xref: /openbmc/linux/security/selinux/hooks.c (revision 25354c4fee169710fd9da15f3bb2abaa24dcf933)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *		Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>		/* for local_port_range[] */
52 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>	/* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>		/* for Unix socket types */
67 #include <net/af_unix.h>	/* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88 
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91 
92 #define NUM_SEL_MNT_OPTS 5
93 
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97 
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100 
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103 
104 static int __init enforcing_setup(char *str)
105 {
106 	unsigned long enforcing;
107 	if (!strict_strtoul(str, 0, &enforcing))
108 		selinux_enforcing = enforcing ? 1 : 0;
109 	return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113 
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116 
117 static int __init selinux_enabled_setup(char *str)
118 {
119 	unsigned long enabled;
120 	if (!strict_strtoul(str, 0, &enabled))
121 		selinux_enabled = enabled ? 1 : 0;
122 	return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128 
129 
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135 
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140 
141 static struct kmem_cache *sel_inode_cache;
142 
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155 	return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157 
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163 	struct cred *cred = (struct cred *) current->real_cred;
164 	struct task_security_struct *tsec;
165 
166 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167 	if (!tsec)
168 		panic("SELinux:  Failed to initialize initial task.\n");
169 
170 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
171 	cred->security = tsec;
172 }
173 
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179 	const struct task_security_struct *tsec;
180 
181 	tsec = cred->security;
182 	return tsec->sid;
183 }
184 
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190 	u32 sid;
191 
192 	rcu_read_lock();
193 	sid = cred_sid(__task_cred(task));
194 	rcu_read_unlock();
195 	return sid;
196 }
197 
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203 	const struct task_security_struct *tsec = current_cred()->security;
204 
205 	return tsec->sid;
206 }
207 
208 /* Allocate and free functions for each kind of security blob. */
209 
210 static int inode_alloc_security(struct inode *inode)
211 {
212 	struct inode_security_struct *isec;
213 	u32 sid = current_sid();
214 
215 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216 	if (!isec)
217 		return -ENOMEM;
218 
219 	mutex_init(&isec->lock);
220 	INIT_LIST_HEAD(&isec->list);
221 	isec->inode = inode;
222 	isec->sid = SECINITSID_UNLABELED;
223 	isec->sclass = SECCLASS_FILE;
224 	isec->task_sid = sid;
225 	inode->i_security = isec;
226 
227 	return 0;
228 }
229 
230 static void inode_free_security(struct inode *inode)
231 {
232 	struct inode_security_struct *isec = inode->i_security;
233 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234 
235 	spin_lock(&sbsec->isec_lock);
236 	if (!list_empty(&isec->list))
237 		list_del_init(&isec->list);
238 	spin_unlock(&sbsec->isec_lock);
239 
240 	inode->i_security = NULL;
241 	kmem_cache_free(sel_inode_cache, isec);
242 }
243 
244 static int file_alloc_security(struct file *file)
245 {
246 	struct file_security_struct *fsec;
247 	u32 sid = current_sid();
248 
249 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250 	if (!fsec)
251 		return -ENOMEM;
252 
253 	fsec->sid = sid;
254 	fsec->fown_sid = sid;
255 	file->f_security = fsec;
256 
257 	return 0;
258 }
259 
260 static void file_free_security(struct file *file)
261 {
262 	struct file_security_struct *fsec = file->f_security;
263 	file->f_security = NULL;
264 	kfree(fsec);
265 }
266 
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269 	struct superblock_security_struct *sbsec;
270 
271 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272 	if (!sbsec)
273 		return -ENOMEM;
274 
275 	mutex_init(&sbsec->lock);
276 	INIT_LIST_HEAD(&sbsec->list);
277 	INIT_LIST_HEAD(&sbsec->isec_head);
278 	spin_lock_init(&sbsec->isec_lock);
279 	sbsec->sb = sb;
280 	sbsec->sid = SECINITSID_UNLABELED;
281 	sbsec->def_sid = SECINITSID_FILE;
282 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283 	sb->s_security = sbsec;
284 
285 	return 0;
286 }
287 
288 static void superblock_free_security(struct super_block *sb)
289 {
290 	struct superblock_security_struct *sbsec = sb->s_security;
291 
292 	spin_lock(&sb_security_lock);
293 	if (!list_empty(&sbsec->list))
294 		list_del_init(&sbsec->list);
295 	spin_unlock(&sb_security_lock);
296 
297 	sb->s_security = NULL;
298 	kfree(sbsec);
299 }
300 
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303 	struct sk_security_struct *ssec;
304 
305 	ssec = kzalloc(sizeof(*ssec), priority);
306 	if (!ssec)
307 		return -ENOMEM;
308 
309 	ssec->peer_sid = SECINITSID_UNLABELED;
310 	ssec->sid = SECINITSID_UNLABELED;
311 	sk->sk_security = ssec;
312 
313 	selinux_netlbl_sk_security_reset(ssec);
314 
315 	return 0;
316 }
317 
318 static void sk_free_security(struct sock *sk)
319 {
320 	struct sk_security_struct *ssec = sk->sk_security;
321 
322 	sk->sk_security = NULL;
323 	selinux_netlbl_sk_security_free(ssec);
324 	kfree(ssec);
325 }
326 
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330 
331 /* The file system's label must be initialized prior to use. */
332 
333 static char *labeling_behaviors[6] = {
334 	"uses xattr",
335 	"uses transition SIDs",
336 	"uses task SIDs",
337 	"uses genfs_contexts",
338 	"not configured for labeling",
339 	"uses mountpoint labeling",
340 };
341 
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343 
344 static inline int inode_doinit(struct inode *inode)
345 {
346 	return inode_doinit_with_dentry(inode, NULL);
347 }
348 
349 enum {
350 	Opt_error = -1,
351 	Opt_context = 1,
352 	Opt_fscontext = 2,
353 	Opt_defcontext = 3,
354 	Opt_rootcontext = 4,
355 	Opt_labelsupport = 5,
356 };
357 
358 static const match_table_t tokens = {
359 	{Opt_context, CONTEXT_STR "%s"},
360 	{Opt_fscontext, FSCONTEXT_STR "%s"},
361 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
362 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363 	{Opt_labelsupport, LABELSUPP_STR},
364 	{Opt_error, NULL},
365 };
366 
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368 
369 static int may_context_mount_sb_relabel(u32 sid,
370 			struct superblock_security_struct *sbsec,
371 			const struct cred *cred)
372 {
373 	const struct task_security_struct *tsec = cred->security;
374 	int rc;
375 
376 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377 			  FILESYSTEM__RELABELFROM, NULL);
378 	if (rc)
379 		return rc;
380 
381 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382 			  FILESYSTEM__RELABELTO, NULL);
383 	return rc;
384 }
385 
386 static int may_context_mount_inode_relabel(u32 sid,
387 			struct superblock_security_struct *sbsec,
388 			const struct cred *cred)
389 {
390 	const struct task_security_struct *tsec = cred->security;
391 	int rc;
392 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393 			  FILESYSTEM__RELABELFROM, NULL);
394 	if (rc)
395 		return rc;
396 
397 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398 			  FILESYSTEM__ASSOCIATE, NULL);
399 	return rc;
400 }
401 
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404 	struct superblock_security_struct *sbsec = sb->s_security;
405 	struct dentry *root = sb->s_root;
406 	struct inode *root_inode = root->d_inode;
407 	int rc = 0;
408 
409 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410 		/* Make sure that the xattr handler exists and that no
411 		   error other than -ENODATA is returned by getxattr on
412 		   the root directory.  -ENODATA is ok, as this may be
413 		   the first boot of the SELinux kernel before we have
414 		   assigned xattr values to the filesystem. */
415 		if (!root_inode->i_op->getxattr) {
416 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417 			       "xattr support\n", sb->s_id, sb->s_type->name);
418 			rc = -EOPNOTSUPP;
419 			goto out;
420 		}
421 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422 		if (rc < 0 && rc != -ENODATA) {
423 			if (rc == -EOPNOTSUPP)
424 				printk(KERN_WARNING "SELinux: (dev %s, type "
425 				       "%s) has no security xattr handler\n",
426 				       sb->s_id, sb->s_type->name);
427 			else
428 				printk(KERN_WARNING "SELinux: (dev %s, type "
429 				       "%s) getxattr errno %d\n", sb->s_id,
430 				       sb->s_type->name, -rc);
431 			goto out;
432 		}
433 	}
434 
435 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436 
437 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439 		       sb->s_id, sb->s_type->name);
440 	else
441 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442 		       sb->s_id, sb->s_type->name,
443 		       labeling_behaviors[sbsec->behavior-1]);
444 
445 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
448 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449 		sbsec->flags &= ~SE_SBLABELSUPP;
450 
451 	/* Initialize the root inode. */
452 	rc = inode_doinit_with_dentry(root_inode, root);
453 
454 	/* Initialize any other inodes associated with the superblock, e.g.
455 	   inodes created prior to initial policy load or inodes created
456 	   during get_sb by a pseudo filesystem that directly
457 	   populates itself. */
458 	spin_lock(&sbsec->isec_lock);
459 next_inode:
460 	if (!list_empty(&sbsec->isec_head)) {
461 		struct inode_security_struct *isec =
462 				list_entry(sbsec->isec_head.next,
463 					   struct inode_security_struct, list);
464 		struct inode *inode = isec->inode;
465 		spin_unlock(&sbsec->isec_lock);
466 		inode = igrab(inode);
467 		if (inode) {
468 			if (!IS_PRIVATE(inode))
469 				inode_doinit(inode);
470 			iput(inode);
471 		}
472 		spin_lock(&sbsec->isec_lock);
473 		list_del_init(&isec->list);
474 		goto next_inode;
475 	}
476 	spin_unlock(&sbsec->isec_lock);
477 out:
478 	return rc;
479 }
480 
481 /*
482  * This function should allow an FS to ask what it's mount security
483  * options were so it can use those later for submounts, displaying
484  * mount options, or whatever.
485  */
486 static int selinux_get_mnt_opts(const struct super_block *sb,
487 				struct security_mnt_opts *opts)
488 {
489 	int rc = 0, i;
490 	struct superblock_security_struct *sbsec = sb->s_security;
491 	char *context = NULL;
492 	u32 len;
493 	char tmp;
494 
495 	security_init_mnt_opts(opts);
496 
497 	if (!(sbsec->flags & SE_SBINITIALIZED))
498 		return -EINVAL;
499 
500 	if (!ss_initialized)
501 		return -EINVAL;
502 
503 	tmp = sbsec->flags & SE_MNTMASK;
504 	/* count the number of mount options for this sb */
505 	for (i = 0; i < 8; i++) {
506 		if (tmp & 0x01)
507 			opts->num_mnt_opts++;
508 		tmp >>= 1;
509 	}
510 	/* Check if the Label support flag is set */
511 	if (sbsec->flags & SE_SBLABELSUPP)
512 		opts->num_mnt_opts++;
513 
514 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
515 	if (!opts->mnt_opts) {
516 		rc = -ENOMEM;
517 		goto out_free;
518 	}
519 
520 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
521 	if (!opts->mnt_opts_flags) {
522 		rc = -ENOMEM;
523 		goto out_free;
524 	}
525 
526 	i = 0;
527 	if (sbsec->flags & FSCONTEXT_MNT) {
528 		rc = security_sid_to_context(sbsec->sid, &context, &len);
529 		if (rc)
530 			goto out_free;
531 		opts->mnt_opts[i] = context;
532 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
533 	}
534 	if (sbsec->flags & CONTEXT_MNT) {
535 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
536 		if (rc)
537 			goto out_free;
538 		opts->mnt_opts[i] = context;
539 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
540 	}
541 	if (sbsec->flags & DEFCONTEXT_MNT) {
542 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
543 		if (rc)
544 			goto out_free;
545 		opts->mnt_opts[i] = context;
546 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
547 	}
548 	if (sbsec->flags & ROOTCONTEXT_MNT) {
549 		struct inode *root = sbsec->sb->s_root->d_inode;
550 		struct inode_security_struct *isec = root->i_security;
551 
552 		rc = security_sid_to_context(isec->sid, &context, &len);
553 		if (rc)
554 			goto out_free;
555 		opts->mnt_opts[i] = context;
556 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
557 	}
558 	if (sbsec->flags & SE_SBLABELSUPP) {
559 		opts->mnt_opts[i] = NULL;
560 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
561 	}
562 
563 	BUG_ON(i != opts->num_mnt_opts);
564 
565 	return 0;
566 
567 out_free:
568 	security_free_mnt_opts(opts);
569 	return rc;
570 }
571 
572 static int bad_option(struct superblock_security_struct *sbsec, char flag,
573 		      u32 old_sid, u32 new_sid)
574 {
575 	char mnt_flags = sbsec->flags & SE_MNTMASK;
576 
577 	/* check if the old mount command had the same options */
578 	if (sbsec->flags & SE_SBINITIALIZED)
579 		if (!(sbsec->flags & flag) ||
580 		    (old_sid != new_sid))
581 			return 1;
582 
583 	/* check if we were passed the same options twice,
584 	 * aka someone passed context=a,context=b
585 	 */
586 	if (!(sbsec->flags & SE_SBINITIALIZED))
587 		if (mnt_flags & flag)
588 			return 1;
589 	return 0;
590 }
591 
592 /*
593  * Allow filesystems with binary mount data to explicitly set mount point
594  * labeling information.
595  */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597 				struct security_mnt_opts *opts)
598 {
599 	const struct cred *cred = current_cred();
600 	int rc = 0, i;
601 	struct superblock_security_struct *sbsec = sb->s_security;
602 	const char *name = sb->s_type->name;
603 	struct inode *inode = sbsec->sb->s_root->d_inode;
604 	struct inode_security_struct *root_isec = inode->i_security;
605 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606 	u32 defcontext_sid = 0;
607 	char **mount_options = opts->mnt_opts;
608 	int *flags = opts->mnt_opts_flags;
609 	int num_opts = opts->num_mnt_opts;
610 
611 	mutex_lock(&sbsec->lock);
612 
613 	if (!ss_initialized) {
614 		if (!num_opts) {
615 			/* Defer initialization until selinux_complete_init,
616 			   after the initial policy is loaded and the security
617 			   server is ready to handle calls. */
618 			spin_lock(&sb_security_lock);
619 			if (list_empty(&sbsec->list))
620 				list_add(&sbsec->list, &superblock_security_head);
621 			spin_unlock(&sb_security_lock);
622 			goto out;
623 		}
624 		rc = -EINVAL;
625 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
626 			"before the security server is initialized\n");
627 		goto out;
628 	}
629 
630 	/*
631 	 * Binary mount data FS will come through this function twice.  Once
632 	 * from an explicit call and once from the generic calls from the vfs.
633 	 * Since the generic VFS calls will not contain any security mount data
634 	 * we need to skip the double mount verification.
635 	 *
636 	 * This does open a hole in which we will not notice if the first
637 	 * mount using this sb set explict options and a second mount using
638 	 * this sb does not set any security options.  (The first options
639 	 * will be used for both mounts)
640 	 */
641 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642 	    && (num_opts == 0))
643 		goto out;
644 
645 	/*
646 	 * parse the mount options, check if they are valid sids.
647 	 * also check if someone is trying to mount the same sb more
648 	 * than once with different security options.
649 	 */
650 	for (i = 0; i < num_opts; i++) {
651 		u32 sid;
652 
653 		if (flags[i] == SE_SBLABELSUPP)
654 			continue;
655 		rc = security_context_to_sid(mount_options[i],
656 					     strlen(mount_options[i]), &sid);
657 		if (rc) {
658 			printk(KERN_WARNING "SELinux: security_context_to_sid"
659 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
660 			       mount_options[i], sb->s_id, name, rc);
661 			goto out;
662 		}
663 		switch (flags[i]) {
664 		case FSCONTEXT_MNT:
665 			fscontext_sid = sid;
666 
667 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
668 					fscontext_sid))
669 				goto out_double_mount;
670 
671 			sbsec->flags |= FSCONTEXT_MNT;
672 			break;
673 		case CONTEXT_MNT:
674 			context_sid = sid;
675 
676 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
677 					context_sid))
678 				goto out_double_mount;
679 
680 			sbsec->flags |= CONTEXT_MNT;
681 			break;
682 		case ROOTCONTEXT_MNT:
683 			rootcontext_sid = sid;
684 
685 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
686 					rootcontext_sid))
687 				goto out_double_mount;
688 
689 			sbsec->flags |= ROOTCONTEXT_MNT;
690 
691 			break;
692 		case DEFCONTEXT_MNT:
693 			defcontext_sid = sid;
694 
695 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
696 					defcontext_sid))
697 				goto out_double_mount;
698 
699 			sbsec->flags |= DEFCONTEXT_MNT;
700 
701 			break;
702 		default:
703 			rc = -EINVAL;
704 			goto out;
705 		}
706 	}
707 
708 	if (sbsec->flags & SE_SBINITIALIZED) {
709 		/* previously mounted with options, but not on this attempt? */
710 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
711 			goto out_double_mount;
712 		rc = 0;
713 		goto out;
714 	}
715 
716 	if (strcmp(sb->s_type->name, "proc") == 0)
717 		sbsec->flags |= SE_SBPROC;
718 
719 	/* Determine the labeling behavior to use for this filesystem type. */
720 	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
721 	if (rc) {
722 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
723 		       __func__, sb->s_type->name, rc);
724 		goto out;
725 	}
726 
727 	/* sets the context of the superblock for the fs being mounted. */
728 	if (fscontext_sid) {
729 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
730 		if (rc)
731 			goto out;
732 
733 		sbsec->sid = fscontext_sid;
734 	}
735 
736 	/*
737 	 * Switch to using mount point labeling behavior.
738 	 * sets the label used on all file below the mountpoint, and will set
739 	 * the superblock context if not already set.
