xref: /openbmc/linux/security/selinux/hooks.c (revision 08dbc7a66af2321661173c04d872eba44003cc13)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *  Copyright (C) 2016 Mellanox Technologies
21  *
22  *	This program is free software; you can redistribute it and/or modify
23  *	it under the terms of the GNU General Public License version 2,
24  *	as published by the Free Software Foundation.
25  */
26 
27 #include <linux/init.h>
28 #include <linux/kd.h>
29 #include <linux/kernel.h>
30 #include <linux/tracehook.h>
31 #include <linux/errno.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/task.h>
34 #include <linux/lsm_hooks.h>
35 #include <linux/xattr.h>
36 #include <linux/capability.h>
37 #include <linux/unistd.h>
38 #include <linux/mm.h>
39 #include <linux/mman.h>
40 #include <linux/slab.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/swap.h>
44 #include <linux/spinlock.h>
45 #include <linux/syscalls.h>
46 #include <linux/dcache.h>
47 #include <linux/file.h>
48 #include <linux/fdtable.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51 #include <linux/netfilter_ipv4.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/tty.h>
54 #include <net/icmp.h>
55 #include <net/ip.h>		/* for local_port_range[] */
56 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
57 #include <net/inet_connection_sock.h>
58 #include <net/net_namespace.h>
59 #include <net/netlabel.h>
60 #include <linux/uaccess.h>
61 #include <asm/ioctls.h>
62 #include <linux/atomic.h>
63 #include <linux/bitops.h>
64 #include <linux/interrupt.h>
65 #include <linux/netdevice.h>	/* for network interface checks */
66 #include <net/netlink.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/dccp.h>
70 #include <linux/sctp.h>
71 #include <net/sctp/structs.h>
72 #include <linux/quota.h>
73 #include <linux/un.h>		/* for Unix socket types */
74 #include <net/af_unix.h>	/* for Unix socket types */
75 #include <linux/parser.h>
76 #include <linux/nfs_mount.h>
77 #include <net/ipv6.h>
78 #include <linux/hugetlb.h>
79 #include <linux/personality.h>
80 #include <linux/audit.h>
81 #include <linux/string.h>
82 #include <linux/selinux.h>
83 #include <linux/mutex.h>
84 #include <linux/posix-timers.h>
85 #include <linux/syslog.h>
86 #include <linux/user_namespace.h>
87 #include <linux/export.h>
88 #include <linux/msg.h>
89 #include <linux/shm.h>
90 #include <linux/bpf.h>
91 
92 #include "avc.h"
93 #include "objsec.h"
94 #include "netif.h"
95 #include "netnode.h"
96 #include "netport.h"
97 #include "ibpkey.h"
98 #include "xfrm.h"
99 #include "netlabel.h"
100 #include "audit.h"
101 #include "avc_ss.h"
102 
103 struct selinux_state selinux_state;
104 
105 /* SECMARK reference count */
106 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
107 
108 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
109 static int selinux_enforcing_boot;
110 
111 static int __init enforcing_setup(char *str)
112 {
113 	unsigned long enforcing;
114 	if (!kstrtoul(str, 0, &enforcing))
115 		selinux_enforcing_boot = enforcing ? 1 : 0;
116 	return 1;
117 }
118 __setup("enforcing=", enforcing_setup);
119 #else
120 #define selinux_enforcing_boot 1
121 #endif
122 
123 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
124 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
125 
126 static int __init selinux_enabled_setup(char *str)
127 {
128 	unsigned long enabled;
129 	if (!kstrtoul(str, 0, &enabled))
130 		selinux_enabled = enabled ? 1 : 0;
131 	return 1;
132 }
133 __setup("selinux=", selinux_enabled_setup);
134 #else
135 int selinux_enabled = 1;
136 #endif
137 
138 static unsigned int selinux_checkreqprot_boot =
139 	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140 
141 static int __init checkreqprot_setup(char *str)
142 {
143 	unsigned long checkreqprot;
144 
145 	if (!kstrtoul(str, 0, &checkreqprot))
146 		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 	return 1;
148 }
149 __setup("checkreqprot=", checkreqprot_setup);
150 
151 static struct kmem_cache *sel_inode_cache;
152 static struct kmem_cache *file_security_cache;
153 
154 /**
155  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156  *
157  * Description:
158  * This function checks the SECMARK reference counter to see if any SECMARK
159  * targets are currently configured, if the reference counter is greater than
160  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
161  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
162  * policy capability is enabled, SECMARK is always considered enabled.
163  *
164  */
165 static int selinux_secmark_enabled(void)
166 {
167 	return (selinux_policycap_alwaysnetwork() ||
168 		atomic_read(&selinux_secmark_refcount));
169 }
170 
171 /**
172  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173  *
174  * Description:
175  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
176  * (1) if any are enabled or false (0) if neither are enabled.  If the
177  * always_check_network policy capability is enabled, peer labeling
178  * is always considered enabled.
179  *
180  */
181 static int selinux_peerlbl_enabled(void)
182 {
183 	return (selinux_policycap_alwaysnetwork() ||
184 		netlbl_enabled() || selinux_xfrm_enabled());
185 }
186 
187 static int selinux_netcache_avc_callback(u32 event)
188 {
189 	if (event == AVC_CALLBACK_RESET) {
190 		sel_netif_flush();
191 		sel_netnode_flush();
192 		sel_netport_flush();
193 		synchronize_net();
194 	}
195 	return 0;
196 }
197 
198 static int selinux_lsm_notifier_avc_callback(u32 event)
199 {
200 	if (event == AVC_CALLBACK_RESET) {
201 		sel_ib_pkey_flush();
202 		call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 	}
204 
205 	return 0;
206 }
207 
208 /*
209  * initialise the security for the init task
210  */
211 static void cred_init_security(void)
212 {
213 	struct cred *cred = (struct cred *) current->real_cred;
214 	struct task_security_struct *tsec;
215 
216 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
217 	if (!tsec)
218 		panic("SELinux:  Failed to initialize initial task.\n");
219 
220 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
221 	cred->security = tsec;
222 }
223 
224 /*
225  * get the security ID of a set of credentials
226  */
227 static inline u32 cred_sid(const struct cred *cred)
228 {
229 	const struct task_security_struct *tsec;
230 
231 	tsec = cred->security;
232 	return tsec->sid;
233 }
234 
235 /*
236  * get the objective security ID of a task
237  */
238 static inline u32 task_sid(const struct task_struct *task)
239 {
240 	u32 sid;
241 
242 	rcu_read_lock();
243 	sid = cred_sid(__task_cred(task));
244 	rcu_read_unlock();
245 	return sid;
246 }
247 
248 /* Allocate and free functions for each kind of security blob. */
249 
250 static int inode_alloc_security(struct inode *inode)
251 {
252 	struct inode_security_struct *isec;
253 	u32 sid = current_sid();
254 
255 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
256 	if (!isec)
257 		return -ENOMEM;
258 
259 	spin_lock_init(&isec->lock);
260 	INIT_LIST_HEAD(&isec->list);
261 	isec->inode = inode;
262 	isec->sid = SECINITSID_UNLABELED;
263 	isec->sclass = SECCLASS_FILE;
264 	isec->task_sid = sid;
265 	isec->initialized = LABEL_INVALID;
266 	inode->i_security = isec;
267 
268 	return 0;
269 }
270 
271 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
272 
273 /*
274  * Try reloading inode security labels that have been marked as invalid.  The
275  * @may_sleep parameter indicates when sleeping and thus reloading labels is
276  * allowed; when set to false, returns -ECHILD when the label is
277  * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
278  * when no dentry is available, set it to NULL instead.
279  */
280 static int __inode_security_revalidate(struct inode *inode,
281 				       struct dentry *opt_dentry,
282 				       bool may_sleep)
283 {
284 	struct inode_security_struct *isec = inode->i_security;
285 
286 	might_sleep_if(may_sleep);
287 
288 	if (selinux_state.initialized &&
289 	    isec->initialized != LABEL_INITIALIZED) {
290 		if (!may_sleep)
291 			return -ECHILD;
292 
293 		/*
294 		 * Try reloading the inode security label.  This will fail if
295 		 * @opt_dentry is NULL and no dentry for this inode can be
296 		 * found; in that case, continue using the old label.
297 		 */
298 		inode_doinit_with_dentry(inode, opt_dentry);
299 	}
300 	return 0;
301 }
302 
303 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
304 {
305 	return inode->i_security;
306 }
307 
308 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
309 {
310 	int error;
311 
312 	error = __inode_security_revalidate(inode, NULL, !rcu);
313 	if (error)
314 		return ERR_PTR(error);
315 	return inode->i_security;
316 }
317 
318 /*
319  * Get the security label of an inode.
320  */
321 static struct inode_security_struct *inode_security(struct inode *inode)
322 {
323 	__inode_security_revalidate(inode, NULL, true);
324 	return inode->i_security;
325 }
326 
327 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
328 {
329 	struct inode *inode = d_backing_inode(dentry);
330 
331 	return inode->i_security;
332 }
333 
334 /*
335  * Get the security label of a dentry's backing inode.
336  */
337 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
338 {
339 	struct inode *inode = d_backing_inode(dentry);
340 
341 	__inode_security_revalidate(inode, dentry, true);
342 	return inode->i_security;
343 }
344 
345 static void inode_free_rcu(struct rcu_head *head)
346 {
347 	struct inode_security_struct *isec;
348 
349 	isec = container_of(head, struct inode_security_struct, rcu);
350 	kmem_cache_free(sel_inode_cache, isec);
351 }
352 
353 static void inode_free_security(struct inode *inode)
354 {
355 	struct inode_security_struct *isec = inode->i_security;
356 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
357 
358 	/*
359 	 * As not all inode security structures are in a list, we check for
360 	 * empty list outside of the lock to make sure that we won't waste
361 	 * time taking a lock doing nothing.
362 	 *
363 	 * The list_del_init() function can be safely called more than once.
364 	 * It should not be possible for this function to be called with
365 	 * concurrent list_add(), but for better safety against future changes
366 	 * in the code, we use list_empty_careful() here.
367 	 */
368 	if (!list_empty_careful(&isec->list)) {
369 		spin_lock(&sbsec->isec_lock);
370 		list_del_init(&isec->list);
371 		spin_unlock(&sbsec->isec_lock);
372 	}
373 
374 	/*
375 	 * The inode may still be referenced in a path walk and
376 	 * a call to selinux_inode_permission() can be made
377 	 * after inode_free_security() is called. Ideally, the VFS
378 	 * wouldn't do this, but fixing that is a much harder
379 	 * job. For now, simply free the i_security via RCU, and
380 	 * leave the current inode->i_security pointer intact.
381 	 * The inode will be freed after the RCU grace period too.
382 	 */
383 	call_rcu(&isec->rcu, inode_free_rcu);
384 }
385 
386 static int file_alloc_security(struct file *file)
387 {
388 	struct file_security_struct *fsec;
389 	u32 sid = current_sid();
390 
391 	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
392 	if (!fsec)
393 		return -ENOMEM;
394 
395 	fsec->sid = sid;
396 	fsec->fown_sid = sid;
397 	file->f_security = fsec;
398 
399 	return 0;
400 }
401 
402 static void file_free_security(struct file *file)
403 {
404 	struct file_security_struct *fsec = file->f_security;
405 	file->f_security = NULL;
406 	kmem_cache_free(file_security_cache, fsec);
407 }
408 
409 static int superblock_alloc_security(struct super_block *sb)
410 {
411 	struct superblock_security_struct *sbsec;
412 
413 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
414 	if (!sbsec)
415 		return -ENOMEM;
416 
417 	mutex_init(&sbsec->lock);
418 	INIT_LIST_HEAD(&sbsec->isec_head);
419 	spin_lock_init(&sbsec->isec_lock);
420 	sbsec->sb = sb;
421 	sbsec->sid = SECINITSID_UNLABELED;
422 	sbsec->def_sid = SECINITSID_FILE;
423 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
424 	sb->s_security = sbsec;
425 
426 	return 0;
427 }
428 
429 static void superblock_free_security(struct super_block *sb)
430 {
431 	struct superblock_security_struct *sbsec = sb->s_security;
432 	sb->s_security = NULL;
433 	kfree(sbsec);
434 }
435 
436 static inline int inode_doinit(struct inode *inode)
437 {
438 	return inode_doinit_with_dentry(inode, NULL);
439 }
440 
441 enum {
442 	Opt_error = -1,
443 	Opt_context = 1,
444 	Opt_fscontext = 2,
445 	Opt_defcontext = 3,
446 	Opt_rootcontext = 4,
447 	Opt_labelsupport = 5,
448 	Opt_nextmntopt = 6,
449 };
450 
451 #define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
452 
453 static const match_table_t tokens = {
454 	{Opt_context, CONTEXT_STR "%s"},
455 	{Opt_fscontext, FSCONTEXT_STR "%s"},
456 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
457 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
458 	{Opt_labelsupport, LABELSUPP_STR},
459 	{Opt_error, NULL},
460 };
461 
462 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
463 
464 static int may_context_mount_sb_relabel(u32 sid,
465 			struct superblock_security_struct *sbsec,
466 			const struct cred *cred)
467 {
468 	const struct task_security_struct *tsec = cred->security;
469 	int rc;
470 
471 	rc = avc_has_perm(&selinux_state,
472 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
473 			  FILESYSTEM__RELABELFROM, NULL);
474 	if (rc)
475 		return rc;
476 
477 	rc = avc_has_perm(&selinux_state,
478 			  tsec->sid, sid, SECCLASS_FILESYSTEM,
479 			  FILESYSTEM__RELABELTO, NULL);
480 	return rc;
481 }
482 
483 static int may_context_mount_inode_relabel(u32 sid,
484 			struct superblock_security_struct *sbsec,
485 			const struct cred *cred)
486 {
487 	const struct task_security_struct *tsec = cred->security;
488 	int rc;
489 	rc = avc_has_perm(&selinux_state,
490 			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
491 			  FILESYSTEM__RELABELFROM, NULL);
492 	if (rc)
493 		return rc;
494 
495 	rc = avc_has_perm(&selinux_state,
496 			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
497 			  FILESYSTEM__ASSOCIATE, NULL);
498 	return rc;
499 }
500 
501 static int selinux_is_sblabel_mnt(struct super_block *sb)
502 {
503 	struct superblock_security_struct *sbsec = sb->s_security;
504 
505 	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
506 		sbsec->behavior == SECURITY_FS_USE_TRANS ||
507 		sbsec->behavior == SECURITY_FS_USE_TASK ||
508 		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
509 		/* Special handling. Genfs but also in-core setxattr handler */
510 		!strcmp(sb->s_type->name, "sysfs") ||
511 		!strcmp(sb->s_type->name, "pstore") ||
512 		!strcmp(sb->s_type->name, "debugfs") ||
513 		!strcmp(sb->s_type->name, "tracefs") ||
514 		!strcmp(sb->s_type->name, "rootfs") ||
515 		(selinux_policycap_cgroupseclabel() &&
516 		 (!strcmp(sb->s_type->name, "cgroup") ||
517 		  !strcmp(sb->s_type->name, "cgroup2")));
518 }
519 
520 static int sb_finish_set_opts(struct super_block *sb)
521 {
522 	struct superblock_security_struct *sbsec = sb->s_security;
523 	struct dentry *root = sb->s_root;
524 	struct inode *root_inode = d_backing_inode(root);
525 	int rc = 0;
526 
527 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
528 		/* Make sure that the xattr handler exists and that no
529 		   error other than -ENODATA is returned by getxattr on
530 		   the root directory.  -ENODATA is ok, as this may be
531 		   the first boot of the SELinux kernel before we have
532 		   assigned xattr values to the filesystem. */
533 		if (!(root_inode->i_opflags & IOP_XATTR)) {
534 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
535 			       "xattr support\n", sb->s_id, sb->s_type->name);
536 			rc = -EOPNOTSUPP;
537 			goto out;
538 		}
539 
540 		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
541 		if (rc < 0 && rc != -ENODATA) {
542 			if (rc == -EOPNOTSUPP)
543 				printk(KERN_WARNING "SELinux: (dev %s, type "
544 				       "%s) has no security xattr handler\n",
545 				       sb->s_id, sb->s_type->name);
546 			else
547 				printk(KERN_WARNING "SELinux: (dev %s, type "
548 				       "%s) getxattr errno %d\n", sb->s_id,
549 				       sb->s_type->name, -rc);
550 			goto out;
551 		}
552 	}
553 
554 	sbsec->flags |= SE_SBINITIALIZED;
555 
556 	/*
557 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
558 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
559 	 * us a superblock that needs the flag to be cleared.
560 	 */
561 	if (selinux_is_sblabel_mnt(sb))
562 		sbsec->flags |= SBLABEL_MNT;
563 	else
564 		sbsec->flags &= ~SBLABEL_MNT;
565 
566 	/* Initialize the root inode. */
567 	rc = inode_doinit_with_dentry(root_inode, root);
568 
569 	/* Initialize any other inodes associated with the superblock, e.g.
570 	   inodes created prior to initial policy load or inodes created
571 	   during get_sb by a pseudo filesystem that directly
572 	   populates itself. */
573 	spin_lock(&sbsec->isec_lock);
574 next_inode:
575 	if (!list_empty(&sbsec->isec_head)) {
576 		struct inode_security_struct *isec =
577 				list_entry(sbsec->isec_head.next,
578 					   struct inode_security_struct, list);
579 		struct inode *inode = isec->inode;
580 		list_del_init(&isec->list);
581 		spin_unlock(&sbsec->isec_lock);
582 		inode = igrab(inode);
583 		if (inode) {
584 			if (!IS_PRIVATE(inode))
585 				inode_doinit(inode);
586 			iput(inode);
587 		}
588 		spin_lock(&sbsec->isec_lock);
589 		goto next_inode;
590 	}
591 	spin_unlock(&sbsec->isec_lock);
592 out:
593 	return rc;
594 }
595 
596 /*
597  * This function should allow an FS to ask what it's mount security
598  * options were so it can use those later for submounts, displaying
599  * mount options, or whatever.
600  */
601 static int selinux_get_mnt_opts(const struct super_block *sb,
602 				struct security_mnt_opts *opts)
603 {
604 	int rc = 0, i;
605 	struct superblock_security_struct *sbsec = sb->s_security;
606 	char *context = NULL;
607 	u32 len;
608 	char tmp;
609 
610 	security_init_mnt_opts(opts);
611 
612 	if (!(sbsec->flags & SE_SBINITIALIZED))
613 		return -EINVAL;
614 
615 	if (!selinux_state.initialized)
616 		return -EINVAL;
617 
618 	/* make sure we always check enough bits to cover the mask */
619 	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
620 
621 	tmp = sbsec->flags & SE_MNTMASK;
622 	/* count the number of mount options for this sb */
623 	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
624 		if (tmp & 0x01)
625 			opts->num_mnt_opts++;
626 		tmp >>= 1;
627 	}
628 	/* Check if the Label support flag is set */
629 	if (sbsec->flags & SBLABEL_MNT)
630 		opts->num_mnt_opts++;
631 
632 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
633 	if (!opts->mnt_opts) {
634 		rc = -ENOMEM;
635 		goto out_free;
636 	}
637 
638 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
639 	if (!opts->mnt_opts_flags) {
640 		rc = -ENOMEM;
641 		goto out_free;
642 	}
643 
644 	i = 0;
645 	if (sbsec->flags & FSCONTEXT_MNT) {
646 		rc = security_sid_to_context(&selinux_state, sbsec->sid,
647 					     &context, &len);
648 		if (rc)
649 			goto out_free;
650 		opts->mnt_opts[i] = context;
651 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
652 	}
653 	if (sbsec->flags & CONTEXT_MNT) {
654 		rc = security_sid_to_context(&selinux_state,
655 					     sbsec->mntpoint_sid,
656 					     &context, &len);
657 		if (rc)
658 			goto out_free;
659 		opts->mnt_opts[i] = context;
660 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
661 	}
662 	if (sbsec->flags & DEFCONTEXT_MNT) {
663 		rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
664 					     &context, &len);
665 		if (rc)
666 			goto out_free;
667 		opts->mnt_opts[i] = context;
668 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
669 	}
670 	if (sbsec->flags & ROOTCONTEXT_MNT) {
671 		struct dentry *root = sbsec->sb->s_root;
672 		struct inode_security_struct *isec = backing_inode_security(root);
673 
674 		rc = security_sid_to_context(&selinux_state, isec->sid,
675 					     &context, &len);
676 		if (rc)
677 			goto out_free;
678 		opts->mnt_opts[i] = context;
679 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
680 	}
681 	if (sbsec->flags & SBLABEL_MNT) {
682 		opts->mnt_opts[i] = NULL;
683 		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
684 	}
685 
686 	BUG_ON(i != opts->num_mnt_opts);
687 
688 	return 0;
689 
690 out_free:
691 	security_free_mnt_opts(opts);
692 	return rc;
693 }
694 
695 static int bad_option(struct superblock_security_struct *sbsec, char flag,
696 		      u32 old_sid, u32 new_sid)
697 {
698 	char mnt_flags = sbsec->flags & SE_MNTMASK;
699 
700 	/* check if the old mount command had the same options */
701 	if (sbsec->flags & SE_SBINITIALIZED)
702 		if (!(sbsec->flags & flag) ||
703 		    (old_sid != new_sid))
704 			return 1;
705 
706 	/* check if we were passed the same options twice,
707 	 * aka someone passed context=a,context=b
708 	 */
709 	if (!(sbsec->flags & SE_SBINITIALIZED))
710 		if (mnt_flags & flag)
711 			return 1;
712 	return 0;
713 }
714 
715 /*
716  * Allow filesystems with binary mount data to explicitly set mount point
717  * labeling information.
718  */
719 static int selinux_set_mnt_opts(struct super_block *sb,
720 				struct security_mnt_opts *opts,
721 				unsigned long kern_flags,
722 				unsigned long *set_kern_flags)
723 {
724 	const struct cred *cred = current_cred();
725 	int rc = 0, i;
726 	struct superblock_security_struct *sbsec = sb->s_security;
727 	const char *name = sb->s_type->name;
728 	struct dentry *root = sbsec->sb->s_root;
729 	struct inode_security_struct *root_isec;
730 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
731 	u32 defcontext_sid = 0;
732 	char **mount_options = opts->mnt_opts;
733 	int *flags = opts->mnt_opts_flags;
734 	int num_opts = opts->num_mnt_opts;
735 
736 	mutex_lock(&sbsec->lock);
737 
738 	if (!selinux_state.initialized) {
739 		if (!num_opts) {
740 			/* Defer initialization until selinux_complete_init,
741 			   after the initial policy is loaded and the security
742 			   server is ready to handle calls. */
743 			goto out;
744 		}
745 		rc = -EINVAL;
746 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
747 			"before the security server is initialized\n");
748 		goto out;
749 	}
750 	if (kern_flags && !set_kern_flags) {
751 		/* Specifying internal flags without providing a place to
752 		 * place the results is not allowed */
753 		rc = -EINVAL;
754 		goto out;
755 	}
756 
757 	/*
758 	 * Binary mount data FS will come through this function twice.  Once
759 	 * from an explicit call and once from the generic calls from the vfs.
