due to inconsistencies with the different
3605  * peer labels.
3606  *
3607  */
3608 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3609 {
3610 	int err;
3611 	u32 xfrm_sid;
3612 	u32 nlbl_sid;
3613 	u32 nlbl_type;
3614 
3615 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3616 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3617 
3618 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3619 	if (unlikely(err)) {
3620 		printk(KERN_WARNING
3621 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3622 		       " unable to determine packet's peer label\n");
3623 		return -EACCES;
3624 	}
3625 
3626 	return 0;
3627 }
3628 
3629 /* socket security operations */
3630 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3631 			   u32 perms)
3632 {
3633 	struct inode_security_struct *isec;
3634 	struct avc_audit_data ad;
3635 	u32 sid;
3636 	int err = 0;
3637 
3638 	isec = SOCK_INODE(sock)->i_security;
3639 
3640 	if (isec->sid == SECINITSID_KERNEL)
3641 		goto out;
3642 	sid = task_sid(task);
3643 
3644 	AVC_AUDIT_DATA_INIT(&ad, NET);
3645 	ad.u.net.sk = sock->sk;
3646 	err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3647 
3648 out:
3649 	return err;
3650 }
3651 
3652 static int selinux_socket_create(int family, int type,
3653 				 int protocol, int kern)
3654 {
3655 	const struct cred *cred = current_cred();
3656 	const struct task_security_struct *tsec = cred->security;
3657 	u32 sid, newsid;
3658 	u16 secclass;
3659 	int err = 0;
3660 
3661 	if (kern)
3662 		goto out;
3663 
3664 	sid = tsec->sid;
3665 	newsid = tsec->sockcreate_sid ?: sid;
3666 
3667 	secclass = socket_type_to_security_class(family, type, protocol);
3668 	err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3669 
3670 out:
3671 	return err;
3672 }
3673 
3674 static int selinux_socket_post_create(struct socket *sock, int family,
3675 				      int type, int protocol, int kern)
3676 {
3677 	const struct cred *cred = current_cred();
3678 	const struct task_security_struct *tsec = cred->security;
3679 	struct inode_security_struct *isec;
3680 	struct sk_security_struct *sksec;
3681 	u32 sid, newsid;
3682 	int err = 0;
3683 
3684 	sid = tsec->sid;
3685 	newsid = tsec->sockcreate_sid;
3686 
3687 	isec = SOCK_INODE(sock)->i_security;
3688 
3689 	if (kern)
3690 		isec->sid = SECINITSID_KERNEL;
3691 	else if (newsid)
3692 		isec->sid = newsid;
3693 	else
3694 		isec->sid = sid;
3695 
3696 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3697 	isec->initialized = 1;
3698 
3699 	if (sock->sk) {
3700 		sksec = sock->sk->sk_security;
3701 		sksec->sid = isec->sid;
3702 		sksec->sclass = isec->sclass;
3703 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3704 	}
3705 
3706 	return err;
3707 }
3708 
3709 /* Range of port numbers used to automatically bind.
3710    Need to determine whether we should perform a name_bind
3711    permission check between the socket and the port number. */
3712 
3713 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3714 {
3715 	u16 family;
3716 	int err;
3717 
3718 	err = socket_has_perm(current, sock, SOCKET__BIND);
3719 	if (err)
3720 		goto out;
3721 
3722 	/*
3723 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3724 	 * Multiple address binding for SCTP is not supported yet: we just
3725 	 * check the first address now.
3726 	 */
3727 	family = sock->sk->sk_family;
3728 	if (family == PF_INET || family == PF_INET6) {
3729 		char *addrp;
3730 		struct inode_security_struct *isec;
3731 		struct avc_audit_data ad;
3732 		struct sockaddr_in *addr4 = NULL;
3733 		struct sockaddr_in6 *addr6 = NULL;
3734 		unsigned short snum;
3735 		struct sock *sk = sock->sk;
3736 		u32 sid, node_perm;
3737 
3738 		isec = SOCK_INODE(sock)->i_security;
3739 
3740 		if (family == PF_INET) {
3741 			addr4 = (struct sockaddr_in *)address;
3742 			snum = ntohs(addr4->sin_port);
3743 			addrp = (char *)&addr4->sin_addr.s_addr;
3744 		} else {
3745 			addr6 = (struct sockaddr_in6 *)address;
3746 			snum = ntohs(addr6->sin6_port);
3747 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3748 		}
3749 
3750 		if (snum) {
3751 			int low, high;
3752 
3753 			inet_get_local_port_range(&low, &high);
3754 
3755 			if (snum < max(PROT_SOCK, low) || snum > high) {
3756 				err = sel_netport_sid(sk->sk_protocol,
3757 						      snum, &sid);
3758 				if (err)
3759 					goto out;
3760 				AVC_AUDIT_DATA_INIT(&ad, NET);
3761 				ad.u.net.sport = htons(snum);
3762 				ad.u.net.family = family;
3763 				err = avc_has_perm(isec->sid, sid,
3764 						   isec->sclass,
3765 						   SOCKET__NAME_BIND, &ad);
3766 				if (err)
3767 					goto out;
3768 			}
3769 		}
3770 
3771 		switch (isec->sclass) {
3772 		case SECCLASS_TCP_SOCKET:
3773 			node_perm = TCP_SOCKET__NODE_BIND;
3774 			break;
3775 
3776 		case SECCLASS_UDP_SOCKET:
3777 			node_perm = UDP_SOCKET__NODE_BIND;
3778 			break;
3779 
3780 		case SECCLASS_DCCP_SOCKET:
3781 			node_perm = DCCP_SOCKET__NODE_BIND;
3782 			break;
3783 
3784 		default:
3785 			node_perm = RAWIP_SOCKET__NODE_BIND;
3786 			break;
3787 		}
3788 
3789 		err = sel_netnode_sid(addrp, family, &sid);
3790 		if (err)
3791 			goto out;
3792 
3793 		AVC_AUDIT_DATA_INIT(&ad, NET);
3794 		ad.u.net.sport = htons(snum);
3795 		ad.u.net.family = family;
3796 
3797 		if (family == PF_INET)
3798 			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3799 		else
3800 			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3801 
3802 		err = avc_has_perm(isec->sid, sid,
3803 				   isec->sclass, node_perm, &ad);
3804 		if (err)
3805 			goto out;
3806 	}
3807 out:
3808 	return err;
3809 }
3810 
3811 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3812 {
3813 	struct sock *sk = sock->sk;
3814 	struct inode_security_struct *isec;
3815 	int err;
3816 
3817 	err = socket_has_perm(current, sock, SOCKET__CONNECT);
3818 	if (err)
3819 		return err;
3820 
3821 	/*
3822 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3823 	 */
3824 	isec = SOCK_INODE(sock)->i_security;
3825 	if (isec->sclass == SECCLASS_TCP_SOCKET ||
3826 	    isec->sclass == SECCLASS_DCCP_SOCKET) {
3827 		struct avc_audit_data ad;
3828 		struct sockaddr_in *addr4 = NULL;
3829 		struct sockaddr_in6 *addr6 = NULL;
3830 		unsigned short snum;
3831 		u32 sid, perm;
3832 
3833 		if (sk->sk_family == PF_INET) {
3834 			addr4 = (struct sockaddr_in *)address;
3835 			if (addrlen < sizeof(struct sockaddr_in))
3836 				return -EINVAL;
3837 			snum = ntohs(addr4->sin_port);
3838 		} else {
3839 			addr6 = (struct sockaddr_in6 *)address;
3840 			if (addrlen < SIN6_LEN_RFC2133)
3841 				return -EINVAL;
3842 			snum = ntohs(addr6->sin6_port);
3843 		}
3844 
3845 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3846 		if (err)
3847 			goto out;
3848 
3849 		perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3850 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3851 
3852 		AVC_AUDIT_DATA_INIT(&ad, NET);
3853 		ad.u.net.dport = htons(snum);
3854 		ad.u.net.family = sk->sk_family;
3855 		err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3856 		if (err)
3857 			goto out;
3858 	}
3859 
3860 	err = selinux_netlbl_socket_connect(sk, address);
3861 
3862 out:
3863 	return err;
3864 }
3865 
3866 static int selinux_socket_listen(struct socket *sock, int backlog)
3867 {
3868 	return socket_has_perm(current, sock, SOCKET__LISTEN);
3869 }
3870 
3871 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3872 {
3873 	int err;
3874 	struct inode_security_struct *isec;
3875 	struct inode_security_struct *newisec;
3876 
3877 	err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3878 	if (err)
3879 		return err;
3880 
3881 	newisec = SOCK_INODE(newsock)->i_security;
3882 
3883 	isec = SOCK_INODE(sock)->i_security;
3884 	newisec->sclass = isec->sclass;
3885 	newisec->sid = isec->sid;
3886 	newisec->initialized = 1;
3887 
3888 	return 0;
3889 }
3890 
3891 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3892 				  int size)
3893 {
3894 	return socket_has_perm(current, sock, SOCKET__WRITE);
3895 }
3896 
3897 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3898 				  int size, int flags)
3899 {
3900 	return socket_has_perm(current, sock, SOCKET__READ);
3901 }
3902 
3903 static int selinux_socket_getsockname(struct socket *sock)
3904 {
3905 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3906 }
3907 
3908 static int selinux_socket_getpeername(struct socket *sock)
3909 {
3910 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3911 }