740 	 */
741 	if (context_sid) {
742 		if (!fscontext_sid) {
743 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
744 							  cred);
745 			if (rc)
746 				goto out;
747 			sbsec->sid = context_sid;
748 		} else {
749 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
750 							     cred);
751 			if (rc)
752 				goto out;
753 		}
754 		if (!rootcontext_sid)
755 			rootcontext_sid = context_sid;
756 
757 		sbsec->mntpoint_sid = context_sid;
758 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
759 	}
760 
761 	if (rootcontext_sid) {
762 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
763 						     cred);
764 		if (rc)
765 			goto out;
766 
767 		root_isec->sid = rootcontext_sid;
768 		root_isec->initialized = 1;
769 	}
770 
771 	if (defcontext_sid) {
772 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
773 			rc = -EINVAL;
774 			printk(KERN_WARNING "SELinux: defcontext option is "
775 			       "invalid for this filesystem type\n");
776 			goto out;
777 		}
778 
779 		if (defcontext_sid != sbsec->def_sid) {
780 			rc = may_context_mount_inode_relabel(defcontext_sid,
781 							     sbsec, cred);
782 			if (rc)
783 				goto out;
784 		}
785 
786 		sbsec->def_sid = defcontext_sid;
787 	}
788 
789 	rc = sb_finish_set_opts(sb);
790 out:
791 	mutex_unlock(&sbsec->lock);
792 	return rc;
793 out_double_mount:
794 	rc = -EINVAL;
795 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
796 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
797 	goto out;
798 }
799 
800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
801 					struct super_block *newsb)
802 {
803 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
804 	struct superblock_security_struct *newsbsec = newsb->s_security;
805 
806 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
807 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
808 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
809 
810 	/*
811 	 * if the parent was able to be mounted it clearly had no special lsm
812 	 * mount options.  thus we can safely put this sb on the list and deal
813 	 * with it later
814 	 */
815 	if (!ss_initialized) {
816 		spin_lock(&sb_security_lock);
817 		if (list_empty(&newsbsec->list))
818 			list_add(&newsbsec->list, &superblock_security_head);
819 		spin_unlock(&sb_security_lock);
820 		return;
821 	}
822 
823 	/* how can we clone if the old one wasn't set up?? */
824 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
825 
826 	/* if fs is reusing a sb, just let its options stand... */
827 	if (newsbsec->flags & SE_SBINITIALIZED)
828 		return;
829 
830 	mutex_lock(&newsbsec->lock);
831 
832 	newsbsec->flags = oldsbsec->flags;
833 
834 	newsbsec->sid = oldsbsec->sid;
835 	newsbsec->def_sid = oldsbsec->def_sid;
836 	newsbsec->behavior = oldsbsec->behavior;
837 
838 	if (set_context) {
839 		u32 sid = oldsbsec->mntpoint_sid;
840 
841 		if (!set_fscontext)
842 			newsbsec->sid = sid;
843 		if (!set_rootcontext) {
844 			struct inode *newinode = newsb->s_root->d_inode;
845 			struct inode_security_struct *newisec = newinode->i_security;
846 			newisec->sid = sid;
847 		}
848 		newsbsec->mntpoint_sid = sid;
849 	}
850 	if (set_rootcontext) {
851 		const struct inode *oldinode = oldsb->s_root->d_inode;
852 		const struct inode_security_struct *oldisec = oldinode->i_security;
853 		struct inode *newinode = newsb->s_root->d_inode;
854 		struct inode_security_struct *newisec = newinode->i_security;
855 
856 		newisec->sid = oldisec->sid;
857 	}
858 
859 	sb_finish_set_opts(newsb);
860 	mutex_unlock(&newsbsec->lock);
861 }
862 
863 static int selinux_parse_opts_str(char *options,
864 				  struct security_mnt_opts *opts)
865 {
866 	char *p;
867 	char *context = NULL, *defcontext = NULL;
868 	char *fscontext = NULL, *rootcontext = NULL;
869 	int rc, num_mnt_opts = 0;
870 
871 	opts->num_mnt_opts = 0;
872 
873 	/* Standard string-based options. */
874 	while ((p = strsep(&options, "|")) != NULL) {
875 		int token;
876 		substring_t args[MAX_OPT_ARGS];
877 
878 		if (!*p)
879 			continue;
880 
881 		token = match_token(p, tokens, args);
882 
883 		switch (token) {
884 		case Opt_context:
885 			if (context || defcontext) {
886 				rc = -EINVAL;
887 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
888 				goto out_err;
889 			}
890 			context = match_strdup(&args[0]);
891 			if (!context) {
892 				rc = -ENOMEM;
893 				goto out_err;
894 			}
895 			break;
896 
897 		case Opt_fscontext:
898 			if (fscontext) {
899 				rc = -EINVAL;
900 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
901 				goto out_err;
902 			}
903 			fscontext = match_strdup(&args[0]);
904 			if (!fscontext) {
905 				rc = -ENOMEM;
906 				goto out_err;
907 			}
908 			break;
909 
910 		case Opt_rootcontext:
911 			if (rootcontext) {
912 				rc = -EINVAL;
913 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
914 				goto out_err;
915 			}
916 			rootcontext = match_strdup(&args[0]);
917 			if (!rootcontext) {
918 				rc = -ENOMEM;
919 				goto out_err;
920 			}
921 			break;
922 
923 		case Opt_defcontext:
924 			if (context || defcontext) {
925 				rc = -EINVAL;
926 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
927 				goto out_err;
928 			}
929 			defcontext = match_strdup(&args[0]);
930 			if (!defcontext) {
931 				rc = -ENOMEM;
932 				goto out_err;
933 			}
934 			break;
935 		case Opt_labelsupport:
936 			break;
937 		default:
938 			rc = -EINVAL;
939 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
940 			goto out_err;
941 
942 		}
943 	}
944 
945 	rc = -ENOMEM;
946 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
947 	if (!opts->mnt_opts)
948 		goto out_err;
949 
950 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
951 	if (!opts->mnt_opts_flags) {
952 		kfree(opts->mnt_opts);
953 		goto out_err;
954 	}
955 
956 	if (fscontext) {
957 		opts->mnt_opts[num_mnt_opts] = fscontext;
958 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
959 	}
960 	if (context) {
961 		opts->mnt_opts[num_mnt_opts] = context;
962 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
963 	}
964 	if (rootcontext) {
965 		opts->mnt_opts[num_mnt_opts] = rootcontext;
966 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
967 	}
968 	if (defcontext) {
969 		opts->mnt_opts[num_mnt_opts] = defcontext;
970 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
971 	}
972 
973 	opts->num_mnt_opts = num_mnt_opts;
974 	return 0;
975 
976 out_err:
977 	kfree(context);
978 	kfree(defcontext);
979 	kfree(fscontext);
980 	kfree(rootcontext);
981 	return rc;
982 }
983 /*
984  * string mount options parsing and call set the sbsec
985  */
986 static int superblock_doinit(struct super_block *sb, void *data)
987 {
988 	int rc = 0;
989 	char *options = data;
990 	struct security_mnt_opts opts;
991 
992 	security_init_mnt_opts(&opts);
993 
994 	if (!data)
995 		goto out;
996 
997 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
998 
999 	rc = selinux_parse_opts_str(options, &opts);
1000 	if (rc)
1001 		goto out_err;
1002 
1003 out:
1004 	rc = selinux_set_mnt_opts(sb, &opts);
1005 
1006 out_err:
1007 	security_free_mnt_opts(&opts);
1008 	return rc;
1009 }
1010 
1011 static void selinux_write_opts(struct seq_file *m,
1012 			       struct security_mnt_opts *opts)
1013 {
1014 	int i;
1015 	char *prefix;
1016 
1017 	for (i = 0; i < opts->num_mnt_opts; i++) {
1018 		char *has_comma;
1019 
1020 		if (opts->mnt_opts[i])
1021 			has_comma = strchr(opts->mnt_opts[i], ',');
1022 		else
1023 			has_comma = NULL;
1024 
1025 		switch (opts->mnt_opts_flags[i]) {
1026 		case CONTEXT_MNT:
1027 			prefix = CONTEXT_STR;
1028 			break;
1029 		case FSCONTEXT_MNT:
1030 			prefix = FSCONTEXT_STR;
1031 			break;
1032 		case ROOTCONTEXT_MNT:
1033 			prefix = ROOTCONTEXT_STR;
1034 			break;
1035 		case DEFCONTEXT_MNT:
1036 			prefix = DEFCONTEXT_STR;
1037 			break;
1038 		case SE_SBLABELSUPP:
1039 			seq_putc(m, ',');
1040 			seq_puts(m, LABELSUPP_STR);
1041 			continue;
1042 		default:
1043 			BUG();
1044 		};
1045 		/* we need a comma before each option */
1046 		seq_putc(m, ',');
1047 		seq_puts(m, prefix);
1048 		if (has_comma)
1049 			seq_putc(m, '\"');
1050 		seq_puts(m, opts->mnt_opts[i]);
1051 		if (has_comma)
1052 			seq_putc(m, '\"');
1053 	}
1054 }
1055 
1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1057 {
1058 	struct security_mnt_opts opts;
1059 	int rc;
1060 
1061 	rc = selinux_get_mnt_opts(sb, &opts);
1062 	if (rc) {
1063 		/* before policy load we may get EINVAL, don't show anything */
1064 		if (rc == -EINVAL)
1065 			rc = 0;
1066 		return rc;
1067 	}
1068 
1069 	selinux_write_opts(m, &opts);
1070 
1071 	security_free_mnt_opts(&opts);
1072 
1073 	return rc;
1074 }
1075 
1076 static inline u16 inode_mode_to_security_class(umode_t mode)
1077 {
1078 	switch (mode & S_IFMT) {
1079 	case S_IFSOCK:
1080 		return SECCLASS_SOCK_FILE;
1081 	case S_IFLNK:
1082 		return SECCLASS_LNK_FILE;
1083 	case S_IFREG:
1084 		return SECCLASS_FILE;
1085 	case S_IFBLK:
1086 		return SECCLASS_BLK_FILE;
1087 	case S_IFDIR:
1088 		return SECCLASS_DIR;
1089 	case S_IFCHR:
1090 		return SECCLASS_CHR_FILE;
1091 	case S_IFIFO:
1092 		return SECCLASS_FIFO_FILE;
1093 
1094 	}
1095 
1096 	return SECCLASS_FILE;
1097 }
1098 
1099 static inline int default_protocol_stream(int protocol)
1100 {
1101 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1102 }
1103 
1104 static inline int default_protocol_dgram(int protocol)
1105 {
1106 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1107 }
1108 
1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1110 {
1111 	switch (family) {
1112 	case PF_UNIX:
1113 		switch (type) {
1114 		case SOCK_STREAM:
1115 		case SOCK_SEQPACKET:
1116 			return SECCLASS_UNIX_STREAM_SOCKET;
1117 		case SOCK_DGRAM:
1118 			return SECCLASS_UNIX_DGRAM_SOCKET;
1119 		}
1120 		break;
1121 	case PF_INET:
1122 	case PF_INET6:
1123 		switch (type) {
1124 		case SOCK_STREAM:
1125 			if (default_protocol_stream(protocol))
1126 				return SECCLASS_TCP_SOCKET;
1127 			else
1128 				return SECCLASS_RAWIP_SOCKET;
1129 		case SOCK_DGRAM:
1130 			if (default_protocol_dgram(protocol))
1131 				return SECCLASS_UDP_SOCKET;
1132 			else
1133 				return SECCLASS_RAWIP_SOCKET;
1134 		case SOCK_DCCP:
1135 			return SECCLASS_DCCP_SOCKET;
1136 		default:
1137 			return SECCLASS_RAWIP_SOCKET;
1138 		}
1139 		break;
1140 	case PF_NETLINK:
1141 		switch (protocol) {
1142 		case NETLINK_ROUTE:
1143 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1144 		case NETLINK_FIREWALL:
1145 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1146 		case NETLINK_INET_DIAG:
1147 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1148 		case NETLINK_NFLOG:
1149 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1150 		case NETLINK_XFRM:
1151 			return SECCLASS_NETLINK_XFRM_SOCKET;
1152 		case NETLINK_SELINUX:
1153 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1154 		case NETLINK_AUDIT:
1155 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1156 		case NETLINK_IP6_FW:
1157 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1158 		case NETLINK_DNRTMSG:
1159 			return SECCLASS_NETLINK_DNRT_SOCKET;
1160 		case NETLINK_KOBJECT_UEVENT:
1161 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1162 		default:
1163 			return SECCLASS_NETLINK_SOCKET;
1164 		}
1165 	case PF_PACKET:
1166 		return SECCLASS_PACKET_SOCKET;
1167 	case PF_KEY:
1168 		return SECCLASS_KEY_SOCKET;
1169 	case PF_APPLETALK:
1170 		return SECCLASS_APPLETALK_SOCKET;
1171 	}
1172 
1173 	return SECCLASS_SOCKET;
1174 }
1175 
1176 #ifdef CONFIG_PROC_FS
1177 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1178 				u16 tclass,
1179 				u32 *sid)
1180 {
1181 	int buflen, rc;
1182 	char *buffer, *path, *end;
1183 
1184 	buffer = (char *)__get_free_page(GFP_KERNEL);
1185 	if (!buffer)
1186 		return -ENOMEM;
1187 
1188 	buflen = PAGE_SIZE;
1189 	end = buffer+buflen;
1190 	*--end = '\0';
1191 	buflen--;
1192 	path = end-1;
1193 	*path = '/';
1194 	while (de && de != de->parent) {
1195 		buflen -= de->namelen + 1;
1196 		if (buflen < 0)
1197 			break;
1198 		end -= de->namelen;
1199 		memcpy(end, de->name, de->namelen);
1200 		*--end = '/';
1201 		path = end;
1202 		de = de->parent;
1203 	}
1204 	rc = security_genfs_sid("proc", path, tclass, sid);
1205 	free_page((unsigned long)buffer);
1206 	return rc;
1207 }
1208 #else
1209 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1210 				u16 tclass,
1211 				u32 *sid)
1212 {
1213 	return -EINVAL;
1214 }
1215 #endif
1216 
1217 /* The inode's security attributes must be initialized before first use. */
1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1219 {
1220 	struct superblock_security_struct *sbsec = NULL;
1221 	struct inode_security_struct *isec = inode->i_security;
1222 	u32 sid;
1223 	struct dentry *dentry;
1224 #define INITCONTEXTLEN 255
1225 	char *context = NULL;
1226 	unsigned len = 0;
1227 	int rc = 0;
1228 
1229 	if (isec->initialized)
1230 		goto out;
1231 
1232 	mutex_lock(&isec->lock);
1233 	if (isec->initialized)
1234 		goto out_unlock;
1235 
1236 	sbsec = inode->i_sb->s_security;
1237 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1238 		/* Defer initialization until selinux_complete_init,
1239 		   after the initial policy is loaded and the security
1240 		   server is ready to handle calls. */
1241 		spin_lock(&sbsec->isec_lock);
1242 		if (list_empty(&isec->list))
1243 			list_add(&isec->list, &sbsec->isec_head);
1244 		spin_unlock(&sbsec->isec_lock);
1245 		goto out_unlock;
1246 	}
1247 
1248 	switch (sbsec->behavior) {
1249 	case SECURITY_FS_USE_XATTR:
1250 		if (!inode->i_op->getxattr) {
1251 			isec->sid = sbsec->def_sid;
1252 			break;
1253 		}
1254 
1255 		/* Need a dentry, since the xattr API requires one.
1256 		   Life would be simpler if we could just pass the inode. */
1257 		if (opt_dentry) {
1258 			/* Called from d_instantiate or d_splice_alias. */
1259 			dentry = dget(opt_dentry);
1260 		} else {
1261 			/* Called from selinux_complete_init, try to find a dentry. */
1262 			dentry = d_find_alias(inode);
1263 		}
1264 		if (!dentry) {
1265 			/*
1266 			 * this is can be hit on boot when a file is accessed
1267 			 * before the policy is loaded.  When we load policy we
1268 			 * may find inodes that have no dentry on the
1269 			 * sbsec->isec_head list.  No reason to complain as these
1270 			 * will get fixed up the next time we go through
1271 			 * inode_doinit with a dentry, before these inodes could
1272 			 * be used again by userspace.
1273 			 */
1274 			goto out_unlock;
1275 		}
1276 
1277 		len = INITCONTEXTLEN;
1278 		context = kmalloc(len+1, GFP_NOFS);
1279 		if (!context) {
1280 			rc = -ENOMEM;
1281 			dput(dentry);
1282 			goto out_unlock;
1283 		}
1284 		context[len] = '\0';
1285 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1286 					   context, len);
1287 		if (rc == -ERANGE) {
1288 			/* Need a larger buffer.  Query for the right size. */
1289 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1290 						   NULL, 0);
1291 			if (rc < 0) {
1292 				dput(dentry);
1293 				goto out_unlock;
1294 			}
1295 			kfree(context);
1296 			len = rc;
1297 			context = kmalloc(len+1, GFP_NOFS);
1298 			if (!context) {
1299 				rc = -ENOMEM;
1300 				dput(dentry);
1301 				goto out_unlock;
1302 			}
1303 			context[len] = '\0';
1304 			rc = inode->i_op->getxattr(dentry,
1305 						   XATTR_NAME_SELINUX,
1306 						   context, len);
1307 		}
1308 		dput(dentry);
1309 		if (rc < 0) {
1310 			if (rc != -ENODATA) {
1311 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1312 				       "%d for dev=%s ino=%ld\n", __func__,
1313 				       -rc, inode->i_sb->s_id, inode->i_ino);
1314 				kfree(context);
1315 				goto out_unlock;
1316 			}
1317 			/* Map ENODATA to the default file SID */
1318 			sid = sbsec->def_sid;
1319 			rc = 0;
1320 		} else {
1321 			rc = security_context_to_sid_default(context, rc, &sid,
1322 							     sbsec->def_sid,
1323 							     GFP_NOFS);
1324 			if (rc) {
1325 				char *dev = inode->i_sb->s_id;
1326 				unsigned long ino = inode->i_ino;
1327 
1328 				if (rc == -EINVAL) {
1329 					if (printk_ratelimit())
1330 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1331 							"context=%s.  This indicates you may need to relabel the inode or the "
1332 							"filesystem in question.\n", ino, dev, context);
1333 				} else {
1334 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1335 					       "returned %d for dev=%s ino=%ld\n",
1336 					       __func__, context, -rc, dev, ino);
1337 				}
1338 				kfree(context);
1339 				/* Leave with the unlabeled SID */
1340 				rc = 0;
1341 				break;
1342 			}
1343 		}
1344 		kfree(context);
1345 		isec->sid = sid;
1346 		break;
1347 	case SECURITY_FS_USE_TASK:
1348 		isec->sid = isec->task_sid;
1349 		break;
1350 	case SECURITY_FS_USE_TRANS:
1351 		/* Default to the fs SID. */
1352 		isec->sid = sbsec->sid;
1353 
1354 		/* Try to obtain a transition SID. */
1355 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1356 		rc = security_transition_sid(isec->task_sid,
1357 					     sbsec->sid,
1358 					     isec->sclass,
1359 					     &sid);
1360 		if (rc)
1361 			goto out_unlock;
1362 		isec->sid = sid;
1363 		break;
1364 	case SECURITY_FS_USE_MNTPOINT:
1365 		isec->sid = sbsec->mntpoint_sid;
1366 		break;
1367 	default:
1368 		/* Default to the fs superblock SID. */
1369 		isec->sid = sbsec->sid;
1370 
1371 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1372 			struct proc_inode *proci = PROC_I(inode);
1373 			if (proci->pde) {
1374 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1375 				rc = selinux_proc_get_sid(proci->pde,
1376 							  isec->sclass,
1377 							  &sid);
1378 				if (rc)
1379 					goto out_unlock;
1380 				isec->sid = sid;
1381 			}
1382 		}
1383 		break;
1384 	}
1385 
1386 	isec->initialized = 1;
1387 
1388 out_unlock:
1389 	mutex_unlock(&isec->lock);
1390 out:
1391 	if (isec->sclass == SECCLASS_FILE)
1392 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1393 	return rc;
1394 }
1395 
1396 /* Convert a Linux signal to an access vector. */
1397 static inline u32 signal_to_av(int sig)
1398 {
1399 	u32 perm = 0;
1400 
1401 	switch (sig) {
1402 	case SIGCHLD:
1403 		/* Commonly granted from child to parent. */
1404 		perm = PROCESS__SIGCHLD;
1405 		break;
1406 	case SIGKILL:
1407 		/* Cannot be caught or ignored */
1408 		perm = PROCESS__SIGKILL;
1409 		break;
1410 	case SIGSTOP:
1411 		/* Cannot be caught or ignored */
1412 		perm = PROCESS__SIGSTOP;
1413 		break;
1414 	default:
1415 		/* All other signals. */
1416 		perm = PROCESS__SIGNAL;
1417 		break;
1418 	}
1419 
1420 	return perm;
1421 }
1422 
1423 /*
1424  * Check permission between a pair of credentials
1425  * fork check, ptrace check, etc.
1426  */
1427 static int cred_has_perm(const struct cred *actor,
1428 			 const struct cred *target,
1429 			 u32 perms)
1430 {
1431 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1432 
1433 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1434 }
1435 
1436 /*
1437  * Check permission between a pair of tasks, e.g. signal checks,
1438  * fork check, ptrace check, etc.
1439  * tsk1 is the actor and tsk2 is the target
1440  * - this uses the default subjective creds of tsk1
1441  */
1442 static int task_has_perm(const struct task_struct *tsk1,
1443 			 const struct task_struct *tsk2,
1444 			 u32 perms)
1445 {
1446 	const struct task_security_struct *__tsec1, *__tsec2;
1447 	u32 sid1, sid2;
1448 
1449 	rcu_read_lock();
1450 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1451 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1452 	rcu_read_unlock();
1453 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1454 }
1455 
1456 /*
1457  * Check permission between current and another task, e.g. signal checks,
1458  * fork check, ptrace check, etc.
1459  * current is the actor and tsk2 is the target
1460  * - this uses current's subjective creds
1461  */
1462 static int current_has_perm(const struct task_struct *tsk,
1463 			    u32 perms)
1464 {
1465 	u32 sid, tsid;
1466 
1467 	sid = current_sid();
1468 	tsid = task_sid(tsk);
1469 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1470 }
1471 
1472 #if CAP_LAST_CAP > 63
1473 #error Fix SELinux to handle capabilities > 63.
1474 #endif
1475 
1476 /* Check whether a task is allowed to use a capability. */
1477 static int task_has_capability(struct task_struct *tsk,
1478 			       const struct cred *cred,
1479 			       int cap, int audit)
1480 {
1481 	struct avc_audit_data ad;
1482 	struct av_decision avd;
1483 	u16 sclass;
1484 	u32 sid = cred_sid(cred);
1485 	u32 av = CAP_TO_MASK(cap);
1486 	int rc;
1487 
1488 	AVC_AUDIT_DATA_INIT(&ad, CAP);
1489 	ad.tsk = tsk;
1490 	ad.u.cap = cap;
1491 
1492 	switch (CAP_TO_INDEX(cap)) {
1493 	case 0:
1494 		sclass = SECCLASS_CAPABILITY;
1495 		break;
1496 	case 1:
1497 		sclass = SECCLASS_CAPABILITY2;
1498 		break;
1499 	default:
1500 		printk(KERN_ERR
1501 		       "SELinux:  out of range capability %d\n", cap);
1502 		BUG();
1503 	}
1504 
1505 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1506 	if (audit == SECURITY_CAP_AUDIT)
1507 		avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1508 	return rc;
1509 }
1510 
1511 /* Check whether a task is allowed to use a system operation. */
1512 static int task_has_system(struct task_struct *tsk,
1513 			   u32 perms)
1514 {
1515 	u32 sid = task_sid(tsk);
1516 
1517 	return avc_has_perm(sid, SECINITSID_KERNEL,
1518 			    SECCLASS_SYSTEM, perms, NULL);
1519 }
1520 
1521 /* Check whether a task has a particular permission to an inode.