760 	 * Since the generic VFS calls will not contain any security mount data
761 	 * we need to skip the double mount verification.
762 	 *
763 	 * This does open a hole in which we will not notice if the first
764 	 * mount using this sb set explict options and a second mount using
765 	 * this sb does not set any security options.  (The first options
766 	 * will be used for both mounts)
767 	 */
768 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
769 	    && (num_opts == 0))
770 		goto out;
771 
772 	root_isec = backing_inode_security_novalidate(root);
773 
774 	/*
775 	 * parse the mount options, check if they are valid sids.
776 	 * also check if someone is trying to mount the same sb more
777 	 * than once with different security options.
778 	 */
779 	for (i = 0; i < num_opts; i++) {
780 		u32 sid;
781 
782 		if (flags[i] == SBLABEL_MNT)
783 			continue;
784 		rc = security_context_str_to_sid(&selinux_state,
785 						 mount_options[i], &sid,
786 						 GFP_KERNEL);
787 		if (rc) {
788 			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
789 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
790 			       mount_options[i], sb->s_id, name, rc);
791 			goto out;
792 		}
793 		switch (flags[i]) {
794 		case FSCONTEXT_MNT:
795 			fscontext_sid = sid;
796 
797 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
798 					fscontext_sid))
799 				goto out_double_mount;
800 
801 			sbsec->flags |= FSCONTEXT_MNT;
802 			break;
803 		case CONTEXT_MNT:
804 			context_sid = sid;
805 
806 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
807 					context_sid))
808 				goto out_double_mount;
809 
810 			sbsec->flags |= CONTEXT_MNT;
811 			break;
812 		case ROOTCONTEXT_MNT:
813 			rootcontext_sid = sid;
814 
815 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
816 					rootcontext_sid))
817 				goto out_double_mount;
818 
819 			sbsec->flags |= ROOTCONTEXT_MNT;
820 
821 			break;
822 		case DEFCONTEXT_MNT:
823 			defcontext_sid = sid;
824 
825 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
826 					defcontext_sid))
827 				goto out_double_mount;
828 
829 			sbsec->flags |= DEFCONTEXT_MNT;
830 
831 			break;
832 		default:
833 			rc = -EINVAL;
834 			goto out;
835 		}
836 	}
837 
838 	if (sbsec->flags & SE_SBINITIALIZED) {
839 		/* previously mounted with options, but not on this attempt? */
840 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
841 			goto out_double_mount;
842 		rc = 0;
843 		goto out;
844 	}
845 
846 	if (strcmp(sb->s_type->name, "proc") == 0)
847 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
848 
849 	if (!strcmp(sb->s_type->name, "debugfs") ||
850 	    !strcmp(sb->s_type->name, "tracefs") ||
851 	    !strcmp(sb->s_type->name, "sysfs") ||
852 	    !strcmp(sb->s_type->name, "pstore") ||
853 	    !strcmp(sb->s_type->name, "cgroup") ||
854 	    !strcmp(sb->s_type->name, "cgroup2"))
855 		sbsec->flags |= SE_SBGENFS;
856 
857 	if (!sbsec->behavior) {
858 		/*
859 		 * Determine the labeling behavior to use for this
860 		 * filesystem type.
861 		 */
862 		rc = security_fs_use(&selinux_state, sb);
863 		if (rc) {
864 			printk(KERN_WARNING
865 				"%s: security_fs_use(%s) returned %d\n",
866 					__func__, sb->s_type->name, rc);
867 			goto out;
868 		}
869 	}
870 
871 	/*
872 	 * If this is a user namespace mount and the filesystem type is not
873 	 * explicitly whitelisted, then no contexts are allowed on the command
874 	 * line and security labels must be ignored.
875 	 */
876 	if (sb->s_user_ns != &init_user_ns &&
877 	    strcmp(sb->s_type->name, "tmpfs") &&
878 	    strcmp(sb->s_type->name, "ramfs") &&
879 	    strcmp(sb->s_type->name, "devpts")) {
880 		if (context_sid || fscontext_sid || rootcontext_sid ||
881 		    defcontext_sid) {
882 			rc = -EACCES;
883 			goto out;
884 		}
885 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
886 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
887 			rc = security_transition_sid(&selinux_state,
888 						     current_sid(),
889 						     current_sid(),
890 						     SECCLASS_FILE, NULL,
891 						     &sbsec->mntpoint_sid);
892 			if (rc)
893 				goto out;
894 		}
895 		goto out_set_opts;
896 	}
897 
898 	/* sets the context of the superblock for the fs being mounted. */
899 	if (fscontext_sid) {
900 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
901 		if (rc)
902 			goto out;
903 
904 		sbsec->sid = fscontext_sid;
905 	}
906 
907 	/*
908 	 * Switch to using mount point labeling behavior.
909 	 * sets the label used on all file below the mountpoint, and will set
910 	 * the superblock context if not already set.
911 	 */
912 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
913 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
914 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
915 	}
916 
917 	if (context_sid) {
918 		if (!fscontext_sid) {
919 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
920 							  cred);
921 			if (rc)
922 				goto out;
923 			sbsec->sid = context_sid;
924 		} else {
925 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
926 							     cred);
927 			if (rc)
928 				goto out;
929 		}
930 		if (!rootcontext_sid)
931 			rootcontext_sid = context_sid;
932 
933 		sbsec->mntpoint_sid = context_sid;
934 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
935 	}
936 
937 	if (rootcontext_sid) {
938 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
939 						     cred);
940 		if (rc)
941 			goto out;
942 
943 		root_isec->sid = rootcontext_sid;
944 		root_isec->initialized = LABEL_INITIALIZED;
945 	}
946 
947 	if (defcontext_sid) {
948 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
949 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
950 			rc = -EINVAL;
951 			printk(KERN_WARNING "SELinux: defcontext option is "
952 			       "invalid for this filesystem type\n");
953 			goto out;
954 		}
955 
956 		if (defcontext_sid != sbsec->def_sid) {
957 			rc = may_context_mount_inode_relabel(defcontext_sid,
958 							     sbsec, cred);
959 			if (rc)
960 				goto out;
961 		}
962 
963 		sbsec->def_sid = defcontext_sid;
964 	}
965 
966 out_set_opts:
967 	rc = sb_finish_set_opts(sb);
968 out:
969 	mutex_unlock(&sbsec->lock);
970 	return rc;
971 out_double_mount:
972 	rc = -EINVAL;
973 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
974 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
975 	goto out;
976 }
977 
978 static int selinux_cmp_sb_context(const struct super_block *oldsb,
979 				    const struct super_block *newsb)
980 {
981 	struct superblock_security_struct *old = oldsb->s_security;
982 	struct superblock_security_struct *new = newsb->s_security;
983 	char oldflags = old->flags & SE_MNTMASK;
984 	char newflags = new->flags & SE_MNTMASK;
985 
986 	if (oldflags != newflags)
987 		goto mismatch;
988 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
989 		goto mismatch;
990 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
991 		goto mismatch;
992 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
993 		goto mismatch;
994 	if (oldflags & ROOTCONTEXT_MNT) {
995 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
996 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
997 		if (oldroot->sid != newroot->sid)
998 			goto mismatch;
999 	}
1000 	return 0;
1001 mismatch:
1002 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
1003 			    "different security settings for (dev %s, "
1004 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
1005 	return -EBUSY;
1006 }
1007 
1008 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009 					struct super_block *newsb,
1010 					unsigned long kern_flags,
1011 					unsigned long *set_kern_flags)
1012 {
1013 	int rc = 0;
1014 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015 	struct superblock_security_struct *newsbsec = newsb->s_security;
1016 
1017 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
1018 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
1019 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
1020 
1021 	/*
1022 	 * if the parent was able to be mounted it clearly had no special lsm
1023 	 * mount options.  thus we can safely deal with this superblock later
1024 	 */
1025 	if (!selinux_state.initialized)
1026 		return 0;
1027 
1028 	/*
1029 	 * Specifying internal flags without providing a place to
1030 	 * place the results is not allowed.
1031 	 */
1032 	if (kern_flags && !set_kern_flags)
1033 		return -EINVAL;
1034 
1035 	/* how can we clone if the old one wasn't set up?? */
1036 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037 
1038 	/* if fs is reusing a sb, make sure that the contexts match */
1039 	if (newsbsec->flags & SE_SBINITIALIZED)
1040 		return selinux_cmp_sb_context(oldsb, newsb);
1041 
1042 	mutex_lock(&newsbsec->lock);
1043 
1044 	newsbsec->flags = oldsbsec->flags;
1045 
1046 	newsbsec->sid = oldsbsec->sid;
1047 	newsbsec->def_sid = oldsbsec->def_sid;
1048 	newsbsec->behavior = oldsbsec->behavior;
1049 
1050 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052 		rc = security_fs_use(&selinux_state, newsb);
1053 		if (rc)
1054 			goto out;
1055 	}
1056 
1057 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060 	}
1061 
1062 	if (set_context) {
1063 		u32 sid = oldsbsec->mntpoint_sid;
1064 
1065 		if (!set_fscontext)
1066 			newsbsec->sid = sid;
1067 		if (!set_rootcontext) {
1068 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069 			newisec->sid = sid;
1070 		}
1071 		newsbsec->mntpoint_sid = sid;
1072 	}
1073 	if (set_rootcontext) {
1074 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076 
1077 		newisec->sid = oldisec->sid;
1078 	}
1079 
1080 	sb_finish_set_opts(newsb);
1081 out:
1082 	mutex_unlock(&newsbsec->lock);
1083 	return rc;
1084 }
1085 
1086 static int selinux_parse_opts_str(char *options,
1087 				  struct security_mnt_opts *opts)
1088 {
1089 	char *p;
1090 	char *context = NULL, *defcontext = NULL;
1091 	char *fscontext = NULL, *rootcontext = NULL;
1092 	int rc, num_mnt_opts = 0;
1093 
1094 	opts->num_mnt_opts = 0;
1095 
1096 	/* Standard string-based options. */
1097 	while ((p = strsep(&options, "|")) != NULL) {
1098 		int token;
1099 		substring_t args[MAX_OPT_ARGS];
1100 
1101 		if (!*p)
1102 			continue;
1103 
1104 		token = match_token(p, tokens, args);
1105 
1106 		switch (token) {
1107 		case Opt_context:
1108 			if (context || defcontext) {
1109 				rc = -EINVAL;
1110 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111 				goto out_err;
1112 			}
1113 			context = match_strdup(&args[0]);
1114 			if (!context) {
1115 				rc = -ENOMEM;
1116 				goto out_err;
1117 			}
1118 			break;
1119 
1120 		case Opt_fscontext:
1121 			if (fscontext) {
1122 				rc = -EINVAL;
1123 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124 				goto out_err;
1125 			}
1126 			fscontext = match_strdup(&args[0]);
1127 			if (!fscontext) {
1128 				rc = -ENOMEM;
1129 				goto out_err;
1130 			}
1131 			break;
1132 
1133 		case Opt_rootcontext:
1134 			if (rootcontext) {
1135 				rc = -EINVAL;
1136 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137 				goto out_err;
1138 			}
1139 			rootcontext = match_strdup(&args[0]);
1140 			if (!rootcontext) {
1141 				rc = -ENOMEM;
1142 				goto out_err;
1143 			}
1144 			break;
1145 
1146 		case Opt_defcontext:
1147 			if (context || defcontext) {
1148 				rc = -EINVAL;
1149 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150 				goto out_err;
1151 			}
1152 			defcontext = match_strdup(&args[0]);
1153 			if (!defcontext) {
1154 				rc = -ENOMEM;
1155 				goto out_err;
1156 			}
1157 			break;
1158 		case Opt_labelsupport:
1159 			break;
1160 		default:
1161 			rc = -EINVAL;
1162 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1163 			goto out_err;
1164 
1165 		}
1166 	}
1167 
1168 	rc = -ENOMEM;
1169 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170 	if (!opts->mnt_opts)
1171 		goto out_err;
1172 
1173 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174 				       GFP_KERNEL);
1175 	if (!opts->mnt_opts_flags)
1176 		goto out_err;
1177 
1178 	if (fscontext) {
1179 		opts->mnt_opts[num_mnt_opts] = fscontext;
1180 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181 	}
1182 	if (context) {
1183 		opts->mnt_opts[num_mnt_opts] = context;
1184 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185 	}
1186 	if (rootcontext) {
1187 		opts->mnt_opts[num_mnt_opts] = rootcontext;
1188 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189 	}
1190 	if (defcontext) {
1191 		opts->mnt_opts[num_mnt_opts] = defcontext;
1192 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193 	}
1194 
1195 	opts->num_mnt_opts = num_mnt_opts;
1196 	return 0;
1197 
1198 out_err:
1199 	security_free_mnt_opts(opts);
1200 	kfree(context);
1201 	kfree(defcontext);
1202 	kfree(fscontext);
1203 	kfree(rootcontext);
1204 	return rc;
1205 }
1206 /*
1207  * string mount options parsing and call set the sbsec
1208  */
1209 static int superblock_doinit(struct super_block *sb, void *data)
1210 {
1211 	int rc = 0;
1212 	char *options = data;
1213 	struct security_mnt_opts opts;
1214 
1215 	security_init_mnt_opts(&opts);
1216 
1217 	if (!data)
1218 		goto out;
1219 
1220 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221 
1222 	rc = selinux_parse_opts_str(options, &opts);
1223 	if (rc)
1224 		goto out_err;
1225 
1226 out:
1227 	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228 
1229 out_err:
1230 	security_free_mnt_opts(&opts);
1231 	return rc;
1232 }
1233 
1234 static void selinux_write_opts(struct seq_file *m,
1235 			       struct security_mnt_opts *opts)
1236 {
1237 	int i;
1238 	char *prefix;
1239 
1240 	for (i = 0; i < opts->num_mnt_opts; i++) {
1241 		char *has_comma;
1242 
1243 		if (opts->mnt_opts[i])
1244 			has_comma = strchr(opts->mnt_opts[i], ',');
1245 		else
1246 			has_comma = NULL;
1247 
1248 		switch (opts->mnt_opts_flags[i]) {
1249 		case CONTEXT_MNT:
1250 			prefix = CONTEXT_STR;
1251 			break;
1252 		case FSCONTEXT_MNT:
1253 			prefix = FSCONTEXT_STR;
1254 			break;
1255 		case ROOTCONTEXT_MNT:
1256 			prefix = ROOTCONTEXT_STR;
1257 			break;
1258 		case DEFCONTEXT_MNT:
1259 			prefix = DEFCONTEXT_STR;
1260 			break;
1261 		case SBLABEL_MNT:
1262 			seq_putc(m, ',');
1263 			seq_puts(m, LABELSUPP_STR);
1264 			continue;
1265 		default:
1266 			BUG();
1267 			return;
1268 		};
1269 		/* we need a comma before each option */
1270 		seq_putc(m, ',');
1271 		seq_puts(m, prefix);
1272 		if (has_comma)
1273 			seq_putc(m, '\"');
1274 		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275 		if (has_comma)
1276 			seq_putc(m, '\"');
1277 	}
1278 }
1279 
1280 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281 {
1282 	struct security_mnt_opts opts;
1283 	int rc;
1284 
1285 	rc = selinux_get_mnt_opts(sb, &opts);
1286 	if (rc) {
1287 		/* before policy load we may get EINVAL, don't show anything */
1288 		if (rc == -EINVAL)
1289 			rc = 0;
1290 		return rc;
1291 	}
1292 
1293 	selinux_write_opts(m, &opts);
1294 
1295 	security_free_mnt_opts(&opts);
1296 
1297 	return rc;
1298 }
1299 
1300 static inline u16 inode_mode_to_security_class(umode_t mode)
1301 {
1302 	switch (mode & S_IFMT) {
1303 	case S_IFSOCK:
1304 		return SECCLASS_SOCK_FILE;
1305 	case S_IFLNK:
1306 		return SECCLASS_LNK_FILE;
1307 	case S_IFREG:
1308 		return SECCLASS_FILE;
1309 	case S_IFBLK:
1310 		return SECCLASS_BLK_FILE;
1311 	case S_IFDIR:
1312 		return SECCLASS_DIR;
1313 	case S_IFCHR:
1314 		return SECCLASS_CHR_FILE;
1315 	case S_IFIFO:
1316 		return SECCLASS_FIFO_FILE;
1317 
1318 	}
1319 
1320 	return SECCLASS_FILE;
1321 }
1322 
1323 static inline int default_protocol_stream(int protocol)
1324 {
1325 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326 }
1327 
1328 static inline int default_protocol_dgram(int protocol)
1329 {
1330 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331 }
1332 
1333 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334 {
1335 	int extsockclass = selinux_policycap_extsockclass();
1336 
1337 	switch (family) {
1338 	case PF_UNIX:
1339 		switch (type) {
1340 		case SOCK_STREAM:
1341 		case SOCK_SEQPACKET:
1342 			return SECCLASS_UNIX_STREAM_SOCKET;
1343 		case SOCK_DGRAM:
1344 		case SOCK_RAW:
1345 			return SECCLASS_UNIX_DGRAM_SOCKET;
1346 		}
1347 		break;
1348 	case PF_INET:
1349 	case PF_INET6:
1350 		switch (type) {
1351 		case SOCK_STREAM:
1352 		case SOCK_SEQPACKET:
1353 			if (default_protocol_stream(protocol))
1354 				return SECCLASS_TCP_SOCKET;
1355 			else if (extsockclass && protocol == IPPROTO_SCTP)
1356 				return SECCLASS_SCTP_SOCKET;
1357 			else
1358 				return SECCLASS_RAWIP_SOCKET;
1359 		case SOCK_DGRAM:
1360 			if (default_protocol_dgram(protocol))
1361 				return SECCLASS_UDP_SOCKET;
1362 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363 						  protocol == IPPROTO_ICMPV6))
1364 				return SECCLASS_ICMP_SOCKET;
1365 			else
1366 				return SECCLASS_RAWIP_SOCKET;
1367 		case SOCK_DCCP:
1368 			return SECCLASS_DCCP_SOCKET;
1369 		default:
1370 			return SECCLASS_RAWIP_SOCKET;
1371 		}
1372 		break;
1373 	case PF_NETLINK:
1374 		switch (protocol) {
1375 		case NETLINK_ROUTE:
1376 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1377 		case NETLINK_SOCK_DIAG:
1378 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379 		case NETLINK_NFLOG:
1380 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1381 		case NETLINK_XFRM:
1382 			return SECCLASS_NETLINK_XFRM_SOCKET;
1383 		case NETLINK_SELINUX:
1384 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1385 		case NETLINK_ISCSI:
1386 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1387 		case NETLINK_AUDIT:
1388 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1389 		case NETLINK_FIB_LOOKUP:
1390 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391 		case NETLINK_CONNECTOR:
1392 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393 		case NETLINK_NETFILTER:
1394 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395 		case NETLINK_DNRTMSG:
1396 			return SECCLASS_NETLINK_DNRT_SOCKET;
1397 		case NETLINK_KOBJECT_UEVENT:
1398 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399 		case NETLINK_GENERIC:
1400 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1401 		case NETLINK_SCSITRANSPORT:
1402 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403 		case NETLINK_RDMA:
1404 			return SECCLASS_NETLINK_RDMA_SOCKET;
1405 		case NETLINK_CRYPTO:
1406 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407 		default:
1408 			return SECCLASS_NETLINK_SOCKET;
1409 		}
1410 	case PF_PACKET:
1411 		return SECCLASS_PACKET_SOCKET;
1412 	case PF_KEY:
1413 		return SECCLASS_KEY_SOCKET;
1414 	case PF_APPLETALK:
1415 		return SECCLASS_APPLETALK_SOCKET;
1416 	}
1417 
1418 	if (extsockclass) {
1419 		switch (family) {
1420 		case PF_AX25:
1421 			return SECCLASS_AX25_SOCKET;
1422 		case PF_IPX:
1423 			return SECCLASS_IPX_SOCKET;
1424 		case PF_NETROM:
1425 			return SECCLASS_NETROM_SOCKET;
1426 		case PF_ATMPVC:
1427 			return SECCLASS_ATMPVC_SOCKET;
1428 		case PF_X25:
1429 			return SECCLASS_X25_SOCKET;
1430 		case PF_ROSE:
1431 			return SECCLASS_ROSE_SOCKET;
1432 		case PF_DECnet:
1433 			return SECCLASS_DECNET_SOCKET;
1434 		case PF_ATMSVC:
1435 			return SECCLASS_ATMSVC_SOCKET;
1436 		case PF_RDS:
1437 			return SECCLASS_RDS_SOCKET;
1438 		case PF_IRDA:
1439 			return SECCLASS_IRDA_SOCKET;
1440 		case PF_PPPOX:
1441 			return SECCLASS_PPPOX_SOCKET;
1442 		case PF_LLC:
1443 			return SECCLASS_LLC_SOCKET;
1444 		case PF_CAN:
1445 			return SECCLASS_CAN_SOCKET;
1446 		case PF_TIPC:
1447 			return SECCLASS_TIPC_SOCKET;
1448 		case PF_BLUETOOTH:
1449 			return SECCLASS_BLUETOOTH_SOCKET;
1450 		case PF_IUCV:
1451 			return SECCLASS_IUCV_SOCKET;
1452 		case PF_RXRPC:
1453 			return SECCLASS_RXRPC_SOCKET;
1454 		case PF_ISDN:
1455 			return SECCLASS_ISDN_SOCKET;
1456 		case PF_PHONET:
1457 			return SECCLASS_PHONET_SOCKET;
1458 		case PF_IEEE802154:
1459 			return SECCLASS_IEEE802154_SOCKET;
1460 		case PF_CAIF:
1461 			return SECCLASS_CAIF_SOCKET;
1462 		case PF_ALG:
1463 			return SECCLASS_ALG_SOCKET;
1464 		case PF_NFC:
1465 			return SECCLASS_NFC_SOCKET;
1466 		case PF_VSOCK:
1467 			return SECCLASS_VSOCK_SOCKET;
1468 		case PF_KCM:
1469 			return SECCLASS_KCM_SOCKET;
1470 		case PF_QIPCRTR:
1471 			return SECCLASS_QIPCRTR_SOCKET;
1472 		case PF_SMC:
1473 			return SECCLASS_SMC_SOCKET;
1474 		case PF_XDP:
1475 			return SECCLASS_XDP_SOCKET;
1476 #if PF_MAX > 45
1477 #error New address family defined, please update this function.
1478 #endif
1479 		}
1480 	}
1481 
1482 	return SECCLASS_SOCKET;
1483 }
1484 
1485 static int selinux_genfs_get_sid(struct dentry *dentry,
1486 				 u16 tclass,
1487 				 u16 flags,
1488 				 u32 *sid)
1489 {
1490 	int rc;
1491 	struct super_block *sb = dentry->d_sb;
1492 	char *buffer, *path;
1493 
1494 	buffer = (char *)__get_free_page(GFP_KERNEL);
1495 	if (!buffer)
1496 		return -ENOMEM;
1497 
1498 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1499 	if (IS_ERR(path))
1500 		rc = PTR_ERR(path);
1501 	else {
1502 		if (flags & SE_SBPROC) {
1503 			/* each process gets a /proc/PID/ entry. Strip off the
1504 			 * PID part to get a valid selinux labeling.