3912 
3913 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3914 {
3915 	int err;
3916 
3917 	err = socket_has_perm(current, sock, SOCKET__SETOPT);
3918 	if (err)
3919 		return err;
3920 
3921 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
3922 }
3923 
3924 static int selinux_socket_getsockopt(struct socket *sock, int level,
3925 				     int optname)
3926 {
3927 	return socket_has_perm(current, sock, SOCKET__GETOPT);
3928 }
3929 
3930 static int selinux_socket_shutdown(struct socket *sock, int how)
3931 {
3932 	return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3933 }
3934 
3935 static int selinux_socket_unix_stream_connect(struct socket *sock,
3936 					      struct socket *other,
3937 					      struct sock *newsk)
3938 {
3939 	struct sk_security_struct *ssec;
3940 	struct inode_security_struct *isec;
3941 	struct inode_security_struct *other_isec;
3942 	struct avc_audit_data ad;
3943 	int err;
3944 
3945 	isec = SOCK_INODE(sock)->i_security;
3946 	other_isec = SOCK_INODE(other)->i_security;
3947 
3948 	AVC_AUDIT_DATA_INIT(&ad, NET);
3949 	ad.u.net.sk = other->sk;
3950 
3951 	err = avc_has_perm(isec->sid, other_isec->sid,
3952 			   isec->sclass,
3953 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3954 	if (err)
3955 		return err;
3956 
3957 	/* connecting socket */
3958 	ssec = sock->sk->sk_security;
3959 	ssec->peer_sid = other_isec->sid;
3960 
3961 	/* server child socket */
3962 	ssec = newsk->sk_security;
3963 	ssec->peer_sid = isec->sid;
3964 	err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3965 
3966 	return err;
3967 }
3968 
3969 static int selinux_socket_unix_may_send(struct socket *sock,
3970 					struct socket *other)
3971 {
3972 	struct inode_security_struct *isec;
3973 	struct inode_security_struct *other_isec;
3974 	struct avc_audit_data ad;
3975 	int err;
3976 
3977 	isec = SOCK_INODE(sock)->i_security;
3978 	other_isec = SOCK_INODE(other)->i_security;
3979 
3980 	AVC_AUDIT_DATA_INIT(&ad, NET);
3981 	ad.u.net.sk = other->sk;
3982 
3983 	err = avc_has_perm(isec->sid, other_isec->sid,
3984 			   isec->sclass, SOCKET__SENDTO, &ad);
3985 	if (err)
3986 		return err;
3987 
3988 	return 0;
3989 }
3990 
3991 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3992 				    u32 peer_sid,
3993 				    struct avc_audit_data *ad)
3994 {
3995 	int err;
3996 	u32 if_sid;
3997 	u32 node_sid;
3998 
3999 	err = sel_netif_sid(ifindex, &if_sid);
4000 	if (err)
4001 		return err;
4002 	err = avc_has_perm(peer_sid, if_sid,
4003 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4004 	if (err)
4005 		return err;
4006 
4007 	err = sel_netnode_sid(addrp, family, &node_sid);
4008 	if (err)
4009 		return err;
4010 	return avc_has_perm(peer_sid, node_sid,
4011 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4012 }
4013 
4014 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4015 				       u16 family)
4016 {
4017 	int err = 0;
4018 	struct sk_security_struct *sksec = sk->sk_security;
4019 	u32 peer_sid;
4020 	u32 sk_sid = sksec->sid;
4021 	struct avc_audit_data ad;
4022 	char *addrp;
4023 
4024 	AVC_AUDIT_DATA_INIT(&ad, NET);
4025 	ad.u.net.netif = skb->iif;
4026 	ad.u.net.family = family;
4027 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4028 	if (err)
4029 		return err;
4030 
4031 	if (selinux_secmark_enabled()) {
4032 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4033 				   PACKET__RECV, &ad);
4034 		if (err)
4035 			return err;
4036 	}
4037 
4038 	if (selinux_policycap_netpeer) {
4039 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4040 		if (err)
4041 			return err;
4042 		err = avc_has_perm(sk_sid, peer_sid,
4043 				   SECCLASS_PEER, PEER__RECV, &ad);
4044 		if (err)
4045 			selinux_netlbl_err(skb, err, 0);
4046 	} else {
4047 		err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4048 		if (err)
4049 			return err;
4050 		err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4051 	}
4052 
4053 	return err;
4054 }
4055 
4056 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4057 {
4058 	int err;
4059 	struct sk_security_struct *sksec = sk->sk_security;
4060 	u16 family = sk->sk_family;
4061 	u32 sk_sid = sksec->sid;
4062 	struct avc_audit_data ad;
4063 	char *addrp;
4064 	u8 secmark_active;
4065 	u8 peerlbl_active;
4066 
4067 	if (family != PF_INET && family != PF_INET6)
4068 		return 0;
4069 
4070 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4071 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4072 		family = PF_INET;
4073 
4074 	/* If any sort of compatibility mode is enabled then handoff processing
4075 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4076 	 * special handling.  We do this in an attempt to keep this function
4077 	 * as fast and as clean as possible. */
4078 	if (!selinux_policycap_netpeer)
4079 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4080 
4081 	secmark_active = selinux_secmark_enabled();
4082 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4083 	if (!secmark_active && !peerlbl_active)
4084 		return 0;
4085 
4086 	AVC_AUDIT_DATA_INIT(&ad, NET);
4087 	ad.u.net.netif = skb->iif;
4088 	ad.u.net.family = family;
4089 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4090 	if (err)
4091 		return err;
4092 
4093 	if (peerlbl_active) {
4094 		u32 peer_sid;
4095 
4096 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4097 		if (err)
4098 			return err;
4099 		err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4100 					       peer_sid, &ad);
4101 		if (err) {
4102 			selinux_netlbl_err(skb, err, 0);
4103 			return err;
4104 		}
4105 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4106 				   PEER__RECV, &ad);
4107 		if (err)
4108 			selinux_netlbl_err(skb, err, 0);
4109 	}
4110 
4111 	if (secmark_active) {
4112 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4113 				   PACKET__RECV, &ad);
4114 		if (err)
4115 			return err;
4116 	}
4117 
4118 	return err;
4119 }
4120 
4121 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4122 					    int __user *optlen, unsigned len)
4123 {
4124 	int err = 0;
4125 	char *scontext;
4126 	u32 scontext_len;
4127 	struct sk_security_struct *ssec;
4128 	struct inode_security_struct *isec;
4129 	u32 peer_sid = SECSID_NULL;
4130 
4131 	isec = SOCK_INODE(sock)->i_security;
4132 
4133 	if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4134 	    isec->sclass == SECCLASS_TCP_SOCKET) {
4135 		ssec = sock->sk->sk_security;
4136 		peer_sid = ssec->peer_sid;
4137 	}
4138 	if (peer_sid == SECSID_NULL) {
4139 		err = -ENOPROTOOPT;
4140 		goto out;
4141 	}
4142 
4143 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4144 
4145 	if (err)
4146 		goto out;
4147 
4148 	if (scontext_len > len) {
4149 		err = -ERANGE;
4150 		goto out_len;
4151 	}
4152 
4153 	if (copy_to_user(optval, scontext, scontext_len))
4154 		err = -EFAULT;
4155 
4156 out_len:
4157 	if (put_user(scontext_len, optlen))
4158 		err = -EFAULT;
4159 
4160 	kfree(scontext);
4161 out:
4162 	return err;
4163 }
4164 
4165 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4166 {
4167 	u32 peer_secid = SECSID_NULL;
4168 	u16 family;
4169 
4170 	if (skb && skb->protocol == htons(ETH_P_IP))
4171 		family = PF_INET;
4172 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4173 		family = PF_INET6;
4174 	else if (sock)
4175 		family = sock->sk->sk_family;
4176 	else
4177 		goto out;
4178 
4179 	if (sock && family == PF_UNIX)
4180 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4181 	else if (skb)
4182 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4183 
4184 out:
4185 	*secid = peer_secid;
4186 	if (peer_secid == SECSID_NULL)
4187 		return -EINVAL;
4188 	return 0;
4189 }
4190 
4191 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4192 {
4193 	return sk_alloc_security(sk, family, priority);
4194 }
4195 
4196 static void selinux_sk_free_security(struct sock *sk)
4197 {
4198 	sk_free_security(sk);
4199 }
4200 
4201 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4202 {
4203 	struct sk_security_struct *ssec = sk->sk_security;
4204 	struct sk_security_struct *newssec = newsk->sk_security;
4205 
4206 	newssec->sid = ssec->sid;
4207 	newssec->peer_sid = ssec->peer_sid;
4208 	newssec->sclass = ssec->sclass;
4209 
4210 	selinux_netlbl_sk_security_reset(newssec);
4211 }
4212 
4213 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4214 {
4215 	if (!sk)
4216 		*secid = SECINITSID_ANY_SOCKET;
4217 	else {
4218 		struct sk_security_struct *sksec = sk->sk_security;
4219 