1522    The 'adp' parameter is optional and allows other audit
1523    data to be passed (e.g. the dentry). */
1524 static int inode_has_perm(const struct cred *cred,
1525 			  struct inode *inode,
1526 			  u32 perms,
1527 			  struct avc_audit_data *adp)
1528 {
1529 	struct inode_security_struct *isec;
1530 	struct avc_audit_data ad;
1531 	u32 sid;
1532 
1533 	if (unlikely(IS_PRIVATE(inode)))
1534 		return 0;
1535 
1536 	sid = cred_sid(cred);
1537 	isec = inode->i_security;
1538 
1539 	if (!adp) {
1540 		adp = &ad;
1541 		AVC_AUDIT_DATA_INIT(&ad, FS);
1542 		ad.u.fs.inode = inode;
1543 	}
1544 
1545 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1546 }
1547 
1548 /* Same as inode_has_perm, but pass explicit audit data containing
1549    the dentry to help the auditing code to more easily generate the
1550    pathname if needed. */
1551 static inline int dentry_has_perm(const struct cred *cred,
1552 				  struct vfsmount *mnt,
1553 				  struct dentry *dentry,
1554 				  u32 av)
1555 {
1556 	struct inode *inode = dentry->d_inode;
1557 	struct avc_audit_data ad;
1558 
1559 	AVC_AUDIT_DATA_INIT(&ad, FS);
1560 	ad.u.fs.path.mnt = mnt;
1561 	ad.u.fs.path.dentry = dentry;
1562 	return inode_has_perm(cred, inode, av, &ad);
1563 }
1564 
1565 /* Check whether a task can use an open file descriptor to
1566    access an inode in a given way.  Check access to the
1567    descriptor itself, and then use dentry_has_perm to
1568    check a particular permission to the file.
1569    Access to the descriptor is implicitly granted if it
1570    has the same SID as the process.  If av is zero, then
1571    access to the file is not checked, e.g. for cases
1572    where only the descriptor is affected like seek. */
1573 static int file_has_perm(const struct cred *cred,
1574 			 struct file *file,
1575 			 u32 av)
1576 {
1577 	struct file_security_struct *fsec = file->f_security;
1578 	struct inode *inode = file->f_path.dentry->d_inode;
1579 	struct avc_audit_data ad;
1580 	u32 sid = cred_sid(cred);
1581 	int rc;
1582 
1583 	AVC_AUDIT_DATA_INIT(&ad, FS);
1584 	ad.u.fs.path = file->f_path;
1585 
1586 	if (sid != fsec->sid) {
1587 		rc = avc_has_perm(sid, fsec->sid,
1588 				  SECCLASS_FD,
1589 				  FD__USE,
1590 				  &ad);
1591 		if (rc)
1592 			goto out;
1593 	}
1594 
1595 	/* av is zero if only checking access to the descriptor. */
1596 	rc = 0;
1597 	if (av)
1598 		rc = inode_has_perm(cred, inode, av, &ad);
1599 
1600 out:
1601 	return rc;
1602 }
1603 
1604 /* Check whether a task can create a file. */
1605 static int may_create(struct inode *dir,
1606 		      struct dentry *dentry,
1607 		      u16 tclass)
1608 {
1609 	const struct cred *cred = current_cred();
1610 	const struct task_security_struct *tsec = cred->security;
1611 	struct inode_security_struct *dsec;
1612 	struct superblock_security_struct *sbsec;
1613 	u32 sid, newsid;
1614 	struct avc_audit_data ad;
1615 	int rc;
1616 
1617 	dsec = dir->i_security;
1618 	sbsec = dir->i_sb->s_security;
1619 
1620 	sid = tsec->sid;
1621 	newsid = tsec->create_sid;
1622 
1623 	AVC_AUDIT_DATA_INIT(&ad, FS);
1624 	ad.u.fs.path.dentry = dentry;
1625 
1626 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1627 			  DIR__ADD_NAME | DIR__SEARCH,
1628 			  &ad);
1629 	if (rc)
1630 		return rc;
1631 
1632 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1633 		rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1634 		if (rc)
1635 			return rc;
1636 	}
1637 
1638 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1639 	if (rc)
1640 		return rc;
1641 
1642 	return avc_has_perm(newsid, sbsec->sid,
1643 			    SECCLASS_FILESYSTEM,
1644 			    FILESYSTEM__ASSOCIATE, &ad);
1645 }
1646 
1647 /* Check whether a task can create a key. */
1648 static int may_create_key(u32 ksid,
1649 			  struct task_struct *ctx)
1650 {
1651 	u32 sid = task_sid(ctx);
1652 
1653 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1654 }
1655 
1656 #define MAY_LINK	0
1657 #define MAY_UNLINK	1
1658 #define MAY_RMDIR	2
1659 
1660 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1661 static int may_link(struct inode *dir,
1662 		    struct dentry *dentry,
1663 		    int kind)
1664 
1665 {
1666 	struct inode_security_struct *dsec, *isec;
1667 	struct avc_audit_data ad;
1668 	u32 sid = current_sid();
1669 	u32 av;
1670 	int rc;
1671 
1672 	dsec = dir->i_security;
1673 	isec = dentry->d_inode->i_security;
1674 
1675 	AVC_AUDIT_DATA_INIT(&ad, FS);
1676 	ad.u.fs.path.dentry = dentry;
1677 
1678 	av = DIR__SEARCH;
1679 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1680 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1681 	if (rc)
1682 		return rc;
1683 
1684 	switch (kind) {
1685 	case MAY_LINK:
1686 		av = FILE__LINK;
1687 		break;
1688 	case MAY_UNLINK:
1689 		av = FILE__UNLINK;
1690 		break;
1691 	case MAY_RMDIR:
1692 		av = DIR__RMDIR;
1693 		break;
1694 	default:
1695 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1696 			__func__, kind);
1697 		return 0;
1698 	}
1699 
1700 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1701 	return rc;
1702 }
1703 
1704 static inline int may_rename(struct inode *old_dir,
1705 			     struct dentry *old_dentry,
1706 			     struct inode *new_dir,
1707 			     struct dentry *new_dentry)
1708 {
1709 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1710 	struct avc_audit_data ad;
1711 	u32 sid = current_sid();
1712 	u32 av;
1713 	int old_is_dir, new_is_dir;
1714 	int rc;
1715 
1716 	old_dsec = old_dir->i_security;
1717 	old_isec = old_dentry->d_inode->i_security;
1718 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1719 	new_dsec = new_dir->i_security;
1720 
1721 	AVC_AUDIT_DATA_INIT(&ad, FS);
1722 
1723 	ad.u.fs.path.dentry = old_dentry;
1724 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1725 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1726 	if (rc)
1727 		return rc;
1728 	rc = avc_has_perm(sid, old_isec->sid,
1729 			  old_isec->sclass, FILE__RENAME, &ad);
1730 	if (rc)
1731 		return rc;
1732 	if (old_is_dir && new_dir != old_dir) {
1733 		rc = avc_has_perm(sid, old_isec->sid,
1734 				  old_isec->sclass, DIR__REPARENT, &ad);
1735 		if (rc)
1736 			return rc;
1737 	}
1738 
1739 	ad.u.fs.path.dentry = new_dentry;
1740 	av = DIR__ADD_NAME | DIR__SEARCH;
1741 	if (new_dentry->d_inode)
1742 		av |= DIR__REMOVE_NAME;
1743 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1744 	if (rc)
1745 		return rc;
1746 	if (new_dentry->d_inode) {
1747 		new_isec = new_dentry->d_inode->i_security;
1748 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1749 		rc = avc_has_perm(sid, new_isec->sid,
1750 				  new_isec->sclass,
1751 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1752 		if (rc)
1753 			return rc;
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 /* Check whether a task can perform a filesystem operation. */
1760 static int superblock_has_perm(const struct cred *cred,
1761 			       struct super_block *sb,
1762 			       u32 perms,
1763 			       struct avc_audit_data *ad)
1764 {
1765 	struct superblock_security_struct *sbsec;
1766 	u32 sid = cred_sid(cred);
1767 
1768 	sbsec = sb->s_security;
1769 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1770 }
1771 
1772 /* Convert a Linux mode and permission mask to an access vector. */
1773 static inline u32 file_mask_to_av(int mode, int mask)
1774 {
1775 	u32 av = 0;
1776 
1777 	if ((mode & S_IFMT) != S_IFDIR) {
1778 		if (mask & MAY_EXEC)
1779 			av |= FILE__EXECUTE;
1780 		if (mask & MAY_READ)
1781 			av |= FILE__READ;
1782 
1783 		if (mask & MAY_APPEND)
1784 			av |= FILE__APPEND;
1785 		else if (mask & MAY_WRITE)
1786 			av |= FILE__WRITE;
1787 
1788 	} else {
1789 		if (mask & MAY_EXEC)
1790 			av |= DIR__SEARCH;
1791 		if (mask & MAY_WRITE)
1792 			av |= DIR__WRITE;
1793 		if (mask & MAY_READ)
1794 			av |= DIR__READ;
1795 	}
1796 
1797 	return av;
1798 }
1799 
1800 /* Convert a Linux file to an access vector. */
1801 static inline u32 file_to_av(struct file *file)
1802 {
1803 	u32 av = 0;
1804 
1805 	if (file->f_mode & FMODE_READ)
1806 		av |= FILE__READ;
1807 	if (file->f_mode & FMODE_WRITE) {
1808 		if (file->f_flags & O_APPEND)
1809 			av |= FILE__APPEND;
1810 		else
1811 			av |= FILE__WRITE;
1812 	}
1813 	if (!av) {
1814 		/*
1815 		 * Special file opened with flags 3 for ioctl-only use.
1816 		 */
1817 		av = FILE__IOCTL;
1818 	}
1819 
1820 	return av;
1821 }
1822 
1823 /*
1824  * Convert a file to an access vector and include the correct open
1825  * open permission.
1826  */
1827 static inline u32 open_file_to_av(struct file *file)
1828 {
1829 	u32 av = file_to_av(file);
1830 
1831 	if (selinux_policycap_openperm) {
1832 		mode_t mode = file->f_path.dentry->d_inode->i_mode;
1833 		/*
1834 		 * lnk files and socks do not really have an 'open'
1835 		 */
1836 		if (S_ISREG(mode))
1837 			av |= FILE__OPEN;
1838 		else if (S_ISCHR(mode))
1839 			av |= CHR_FILE__OPEN;
1840 		else if (S_ISBLK(mode))
1841 			av |= BLK_FILE__OPEN;
1842 		else if (S_ISFIFO(mode))
1843 			av |= FIFO_FILE__OPEN;
1844 		else if (S_ISDIR(mode))
1845 			av |= DIR__OPEN;
1846 		else if (S_ISSOCK(mode))
1847 			av |= SOCK_FILE__OPEN;
1848 		else
1849 			printk(KERN_ERR "SELinux: WARNING: inside %s with "
1850 				"unknown mode:%o\n", __func__, mode);
1851 	}
1852 	return av;
1853 }
1854 
1855 /* Hook functions begin here. */
1856 
1857 static int selinux_ptrace_access_check(struct task_struct *child,
1858 				     unsigned int mode)
1859 {
1860 	int rc;
1861 
1862 	rc = cap_ptrace_access_check(child, mode);
1863 	if (rc)
1864 		return rc;
1865 
1866 	if (mode == PTRACE_MODE_READ) {
1867 		u32 sid = current_sid();
1868 		u32 csid = task_sid(child);
1869 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1870 	}
1871 
1872 	return current_has_perm(child, PROCESS__PTRACE);
1873 }
1874 
1875 static int selinux_ptrace_traceme(struct task_struct *parent)
1876 {
1877 	int rc;
1878 
1879 	rc = cap_ptrace_traceme(parent);
1880 	if (rc)
1881 		return rc;
1882 
1883 	return task_has_perm(parent, current, PROCESS__PTRACE);
1884 }
1885 
1886 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1887 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1888 {
1889 	int error;
1890 
1891 	error = current_has_perm(target, PROCESS__GETCAP);
1892 	if (error)
1893 		return error;
1894 
1895 	return cap_capget(target, effective, inheritable, permitted);
1896 }
1897 
1898 static int selinux_capset(struct cred *new, const struct cred *old,
1899 			  const kernel_cap_t *effective,
1900 			  const kernel_cap_t *inheritable,
1901 			  const kernel_cap_t *permitted)
1902 {
1903 	int error;
1904 
1905 	error = cap_capset(new, old,
1906 				      effective, inheritable, permitted);
1907 	if (error)
1908 		return error;
1909 
1910 	return cred_has_perm(old, new, PROCESS__SETCAP);
1911 }
1912 
1913 /*
1914  * (This comment used to live with the selinux_task_setuid hook,
1915  * which was removed).
1916  *
1917  * Since setuid only affects the current process, and since the SELinux
1918  * controls are not based on the Linux identity attributes, SELinux does not
1919  * need to control this operation.  However, SELinux does control the use of
1920  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1921  */
1922 
1923 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1924 			   int cap, int audit)
1925 {
1926 	int rc;
1927 
1928 	rc = cap_capable(tsk, cred, cap, audit);
1929 	if (rc)
1930 		return rc;
1931 
1932 	return task_has_capability(tsk, cred, cap, audit);
1933 }
1934 
1935 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1936 {
1937 	int buflen, rc;
1938 	char *buffer, *path, *end;
1939 
1940 	rc = -ENOMEM;
1941 	buffer = (char *)__get_free_page(GFP_KERNEL);
1942 	if (!buffer)
1943 		goto out;
1944 
1945 	buflen = PAGE_SIZE;
1946 	end = buffer+buflen;
1947 	*--end = '\0';
1948 	buflen--;
1949 	path = end-1;
1950 	*path = '/';
1951 	while (table) {
1952 		const char *name = table->procname;
1953 		size_t namelen = strlen(name);
1954 		buflen -= namelen + 1;
1955 		if (buflen < 0)
1956 			goto out_free;
1957 		end -= namelen;
1958 		memcpy(end, name, namelen);
1959 		*--end = '/';
1960 		path = end;
1961 		table = table->parent;
1962 	}
1963 	buflen -= 4;
1964 	if (buflen < 0)
1965 		goto out_free;
1966 	end -= 4;
1967 	memcpy(end, "/sys", 4);
1968 	path = end;
1969 	rc = security_genfs_sid("proc", path, tclass, sid);
1970 out_free:
1971 	free_page((unsigned long)buffer);
1972 out:
1973 	return rc;
1974 }
1975 
1976 static int selinux_sysctl(ctl_table *table, int op)
1977 {
1978 	int error = 0;
1979 	u32 av;
1980 	u32 tsid, sid;
1981 	int rc;
1982 
1983 	sid = current_sid();
1984 
1985 	rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1986 				    SECCLASS_DIR : SECCLASS_FILE, &tsid);
1987 	if (rc) {
1988 		/* Default to the well-defined sysctl SID. */
1989 		tsid = SECINITSID_SYSCTL;
1990 	}
1991 
1992 	/* The op values are "defined" in sysctl.c, thereby creating
1993 	 * a bad coupling between this module and sysctl.c */
1994 	if (op == 001) {
1995 		error = avc_has_perm(sid, tsid,
1996 				     SECCLASS_DIR, DIR__SEARCH, NULL);
1997 	} else {
1998 		av = 0;
1999 		if (op & 004)
2000 			av |= FILE__READ;
2001 		if (op & 002)
2002 			av |= FILE__WRITE;
2003 		if (av)
2004 			error = avc_has_perm(sid, tsid,
2005 					     SECCLASS_FILE, av, NULL);
2006 	}
2007 
2008 	return error;
2009 }
2010 
2011 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2012 {
2013 	const struct cred *cred = current_cred();
2014 	int rc = 0;
2015 
2016 	if (!sb)
2017 		return 0;
2018 
2019 	switch (cmds) {
2020 	case Q_SYNC:
2021 	case Q_QUOTAON:
2022 	case Q_QUOTAOFF:
2023 	case Q_SETINFO:
2024 	case Q_SETQUOTA:
2025 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2026 		break;
2027 	case Q_GETFMT:
2028 	case Q_GETINFO:
2029 	case Q_GETQUOTA:
2030 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2031 		break;
2032 	default:
2033 		rc = 0;  /* let the kernel handle invalid cmds */
2034 		break;
2035 	}
2036 	return rc;
2037 }
2038 
2039 static int selinux_quota_on(struct dentry *dentry)
2040 {
2041 	const struct cred *cred = current_cred();
2042 
2043 	return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2044 }
2045 
2046 static int selinux_syslog(int type)
2047 {
2048 	int rc;
2049 
2050 	rc = cap_syslog(type);
2051 	if (rc)
2052 		return rc;
2053 
2054 	switch (type) {
2055 	case 3:		/* Read last kernel messages */
2056 	case 10:	/* Return size of the log buffer */
2057 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2058 		break;
2059 	case 6:		/* Disable logging to console */
2060 	case 7:		/* Enable logging to console */
2061 	case 8:		/* Set level of messages printed to console */
2062 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2063 		break;
2064 	case 0:		/* Close log */
2065 	case 1:		/* Open log */
2066 	case 2:		/* Read from log */
2067 	case 4:		/* Read/clear last kernel messages */
2068 	case 5:		/* Clear ring buffer */
2069 	default:
2070 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2071 		break;
2072 	}
2073 	return rc;
2074 }
2075 
2076 /*
2077  * Check that a process has enough memory to allocate a new virtual
2078  * mapping. 0 means there is enough memory for the allocation to
2079  * succeed and -ENOMEM implies there is not.
2080  *
2081  * Do not audit the selinux permission check, as this is applied to all
2082  * processes that allocate mappings.
2083  */
2084 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2085 {
2086 	int rc, cap_sys_admin = 0;
2087 
2088 	rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2089 			     SECURITY_CAP_NOAUDIT);
2090 	if (rc == 0)
2091 		cap_sys_admin = 1;
2092 
2093 	return __vm_enough_memory(mm, pages, cap_sys_admin);
2094 }
2095 
2096 /* binprm security operations */
2097 
2098 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2099 {
2100 	const struct task_security_struct *old_tsec;
2101 	struct task_security_struct *new_tsec;
2102 	struct inode_security_struct *isec;
2103 	struct avc_audit_data ad;
2104 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
2105 	int rc;
2106 
2107 	rc = cap_bprm_set_creds(bprm);
2108 	if (rc)
2109 		return rc;
2110 
2111 	/* SELinux context only depends on initial program or script and not
2112 	 * the script interpreter */
2113 	if (bprm->cred_prepared)
2114 		return 0;
2115 
2116 	old_tsec = current_security();
2117 	new_tsec = bprm->cred->security;
2118 	isec = inode->i_security;
2119 
2120 	/* Default to the current task SID. */
2121 	new_tsec->sid = old_tsec->sid;
2122 	new_tsec->osid = old_tsec->sid;
2123 
2124 	/* Reset fs, key, and sock SIDs on execve. */
2125 	new_tsec->create_sid = 0;
2126 	new_tsec->keycreate_sid = 0;
2127 	new_tsec->sockcreate_sid = 0;
2128 
2129 	if (old_tsec->exec_sid) {
2130 		new_tsec->sid = old_tsec->exec_sid;
2131 		/* Reset exec SID on execve. */
2132 		new_tsec->exec_sid = 0;
2133 	} else {
2134 		/* Check for a default transition on this program. */
2135 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2136 					     SECCLASS_PROCESS, &new_tsec->sid);
2137 		if (rc)
2138 			return rc;
2139 	}
2140 
2141 	AVC_AUDIT_DATA_INIT(&ad, FS);
2142 	ad.u.fs.path = bprm->file->f_path;
2143 
2144 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2145 		new_tsec->sid = old_tsec->sid;
2146 
2147 	if (new_tsec->sid == old_tsec->sid) {
2148 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2149 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2150 		if (rc)
2151 			return rc;
2152 	} else {
2153 		/* Check permissions for the transition. */
2154 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2155 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2156 		if (rc)
2157 			return rc;
2158 
2159 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2160 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2161 		if (rc)
2162 			return rc;
2163 
2164 		/* Check for shared state */
2165 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2167 					  SECCLASS_PROCESS, PROCESS__SHARE,
2168 					  NULL);
2169 			if (rc)
2170 				return -EPERM;
2171 		}
2172 
2173 		/* Make sure that anyone attempting to ptrace over a task that
2174 		 * changes its SID has the appropriate permit */
2175 		if (bprm->unsafe &
2176 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177 			struct task_struct *tracer;
2178 			struct task_security_struct *sec;
2179 			u32 ptsid = 0;
2180 
2181 			rcu_read_lock();
2182 			tracer = tracehook_tracer_task(current);
2183 			if (likely(tracer != NULL)) {
2184 				sec = __task_cred(tracer)->security;
2185 				ptsid = sec->sid;
2186 			}
2187 			rcu_read_unlock();
2188 
2189 			if (ptsid != 0) {
2190 				rc = avc_has_perm(ptsid, new_tsec->sid,
2191 						  SECCLASS_PROCESS,
2192 						  PROCESS__PTRACE, NULL);
2193 				if (rc)
2194 					return -EPERM;
2195 			}
2196 		}
2197 
2198 		/* Clear any possibly unsafe personality bits on exec: */
2199 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2206 {
2207 	const struct cred *cred = current_cred();
2208 	const struct task_security_struct *tsec = cred->security;
2209 	u32 sid, osid;
2210 	int atsecure = 0;
2211 
2212 	sid = tsec->sid;
2213 	osid = tsec->osid;
2214 
2215 	if (osid != sid) {
2216 		/* Enable secure mode for SIDs transitions unless
2217 		   the noatsecure permission is granted between
2218 		   the two SIDs, i.e. ahp returns 0. */
2219 		atsecure = avc_has_perm(osid, sid,
2220 					SECCLASS_PROCESS,
2221 					PROCESS__NOATSECURE, NULL);
2222 	}
2223 
2224 	return (atsecure || cap_bprm_secureexec(bprm));
2225 }
2226 
2227 extern struct vfsmount *selinuxfs_mount;
2228 extern struct dentry *selinux_null;
2229 
2230 /* Derived from fs/exec.c:flush_old_files. */
2231 static inline void flush_unauthorized_files(const struct cred *cred,
2232 					    struct files_struct *files)
2233 {
2234 	struct avc_audit_data ad;
2235 	struct file *file, *devnull = NULL;
2236 	struct tty_struct *tty;
2237 	struct fdtable *fdt;
2238 	long j = -1;
2239 	int drop_tty = 0;
2240 
2241 	tty = get_current_tty();
2242 	if (tty) {
2243 		file_list_lock();
2244 		if (!list_empty(&tty->tty_files)) {
2245 			struct inode *inode;
2246 
2247 			/* Revalidate access to controlling tty.