1505 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1506 			while (path[1] >= '0' && path[1] <= '9') {
1507 				path[1] = '/';
1508 				path++;
1509 			}
1510 		}
1511 		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1512 					path, tclass, sid);
1513 	}
1514 	free_page((unsigned long)buffer);
1515 	return rc;
1516 }
1517 
1518 /* The inode's security attributes must be initialized before first use. */
1519 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1520 {
1521 	struct superblock_security_struct *sbsec = NULL;
1522 	struct inode_security_struct *isec = inode->i_security;
1523 	u32 task_sid, sid = 0;
1524 	u16 sclass;
1525 	struct dentry *dentry;
1526 #define INITCONTEXTLEN 255
1527 	char *context = NULL;
1528 	unsigned len = 0;
1529 	int rc = 0;
1530 
1531 	if (isec->initialized == LABEL_INITIALIZED)
1532 		return 0;
1533 
1534 	spin_lock(&isec->lock);
1535 	if (isec->initialized == LABEL_INITIALIZED)
1536 		goto out_unlock;
1537 
1538 	if (isec->sclass == SECCLASS_FILE)
1539 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540 
1541 	sbsec = inode->i_sb->s_security;
1542 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1543 		/* Defer initialization until selinux_complete_init,
1544 		   after the initial policy is loaded and the security
1545 		   server is ready to handle calls. */
1546 		spin_lock(&sbsec->isec_lock);
1547 		if (list_empty(&isec->list))
1548 			list_add(&isec->list, &sbsec->isec_head);
1549 		spin_unlock(&sbsec->isec_lock);
1550 		goto out_unlock;
1551 	}
1552 
1553 	sclass = isec->sclass;
1554 	task_sid = isec->task_sid;
1555 	sid = isec->sid;
1556 	isec->initialized = LABEL_PENDING;
1557 	spin_unlock(&isec->lock);
1558 
1559 	switch (sbsec->behavior) {
1560 	case SECURITY_FS_USE_NATIVE:
1561 		break;
1562 	case SECURITY_FS_USE_XATTR:
1563 		if (!(inode->i_opflags & IOP_XATTR)) {
1564 			sid = sbsec->def_sid;
1565 			break;
1566 		}
1567 		/* Need a dentry, since the xattr API requires one.
1568 		   Life would be simpler if we could just pass the inode. */
1569 		if (opt_dentry) {
1570 			/* Called from d_instantiate or d_splice_alias. */
1571 			dentry = dget(opt_dentry);
1572 		} else {
1573 			/* Called from selinux_complete_init, try to find a dentry. */
1574 			dentry = d_find_alias(inode);
1575 		}
1576 		if (!dentry) {
1577 			/*
1578 			 * this is can be hit on boot when a file is accessed
1579 			 * before the policy is loaded.  When we load policy we
1580 			 * may find inodes that have no dentry on the
1581 			 * sbsec->isec_head list.  No reason to complain as these
1582 			 * will get fixed up the next time we go through
1583 			 * inode_doinit with a dentry, before these inodes could
1584 			 * be used again by userspace.
1585 			 */
1586 			goto out;
1587 		}
1588 
1589 		len = INITCONTEXTLEN;
1590 		context = kmalloc(len+1, GFP_NOFS);
1591 		if (!context) {
1592 			rc = -ENOMEM;
1593 			dput(dentry);
1594 			goto out;
1595 		}
1596 		context[len] = '\0';
1597 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1598 		if (rc == -ERANGE) {
1599 			kfree(context);
1600 
1601 			/* Need a larger buffer.  Query for the right size. */
1602 			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1603 			if (rc < 0) {
1604 				dput(dentry);
1605 				goto out;
1606 			}
1607 			len = rc;
1608 			context = kmalloc(len+1, GFP_NOFS);
1609 			if (!context) {
1610 				rc = -ENOMEM;
1611 				dput(dentry);
1612 				goto out;
1613 			}
1614 			context[len] = '\0';
1615 			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1616 		}
1617 		dput(dentry);
1618 		if (rc < 0) {
1619 			if (rc != -ENODATA) {
1620 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1621 				       "%d for dev=%s ino=%ld\n", __func__,
1622 				       -rc, inode->i_sb->s_id, inode->i_ino);
1623 				kfree(context);
1624 				goto out;
1625 			}
1626 			/* Map ENODATA to the default file SID */
1627 			sid = sbsec->def_sid;
1628 			rc = 0;
1629 		} else {
1630 			rc = security_context_to_sid_default(&selinux_state,
1631 							     context, rc, &sid,
1632 							     sbsec->def_sid,
1633 							     GFP_NOFS);
1634 			if (rc) {
1635 				char *dev = inode->i_sb->s_id;
1636 				unsigned long ino = inode->i_ino;
1637 
1638 				if (rc == -EINVAL) {
1639 					if (printk_ratelimit())
1640 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1641 							"context=%s.  This indicates you may need to relabel the inode or the "
1642 							"filesystem in question.\n", ino, dev, context);
1643 				} else {
1644 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1645 					       "returned %d for dev=%s ino=%ld\n",
1646 					       __func__, context, -rc, dev, ino);
1647 				}
1648 				kfree(context);
1649 				/* Leave with the unlabeled SID */
1650 				rc = 0;
1651 				break;
1652 			}
1653 		}
1654 		kfree(context);
1655 		break;
1656 	case SECURITY_FS_USE_TASK:
1657 		sid = task_sid;
1658 		break;
1659 	case SECURITY_FS_USE_TRANS:
1660 		/* Default to the fs SID. */
1661 		sid = sbsec->sid;
1662 
1663 		/* Try to obtain a transition SID. */
1664 		rc = security_transition_sid(&selinux_state, task_sid, sid,
1665 					     sclass, NULL, &sid);
1666 		if (rc)
1667 			goto out;
1668 		break;
1669 	case SECURITY_FS_USE_MNTPOINT:
1670 		sid = sbsec->mntpoint_sid;
1671 		break;
1672 	default:
1673 		/* Default to the fs superblock SID. */
1674 		sid = sbsec->sid;
1675 
1676 		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1677 			/* We must have a dentry to determine the label on
1678 			 * procfs inodes */
1679 			if (opt_dentry)
1680 				/* Called from d_instantiate or
1681 				 * d_splice_alias. */
1682 				dentry = dget(opt_dentry);
1683 			else
1684 				/* Called from selinux_complete_init, try to
1685 				 * find a dentry. */
1686 				dentry = d_find_alias(inode);
1687 			/*
1688 			 * This can be hit on boot when a file is accessed
1689 			 * before the policy is loaded.  When we load policy we
1690 			 * may find inodes that have no dentry on the
1691 			 * sbsec->isec_head list.  No reason to complain as
1692 			 * these will get fixed up the next time we go through
1693 			 * inode_doinit() with a dentry, before these inodes
1694 			 * could be used again by userspace.
1695 			 */
1696 			if (!dentry)
1697 				goto out;
1698 			rc = selinux_genfs_get_sid(dentry, sclass,
1699 						   sbsec->flags, &sid);
1700 			dput(dentry);
1701 			if (rc)
1702 				goto out;
1703 		}
1704 		break;
1705 	}
1706 
1707 out:
1708 	spin_lock(&isec->lock);
1709 	if (isec->initialized == LABEL_PENDING) {
1710 		if (!sid || rc) {
1711 			isec->initialized = LABEL_INVALID;
1712 			goto out_unlock;
1713 		}
1714 
1715 		isec->initialized = LABEL_INITIALIZED;
1716 		isec->sid = sid;
1717 	}
1718 
1719 out_unlock:
1720 	spin_unlock(&isec->lock);
1721 	return rc;
1722 }
1723 
1724 /* Convert a Linux signal to an access vector. */
1725 static inline u32 signal_to_av(int sig)
1726 {
1727 	u32 perm = 0;
1728 
1729 	switch (sig) {
1730 	case SIGCHLD:
1731 		/* Commonly granted from child to parent. */
1732 		perm = PROCESS__SIGCHLD;
1733 		break;
1734 	case SIGKILL:
1735 		/* Cannot be caught or ignored */
1736 		perm = PROCESS__SIGKILL;
1737 		break;
1738 	case SIGSTOP:
1739 		/* Cannot be caught or ignored */
1740 		perm = PROCESS__SIGSTOP;
1741 		break;
1742 	default:
1743 		/* All other signals. */
1744 		perm = PROCESS__SIGNAL;
1745 		break;
1746 	}
1747 
1748 	return perm;
1749 }
1750 
1751 #if CAP_LAST_CAP > 63
1752 #error Fix SELinux to handle capabilities > 63.
1753 #endif
1754 
1755 /* Check whether a task is allowed to use a capability. */
1756 static int cred_has_capability(const struct cred *cred,
1757 			       int cap, int audit, bool initns)
1758 {
1759 	struct common_audit_data ad;
1760 	struct av_decision avd;
1761 	u16 sclass;
1762 	u32 sid = cred_sid(cred);
1763 	u32 av = CAP_TO_MASK(cap);
1764 	int rc;
1765 
1766 	ad.type = LSM_AUDIT_DATA_CAP;
1767 	ad.u.cap = cap;
1768 
1769 	switch (CAP_TO_INDEX(cap)) {
1770 	case 0:
1771 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1772 		break;
1773 	case 1:
1774 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1775 		break;
1776 	default:
1777 		printk(KERN_ERR
1778 		       "SELinux:  out of range capability %d\n", cap);
1779 		BUG();
1780 		return -EINVAL;
1781 	}
1782 
1783 	rc = avc_has_perm_noaudit(&selinux_state,
1784 				  sid, sid, sclass, av, 0, &avd);
1785 	if (audit == SECURITY_CAP_AUDIT) {
1786 		int rc2 = avc_audit(&selinux_state,
1787 				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1788 		if (rc2)
1789 			return rc2;
1790 	}
1791 	return rc;
1792 }
1793 
1794 /* Check whether a task has a particular permission to an inode.
1795    The 'adp' parameter is optional and allows other audit
1796    data to be passed (e.g. the dentry). */
1797 static int inode_has_perm(const struct cred *cred,
1798 			  struct inode *inode,
1799 			  u32 perms,
1800 			  struct common_audit_data *adp)
1801 {
1802 	struct inode_security_struct *isec;
1803 	u32 sid;
1804 
1805 	validate_creds(cred);
1806 
1807 	if (unlikely(IS_PRIVATE(inode)))
1808 		return 0;
1809 
1810 	sid = cred_sid(cred);
1811 	isec = inode->i_security;
1812 
1813 	return avc_has_perm(&selinux_state,
1814 			    sid, isec->sid, isec->sclass, perms, adp);
1815 }
1816 
1817 /* Same as inode_has_perm, but pass explicit audit data containing
1818    the dentry to help the auditing code to more easily generate the
1819    pathname if needed. */
1820 static inline int dentry_has_perm(const struct cred *cred,
1821 				  struct dentry *dentry,
1822 				  u32 av)
1823 {
1824 	struct inode *inode = d_backing_inode(dentry);
1825 	struct common_audit_data ad;
1826 
1827 	ad.type = LSM_AUDIT_DATA_DENTRY;
1828 	ad.u.dentry = dentry;
1829 	__inode_security_revalidate(inode, dentry, true);
1830 	return inode_has_perm(cred, inode, av, &ad);
1831 }
1832 
1833 /* Same as inode_has_perm, but pass explicit audit data containing
1834    the path to help the auditing code to more easily generate the
1835    pathname if needed. */
1836 static inline int path_has_perm(const struct cred *cred,
1837 				const struct path *path,
1838 				u32 av)
1839 {
1840 	struct inode *inode = d_backing_inode(path->dentry);
1841 	struct common_audit_data ad;
1842 
1843 	ad.type = LSM_AUDIT_DATA_PATH;
1844 	ad.u.path = *path;
1845 	__inode_security_revalidate(inode, path->dentry, true);
1846 	return inode_has_perm(cred, inode, av, &ad);
1847 }
1848 
1849 /* Same as path_has_perm, but uses the inode from the file struct. */
1850 static inline int file_path_has_perm(const struct cred *cred,
1851 				     struct file *file,
1852 				     u32 av)
1853 {
1854 	struct common_audit_data ad;
1855 
1856 	ad.type = LSM_AUDIT_DATA_FILE;
1857 	ad.u.file = file;
1858 	return inode_has_perm(cred, file_inode(file), av, &ad);
1859 }
1860 
1861 #ifdef CONFIG_BPF_SYSCALL
1862 static int bpf_fd_pass(struct file *file, u32 sid);
1863 #endif
1864 
1865 /* Check whether a task can use an open file descriptor to
1866    access an inode in a given way.  Check access to the
1867    descriptor itself, and then use dentry_has_perm to
1868    check a particular permission to the file.
1869    Access to the descriptor is implicitly granted if it
1870    has the same SID as the process.  If av is zero, then
1871    access to the file is not checked, e.g. for cases
1872    where only the descriptor is affected like seek. */
1873 static int file_has_perm(const struct cred *cred,
1874 			 struct file *file,
1875 			 u32 av)
1876 {
1877 	struct file_security_struct *fsec = file->f_security;
1878 	struct inode *inode = file_inode(file);
1879 	struct common_audit_data ad;
1880 	u32 sid = cred_sid(cred);
1881 	int rc;
1882 
1883 	ad.type = LSM_AUDIT_DATA_FILE;
1884 	ad.u.file = file;
1885 
1886 	if (sid != fsec->sid) {
1887 		rc = avc_has_perm(&selinux_state,
1888 				  sid, fsec->sid,
1889 				  SECCLASS_FD,
1890 				  FD__USE,
1891 				  &ad);
1892 		if (rc)
1893 			goto out;
1894 	}
1895 
1896 #ifdef CONFIG_BPF_SYSCALL
1897 	rc = bpf_fd_pass(file, cred_sid(cred));
1898 	if (rc)
1899 		return rc;
1900 #endif
1901 
1902 	/* av is zero if only checking access to the descriptor. */
1903 	rc = 0;
1904 	if (av)
1905 		rc = inode_has_perm(cred, inode, av, &ad);
1906 
1907 out:
1908 	return rc;
1909 }
1910 
1911 /*
1912  * Determine the label for an inode that might be unioned.
1913  */
1914 static int
1915 selinux_determine_inode_label(const struct task_security_struct *tsec,
1916 				 struct inode *dir,
1917 				 const struct qstr *name, u16 tclass,
1918 				 u32 *_new_isid)
1919 {
1920 	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1921 
1922 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1923 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1924 		*_new_isid = sbsec->mntpoint_sid;
1925 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1926 		   tsec->create_sid) {
1927 		*_new_isid = tsec->create_sid;
1928 	} else {
1929 		const struct inode_security_struct *dsec = inode_security(dir);
1930 		return security_transition_sid(&selinux_state, tsec->sid,
1931 					       dsec->sid, tclass,
1932 					       name, _new_isid);
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /* Check whether a task can create a file. */
1939 static int may_create(struct inode *dir,
1940 		      struct dentry *dentry,
1941 		      u16 tclass)
1942 {
1943 	const struct task_security_struct *tsec = current_security();
1944 	struct inode_security_struct *dsec;
1945 	struct superblock_security_struct *sbsec;
1946 	u32 sid, newsid;
1947 	struct common_audit_data ad;
1948 	int rc;
1949 
1950 	dsec = inode_security(dir);
1951 	sbsec = dir->i_sb->s_security;
1952 
1953 	sid = tsec->sid;
1954 
1955 	ad.type = LSM_AUDIT_DATA_DENTRY;
1956 	ad.u.dentry = dentry;
1957 
1958 	rc = avc_has_perm(&selinux_state,
1959 			  sid, dsec->sid, SECCLASS_DIR,
1960 			  DIR__ADD_NAME | DIR__SEARCH,
1961 			  &ad);
1962 	if (rc)
1963 		return rc;
1964 
1965 	rc = selinux_determine_inode_label(current_security(), dir,
1966 					   &dentry->d_name, tclass, &newsid);
1967 	if (rc)
1968 		return rc;
1969 
1970 	rc = avc_has_perm(&selinux_state,
1971 			  sid, newsid, tclass, FILE__CREATE, &ad);
1972 	if (rc)
1973 		return rc;
1974 
1975 	return avc_has_perm(&selinux_state,
1976 			    newsid, sbsec->sid,
1977 			    SECCLASS_FILESYSTEM,
1978 			    FILESYSTEM__ASSOCIATE, &ad);
1979 }
1980 
1981 #define MAY_LINK	0
1982 #define MAY_UNLINK	1
1983 #define MAY_RMDIR	2
1984 
1985 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1986 static int may_link(struct inode *dir,
1987 		    struct dentry *dentry,
1988 		    int kind)
1989 
1990 {
1991 	struct inode_security_struct *dsec, *isec;
1992 	struct common_audit_data ad;
1993 	u32 sid = current_sid();
1994 	u32 av;
1995 	int rc;
1996 
1997 	dsec = inode_security(dir);
1998 	isec = backing_inode_security(dentry);
1999 
2000 	ad.type = LSM_AUDIT_DATA_DENTRY;
2001 	ad.u.dentry = dentry;
2002 
2003 	av = DIR__SEARCH;
2004 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2005 	rc = avc_has_perm(&selinux_state,
2006 			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
2007 	if (rc)
2008 		return rc;
2009 
2010 	switch (kind) {
2011 	case MAY_LINK:
2012 		av = FILE__LINK;
2013 		break;
2014 	case MAY_UNLINK:
2015 		av = FILE__UNLINK;
2016 		break;
2017 	case MAY_RMDIR:
2018 		av = DIR__RMDIR;
2019 		break;
2020 	default:
2021 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
2022 			__func__, kind);
2023 		return 0;
2024 	}
2025 
2026 	rc = avc_has_perm(&selinux_state,
2027 			  sid, isec->sid, isec->sclass, av, &ad);
2028 	return rc;
2029 }
2030 
2031 static inline int may_rename(struct inode *old_dir,
2032 			     struct dentry *old_dentry,
2033 			     struct inode *new_dir,
2034 			     struct dentry *new_dentry)
2035 {
2036 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2037 	struct common_audit_data ad;
2038 	u32 sid = current_sid();
2039 	u32 av;
2040 	int old_is_dir, new_is_dir;
2041 	int rc;
2042 
2043 	old_dsec = inode_security(old_dir);
2044 	old_isec = backing_inode_security(old_dentry);
2045 	old_is_dir = d_is_dir(old_dentry);
2046 	new_dsec = inode_security(new_dir);
2047 
2048 	ad.type = LSM_AUDIT_DATA_DENTRY;
2049 
2050 	ad.u.dentry = old_dentry;
2051 	rc = avc_has_perm(&selinux_state,
2052 			  sid, old_dsec->sid, SECCLASS_DIR,
2053 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2054 	if (rc)
2055 		return rc;
2056 	rc = avc_has_perm(&selinux_state,
2057 			  sid, old_isec->sid,
2058 			  old_isec->sclass, FILE__RENAME, &ad);
2059 	if (rc)
2060 		return rc;
2061 	if (old_is_dir && new_dir != old_dir) {
2062 		rc = avc_has_perm(&selinux_state,
2063 				  sid, old_isec->sid,
2064 				  old_isec->sclass, DIR__REPARENT, &ad);
2065 		if (rc)
2066 			return rc;
2067 	}
2068 
2069 	ad.u.dentry = new_dentry;
2070 	av = DIR__ADD_NAME | DIR__SEARCH;
2071 	if (d_is_positive(new_dentry))
2072 		av |= DIR__REMOVE_NAME;
2073 	rc = avc_has_perm(&selinux_state,
2074 			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2075 	if (rc)
2076 		return rc;
2077 	if (d_is_positive(new_dentry)) {
2078 		new_isec = backing_inode_security(new_dentry);
2079 		new_is_dir = d_is_dir(new_dentry);
2080 		rc = avc_has_perm(&selinux_state,
2081 				  sid, new_isec->sid,
2082 				  new_isec->sclass,
2083 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2084 		if (rc)
2085 			return rc;
2086 	}
2087 
2088 	return 0;
2089 }
2090 
2091 /* Check whether a task can perform a filesystem operation. */
2092 static int superblock_has_perm(const struct cred *cred,
2093 			       struct super_block *sb,
2094 			       u32 perms,
2095 			       struct common_audit_data *ad)
2096 {
2097 	struct superblock_security_struct *sbsec;
2098 	u32 sid = cred_sid(cred);
2099 
2100 	sbsec = sb->s_security;
2101 	return avc_has_perm(&selinux_state,
2102 			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2103 }
2104 
2105 /* Convert a Linux mode and permission mask to an access vector. */
2106 static inline u32 file_mask_to_av(int mode, int mask)
2107 {
2108 	u32 av = 0;
2109 
2110 	if (!S_ISDIR(mode)) {
2111 		if (mask & MAY_EXEC)
2112 			av |= FILE__EXECUTE;
2113 		if (mask & MAY_READ)
2114 			av |= FILE__READ;
2115 
2116 		if (mask & MAY_APPEND)
2117 			av |= FILE__APPEND;
2118 		else if (mask & MAY_WRITE)
2119 			av |= FILE__WRITE;
2120 
2121 	} else {
2122 		if (mask & MAY_EXEC)
2123 			av |= DIR__SEARCH;
2124 		if (mask & MAY_WRITE)
2125 			av |= DIR__WRITE;
2126 		if (mask & MAY_READ)
2127 			av |= DIR__READ;
2128 	}
2129 
2130 	return av;
2131 }
2132 
2133 /* Convert a Linux file to an access vector. */
2134 static inline u32 file_to_av(struct file *file)
2135 {
2136 	u32 av = 0;
2137 
2138 	if (file->f_mode & FMODE_READ)
2139 		av |= FILE__READ;
2140 	if (file->f_mode & FMODE_WRITE) {
2141 		if (file->f_flags & O_APPEND)
2142 			av |= FILE__APPEND;
2143 		else
2144 			av |= FILE__WRITE;
2145 	}
2146 	if (!av) {
2147 		/*
2148 		 * Special file opened with flags 3 for ioctl-only use.
2149 		 */
2150 		av = FILE__IOCTL;
2151 	}
2152 
2153 	return av;
2154 }
2155 
2156 /*
2157  * Convert a file to an access vector and include the correct open
2158  * open permission.