4220 		*secid = sksec->sid;
4221 	}
4222 }
4223 
4224 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4225 {
4226 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4227 	struct sk_security_struct *sksec = sk->sk_security;
4228 
4229 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4230 	    sk->sk_family == PF_UNIX)
4231 		isec->sid = sksec->sid;
4232 	sksec->sclass = isec->sclass;
4233 }
4234 
4235 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4236 				     struct request_sock *req)
4237 {
4238 	struct sk_security_struct *sksec = sk->sk_security;
4239 	int err;
4240 	u16 family = sk->sk_family;
4241 	u32 newsid;
4242 	u32 peersid;
4243 
4244 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4245 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4246 		family = PF_INET;
4247 
4248 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4249 	if (err)
4250 		return err;
4251 	if (peersid == SECSID_NULL) {
4252 		req->secid = sksec->sid;
4253 		req->peer_secid = SECSID_NULL;
4254 	} else {
4255 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4256 		if (err)
4257 			return err;
4258 		req->secid = newsid;
4259 		req->peer_secid = peersid;
4260 	}
4261 
4262 	return selinux_netlbl_inet_conn_request(req, family);
4263 }
4264 
4265 static void selinux_inet_csk_clone(struct sock *newsk,
4266 				   const struct request_sock *req)
4267 {
4268 	struct sk_security_struct *newsksec = newsk->sk_security;
4269 
4270 	newsksec->sid = req->secid;
4271 	newsksec->peer_sid = req->peer_secid;
4272 	/* NOTE: Ideally, we should also get the isec->sid for the
4273 	   new socket in sync, but we don't have the isec available yet.
4274 	   So we will wait until sock_graft to do it, by which
4275 	   time it will have been created and available. */
4276 
4277 	/* We don't need to take any sort of lock here as we are the only
4278 	 * thread with access to newsksec */
4279 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4280 }
4281 
4282 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4283 {
4284 	u16 family = sk->sk_family;
4285 	struct sk_security_struct *sksec = sk->sk_security;
4286 
4287 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4288 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4289 		family = PF_INET;
4290 
4291 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4292 }
4293 
4294 static void selinux_req_classify_flow(const struct request_sock *req,
4295 				      struct flowi *fl)
4296 {
4297 	fl->secid = req->secid;
4298 }
4299 
4300 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4301 {
4302 	int err = 0;
4303 	u32 perm;
4304 	struct nlmsghdr *nlh;
4305 	struct socket *sock = sk->sk_socket;
4306 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4307 
4308 	if (skb->len < NLMSG_SPACE(0)) {
4309 		err = -EINVAL;
4310 		goto out;
4311 	}
4312 	nlh = nlmsg_hdr(skb);
4313 
4314 	err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4315 	if (err) {
4316 		if (err == -EINVAL) {
4317 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4318 				  "SELinux:  unrecognized netlink message"
4319 				  " type=%hu for sclass=%hu\n",
4320 				  nlh->nlmsg_type, isec->sclass);
4321 			if (!selinux_enforcing || security_get_allow_unknown())
4322 				err = 0;
4323 		}
4324 
4325 		/* Ignore */
4326 		if (err == -ENOENT)
4327 			err = 0;
4328 		goto out;
4329 	}
4330 
4331 	err = socket_has_perm(current, sock, perm);
4332 out:
4333 	return err;
4334 }
4335 
4336 #ifdef CONFIG_NETFILTER
4337 
4338 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4339 				       u16 family)
4340 {
4341 	int err;
4342 	char *addrp;
4343 	u32 peer_sid;
4344 	struct avc_audit_data ad;
4345 	u8 secmark_active;
4346 	u8 netlbl_active;
4347 	u8 peerlbl_active;
4348 
4349 	if (!selinux_policycap_netpeer)
4350 		return NF_ACCEPT;
4351 
4352 	secmark_active = selinux_secmark_enabled();
4353 	netlbl_active = netlbl_enabled();
4354 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4355 	if (!secmark_active && !peerlbl_active)
4356 		return NF_ACCEPT;
4357 
4358 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4359 		return NF_DROP;
4360 
4361 	AVC_AUDIT_DATA_INIT(&ad, NET);
4362 	ad.u.net.netif = ifindex;
4363 	ad.u.net.family = family;
4364 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4365 		return NF_DROP;
4366 
4367 	if (peerlbl_active) {
4368 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4369 					       peer_sid, &ad);
4370 		if (err) {
4371 			selinux_netlbl_err(skb, err, 1);
4372 			return NF_DROP;
4373 		}
4374 	}
4375 
4376 	if (secmark_active)
4377 		if (avc_has_perm(peer_sid, skb->secmark,
4378 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4379 			return NF_DROP;
4380 
4381 	if (netlbl_active)
4382 		/* we do this in the FORWARD path and not the POST_ROUTING
4383 		 * path because we want to make sure we apply the necessary
4384 		 * labeling before IPsec is applied so we can leverage AH
4385 		 * protection */
4386 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4387 			return NF_DROP;
4388 
4389 	return NF_ACCEPT;
4390 }
4391 
4392 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4393 					 struct sk_buff *skb,
4394 					 const struct net_device *in,
4395 					 const struct net_device *out,
4396 					 int (*okfn)(struct sk_buff *))
4397 {
4398 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4399 }
4400 
4401 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4402 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4403 					 struct sk_buff *skb,
4404 					 const struct net_device *in,
4405 					 const struct net_device *out,
4406 					 int (*okfn)(struct sk_buff *))
4407 {
4408 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4409 }
4410 #endif	/* IPV6 */
4411 
4412 static unsigned int selinux_ip_output(struct sk_buff *skb,
4413 				      u16 family)
4414 {
4415 	u32 sid;
4416 
4417 	if (!netlbl_enabled())
4418 		return NF_ACCEPT;
4419 
4420 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4421 	 * because we want to make sure we apply the necessary labeling
4422 	 * before IPsec is applied so we can leverage AH protection */
4423 	if (skb->sk) {
4424 		struct sk_security_struct *sksec = skb->sk->sk_security;
4425 		sid = sksec->sid;
4426 	} else
4427 		sid = SECINITSID_KERNEL;
4428 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4429 		return NF_DROP;
4430 
4431 	return NF_ACCEPT;
4432 }
4433 
4434 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4435 					struct sk_buff *skb,
4436 					const struct net_device *in,
4437 					const struct net_device *out,
4438 					int (*okfn)(struct sk_buff *))
4439 {
4440 	return selinux_ip_output(skb, PF_INET);
4441 }
4442 
4443 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4444 						int ifindex,
4445 						u16 family)
4446 {
4447 	struct sock *sk = skb->sk;
4448 	struct sk_security_struct *sksec;
4449 	struct avc_audit_data ad;
4450 	char *addrp;
4451 	u8 proto;
4452 
4453 	if (sk == NULL)
4454 		return NF_ACCEPT;
4455 	sksec = sk->sk_security;
4456 
4457 	AVC_AUDIT_DATA_INIT(&ad, NET);
4458 	ad.u.net.netif = ifindex;
4459 	ad.u.net.family = family;
4460 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4461 		return NF_DROP;
4462 
4463 	if (selinux_secmark_enabled())
4464 		if (avc_has_perm(sksec->sid, skb->secmark,
4465 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4466 			return NF_DROP;
4467 
4468 	if (selinux_policycap_netpeer)
4469 		if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4470 			return NF_DROP;
4471 
4472 	return NF_ACCEPT;
4473 }
4474 
4475 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4476 					 u16 family)
4477 {
4478 	u32 secmark_perm;
4479 	u32 peer_sid;
4480 	struct sock *sk;
4481 	struct avc_audit_data ad;
4482 	char *addrp;
4483 	u8 secmark_active;
4484 	u8 peerlbl_active;
4485 
4486 	/* If any sort of compatibility mode is enabled then handoff processing
4487 	 * to the selinux_ip_postroute_compat() function to deal with the
4488 	 * special handling.  We do this in an attempt to keep this function
4489 	 * as fast and as clean as possible. */
4490 	if (!selinux_policycap_netpeer)
4491 		return selinux_ip_postroute_compat(skb, ifindex, family);
4492 #ifdef CONFIG_XFRM
4493 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4494 	 * packet transformation so allow the packet to pass without any checks
4495 	 * since we'll have another chance to perform access control checks
4496 	 * when the packet is on it's final way out.