2248 			   Use inode_has_perm on the tty inode directly rather
2249 			   than using file_has_perm, as this particular open
2250 			   file may belong to another process and we are only
2251 			   interested in the inode-based check here. */
2252 			file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2253 			inode = file->f_path.dentry->d_inode;
2254 			if (inode_has_perm(cred, inode,
2255 					   FILE__READ | FILE__WRITE, NULL)) {
2256 				drop_tty = 1;
2257 			}
2258 		}
2259 		file_list_unlock();
2260 		tty_kref_put(tty);
2261 	}
2262 	/* Reset controlling tty. */
2263 	if (drop_tty)
2264 		no_tty();
2265 
2266 	/* Revalidate access to inherited open files. */
2267 
2268 	AVC_AUDIT_DATA_INIT(&ad, FS);
2269 
2270 	spin_lock(&files->file_lock);
2271 	for (;;) {
2272 		unsigned long set, i;
2273 		int fd;
2274 
2275 		j++;
2276 		i = j * __NFDBITS;
2277 		fdt = files_fdtable(files);
2278 		if (i >= fdt->max_fds)
2279 			break;
2280 		set = fdt->open_fds->fds_bits[j];
2281 		if (!set)
2282 			continue;
2283 		spin_unlock(&files->file_lock);
2284 		for ( ; set ; i++, set >>= 1) {
2285 			if (set & 1) {
2286 				file = fget(i);
2287 				if (!file)
2288 					continue;
2289 				if (file_has_perm(cred,
2290 						  file,
2291 						  file_to_av(file))) {
2292 					sys_close(i);
2293 					fd = get_unused_fd();
2294 					if (fd != i) {
2295 						if (fd >= 0)
2296 							put_unused_fd(fd);
2297 						fput(file);
2298 						continue;
2299 					}
2300 					if (devnull) {
2301 						get_file(devnull);
2302 					} else {
2303 						devnull = dentry_open(
2304 							dget(selinux_null),
2305 							mntget(selinuxfs_mount),
2306 							O_RDWR, cred);
2307 						if (IS_ERR(devnull)) {
2308 							devnull = NULL;
2309 							put_unused_fd(fd);
2310 							fput(file);
2311 							continue;
2312 						}
2313 					}
2314 					fd_install(fd, devnull);
2315 				}
2316 				fput(file);
2317 			}
2318 		}
2319 		spin_lock(&files->file_lock);
2320 
2321 	}
2322 	spin_unlock(&files->file_lock);
2323 }
2324 
2325 /*
2326  * Prepare a process for imminent new credential changes due to exec
2327  */
2328 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2329 {
2330 	struct task_security_struct *new_tsec;
2331 	struct rlimit *rlim, *initrlim;
2332 	int rc, i;
2333 
2334 	new_tsec = bprm->cred->security;
2335 	if (new_tsec->sid == new_tsec->osid)
2336 		return;
2337 
2338 	/* Close files for which the new task SID is not authorized. */
2339 	flush_unauthorized_files(bprm->cred, current->files);
2340 
2341 	/* Always clear parent death signal on SID transitions. */
2342 	current->pdeath_signal = 0;
2343 
2344 	/* Check whether the new SID can inherit resource limits from the old
2345 	 * SID.  If not, reset all soft limits to the lower of the current
2346 	 * task's hard limit and the init task's soft limit.
2347 	 *
2348 	 * Note that the setting of hard limits (even to lower them) can be
2349 	 * controlled by the setrlimit check.  The inclusion of the init task's
2350 	 * soft limit into the computation is to avoid resetting soft limits
2351 	 * higher than the default soft limit for cases where the default is
2352 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2353 	 */
2354 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2355 			  PROCESS__RLIMITINH, NULL);
2356 	if (rc) {
2357 		for (i = 0; i < RLIM_NLIMITS; i++) {
2358 			rlim = current->signal->rlim + i;
2359 			initrlim = init_task.signal->rlim + i;
2360 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2361 		}
2362 		update_rlimit_cpu(rlim->rlim_cur);
2363 	}
2364 }
2365 
2366 /*
2367  * Clean up the process immediately after the installation of new credentials
2368  * due to exec
2369  */
2370 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2371 {
2372 	const struct task_security_struct *tsec = current_security();
2373 	struct itimerval itimer;
2374 	u32 osid, sid;
2375 	int rc, i;
2376 
2377 	osid = tsec->osid;
2378 	sid = tsec->sid;
2379 
2380 	if (sid == osid)
2381 		return;
2382 
2383 	/* Check whether the new SID can inherit signal state from the old SID.
2384 	 * If not, clear itimers to avoid subsequent signal generation and
2385 	 * flush and unblock signals.
2386 	 *
2387 	 * This must occur _after_ the task SID has been updated so that any
2388 	 * kill done after the flush will be checked against the new SID.
2389 	 */
2390 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2391 	if (rc) {
2392 		memset(&itimer, 0, sizeof itimer);
2393 		for (i = 0; i < 3; i++)
2394 			do_setitimer(i, &itimer, NULL);
2395 		spin_lock_irq(&current->sighand->siglock);
2396 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2397 			__flush_signals(current);
2398 			flush_signal_handlers(current, 1);
2399 			sigemptyset(&current->blocked);
2400 		}
2401 		spin_unlock_irq(&current->sighand->siglock);
2402 	}
2403 
2404 	/* Wake up the parent if it is waiting so that it can recheck
2405 	 * wait permission to the new task SID. */
2406 	read_lock(&tasklist_lock);
2407 	wake_up_interruptible(&current->real_parent->signal->wait_chldexit);
2408 	read_unlock(&tasklist_lock);
2409 }
2410 
2411 /* superblock security operations */
2412 
2413 static int selinux_sb_alloc_security(struct super_block *sb)
2414 {
2415 	return superblock_alloc_security(sb);
2416 }
2417 
2418 static void selinux_sb_free_security(struct super_block *sb)
2419 {
2420 	superblock_free_security(sb);
2421 }
2422 
2423 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2424 {
2425 	if (plen > olen)
2426 		return 0;
2427 
2428 	return !memcmp(prefix, option, plen);
2429 }
2430 
2431 static inline int selinux_option(char *option, int len)
2432 {
2433 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2434 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2435 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2436 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2437 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2438 }
2439 
2440 static inline void take_option(char **to, char *from, int *first, int len)
2441 {
2442 	if (!*first) {
2443 		**to = ',';
2444 		*to += 1;
2445 	} else
2446 		*first = 0;
2447 	memcpy(*to, from, len);
2448 	*to += len;
2449 }
2450 
2451 static inline void take_selinux_option(char **to, char *from, int *first,
2452 				       int len)
2453 {
2454 	int current_size = 0;
2455 
2456 	if (!*first) {
2457 		**to = '|';
2458 		*to += 1;
2459 	} else
2460 		*first = 0;
2461 
2462 	while (current_size < len) {
2463 		if (*from != '"') {
2464 			**to = *from;
2465 			*to += 1;
2466 		}
2467 		from += 1;
2468 		current_size += 1;
2469 	}
2470 }
2471 
2472 static int selinux_sb_copy_data(char *orig, char *copy)
2473 {
2474 	int fnosec, fsec, rc = 0;
2475 	char *in_save, *in_curr, *in_end;
2476 	char *sec_curr, *nosec_save, *nosec;
2477 	int open_quote = 0;
2478 
2479 	in_curr = orig;
2480 	sec_curr = copy;
2481 
2482 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2483 	if (!nosec) {
2484 		rc = -ENOMEM;
2485 		goto out;
2486 	}
2487 
2488 	nosec_save = nosec;
2489 	fnosec = fsec = 1;
2490 	in_save = in_end = orig;
2491 
2492 	do {
2493 		if (*in_end == '"')
2494 			open_quote = !open_quote;
2495 		if ((*in_end == ',' && open_quote == 0) ||
2496 				*in_end == '\0') {
2497 			int len = in_end - in_curr;
2498 
2499 			if (selinux_option(in_curr, len))
2500 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2501 			else
2502 				take_option(&nosec, in_curr, &fnosec, len);
2503 
2504 			in_curr = in_end + 1;
2505 		}
2506 	} while (*in_end++);
2507 
2508 	strcpy(in_save, nosec_save);
2509 	free_page((unsigned long)nosec_save);
2510 out:
2511 	return rc;
2512 }
2513 
2514 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2515 {
2516 	const struct cred *cred = current_cred();
2517 	struct avc_audit_data ad;
2518 	int rc;
2519 
2520 	rc = superblock_doinit(sb, data);
2521 	if (rc)
2522 		return rc;
2523 
2524 	/* Allow all mounts performed by the kernel */
2525 	if (flags & MS_KERNMOUNT)
2526 		return 0;
2527 
2528 	AVC_AUDIT_DATA_INIT(&ad, FS);
2529 	ad.u.fs.path.dentry = sb->s_root;
2530 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2531 }
2532 
2533 static int selinux_sb_statfs(struct dentry *dentry)
2534 {
2535 	const struct cred *cred = current_cred();
2536 	struct avc_audit_data ad;
2537 
2538 	AVC_AUDIT_DATA_INIT(&ad, FS);
2539 	ad.u.fs.path.dentry = dentry->d_sb->s_root;
2540 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2541 }
2542 
2543 static int selinux_mount(char *dev_name,
2544 			 struct path *path,
2545 			 char *type,
2546 			 unsigned long flags,
2547 			 void *data)
2548 {
2549 	const struct cred *cred = current_cred();
2550 
2551 	if (flags & MS_REMOUNT)
2552 		return superblock_has_perm(cred, path->mnt->mnt_sb,
2553 					   FILESYSTEM__REMOUNT, NULL);
2554 	else
2555 		return dentry_has_perm(cred, path->mnt, path->dentry,
2556 				       FILE__MOUNTON);
2557 }
2558 
2559 static int selinux_umount(struct vfsmount *mnt, int flags)
2560 {
2561 	const struct cred *cred = current_cred();
2562 
2563 	return superblock_has_perm(cred, mnt->mnt_sb,
2564 				   FILESYSTEM__UNMOUNT, NULL);
2565 }
2566 
2567 /* inode security operations */
2568 
2569 static int selinux_inode_alloc_security(struct inode *inode)
2570 {
2571 	return inode_alloc_security(inode);
2572 }
2573 
2574 static void selinux_inode_free_security(struct inode *inode)
2575 {
2576 	inode_free_security(inode);
2577 }
2578 
2579 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2580 				       char **name, void **value,
2581 				       size_t *len)
2582 {
2583 	const struct cred *cred = current_cred();
2584 	const struct task_security_struct *tsec = cred->security;
2585 	struct inode_security_struct *dsec;
2586 	struct superblock_security_struct *sbsec;
2587 	u32 sid, newsid, clen;
2588 	int rc;
2589 	char *namep = NULL, *context;
2590 
2591 	dsec = dir->i_security;
2592 	sbsec = dir->i_sb->s_security;
2593 
2594 	sid = tsec->sid;
2595 	newsid = tsec->create_sid;
2596 
2597 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2598 		rc = security_transition_sid(sid, dsec->sid,
2599 					     inode_mode_to_security_class(inode->i_mode),
2600 					     &newsid);
2601 		if (rc) {
2602 			printk(KERN_WARNING "%s:  "
2603 			       "security_transition_sid failed, rc=%d (dev=%s "
2604 			       "ino=%ld)\n",
2605 			       __func__,
2606 			       -rc, inode->i_sb->s_id, inode->i_ino);
2607 			return rc;
2608 		}
2609 	}
2610 
2611 	/* Possibly defer initialization to selinux_complete_init. */
2612 	if (sbsec->flags & SE_SBINITIALIZED) {
2613 		struct inode_security_struct *isec = inode->i_security;
2614 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2615 		isec->sid = newsid;
2616 		isec->initialized = 1;
2617 	}
2618 
2619 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2620 		return -EOPNOTSUPP;
2621 
2622 	if (name) {
2623 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2624 		if (!namep)
2625 			return -ENOMEM;
2626 		*name = namep;
2627 	}
2628 
2629 	if (value && len) {
2630 		rc = security_sid_to_context_force(newsid, &context, &clen);
2631 		if (rc) {
2632 			kfree(namep);
2633 			return rc;
2634 		}
2635 		*value = context;
2636 		*len = clen;
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2643 {
2644 	return may_create(dir, dentry, SECCLASS_FILE);
2645 }
2646 
2647 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2648 {
2649 	return may_link(dir, old_dentry, MAY_LINK);
2650 }
2651 
2652 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2653 {
2654 	return may_link(dir, dentry, MAY_UNLINK);
2655 }
2656 
2657 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2658 {
2659 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2660 }
2661 
2662 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2663 {
2664 	return may_create(dir, dentry, SECCLASS_DIR);
2665 }
2666 
2667 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2668 {
2669 	return may_link(dir, dentry, MAY_RMDIR);
2670 }
2671 
2672 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2673 {
2674 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2675 }
2676 
2677 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2678 				struct inode *new_inode, struct dentry *new_dentry)
2679 {
2680 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2681 }
2682 
2683 static int selinux_inode_readlink(struct dentry *dentry)
2684 {
2685 	const struct cred *cred = current_cred();
2686 
2687 	return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2688 }
2689 
2690 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2691 {
2692 	const struct cred *cred = current_cred();
2693 
2694 	return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2695 }
2696 
2697 static int selinux_inode_permission(struct inode *inode, int mask)
2698 {
2699 	const struct cred *cred = current_cred();
2700 
2701 	if (!mask) {
2702 		/* No permission to check.  Existence test. */
2703 		return 0;
2704 	}
2705 
2706 	return inode_has_perm(cred, inode,
2707 			      file_mask_to_av(inode->i_mode, mask), NULL);
2708 }
2709 
2710 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2711 {
2712 	const struct cred *cred = current_cred();
2713 
2714 	if (iattr->ia_valid & ATTR_FORCE)
2715 		return 0;
2716 
2717 	if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2718 			       ATTR_ATIME_SET | ATTR_MTIME_SET))
2719 		return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2720 
2721 	return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2722 }
2723 
2724 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2725 {
2726 	const struct cred *cred = current_cred();
2727 
2728 	return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2729 }
2730 
2731 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2732 {
2733 	const struct cred *cred = current_cred();
2734 
2735 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2736 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2737 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2738 			if (!capable(CAP_SETFCAP))
2739 				return -EPERM;
2740 		} else if (!capable(CAP_SYS_ADMIN)) {
2741 			/* A different attribute in the security namespace.
2742 			   Restrict to administrator. */
2743 			return -EPERM;
2744 		}
2745 	}
2746 
2747 	/* Not an attribute we recognize, so just check the
2748 	   ordinary setattr permission. */
2749 	return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2750 }
2751 
2752 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2753 				  const void *value, size_t size, int flags)
2754 {
2755 	struct inode *inode = dentry->d_inode;
2756 	struct inode_security_struct *isec = inode->i_security;
2757 	struct superblock_security_struct *sbsec;
2758 	struct avc_audit_data ad;
2759 	u32 newsid, sid = current_sid();
2760 	int rc = 0;
2761 
2762 	if (strcmp(name, XATTR_NAME_SELINUX))
2763 		return selinux_inode_setotherxattr(dentry, name);
2764 
2765 	sbsec = inode->i_sb->s_security;
2766 	if (!(sbsec->flags & SE_SBLABELSUPP))
2767 		return -EOPNOTSUPP;
2768 
2769 	if (!is_owner_or_cap(inode))
2770 		return -EPERM;
2771 
2772 	AVC_AUDIT_DATA_INIT(&ad, FS);
2773 	ad.u.fs.path.dentry = dentry;
2774 
2775 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2776 			  FILE__RELABELFROM, &ad);
2777 	if (rc)
2778 		return rc;
2779 
2780 	rc = security_context_to_sid(value, size, &newsid);
2781 	if (rc == -EINVAL) {
2782 		if (!capable(CAP_MAC_ADMIN))
2783 			return rc;
2784 		rc = security_context_to_sid_force(value, size, &newsid);
2785 	}
2786 	if (rc)
2787 		return rc;
2788 
2789 	rc = avc_has_perm(sid, newsid, isec->sclass,
2790 			  FILE__RELABELTO, &ad);
2791 	if (rc)
2792 		return rc;
2793 
2794 	rc = security_validate_transition(isec->sid, newsid, sid,
2795 					  isec->sclass);
2796 	if (rc)
2797 		return rc;
2798 
2799 	return avc_has_perm(newsid,
2800 			    sbsec->sid,
2801 			    SECCLASS_FILESYSTEM,
2802 			    FILESYSTEM__ASSOCIATE,
2803 			    &ad);
2804 }
2805 
2806 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2807 					const void *value, size_t size,
2808 					int flags)
2809 {
2810 	struct inode *inode = dentry->d_inode;
2811 	struct inode_security_struct *isec = inode->i_security;
2812 	u32 newsid;
2813 	int rc;
2814 
2815 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2816 		/* Not an attribute we recognize, so nothing to do. */
2817 		return;
2818 	}
2819 
2820 	rc = security_context_to_sid_force(value, size, &newsid);
2821 	if (rc) {
2822 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2823 		       "for (%s, %lu), rc=%d\n",
2824 		       inode->i_sb->s_id, inode->i_ino, -rc);
2825 		return;
2826 	}
2827 
2828 	isec->sid = newsid;
2829 	return;
2830 }
2831 
2832 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2833 {
2834 	const struct cred *cred = current_cred();
2835 
2836 	return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2837 }
2838 
2839 static int selinux_inode_listxattr(struct dentry *dentry)
2840 {
2841 	const struct cred *cred = current_cred();
2842 
2843 	return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2844 }
2845 
2846 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2847 {
2848 	if (strcmp(name, XATTR_NAME_SELINUX))
2849 		return selinux_inode_setotherxattr(dentry, name);
2850 
2851 	/* No one is allowed to remove a SELinux security label.
2852 	   You can change the label, but all data must be labeled. */
2853 	return -EACCES;
2854 }
2855 
2856 /*
2857  * Copy the inode security context value to the user.
2858  *
2859  * Permission check is handled by selinux_inode_getxattr hook.
2860  */
2861 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2862 {
2863 	u32 size;
2864 	int error;
2865 	char *context = NULL;
2866 	struct inode_security_struct *isec = inode->i_security;
2867 
2868 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2869 		return -EOPNOTSUPP;
2870 
2871 	/*
2872 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2873 	 * value even if it is not defined by current policy; otherwise,
2874 	 * use the in-core value under current policy.
2875 	 * Use the non-auditing forms of the permission checks since
2876 	 * getxattr may be called by unprivileged processes commonly
2877 	 * and lack of permission just means that we fall back to the
2878 	 * in-core context value, not a denial.