2159  */
2160 static inline u32 open_file_to_av(struct file *file)
2161 {
2162 	u32 av = file_to_av(file);
2163 	struct inode *inode = file_inode(file);
2164 
2165 	if (selinux_policycap_openperm() &&
2166 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2167 		av |= FILE__OPEN;
2168 
2169 	return av;
2170 }
2171 
2172 /* Hook functions begin here. */
2173 
2174 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2175 {
2176 	u32 mysid = current_sid();
2177 	u32 mgrsid = task_sid(mgr);
2178 
2179 	return avc_has_perm(&selinux_state,
2180 			    mysid, mgrsid, SECCLASS_BINDER,
2181 			    BINDER__SET_CONTEXT_MGR, NULL);
2182 }
2183 
2184 static int selinux_binder_transaction(struct task_struct *from,
2185 				      struct task_struct *to)
2186 {
2187 	u32 mysid = current_sid();
2188 	u32 fromsid = task_sid(from);
2189 	u32 tosid = task_sid(to);
2190 	int rc;
2191 
2192 	if (mysid != fromsid) {
2193 		rc = avc_has_perm(&selinux_state,
2194 				  mysid, fromsid, SECCLASS_BINDER,
2195 				  BINDER__IMPERSONATE, NULL);
2196 		if (rc)
2197 			return rc;
2198 	}
2199 
2200 	return avc_has_perm(&selinux_state,
2201 			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2202 			    NULL);
2203 }
2204 
2205 static int selinux_binder_transfer_binder(struct task_struct *from,
2206 					  struct task_struct *to)
2207 {
2208 	u32 fromsid = task_sid(from);
2209 	u32 tosid = task_sid(to);
2210 
2211 	return avc_has_perm(&selinux_state,
2212 			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2213 			    NULL);
2214 }
2215 
2216 static int selinux_binder_transfer_file(struct task_struct *from,
2217 					struct task_struct *to,
2218 					struct file *file)
2219 {
2220 	u32 sid = task_sid(to);
2221 	struct file_security_struct *fsec = file->f_security;
2222 	struct dentry *dentry = file->f_path.dentry;
2223 	struct inode_security_struct *isec;
2224 	struct common_audit_data ad;
2225 	int rc;
2226 
2227 	ad.type = LSM_AUDIT_DATA_PATH;
2228 	ad.u.path = file->f_path;
2229 
2230 	if (sid != fsec->sid) {
2231 		rc = avc_has_perm(&selinux_state,
2232 				  sid, fsec->sid,
2233 				  SECCLASS_FD,
2234 				  FD__USE,
2235 				  &ad);
2236 		if (rc)
2237 			return rc;
2238 	}
2239 
2240 #ifdef CONFIG_BPF_SYSCALL
2241 	rc = bpf_fd_pass(file, sid);
2242 	if (rc)
2243 		return rc;
2244 #endif
2245 
2246 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2247 		return 0;
2248 
2249 	isec = backing_inode_security(dentry);
2250 	return avc_has_perm(&selinux_state,
2251 			    sid, isec->sid, isec->sclass, file_to_av(file),
2252 			    &ad);
2253 }
2254 
2255 static int selinux_ptrace_access_check(struct task_struct *child,
2256 				     unsigned int mode)
2257 {
2258 	u32 sid = current_sid();
2259 	u32 csid = task_sid(child);
2260 
2261 	if (mode & PTRACE_MODE_READ)
2262 		return avc_has_perm(&selinux_state,
2263 				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2264 
2265 	return avc_has_perm(&selinux_state,
2266 			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2267 }
2268 
2269 static int selinux_ptrace_traceme(struct task_struct *parent)
2270 {
2271 	return avc_has_perm(&selinux_state,
2272 			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2273 			    PROCESS__PTRACE, NULL);
2274 }
2275 
2276 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2277 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2278 {
2279 	return avc_has_perm(&selinux_state,
2280 			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2281 			    PROCESS__GETCAP, NULL);
2282 }
2283 
2284 static int selinux_capset(struct cred *new, const struct cred *old,
2285 			  const kernel_cap_t *effective,
2286 			  const kernel_cap_t *inheritable,
2287 			  const kernel_cap_t *permitted)
2288 {
2289 	return avc_has_perm(&selinux_state,
2290 			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2291 			    PROCESS__SETCAP, NULL);
2292 }
2293 
2294 /*
2295  * (This comment used to live with the selinux_task_setuid hook,
2296  * which was removed).
2297  *
2298  * Since setuid only affects the current process, and since the SELinux
2299  * controls are not based on the Linux identity attributes, SELinux does not
2300  * need to control this operation.  However, SELinux does control the use of
2301  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2302  */
2303 
2304 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2305 			   int cap, int audit)
2306 {
2307 	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2308 }
2309 
2310 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2311 {
2312 	const struct cred *cred = current_cred();
2313 	int rc = 0;
2314 
2315 	if (!sb)
2316 		return 0;
2317 
2318 	switch (cmds) {
2319 	case Q_SYNC:
2320 	case Q_QUOTAON:
2321 	case Q_QUOTAOFF:
2322 	case Q_SETINFO:
2323 	case Q_SETQUOTA:
2324 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2325 		break;
2326 	case Q_GETFMT:
2327 	case Q_GETINFO:
2328 	case Q_GETQUOTA:
2329 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2330 		break;
2331 	default:
2332 		rc = 0;  /* let the kernel handle invalid cmds */
2333 		break;
2334 	}
2335 	return rc;
2336 }
2337 
2338 static int selinux_quota_on(struct dentry *dentry)
2339 {
2340 	const struct cred *cred = current_cred();
2341 
2342 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2343 }
2344 
2345 static int selinux_syslog(int type)
2346 {
2347 	switch (type) {
2348 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2349 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2350 		return avc_has_perm(&selinux_state,
2351 				    current_sid(), SECINITSID_KERNEL,
2352 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2353 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2354 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2355 	/* Set level of messages printed to console */
2356 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2357 		return avc_has_perm(&selinux_state,
2358 				    current_sid(), SECINITSID_KERNEL,
2359 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2360 				    NULL);
2361 	}
2362 	/* All other syslog types */
2363 	return avc_has_perm(&selinux_state,
2364 			    current_sid(), SECINITSID_KERNEL,
2365 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2366 }
2367 
2368 /*
2369  * Check that a process has enough memory to allocate a new virtual
2370  * mapping. 0 means there is enough memory for the allocation to
2371  * succeed and -ENOMEM implies there is not.
2372  *
2373  * Do not audit the selinux permission check, as this is applied to all
2374  * processes that allocate mappings.
2375  */
2376 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2377 {
2378 	int rc, cap_sys_admin = 0;
2379 
2380 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2381 				 SECURITY_CAP_NOAUDIT, true);
2382 	if (rc == 0)
2383 		cap_sys_admin = 1;
2384 
2385 	return cap_sys_admin;
2386 }
2387 
2388 /* binprm security operations */
2389 
2390 static u32 ptrace_parent_sid(void)
2391 {
2392 	u32 sid = 0;
2393 	struct task_struct *tracer;
2394 
2395 	rcu_read_lock();
2396 	tracer = ptrace_parent(current);
2397 	if (tracer)
2398 		sid = task_sid(tracer);
2399 	rcu_read_unlock();
2400 
2401 	return sid;
2402 }
2403 
2404 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2405 			    const struct task_security_struct *old_tsec,
2406 			    const struct task_security_struct *new_tsec)
2407 {
2408 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2409 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2410 	int rc;
2411 	u32 av;
2412 
2413 	if (!nnp && !nosuid)
2414 		return 0; /* neither NNP nor nosuid */
2415 
2416 	if (new_tsec->sid == old_tsec->sid)
2417 		return 0; /* No change in credentials */
2418 
2419 	/*
2420 	 * If the policy enables the nnp_nosuid_transition policy capability,
2421 	 * then we permit transitions under NNP or nosuid if the
2422 	 * policy allows the corresponding permission between
2423 	 * the old and new contexts.
2424 	 */
2425 	if (selinux_policycap_nnp_nosuid_transition()) {
2426 		av = 0;
2427 		if (nnp)
2428 			av |= PROCESS2__NNP_TRANSITION;
2429 		if (nosuid)
2430 			av |= PROCESS2__NOSUID_TRANSITION;
2431 		rc = avc_has_perm(&selinux_state,
2432 				  old_tsec->sid, new_tsec->sid,
2433 				  SECCLASS_PROCESS2, av, NULL);
2434 		if (!rc)
2435 			return 0;
2436 	}
2437 
2438 	/*
2439 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2440 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2441 	 * of the permissions of the current SID.
2442 	 */
2443 	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2444 					 new_tsec->sid);
2445 	if (!rc)
2446 		return 0;
2447 
2448 	/*
2449 	 * On failure, preserve the errno values for NNP vs nosuid.
2450 	 * NNP:  Operation not permitted for caller.
2451 	 * nosuid:  Permission denied to file.
2452 	 */
2453 	if (nnp)
2454 		return -EPERM;
2455 	return -EACCES;
2456 }
2457 
2458 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2459 {
2460 	const struct task_security_struct *old_tsec;
2461 	struct task_security_struct *new_tsec;
2462 	struct inode_security_struct *isec;
2463 	struct common_audit_data ad;
2464 	struct inode *inode = file_inode(bprm->file);
2465 	int rc;
2466 
2467 	/* SELinux context only depends on initial program or script and not
2468 	 * the script interpreter */
2469 	if (bprm->called_set_creds)
2470 		return 0;
2471 
2472 	old_tsec = current_security();
2473 	new_tsec = bprm->cred->security;
2474 	isec = inode_security(inode);
2475 
2476 	/* Default to the current task SID. */
2477 	new_tsec->sid = old_tsec->sid;
2478 	new_tsec->osid = old_tsec->sid;
2479 
2480 	/* Reset fs, key, and sock SIDs on execve. */
2481 	new_tsec->create_sid = 0;
2482 	new_tsec->keycreate_sid = 0;
2483 	new_tsec->sockcreate_sid = 0;
2484 
2485 	if (old_tsec->exec_sid) {
2486 		new_tsec->sid = old_tsec->exec_sid;
2487 		/* Reset exec SID on execve. */
2488 		new_tsec->exec_sid = 0;
2489 
2490 		/* Fail on NNP or nosuid if not an allowed transition. */
2491 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2492 		if (rc)
2493 			return rc;
2494 	} else {
2495 		/* Check for a default transition on this program. */
2496 		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2497 					     isec->sid, SECCLASS_PROCESS, NULL,
2498 					     &new_tsec->sid);
2499 		if (rc)
2500 			return rc;
2501 
2502 		/*
2503 		 * Fallback to old SID on NNP or nosuid if not an allowed
2504 		 * transition.
2505 		 */
2506 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2507 		if (rc)
2508 			new_tsec->sid = old_tsec->sid;
2509 	}
2510 
2511 	ad.type = LSM_AUDIT_DATA_FILE;
2512 	ad.u.file = bprm->file;
2513 
2514 	if (new_tsec->sid == old_tsec->sid) {
2515 		rc = avc_has_perm(&selinux_state,
2516 				  old_tsec->sid, isec->sid,
2517 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2518 		if (rc)
2519 			return rc;
2520 	} else {
2521 		/* Check permissions for the transition. */
2522 		rc = avc_has_perm(&selinux_state,
2523 				  old_tsec->sid, new_tsec->sid,
2524 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2525 		if (rc)
2526 			return rc;
2527 
2528 		rc = avc_has_perm(&selinux_state,
2529 				  new_tsec->sid, isec->sid,
2530 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2531 		if (rc)
2532 			return rc;
2533 
2534 		/* Check for shared state */
2535 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2536 			rc = avc_has_perm(&selinux_state,
2537 					  old_tsec->sid, new_tsec->sid,
2538 					  SECCLASS_PROCESS, PROCESS__SHARE,
2539 					  NULL);
2540 			if (rc)
2541 				return -EPERM;
2542 		}
2543 
2544 		/* Make sure that anyone attempting to ptrace over a task that
2545 		 * changes its SID has the appropriate permit */
2546 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2547 			u32 ptsid = ptrace_parent_sid();
2548 			if (ptsid != 0) {
2549 				rc = avc_has_perm(&selinux_state,
2550 						  ptsid, new_tsec->sid,
2551 						  SECCLASS_PROCESS,
2552 						  PROCESS__PTRACE, NULL);
2553 				if (rc)
2554 					return -EPERM;
2555 			}
2556 		}
2557 
2558 		/* Clear any possibly unsafe personality bits on exec: */
2559 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2560 
2561 		/* Enable secure mode for SIDs transitions unless
2562 		   the noatsecure permission is granted between
2563 		   the two SIDs, i.e. ahp returns 0. */
2564 		rc = avc_has_perm(&selinux_state,
2565 				  old_tsec->sid, new_tsec->sid,
2566 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2567 				  NULL);
2568 		bprm->secureexec |= !!rc;
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static int match_file(const void *p, struct file *file, unsigned fd)
2575 {
2576 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2577 }
2578 
2579 /* Derived from fs/exec.c:flush_old_files. */
2580 static inline void flush_unauthorized_files(const struct cred *cred,
2581 					    struct files_struct *files)
2582 {
2583 	struct file *file, *devnull = NULL;
2584 	struct tty_struct *tty;
2585 	int drop_tty = 0;
2586 	unsigned n;
2587 
2588 	tty = get_current_tty();
2589 	if (tty) {
2590 		spin_lock(&tty->files_lock);
2591 		if (!list_empty(&tty->tty_files)) {
2592 			struct tty_file_private *file_priv;
2593 
2594 			/* Revalidate access to controlling tty.
2595 			   Use file_path_has_perm on the tty path directly
2596 			   rather than using file_has_perm, as this particular
2597 			   open file may belong to another process and we are
2598 			   only interested in the inode-based check here. */
2599 			file_priv = list_first_entry(&tty->tty_files,
2600 						struct tty_file_private, list);
2601 			file = file_priv->file;
2602 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2603 				drop_tty = 1;
2604 		}
2605 		spin_unlock(&tty->files_lock);
2606 		tty_kref_put(tty);
2607 	}
2608 	/* Reset controlling tty. */
2609 	if (drop_tty)
2610 		no_tty();
2611 
2612 	/* Revalidate access to inherited open files. */
2613 	n = iterate_fd(files, 0, match_file, cred);
2614 	if (!n) /* none found? */
2615 		return;
2616 
2617 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2618 	if (IS_ERR(devnull))
2619 		devnull = NULL;
2620 	/* replace all the matching ones with this */
2621 	do {
2622 		replace_fd(n - 1, devnull, 0);
2623 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2624 	if (devnull)
2625 		fput(devnull);
2626 }
2627 
2628 /*
2629  * Prepare a process for imminent new credential changes due to exec
2630  */
2631 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2632 {
2633 	struct task_security_struct *new_tsec;
2634 	struct rlimit *rlim, *initrlim;
2635 	int rc, i;
2636 
2637 	new_tsec = bprm->cred->security;
2638 	if (new_tsec->sid == new_tsec->osid)
2639 		return;
2640 
2641 	/* Close files for which the new task SID is not authorized. */
2642 	flush_unauthorized_files(bprm->cred, current->files);
2643 
2644 	/* Always clear parent death signal on SID transitions. */
2645 	current->pdeath_signal = 0;
2646 
2647 	/* Check whether the new SID can inherit resource limits from the old
2648 	 * SID.  If not, reset all soft limits to the lower of the current
2649 	 * task's hard limit and the init task's soft limit.
2650 	 *
2651 	 * Note that the setting of hard limits (even to lower them) can be
2652 	 * controlled by the setrlimit check.  The inclusion of the init task's
2653 	 * soft limit into the computation is to avoid resetting soft limits
2654 	 * higher than the default soft limit for cases where the default is
2655 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2656 	 */
2657 	rc = avc_has_perm(&selinux_state,
2658 			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2659 			  PROCESS__RLIMITINH, NULL);
2660 	if (rc) {
2661 		/* protect against do_prlimit() */
2662 		task_lock(current);
2663 		for (i = 0; i < RLIM_NLIMITS; i++) {
2664 			rlim = current->signal->rlim + i;
2665 			initrlim = init_task.signal->rlim + i;
2666 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2667 		}
2668 		task_unlock(current);
2669 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2670 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2671 	}
2672 }
2673 
2674 /*
2675  * Clean up the process immediately after the installation of new credentials
2676  * due to exec
2677  */
2678 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2679 {
2680 	const struct task_security_struct *tsec = current_security();
2681 	struct itimerval itimer;
2682 	u32 osid, sid;
2683 	int rc, i;
2684 
2685 	osid = tsec->osid;
2686 	sid = tsec->sid;
2687 
2688 	if (sid == osid)
2689 		return;
2690 
2691 	/* Check whether the new SID can inherit signal state from the old SID.
2692 	 * If not, clear itimers to avoid subsequent signal generation and
2693 	 * flush and unblock signals.
2694 	 *
2695 	 * This must occur _after_ the task SID has been updated so that any
2696 	 * kill done after the flush will be checked against the new SID.