4497 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4498 	 *       is NULL, in this case go ahead and apply access control. */
4499 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4500 		return NF_ACCEPT;
4501 #endif
4502 	secmark_active = selinux_secmark_enabled();
4503 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4504 	if (!secmark_active && !peerlbl_active)
4505 		return NF_ACCEPT;
4506 
4507 	/* if the packet is being forwarded then get the peer label from the
4508 	 * packet itself; otherwise check to see if it is from a local
4509 	 * application or the kernel, if from an application get the peer label
4510 	 * from the sending socket, otherwise use the kernel's sid */
4511 	sk = skb->sk;
4512 	if (sk == NULL) {
4513 		switch (family) {
4514 		case PF_INET:
4515 			if (IPCB(skb)->flags & IPSKB_FORWARDED)
4516 				secmark_perm = PACKET__FORWARD_OUT;
4517 			else
4518 				secmark_perm = PACKET__SEND;
4519 			break;
4520 		case PF_INET6:
4521 			if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4522 				secmark_perm = PACKET__FORWARD_OUT;
4523 			else
4524 				secmark_perm = PACKET__SEND;
4525 			break;
4526 		default:
4527 			return NF_DROP;
4528 		}
4529 		if (secmark_perm == PACKET__FORWARD_OUT) {
4530 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4531 				return NF_DROP;
4532 		} else
4533 			peer_sid = SECINITSID_KERNEL;
4534 	} else {
4535 		struct sk_security_struct *sksec = sk->sk_security;
4536 		peer_sid = sksec->sid;
4537 		secmark_perm = PACKET__SEND;
4538 	}
4539 
4540 	AVC_AUDIT_DATA_INIT(&ad, NET);
4541 	ad.u.net.netif = ifindex;
4542 	ad.u.net.family = family;
4543 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4544 		return NF_DROP;
4545 
4546 	if (secmark_active)
4547 		if (avc_has_perm(peer_sid, skb->secmark,
4548 				 SECCLASS_PACKET, secmark_perm, &ad))
4549 			return NF_DROP;
4550 
4551 	if (peerlbl_active) {
4552 		u32 if_sid;
4553 		u32 node_sid;
4554 
4555 		if (sel_netif_sid(ifindex, &if_sid))
4556 			return NF_DROP;
4557 		if (avc_has_perm(peer_sid, if_sid,
4558 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4559 			return NF_DROP;
4560 
4561 		if (sel_netnode_sid(addrp, family, &node_sid))
4562 			return NF_DROP;
4563 		if (avc_has_perm(peer_sid, node_sid,
4564 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4565 			return NF_DROP;
4566 	}
4567 
4568 	return NF_ACCEPT;
4569 }
4570 
4571 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4572 					   struct sk_buff *skb,
4573 					   const struct net_device *in,
4574 					   const struct net_device *out,
4575 					   int (*okfn)(struct sk_buff *))
4576 {
4577 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4578 }
4579 
4580 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4581 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4582 					   struct sk_buff *skb,
4583 					   const struct net_device *in,
4584 					   const struct net_device *out,
4585 					   int (*okfn)(struct sk_buff *))
4586 {
4587 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4588 }
4589 #endif	/* IPV6 */
4590 
4591 #endif	/* CONFIG_NETFILTER */
4592 
4593 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4594 {
4595 	int err;
4596 
4597 	err = cap_netlink_send(sk, skb);
4598 	if (err)
4599 		return err;
4600 
4601 	if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4602 		err = selinux_nlmsg_perm(sk, skb);
4603 
4604 	return err;
4605 }
4606 
4607 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4608 {
4609 	int err;
4610 	struct avc_audit_data ad;
4611 
4612 	err = cap_netlink_recv(skb, capability);
4613 	if (err)
4614 		return err;
4615 
4616 	AVC_AUDIT_DATA_INIT(&ad, CAP);
4617 	ad.u.cap = capability;
4618 
4619 	return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4620 			    SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4621 }
4622 
4623 static int ipc_alloc_security(struct task_struct *task,
4624 			      struct kern_ipc_perm *perm,
4625 			      u16 sclass)
4626 {
4627 	struct ipc_security_struct *isec;
4628 	u32 sid;
4629 
4630 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4631 	if (!isec)
4632 		return -ENOMEM;
4633 
4634 	sid = task_sid(task);
4635 	isec->sclass = sclass;
4636 	isec->sid = sid;
4637 	perm->security = isec;
4638 
4639 	return 0;
4640 }
4641 
4642 static void ipc_free_security(struct kern_ipc_perm *perm)
4643 {
4644 	struct ipc_security_struct *isec = perm->security;
4645 	perm->security = NULL;
4646 	kfree(isec);
4647 }
4648 
4649 static int msg_msg_alloc_security(struct msg_msg *msg)
4650 {
4651 	struct msg_security_struct *msec;
4652 
4653 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4654 	if (!msec)
4655 		return -ENOMEM;
4656 
4657 	msec->sid = SECINITSID_UNLABELED;
4658 	msg->security = msec;
4659 
4660 	return 0;
4661 }
4662 
4663 static void msg_msg_free_security(struct msg_msg *msg)
4664 {
4665 	struct msg_security_struct *msec = msg->security;
4666 
4667 	msg->security = NULL;
4668 	kfree(msec);
4669 }
4670 
4671 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4672 			u32 perms)
4673 {
4674 	struct ipc_security_struct *isec;
4675 	struct avc_audit_data ad;
4676 	u32 sid = current_sid();
4677 
4678 	isec = ipc_perms->security;
4679 
4680 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4681 	ad.u.ipc_id = ipc_perms->key;
4682 
4683 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4684 }
4685 
4686 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4687 {
4688 	return msg_msg_alloc_security(msg);
4689 }
4690 
4691 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4692 {
4693 	msg_msg_free_security(msg);
4694 }
4695 
4696 /* message queue security operations */
4697 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4698 {
4699 	struct ipc_security_struct *isec;
4700 	struct avc_audit_data ad;
4701 	u32 sid = current_sid();
4702 	int rc;
4703 
4704 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4705 	if (rc)
4706 		return rc;
4707 
4708 	isec = msq->q_perm.security;
4709 
4710 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4711 	ad.u.ipc_id = msq->q_perm.key;
4712 
4713 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4714 			  MSGQ__CREATE, &ad);
4715 	if (rc) {
4716 		ipc_free_security(&msq->q_perm);
4717 		return rc;
4718 	}
4719 	return 0;
4720 }
4721 
4722 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4723 {
4724 	ipc_free_security(&msq->q_perm);
4725 }
4726 