2879 	 */
2880 	error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2881 				SECURITY_CAP_NOAUDIT);
2882 	if (!error)
2883 		error = security_sid_to_context_force(isec->sid, &context,
2884 						      &size);
2885 	else
2886 		error = security_sid_to_context(isec->sid, &context, &size);
2887 	if (error)
2888 		return error;
2889 	error = size;
2890 	if (alloc) {
2891 		*buffer = context;
2892 		goto out_nofree;
2893 	}
2894 	kfree(context);
2895 out_nofree:
2896 	return error;
2897 }
2898 
2899 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2900 				     const void *value, size_t size, int flags)
2901 {
2902 	struct inode_security_struct *isec = inode->i_security;
2903 	u32 newsid;
2904 	int rc;
2905 
2906 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2907 		return -EOPNOTSUPP;
2908 
2909 	if (!value || !size)
2910 		return -EACCES;
2911 
2912 	rc = security_context_to_sid((void *)value, size, &newsid);
2913 	if (rc)
2914 		return rc;
2915 
2916 	isec->sid = newsid;
2917 	return 0;
2918 }
2919 
2920 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2921 {
2922 	const int len = sizeof(XATTR_NAME_SELINUX);
2923 	if (buffer && len <= buffer_size)
2924 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2925 	return len;
2926 }
2927 
2928 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2929 {
2930 	struct inode_security_struct *isec = inode->i_security;
2931 	*secid = isec->sid;
2932 }
2933 
2934 /* file security operations */
2935 
2936 static int selinux_revalidate_file_permission(struct file *file, int mask)
2937 {
2938 	const struct cred *cred = current_cred();
2939 	struct inode *inode = file->f_path.dentry->d_inode;
2940 
2941 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2942 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2943 		mask |= MAY_APPEND;
2944 
2945 	return file_has_perm(cred, file,
2946 			     file_mask_to_av(inode->i_mode, mask));
2947 }
2948 
2949 static int selinux_file_permission(struct file *file, int mask)
2950 {
2951 	struct inode *inode = file->f_path.dentry->d_inode;
2952 	struct file_security_struct *fsec = file->f_security;
2953 	struct inode_security_struct *isec = inode->i_security;
2954 	u32 sid = current_sid();
2955 
2956 	if (!mask)
2957 		/* No permission to check.  Existence test. */
2958 		return 0;
2959 
2960 	if (sid == fsec->sid && fsec->isid == isec->sid &&
2961 	    fsec->pseqno == avc_policy_seqno())
2962 		/* No change since dentry_open check. */
2963 		return 0;
2964 
2965 	return selinux_revalidate_file_permission(file, mask);
2966 }
2967 
2968 static int selinux_file_alloc_security(struct file *file)
2969 {
2970 	return file_alloc_security(file);
2971 }
2972 
2973 static void selinux_file_free_security(struct file *file)
2974 {
2975 	file_free_security(file);
2976 }
2977 
2978 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2979 			      unsigned long arg)
2980 {
2981 	const struct cred *cred = current_cred();
2982 	u32 av = 0;
2983 
2984 	if (_IOC_DIR(cmd) & _IOC_WRITE)
2985 		av |= FILE__WRITE;
2986 	if (_IOC_DIR(cmd) & _IOC_READ)
2987 		av |= FILE__READ;
2988 	if (!av)
2989 		av = FILE__IOCTL;
2990 
2991 	return file_has_perm(cred, file, av);
2992 }
2993 
2994 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2995 {
2996 	const struct cred *cred = current_cred();
2997 	int rc = 0;
2998 
2999 #ifndef CONFIG_PPC32
3000 	if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3001 		/*
3002 		 * We are making executable an anonymous mapping or a
3003 		 * private file mapping that will also be writable.
3004 		 * This has an additional check.
3005 		 */
3006 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3007 		if (rc)
3008 			goto error;
3009 	}
3010 #endif
3011 
3012 	if (file) {
3013 		/* read access is always possible with a mapping */
3014 		u32 av = FILE__READ;
3015 
3016 		/* write access only matters if the mapping is shared */
3017 		if (shared && (prot & PROT_WRITE))
3018 			av |= FILE__WRITE;
3019 
3020 		if (prot & PROT_EXEC)
3021 			av |= FILE__EXECUTE;
3022 
3023 		return file_has_perm(cred, file, av);
3024 	}
3025 
3026 error:
3027 	return rc;
3028 }
3029 
3030 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3031 			     unsigned long prot, unsigned long flags,
3032 			     unsigned long addr, unsigned long addr_only)
3033 {
3034 	int rc = 0;
3035 	u32 sid = current_sid();
3036 
3037 	/*
3038 	 * notice that we are intentionally putting the SELinux check before
3039 	 * the secondary cap_file_mmap check.  This is such a likely attempt
3040 	 * at bad behaviour/exploit that we always want to get the AVC, even
3041 	 * if DAC would have also denied the operation.
3042 	 */
3043 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3044 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3045 				  MEMPROTECT__MMAP_ZERO, NULL);
3046 		if (rc)
3047 			return rc;
3048 	}
3049 
3050 	/* do DAC check on address space usage */
3051 	rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3052 	if (rc || addr_only)
3053 		return rc;
3054 
3055 	if (selinux_checkreqprot)
3056 		prot = reqprot;
3057 
3058 	return file_map_prot_check(file, prot,
3059 				   (flags & MAP_TYPE) == MAP_SHARED);
3060 }
3061 
3062 static int selinux_file_mprotect(struct vm_area_struct *vma,
3063 				 unsigned long reqprot,
3064 				 unsigned long prot)
3065 {
3066 	const struct cred *cred = current_cred();
3067 
3068 	if (selinux_checkreqprot)
3069 		prot = reqprot;
3070 
3071 #ifndef CONFIG_PPC32
3072 	if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3073 		int rc = 0;
3074 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3075 		    vma->vm_end <= vma->vm_mm->brk) {
3076 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3077 		} else if (!vma->vm_file &&
3078 			   vma->vm_start <= vma->vm_mm->start_stack &&
3079 			   vma->vm_end >= vma->vm_mm->start_stack) {
3080 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3081 		} else if (vma->vm_file && vma->anon_vma) {
3082 			/*
3083 			 * We are making executable a file mapping that has
3084 			 * had some COW done. Since pages might have been
3085 			 * written, check ability to execute the possibly
3086 			 * modified content.  This typically should only
3087 			 * occur for text relocations.
3088 			 */
3089 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3090 		}
3091 		if (rc)
3092 			return rc;
3093 	}
3094 #endif
3095 
3096 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3097 }
3098 
3099 static int selinux_file_lock(struct file *file, unsigned int cmd)
3100 {
3101 	const struct cred *cred = current_cred();
3102 
3103 	return file_has_perm(cred, file, FILE__LOCK);
3104 }
3105 
3106 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3107 			      unsigned long arg)
3108 {
3109 	const struct cred *cred = current_cred();
3110 	int err = 0;
3111 
3112 	switch (cmd) {
3113 	case F_SETFL:
3114 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3115 			err = -EINVAL;
3116 			break;
3117 		}
3118 
3119 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3120 			err = file_has_perm(cred, file, FILE__WRITE);
3121 			break;
3122 		}
3123 		/* fall through */
3124 	case F_SETOWN:
3125 	case F_SETSIG:
3126 	case F_GETFL:
3127 	case F_GETOWN:
3128 	case F_GETSIG:
3129 		/* Just check FD__USE permission */
3130 		err = file_has_perm(cred, file, 0);
3131 		break;
3132 	case F_GETLK:
3133 	case F_SETLK:
3134 	case F_SETLKW:
3135 #if BITS_PER_LONG == 32
3136 	case F_GETLK64:
3137 	case F_SETLK64:
3138 	case F_SETLKW64:
3139 #endif
3140 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3141 			err = -EINVAL;
3142 			break;
3143 		}
3144 		err = file_has_perm(cred, file, FILE__LOCK);
3145 		break;
3146 	}
3147 
3148 	return err;
3149 }
3150 
3151 static int selinux_file_set_fowner(struct file *file)
3152 {
3153 	struct file_security_struct *fsec;
3154 
3155 	fsec = file->f_security;
3156 	fsec->fown_sid = current_sid();
3157 
3158 	return 0;
3159 }
3160 
3161 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3162 				       struct fown_struct *fown, int signum)
3163 {
3164 	struct file *file;
3165 	u32 sid = task_sid(tsk);
3166 	u32 perm;
3167 	struct file_security_struct *fsec;
3168 
3169 	/* struct fown_struct is never outside the context of a struct file */
3170 	file = container_of(fown, struct file, f_owner);
3171 
3172 	fsec = file->f_security;
3173 
3174 	if (!signum)
3175 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3176 	else
3177 		perm = signal_to_av(signum);
3178 
3179 	return avc_has_perm(fsec->fown_sid, sid,
3180 			    SECCLASS_PROCESS, perm, NULL);
3181 }
3182 
3183 static int selinux_file_receive(struct file *file)
3184 {
3185 	const struct cred *cred = current_cred();
3186 
3187 	return file_has_perm(cred, file, file_to_av(file));
3188 }
3189 
3190 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3191 {
3192 	struct file_security_struct *fsec;
3193 	struct inode *inode;
3194 	struct inode_security_struct *isec;
3195 
3196 	inode = file->f_path.dentry->d_inode;
3197 	fsec = file->f_security;
3198 	isec = inode->i_security;
3199 	/*
3200 	 * Save inode label and policy sequence number
3201 	 * at open-time so that selinux_file_permission
3202 	 * can determine whether revalidation is necessary.
3203 	 * Task label is already saved in the file security
3204 	 * struct as its SID.
3205 	 */
3206 	fsec->isid = isec->sid;
3207 	fsec->pseqno = avc_policy_seqno();
3208 	/*
3209 	 * Since the inode label or policy seqno may have changed
3210 	 * between the selinux_inode_permission check and the saving
3211 	 * of state above, recheck that access is still permitted.
3212 	 * Otherwise, access might never be revalidated against the
3213 	 * new inode label or new policy.
3214 	 * This check is not redundant - do not remove.
3215 	 */
3216 	return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3217 }
3218 
3219 /* task security operations */
3220 
3221 static int selinux_task_create(unsigned long clone_flags)
3222 {
3223 	return current_has_perm(current, PROCESS__FORK);
3224 }
3225 
3226 /*
3227  * detach and free the LSM part of a set of credentials
3228  */
3229 static void selinux_cred_free(struct cred *cred)
3230 {
3231 	struct task_security_struct *tsec = cred->security;
3232 	cred->security = NULL;
3233 	kfree(tsec);
3234 }
3235 
3236 /*
3237  * prepare a new set of credentials for modification
3238  */
3239 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3240 				gfp_t gfp)
3241 {
3242 	const struct task_security_struct *old_tsec;
3243 	struct task_security_struct *tsec;
3244 
3245 	old_tsec = old->security;
3246 
3247 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3248 	if (!tsec)
3249 		return -ENOMEM;
3250 
3251 	new->security = tsec;
3252 	return 0;
3253 }
3254 
3255 /*
3256  * set the security data for a kernel service
3257  * - all the creation contexts are set to unlabelled
3258  */
3259 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3260 {
3261 	struct task_security_struct *tsec = new->security;
3262 	u32 sid = current_sid();
3263 	int ret;
3264 
3265 	ret = avc_has_perm(sid, secid,
3266 			   SECCLASS_KERNEL_SERVICE,
3267 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3268 			   NULL);
3269 	if (ret == 0) {
3270 		tsec->sid = secid;
3271 		tsec->create_sid = 0;
3272 		tsec->keycreate_sid = 0;
3273 		tsec->sockcreate_sid = 0;
3274 	}
3275 	return ret;
3276 }
3277 
3278 /*
3279  * set the file creation context in a security record to the same as the
3280  * objective context of the specified inode
3281  */
3282 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3283 {
3284 	struct inode_security_struct *isec = inode->i_security;
3285 	struct task_security_struct *tsec = new->security;
3286 	u32 sid = current_sid();
3287 	int ret;
3288 
3289 	ret = avc_has_perm(sid, isec->sid,
3290 			   SECCLASS_KERNEL_SERVICE,
3291 			   KERNEL_SERVICE__CREATE_FILES_AS,
3292 			   NULL);
3293 
3294 	if (ret == 0)
3295 		tsec->create_sid = isec->sid;
3296 	return 0;
3297 }
3298 
3299 static int selinux_kernel_module_request(void)
3300 {
3301 	return task_has_system(current, SYSTEM__MODULE_REQUEST);
3302 }
3303 
3304 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3305 {
3306 	return current_has_perm(p, PROCESS__SETPGID);
3307 }
3308 
3309 static int selinux_task_getpgid(struct task_struct *p)
3310 {
3311 	return current_has_perm(p, PROCESS__GETPGID);
3312 }
3313 
3314 static int selinux_task_getsid(struct task_struct *p)
3315 {
3316 	return current_has_perm(p, PROCESS__GETSESSION);
3317 }
3318 
3319 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3320 {
3321 	*secid = task_sid(p);
3322 }
3323 
3324 static int selinux_task_setnice(struct task_struct *p, int nice)
3325 {
3326 	int rc;
3327 
3328 	rc = cap_task_setnice(p, nice);
3329 	if (rc)
3330 		return rc;
3331 
3332 	return current_has_perm(p, PROCESS__SETSCHED);
3333 }
3334 
3335 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3336 {
3337 	int rc;
3338 
3339 	rc = cap_task_setioprio(p, ioprio);
3340 	if (rc)
3341 		return rc;
3342 
3343 	return current_has_perm(p, PROCESS__SETSCHED);
3344 }
3345 
3346 static int selinux_task_getioprio(struct task_struct *p)
3347 {
3348 	return current_has_perm(p, PROCESS__GETSCHED);
3349 }
3350 
3351 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3352 {
3353 	struct rlimit *old_rlim = current->signal->rlim + resource;
3354 
3355 	/* Control the ability to change the hard limit (whether
3356 	   lowering or raising it), so that the hard limit can
3357 	   later be used as a safe reset point for the soft limit
3358 	   upon context transitions.  See selinux_bprm_committing_creds. */
3359 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3360 		return current_has_perm(current, PROCESS__SETRLIMIT);
3361 
3362 	return 0;
3363 }
3364 
3365 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3366 {
3367 	int rc;
3368 
3369 	rc = cap_task_setscheduler(p, policy, lp);
3370 	if (rc)
3371 		return rc;
3372 
3373 	return current_has_perm(p, PROCESS__SETSCHED);
3374 }
3375 
3376 static int selinux_task_getscheduler(struct task_struct *p)
3377 {
3378 	return current_has_perm(p, PROCESS__GETSCHED);
3379 }
3380 
3381 static int selinux_task_movememory(struct task_struct *p)
3382 {
3383 	return current_has_perm(p, PROCESS__SETSCHED);
3384 }
3385 
3386 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3387 				int sig, u32 secid)
3388 {
3389 	u32 perm;
3390 	int rc;
3391 
3392 	if (!sig)
3393 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3394 	else
3395 		perm = signal_to_av(sig);
3396 	if (secid)
3397 		rc = avc_has_perm(secid, task_sid(p),
3398 				  SECCLASS_PROCESS, perm, NULL);
3399 	else
3400 		rc = current_has_perm(p, perm);
3401 	return rc;
3402 }
3403 
3404 static int selinux_task_wait(struct task_struct *p)
3405 {
3406 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3407 }
3408 
3409 static void selinux_task_to_inode(struct task_struct *p,
3410 				  struct inode *inode)
3411 {
3412 	struct inode_security_struct *isec = inode->i_security;
3413 	u32 sid = task_sid(p);
3414 
3415 	isec->sid = sid;
3416 	isec->initialized = 1;
3417 }
3418 
3419 /* Returns error only if unable to parse addresses */
3420 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3421 			struct avc_audit_data *ad, u8 *proto)
3422 {
3423 	int offset, ihlen, ret = -EINVAL;
3424 	struct iphdr _iph, *ih;
3425 
3426 	offset = skb_network_offset(skb);
3427 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3428 	if (ih == NULL)
3429 		goto out;
3430 
3431 	ihlen = ih->ihl * 4;
3432 	if (ihlen < sizeof(_iph))
3433 		goto out;
3434 
3435 	ad->u.net.v4info.saddr = ih->saddr;
3436 	ad->u.net.v4info.daddr = ih->daddr;
3437 	ret = 0;
3438 
3439 	if (proto)
3440 		*proto = ih->protocol;
3441 
3442 	switch (ih->protocol) {
3443 	case IPPROTO_TCP: {
3444 		struct tcphdr _tcph, *th;
3445 
3446 		if (ntohs(ih->frag_off) & IP_OFFSET)
3447 			break;
3448 
3449 		offset += ihlen;
3450 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3451 		if (th == NULL)
3452 			break;
3453 
3454 		ad->u.net.sport = th->source;
3455 		ad->u.net.dport = th->dest;
3456 		break;
3457 	}
3458 
3459 	case IPPROTO_UDP: {
3460 		struct udphdr _udph, *uh;
3461 
3462 		if (ntohs(ih->frag_off) & IP_OFFSET)
3463 			break;
3464 
3465 		offset += ihlen;
3466 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3467 		if (uh == NULL)
3468 			break;
3469 
3470 		ad->u.net.sport = uh->source;
3471 		ad->u.net.dport = uh->dest;
3472 		break;
3473 	}
3474 
3475 	case IPPROTO_DCCP: {
3476 		struct dccp_hdr _dccph, *dh;
3477 
3478 		if (ntohs(ih->frag_off) & IP_OFFSET)
3479 			break;
3480 
3481 		offset += ihlen;
3482 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3483 		if (dh == NULL)
3484 			break;
3485 
3486 		ad->u.net.sport = dh->dccph_sport;
3487 		ad->u.net.dport = dh->dccph_dport;
3488 		break;
3489 	}
3490 
3491 	default:
3492 		break;
3493 	}
3494 out:
3495 	return ret;
3496 }
3497 
3498 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3499 
3500 /* Returns error only if unable to parse addresses */
3501 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3502 			struct avc_audit_data *ad, u8 *proto)
3503 {
3504 	u8 nexthdr;
3505 	int ret = -EINVAL, offset;
3506 	struct ipv6hdr _ipv6h, *ip6;
3507 
3508 	offset = skb_network_offset(skb);
3509 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3510 	if (ip6 == NULL)
3511 		goto out;
3512 
3513 	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3514 	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3515 	ret = 0;
3516 
3517 	nexthdr = ip6->nexthdr;
3518 	offset += sizeof(_ipv6h);
3519 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3520 	if (offset < 0)
3521 		goto out;
3522 
3523 	if (proto)
3524 		*proto = nexthdr;
3525 
3526 	switch (nexthdr) {
3527 	case IPPROTO_TCP: {
3528 		struct tcphdr _tcph, *th;
3529 
3530 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3531 		if (th == NULL)
3532 			break;
3533 
3534 		ad->u.net.sport = th->source;
3535 		ad->u.net.dport = th->dest;
3536 		break;
3537 	}
3538 
3539 	case IPPROTO_UDP: {
3540 		struct udphdr _udph, *uh;
3541 
3542 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3543 		if (uh == NULL)
3544 			break;
3545 
3546 		ad->u.net.sport = uh->source;
3547 		ad->u.net.dport = uh->dest;
3548 		break;
3549 	}
3550 
3551 	case IPPROTO_DCCP: {
3552 		struct dccp_hdr _dccph, *dh;
3553 
3554 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3555 		if (dh == NULL)
3556 			break;
3557 
3558 		ad->u.net.sport = dh->dccph_sport;
3559 		ad->u.net.dport = dh->dccph_dport;
3560 		break;
3561 	}
3562 
3563 	/* includes fragments */
3564 	default:
3565 		break;
3566 	}
3567 out:
3568 	return ret;
3569 }
3570 
3571 #endif /* IPV6 */
3572 
3573 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3574 			     char **_addrp, int src, u8 *proto)
3575 {
3576 	char *addrp;
3577 	int ret;
3578 
3579 	switch (ad->u.net.family) {
3580 	case PF_INET:
3581 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3582 		if (ret)
3583 			goto parse_error;
3584 		addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3585 				       &ad->u.net.v4info.daddr);
3586 		goto okay;
3587 
3588 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3589 	case PF_INET6:
3590 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3591 		if (ret)
3592 			goto parse_error;
3593 		addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3594 				       &ad->u.net.v6info.daddr);
3595 		goto okay;
3596 #endif	/* IPV6 */
3597 	default:
3598 		addrp = NULL;
3599 		goto okay;
3600 	}
3601 
3602 parse_error:
3603 	printk(KERN_WARNING
3604 	       "SELinux: failure in selinux_parse_skb(),"
3605 	       " unable to parse packet\n");
3606 	return ret;
3607 
3608 okay:
3609 	if (_addrp)
3610 		*_addrp = addrp;
3611 	return 0;
3612 }
3613 
3614 /**
3615  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3616  * @skb: the packet
3617  * @family: protocol family
3618  * @sid: the packet's peer label SID
3619  *
3620  * Description:
3621  * Check the various different forms of network peer labeling and determine
3622  * the peer label/SID for the packet; most of the magic actually occurs in
3623  * the security server function security_net_peersid_cmp().  The function
3624  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3625  * or -EACCES if @sid is invalid due to inconsistencies with the different
3626  * peer labels.