2697 	 */
2698 	rc = avc_has_perm(&selinux_state,
2699 			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2700 	if (rc) {
2701 		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2702 			memset(&itimer, 0, sizeof itimer);
2703 			for (i = 0; i < 3; i++)
2704 				do_setitimer(i, &itimer, NULL);
2705 		}
2706 		spin_lock_irq(&current->sighand->siglock);
2707 		if (!fatal_signal_pending(current)) {
2708 			flush_sigqueue(&current->pending);
2709 			flush_sigqueue(&current->signal->shared_pending);
2710 			flush_signal_handlers(current, 1);
2711 			sigemptyset(&current->blocked);
2712 			recalc_sigpending();
2713 		}
2714 		spin_unlock_irq(&current->sighand->siglock);
2715 	}
2716 
2717 	/* Wake up the parent if it is waiting so that it can recheck
2718 	 * wait permission to the new task SID. */
2719 	read_lock(&tasklist_lock);
2720 	__wake_up_parent(current, current->real_parent);
2721 	read_unlock(&tasklist_lock);
2722 }
2723 
2724 /* superblock security operations */
2725 
2726 static int selinux_sb_alloc_security(struct super_block *sb)
2727 {
2728 	return superblock_alloc_security(sb);
2729 }
2730 
2731 static void selinux_sb_free_security(struct super_block *sb)
2732 {
2733 	superblock_free_security(sb);
2734 }
2735 
2736 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2737 {
2738 	if (plen > olen)
2739 		return 0;
2740 
2741 	return !memcmp(prefix, option, plen);
2742 }
2743 
2744 static inline int selinux_option(char *option, int len)
2745 {
2746 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2747 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2748 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2749 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2750 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2751 }
2752 
2753 static inline void take_option(char **to, char *from, int *first, int len)
2754 {
2755 	if (!*first) {
2756 		**to = ',';
2757 		*to += 1;
2758 	} else
2759 		*first = 0;
2760 	memcpy(*to, from, len);
2761 	*to += len;
2762 }
2763 
2764 static inline void take_selinux_option(char **to, char *from, int *first,
2765 				       int len)
2766 {
2767 	int current_size = 0;
2768 
2769 	if (!*first) {
2770 		**to = '|';
2771 		*to += 1;
2772 	} else
2773 		*first = 0;
2774 
2775 	while (current_size < len) {
2776 		if (*from != '"') {
2777 			**to = *from;
2778 			*to += 1;
2779 		}
2780 		from += 1;
2781 		current_size += 1;
2782 	}
2783 }
2784 
2785 static int selinux_sb_copy_data(char *orig, char *copy)
2786 {
2787 	int fnosec, fsec, rc = 0;
2788 	char *in_save, *in_curr, *in_end;
2789 	char *sec_curr, *nosec_save, *nosec;
2790 	int open_quote = 0;
2791 
2792 	in_curr = orig;
2793 	sec_curr = copy;
2794 
2795 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2796 	if (!nosec) {
2797 		rc = -ENOMEM;
2798 		goto out;
2799 	}
2800 
2801 	nosec_save = nosec;
2802 	fnosec = fsec = 1;
2803 	in_save = in_end = orig;
2804 
2805 	do {
2806 		if (*in_end == '"')
2807 			open_quote = !open_quote;
2808 		if ((*in_end == ',' && open_quote == 0) ||
2809 				*in_end == '\0') {
2810 			int len = in_end - in_curr;
2811 
2812 			if (selinux_option(in_curr, len))
2813 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2814 			else
2815 				take_option(&nosec, in_curr, &fnosec, len);
2816 
2817 			in_curr = in_end + 1;
2818 		}
2819 	} while (*in_end++);
2820 
2821 	strcpy(in_save, nosec_save);
2822 	free_page((unsigned long)nosec_save);
2823 out:
2824 	return rc;
2825 }
2826 
2827 static int selinux_sb_remount(struct super_block *sb, void *data)
2828 {
2829 	int rc, i, *flags;
2830 	struct security_mnt_opts opts;
2831 	char *secdata, **mount_options;
2832 	struct superblock_security_struct *sbsec = sb->s_security;
2833 
2834 	if (!(sbsec->flags & SE_SBINITIALIZED))
2835 		return 0;
2836 
2837 	if (!data)
2838 		return 0;
2839 
2840 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2841 		return 0;
2842 
2843 	security_init_mnt_opts(&opts);
2844 	secdata = alloc_secdata();
2845 	if (!secdata)
2846 		return -ENOMEM;
2847 	rc = selinux_sb_copy_data(data, secdata);
2848 	if (rc)
2849 		goto out_free_secdata;
2850 
2851 	rc = selinux_parse_opts_str(secdata, &opts);
2852 	if (rc)
2853 		goto out_free_secdata;
2854 
2855 	mount_options = opts.mnt_opts;
2856 	flags = opts.mnt_opts_flags;
2857 
2858 	for (i = 0; i < opts.num_mnt_opts; i++) {
2859 		u32 sid;
2860 
2861 		if (flags[i] == SBLABEL_MNT)
2862 			continue;
2863 		rc = security_context_str_to_sid(&selinux_state,
2864 						 mount_options[i], &sid,
2865 						 GFP_KERNEL);
2866 		if (rc) {
2867 			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2868 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2869 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2870 			goto out_free_opts;
2871 		}
2872 		rc = -EINVAL;
2873 		switch (flags[i]) {
2874 		case FSCONTEXT_MNT:
2875 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2876 				goto out_bad_option;
2877 			break;
2878 		case CONTEXT_MNT:
2879 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2880 				goto out_bad_option;
2881 			break;
2882 		case ROOTCONTEXT_MNT: {
2883 			struct inode_security_struct *root_isec;
2884 			root_isec = backing_inode_security(sb->s_root);
2885 
2886 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2887 				goto out_bad_option;
2888 			break;
2889 		}
2890 		case DEFCONTEXT_MNT:
2891 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2892 				goto out_bad_option;
2893 			break;
2894 		default:
2895 			goto out_free_opts;
2896 		}
2897 	}
2898 
2899 	rc = 0;
2900 out_free_opts:
2901 	security_free_mnt_opts(&opts);
2902 out_free_secdata:
2903 	free_secdata(secdata);
2904 	return rc;
2905 out_bad_option:
2906 	printk(KERN_WARNING "SELinux: unable to change security options "
2907 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2908 	       sb->s_type->name);
2909 	goto out_free_opts;
2910 }
2911 
2912 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2913 {
2914 	const struct cred *cred = current_cred();
2915 	struct common_audit_data ad;
2916 	int rc;
2917 
2918 	rc = superblock_doinit(sb, data);
2919 	if (rc)
2920 		return rc;
2921 
2922 	/* Allow all mounts performed by the kernel */
2923 	if (flags & MS_KERNMOUNT)
2924 		return 0;
2925 
2926 	ad.type = LSM_AUDIT_DATA_DENTRY;
2927 	ad.u.dentry = sb->s_root;
2928 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2929 }
2930 
2931 static int selinux_sb_statfs(struct dentry *dentry)
2932 {
2933 	const struct cred *cred = current_cred();
2934 	struct common_audit_data ad;
2935 
2936 	ad.type = LSM_AUDIT_DATA_DENTRY;
2937 	ad.u.dentry = dentry->d_sb->s_root;
2938 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2939 }
2940 
2941 static int selinux_mount(const char *dev_name,
2942 			 const struct path *path,
2943 			 const char *type,
2944 			 unsigned long flags,
2945 			 void *data)
2946 {
2947 	const struct cred *cred = current_cred();
2948 
2949 	if (flags & MS_REMOUNT)
2950 		return superblock_has_perm(cred, path->dentry->d_sb,
2951 					   FILESYSTEM__REMOUNT, NULL);
2952 	else
2953 		return path_has_perm(cred, path, FILE__MOUNTON);
2954 }
2955 
2956 static int selinux_umount(struct vfsmount *mnt, int flags)
2957 {
2958 	const struct cred *cred = current_cred();
2959 
2960 	return superblock_has_perm(cred, mnt->mnt_sb,
2961 				   FILESYSTEM__UNMOUNT, NULL);
2962 }
2963 
2964 /* inode security operations */
2965 
2966 static int selinux_inode_alloc_security(struct inode *inode)
2967 {
2968 	return inode_alloc_security(inode);
2969 }
2970 
2971 static void selinux_inode_free_security(struct inode *inode)
2972 {
2973 	inode_free_security(inode);
2974 }
2975 
2976 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2977 					const struct qstr *name, void **ctx,
2978 					u32 *ctxlen)
2979 {
2980 	u32 newsid;
2981 	int rc;
2982 
2983 	rc = selinux_determine_inode_label(current_security(),
2984 					   d_inode(dentry->d_parent), name,
2985 					   inode_mode_to_security_class(mode),
2986 					   &newsid);
2987 	if (rc)
2988 		return rc;
2989 
2990 	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2991 				       ctxlen);
2992 }
2993 
2994 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2995 					  struct qstr *name,
2996 					  const struct cred *old,
2997 					  struct cred *new)
2998 {
2999 	u32 newsid;
3000 	int rc;
3001 	struct task_security_struct *tsec;
3002 
3003 	rc = selinux_determine_inode_label(old->security,
3004 					   d_inode(dentry->d_parent), name,
3005 					   inode_mode_to_security_class(mode),
3006 					   &newsid);
3007 	if (rc)
3008 		return rc;
3009 
3010 	tsec = new->security;
3011 	tsec->create_sid = newsid;
3012 	return 0;
3013 }
3014 
3015 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3016 				       const struct qstr *qstr,
3017 				       const char **name,
3018 				       void **value, size_t *len)
3019 {
3020 	const struct task_security_struct *tsec = current_security();
3021 	struct superblock_security_struct *sbsec;
3022 	u32 newsid, clen;
3023 	int rc;
3024 	char *context;
3025 
3026 	sbsec = dir->i_sb->s_security;
3027 
3028 	newsid = tsec->create_sid;
3029 
3030 	rc = selinux_determine_inode_label(current_security(),
3031 		dir, qstr,
3032 		inode_mode_to_security_class(inode->i_mode),
3033 		&newsid);
3034 	if (rc)
3035 		return rc;
3036 
3037 	/* Possibly defer initialization to selinux_complete_init. */
3038 	if (sbsec->flags & SE_SBINITIALIZED) {
3039 		struct inode_security_struct *isec = inode->i_security;
3040 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3041 		isec->sid = newsid;
3042 		isec->initialized = LABEL_INITIALIZED;
3043 	}
3044 
3045 	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3046 		return -EOPNOTSUPP;
3047 
3048 	if (name)
3049 		*name = XATTR_SELINUX_SUFFIX;
3050 
3051 	if (value && len) {
3052 		rc = security_sid_to_context_force(&selinux_state, newsid,
3053 						   &context, &clen);
3054 		if (rc)
3055 			return rc;
3056 		*value = context;
3057 		*len = clen;
3058 	}
3059 
3060 	return 0;
3061 }
3062 
3063 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3064 {
3065 	return may_create(dir, dentry, SECCLASS_FILE);
3066 }
3067 
3068 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3069 {
3070 	return may_link(dir, old_dentry, MAY_LINK);
3071 }
3072 
3073 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3074 {
3075 	return may_link(dir, dentry, MAY_UNLINK);
3076 }
3077 
3078 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3079 {
3080 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3081 }
3082 
3083 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3084 {
3085 	return may_create(dir, dentry, SECCLASS_DIR);
3086 }
3087 
3088 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3089 {
3090 	return may_link(dir, dentry, MAY_RMDIR);
3091 }
3092 
3093 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3094 {
3095 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3096 }
3097 
3098 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3099 				struct inode *new_inode, struct dentry *new_dentry)
3100 {
3101 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3102 }
3103 
3104 static int selinux_inode_readlink(struct dentry *dentry)
3105 {
3106 	const struct cred *cred = current_cred();
3107 
3108 	return dentry_has_perm(cred, dentry, FILE__READ);
3109 }
3110 
3111 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3112 				     bool rcu)
3113 {
3114 	const struct cred *cred = current_cred();
3115 	struct common_audit_data ad;
3116 	struct inode_security_struct *isec;
3117 	u32 sid;
3118 
3119 	validate_creds(cred);
3120 
3121 	ad.type = LSM_AUDIT_DATA_DENTRY;
3122 	ad.u.dentry = dentry;
3123 	sid = cred_sid(cred);
3124 	isec = inode_security_rcu(inode, rcu);
3125 	if (IS_ERR(isec))
3126 		return PTR_ERR(isec);
3127 
3128 	return avc_has_perm_flags(&selinux_state,
3129 				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
3130 				  rcu ? MAY_NOT_BLOCK : 0);
3131 }
3132 
3133 static noinline int audit_inode_permission(struct inode *inode,
3134 					   u32 perms, u32 audited, u32 denied,
3135 					   int result,
3136 					   unsigned flags)
3137 {
3138 	struct common_audit_data ad;
3139 	struct inode_security_struct *isec = inode->i_security;
3140 	int rc;
3141 
3142 	ad.type = LSM_AUDIT_DATA_INODE;
3143 	ad.u.inode = inode;
3144 
3145 	rc = slow_avc_audit(&selinux_state,
3146 			    current_sid(), isec->sid, isec->sclass, perms,
3147 			    audited, denied, result, &ad, flags);
3148 	if (rc)
3149 		return rc;
3150 	return 0;
3151 }
3152 
3153 static int selinux_inode_permission(struct inode *inode, int mask)
3154 {
3155 	const struct cred *cred = current_cred();
3156 	u32 perms;
3157 	bool from_access;
3158 	unsigned flags = mask & MAY_NOT_BLOCK;
3159 	struct inode_security_struct *isec;
3160 	u32 sid;
3161 	struct av_decision avd;
3162 	int rc, rc2;
3163 	u32 audited, denied;
3164 
3165 	from_access = mask & MAY_ACCESS;
3166 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3167 
3168 	/* No permission to check.  Existence test. */
3169 	if (!mask)
3170 		return 0;
3171 
3172 	validate_creds(cred);
3173 
3174 	if (unlikely(IS_PRIVATE(inode)))
3175 		return 0;
3176 
3177 	perms = file_mask_to_av(inode->i_mode, mask);
3178 
3179 	sid = cred_sid(cred);
3180 	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3181 	if (IS_ERR(isec))
3182 		return PTR_ERR(isec);
3183 
3184 	rc = avc_has_perm_noaudit(&selinux_state,
3185 				  sid, isec->sid, isec->sclass, perms, 0, &avd);
3186 	audited = avc_audit_required(perms, &avd, rc,
3187 				     from_access ? FILE__AUDIT_ACCESS : 0,
3188 				     &denied);
3189 	if (likely(!audited))
3190 		return rc;
3191 
3192 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3193 	if (rc2)
3194 		return rc2;
3195 	return rc;
3196 }
3197 
3198 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3199 {
3200 	const struct cred *cred = current_cred();
3201 	struct inode *inode = d_backing_inode(dentry);
3202 	unsigned int ia_valid = iattr->ia_valid;
3203 	__u32 av = FILE__WRITE;
3204 
3205 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3206 	if (ia_valid & ATTR_FORCE) {
3207 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3208 			      ATTR_FORCE);
3209 		if (!ia_valid)
3210 			return 0;
3211 	}
3212 
3213 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3214 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3215 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3216 
3217 	if (selinux_policycap_openperm() &&
3218 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3219 	    (ia_valid & ATTR_SIZE) &&
3220 	    !(ia_valid & ATTR_FILE))
3221 		av |= FILE__OPEN;
3222 
3223 	return dentry_has_perm(cred, dentry, av);
3224 }
3225 
3226 static int selinux_inode_getattr(const struct path *path)
3227 {
3228 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3229 }
3230 
3231 static bool has_cap_mac_admin(bool audit)
3232 {
3233 	const struct cred *cred = current_cred();
3234 	int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3235 
3236 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3237 		return false;
3238 	if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3239 		return false;
3240 	return true;
3241 }
3242 
3243 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3244 				  const void *value, size_t size, int flags)
3245 {
3246 	struct inode *inode = d_backing_inode(dentry);
3247 	struct inode_security_struct *isec;
3248 	struct superblock_security_struct *sbsec;
3249 	struct common_audit_data ad;
3250 	u32 newsid, sid = current_sid();
3251 	int rc = 0;
3252 
3253 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3254 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3255 		if (rc)
3256 			return rc;
3257 
3258 		/* Not an attribute we recognize, so just check the
3259 		   ordinary setattr permission. */
3260 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3261 	}
3262 
3263 	sbsec = inode->i_sb->s_security;
3264 	if (!(sbsec->flags & SBLABEL_MNT))
3265 		return -EOPNOTSUPP;
3266 
3267 	if (!inode_owner_or_capable(inode))
3268 		return -EPERM;
3269 
3270 	ad.type = LSM_AUDIT_DATA_DENTRY;
3271 	ad.u.dentry = dentry;
3272 
3273 	isec = backing_inode_security(dentry);
3274 	rc = avc_has_perm(&selinux_state,
3275 			  sid, isec->sid, isec->sclass,
3276 			  FILE__RELABELFROM, &ad);
3277 	if (rc)
3278 		return rc;
3279 
3280 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3281 				     GFP_KERNEL);
3282 	if (rc == -EINVAL) {
3283 		if (!has_cap_mac_admin(true)) {
3284 			struct audit_buffer *ab;
3285 			size_t audit_size;
3286 
3287 			/* We strip a nul only if it is at the end, otherwise the
3288 			 * context contains a nul and we should audit that */
3289 			if (value) {
3290 				const char *str = value;
3291 
3292 				if (str[size - 1] == '\0')
3293 					audit_size = size - 1;
3294 				else
3295 					audit_size = size;
3296 			} else {
3297 				audit_size = 0;
3298 			}
3299 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3300 			audit_log_format(ab, "op=setxattr invalid_context=");
3301 			audit_log_n_untrustedstring(ab, value, audit_size);
3302 			audit_log_end(ab);
3303 
3304 			return rc;
3305 		}
3306 		rc = security_context_to_sid_force(&selinux_state, value,
3307 						   size, &newsid);
3308 	}
3309 	if (rc)
3310 		return rc;
3311 
3312 	rc = avc_has_perm(&selinux_state,
3313 			  sid, newsid, isec->sclass,
3314 			  FILE__RELABELTO, &ad);
3315 	if (rc)
3316 		return rc;
3317 
3318 	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3319 					  sid, isec->sclass);
3320 	if (rc)
3321 		return rc;
3322 
3323 	return avc_has_perm(&selinux_state,
3324 			    newsid,
3325 			    sbsec->sid,
3326 			    SECCLASS_FILESYSTEM,
3327 			    FILESYSTEM__ASSOCIATE,
3328 			    &ad);
3329 }
3330 
3331 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3332 					const void *value, size_t size,
3333 					int flags)
3334 {
3335 	struct inode *inode = d_backing_inode(dentry);
3336 	struct inode_security_struct *isec;
3337 	u32 newsid;
3338 	int rc;
3339 
3340 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3341 		/* Not an attribute we recognize, so nothing to do. */
3342 		return;
3343 	}
3344 
3345 	rc = security_context_to_sid_force(&selinux_state, value, size,
3346 					   &newsid);
3347 	if (rc) {
3348 		printk(KERN_ERR "SELinux:  unable to map context to SID"
3349 		       "for (%s, %lu), rc=%d\n",
3350 		       inode->i_sb->s_id, inode->i_ino, -rc);
3351 		return;
3352 	}
3353 
3354 	isec = backing_inode_security(dentry);
3355 	spin_lock(&isec->lock);
3356 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3357 	isec->sid = newsid;
3358 	isec->initialized = LABEL_INITIALIZED;
3359 	spin_unlock(&isec->lock);
3360 
3361 	return;
3362 }
3363 
3364 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3365 {
3366 	const struct cred *cred = current_cred();
3367 
3368 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3369 }
3370 
3371 static int selinux_inode_listxattr(struct dentry *dentry)
3372 {
3373 	const struct cred *cred = current_cred();
3374 
3375 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3376 }
3377 
3378 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3379 {
3380 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3381 		int rc = cap_inode_removexattr(dentry, name);
3382 		if (rc)
3383 			return rc;
3384 
3385 		/* Not an attribute we recognize, so just check the
3386 		   ordinary setattr permission. */
3387 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3388 	}
3389 
3390 	/* No one is allowed to remove a SELinux security label.
3391 	   You can change the label, but all data must be labeled. */
3392 	return -EACCES;
3393 }
3394 
3395 /*
3396  * Copy the inode security context value to the user.
3397  *
3398  * Permission check is handled by selinux_inode_getxattr hook.
3399  */
3400 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3401 {
3402 	u32 size;
3403 	int error;
3404 	char *context = NULL;
3405 	struct inode_security_struct *isec;
3406 
3407 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3408 		return -EOPNOTSUPP;
3409 
3410 	/*
3411 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3412 	 * value even if it is not defined by current policy; otherwise,
3413 	 * use the in-core value under current policy.
3414 	 * Use the non-auditing forms of the permission checks since
3415 	 * getxattr may be called by unprivileged processes commonly
3416 	 * and lack of permission just means that we fall back to the
3417 	 * in-core context value, not a denial.
3418 	 */
3419 	isec = inode_security(inode);
3420 	if (has_cap_mac_admin(false))
3421 		error = security_sid_to_context_force(&selinux_state,
3422 						      isec->sid, &context,
3423 						      &size);
3424 	else
3425 		error = security_sid_to_context(&selinux_state, isec->sid,
3426 						&context, &size);
3427 	if (error)
3428 		return error;
3429 	error = size;
3430 	if (alloc) {
3431 		*buffer = context;
3432 		goto out_nofree;
3433 	}
3434 	kfree(context);
3435 out_nofree:
3436 	return error;
3437 }
3438 
3439 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3440 				     const void *value, size_t size, int flags)
3441 {
3442 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3443 	u32 newsid;
3444 	int rc;
3445 
3446 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3447 		return -EOPNOTSUPP;
3448 
3449 	if (!value || !size)
3450 		return -EACCES;
3451 
3452 	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3453 				     GFP_KERNEL);
3454 	if (rc)
3455 		return rc;
3456 
3457 	spin_lock(&isec->lock);
3458 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3459 	isec->sid = newsid;
3460 	isec->initialized = LABEL_INITIALIZED;
3461 	spin_unlock(&isec->lock);
3462 	return 0;
3463 }
3464 
3465 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3466 {
3467 	const int len = sizeof(XATTR_NAME_SELINUX);
3468 	if (buffer && len <= buffer_size)
3469 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3470 	return len;
3471 }
3472 
3473 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3474 {
3475 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3476 	*secid = isec->sid;
3477 }
3478 
3479 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3480 {
3481 	u32 sid;
3482 	struct task_security_struct *tsec;
3483 	struct cred *new_creds = *new;
3484 
3485 	if (new_creds == NULL) {
3486 		new_creds = prepare_creds();
3487 		if (!new_creds)
3488 			return -ENOMEM;
3489 	}
3490 
3491 	tsec = new_creds->security;
3492 	/* Get label from overlay inode and set it in create_sid */
3493 	selinux_inode_getsecid(d_inode(src), &sid);
3494 	tsec->create_sid = sid;
3495 	*new = new_creds;
3496 	return 0;
3497 }
3498 
3499 static int selinux_inode_copy_up_xattr(const char *name)
3500 {
3501 	/* The copy_up hook above sets the initial context on an inode, but we
3502 	 * don't then want to overwrite it by blindly copying all the lower
3503 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3504 	 */
3505 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3506 		return 1; /* Discard */
3507 	/*
3508 	 * Any other attribute apart from SELINUX is not claimed, supported
3509 	 * by selinux.
3510 	 */
3511 	return -EOPNOTSUPP;
3512 }
3513 
3514 /* file security operations */
3515 
3516 static int selinux_revalidate_file_permission(struct file *file, int mask)
3517 {
3518 	const struct cred *cred = current_cred();
3519 	struct inode *inode = file_inode(file);
3520 
3521 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3522 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3523 		mask |= MAY_APPEND;
3524 
3525 	return file_has_perm(cred, file,
3526 			     file_mask_to_av(inode->i_mode, mask));
3527 }
3528 
3529 static int selinux_file_permission(struct file *file, int mask)
3530 {
3531 	struct inode *inode = file_inode(file);
3532 	struct file_security_struct *fsec = file->f_security;
3533 	struct inode_security_struct *isec;
3534 	u32 sid = current_sid();
3535 
3536 	if (!mask)
3537 		/* No permission to check.  Existence test. */
3538 		return 0;
3539 
3540 	isec = inode_security(inode);
3541 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3542 	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3543 		/* No change since file_open check. */
3544 		return 0;
3545 
3546 	return selinux_revalidate_file_permission(file, mask);
3547 }
3548 
3549 static int selinux_file_alloc_security(struct file *file)
3550 {
3551 	return file_alloc_security(file);
3552 }
3553 
3554 static void selinux_file_free_security(struct file *file)
3555 {
3556 	file_free_security(file);
3557 }
3558 
3559 /*
3560  * Check whether a task has the ioctl permission and cmd
3561  * operation to an inode.
3562  */
3563 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3564 		u32 requested, u16 cmd)
3565 {
3566 	struct common_audit_data ad;
3567 	struct file_security_struct *fsec = file->f_security;
3568 	struct inode *inode = file_inode(file);
3569 	struct inode_security_struct *isec;
3570 	struct lsm_ioctlop_audit ioctl;
3571 	u32 ssid = cred_sid(cred);
3572 	int rc;
3573 	u8 driver = cmd >> 8;
3574 	u8 xperm = cmd & 0xff;
3575 
3576 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3577 	ad.u.op = &ioctl;
3578 	ad.u.op->cmd = cmd;
3579 	ad.u.op->path = file->f_path;
3580 
3581 	if (ssid != fsec->sid) {
3582 		rc = avc_has_perm(&selinux_state,
3583 				  ssid, fsec->sid,
3584 				SECCLASS_FD,
3585 				FD__USE,
3586 				&ad);
3587 		if (rc)
3588 			goto out;
3589 	}
3590 
3591 	if (unlikely(IS_PRIVATE(inode)))
3592 		return 0;
3593 
3594 	isec = inode_security(inode);
3595 	rc = avc_has_extended_perms(&selinux_state,
3596 				    ssid, isec->sid, isec->sclass,
3597 				    requested, driver, xperm, &ad);
3598 out:
3599 	return rc;
3600 }
3601 
3602 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3603 			      unsigned long arg)
3604 {
3605 	const struct cred *cred = current_cred();
3606 	int error = 0;
3607 
3608 	switch (cmd) {
3609 	case FIONREAD:
3610 	/* fall through */
3611 	case FIBMAP:
3612 	/* fall through */
3613 	case FIGETBSZ:
3614 	/* fall through */
3615 	case FS_IOC_GETFLAGS:
3616 	/* fall through */
3617 	case FS_IOC_GETVERSION:
3618 		error = file_has_perm(cred, file, FILE__GETATTR);
3619 		break;
3620 
3621 	case FS_IOC_SETFLAGS:
3622 	/* fall through */
3623 	case FS_IOC_SETVERSION:
3624 		error = file_has_perm(cred, file, FILE__SETATTR);
3625 		break;
3626 
3627 	/* sys_ioctl() checks */
3628 	case FIONBIO:
3629 	/* fall through */
3630 	case FIOASYNC:
3631 		error = file_has_perm(cred, file, 0);
3632 		break;
3633 
3634 	case KDSKBENT:
3635 	case KDSKBSENT:
3636 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3637 					    SECURITY_CAP_AUDIT, true);
3638 		break;
3639 
3640 	/* default case assumes that the command will go
3641 	 * to the file's ioctl() function.
3642 	 */
3643 	default:
3644 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3645 	}
3646 	return error;
3647 }
3648 
3649 static int default_noexec;
3650 
3651 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3652 {
3653 	const struct cred *cred = current_cred();
3654 	u32 sid = cred_sid(cred);
3655 	int rc = 0;
3656 
3657 	if (default_noexec &&
3658 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3659 				   (!shared && (prot & PROT_WRITE)))) {
3660 		/*
3661 		 * We are making executable an anonymous mapping or a
3662 		 * private file mapping that will also be writable.
3663 		 * This has an additional check.