4727 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4728 {
4729 	struct ipc_security_struct *isec;
4730 	struct avc_audit_data ad;
4731 	u32 sid = current_sid();
4732 
4733 	isec = msq->q_perm.security;
4734 
4735 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4736 	ad.u.ipc_id = msq->q_perm.key;
4737 
4738 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4739 			    MSGQ__ASSOCIATE, &ad);
4740 }
4741 
4742 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4743 {
4744 	int err;
4745 	int perms;
4746 
4747 	switch (cmd) {
4748 	case IPC_INFO:
4749 	case MSG_INFO:
4750 		/* No specific object, just general system-wide information. */
4751 		return task_has_system(current, SYSTEM__IPC_INFO);
4752 	case IPC_STAT:
4753 	case MSG_STAT:
4754 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4755 		break;
4756 	case IPC_SET:
4757 		perms = MSGQ__SETATTR;
4758 		break;
4759 	case IPC_RMID:
4760 		perms = MSGQ__DESTROY;
4761 		break;
4762 	default:
4763 		return 0;
4764 	}
4765 
4766 	err = ipc_has_perm(&msq->q_perm, perms);
4767 	return err;
4768 }
4769 
4770 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4771 {
4772 	struct ipc_security_struct *isec;
4773 	struct msg_security_struct *msec;
4774 	struct avc_audit_data ad;
4775 	u32 sid = current_sid();
4776 	int rc;
4777 
4778 	isec = msq->q_perm.security;
4779 	msec = msg->security;
4780 
4781 	/*
4782 	 * First time through, need to assign label to the message
4783 	 */
4784 	if (msec->sid == SECINITSID_UNLABELED) {
4785 		/*
4786 		 * Compute new sid based on current process and
4787 		 * message queue this message will be stored in
4788 		 */
4789 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4790 					     &msec->sid);
4791 		if (rc)
4792 			return rc;
4793 	}
4794 
4795 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4796 	ad.u.ipc_id = msq->q_perm.key;
4797 
4798 	/* Can this process write to the queue? */
4799 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4800 			  MSGQ__WRITE, &ad);
4801 	if (!rc)
4802 		/* Can this process send the message */
4803 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4804 				  MSG__SEND, &ad);
4805 	if (!rc)
4806 		/* Can the message be put in the queue? */
4807 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4808 				  MSGQ__ENQUEUE, &ad);
4809 
4810 	return rc;
4811 }
4812 
4813 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4814 				    struct task_struct *target,
4815 				    long type, int mode)
4816 {
4817 	struct ipc_security_struct *isec;
4818 	struct msg_security_struct *msec;
4819 	struct avc_audit_data ad;
4820 	u32 sid = task_sid(target);
4821 	int rc;
4822 
4823 	isec = msq->q_perm.security;
4824 	msec = msg->security;
4825 
4826 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4827 	ad.u.ipc_id = msq->q_perm.key;
4828 
4829 	rc = avc_has_perm(sid, isec->sid,
4830 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4831 	if (!rc)
4832 		rc = avc_has_perm(sid, msec->sid,
4833 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4834 	return rc;
4835 }
4836 
4837 /* Shared Memory security operations */
4838 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4839 {
4840 	struct ipc_security_struct *isec;
4841 	struct avc_audit_data ad;
4842 	u32 sid = current_sid();
4843 	int rc;
4844 
4845 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4846 	if (rc)
4847 		return rc;
4848 
4849 	isec = shp->shm_perm.security;
4850 
4851 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4852 	ad.u.ipc_id = shp->shm_perm.key;
4853 
4854 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4855 			  SHM__CREATE, &ad);
4856 	if (rc) {
4857 		ipc_free_security(&shp->shm_perm);
4858 		return rc;
4859 	}
4860 	return 0;
4861 }
4862 
4863 static void selinux_shm_free_security(struct shmid_kernel *shp)
4864 {
4865 	ipc_free_security(&shp->shm_perm);
4866 }
4867 
4868 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4869 {
4870 	struct ipc_security_struct *isec;
4871 	struct avc_audit_data ad;
4872 	u32 sid = current_sid();
4873 
4874 	isec = shp->shm_perm.security;
4875 
4876 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4877 	ad.u.ipc_id = shp->shm_perm.key;
4878 
4879 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4880 			    SHM__ASSOCIATE, &ad);
4881 }
4882 
4883 /* Note, at this point, shp is locked down */
4884 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4885 {
4886 	int perms;
4887 	int err;
4888 
4889 	switch (cmd) {
4890 	case IPC_INFO:
4891 	case SHM_INFO:
4892 		/* No specific object, just general system-wide information. */
4893 		return task_has_system(current, SYSTEM__IPC_INFO);
4894 	case IPC_STAT:
4895 	case SHM_STAT:
4896 		perms = SHM__GETATTR | SHM__ASSOCIATE;
4897 		break;
4898 	case IPC_SET:
4899 		perms = SHM__SETATTR;
4900 		break;
4901 	case SHM_LOCK:
4902 	case SHM_UNLOCK:
4903 		perms = SHM__LOCK;
4904 		break;
4905 	case IPC_RMID:
4906 		perms = SHM__DESTROY;
4907 		break;
4908 	default:
4909 		return 0;
4910 	}
4911 
4912 	err = ipc_has_perm(&shp->shm_perm, perms);
4913 	return err;
4914 }
4915 
4916 static int selinux_shm_shmat(struct shmid_kernel *shp,
4917 			     char __user *shmaddr, int shmflg)
4918 {
4919 	u32 perms;
4920 
4921 	if (shmflg & SHM_RDONLY)
4922 		perms = SHM__READ;
4923 	else
4924 		perms = SHM__READ | SHM__WRITE;
4925 
4926 	return ipc_has_perm(&shp->shm_perm, perms);
4927 }
4928 
4929 /* Semaphore security operations */
4930 static int selinux_sem_alloc_security(struct sem_array *sma)
4931 {
4932 	struct ipc_security_struct *isec;
4933 	struct avc_audit_data ad;
4934 	u32 sid = current_sid();
4935 	int rc;
4936 
4937 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4938 	if (rc)
4939 		return rc;
4940 
4941 	isec = sma->sem_perm.security;
4942 
4943 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4944 	ad.u.ipc_id = sma->sem_perm.key;
4945 
4946 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4947 			  SEM__CREATE, &ad);
4948 	if (rc) {
4949 		ipc_free_security(&sma->sem_perm);
4950 		return rc;
4951 	}
4952 	return 0;
4953 }
4954 
4955 static void selinux_sem_free_security(struct sem_array *sma)
4956 {
4957 	ipc_free_security(&sma->sem_perm);
4958 }
4959 
4960 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4961 {
4962 	struct ipc_security_struct *isec;
4963 	struct avc_audit_data ad;
4964 	u32 sid = current_sid();
4965 
4966 	isec = sma->sem_perm.security;
4967 