3627  *
3628  */
3629 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3630 {
3631 	int err;
3632 	u32 xfrm_sid;
3633 	u32 nlbl_sid;
3634 	u32 nlbl_type;
3635 
3636 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3637 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3638 
3639 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3640 	if (unlikely(err)) {
3641 		printk(KERN_WARNING
3642 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3643 		       " unable to determine packet's peer label\n");
3644 		return -EACCES;
3645 	}
3646 
3647 	return 0;
3648 }
3649 
3650 /* socket security operations */
3651 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3652 			   u32 perms)
3653 {
3654 	struct inode_security_struct *isec;
3655 	struct avc_audit_data ad;
3656 	u32 sid;
3657 	int err = 0;
3658 
3659 	isec = SOCK_INODE(sock)->i_security;
3660 
3661 	if (isec->sid == SECINITSID_KERNEL)
3662 		goto out;
3663 	sid = task_sid(task);
3664 
3665 	AVC_AUDIT_DATA_INIT(&ad, NET);
3666 	ad.u.net.sk = sock->sk;
3667 	err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3668 
3669 out:
3670 	return err;
3671 }
3672 
3673 static int selinux_socket_create(int family, int type,
3674 				 int protocol, int kern)
3675 {
3676 	const struct cred *cred = current_cred();
3677 	const struct task_security_struct *tsec = cred->security;
3678 	u32 sid, newsid;
3679 	u16 secclass;
3680 	int err = 0;
3681 
3682 	if (kern)
3683 		goto out;
3684 
3685 	sid = tsec->sid;
3686 	newsid = tsec->sockcreate_sid ?: sid;
3687 
3688 	secclass = socket_type_to_security_class(family, type, protocol);
3689 	err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3690 
3691 out:
3692 	return err;
3693 }
3694 
3695 static int selinux_socket_post_create(struct socket *sock, int family,
3696 				      int type, int protocol, int kern)
3697 {
3698 	const struct cred *cred = current_cred();
3699 	const struct task_security_struct *tsec = cred->security;
3700 	struct inode_security_struct *isec;
3701 	struct sk_security_struct *sksec;
3702 	u32 sid, newsid;
3703 	int err = 0;
3704 
3705 	sid = tsec->sid;
3706 	newsid = tsec->sockcreate_sid;
3707 
3708 	isec = SOCK_INODE(sock)->i_security;
3709 
3710 	if (kern)
3711 		isec->sid = SECINITSID_KERNEL;
3712 	else if (newsid)
3713 		isec->sid = newsid;
3714 	else
3715 		isec->sid = sid;
3716 
3717 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3718 	isec->initialized = 1;
3719 
3720 	if (sock->sk) {
3721 		sksec = sock->sk->sk_security;
3722 		sksec->sid = isec->sid;
3723 		sksec->sclass = isec->sclass;
3724 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3725 	}
3726 
3727 	return err;
3728 }
3729 
3730 /* Range of port numbers used to automatically bind.
3731    Need to determine whether we should perform a name_bind
3732    permission check between the socket and the port number. */
3733 
3734 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3735 {
3736 	u16 family;
3737 	int err;
3738 
3739 	err = socket_has_perm(current, sock, SOCKET__BIND);
3740 	if (err)
3741 		goto out;
3742 
3743 	/*
3744 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3745 	 * Multiple address binding for SCTP is not supported yet: we just
3746 	 * check the first address now.
3747 	 */
3748 	family = sock->sk->sk_family;
3749 	if (family == PF_INET || family == PF_INET6) {
3750 		char *addrp;
3751 		struct inode_security_struct *isec;
3752 		struct avc_audit_data ad;
3753 		struct sockaddr_in *addr4 = NULL;
3754 		struct sockaddr_in6 *addr6 = NULL;
3755 		unsigned short snum;
3756 		struct sock *sk = sock->sk;
3757 		u32 sid, node_perm;
3758 
3759 		isec = SOCK_INODE(sock)->i_security;
3760 
3761 		if (family == PF_INET) {
3762 			addr4 = (struct sockaddr_in *)address;
3763 			snum = ntohs(addr4->sin_port);
3764 			addrp = (char *)&addr4->sin_addr.s_addr;
3765 		} else {
3766 			addr6 = (struct sockaddr_in6 *)address;
3767 			snum = ntohs(addr6->sin6_port);
3768 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3769 		}
3770 
3771 		if (snum) {
3772 			int low, high;
3773 
3774 			inet_get_local_port_range(&low, &high);
3775 
3776 			if (snum < max(PROT_SOCK, low) || snum > high) {
3777 				err = sel_netport_sid(sk->sk_protocol,
3778 						      snum, &sid);
3779 				if (err)
3780 					goto out;
3781 				AVC_AUDIT_DATA_INIT(&ad, NET);
3782 				ad.u.net.sport = htons(snum);
3783 				ad.u.net.family = family;
3784 				err = avc_has_perm(isec->sid, sid,
3785 						   isec->sclass,
3786 						   SOCKET__NAME_BIND, &ad);
3787 				if (err)
3788 					goto out;
3789 			}
3790 		}
3791 
3792 		switch (isec->sclass) {
3793 		case SECCLASS_TCP_SOCKET:
3794 			node_perm = TCP_SOCKET__NODE_BIND;
3795 			break;
3796 
3797 		case SECCLASS_UDP_SOCKET:
3798 			node_perm = UDP_SOCKET__NODE_BIND;
3799 			break;
3800 
3801 		case SECCLASS_DCCP_SOCKET:
3802 			node_perm = DCCP_SOCKET__NODE_BIND;
3803 			break;
3804 
3805 		default:
3806 			node_perm = RAWIP_SOCKET__NODE_BIND;
3807 			break;
3808 		}
3809 
3810 		err = sel_netnode_sid(addrp, family, &sid);
3811 		if (err)
3812 			goto out;
3813 
3814 		AVC_AUDIT_DATA_INIT(&ad, NET);
3815 		ad.u.net.sport = htons(snum);
3816 		ad.u.net.family = family;
3817 
3818 		if (family == PF_INET)
3819 			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3820 		else
3821 			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3822 
3823 		err = avc_has_perm(isec->sid, sid,
3824 				   isec->sclass, node_perm, &ad);
3825 		if (err)
3826 			goto out;
3827 	}
3828 out:
3829 	return err;
3830 }
3831 
3832 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3833 {
3834 	struct sock *sk = sock->sk;
3835 	struct inode_security_struct *isec;
3836 	int err;
3837 
3838 	err = socket_has_perm(current, sock, SOCKET__CONNECT);
3839 	if (err)
3840 		return err;
3841 
3842 	/*
3843 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3844 	 */
3845 	isec = SOCK_INODE(sock)->i_security;
3846 	if (isec->sclass == SECCLASS_TCP_SOCKET ||
3847 	    isec->sclass == SECCLASS_DCCP_SOCKET) {
3848 		struct avc_audit_data ad;
3849 		struct sockaddr_in *addr4 = NULL;
3850 		struct sockaddr_in6 *addr6 = NULL;
3851 		unsigned short snum;
3852 		u32 sid, perm;
3853 
3854 		if (sk->sk_family == PF_INET) {
3855 			addr4 = (struct sockaddr_in *)address;
3856 			if (addrlen < sizeof(struct sockaddr_in))
3857 				return -EINVAL;
3858 			snum = ntohs(addr4->sin_port);
3859 		} else {
3860 			addr6 = (struct sockaddr_in6 *)address;
3861 			if (addrlen < SIN6_LEN_RFC2133)
3862 				return -EINVAL;
3863 			snum = ntohs(addr6->sin6_port);
3864 		}
3865 
3866 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3867 		if (err)
3868 			goto out;
3869 
3870 		perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3871 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3872 
3873 		AVC_AUDIT_DATA_INIT(&ad, NET);
3874 		ad.u.net.dport = htons(snum);
3875 		ad.u.net.family = sk->sk_family;
3876 		err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3877 		if (err)
3878 			goto out;
3879 	}
3880 
3881 	err = selinux_netlbl_socket_connect(sk, address);
3882 
3883 out:
3884 	return err;
3885 }
3886 
3887 static int selinux_socket_listen(struct socket *sock, int backlog)
3888 {
3889 	return socket_has_perm(current, sock, SOCKET__LISTEN);
3890 }
3891 
3892 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3893 {
3894 	int err;
3895 	struct inode_security_struct *isec;
3896 	struct inode_security_struct *newisec;
3897 
3898 	err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3899 	if (err)
3900 		return err;
3901 
3902 	newisec = SOCK_INODE(newsock)->i_security;
3903 
3904 	isec = SOCK_INODE(sock)->i_security;
3905 	newisec->sclass = isec->sclass;
3906 	newisec->sid = isec->sid;
3907 	newisec->initialized = 1;
3908 
3909 	return 0;
3910 }
3911 
3912 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3913 				  int size)
3914 {
3915 	return socket_has_perm(current, sock, SOCKET__WRITE);
3916 }
3917 
3918 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3919 				  int size, int flags)
3920 {
3921 	return socket_has_perm(current, sock, SOCKET__READ);
3922 }
3923 
3924 static int selinux_socket_getsockname(struct socket *sock)
3925 {
3926 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3927 }
3928 
3929 static int selinux_socket_getpeername(struct socket *sock)
3930 {
3931 	return socket_has_perm(current, sock, SOCKET__GETATTR);
3932 }
3933 
3934 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3935 {
3936 	int err;
3937 
3938 	err = socket_has_perm(current, sock, SOCKET__SETOPT);
3939 	if (err)
3940 		return err;
3941 
3942 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
3943 }
3944 
3945 static int selinux_socket_getsockopt(struct socket *sock, int level,
3946 				     int optname)
3947 {
3948 	return socket_has_perm(current, sock, SOCKET__GETOPT);
3949 }
3950 
3951 static int selinux_socket_shutdown(struct socket *sock, int how)
3952 {
3953 	return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3954 }
3955 
3956 static int selinux_socket_unix_stream_connect(struct socket *sock,
3957 					      struct socket *other,
3958 					      struct sock *newsk)
3959 {
3960 	struct sk_security_struct *ssec;
3961 	struct inode_security_struct *isec;
3962 	struct inode_security_struct *other_isec;
3963 	struct avc_audit_data ad;
3964 	int err;
3965 
3966 	isec = SOCK_INODE(sock)->i_security;
3967 	other_isec = SOCK_INODE(other)->i_security;
3968 
3969 	AVC_AUDIT_DATA_INIT(&ad, NET);
3970 	ad.u.net.sk = other->sk;
3971 
3972 	err = avc_has_perm(isec->sid, other_isec->sid,
3973 			   isec->sclass,
3974 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3975 	if (err)
3976 		return err;
3977 
3978 	/* connecting socket */
3979 	ssec = sock->sk->sk_security;
3980 	ssec->peer_sid = other_isec->sid;
3981 
3982 	/* server child socket */
3983 	ssec = newsk->sk_security;
3984 	ssec->peer_sid = isec->sid;
3985 	err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3986 
3987 	return err;
3988 }
3989 
3990 static int selinux_socket_unix_may_send(struct socket *sock,
3991 					struct socket *other)
3992 {
3993 	struct inode_security_struct *isec;
3994 	struct inode_security_struct *other_isec;
3995 	struct avc_audit_data ad;
3996 	int err;
3997 
3998 	isec = SOCK_INODE(sock)->i_security;
3999 	other_isec = SOCK_INODE(other)->i_security;
4000 
4001 	AVC_AUDIT_DATA_INIT(&ad, NET);
4002 	ad.u.net.sk = other->sk;
4003 
4004 	err = avc_has_perm(isec->sid, other_isec->sid,
4005 			   isec->sclass, SOCKET__SENDTO, &ad);
4006 	if (err)
4007 		return err;
4008 
4009 	return 0;
4010 }
4011 
4012 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4013 				    u32 peer_sid,
4014 				    struct avc_audit_data *ad)
4015 {
4016 	int err;
4017 	u32 if_sid;
4018 	u32 node_sid;
4019 
4020 	err = sel_netif_sid(ifindex, &if_sid);
4021 	if (err)
4022 		return err;
4023 	err = avc_has_perm(peer_sid, if_sid,
4024 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4025 	if (err)
4026 		return err;
4027 
4028 	err = sel_netnode_sid(addrp, family, &node_sid);
4029 	if (err)
4030 		return err;
4031 	return avc_has_perm(peer_sid, node_sid,
4032 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4033 }
4034 
4035 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4036 				       u16 family)
4037 {
4038 	int err = 0;
4039 	struct sk_security_struct *sksec = sk->sk_security;
4040 	u32 peer_sid;
4041 	u32 sk_sid = sksec->sid;
4042 	struct avc_audit_data ad;
4043 	char *addrp;
4044 
4045 	AVC_AUDIT_DATA_INIT(&ad, NET);
4046 	ad.u.net.netif = skb->iif;
4047 	ad.u.net.family = family;
4048 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4049 	if (err)
4050 		return err;
4051 
4052 	if (selinux_secmark_enabled()) {
4053 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4054 				   PACKET__RECV, &ad);
4055 		if (err)
4056 			return err;
4057 	}
4058 
4059 	if (selinux_policycap_netpeer) {
4060 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4061 		if (err)
4062 			return err;
4063 		err = avc_has_perm(sk_sid, peer_sid,
4064 				   SECCLASS_PEER, PEER__RECV, &ad);
4065 		if (err)
4066 			selinux_netlbl_err(skb, err, 0);
4067 	} else {
4068 		err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4069 		if (err)
4070 			return err;
4071 		err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4072 	}
4073 
4074 	return err;
4075 }
4076 
4077 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4078 {
4079 	int err;
4080 	struct sk_security_struct *sksec = sk->sk_security;
4081 	u16 family = sk->sk_family;
4082 	u32 sk_sid = sksec->sid;
4083 	struct avc_audit_data ad;
4084 	char *addrp;
4085 	u8 secmark_active;
4086 	u8 peerlbl_active;
4087 
4088 	if (family != PF_INET && family != PF_INET6)
4089 		return 0;
4090 
4091 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4092 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4093 		family = PF_INET;
4094 
4095 	/* If any sort of compatibility mode is enabled then handoff processing
4096 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4097 	 * special handling.  We do this in an attempt to keep this function
4098 	 * as fast and as clean as possible. */
4099 	if (!selinux_policycap_netpeer)
4100 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4101 
4102 	secmark_active = selinux_secmark_enabled();
4103 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4104 	if (!secmark_active && !peerlbl_active)
4105 		return 0;
4106 
4107 	AVC_AUDIT_DATA_INIT(&ad, NET);
4108 	ad.u.net.netif = skb->iif;
4109 	ad.u.net.family = family;
4110 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4111 	if (err)
4112 		return err;
4113 
4114 	if (peerlbl_active) {
4115 		u32 peer_sid;
4116 
4117 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4118 		if (err)
4119 			return err;
4120 		err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4121 					       peer_sid, &ad);
4122 		if (err) {
4123 			selinux_netlbl_err(skb, err, 0);
4124 			return err;
4125 		}
4126 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4127 				   PEER__RECV, &ad);
4128 		if (err)
4129 			selinux_netlbl_err(skb, err, 0);
4130 	}
4131 
4132 	if (secmark_active) {
4133 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4134 				   PACKET__RECV, &ad);
4135 		if (err)
4136 			return err;
4137 	}
4138 
4139 	return err;
4140 }
4141 
4142 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4143 					    int __user *optlen, unsigned len)
4144 {
4145 	int err = 0;
4146 	char *scontext;
4147 	u32 scontext_len;
4148 	struct sk_security_struct *ssec;
4149 	struct inode_security_struct *isec;
4150 	u32 peer_sid = SECSID_NULL;
4151 
4152 	isec = SOCK_INODE(sock)->i_security;
4153 
4154 	if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4155 	    isec->sclass == SECCLASS_TCP_SOCKET) {
4156 		ssec = sock->sk->sk_security;
4157 		peer_sid = ssec->peer_sid;
4158 	}
4159 	if (peer_sid == SECSID_NULL) {
4160 		err = -ENOPROTOOPT;
4161 		goto out;
4162 	}
4163 
4164 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4165 
4166 	if (err)
4167 		goto out;
4168 
4169 	if (scontext_len > len) {
4170 		err = -ERANGE;
4171 		goto out_len;
4172 	}
4173 
4174 	if (copy_to_user(optval, scontext, scontext_len))
4175 		err = -EFAULT;
4176 
4177 out_len:
4178 	if (put_user(scontext_len, optlen))
4179 		err = -EFAULT;
4180 
4181 	kfree(scontext);
4182 out:
4183 	return err;
4184 }
4185 
4186 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4187 {
4188 	u32 peer_secid = SECSID_NULL;
4189 	u16 family;
4190 
4191 	if (skb && skb->protocol == htons(ETH_P_IP))
4192 		family = PF_INET;
4193 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4194 		family = PF_INET6;
4195 	else if (sock)
4196 		family = sock->sk->sk_family;
4197 	else
4198 		goto out;
4199 
4200 	if (sock && family == PF_UNIX)
4201 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4202 	else if (skb)
4203 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4204 
4205 out:
4206 	*secid = peer_secid;
4207 	if (peer_secid == SECSID_NULL)
4208 		return -EINVAL;
4209 	return 0;
4210 }
4211 
4212 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4213 {
4214 	return sk_alloc_security(sk, family, priority);
4215 }
4216 
4217 static void selinux_sk_free_security(struct sock *sk)
4218 {
4219 	sk_free_security(sk);
4220 }
4221 
4222 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4223 {
4224 	struct sk_security_struct *ssec = sk->sk_security;
4225 	struct sk_security_struct *newssec = newsk->sk_security;
4226 
4227 	newssec->sid = ssec->sid;
4228 	newssec->peer_sid = ssec->peer_sid;
4229 	newssec->sclass = ssec->sclass;
4230 
4231 	selinux_netlbl_sk_security_reset(newssec);
4232 }
4233 
4234 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4235 {
4236 	if (!sk)
4237 		*secid = SECINITSID_ANY_SOCKET;
4238 	else {
4239 		struct sk_security_struct *sksec = sk->sk_security;
4240 
4241 		*secid = sksec->sid;
4242 	}
4243 }
4244 
4245 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4246 {
4247 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4248 	struct sk_security_struct *sksec = sk->sk_security;
4249 
4250 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4251 	    sk->sk_family == PF_UNIX)
4252 		isec->sid = sksec->sid;
4253 	sksec->sclass = isec->sclass;
4254 }
4255 
4256 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4257 				     struct request_sock *req)
4258 {
4259 	struct sk_security_struct *sksec = sk->sk_security;
4260 	int err;
4261 	u16 family = sk->sk_family;
4262 	u32 newsid;
4263 	u32 peersid;
4264 
4265 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4266 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4267 		family = PF_INET;
4268 
4269 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4270 	if (err)
4271 		return err;
4272 	if (peersid == SECSID_NULL) {
4273 		req->secid = sksec->sid;
4274 		req->peer_secid = SECSID_NULL;
4275 	} else {
4276 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4277 		if (err)
4278 			return err;
4279 		req->secid = newsid;
4280 		req->peer_secid = peersid;
4281 	}
4282 
4283 	return selinux_netlbl_inet_conn_request(req, family);
4284 }
4285 
4286 static void selinux_inet_csk_clone(struct sock *newsk,
4287 				   const struct request_sock *req)
4288 {
4289 	struct sk_security_struct *newsksec = newsk->sk_security;
4290 
4291 	newsksec->sid = req->secid;
4292 	newsksec->peer_sid = req->peer_secid;
4293 	/* NOTE: Ideally, we should also get the isec->sid for the
4294 	   new socket in sync, but we don't have the isec available yet.