3664 		 */
3665 		rc = avc_has_perm(&selinux_state,
3666 				  sid, sid, SECCLASS_PROCESS,
3667 				  PROCESS__EXECMEM, NULL);
3668 		if (rc)
3669 			goto error;
3670 	}
3671 
3672 	if (file) {
3673 		/* read access is always possible with a mapping */
3674 		u32 av = FILE__READ;
3675 
3676 		/* write access only matters if the mapping is shared */
3677 		if (shared && (prot & PROT_WRITE))
3678 			av |= FILE__WRITE;
3679 
3680 		if (prot & PROT_EXEC)
3681 			av |= FILE__EXECUTE;
3682 
3683 		return file_has_perm(cred, file, av);
3684 	}
3685 
3686 error:
3687 	return rc;
3688 }
3689 
3690 static int selinux_mmap_addr(unsigned long addr)
3691 {
3692 	int rc = 0;
3693 
3694 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3695 		u32 sid = current_sid();
3696 		rc = avc_has_perm(&selinux_state,
3697 				  sid, sid, SECCLASS_MEMPROTECT,
3698 				  MEMPROTECT__MMAP_ZERO, NULL);
3699 	}
3700 
3701 	return rc;
3702 }
3703 
3704 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3705 			     unsigned long prot, unsigned long flags)
3706 {
3707 	struct common_audit_data ad;
3708 	int rc;
3709 
3710 	if (file) {
3711 		ad.type = LSM_AUDIT_DATA_FILE;
3712 		ad.u.file = file;
3713 		rc = inode_has_perm(current_cred(), file_inode(file),
3714 				    FILE__MAP, &ad);
3715 		if (rc)
3716 			return rc;
3717 	}
3718 
3719 	if (selinux_state.checkreqprot)
3720 		prot = reqprot;
3721 
3722 	return file_map_prot_check(file, prot,
3723 				   (flags & MAP_TYPE) == MAP_SHARED);
3724 }
3725 
3726 static int selinux_file_mprotect(struct vm_area_struct *vma,
3727 				 unsigned long reqprot,
3728 				 unsigned long prot)
3729 {
3730 	const struct cred *cred = current_cred();
3731 	u32 sid = cred_sid(cred);
3732 
3733 	if (selinux_state.checkreqprot)
3734 		prot = reqprot;
3735 
3736 	if (default_noexec &&
3737 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3738 		int rc = 0;
3739 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3740 		    vma->vm_end <= vma->vm_mm->brk) {
3741 			rc = avc_has_perm(&selinux_state,
3742 					  sid, sid, SECCLASS_PROCESS,
3743 					  PROCESS__EXECHEAP, NULL);
3744 		} else if (!vma->vm_file &&
3745 			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3746 			     vma->vm_end >= vma->vm_mm->start_stack) ||
3747 			    vma_is_stack_for_current(vma))) {
3748 			rc = avc_has_perm(&selinux_state,
3749 					  sid, sid, SECCLASS_PROCESS,
3750 					  PROCESS__EXECSTACK, NULL);
3751 		} else if (vma->vm_file && vma->anon_vma) {
3752 			/*
3753 			 * We are making executable a file mapping that has
3754 			 * had some COW done. Since pages might have been
3755 			 * written, check ability to execute the possibly
3756 			 * modified content.  This typically should only
3757 			 * occur for text relocations.
3758 			 */
3759 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3760 		}
3761 		if (rc)
3762 			return rc;
3763 	}
3764 
3765 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3766 }
3767 
3768 static int selinux_file_lock(struct file *file, unsigned int cmd)
3769 {
3770 	const struct cred *cred = current_cred();
3771 
3772 	return file_has_perm(cred, file, FILE__LOCK);
3773 }
3774 
3775 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3776 			      unsigned long arg)
3777 {
3778 	const struct cred *cred = current_cred();
3779 	int err = 0;
3780 
3781 	switch (cmd) {
3782 	case F_SETFL:
3783 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3784 			err = file_has_perm(cred, file, FILE__WRITE);
3785 			break;
3786 		}
3787 		/* fall through */
3788 	case F_SETOWN:
3789 	case F_SETSIG:
3790 	case F_GETFL:
3791 	case F_GETOWN:
3792 	case F_GETSIG:
3793 	case F_GETOWNER_UIDS:
3794 		/* Just check FD__USE permission */
3795 		err = file_has_perm(cred, file, 0);
3796 		break;
3797 	case F_GETLK:
3798 	case F_SETLK:
3799 	case F_SETLKW:
3800 	case F_OFD_GETLK:
3801 	case F_OFD_SETLK:
3802 	case F_OFD_SETLKW:
3803 #if BITS_PER_LONG == 32
3804 	case F_GETLK64:
3805 	case F_SETLK64:
3806 	case F_SETLKW64:
3807 #endif
3808 		err = file_has_perm(cred, file, FILE__LOCK);
3809 		break;
3810 	}
3811 
3812 	return err;
3813 }
3814 
3815 static void selinux_file_set_fowner(struct file *file)
3816 {
3817 	struct file_security_struct *fsec;
3818 
3819 	fsec = file->f_security;
3820 	fsec->fown_sid = current_sid();
3821 }
3822 
3823 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3824 				       struct fown_struct *fown, int signum)
3825 {
3826 	struct file *file;
3827 	u32 sid = task_sid(tsk);
3828 	u32 perm;
3829 	struct file_security_struct *fsec;
3830 
3831 	/* struct fown_struct is never outside the context of a struct file */
3832 	file = container_of(fown, struct file, f_owner);
3833 
3834 	fsec = file->f_security;
3835 
3836 	if (!signum)
3837 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3838 	else
3839 		perm = signal_to_av(signum);
3840 
3841 	return avc_has_perm(&selinux_state,
3842 			    fsec->fown_sid, sid,
3843 			    SECCLASS_PROCESS, perm, NULL);
3844 }
3845 
3846 static int selinux_file_receive(struct file *file)
3847 {
3848 	const struct cred *cred = current_cred();
3849 
3850 	return file_has_perm(cred, file, file_to_av(file));
3851 }
3852 
3853 static int selinux_file_open(struct file *file, const struct cred *cred)
3854 {
3855 	struct file_security_struct *fsec;
3856 	struct inode_security_struct *isec;
3857 
3858 	fsec = file->f_security;
3859 	isec = inode_security(file_inode(file));
3860 	/*
3861 	 * Save inode label and policy sequence number
3862 	 * at open-time so that selinux_file_permission
3863 	 * can determine whether revalidation is necessary.
3864 	 * Task label is already saved in the file security
3865 	 * struct as its SID.
3866 	 */
3867 	fsec->isid = isec->sid;
3868 	fsec->pseqno = avc_policy_seqno(&selinux_state);
3869 	/*
3870 	 * Since the inode label or policy seqno may have changed
3871 	 * between the selinux_inode_permission check and the saving
3872 	 * of state above, recheck that access is still permitted.
3873 	 * Otherwise, access might never be revalidated against the
3874 	 * new inode label or new policy.
3875 	 * This check is not redundant - do not remove.
3876 	 */
3877 	return file_path_has_perm(cred, file, open_file_to_av(file));
3878 }
3879 
3880 /* task security operations */
3881 
3882 static int selinux_task_alloc(struct task_struct *task,
3883 			      unsigned long clone_flags)
3884 {
3885 	u32 sid = current_sid();
3886 
3887 	return avc_has_perm(&selinux_state,
3888 			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3889 }
3890 
3891 /*
3892  * allocate the SELinux part of blank credentials
3893  */
3894 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3895 {
3896 	struct task_security_struct *tsec;
3897 
3898 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3899 	if (!tsec)
3900 		return -ENOMEM;
3901 
3902 	cred->security = tsec;
3903 	return 0;
3904 }
3905 
3906 /*
3907  * detach and free the LSM part of a set of credentials
3908  */
3909 static void selinux_cred_free(struct cred *cred)
3910 {
3911 	struct task_security_struct *tsec = cred->security;
3912 
3913 	/*
3914 	 * cred->security == NULL if security_cred_alloc_blank() or
3915 	 * security_prepare_creds() returned an error.
3916 	 */
3917 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3918 	cred->security = (void *) 0x7UL;
3919 	kfree(tsec);
3920 }
3921 
3922 /*
3923  * prepare a new set of credentials for modification
3924  */
3925 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3926 				gfp_t gfp)
3927 {
3928 	const struct task_security_struct *old_tsec;
3929 	struct task_security_struct *tsec;
3930 
3931 	old_tsec = old->security;
3932 
3933 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3934 	if (!tsec)
3935 		return -ENOMEM;
3936 
3937 	new->security = tsec;
3938 	return 0;
3939 }
3940 
3941 /*
3942  * transfer the SELinux data to a blank set of creds
3943  */
3944 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3945 {
3946 	const struct task_security_struct *old_tsec = old->security;
3947 	struct task_security_struct *tsec = new->security;
3948 
3949 	*tsec = *old_tsec;
3950 }
3951 
3952 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3953 {
3954 	*secid = cred_sid(c);
3955 }
3956 
3957 /*
3958  * set the security data for a kernel service
3959  * - all the creation contexts are set to unlabelled
3960  */
3961 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3962 {
3963 	struct task_security_struct *tsec = new->security;
3964 	u32 sid = current_sid();
3965 	int ret;
3966 
3967 	ret = avc_has_perm(&selinux_state,
3968 			   sid, secid,
3969 			   SECCLASS_KERNEL_SERVICE,
3970 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3971 			   NULL);
3972 	if (ret == 0) {
3973 		tsec->sid = secid;
3974 		tsec->create_sid = 0;
3975 		tsec->keycreate_sid = 0;
3976 		tsec->sockcreate_sid = 0;
3977 	}
3978 	return ret;
3979 }
3980 
3981 /*
3982  * set the file creation context in a security record to the same as the
3983  * objective context of the specified inode
3984  */
3985 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3986 {
3987 	struct inode_security_struct *isec = inode_security(inode);
3988 	struct task_security_struct *tsec = new->security;
3989 	u32 sid = current_sid();
3990 	int ret;
3991 
3992 	ret = avc_has_perm(&selinux_state,
3993 			   sid, isec->sid,
3994 			   SECCLASS_KERNEL_SERVICE,
3995 			   KERNEL_SERVICE__CREATE_FILES_AS,
3996 			   NULL);
3997 
3998 	if (ret == 0)
3999 		tsec->create_sid = isec->sid;
4000 	return ret;
4001 }
4002 
4003 static int selinux_kernel_module_request(char *kmod_name)
4004 {
4005 	struct common_audit_data ad;
4006 
4007 	ad.type = LSM_AUDIT_DATA_KMOD;
4008 	ad.u.kmod_name = kmod_name;
4009 
4010 	return avc_has_perm(&selinux_state,
4011 			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4012 			    SYSTEM__MODULE_REQUEST, &ad);
4013 }
4014 
4015 static int selinux_kernel_module_from_file(struct file *file)
4016 {
4017 	struct common_audit_data ad;
4018 	struct inode_security_struct *isec;
4019 	struct file_security_struct *fsec;
4020 	u32 sid = current_sid();
4021 	int rc;
4022 
4023 	/* init_module */
4024 	if (file == NULL)
4025 		return avc_has_perm(&selinux_state,
4026 				    sid, sid, SECCLASS_SYSTEM,
4027 					SYSTEM__MODULE_LOAD, NULL);
4028 
4029 	/* finit_module */
4030 
4031 	ad.type = LSM_AUDIT_DATA_FILE;
4032 	ad.u.file = file;
4033 
4034 	fsec = file->f_security;
4035 	if (sid != fsec->sid) {
4036 		rc = avc_has_perm(&selinux_state,
4037 				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4038 		if (rc)
4039 			return rc;
4040 	}
4041 
4042 	isec = inode_security(file_inode(file));
4043 	return avc_has_perm(&selinux_state,
4044 			    sid, isec->sid, SECCLASS_SYSTEM,
4045 				SYSTEM__MODULE_LOAD, &ad);
4046 }
4047 
4048 static int selinux_kernel_read_file(struct file *file,
4049 				    enum kernel_read_file_id id)
4050 {
4051 	int rc = 0;
4052 
4053 	switch (id) {
4054 	case READING_MODULE:
4055 		rc = selinux_kernel_module_from_file(file);
4056 		break;
4057 	default:
4058 		break;
4059 	}
4060 
4061 	return rc;
4062 }
4063 
4064 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4065 {
4066 	return avc_has_perm(&selinux_state,
4067 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4068 			    PROCESS__SETPGID, NULL);
4069 }
4070 
4071 static int selinux_task_getpgid(struct task_struct *p)
4072 {
4073 	return avc_has_perm(&selinux_state,
4074 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4075 			    PROCESS__GETPGID, NULL);
4076 }
4077 
4078 static int selinux_task_getsid(struct task_struct *p)
4079 {
4080 	return avc_has_perm(&selinux_state,
4081 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4082 			    PROCESS__GETSESSION, NULL);
4083 }
4084 
4085 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4086 {
4087 	*secid = task_sid(p);
4088 }
4089 
4090 static int selinux_task_setnice(struct task_struct *p, int nice)
4091 {
4092 	return avc_has_perm(&selinux_state,
4093 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4094 			    PROCESS__SETSCHED, NULL);
4095 }
4096 
4097 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4098 {
4099 	return avc_has_perm(&selinux_state,
4100 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4101 			    PROCESS__SETSCHED, NULL);
4102 }
4103 
4104 static int selinux_task_getioprio(struct task_struct *p)
4105 {
4106 	return avc_has_perm(&selinux_state,
4107 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4108 			    PROCESS__GETSCHED, NULL);
4109 }
4110 
4111 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4112 				unsigned int flags)
4113 {
4114 	u32 av = 0;
4115 
4116 	if (!flags)
4117 		return 0;
4118 	if (flags & LSM_PRLIMIT_WRITE)
4119 		av |= PROCESS__SETRLIMIT;
4120 	if (flags & LSM_PRLIMIT_READ)
4121 		av |= PROCESS__GETRLIMIT;
4122 	return avc_has_perm(&selinux_state,
4123 			    cred_sid(cred), cred_sid(tcred),
4124 			    SECCLASS_PROCESS, av, NULL);
4125 }
4126 
4127 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4128 		struct rlimit *new_rlim)
4129 {
4130 	struct rlimit *old_rlim = p->signal->rlim + resource;
4131 
4132 	/* Control the ability to change the hard limit (whether
4133 	   lowering or raising it), so that the hard limit can
4134 	   later be used as a safe reset point for the soft limit
4135 	   upon context transitions.  See selinux_bprm_committing_creds. */
4136 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4137 		return avc_has_perm(&selinux_state,
4138 				    current_sid(), task_sid(p),
4139 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4140 
4141 	return 0;
4142 }
4143 
4144 static int selinux_task_setscheduler(struct task_struct *p)
4145 {
4146 	return avc_has_perm(&selinux_state,
4147 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4148 			    PROCESS__SETSCHED, NULL);
4149 }
4150 
4151 static int selinux_task_getscheduler(struct task_struct *p)
4152 {
4153 	return avc_has_perm(&selinux_state,
4154 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4155 			    PROCESS__GETSCHED, NULL);
4156 }
4157 
4158 static int selinux_task_movememory(struct task_struct *p)
4159 {
4160 	return avc_has_perm(&selinux_state,
4161 			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4162 			    PROCESS__SETSCHED, NULL);
4163 }
4164 
4165 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4166 				int sig, const struct cred *cred)
4167 {
4168 	u32 secid;
4169 	u32 perm;
4170 
4171 	if (!sig)
4172 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4173 	else
4174 		perm = signal_to_av(sig);
4175 	if (!cred)
4176 		secid = current_sid();
4177 	else
4178 		secid = cred_sid(cred);
4179 	return avc_has_perm(&selinux_state,
4180 			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4181 }
4182 
4183 static void selinux_task_to_inode(struct task_struct *p,
4184 				  struct inode *inode)
4185 {
4186 	struct inode_security_struct *isec = inode->i_security;
4187 	u32 sid = task_sid(p);
4188 
4189 	spin_lock(&isec->lock);
4190 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4191 	isec->sid = sid;
4192 	isec->initialized = LABEL_INITIALIZED;
4193 	spin_unlock(&isec->lock);
4194 }
4195 
4196 /* Returns error only if unable to parse addresses */
4197 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4198 			struct common_audit_data *ad, u8 *proto)
4199 {
4200 	int offset, ihlen, ret = -EINVAL;
4201 	struct iphdr _iph, *ih;
4202 
4203 	offset = skb_network_offset(skb);
4204 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4205 	if (ih == NULL)
4206 		goto out;
4207 
4208 	ihlen = ih->ihl * 4;
4209 	if (ihlen < sizeof(_iph))
4210 		goto out;
4211 
4212 	ad->u.net->v4info.saddr = ih->saddr;
4213 	ad->u.net->v4info.daddr = ih->daddr;
4214 	ret = 0;
4215 
4216 	if (proto)
4217 		*proto = ih->protocol;
4218 
4219 	switch (ih->protocol) {
4220 	case IPPROTO_TCP: {
4221 		struct tcphdr _tcph, *th;
4222 
4223 		if (ntohs(ih->frag_off) & IP_OFFSET)
4224 			break;
4225 
4226 		offset += ihlen;
4227 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4228 		if (th == NULL)
4229 			break;
4230 
4231 		ad->u.net->sport = th->source;
4232 		ad->u.net->dport = th->dest;
4233 		break;
4234 	}
4235 
4236 	case IPPROTO_UDP: {
4237 		struct udphdr _udph, *uh;
4238 
4239 		if (ntohs(ih->frag_off) & IP_OFFSET)
4240 			break;
4241 
4242 		offset += ihlen;
4243 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4244 		if (uh == NULL)
4245 			break;
4246 
4247 		ad->u.net->sport = uh->source;
4248 		ad->u.net->dport = uh->dest;
4249 		break;
4250 	}
4251 
4252 	case IPPROTO_DCCP: {
4253 		struct dccp_hdr _dccph, *dh;
4254 
4255 		if (ntohs(ih->frag_off) & IP_OFFSET)
4256 			break;
4257 
4258 		offset += ihlen;
4259 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4260 		if (dh == NULL)
4261 			break;
4262 
4263 		ad->u.net->sport = dh->dccph_sport;
4264 		ad->u.net->dport = dh->dccph_dport;
4265 		break;
4266 	}
4267 
4268 #if IS_ENABLED(CONFIG_IP_SCTP)
4269 	case IPPROTO_SCTP: {
4270 		struct sctphdr _sctph, *sh;
4271 
4272 		if (ntohs(ih->frag_off) & IP_OFFSET)
4273 			break;
4274 
4275 		offset += ihlen;
4276 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4277 		if (sh == NULL)
4278 			break;
4279 
4280 		ad->u.net->sport = sh->source;
4281 		ad->u.net->dport = sh->dest;
4282 		break;
4283 	}
4284 #endif
4285 	default:
4286 		break;
4287 	}
4288 out:
4289 	return ret;
4290 }
4291 
4292 #if IS_ENABLED(CONFIG_IPV6)
4293 
4294 /* Returns error only if unable to parse addresses */
4295 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4296 			struct common_audit_data *ad, u8 *proto)
4297 {
4298 	u8 nexthdr;
4299 	int ret = -EINVAL, offset;
4300 	struct ipv6hdr _ipv6h, *ip6;
4301 	__be16 frag_off;
4302 
4303 	offset = skb_network_offset(skb);
4304 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4305 	if (ip6 == NULL)
4306 		goto out;
4307 
4308 	ad->u.net->v6info.saddr = ip6->saddr;
4309 	ad->u.net->v6info.daddr = ip6->daddr;
4310 	ret = 0;
4311 
4312 	nexthdr = ip6->nexthdr;
4313 	offset += sizeof(_ipv6h);
4314 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4315 	if (offset < 0)
4316 		goto out;
4317 
4318 	if (proto)
4319 		*proto = nexthdr;
4320 
4321 	switch (nexthdr) {
4322 	case IPPROTO_TCP: {
4323 		struct tcphdr _tcph, *th;
4324 
4325 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4326 		if (th == NULL)
4327 			break;
4328 
4329 		ad->u.net->sport = th->source;
4330 		ad->u.net->dport = th->dest;
4331 		break;
4332 	}
4333 
4334 	case IPPROTO_UDP: {
4335 		struct udphdr _udph, *uh;
4336 
4337 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4338 		if (uh == NULL)
4339 			break;
4340 
4341 		ad->u.net->sport = uh->source;
4342 		ad->u.net->dport = uh->dest;
4343 		break;
4344 	}
4345 
4346 	case IPPROTO_DCCP: {
4347 		struct dccp_hdr _dccph, *dh;
4348 
4349 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4350 		if (dh == NULL)
4351 			break;
4352 
4353 		ad->u.net->sport = dh->dccph_sport;
4354 		ad->u.net->dport = dh->dccph_dport;
4355 		break;
4356 	}
4357 
4358 #if IS_ENABLED(CONFIG_IP_SCTP)
4359 	case IPPROTO_SCTP: {
4360 		struct sctphdr _sctph, *sh;
4361 
4362 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4363 		if (sh == NULL)
4364 			break;
4365 
4366 		ad->u.net->sport = sh->source;
4367 		ad->u.net->dport = sh->dest;
4368 		break;
4369 	}
4370 #endif
4371 	/* includes fragments */
4372 	default:
4373 		break;
4374 	}
4375 out:
4376 	return ret;
4377 }
4378 
4379 #endif /* IPV6 */
4380 
4381 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4382 			     char **_addrp, int src, u8 *proto)
4383 {
4384 	char *addrp;
4385 	int ret;
4386 
4387 	switch (ad->u.net->family) {
4388 	case PF_INET:
4389 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4390 		if (ret)
4391 			goto parse_error;
4392 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4393 				       &ad->u.net->v4info.daddr);
4394 		goto okay;
4395 
4396 #if IS_ENABLED(CONFIG_IPV6)
4397 	case PF_INET6:
4398 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4399 		if (ret)
4400 			goto parse_error;
4401 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4402 				       &ad->u.net->v6info.daddr);
4403 		goto okay;
4404 #endif	/* IPV6 */
4405 	default:
4406 		addrp = NULL;
4407 		goto okay;
4408 	}
4409 
4410 parse_error:
4411 	printk(KERN_WARNING
4412 	       "SELinux: failure in selinux_parse_skb(),"
4413 	       " unable to parse packet\n");
4414 	return ret;
4415 
4416 okay:
4417 	if (_addrp)
4418 		*_addrp = addrp;
4419 	return 0;
4420 }
4421 
4422 /**
4423  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4424  * @skb: the packet
4425  * @family: protocol family
4426  * @sid: the packet's peer label SID
4427  *
4428  * Description:
4429  * Check the various different forms of network peer labeling and determine
4430  * the peer label/SID for the packet; most of the magic actually occurs in
4431  * the security server function security_net_peersid_cmp().  The function
4432  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4433  * or -EACCES if @sid is invalid due to inconsistencies with the different
4434  * peer labels.
4435  *
4436  */
4437 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4438 {
4439 	int err;
4440 	u32 xfrm_sid;
4441 	u32 nlbl_sid;
4442 	u32 nlbl_type;
4443 
4444 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4445 	if (unlikely(err))
4446 		return -EACCES;
4447 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4448 	if (unlikely(err))
4449 		return -EACCES;
4450 
4451 	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4452 					   nlbl_type, xfrm_sid, sid);
4453 	if (unlikely(err)) {
4454 		printk(KERN_WARNING
4455 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4456 		       " unable to determine packet's peer label\n");
4457 		return -EACCES;
4458 	}
4459 
4460 	return 0;
4461 }
4462 
4463 /**
4464  * selinux_conn_sid - Determine the child socket label for a connection
4465  * @sk_sid: the parent socket's SID
4466  * @skb_sid: the packet's SID
4467  * @conn_sid: the resulting connection SID
4468  *
4469  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4470  * combined with the MLS information from @skb_sid in order to create
4471  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4472  * of @sk_sid.  Returns zero on success, negative values on failure.