4968 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4969 	ad.u.ipc_id = sma->sem_perm.key;
4970 
4971 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4972 			    SEM__ASSOCIATE, &ad);
4973 }
4974 
4975 /* Note, at this point, sma is locked down */
4976 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4977 {
4978 	int err;
4979 	u32 perms;
4980 
4981 	switch (cmd) {
4982 	case IPC_INFO:
4983 	case SEM_INFO:
4984 		/* No specific object, just general system-wide information. */
4985 		return task_has_system(current, SYSTEM__IPC_INFO);
4986 	case GETPID:
4987 	case GETNCNT:
4988 	case GETZCNT:
4989 		perms = SEM__GETATTR;
4990 		break;
4991 	case GETVAL:
4992 	case GETALL:
4993 		perms = SEM__READ;
4994 		break;
4995 	case SETVAL:
4996 	case SETALL:
4997 		perms = SEM__WRITE;
4998 		break;
4999 	case IPC_RMID:
5000 		perms = SEM__DESTROY;
5001 		break;
5002 	case IPC_SET:
5003 		perms = SEM__SETATTR;
5004 		break;
5005 	case IPC_STAT:
5006 	case SEM_STAT:
5007 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5008 		break;
5009 	default:
5010 		return 0;
5011 	}
5012 
5013 	err = ipc_has_perm(&sma->sem_perm, perms);
5014 	return err;
5015 }
5016 
5017 static int selinux_sem_semop(struct sem_array *sma,
5018 			     struct sembuf *sops, unsigned nsops, int alter)
5019 {
5020 	u32 perms;
5021 
5022 	if (alter)
5023 		perms = SEM__READ | SEM__WRITE;
5024 	else
5025 		perms = SEM__READ;
5026 
5027 	return ipc_has_perm(&sma->sem_perm, perms);
5028 }
5029 
5030 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5031 {
5032 	u32 av = 0;
5033 
5034 	av = 0;
5035 	if (flag & S_IRUGO)
5036 		av |= IPC__UNIX_READ;
5037 	if (flag & S_IWUGO)
5038 		av |= IPC__UNIX_WRITE;
5039 
5040 	if (av == 0)
5041 		return 0;
5042 
5043 	return ipc_has_perm(ipcp, av);
5044 }
5045 
5046 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5047 {
5048 	struct ipc_security_struct *isec = ipcp->security;
5049 	*secid = isec->sid;
5050 }
5051 
5052 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5053 {
5054 	if (inode)
5055 		inode_doinit_with_dentry(inode, dentry);
5056 }
5057 
5058 static int selinux_getprocattr(struct task_struct *p,
5059 			       char *name, char **value)
5060 {
5061 	const struct task_security_struct *__tsec;
5062 	u32 sid;
5063 	int error;
5064 	unsigned len;
5065 
5066 	if (current != p) {
5067 		error = current_has_perm(p, PROCESS__GETATTR);
5068 		if (error)
5069 			return error;
5070 	}
5071 
5072 	rcu_read_lock();
5073 	__tsec = __task_cred(p)->security;
5074 
5075 	if (!strcmp(name, "current"))
5076 		sid = __tsec->sid;
5077 	else if (!strcmp(name, "prev"))
5078 		sid = __tsec->osid;
5079 	else if (!strcmp(name, "exec"))
5080 		sid = __tsec->exec_sid;
5081 	else if (!strcmp(name, "fscreate"))
5082 		sid = __tsec->create_sid;
5083 	else if (!strcmp(name, "keycreate"))
5084 		sid = __tsec->keycreate_sid;
5085 	else if (!strcmp(name, "sockcreate"))
5086 		sid = __tsec->sockcreate_sid;
5087 	else
5088 		goto invalid;
5089 	rcu_read_unlock();
5090 
5091 	if (!sid)
5092 		return 0;
5093 
5094 	error = security_sid_to_context(sid, value, &len);
5095 	if (error)
5096 		return error;
5097 	return len;
5098 
5099 invalid:
5100 	rcu_read_unlock();
5101 	return -EINVAL;
5102 }
5103 
5104 static int selinux_setprocattr(struct task_struct *p,
5105 			       char *name, void *value, size_t size)
5106 {
5107 	struct task_security_struct *tsec;
5108 	struct task_struct *tracer;
5109 	struct cred *new;
5110 	u32 sid = 0, ptsid;
5111 	int error;
5112 	char *str = value;
5113 
5114 	if (current != p) {
5115 		/* SELinux only allows a process to change its own
5116 		   security attributes. */
5117 		return -EACCES;
5118 	}
5119 
5120 	/*
5121 	 * Basic control over ability to set these attributes at all.
5122 	 * current == p, but we'll pass them separately in case the
5123 	 * above restriction is ever removed.
5124 	 */
5125 	if (!strcmp(name, "exec"))
5126 		error = current_has_perm(p, PROCESS__SETEXEC);
5127 	else if (!strcmp(name, "fscreate"))
5128 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5129 	else if (!strcmp(name, "keycreate"))
5130 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5131 	else if (!strcmp(name, "sockcreate"))
5132 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5133 	else if (!strcmp(name, "current"))
5134 		error = current_has_perm(p, PROCESS__SETCURRENT);
5135 	else
5136 		error = -EINVAL;
5137 	if (error)
5138 		return error;
5139 
5140 	/* Obtain a SID for the context, if one was specified. */
5141 	if (size && str[1] && str[1] != '\n') {
5142 		if (str[size-1] == '\n') {
5143 			str[size-1] = 0;
5144 			size--;
5145 		}
5146 		error = security_context_to_sid(value, size, &sid);
5147 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5148 			if (!capable(CAP_MAC_ADMIN))
5149 				return error;
5150 			error = security_context_to_sid_force(value, size,
5151 							      &sid);
5152 		}
5153 		if (error)
5154 			return error;
5155 	}
5156 
5157 	new = prepare_creds();
5158 	if (!new)
5159 		return -ENOMEM;
5160 
5161 	/* Permission checking based on the specified context is
5162 	   performed during the actual operation (execve,
5163 	   open/mkdir/...), when we know the full context of the
5164 	   operation.  See selinux_bprm_set_creds for the execve
5165 	   checks and may_create for the file creation checks. The
5166 	   operation will then fail if the context is not permitted. */
5167 	tsec = new->security;
5168 	if (!strcmp(name, "exec")) {
5169 		tsec->exec_sid = sid;
5170 	} else if (!strcmp(name, "fscreate")) {
5171 		tsec->create_sid = sid;
5172 	} else if (!strcmp(name, "keycreate")) {
5173 		error = may_create_key(sid, p);
5174 		if (error)
5175 			goto abort_change;
5176 		tsec->keycreate_sid = sid;
5177 	} else if (!strcmp(name, "sockcreate")) {
5178 		tsec->sockcreate_sid = sid;
5179 	} else if (!strcmp(name, "current")) {
5180 		error = -EINVAL;
5181 		if (sid == 0)
5182 			goto abort_change;
5183 
5184 		/* Only allow single threaded processes to change context */
5185 		error = -EPERM;
5186 		if (!is_single_threaded(p)) {
5187 			error = security_bounded_transition(tsec->sid, sid);
5188 			if (error)
5189 				goto abort_change;
5190 		}
5191 
5192 		/* Check permissions for the transition. */
5193 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5194 				     PROCESS__DYNTRANSITION, NULL);
5195 		if (error)
5196 			goto abort_change;
5197 
5198 		/* Check for ptracing, and update the task SID if ok.