4295 	   So we will wait until sock_graft to do it, by which
4296 	   time it will have been created and available. */
4297 
4298 	/* We don't need to take any sort of lock here as we are the only
4299 	 * thread with access to newsksec */
4300 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4301 }
4302 
4303 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4304 {
4305 	u16 family = sk->sk_family;
4306 	struct sk_security_struct *sksec = sk->sk_security;
4307 
4308 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4309 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4310 		family = PF_INET;
4311 
4312 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4313 }
4314 
4315 static void selinux_req_classify_flow(const struct request_sock *req,
4316 				      struct flowi *fl)
4317 {
4318 	fl->secid = req->secid;
4319 }
4320 
4321 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4322 {
4323 	int err = 0;
4324 	u32 perm;
4325 	struct nlmsghdr *nlh;
4326 	struct socket *sock = sk->sk_socket;
4327 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4328 
4329 	if (skb->len < NLMSG_SPACE(0)) {
4330 		err = -EINVAL;
4331 		goto out;
4332 	}
4333 	nlh = nlmsg_hdr(skb);
4334 
4335 	err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4336 	if (err) {
4337 		if (err == -EINVAL) {
4338 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4339 				  "SELinux:  unrecognized netlink message"
4340 				  " type=%hu for sclass=%hu\n",
4341 				  nlh->nlmsg_type, isec->sclass);
4342 			if (!selinux_enforcing || security_get_allow_unknown())
4343 				err = 0;
4344 		}
4345 
4346 		/* Ignore */
4347 		if (err == -ENOENT)
4348 			err = 0;
4349 		goto out;
4350 	}
4351 
4352 	err = socket_has_perm(current, sock, perm);
4353 out:
4354 	return err;
4355 }
4356 
4357 #ifdef CONFIG_NETFILTER
4358 
4359 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4360 				       u16 family)
4361 {
4362 	int err;
4363 	char *addrp;
4364 	u32 peer_sid;
4365 	struct avc_audit_data ad;
4366 	u8 secmark_active;
4367 	u8 netlbl_active;
4368 	u8 peerlbl_active;
4369 
4370 	if (!selinux_policycap_netpeer)
4371 		return NF_ACCEPT;
4372 
4373 	secmark_active = selinux_secmark_enabled();
4374 	netlbl_active = netlbl_enabled();
4375 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4376 	if (!secmark_active && !peerlbl_active)
4377 		return NF_ACCEPT;
4378 
4379 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4380 		return NF_DROP;
4381 
4382 	AVC_AUDIT_DATA_INIT(&ad, NET);
4383 	ad.u.net.netif = ifindex;
4384 	ad.u.net.family = family;
4385 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4386 		return NF_DROP;
4387 
4388 	if (peerlbl_active) {
4389 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4390 					       peer_sid, &ad);
4391 		if (err) {
4392 			selinux_netlbl_err(skb, err, 1);
4393 			return NF_DROP;
4394 		}
4395 	}
4396 
4397 	if (secmark_active)
4398 		if (avc_has_perm(peer_sid, skb->secmark,
4399 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4400 			return NF_DROP;
4401 
4402 	if (netlbl_active)
4403 		/* we do this in the FORWARD path and not the POST_ROUTING
4404 		 * path because we want to make sure we apply the necessary
4405 		 * labeling before IPsec is applied so we can leverage AH
4406 		 * protection */
4407 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4408 			return NF_DROP;
4409 
4410 	return NF_ACCEPT;
4411 }
4412 
4413 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4414 					 struct sk_buff *skb,
4415 					 const struct net_device *in,
4416 					 const struct net_device *out,
4417 					 int (*okfn)(struct sk_buff *))
4418 {
4419 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4420 }
4421 
4422 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4423 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4424 					 struct sk_buff *skb,
4425 					 const struct net_device *in,
4426 					 const struct net_device *out,
4427 					 int (*okfn)(struct sk_buff *))
4428 {
4429 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4430 }
4431 #endif	/* IPV6 */
4432 
4433 static unsigned int selinux_ip_output(struct sk_buff *skb,
4434 				      u16 family)
4435 {
4436 	u32 sid;
4437 
4438 	if (!netlbl_enabled())
4439 		return NF_ACCEPT;
4440 
4441 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4442 	 * because we want to make sure we apply the necessary labeling
4443 	 * before IPsec is applied so we can leverage AH protection */
4444 	if (skb->sk) {
4445 		struct sk_security_struct *sksec = skb->sk->sk_security;
4446 		sid = sksec->sid;
4447 	} else
4448 		sid = SECINITSID_KERNEL;
4449 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4450 		return NF_DROP;
4451 
4452 	return NF_ACCEPT;
4453 }
4454 
4455 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4456 					struct sk_buff *skb,
4457 					const struct net_device *in,
4458 					const struct net_device *out,
4459 					int (*okfn)(struct sk_buff *))
4460 {
4461 	return selinux_ip_output(skb, PF_INET);
4462 }
4463 
4464 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4465 						int ifindex,
4466 						u16 family)
4467 {
4468 	struct sock *sk = skb->sk;
4469 	struct sk_security_struct *sksec;
4470 	struct avc_audit_data ad;
4471 	char *addrp;
4472 	u8 proto;
4473 
4474 	if (sk == NULL)
4475 		return NF_ACCEPT;
4476 	sksec = sk->sk_security;
4477 
4478 	AVC_AUDIT_DATA_INIT(&ad, NET);
4479 	ad.u.net.netif = ifindex;
4480 	ad.u.net.family = family;
4481 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4482 		return NF_DROP;
4483 
4484 	if (selinux_secmark_enabled())
4485 		if (avc_has_perm(sksec->sid, skb->secmark,
4486 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4487 			return NF_DROP;
4488 
4489 	if (selinux_policycap_netpeer)
4490 		if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4491 			return NF_DROP;
4492 
4493 	return NF_ACCEPT;
4494 }
4495 
4496 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4497 					 u16 family)
4498 {
4499 	u32 secmark_perm;
4500 	u32 peer_sid;
4501 	struct sock *sk;
4502 	struct avc_audit_data ad;
4503 	char *addrp;
4504 	u8 secmark_active;
4505 	u8 peerlbl_active;
4506 
4507 	/* If any sort of compatibility mode is enabled then handoff processing
4508 	 * to the selinux_ip_postroute_compat() function to deal with the
4509 	 * special handling.  We do this in an attempt to keep this function
4510 	 * as fast and as clean as possible. */
4511 	if (!selinux_policycap_netpeer)
4512 		return selinux_ip_postroute_compat(skb, ifindex, family);
4513 #ifdef CONFIG_XFRM
4514 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4515 	 * packet transformation so allow the packet to pass without any checks
4516 	 * since we'll have another chance to perform access control checks
4517 	 * when the packet is on it's final way out.
4518 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4519 	 *       is NULL, in this case go ahead and apply access control. */
4520 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4521 		return NF_ACCEPT;
4522 #endif
4523 	secmark_active = selinux_secmark_enabled();
4524 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4525 	if (!secmark_active && !peerlbl_active)
4526 		return NF_ACCEPT;
4527 
4528 	/* if the packet is being forwarded then get the peer label from the
4529 	 * packet itself; otherwise check to see if it is from a local
4530 	 * application or the kernel, if from an application get the peer label
4531 	 * from the sending socket, otherwise use the kernel's sid */
4532 	sk = skb->sk;
4533 	if (sk == NULL) {
4534 		switch (family) {
4535 		case PF_INET:
4536 			if (IPCB(skb)->flags & IPSKB_FORWARDED)
4537 				secmark_perm = PACKET__FORWARD_OUT;
4538 			else
4539 				secmark_perm = PACKET__SEND;
4540 			break;
4541 		case PF_INET6:
4542 			if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4543 				secmark_perm = PACKET__FORWARD_OUT;
4544 			else
4545 				secmark_perm = PACKET__SEND;
4546 			break;
4547 		default:
4548 			return NF_DROP;
4549 		}
4550 		if (secmark_perm == PACKET__FORWARD_OUT) {
4551 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4552 				return NF_DROP;
4553 		} else
4554 			peer_sid = SECINITSID_KERNEL;
4555 	} else {
4556 		struct sk_security_struct *sksec = sk->sk_security;
4557 		peer_sid = sksec->sid;
4558 		secmark_perm = PACKET__SEND;
4559 	}
4560 
4561 	AVC_AUDIT_DATA_INIT(&ad, NET);
4562 	ad.u.net.netif = ifindex;
4563 	ad.u.net.family = family;
4564 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4565 		return NF_DROP;
4566 
4567 	if (secmark_active)
4568 		if (avc_has_perm(peer_sid, skb->secmark,
4569 				 SECCLASS_PACKET, secmark_perm, &ad))
4570 			return NF_DROP;
4571 
4572 	if (peerlbl_active) {
4573 		u32 if_sid;
4574 		u32 node_sid;
4575 
4576 		if (sel_netif_sid(ifindex, &if_sid))
4577 			return NF_DROP;
4578 		if (avc_has_perm(peer_sid, if_sid,
4579 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4580 			return NF_DROP;
4581 
4582 		if (sel_netnode_sid(addrp, family, &node_sid))
4583 			return NF_DROP;
4584 		if (avc_has_perm(peer_sid, node_sid,
4585 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4586 			return NF_DROP;
4587 	}
4588 
4589 	return NF_ACCEPT;
4590 }
4591 
4592 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4593 					   struct sk_buff *skb,
4594 					   const struct net_device *in,
4595 					   const struct net_device *out,
4596 					   int (*okfn)(struct sk_buff *))
4597 {
4598 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4599 }
4600 
4601 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4602 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4603 					   struct sk_buff *skb,
4604 					   const struct net_device *in,
4605 					   const struct net_device *out,
4606 					   int (*okfn)(struct sk_buff *))
4607 {
4608 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4609 }
4610 #endif	/* IPV6 */
4611 
4612 #endif	/* CONFIG_NETFILTER */
4613 
4614 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4615 {
4616 	int err;
4617 
4618 	err = cap_netlink_send(sk, skb);
4619 	if (err)
4620 		return err;
4621 
4622 	if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4623 		err = selinux_nlmsg_perm(sk, skb);
4624 
4625 	return err;
4626 }
4627 
4628 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4629 {
4630 	int err;
4631 	struct avc_audit_data ad;
4632 
4633 	err = cap_netlink_recv(skb, capability);
4634 	if (err)
4635 		return err;
4636 
4637 	AVC_AUDIT_DATA_INIT(&ad, CAP);
4638 	ad.u.cap = capability;
4639 
4640 	return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4641 			    SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4642 }
4643 
4644 static int ipc_alloc_security(struct task_struct *task,
4645 			      struct kern_ipc_perm *perm,
4646 			      u16 sclass)
4647 {
4648 	struct ipc_security_struct *isec;
4649 	u32 sid;
4650 
4651 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4652 	if (!isec)
4653 		return -ENOMEM;
4654 
4655 	sid = task_sid(task);
4656 	isec->sclass = sclass;
4657 	isec->sid = sid;
4658 	perm->security = isec;
4659 
4660 	return 0;
4661 }
4662 
4663 static void ipc_free_security(struct kern_ipc_perm *perm)
4664 {
4665 	struct ipc_security_struct *isec = perm->security;
4666 	perm->security = NULL;
4667 	kfree(isec);
4668 }
4669 
4670 static int msg_msg_alloc_security(struct msg_msg *msg)
4671 {
4672 	struct msg_security_struct *msec;
4673 
4674 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4675 	if (!msec)
4676 		return -ENOMEM;
4677 
4678 	msec->sid = SECINITSID_UNLABELED;
4679 	msg->security = msec;
4680 
4681 	return 0;
4682 }
4683 
4684 static void msg_msg_free_security(struct msg_msg *msg)
4685 {
4686 	struct msg_security_struct *msec = msg->security;
4687 
4688 	msg->security = NULL;
4689 	kfree(msec);
4690 }
4691 
4692 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4693 			u32 perms)
4694 {
4695 	struct ipc_security_struct *isec;
4696 	struct avc_audit_data ad;
4697 	u32 sid = current_sid();
4698 
4699 	isec = ipc_perms->security;
4700 
4701 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4702 	ad.u.ipc_id = ipc_perms->key;
4703 
4704 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4705 }
4706 
4707 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4708 {
4709 	return msg_msg_alloc_security(msg);
4710 }
4711 
4712 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4713 {
4714 	msg_msg_free_security(msg);
4715 }
4716 
4717 /* message queue security operations */
4718 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4719 {
4720 	struct ipc_security_struct *isec;
4721 	struct avc_audit_data ad;
4722 	u32 sid = current_sid();
4723 	int rc;
4724 
4725 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4726 	if (rc)
4727 		return rc;
4728 
4729 	isec = msq->q_perm.security;
4730 
4731 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4732 	ad.u.ipc_id = msq->q_perm.key;
4733 
4734 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4735 			  MSGQ__CREATE, &ad);
4736 	if (rc) {
4737 		ipc_free_security(&msq->q_perm);
4738 		return rc;
4739 	}
4740 	return 0;
4741 }
4742 
4743 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4744 {
4745 	ipc_free_security(&msq->q_perm);
4746 }
4747 
4748 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4749 {
4750 	struct ipc_security_struct *isec;
4751 	struct avc_audit_data ad;
4752 	u32 sid = current_sid();
4753 
4754 	isec = msq->q_perm.security;
4755 
4756 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4757 	ad.u.ipc_id = msq->q_perm.key;
4758 
4759 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4760 			    MSGQ__ASSOCIATE, &ad);
4761 }
4762 
4763 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4764 {
4765 	int err;
4766 	int perms;
4767 
4768 	switch (cmd) {
4769 	case IPC_INFO:
4770 	case MSG_INFO:
4771 		/* No specific object, just general system-wide information. */
4772 		return task_has_system(current, SYSTEM__IPC_INFO);
4773 	case IPC_STAT:
4774 	case MSG_STAT:
4775 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4776 		break;
4777 	case IPC_SET:
4778 		perms = MSGQ__SETATTR;
4779 		break;
4780 	case IPC_RMID:
4781 		perms = MSGQ__DESTROY;
4782 		break;
4783 	default:
4784 		return 0;
4785 	}
4786 
4787 	err = ipc_has_perm(&msq->q_perm, perms);
4788 	return err;
4789 }
4790 
4791 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4792 {
4793 	struct ipc_security_struct *isec;
4794 	struct msg_security_struct *msec;
4795 	struct avc_audit_data ad;
4796 	u32 sid = current_sid();
4797 	int rc;
4798 
4799 	isec = msq->q_perm.security;
4800 	msec = msg->security;
4801 
4802 	/*
4803 	 * First time through, need to assign label to the message
4804 	 */
4805 	if (msec->sid == SECINITSID_UNLABELED) {
4806 		/*
4807 		 * Compute new sid based on current process and
4808 		 * message queue this message will be stored in
4809 		 */
4810 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4811 					     &msec->sid);
4812 		if (rc)
4813 			return rc;
4814 	}
4815 
4816 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4817 	ad.u.ipc_id = msq->q_perm.key;
4818 
4819 	/* Can this process write to the queue? */
4820 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4821 			  MSGQ__WRITE, &ad);
4822 	if (!rc)
4823 		/* Can this process send the message */
4824 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4825 				  MSG__SEND, &ad);
4826 	if (!rc)
4827 		/* Can the message be put in the queue? */
4828 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4829 				  MSGQ__ENQUEUE, &ad);
4830 
4831 	return rc;
4832 }
4833 
4834 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4835 				    struct task_struct *target,
4836 				    long type, int mode)
4837 {
4838 	struct ipc_security_struct *isec;
4839 	struct msg_security_struct *msec;
4840 	struct avc_audit_data ad;
4841 	u32 sid = task_sid(target);
4842 	int rc;
4843 
4844 	isec = msq->q_perm.security;
4845 	msec = msg->security;
4846 
4847 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4848 	ad.u.ipc_id = msq->q_perm.key;
4849 
4850 	rc = avc_has_perm(sid, isec->sid,
4851 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4852 	if (!rc)
4853 		rc = avc_has_perm(sid, msec->sid,
4854 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4855 	return rc;
4856 }
4857 
4858 /* Shared Memory security operations */
4859 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4860 {
4861 	struct ipc_security_struct *isec;
4862 	struct avc_audit_data ad;
4863 	u32 sid = current_sid();
4864 	int rc;
4865 
4866 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4867 	if (rc)
4868 		return rc;
4869 
4870 	isec = shp->shm_perm.security;
4871 
4872 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4873 	ad.u.ipc_id = shp->shm_perm.key;
4874 
4875 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4876 			  SHM__CREATE, &ad);
4877 	if (rc) {
4878 		ipc_free_security(&shp->shm_perm);
4879 		return rc;
4880 	}
4881 	return 0;
4882 }
4883 
4884 static void selinux_shm_free_security(struct shmid_kernel *shp)
4885 {
4886 	ipc_free_security(&shp->shm_perm);
4887 }
4888 
4889 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4890 {
4891 	struct ipc_security_struct *isec;
4892 	struct avc_audit_data ad;
4893 	u32 sid = current_sid();
4894 
4895 	isec = shp->shm_perm.security;
4896 
4897 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4898 	ad.u.ipc_id = shp->shm_perm.key;
4899 
4900 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4901 			    SHM__ASSOCIATE, &ad);
4902 }
4903 
4904 /* Note, at this point, shp is locked down */
4905 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4906 {
4907 	int perms;
4908 	int err;
4909 
4910 	switch (cmd) {
4911 	case IPC_INFO:
4912 	case SHM_INFO:
4913 		/* No specific object, just general system-wide information. */
4914 		return task_has_system(current, SYSTEM__IPC_INFO);
4915 	case IPC_STAT:
4916 	case SHM_STAT:
4917 		perms = SHM__GETATTR | SHM__ASSOCIATE;
4918 		break;
4919 	case IPC_SET:
4920 		perms = SHM__SETATTR;
4921 		break;
4922 	case SHM_LOCK:
4923 	case SHM_UNLOCK:
4924 		perms = SHM__LOCK;
4925 		break;
4926 	case IPC_RMID:
4927 		perms = SHM__DESTROY;
4928 		break;
4929 	default:
4930 		return 0;
4931 	}
4932 
4933 	err = ipc_has_perm(&shp->shm_perm, perms);
4934 	return err;
4935 }
4936 
4937 static int selinux_shm_shmat(struct shmid_kernel *shp,
4938 			     char __user *shmaddr, int shmflg)
4939 {
4940 	u32 perms;
4941 
4942 	if (shmflg & SHM_RDONLY)
4943 		perms = SHM__READ;
4944 	else
4945 		perms = SHM__READ | SHM__WRITE;
4946 
4947 	return ipc_has_perm(&shp->shm_perm, perms);
4948 }
4949 
4950 /* Semaphore security operations */
4951 static int selinux_sem_alloc_security(struct sem_array *sma)
4952 {
4953 	struct ipc_security_struct *isec;
4954 	struct avc_audit_data ad;
4955 	u32 sid = current_sid();
4956 	int rc;
4957 
4958 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4959 	if (rc)
4960 		return rc;
4961 
4962 	isec = sma->sem_perm.security;
4963 
4964 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4965 	ad.u.ipc_id = sma->sem_perm.key;
4966 
4967 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4968 			  SEM__CREATE, &ad);
4969 	if (rc) {
4970 		ipc_free_security(&sma->sem_perm);
4971 		return rc;
4972 	}
4973 	return 0;
4974 }
4975 
4976 static void selinux_sem_free_security(struct sem_array *sma)
4977 {
4978 	ipc_free_security(&sma->sem_perm);
4979 }
4980 
4981 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4982 {
4983 	struct ipc_security_struct *isec;
4984 	struct avc_audit_data ad;
4985 	u32 sid = current_sid();
4986 
4987 	isec = sma->sem_perm.security;
4988 
4989 	AVC_AUDIT_DATA_INIT(&ad, IPC);
4990 	ad.u.ipc_id = sma->sem_perm.key;
4991 
4992 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4993 			    SEM__ASSOCIATE, &ad);
4994 }
4995 
4996 /* Note, at this point, sma is locked down */
4997 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4998 {
4999 	int err;
5000 	u32 perms;
5001 
5002 	switch (cmd) {
5003 	case IPC_INFO:
5004 	case SEM_INFO:
5005 		/* No specific object, just general system-wide information. */
5006 		return task_has_system(current, SYSTEM__IPC_INFO);
5007 	case GETPID:
5008 	case GETNCNT:
5009 	case GETZCNT:
5010 		perms = SEM__GETATTR;
5011 		break;
5012 	case GETVAL:
5013 	case GETALL:
5014 		perms = SEM__READ;
5015 		break;
5016 	case SETVAL:
5017 	case SETALL:
5018 		perms = SEM__WRITE;
5019 		break;
5020 	case IPC_RMID:
5021 		perms = SEM__DESTROY;
5022 		break;
5023 	case IPC_SET:
5024 		perms = SEM__SETATTR;
5025 		break;
5026 	case IPC_STAT:
5027 	case SEM_STAT:
5028 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5029 		break;
5030 	default:
5031 		return 0;
5032 	}
5033 
5034 	err = ipc_has_perm(&sma->sem_perm, perms);
5035 	return err;
5036 }
5037 
5038 static int selinux_sem_semop(struct sem_array *sma,
5039 			     struct sembuf *sops, unsigned nsops, int alter)
5040 {
5041 	u32 perms;
5042 
5043 	if (alter)
5044 		perms = SEM__READ | SEM__WRITE;
5045 	else
5046 		perms = SEM__READ;
5047 
5048 	return ipc_has_perm(&sma->sem_perm, perms);
5049 }
5050 
5051 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5052 {
5053 	u32 av = 0;
5054 
5055 	av = 0;
5056 	if (flag & S_IRUGO)
5057 		av |= IPC__UNIX_READ;
5058 	if (flag & S_IWUGO)
5059 		av |= IPC__UNIX_WRITE;
5060 
5061 	if (av == 0)
5062 		return 0;
5063 
5064 	return ipc_has_perm(ipcp, av);
5065 }
5066 
5067 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5068 {
5069 	struct ipc_security_struct *isec = ipcp->security;
5070 	*secid = isec->sid;
5071 }
5072 
5073 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5074 {
5075 	if (inode)
5076 		inode_doinit_with_dentry(inode, dentry);
5077 }
5078 
5079 static int selinux_getprocattr(struct task_struct *p,
5080 			       char *name, char **value)
5081 {
5082 	const struct task_security_struct *__tsec;
5083 	u32 sid;
5084 	int error;
5085 	unsigned len;
5086 
5087 	if (current != p) {
5088 		error = current_has_perm(p, PROCESS__GETATTR);
5089 		if (error)
5090 			return error;
5091 	}
5092 
5093 	rcu_read_lock();
5094 	__tsec = __task_cred(p)->security;
5095 
5096 	if (!strcmp(name, "current"))
5097 		sid = __tsec->sid;
5098 	else if (!strcmp(name, "prev"))
5099 		sid = __tsec->osid;
5100 	else if (!strcmp(name, "exec"))
5101 		sid = __tsec->exec_sid;
5102 	else if (!strcmp(name, "fscreate"))
5103 		sid = __tsec->create_sid;
5104 	else if (!strcmp(name, "keycreate"))
5105 		sid = __tsec->keycreate_sid;
5106 	else if (!strcmp(name, "sockcreate"))
5107 		sid = __tsec->sockcreate_sid;
5108 	else
5109 		goto invalid;
5110 	rcu_read_unlock();
5111 
5112 	if (!sid)
5113 		return 0;
5114 
5115 	error = security_sid_to_context(sid, value, &len);
5116 	if (error)
5117 		return error;
5118 	return len;
5119 
5120 invalid:
5121 	rcu_read_unlock();
5122 	return -EINVAL;
5123 }
5124 
5125 static int selinux_setprocattr(struct task_struct *p,
5126 			       char *name, void *value, size_t size)
5127 {
5128 	struct task_security_struct *tsec;
5129 	struct task_struct *tracer;
5130 	struct cred *new;
5131 	u32 sid = 0, ptsid;
5132 	int error;
5133 	char *str = value;
5134 
5135 	if (current != p) {
5136 		/* SELinux only allows a process to change its own
5137 		   security attributes. */
5138 		return -EACCES;
5139 	}
5140 
5141 	/*
5142 	 * Basic control over ability to set these attributes at all.