4473  *
4474  */
4475 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4476 {
4477 	int err = 0;
4478 
4479 	if (skb_sid != SECSID_NULL)
4480 		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4481 					    conn_sid);
4482 	else
4483 		*conn_sid = sk_sid;
4484 
4485 	return err;
4486 }
4487 
4488 /* socket security operations */
4489 
4490 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4491 				 u16 secclass, u32 *socksid)
4492 {
4493 	if (tsec->sockcreate_sid > SECSID_NULL) {
4494 		*socksid = tsec->sockcreate_sid;
4495 		return 0;
4496 	}
4497 
4498 	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4499 				       secclass, NULL, socksid);
4500 }
4501 
4502 static int sock_has_perm(struct sock *sk, u32 perms)
4503 {
4504 	struct sk_security_struct *sksec = sk->sk_security;
4505 	struct common_audit_data ad;
4506 	struct lsm_network_audit net = {0,};
4507 
4508 	if (sksec->sid == SECINITSID_KERNEL)
4509 		return 0;
4510 
4511 	ad.type = LSM_AUDIT_DATA_NET;
4512 	ad.u.net = &net;
4513 	ad.u.net->sk = sk;
4514 
4515 	return avc_has_perm(&selinux_state,
4516 			    current_sid(), sksec->sid, sksec->sclass, perms,
4517 			    &ad);
4518 }
4519 
4520 static int selinux_socket_create(int family, int type,
4521 				 int protocol, int kern)
4522 {
4523 	const struct task_security_struct *tsec = current_security();
4524 	u32 newsid;
4525 	u16 secclass;
4526 	int rc;
4527 
4528 	if (kern)
4529 		return 0;
4530 
4531 	secclass = socket_type_to_security_class(family, type, protocol);
4532 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4533 	if (rc)
4534 		return rc;
4535 
4536 	return avc_has_perm(&selinux_state,
4537 			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4538 }
4539 
4540 static int selinux_socket_post_create(struct socket *sock, int family,
4541 				      int type, int protocol, int kern)
4542 {
4543 	const struct task_security_struct *tsec = current_security();
4544 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4545 	struct sk_security_struct *sksec;
4546 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4547 	u32 sid = SECINITSID_KERNEL;
4548 	int err = 0;
4549 
4550 	if (!kern) {
4551 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4552 		if (err)
4553 			return err;
4554 	}
4555 
4556 	isec->sclass = sclass;
4557 	isec->sid = sid;
4558 	isec->initialized = LABEL_INITIALIZED;
4559 
4560 	if (sock->sk) {
4561 		sksec = sock->sk->sk_security;
4562 		sksec->sclass = sclass;
4563 		sksec->sid = sid;
4564 		/* Allows detection of the first association on this socket */
4565 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4566 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4567 
4568 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4569 	}
4570 
4571 	return err;
4572 }
4573 
4574 /* Range of port numbers used to automatically bind.
4575    Need to determine whether we should perform a name_bind
4576    permission check between the socket and the port number. */
4577 
4578 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4579 {
4580 	struct sock *sk = sock->sk;
4581 	u16 family;
4582 	int err;
4583 
4584 	err = sock_has_perm(sk, SOCKET__BIND);
4585 	if (err)
4586 		goto out;
4587 
4588 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4589 	family = sk->sk_family;
4590 	if (family == PF_INET || family == PF_INET6) {
4591 		char *addrp;
4592 		struct sk_security_struct *sksec = sk->sk_security;
4593 		struct common_audit_data ad;
4594 		struct lsm_network_audit net = {0,};
4595 		struct sockaddr_in *addr4 = NULL;
4596 		struct sockaddr_in6 *addr6 = NULL;
4597 		unsigned short snum;
4598 		u32 sid, node_perm;
4599 
4600 		/*
4601 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4602 		 * that validates multiple binding addresses. Because of this
4603 		 * need to check address->sa_family as it is possible to have
4604 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4605 		 */
4606 		switch (address->sa_family) {
4607 		case AF_INET:
4608 			if (addrlen < sizeof(struct sockaddr_in))
4609 				return -EINVAL;
4610 			addr4 = (struct sockaddr_in *)address;
4611 			snum = ntohs(addr4->sin_port);
4612 			addrp = (char *)&addr4->sin_addr.s_addr;
4613 			break;
4614 		case AF_INET6:
4615 			if (addrlen < SIN6_LEN_RFC2133)
4616 				return -EINVAL;
4617 			addr6 = (struct sockaddr_in6 *)address;
4618 			snum = ntohs(addr6->sin6_port);
4619 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4620 			break;
4621 		default:
4622 			/* Note that SCTP services expect -EINVAL, whereas
4623 			 * others expect -EAFNOSUPPORT.
4624 			 */
4625 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4626 				return -EINVAL;
4627 			else
4628 				return -EAFNOSUPPORT;
4629 		}
4630 
4631 		if (snum) {
4632 			int low, high;
4633 
4634 			inet_get_local_port_range(sock_net(sk), &low, &high);
4635 
4636 			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4637 			    snum > high) {
4638 				err = sel_netport_sid(sk->sk_protocol,
4639 						      snum, &sid);
4640 				if (err)
4641 					goto out;
4642 				ad.type = LSM_AUDIT_DATA_NET;
4643 				ad.u.net = &net;
4644 				ad.u.net->sport = htons(snum);
4645 				ad.u.net->family = family;
4646 				err = avc_has_perm(&selinux_state,
4647 						   sksec->sid, sid,
4648 						   sksec->sclass,
4649 						   SOCKET__NAME_BIND, &ad);
4650 				if (err)
4651 					goto out;
4652 			}
4653 		}
4654 
4655 		switch (sksec->sclass) {
4656 		case SECCLASS_TCP_SOCKET:
4657 			node_perm = TCP_SOCKET__NODE_BIND;
4658 			break;
4659 
4660 		case SECCLASS_UDP_SOCKET:
4661 			node_perm = UDP_SOCKET__NODE_BIND;
4662 			break;
4663 
4664 		case SECCLASS_DCCP_SOCKET:
4665 			node_perm = DCCP_SOCKET__NODE_BIND;
4666 			break;
4667 
4668 		case SECCLASS_SCTP_SOCKET:
4669 			node_perm = SCTP_SOCKET__NODE_BIND;
4670 			break;
4671 
4672 		default:
4673 			node_perm = RAWIP_SOCKET__NODE_BIND;
4674 			break;
4675 		}
4676 
4677 		err = sel_netnode_sid(addrp, family, &sid);
4678 		if (err)
4679 			goto out;
4680 
4681 		ad.type = LSM_AUDIT_DATA_NET;
4682 		ad.u.net = &net;
4683 		ad.u.net->sport = htons(snum);
4684 		ad.u.net->family = family;
4685 
4686 		if (address->sa_family == AF_INET)
4687 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4688 		else
4689 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4690 
4691 		err = avc_has_perm(&selinux_state,
4692 				   sksec->sid, sid,
4693 				   sksec->sclass, node_perm, &ad);
4694 		if (err)
4695 			goto out;
4696 	}
4697 out:
4698 	return err;
4699 }
4700 
4701 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4702  * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4703  */
4704 static int selinux_socket_connect_helper(struct socket *sock,
4705 					 struct sockaddr *address, int addrlen)
4706 {
4707 	struct sock *sk = sock->sk;
4708 	struct sk_security_struct *sksec = sk->sk_security;
4709 	int err;
4710 
4711 	err = sock_has_perm(sk, SOCKET__CONNECT);
4712 	if (err)
4713 		return err;
4714 
4715 	/*
4716 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4717 	 * for the port.
4718 	 */
4719 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4720 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4721 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4722 		struct common_audit_data ad;
4723 		struct lsm_network_audit net = {0,};
4724 		struct sockaddr_in *addr4 = NULL;
4725 		struct sockaddr_in6 *addr6 = NULL;
4726 		unsigned short snum;
4727 		u32 sid, perm;
4728 
4729 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4730 		 * that validates multiple connect addresses. Because of this
4731 		 * need to check address->sa_family as it is possible to have
4732 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4733 		 */
4734 		switch (address->sa_family) {
4735 		case AF_INET:
4736 			addr4 = (struct sockaddr_in *)address;
4737 			if (addrlen < sizeof(struct sockaddr_in))
4738 				return -EINVAL;
4739 			snum = ntohs(addr4->sin_port);
4740 			break;
4741 		case AF_INET6:
4742 			addr6 = (struct sockaddr_in6 *)address;
4743 			if (addrlen < SIN6_LEN_RFC2133)
4744 				return -EINVAL;
4745 			snum = ntohs(addr6->sin6_port);
4746 			break;
4747 		default:
4748 			/* Note that SCTP services expect -EINVAL, whereas
4749 			 * others expect -EAFNOSUPPORT.
4750 			 */
4751 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4752 				return -EINVAL;
4753 			else
4754 				return -EAFNOSUPPORT;
4755 		}
4756 
4757 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4758 		if (err)
4759 			return err;
4760 
4761 		switch (sksec->sclass) {
4762 		case SECCLASS_TCP_SOCKET:
4763 			perm = TCP_SOCKET__NAME_CONNECT;
4764 			break;
4765 		case SECCLASS_DCCP_SOCKET:
4766 			perm = DCCP_SOCKET__NAME_CONNECT;
4767 			break;
4768 		case SECCLASS_SCTP_SOCKET:
4769 			perm = SCTP_SOCKET__NAME_CONNECT;
4770 			break;
4771 		}
4772 
4773 		ad.type = LSM_AUDIT_DATA_NET;
4774 		ad.u.net = &net;
4775 		ad.u.net->dport = htons(snum);
4776 		ad.u.net->family = sk->sk_family;
4777 		err = avc_has_perm(&selinux_state,
4778 				   sksec->sid, sid, sksec->sclass, perm, &ad);
4779 		if (err)
4780 			return err;
4781 	}
4782 
4783 	return 0;
4784 }
4785 
4786 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4787 static int selinux_socket_connect(struct socket *sock,
4788 				  struct sockaddr *address, int addrlen)
4789 {
4790 	int err;
4791 	struct sock *sk = sock->sk;
4792 
4793 	err = selinux_socket_connect_helper(sock, address, addrlen);
4794 	if (err)
4795 		return err;
4796 
4797 	return selinux_netlbl_socket_connect(sk, address);
4798 }
4799 
4800 static int selinux_socket_listen(struct socket *sock, int backlog)
4801 {
4802 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4803 }
4804 
4805 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4806 {
4807 	int err;
4808 	struct inode_security_struct *isec;
4809 	struct inode_security_struct *newisec;
4810 	u16 sclass;
4811 	u32 sid;
4812 
4813 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4814 	if (err)
4815 		return err;
4816 
4817 	isec = inode_security_novalidate(SOCK_INODE(sock));
4818 	spin_lock(&isec->lock);
4819 	sclass = isec->sclass;
4820 	sid = isec->sid;
4821 	spin_unlock(&isec->lock);
4822 
4823 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4824 	newisec->sclass = sclass;
4825 	newisec->sid = sid;
4826 	newisec->initialized = LABEL_INITIALIZED;
4827 
4828 	return 0;
4829 }
4830 
4831 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4832 				  int size)
4833 {
4834 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4835 }
4836 
4837 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4838 				  int size, int flags)
4839 {
4840 	return sock_has_perm(sock->sk, SOCKET__READ);
4841 }
4842 
4843 static int selinux_socket_getsockname(struct socket *sock)
4844 {
4845 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4846 }
4847 
4848 static int selinux_socket_getpeername(struct socket *sock)
4849 {
4850 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4851 }
4852 
4853 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4854 {
4855 	int err;
4856 
4857 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4858 	if (err)
4859 		return err;
4860 
4861 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4862 }
4863 
4864 static int selinux_socket_getsockopt(struct socket *sock, int level,
4865 				     int optname)
4866 {
4867 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4868 }
4869 
4870 static int selinux_socket_shutdown(struct socket *sock, int how)
4871 {
4872 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4873 }
4874 
4875 static int selinux_socket_unix_stream_connect(struct sock *sock,
4876 					      struct sock *other,
4877 					      struct sock *newsk)
4878 {
4879 	struct sk_security_struct *sksec_sock = sock->sk_security;
4880 	struct sk_security_struct *sksec_other = other->sk_security;
4881 	struct sk_security_struct *sksec_new = newsk->sk_security;
4882 	struct common_audit_data ad;
4883 	struct lsm_network_audit net = {0,};
4884 	int err;
4885 
4886 	ad.type = LSM_AUDIT_DATA_NET;
4887 	ad.u.net = &net;
4888 	ad.u.net->sk = other;
4889 
4890 	err = avc_has_perm(&selinux_state,
4891 			   sksec_sock->sid, sksec_other->sid,
4892 			   sksec_other->sclass,
4893 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4894 	if (err)
4895 		return err;
4896 
4897 	/* server child socket */
4898 	sksec_new->peer_sid = sksec_sock->sid;
4899 	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4900 				    sksec_sock->sid, &sksec_new->sid);
4901 	if (err)
4902 		return err;
4903 
4904 	/* connecting socket */
4905 	sksec_sock->peer_sid = sksec_new->sid;
4906 
4907 	return 0;
4908 }
4909 
4910 static int selinux_socket_unix_may_send(struct socket *sock,
4911 					struct socket *other)
4912 {
4913 	struct sk_security_struct *ssec = sock->sk->sk_security;
4914 	struct sk_security_struct *osec = other->sk->sk_security;
4915 	struct common_audit_data ad;
4916 	struct lsm_network_audit net = {0,};
4917 
4918 	ad.type = LSM_AUDIT_DATA_NET;
4919 	ad.u.net = &net;
4920 	ad.u.net->sk = other->sk;
4921 
4922 	return avc_has_perm(&selinux_state,
4923 			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4924 			    &ad);
4925 }
4926 
4927 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4928 				    char *addrp, u16 family, u32 peer_sid,
4929 				    struct common_audit_data *ad)
4930 {
4931 	int err;
4932 	u32 if_sid;
4933 	u32 node_sid;
4934 
4935 	err = sel_netif_sid(ns, ifindex, &if_sid);
4936 	if (err)
4937 		return err;
4938 	err = avc_has_perm(&selinux_state,
4939 			   peer_sid, if_sid,
4940 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4941 	if (err)
4942 		return err;
4943 
4944 	err = sel_netnode_sid(addrp, family, &node_sid);
4945 	if (err)
4946 		return err;
4947 	return avc_has_perm(&selinux_state,
4948 			    peer_sid, node_sid,
4949 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4950 }
4951 
4952 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4953 				       u16 family)
4954 {
4955 	int err = 0;
4956 	struct sk_security_struct *sksec = sk->sk_security;
4957 	u32 sk_sid = sksec->sid;
4958 	struct common_audit_data ad;
4959 	struct lsm_network_audit net = {0,};
4960 	char *addrp;
4961 
4962 	ad.type = LSM_AUDIT_DATA_NET;
4963 	ad.u.net = &net;
4964 	ad.u.net->netif = skb->skb_iif;
4965 	ad.u.net->family = family;
4966 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4967 	if (err)
4968 		return err;
4969 
4970 	if (selinux_secmark_enabled()) {
4971 		err = avc_has_perm(&selinux_state,
4972 				   sk_sid, skb->secmark, SECCLASS_PACKET,
4973 				   PACKET__RECV, &ad);
4974 		if (err)
4975 			return err;
4976 	}
4977 
4978 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4979 	if (err)
4980 		return err;
4981 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4982 
4983 	return err;
4984 }
4985 
4986 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4987 {
4988 	int err;
4989 	struct sk_security_struct *sksec = sk->sk_security;
4990 	u16 family = sk->sk_family;
4991 	u32 sk_sid = sksec->sid;
4992 	struct common_audit_data ad;
4993 	struct lsm_network_audit net = {0,};
4994 	char *addrp;
4995 	u8 secmark_active;
4996 	u8 peerlbl_active;
4997 
4998 	if (family != PF_INET && family != PF_INET6)
4999 		return 0;
5000 
5001 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5002 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5003 		family = PF_INET;
5004 
5005 	/* If any sort of compatibility mode is enabled then handoff processing
5006 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5007 	 * special handling.  We do this in an attempt to keep this function
5008 	 * as fast and as clean as possible. */
5009 	if (!selinux_policycap_netpeer())
5010 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5011 
5012 	secmark_active = selinux_secmark_enabled();
5013 	peerlbl_active = selinux_peerlbl_enabled();
5014 	if (!secmark_active && !peerlbl_active)
5015 		return 0;
5016 
5017 	ad.type = LSM_AUDIT_DATA_NET;
5018 	ad.u.net = &net;
5019 	ad.u.net->netif = skb->skb_iif;
5020 	ad.u.net->family = family;
5021 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5022 	if (err)
5023 		return err;
5024 
5025 	if (peerlbl_active) {
5026 		u32 peer_sid;
5027 
5028 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5029 		if (err)
5030 			return err;
5031 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5032 					       addrp, family, peer_sid, &ad);
5033 		if (err) {
5034 			selinux_netlbl_err(skb, family, err, 0);
5035 			return err;
5036 		}
5037 		err = avc_has_perm(&selinux_state,
5038 				   sk_sid, peer_sid, SECCLASS_PEER,
5039 				   PEER__RECV, &ad);
5040 		if (err) {
5041 			selinux_netlbl_err(skb, family, err, 0);
5042 			return err;
5043 		}
5044 	}
5045 
5046 	if (secmark_active) {
5047 		err = avc_has_perm(&selinux_state,
5048 				   sk_sid, skb->secmark, SECCLASS_PACKET,
5049 				   PACKET__RECV, &ad);
5050 		if (err)
5051 			return err;
5052 	}
5053 
5054 	return err;
5055 }
5056 
5057 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5058 					    int __user *optlen, unsigned len)
5059 {
5060 	int err = 0;
5061 	char *scontext;
5062 	u32 scontext_len;
5063 	struct sk_security_struct *sksec = sock->sk->sk_security;
5064 	u32 peer_sid = SECSID_NULL;
5065 
5066 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5067 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5068 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5069 		peer_sid = sksec->peer_sid;
5070 	if (peer_sid == SECSID_NULL)
5071 		return -ENOPROTOOPT;
5072 
5073 	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5074 				      &scontext_len);
5075 	if (err)
5076 		return err;
5077 
5078 	if (scontext_len > len) {
5079 		err = -ERANGE;
5080 		goto out_len;
5081 	}
5082 
5083 	if (copy_to_user(optval, scontext, scontext_len))
5084 		err = -EFAULT;
5085 
5086 out_len:
5087 	if (put_user(scontext_len, optlen))
5088 		err = -EFAULT;
5089 	kfree(scontext);
5090 	return err;
5091 }
5092 
5093 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5094 {
5095 	u32 peer_secid = SECSID_NULL;
5096 	u16 family;
5097 	struct inode_security_struct *isec;
5098 
5099 	if (skb && skb->protocol == htons(ETH_P_IP))
5100 		family = PF_INET;
5101 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5102 		family = PF_INET6;
5103 	else if (sock)
5104 		family = sock->sk->sk_family;
5105 	else
5106 		goto out;
5107 
5108 	if (sock && family == PF_UNIX) {
5109 		isec = inode_security_novalidate(SOCK_INODE(sock));
5110 		peer_secid = isec->sid;
5111 	} else if (skb)
5112 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5113 
5114 out:
5115 	*secid = peer_secid;
5116 	if (peer_secid == SECSID_NULL)
5117 		return -EINVAL;
5118 	return 0;
5119 }
5120 
5121 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5122 {
5123 	struct sk_security_struct *sksec;
5124 
5125 	sksec = kzalloc(sizeof(*sksec), priority);
5126 	if (!sksec)
5127 		return -ENOMEM;
5128 
5129 	sksec->peer_sid = SECINITSID_UNLABELED;
5130 	sksec->sid = SECINITSID_UNLABELED;
5131 	sksec->sclass = SECCLASS_SOCKET;
5132 	selinux_netlbl_sk_security_reset(sksec);
5133 	sk->sk_security = sksec;
5134 
5135 	return 0;
5136 }
5137 
5138 static void selinux_sk_free_security(struct sock *sk)
5139 {
5140 	struct sk_security_struct *sksec = sk->sk_security;
5141 
5142 	sk->sk_security = NULL;
5143 	selinux_netlbl_sk_security_free(sksec);
5144 	kfree(sksec);
5145 }
5146 
5147 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5148 {
5149 	struct sk_security_struct *sksec = sk->sk_security;
5150 	struct sk_security_struct *newsksec = newsk->sk_security;
5151 
5152 	newsksec->sid = sksec->sid;
5153 	newsksec->peer_sid = sksec->peer_sid;
5154 	newsksec->sclass = sksec->sclass;
5155 
5156 	selinux_netlbl_sk_security_reset(newsksec);
5157 }
5158 
5159 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5160 {
5161 	if (!sk)
5162 		*secid = SECINITSID_ANY_SOCKET;
5163 	else {
5164 		struct sk_security_struct *sksec = sk->sk_security;
5165 
5166 		*secid = sksec->sid;
5167 	}
5168 }
5169 
5170 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5171 {
5172 	struct inode_security_struct *isec =
5173 		inode_security_novalidate(SOCK_INODE(parent));
5174 	struct sk_security_struct *sksec = sk->sk_security;
5175 
5176 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5177 	    sk->sk_family == PF_UNIX)
5178 		isec->sid = sksec->sid;
5179 	sksec->sclass = isec->sclass;
5180 }
5181 
5182 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5183  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5184  * already present).
5185  */
5186 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5187 				      struct sk_buff *skb)
5188 {
5189 	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5190 	struct common_audit_data ad;
5191 	struct lsm_network_audit net = {0,};
5192 	u8 peerlbl_active;
5193 	u32 peer_sid = SECINITSID_UNLABELED;
5194 	u32 conn_sid;
5195 	int err = 0;
5196 
5197 	if (!selinux_policycap_extsockclass())
5198 		return 0;
5199 
5200 	peerlbl_active = selinux_peerlbl_enabled();
5201 
5202 	if (peerlbl_active) {
5203 		/* This will return peer_sid = SECSID_NULL if there are
5204 		 * no peer labels, see security_net_peersid_resolve().
5205 		 */
5206 		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5207 					      &peer_sid);
5208 		if (err)
5209 			return err;
5210 
5211 		if (peer_sid == SECSID_NULL)
5212 			peer_sid = SECINITSID_UNLABELED;
5213 	}
5214 
5215 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5216 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5217 
5218 		/* Here as first association on socket. As the peer SID
5219 		 * was allowed by peer recv (and the netif/node checks),
5220 		 * then it is approved by policy and used as the primary
5221 		 * peer SID for getpeercon(3).
5222 		 */
5223 		sksec->peer_sid = peer_sid;
5224 	} else if  (sksec->peer_sid != peer_sid) {
5225 		/* Other association peer SIDs are checked to enforce
5226 		 * consistency among the peer SIDs.
5227 		 */
5228 		ad.type = LSM_AUDIT_DATA_NET;
5229 		ad.u.net = &net;
5230 		ad.u.net->sk = ep->base.sk;
5231 		err = avc_has_perm(&selinux_state,
5232 				   sksec->peer_sid, peer_sid, sksec->sclass,
5233 				   SCTP_SOCKET__ASSOCIATION, &ad);
5234 		if (err)
5235 			return err;
5236 	}
5237 
5238 	/* Compute the MLS component for the connection and store
5239 	 * the information in ep. This will be used by SCTP TCP type
5240 	 * sockets and peeled off connections as they cause a new
5241 	 * socket to be generated. selinux_sctp_sk_clone() will then
5242 	 * plug this into the new socket.