5199 		   Otherwise, leave SID unchanged and fail. */
5200 		ptsid = 0;
5201 		task_lock(p);
5202 		tracer = tracehook_tracer_task(p);
5203 		if (tracer)
5204 			ptsid = task_sid(tracer);
5205 		task_unlock(p);
5206 
5207 		if (tracer) {
5208 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5209 					     PROCESS__PTRACE, NULL);
5210 			if (error)
5211 				goto abort_change;
5212 		}
5213 
5214 		tsec->sid = sid;
5215 	} else {
5216 		error = -EINVAL;
5217 		goto abort_change;
5218 	}
5219 
5220 	commit_creds(new);
5221 	return size;
5222 
5223 abort_change:
5224 	abort_creds(new);
5225 	return error;
5226 }
5227 
5228 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5229 {
5230 	return security_sid_to_context(secid, secdata, seclen);
5231 }
5232 
5233 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5234 {
5235 	return security_context_to_sid(secdata, seclen, secid);
5236 }
5237 
5238 static void selinux_release_secctx(char *secdata, u32 seclen)
5239 {
5240 	kfree(secdata);
5241 }
5242 
5243 #ifdef CONFIG_KEYS
5244 
5245 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5246 			     unsigned long flags)
5247 {
5248 	const struct task_security_struct *tsec;
5249 	struct key_security_struct *ksec;
5250 
5251 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5252 	if (!ksec)
5253 		return -ENOMEM;
5254 
5255 	tsec = cred->security;
5256 	if (tsec->keycreate_sid)
5257 		ksec->sid = tsec->keycreate_sid;
5258 	else
5259 		ksec->sid = tsec->sid;
5260 
5261 	k->security = ksec;
5262 	return 0;
5263 }
5264 
5265 static void selinux_key_free(struct key *k)
5266 {
5267 	struct key_security_struct *ksec = k->security;
5268 
5269 	k->security = NULL;
5270 	kfree(ksec);
5271 }
5272 
5273 static int selinux_key_permission(key_ref_t key_ref,
5274 				  const struct cred *cred,
5275 				  key_perm_t perm)
5276 {
5277 	struct key *key;
5278 	struct key_security_struct *ksec;
5279 	u32 sid;
5280 
5281 	/* if no specific permissions are requested, we skip the
5282 	   permission check. No serious, additional covert channels
5283 	   appear to be created. */
5284 	if (perm == 0)
5285 		return 0;
5286 
5287 	sid = cred_sid(cred);
5288 
5289 	key = key_ref_to_ptr(key_ref);
5290 	ksec = key->security;
5291 
5292 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5293 }
5294 
5295 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5296 {
5297 	struct key_security_struct *ksec = key->security;
5298 	char *context = NULL;
5299 	unsigned len;
5300 	int rc;
5301 
5302 	rc = security_sid_to_context(ksec->sid, &context, &len);
5303 	if (!rc)
5304 		rc = len;
5305 	*_buffer = context;
5306 	return rc;
5307 }
5308 
5309 #endif
5310 
5311 static struct security_operations selinux_ops = {
5312 	.name =				"selinux",
5313 
5314 	.ptrace_may_access =		selinux_ptrace_may_access,
5315 	.ptrace_traceme =		selinux_ptrace_traceme,
5316 	.capget =			selinux_capget,
5317 	.capset =			selinux_capset,
5318 	.sysctl =			selinux_sysctl,
5319 	.capable =			selinux_capable,
5320 	.quotactl =			selinux_quotactl,
5321 	.quota_on =			selinux_quota_on,
5322 	.syslog =			selinux_syslog,
5323 	.vm_enough_memory =		selinux_vm_enough_memory,
5324 
5325 	.netlink_send =			selinux_netlink_send,
5326 	.netlink_recv =			selinux_netlink_recv,
5327 
5328 	.bprm_set_creds =		selinux_bprm_set_creds,
5329 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5330 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5331 	.bprm_secureexec =		selinux_bprm_secureexec,
5332 
5333 	.sb_alloc_security =		selinux_sb_alloc_security,
5334 	.sb_free_security =		selinux_sb_free_security,
5335 	.sb_copy_data =			selinux_sb_copy_data,
5336 	.sb_kern_mount =		selinux_sb_kern_mount,
5337 	.sb_show_options =		selinux_sb_show_options,
5338 	.sb_statfs =			selinux_sb_statfs,
5339 	.sb_mount =			selinux_mount,
5340 	.sb_umount =			selinux_umount,
5341 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5342 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5343 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5344 
5345 
5346 	.inode_alloc_security =		selinux_inode_alloc_security,
5347 	.inode_free_security =		selinux_inode_free_security,
5348 	.inode_init_security =		selinux_inode_init_security,
5349 	.inode_create =			selinux_inode_create,
5350 	.inode_link =			selinux_inode_link,
5351 	.inode_unlink =			selinux_inode_unlink,
5352 	.inode_symlink =		selinux_inode_symlink,
5353 	.inode_mkdir =			selinux_inode_mkdir,
5354 	.inode_rmdir =			selinux_inode_rmdir,
5355 	.inode_mknod =			selinux_inode_mknod,
5356 	.inode_rename =			selinux_inode_rename,
5357 	.inode_readlink =		selinux_inode_readlink,
5358 	.inode_follow_link =		selinux_inode_follow_link,
5359 	.inode_permission =		selinux_inode_permission,
5360 	.inode_setattr =		selinux_inode_setattr,
5361 	.inode_getattr =		selinux_inode_getattr,
5362 	.inode_setxattr =		selinux_inode_setxattr,
5363 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5364 	.inode_getxattr =		selinux_inode_getxattr,
5365 	.inode_listxattr =		selinux_inode_listxattr,
5366 	.inode_removexattr =		selinux_inode_removexattr,
5367 	.inode_getsecurity =		selinux_inode_getsecurity,
5368 	.inode_setsecurity =		selinux_inode_setsecurity,
5369 	.inode_listsecurity =		selinux_inode_listsecurity,
5370 	.inode_getsecid =		selinux_inode_getsecid,
5371 
5372 	.file_permission =		selinux_file_permission,
5373 	.file_alloc_security =		selinux_file_alloc_security,
5374 	.file_free_security =		selinux_file_free_security,
5375 	.file_ioctl =			selinux_file_ioctl,
5376 	.file_mmap =			selinux_file_mmap,
5377 	.file_mprotect =		selinux_file_mprotect,
5378 	.file_lock =			selinux_file_lock,
5379 	.file_fcntl =			selinux_file_fcntl,
5380 	.file_set_fowner =		selinux_file_set_fowner,
5381 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5382 	.file_receive =			selinux_file_receive,
5383 
5384 	.dentry_open =			selinux_dentry_open,
5385 
5386 	.task_create =			selinux_task_create,
5387 	.cred_free =			selinux_cred_free,
5388 	.cred_prepare =			selinux_cred_prepare,
5389 	.kernel_act_as =		selinux_kernel_act_as,
5390 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5391 	.task_setpgid =			selinux_task_setpgid,
5392 	.task_getpgid =			selinux_task_getpgid,
5393 	.task_getsid =			selinux_task_getsid,
5394 	.task_getsecid =		selinux_task_getsecid,
5395 	.task_setnice =			selinux_task_setnice,
5396 	.task_setioprio =		selinux_task_setioprio,
5397 	.task_getioprio =		selinux_task_getioprio,
5398 	.task_setrlimit =		selinux_task_setrlimit,
5399 	.task_setscheduler =		selinux_task_setscheduler,
5400 	.task_getscheduler =		selinux_task_getscheduler,
5401 	.task_movememory =		selinux_task_movememory,
5402 	.task_kill =			selinux_task_kill,
5403 	.task_wait =			selinux_task_wait,
5404 	.task_to_inode =		selinux_task_to_inode,
5405 
5406 	.ipc_permission =		selinux_ipc_permission,
5407 	.ipc_getsecid =			selinux_ipc_getsecid,
5408 
5409 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5410 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5411 
5412 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5413 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5414 	.msg_queue_associate =		selinux_msg_queue_associate,
5415 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5416 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5417 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5418 
5419 	.shm_alloc_security =		selinux_shm_alloc_security,
5420 	.shm_free_security =		selinux_shm_free_security,
5421 	.shm_associate =		selinux_shm_associate,
5422 	.shm_shmctl =			selinux_shm_shmctl,
5423 	.shm_shmat =			selinux_shm_shmat,
5424 
5425 	.sem_alloc_security =		selinux_sem_alloc_security,
5426 	.sem_free_security =		selinux_sem_free_security,
5427 	.sem_associate =		selinux_sem_associate,
5428 	.sem_semctl =			selinux_sem_semctl,
5429 	.sem_semop =			selinux_sem_semop,
5430 
5431 	.d_instantiate =		selinux_d_instantiate,
5432 
5433 	.getprocattr =			selinux_getprocattr,
5434 	.setprocattr =			selinux_setprocattr,
5435 
5436 	.secid_to_secctx =		selinux_secid_to_secctx,
5437 	.secctx_to_secid =		selinux_secctx_to_secid,