5143 	 * current == p, but we'll pass them separately in case the
5144 	 * above restriction is ever removed.
5145 	 */
5146 	if (!strcmp(name, "exec"))
5147 		error = current_has_perm(p, PROCESS__SETEXEC);
5148 	else if (!strcmp(name, "fscreate"))
5149 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5150 	else if (!strcmp(name, "keycreate"))
5151 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5152 	else if (!strcmp(name, "sockcreate"))
5153 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5154 	else if (!strcmp(name, "current"))
5155 		error = current_has_perm(p, PROCESS__SETCURRENT);
5156 	else
5157 		error = -EINVAL;
5158 	if (error)
5159 		return error;
5160 
5161 	/* Obtain a SID for the context, if one was specified. */
5162 	if (size && str[1] && str[1] != '\n') {
5163 		if (str[size-1] == '\n') {
5164 			str[size-1] = 0;
5165 			size--;
5166 		}
5167 		error = security_context_to_sid(value, size, &sid);
5168 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5169 			if (!capable(CAP_MAC_ADMIN))
5170 				return error;
5171 			error = security_context_to_sid_force(value, size,
5172 							      &sid);
5173 		}
5174 		if (error)
5175 			return error;
5176 	}
5177 
5178 	new = prepare_creds();
5179 	if (!new)
5180 		return -ENOMEM;
5181 
5182 	/* Permission checking based on the specified context is
5183 	   performed during the actual operation (execve,
5184 	   open/mkdir/...), when we know the full context of the
5185 	   operation.  See selinux_bprm_set_creds for the execve
5186 	   checks and may_create for the file creation checks. The
5187 	   operation will then fail if the context is not permitted. */
5188 	tsec = new->security;
5189 	if (!strcmp(name, "exec")) {
5190 		tsec->exec_sid = sid;
5191 	} else if (!strcmp(name, "fscreate")) {
5192 		tsec->create_sid = sid;
5193 	} else if (!strcmp(name, "keycreate")) {
5194 		error = may_create_key(sid, p);
5195 		if (error)
5196 			goto abort_change;
5197 		tsec->keycreate_sid = sid;
5198 	} else if (!strcmp(name, "sockcreate")) {
5199 		tsec->sockcreate_sid = sid;
5200 	} else if (!strcmp(name, "current")) {
5201 		error = -EINVAL;
5202 		if (sid == 0)
5203 			goto abort_change;
5204 
5205 		/* Only allow single threaded processes to change context */
5206 		error = -EPERM;
5207 		if (!current_is_single_threaded()) {
5208 			error = security_bounded_transition(tsec->sid, sid);
5209 			if (error)
5210 				goto abort_change;
5211 		}
5212 
5213 		/* Check permissions for the transition. */
5214 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5215 				     PROCESS__DYNTRANSITION, NULL);
5216 		if (error)
5217 			goto abort_change;
5218 
5219 		/* Check for ptracing, and update the task SID if ok.
5220 		   Otherwise, leave SID unchanged and fail. */
5221 		ptsid = 0;
5222 		task_lock(p);
5223 		tracer = tracehook_tracer_task(p);
5224 		if (tracer)
5225 			ptsid = task_sid(tracer);
5226 		task_unlock(p);
5227 
5228 		if (tracer) {
5229 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5230 					     PROCESS__PTRACE, NULL);
5231 			if (error)
5232 				goto abort_change;
5233 		}
5234 
5235 		tsec->sid = sid;
5236 	} else {
5237 		error = -EINVAL;
5238 		goto abort_change;
5239 	}
5240 
5241 	commit_creds(new);
5242 	return size;
5243 
5244 abort_change:
5245 	abort_creds(new);
5246 	return error;
5247 }
5248 
5249 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5250 {
5251 	return security_sid_to_context(secid, secdata, seclen);
5252 }
5253 
5254 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5255 {
5256 	return security_context_to_sid(secdata, seclen, secid);
5257 }
5258 
5259 static void selinux_release_secctx(char *secdata, u32 seclen)
5260 {
5261 	kfree(secdata);
5262 }
5263 
5264 #ifdef CONFIG_KEYS
5265 
5266 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5267 			     unsigned long flags)
5268 {
5269 	const struct task_security_struct *tsec;
5270 	struct key_security_struct *ksec;
5271 
5272 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5273 	if (!ksec)
5274 		return -ENOMEM;
5275 
5276 	tsec = cred->security;
5277 	if (tsec->keycreate_sid)
5278 		ksec->sid = tsec->keycreate_sid;
5279 	else
5280 		ksec->sid = tsec->sid;
5281 
5282 	k->security = ksec;
5283 	return 0;
5284 }
5285 
5286 static void selinux_key_free(struct key *k)
5287 {
5288 	struct key_security_struct *ksec = k->security;
5289 
5290 	k->security = NULL;
5291 	kfree(ksec);
5292 }
5293 
5294 static int selinux_key_permission(key_ref_t key_ref,
5295 				  const struct cred *cred,
5296 				  key_perm_t perm)
5297 {
5298 	struct key *key;
5299 	struct key_security_struct *ksec;
5300 	u32 sid;
5301 
5302 	/* if no specific permissions are requested, we skip the
5303 	   permission check. No serious, additional covert channels
5304 	   appear to be created. */
5305 	if (perm == 0)
5306 		return 0;
5307 
5308 	sid = cred_sid(cred);
5309 
5310 	key = key_ref_to_ptr(key_ref);
5311 	ksec = key->security;
5312 
5313 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5314 }
5315 
5316 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5317 {
5318 	struct key_security_struct *ksec = key->security;
5319 	char *context = NULL;
5320 	unsigned len;
5321 	int rc;
5322 
5323 	rc = security_sid_to_context(ksec->sid, &context, &len);
5324 	if (!rc)
5325 		rc = len;
5326 	*_buffer = context;
5327 	return rc;
5328 }
5329 
5330 #endif
5331 
5332 static struct security_operations selinux_ops = {
5333 	.name =				"selinux",
5334 
5335 	.ptrace_access_check =		selinux_ptrace_access_check,
5336 	.ptrace_traceme =		selinux_ptrace_traceme,
5337 	.capget =			selinux_capget,
5338 	.capset =			selinux_capset,
5339 	.sysctl =			selinux_sysctl,
5340 	.capable =			selinux_capable,
5341 	.quotactl =			selinux_quotactl,
5342 	.quota_on =			selinux_quota_on,
5343 	.syslog =			selinux_syslog,
5344 	.vm_enough_memory =		selinux_vm_enough_memory,
5345 
5346 	.netlink_send =			selinux_netlink_send,
5347 	.netlink_recv =			selinux_netlink_recv,
5348 
5349 	.bprm_set_creds =		selinux_bprm_set_creds,
5350 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5351 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5352 	.bprm_secureexec =		selinux_bprm_secureexec,
5353 
5354 	.sb_alloc_security =		selinux_sb_alloc_security,
5355 	.sb_free_security =		selinux_sb_free_security,
5356 	.sb_copy_data =			selinux_sb_copy_data,
5357 	.sb_kern_mount =		selinux_sb_kern_mount,
5358 	.sb_show_options =		selinux_sb_show_options,
5359 	.sb_statfs =			selinux_sb_statfs,
5360 	.sb_mount =			selinux_mount,
5361 	.sb_umount =			selinux_umount,
5362 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5363 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5364 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5365 
5366 
5367 	.inode_alloc_security =		selinux_inode_alloc_security,
5368 	.inode_free_security =		selinux_inode_free_security,
5369 	.inode_init_security =		selinux_inode_init_security,
5370 	.inode_create =			selinux_inode_create,
5371 	.inode_link =			selinux_inode_link,
5372 	.inode_unlink =			selinux_inode_unlink,
5373 	.inode_symlink =		selinux_inode_symlink,
5374 	.inode_mkdir =			selinux_inode_mkdir,
5375 	.inode_rmdir =			selinux_inode_rmdir,
5376 	.inode_mknod =			selinux_inode_mknod,
5377 	.inode_rename =			selinux_inode_rename,
5378 	.inode_readlink =		selinux_inode_readlink,
5379 	.inode_follow_link =		selinux_inode_follow_link,
5380 	.inode_permission =		selinux_inode_permission,
5381 	.inode_setattr =		selinux_inode_setattr,
5382 	.inode_getattr =		selinux_inode_getattr,
5383 	.inode_setxattr =		selinux_inode_setxattr,
5384 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5385 	.inode_getxattr =		selinux_inode_getxattr,
5386 	.inode_listxattr =		selinux_inode_listxattr,
5387 	.inode_removexattr =		selinux_inode_removexattr,
5388 	.inode_getsecurity =		selinux_inode_getsecurity,
5389 	.inode_setsecurity =		selinux_inode_setsecurity,
5390 	.inode_listsecurity =		selinux_inode_listsecurity,
5391 	.inode_getsecid =		selinux_inode_getsecid,
5392 
5393 	.file_permission =		selinux_file_permission,
5394 	.file_alloc_security =		selinux_file_alloc_security,
5395 	.file_free_security =		selinux_file_free_security,
5396 	.file_ioctl =			selinux_file_ioctl,
5397 	.file_mmap =			selinux_file_mmap,
5398 	.file_mprotect =		selinux_file_mprotect,
5399 	.file_lock =			selinux_file_lock,
5400 	.file_fcntl =			selinux_file_fcntl,
5401 	.file_set_fowner =		selinux_file_set_fowner,
5402 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5403 	.file_receive =			selinux_file_receive,
5404 
5405 	.dentry_open =			selinux_dentry_open,
5406 
5407 	.task_create =			selinux_task_create,
5408 	.cred_free =			selinux_cred_free,
5409 	.cred_prepare =			selinux_cred_prepare,
5410 	.kernel_act_as =		selinux_kernel_act_as,
5411 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5412 	.kernel_module_request =	selinux_kernel_module_request,
5413 	.task_setpgid =			selinux_task_setpgid,
5414 	.task_getpgid =			selinux_task_getpgid,
5415 	.task_getsid =			selinux_task_getsid,
5416 	.task_getsecid =		selinux_task_getsecid,
5417 	.task_setnice =			selinux_task_setnice,
5418 	.task_setioprio =		selinux_task_setioprio,
5419 	.task_getioprio =		selinux_task_getioprio,
5420 	.task_setrlimit =		selinux_task_setrlimit,
5421 	.task_setscheduler =		selinux_task_setscheduler,
5422 	.task_getscheduler =		selinux_task_getscheduler,
5423 	.task_movememory =		selinux_task_movememory,
5424 	.task_kill =			selinux_task_kill,
5425 	.task_wait =			selinux_task_wait,
5426 	.task_to_inode =		selinux_task_to_inode,
5427 
5428 	.ipc_permission =		selinux_ipc_permission,
5429 	.ipc_getsecid =			selinux_ipc_getsecid,
5430 
5431 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5432 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5433 
5434 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5435 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5436 	.msg_queue_associate =		selinux_msg_queue_associate,
5437 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5438 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5439 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5440 
5441 	.shm_alloc_security =		selinux_shm_alloc_security,
5442 	.shm_free_security =		selinux_shm_free_security,
5443 	.shm_associate =		selinux_shm_associate,
5444 	.shm_shmctl =			selinux_shm_shmctl,
5445 	.shm_shmat =			selinux_shm_shmat,
5446 
5447 	.sem_alloc_security =		selinux_sem_alloc_security,
5448 	.sem_free_security =		selinux_sem_free_security,
5449 	.sem_associate =		selinux_sem_associate,
5450 	.sem_semctl =			selinux_sem_semctl,
5451 	.sem_semop =			selinux_sem_semop,
5452 
5453 	.d_instantiate =		selinux_d_instantiate,
5454 
5455 	.getprocattr =			selinux_getprocattr,
5456 	.setprocattr =			selinux_setprocattr,
5457 
5458 	.secid_to_secctx =		selinux_secid_to_secctx,
5459 	.secctx_to_secid =		selinux_secctx_to_secid,
5460 	.release_secctx =		selinux_release_secctx,
5461 
5462 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5463 	.unix_may_send =		selinux_socket_unix_may_send,
5464 
5465 	.socket_create =		selinux_socket_create,
5466 	.socket_post_create =		selinux_socket_post_create,
5467 	.socket_bind =			selinux_socket_bind,
5468 	.socket_connect =		selinux_socket_connect,
5469 	.socket_listen =		selinux_socket_listen,
5470 	.socket_accept =		selinux_socket_accept,
5471 	.socket_sendmsg =		selinux_socket_sendmsg,
5472 	.socket_recvmsg =		selinux_socket_recvmsg,
5473 	.socket_getsockname =		selinux_socket_getsockname,
5474 	.socket_getpeername =		selinux_socket_getpeername,
5475 	.socket_getsockopt =		selinux_socket_getsockopt,
5476 	.socket_setsockopt =		selinux_socket_setsockopt,
5477 	.socket_shutdown =		selinux_socket_shutdown,
5478 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5479 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5480 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5481 	.sk_alloc_security =		selinux_sk_alloc_security,
5482 	.sk_free_security =		selinux_sk_free_security,
5483 	.sk_clone_security =		selinux_sk_clone_security,
5484 	.sk_getsecid =			selinux_sk_getsecid,
5485 	.sock_graft =			selinux_sock_graft,
5486 	.inet_conn_request =		selinux_inet_conn_request,
5487 	.inet_csk_clone =		selinux_inet_csk_clone,
5488 	.inet_conn_established =	selinux_inet_conn_established,
5489 	.req_classify_flow =		selinux_req_classify_flow,
5490 
5491 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5492 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5493 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5494 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5495 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5496 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5497 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5498 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5499 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5500 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5501 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5502 #endif
5503 
5504 #ifdef CONFIG_KEYS
5505 	.key_alloc =			selinux_key_alloc,
5506 	.key_free =			selinux_key_free,
5507 	.key_permission =		selinux_key_permission,
5508 	.key_getsecurity =		selinux_key_getsecurity,
5509 #endif
5510 
5511 #ifdef CONFIG_AUDIT
5512 	.audit_rule_init =		selinux_audit_rule_init,
5513 	.audit_rule_known =		selinux_audit_rule_known,
5514 	.audit_rule_match =		selinux_audit_rule_match,
5515 	.audit_rule_free =		selinux_audit_rule_free,
5516 #endif
5517 };
5518 
5519 static __init int selinux_init(void)
5520 {
5521 	if (!security_module_enable(&selinux_ops)) {
5522 		selinux_enabled = 0;
5523 		return 0;
5524 	}
5525 
5526 	if (!selinux_enabled) {
5527 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5528 		return 0;
5529 	}
5530 
5531 	printk(KERN_INFO "SELinux:  Initializing.\n");
5532 
5533 	/* Set the security state for the initial task. */
5534 	cred_init_security();
5535 
5536 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5537 					    sizeof(struct inode_security_struct),
5538 					    0, SLAB_PANIC, NULL);
5539 	avc_init();
5540 
5541 	secondary_ops = security_ops;
5542 	if (!secondary_ops)
5543 		panic("SELinux: No initial security operations\n");
5544 	if (register_security(&selinux_ops))
5545 		panic("SELinux: Unable to register with kernel.\n");
5546 
5547 	if (selinux_enforcing)
5548 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5549 	else
5550 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5551 
5552 	return 0;
5553 }
5554 
5555 void selinux_complete_init(void)
5556 {
5557 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5558 
5559 	/* Set up any superblocks initialized prior to the policy load. */
5560 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5561 	spin_lock(&sb_lock);
5562 	spin_lock(&sb_security_lock);
5563 next_sb:
5564 	if (!list_empty(&superblock_security_head)) {
5565 		struct superblock_security_struct *sbsec =
5566 				list_entry(superblock_security_head.next,
5567 					   struct superblock_security_struct,
5568 					   list);
5569 		struct super_block *sb = sbsec->sb;
5570 		sb->s_count++;
5571 		spin_unlock(&sb_security_lock);
5572 		spin_unlock(&sb_lock);
5573 		down_read(&sb->s_umount);
5574 		if (sb->s_root)
5575 			superblock_doinit(sb, NULL);
5576 		drop_super(sb);
5577 		spin_lock(&sb_lock);
5578 		spin_lock(&sb_security_lock);
5579 		list_del_init(&sbsec->list);
5580 		goto next_sb;
5581 	}
5582 	spin_unlock(&sb_security_lock);
5583 	spin_unlock(&sb_lock);
5584 }
5585 
5586 /* SELinux requires early initialization in order to label
5587    all processes and objects when they are created. */
5588 security_initcall(selinux_init);
5589 
5590 #if defined(CONFIG_NETFILTER)
5591 
5592 static struct nf_hook_ops selinux_ipv4_ops[] = {
5593 	{
5594 		.hook =		selinux_ipv4_postroute,
5595 		.owner =	THIS_MODULE,
5596 		.pf =		PF_INET,
5597 		.hooknum =	NF_INET_POST_ROUTING,
5598 		.priority =	NF_IP_PRI_SELINUX_LAST,
5599 	},
5600 	{
5601 		.hook =		selinux_ipv4_forward,
5602 		.owner =	THIS_MODULE,
5603 		.pf =		PF_INET,
5604 		.hooknum =	NF_INET_FORWARD,
5605 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5606 	},
5607 	{
5608 		.hook =		selinux_ipv4_output,
5609 		.owner =	THIS_MODULE,
5610 		.pf =		PF_INET,
5611 		.hooknum =	NF_INET_LOCAL_OUT,
5612 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5613 	}
5614 };
5615 
5616 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5617 
5618 static struct nf_hook_ops selinux_ipv6_ops[] = {
5619 	{
5620 		.hook =		selinux_ipv6_postroute,
5621 		.owner =	THIS_MODULE,
5622 		.pf =		PF_INET6,
5623 		.hooknum =	NF_INET_POST_ROUTING,
5624 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5625 	},
5626 	{
5627 		.hook =		selinux_ipv6_forward,
5628 		.owner =	THIS_MODULE,
5629 		.pf =		PF_INET6,
5630 		.hooknum =	NF_INET_FORWARD,
5631 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5632 	}
5633 };
5634 
5635 #endif	/* IPV6 */
5636 
5637 static int __init selinux_nf_ip_init(void)
5638 {
5639 	int err = 0;
5640 
5641 	if (!selinux_enabled)
5642 		goto out;
5643 
5644 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5645 
5646 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5647 	if (err)
5648 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5649 
5650 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5651 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5652 	if (err)
5653 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5654 #endif	/* IPV6 */
5655 
5656 out:
5657 	return err;
5658 }
5659 
5660 __initcall(selinux_nf_ip_init);
5661 
5662 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5663 static void selinux_nf_ip_exit(void)
5664 {
5665 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5666 
5667 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5668 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5669 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5670 #endif	/* IPV6 */
5671 }
5672 #endif
5673 
5674 #else /* CONFIG_NETFILTER */
5675 
5676 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5677 #define selinux_nf_ip_exit()
5678 #endif
5679 
5680 #endif /* CONFIG_NETFILTER */
5681 
5682 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5683 static int selinux_disabled;
5684 
5685 int selinux_disable(void)
5686 {
5687 	extern void exit_sel_fs(void);
5688 
5689 	if (ss_initialized) {
5690 		/* Not permitted after initial policy load. */
5691 		return -EINVAL;
5692 	}
5693 
5694 	if (selinux_disabled) {
5695 		/* Only do this once. */
5696 		return -EINVAL;
5697 	}
5698 
5699 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5700 
5701 	selinux_disabled = 1;
5702 	selinux_enabled = 0;
5703 
5704 	/* Try to destroy the avc node cache */
5705 	avc_disable();
5706 
5707 	/* Reset security_ops to the secondary module, dummy or capability. */
5708 	security_ops = secondary_ops;
5709 
5710 	/* Unregister netfilter hooks. */
5711 	selinux_nf_ip_exit();
5712 
5713 	/* Unregister selinuxfs. */
5714 	exit_sel_fs();
5715 
5716 	return 0;
5717 }
5718 #endif
5719