5438 	.release_secctx =		selinux_release_secctx,
5439 
5440 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5441 	.unix_may_send =		selinux_socket_unix_may_send,
5442 
5443 	.socket_create =		selinux_socket_create,
5444 	.socket_post_create =		selinux_socket_post_create,
5445 	.socket_bind =			selinux_socket_bind,
5446 	.socket_connect =		selinux_socket_connect,
5447 	.socket_listen =		selinux_socket_listen,
5448 	.socket_accept =		selinux_socket_accept,
5449 	.socket_sendmsg =		selinux_socket_sendmsg,
5450 	.socket_recvmsg =		selinux_socket_recvmsg,
5451 	.socket_getsockname =		selinux_socket_getsockname,
5452 	.socket_getpeername =		selinux_socket_getpeername,
5453 	.socket_getsockopt =		selinux_socket_getsockopt,
5454 	.socket_setsockopt =		selinux_socket_setsockopt,
5455 	.socket_shutdown =		selinux_socket_shutdown,
5456 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5457 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5458 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5459 	.sk_alloc_security =		selinux_sk_alloc_security,
5460 	.sk_free_security =		selinux_sk_free_security,
5461 	.sk_clone_security =		selinux_sk_clone_security,
5462 	.sk_getsecid =			selinux_sk_getsecid,
5463 	.sock_graft =			selinux_sock_graft,
5464 	.inet_conn_request =		selinux_inet_conn_request,
5465 	.inet_csk_clone =		selinux_inet_csk_clone,
5466 	.inet_conn_established =	selinux_inet_conn_established,
5467 	.req_classify_flow =		selinux_req_classify_flow,
5468 
5469 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5470 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5471 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5472 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5473 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5474 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5475 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5476 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5477 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5478 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5479 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5480 #endif
5481 
5482 #ifdef CONFIG_KEYS
5483 	.key_alloc =			selinux_key_alloc,
5484 	.key_free =			selinux_key_free,
5485 	.key_permission =		selinux_key_permission,
5486 	.key_getsecurity =		selinux_key_getsecurity,
5487 #endif
5488 
5489 #ifdef CONFIG_AUDIT
5490 	.audit_rule_init =		selinux_audit_rule_init,
5491 	.audit_rule_known =		selinux_audit_rule_known,
5492 	.audit_rule_match =		selinux_audit_rule_match,
5493 	.audit_rule_free =		selinux_audit_rule_free,
5494 #endif
5495 };
5496 
5497 static __init int selinux_init(void)
5498 {
5499 	if (!security_module_enable(&selinux_ops)) {
5500 		selinux_enabled = 0;
5501 		return 0;
5502 	}
5503 
5504 	if (!selinux_enabled) {
5505 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5506 		return 0;
5507 	}
5508 
5509 	printk(KERN_INFO "SELinux:  Initializing.\n");
5510 
5511 	/* Set the security state for the initial task. */
5512 	cred_init_security();
5513 
5514 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5515 					    sizeof(struct inode_security_struct),
5516 					    0, SLAB_PANIC, NULL);
5517 	avc_init();
5518 
5519 	secondary_ops = security_ops;
5520 	if (!secondary_ops)
5521 		panic("SELinux: No initial security operations\n");
5522 	if (register_security(&selinux_ops))
5523 		panic("SELinux: Unable to register with kernel.\n");
5524 
5525 	if (selinux_enforcing)
5526 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5527 	else
5528 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5529 
5530 	return 0;
5531 }
5532 
5533 void selinux_complete_init(void)
5534 {
5535 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5536 
5537 	/* Set up any superblocks initialized prior to the policy load. */
5538 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5539 	spin_lock(&sb_lock);
5540 	spin_lock(&sb_security_lock);
5541 next_sb:
5542 	if (!list_empty(&superblock_security_head)) {
5543 		struct superblock_security_struct *sbsec =
5544 				list_entry(superblock_security_head.next,
5545 					   struct superblock_security_struct,
5546 					   list);
5547 		struct super_block *sb = sbsec->sb;
5548 		sb->s_count++;
5549 		spin_unlock(&sb_security_lock);
5550 		spin_unlock(&sb_lock);
5551 		down_read(&sb->s_umount);
5552 		if (sb->s_root)
5553 			superblock_doinit(sb, NULL);
5554 		drop_super(sb);
5555 		spin_lock(&sb_lock);
5556 		spin_lock(&sb_security_lock);
5557 		list_del_init(&sbsec->list);
5558 		goto next_sb;
5559 	}
5560 	spin_unlock(&sb_security_lock);
5561 	spin_unlock(&sb_lock);
5562 }
5563 
5564 /* SELinux requires early initialization in order to label
5565    all processes and objects when they are created. */
5566 security_initcall(selinux_init);
5567 
5568 #if defined(CONFIG_NETFILTER)
5569 
5570 static struct nf_hook_ops selinux_ipv4_ops[] = {
5571 	{
5572 		.hook =		selinux_ipv4_postroute,
5573 		.owner =	THIS_MODULE,
5574 		.pf =		PF_INET,
5575 		.hooknum =	NF_INET_POST_ROUTING,
5576 		.priority =	NF_IP_PRI_SELINUX_LAST,
5577 	},
5578 	{
5579 		.hook =		selinux_ipv4_forward,
5580 		.owner =	THIS_MODULE,
5581 		.pf =		PF_INET,
5582 		.hooknum =	NF_INET_FORWARD,
5583 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5584 	},
5585 	{
5586 		.hook =		selinux_ipv4_output,
5587 		.owner =	THIS_MODULE,
5588 		.pf =		PF_INET,
5589 		.hooknum =	NF_INET_LOCAL_OUT,
5590 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5591 	}
5592 };
5593 
5594 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5595 
5596 static struct nf_hook_ops selinux_ipv6_ops[] = {
5597 	{
5598 		.hook =		selinux_ipv6_postroute,
5599 		.owner =	THIS_MODULE,
5600 		.pf =		PF_INET6,
5601 		.hooknum =	NF_INET_POST_ROUTING,
5602 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5603 	},
5604 	{
5605 		.hook =		selinux_ipv6_forward,
5606 		.owner =	THIS_MODULE,
5607 		.pf =		PF_INET6,
5608 		.hooknum =	NF_INET_FORWARD,
5609 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5610 	}
5611 };
5612 
5613 #endif	/* IPV6 */
5614 
5615 static int __init selinux_nf_ip_init(void)
5616 {
5617 	int err = 0;
5618 
5619 	if (!selinux_enabled)
5620 		goto out;
5621 
5622 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5623 
5624 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5625 	if (err)
5626 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5627 
5628 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5629 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5630 	if (err)
5631 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5632 #endif	/* IPV6 */
5633 
5634 out:
5635 	return err;
5636 }
5637 
5638 __initcall(selinux_nf_ip_init);
5639 
5640 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5641 static void selinux_nf_ip_exit(void)
5642 {
5643 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5644 
5645 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5646 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5647 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5648 #endif	/* IPV6 */
5649 }
5650 #endif
5651 
5652 #else /* CONFIG_NETFILTER */
5653 
5654 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5655 #define selinux_nf_ip_exit()
5656 #endif
5657 
5658 #endif /* CONFIG_NETFILTER */
5659 
5660 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5661 static int selinux_disabled;
5662 
5663 int selinux_disable(void)
5664 {
5665 	extern void exit_sel_fs(void);
5666 
5667 	if (ss_initialized) {
5668 		/* Not permitted after initial policy load. */
5669 		return -EINVAL;
5670 	}
5671 
5672 	if (selinux_disabled) {
5673 		/* Only do this once. */
5674 		return -EINVAL;
5675 	}
5676 
5677 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5678 
5679 	selinux_disabled = 1;
5680 	selinux_enabled = 0;
5681 
5682 	/* Reset security_ops to the secondary module, dummy or capability. */
5683 	security_ops = secondary_ops;
5684 
5685 	/* Unregister netfilter hooks. */
5686 	selinux_nf_ip_exit();
5687 
5688 	/* Unregister selinuxfs. */
5689 	exit_sel_fs();
5690 
5691 	return 0;
5692 }
5693 #endif
5694