5243 	 */
5244 	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5245 	if (err)
5246 		return err;
5247 
5248 	ep->secid = conn_sid;
5249 	ep->peer_secid = peer_sid;
5250 
5251 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5252 	return selinux_netlbl_sctp_assoc_request(ep, skb);
5253 }
5254 
5255 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5256  * based on their @optname.
5257  */
5258 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5259 				     struct sockaddr *address,
5260 				     int addrlen)
5261 {
5262 	int len, err = 0, walk_size = 0;
5263 	void *addr_buf;
5264 	struct sockaddr *addr;
5265 	struct socket *sock;
5266 
5267 	if (!selinux_policycap_extsockclass())
5268 		return 0;
5269 
5270 	/* Process one or more addresses that may be IPv4 or IPv6 */
5271 	sock = sk->sk_socket;
5272 	addr_buf = address;
5273 
5274 	while (walk_size < addrlen) {
5275 		addr = addr_buf;
5276 		switch (addr->sa_family) {
5277 		case AF_INET:
5278 			len = sizeof(struct sockaddr_in);
5279 			break;
5280 		case AF_INET6:
5281 			len = sizeof(struct sockaddr_in6);
5282 			break;
5283 		default:
5284 			return -EAFNOSUPPORT;
5285 		}
5286 
5287 		err = -EINVAL;
5288 		switch (optname) {
5289 		/* Bind checks */
5290 		case SCTP_PRIMARY_ADDR:
5291 		case SCTP_SET_PEER_PRIMARY_ADDR:
5292 		case SCTP_SOCKOPT_BINDX_ADD:
5293 			err = selinux_socket_bind(sock, addr, len);
5294 			break;
5295 		/* Connect checks */
5296 		case SCTP_SOCKOPT_CONNECTX:
5297 		case SCTP_PARAM_SET_PRIMARY:
5298 		case SCTP_PARAM_ADD_IP:
5299 		case SCTP_SENDMSG_CONNECT:
5300 			err = selinux_socket_connect_helper(sock, addr, len);
5301 			if (err)
5302 				return err;
5303 
5304 			/* As selinux_sctp_bind_connect() is called by the
5305 			 * SCTP protocol layer, the socket is already locked,
5306 			 * therefore selinux_netlbl_socket_connect_locked() is
5307 			 * is called here. The situations handled are:
5308 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5309 			 * whenever a new IP address is added or when a new
5310 			 * primary address is selected.
5311 			 * Note that an SCTP connect(2) call happens before
5312 			 * the SCTP protocol layer and is handled via
5313 			 * selinux_socket_connect().
5314 			 */
5315 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5316 			break;
5317 		}
5318 
5319 		if (err)
5320 			return err;
5321 
5322 		addr_buf += len;
5323 		walk_size += len;
5324 	}
5325 
5326 	return 0;
5327 }
5328 
5329 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5330 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5331 				  struct sock *newsk)
5332 {
5333 	struct sk_security_struct *sksec = sk->sk_security;
5334 	struct sk_security_struct *newsksec = newsk->sk_security;
5335 
5336 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5337 	 * the non-sctp clone version.
5338 	 */
5339 	if (!selinux_policycap_extsockclass())
5340 		return selinux_sk_clone_security(sk, newsk);
5341 
5342 	newsksec->sid = ep->secid;
5343 	newsksec->peer_sid = ep->peer_secid;
5344 	newsksec->sclass = sksec->sclass;
5345 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5346 }
5347 
5348 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5349 				     struct request_sock *req)
5350 {
5351 	struct sk_security_struct *sksec = sk->sk_security;
5352 	int err;
5353 	u16 family = req->rsk_ops->family;
5354 	u32 connsid;
5355 	u32 peersid;
5356 
5357 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5358 	if (err)
5359 		return err;
5360 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5361 	if (err)
5362 		return err;
5363 	req->secid = connsid;
5364 	req->peer_secid = peersid;
5365 
5366 	return selinux_netlbl_inet_conn_request(req, family);
5367 }
5368 
5369 static void selinux_inet_csk_clone(struct sock *newsk,
5370 				   const struct request_sock *req)
5371 {
5372 	struct sk_security_struct *newsksec = newsk->sk_security;
5373 
5374 	newsksec->sid = req->secid;
5375 	newsksec->peer_sid = req->peer_secid;
5376 	/* NOTE: Ideally, we should also get the isec->sid for the
5377 	   new socket in sync, but we don't have the isec available yet.
5378 	   So we will wait until sock_graft to do it, by which
5379 	   time it will have been created and available. */
5380 
5381 	/* We don't need to take any sort of lock here as we are the only
5382 	 * thread with access to newsksec */
5383 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5384 }
5385 
5386 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5387 {
5388 	u16 family = sk->sk_family;
5389 	struct sk_security_struct *sksec = sk->sk_security;
5390 
5391 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5392 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5393 		family = PF_INET;
5394 
5395 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5396 }
5397 
5398 static int selinux_secmark_relabel_packet(u32 sid)
5399 {
5400 	const struct task_security_struct *__tsec;
5401 	u32 tsid;
5402 
5403 	__tsec = current_security();
5404 	tsid = __tsec->sid;
5405 
5406 	return avc_has_perm(&selinux_state,
5407 			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5408 			    NULL);
5409 }
5410 
5411 static void selinux_secmark_refcount_inc(void)
5412 {
5413 	atomic_inc(&selinux_secmark_refcount);
5414 }
5415 
5416 static void selinux_secmark_refcount_dec(void)
5417 {
5418 	atomic_dec(&selinux_secmark_refcount);
5419 }
5420 
5421 static void selinux_req_classify_flow(const struct request_sock *req,
5422 				      struct flowi *fl)
5423 {
5424 	fl->flowi_secid = req->secid;
5425 }
5426 
5427 static int selinux_tun_dev_alloc_security(void **security)
5428 {
5429 	struct tun_security_struct *tunsec;
5430 
5431 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5432 	if (!tunsec)
5433 		return -ENOMEM;
5434 	tunsec->sid = current_sid();
5435 
5436 	*security = tunsec;
5437 	return 0;
5438 }
5439 
5440 static void selinux_tun_dev_free_security(void *security)
5441 {
5442 	kfree(security);
5443 }
5444 
5445 static int selinux_tun_dev_create(void)
5446 {
5447 	u32 sid = current_sid();
5448 
5449 	/* we aren't taking into account the "sockcreate" SID since the socket
5450 	 * that is being created here is not a socket in the traditional sense,
5451 	 * instead it is a private sock, accessible only to the kernel, and
5452 	 * representing a wide range of network traffic spanning multiple
5453 	 * connections unlike traditional sockets - check the TUN driver to
5454 	 * get a better understanding of why this socket is special */
5455 
5456 	return avc_has_perm(&selinux_state,
5457 			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5458 			    NULL);
5459 }
5460 
5461 static int selinux_tun_dev_attach_queue(void *security)
5462 {
5463 	struct tun_security_struct *tunsec = security;
5464 
5465 	return avc_has_perm(&selinux_state,
5466 			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5467 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5468 }
5469 
5470 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5471 {
5472 	struct tun_security_struct *tunsec = security;
5473 	struct sk_security_struct *sksec = sk->sk_security;
5474 
5475 	/* we don't currently perform any NetLabel based labeling here and it
5476 	 * isn't clear that we would want to do so anyway; while we could apply
5477 	 * labeling without the support of the TUN user the resulting labeled
5478 	 * traffic from the other end of the connection would almost certainly
5479 	 * cause confusion to the TUN user that had no idea network labeling
5480 	 * protocols were being used */
5481 
5482 	sksec->sid = tunsec->sid;
5483 	sksec->sclass = SECCLASS_TUN_SOCKET;
5484 
5485 	return 0;
5486 }
5487 
5488 static int selinux_tun_dev_open(void *security)
5489 {
5490 	struct tun_security_struct *tunsec = security;
5491 	u32 sid = current_sid();
5492 	int err;
5493 
5494 	err = avc_has_perm(&selinux_state,
5495 			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5496 			   TUN_SOCKET__RELABELFROM, NULL);
5497 	if (err)
5498 		return err;
5499 	err = avc_has_perm(&selinux_state,
5500 			   sid, sid, SECCLASS_TUN_SOCKET,
5501 			   TUN_SOCKET__RELABELTO, NULL);
5502 	if (err)
5503 		return err;
5504 	tunsec->sid = sid;
5505 
5506 	return 0;
5507 }
5508 
5509 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5510 {
5511 	int err = 0;
5512 	u32 perm;
5513 	struct nlmsghdr *nlh;
5514 	struct sk_security_struct *sksec = sk->sk_security;
5515 
5516 	if (skb->len < NLMSG_HDRLEN) {
5517 		err = -EINVAL;
5518 		goto out;
5519 	}
5520 	nlh = nlmsg_hdr(skb);
5521 
5522 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5523 	if (err) {
5524 		if (err == -EINVAL) {
5525 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5526 			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5527 			       " pig=%d comm=%s\n",
5528 			       sk->sk_protocol, nlh->nlmsg_type,
5529 			       secclass_map[sksec->sclass - 1].name,
5530 			       task_pid_nr(current), current->comm);
5531 			if (!enforcing_enabled(&selinux_state) ||
5532 			    security_get_allow_unknown(&selinux_state))
5533 				err = 0;
5534 		}
5535 
5536 		/* Ignore */
5537 		if (err == -ENOENT)
5538 			err = 0;
5539 		goto out;
5540 	}
5541 
5542 	err = sock_has_perm(sk, perm);
5543 out:
5544 	return err;
5545 }
5546 
5547 #ifdef CONFIG_NETFILTER
5548 
5549 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5550 				       const struct net_device *indev,
5551 				       u16 family)
5552 {
5553 	int err;
5554 	char *addrp;
5555 	u32 peer_sid;
5556 	struct common_audit_data ad;
5557 	struct lsm_network_audit net = {0,};
5558 	u8 secmark_active;
5559 	u8 netlbl_active;
5560 	u8 peerlbl_active;
5561 
5562 	if (!selinux_policycap_netpeer())
5563 		return NF_ACCEPT;
5564 
5565 	secmark_active = selinux_secmark_enabled();
5566 	netlbl_active = netlbl_enabled();
5567 	peerlbl_active = selinux_peerlbl_enabled();
5568 	if (!secmark_active && !peerlbl_active)
5569 		return NF_ACCEPT;
5570 
5571 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5572 		return NF_DROP;
5573 
5574 	ad.type = LSM_AUDIT_DATA_NET;
5575 	ad.u.net = &net;
5576 	ad.u.net->netif = indev->ifindex;
5577 	ad.u.net->family = family;
5578 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5579 		return NF_DROP;
5580 
5581 	if (peerlbl_active) {
5582 		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5583 					       addrp, family, peer_sid, &ad);
5584 		if (err) {
5585 			selinux_netlbl_err(skb, family, err, 1);
5586 			return NF_DROP;
5587 		}
5588 	}
5589 
5590 	if (secmark_active)
5591 		if (avc_has_perm(&selinux_state,
5592 				 peer_sid, skb->secmark,
5593 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5594 			return NF_DROP;
5595 
5596 	if (netlbl_active)
5597 		/* we do this in the FORWARD path and not the POST_ROUTING
5598 		 * path because we want to make sure we apply the necessary
5599 		 * labeling before IPsec is applied so we can leverage AH
5600 		 * protection */
5601 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5602 			return NF_DROP;
5603 
5604 	return NF_ACCEPT;
5605 }
5606 
5607 static unsigned int selinux_ipv4_forward(void *priv,
5608 					 struct sk_buff *skb,
5609 					 const struct nf_hook_state *state)
5610 {
5611 	return selinux_ip_forward(skb, state->in, PF_INET);
5612 }
5613 
5614 #if IS_ENABLED(CONFIG_IPV6)
5615 static unsigned int selinux_ipv6_forward(void *priv,
5616 					 struct sk_buff *skb,
5617 					 const struct nf_hook_state *state)
5618 {
5619 	return selinux_ip_forward(skb, state->in, PF_INET6);
5620 }
5621 #endif	/* IPV6 */
5622 
5623 static unsigned int selinux_ip_output(struct sk_buff *skb,
5624 				      u16 family)
5625 {
5626 	struct sock *sk;
5627 	u32 sid;
5628 
5629 	if (!netlbl_enabled())
5630 		return NF_ACCEPT;
5631 
5632 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5633 	 * because we want to make sure we apply the necessary labeling
5634 	 * before IPsec is applied so we can leverage AH protection */
5635 	sk = skb->sk;
5636 	if (sk) {
5637 		struct sk_security_struct *sksec;
5638 
5639 		if (sk_listener(sk))
5640 			/* if the socket is the listening state then this
5641 			 * packet is a SYN-ACK packet which means it needs to
5642 			 * be labeled based on the connection/request_sock and
5643 			 * not the parent socket.  unfortunately, we can't
5644 			 * lookup the request_sock yet as it isn't queued on
5645 			 * the parent socket until after the SYN-ACK is sent.
5646 			 * the "solution" is to simply pass the packet as-is
5647 			 * as any IP option based labeling should be copied
5648 			 * from the initial connection request (in the IP
5649 			 * layer).  it is far from ideal, but until we get a
5650 			 * security label in the packet itself this is the
5651 			 * best we can do. */
5652 			return NF_ACCEPT;
5653 
5654 		/* standard practice, label using the parent socket */
5655 		sksec = sk->sk_security;
5656 		sid = sksec->sid;
5657 	} else
5658 		sid = SECINITSID_KERNEL;
5659 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5660 		return NF_DROP;
5661 
5662 	return NF_ACCEPT;
5663 }
5664 
5665 static unsigned int selinux_ipv4_output(void *priv,
5666 					struct sk_buff *skb,
5667 					const struct nf_hook_state *state)
5668 {
5669 	return selinux_ip_output(skb, PF_INET);
5670 }
5671 
5672 #if IS_ENABLED(CONFIG_IPV6)
5673 static unsigned int selinux_ipv6_output(void *priv,
5674 					struct sk_buff *skb,
5675 					const struct nf_hook_state *state)
5676 {
5677 	return selinux_ip_output(skb, PF_INET6);
5678 }
5679 #endif	/* IPV6 */
5680 
5681 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5682 						int ifindex,
5683 						u16 family)
5684 {
5685 	struct sock *sk = skb_to_full_sk(skb);
5686 	struct sk_security_struct *sksec;
5687 	struct common_audit_data ad;
5688 	struct lsm_network_audit net = {0,};
5689 	char *addrp;
5690 	u8 proto;
5691 
5692 	if (sk == NULL)
5693 		return NF_ACCEPT;
5694 	sksec = sk->sk_security;
5695 
5696 	ad.type = LSM_AUDIT_DATA_NET;
5697 	ad.u.net = &net;
5698 	ad.u.net->netif = ifindex;
5699 	ad.u.net->family = family;
5700 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5701 		return NF_DROP;
5702 
5703 	if (selinux_secmark_enabled())
5704 		if (avc_has_perm(&selinux_state,
5705 				 sksec->sid, skb->secmark,
5706 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5707 			return NF_DROP_ERR(-ECONNREFUSED);
5708 
5709 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5710 		return NF_DROP_ERR(-ECONNREFUSED);
5711 
5712 	return NF_ACCEPT;
5713 }
5714 
5715 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5716 					 const struct net_device *outdev,
5717 					 u16 family)
5718 {
5719 	u32 secmark_perm;
5720 	u32 peer_sid;
5721 	int ifindex = outdev->ifindex;
5722 	struct sock *sk;
5723 	struct common_audit_data ad;
5724 	struct lsm_network_audit net = {0,};
5725 	char *addrp;
5726 	u8 secmark_active;
5727 	u8 peerlbl_active;
5728 
5729 	/* If any sort of compatibility mode is enabled then handoff processing
5730 	 * to the selinux_ip_postroute_compat() function to deal with the
5731 	 * special handling.  We do this in an attempt to keep this function
5732 	 * as fast and as clean as possible. */
5733 	if (!selinux_policycap_netpeer())
5734 		return selinux_ip_postroute_compat(skb, ifindex, family);
5735 
5736 	secmark_active = selinux_secmark_enabled();
5737 	peerlbl_active = selinux_peerlbl_enabled();
5738 	if (!secmark_active && !peerlbl_active)
5739 		return NF_ACCEPT;
5740 
5741 	sk = skb_to_full_sk(skb);
5742 
5743 #ifdef CONFIG_XFRM
5744 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5745 	 * packet transformation so allow the packet to pass without any checks
5746 	 * since we'll have another chance to perform access control checks
5747 	 * when the packet is on it's final way out.
5748 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5749 	 *       is NULL, in this case go ahead and apply access control.
5750 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5751 	 *       TCP listening state we cannot wait until the XFRM processing
5752 	 *       is done as we will miss out on the SA label if we do;
5753 	 *       unfortunately, this means more work, but it is only once per
5754 	 *       connection. */
5755 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5756 	    !(sk && sk_listener(sk)))
5757 		return NF_ACCEPT;
5758 #endif
5759 
5760 	if (sk == NULL) {
5761 		/* Without an associated socket the packet is either coming
5762 		 * from the kernel or it is being forwarded; check the packet
5763 		 * to determine which and if the packet is being forwarded
5764 		 * query the packet directly to determine the security label. */
5765 		if (skb->skb_iif) {
5766 			secmark_perm = PACKET__FORWARD_OUT;
5767 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5768 				return NF_DROP;
5769 		} else {
5770 			secmark_perm = PACKET__SEND;
5771 			peer_sid = SECINITSID_KERNEL;
5772 		}
5773 	} else if (sk_listener(sk)) {
5774 		/* Locally generated packet but the associated socket is in the
5775 		 * listening state which means this is a SYN-ACK packet.  In
5776 		 * this particular case the correct security label is assigned
5777 		 * to the connection/request_sock but unfortunately we can't
5778 		 * query the request_sock as it isn't queued on the parent
5779 		 * socket until after the SYN-ACK packet is sent; the only
5780 		 * viable choice is to regenerate the label like we do in
5781 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5782 		 * for similar problems. */
5783 		u32 skb_sid;
5784 		struct sk_security_struct *sksec;
5785 
5786 		sksec = sk->sk_security;
5787 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5788 			return NF_DROP;
5789 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5790 		 * and the packet has been through at least one XFRM
5791 		 * transformation then we must be dealing with the "final"
5792 		 * form of labeled IPsec packet; since we've already applied
5793 		 * all of our access controls on this packet we can safely
5794 		 * pass the packet. */
5795 		if (skb_sid == SECSID_NULL) {
5796 			switch (family) {
5797 			case PF_INET:
5798 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5799 					return NF_ACCEPT;
5800 				break;
5801 			case PF_INET6:
5802 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5803 					return NF_ACCEPT;
5804 				break;
5805 			default:
5806 				return NF_DROP_ERR(-ECONNREFUSED);
5807 			}
5808 		}
5809 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5810 			return NF_DROP;
5811 		secmark_perm = PACKET__SEND;
5812 	} else {
5813 		/* Locally generated packet, fetch the security label from the
5814 		 * associated socket. */
5815 		struct sk_security_struct *sksec = sk->sk_security;
5816 		peer_sid = sksec->sid;
5817 		secmark_perm = PACKET__SEND;
5818 	}
5819 
5820 	ad.type = LSM_AUDIT_DATA_NET;
5821 	ad.u.net = &net;
5822 	ad.u.net->netif = ifindex;
5823 	ad.u.net->family = family;
5824 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5825 		return NF_DROP;
5826 
5827 	if (secmark_active)
5828 		if (avc_has_perm(&selinux_state,
5829 				 peer_sid, skb->secmark,
5830 				 SECCLASS_PACKET, secmark_perm, &ad))
5831 			return NF_DROP_ERR(-ECONNREFUSED);
5832 
5833 	if (peerlbl_active) {
5834 		u32 if_sid;
5835 		u32 node_sid;
5836 
5837 		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5838 			return NF_DROP;
5839 		if (avc_has_perm(&selinux_state,
5840 				 peer_sid, if_sid,
5841 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5842 			return NF_DROP_ERR(-ECONNREFUSED);
5843 
5844 		if (sel_netnode_sid(addrp, family, &node_sid))
5845 			return NF_DROP;
5846 		if (avc_has_perm(&selinux_state,
5847 				 peer_sid, node_sid,
5848 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5849 			return NF_DROP_ERR(-ECONNREFUSED);
5850 	}
5851 
5852 	return NF_ACCEPT;
5853 }
5854 
5855 static unsigned int selinux_ipv4_postroute(void *priv,
5856 					   struct sk_buff *skb,
5857 					   const struct nf_hook_state *state)
5858 {
5859 	return selinux_ip_postroute(skb, state->out, PF_INET);
5860 }
5861 
5862 #if IS_ENABLED(CONFIG_IPV6)
5863 static unsigned int selinux_ipv6_postroute(void *priv,
5864 					   struct sk_buff *skb,
5865 					   const struct nf_hook_state *state)
5866 {
5867 	return selinux_ip_postroute(skb, state->out, PF_INET6);
5868 }
5869 #endif	/* IPV6 */
5870 
5871 #endif	/* CONFIG_NETFILTER */
5872 
5873 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5874 {
5875 	return selinux_nlmsg_perm(sk, skb);
5876 }
5877 
5878 static int ipc_alloc_security(struct kern_ipc_perm *perm,
5879 			      u16 sclass)
5880 {
5881 	struct ipc_security_struct *isec;
5882 
5883 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5884 	if (!isec)
5885 		return -ENOMEM;
5886 
5887 	isec->sclass = sclass;
5888 	isec->sid = current_sid();
5889 	perm->security = isec;
5890 
5891 	return 0;
5892 }
5893 
5894 static void ipc_free_security(struct kern_ipc_perm *perm)
5895 {
5896 	struct ipc_security_struct *isec = perm->security;
5897 	perm->security = NULL;
5898 	kfree(isec);
5899 }
5900 
5901 static int msg_msg_alloc_security(struct msg_msg *msg)
5902 {
5903 	struct msg_security_struct *msec;
5904 
5905 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5906 	if (!msec)
5907 		return -ENOMEM;
5908 
5909 	msec->sid = SECINITSID_UNLABELED;
5910 	msg->security = msec;
5911 
5912 	return 0;
5913 }
5914 
5915 static void msg_msg_free_security(struct msg_msg *msg)
5916 {
5917 	struct msg_security_struct *msec = msg->security;
5918 
5919 	msg->security = NULL;
5920 	kfree(msec);
5921 }
5922 
5923 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5924 			u32 perms)
5925 {
5926 	struct ipc_security_struct *isec;
5927 	struct common_audit_data ad;
5928 	u32 sid = current_sid();
5929 
5930 	isec = ipc_perms->security;
5931 
5932 	ad.type = LSM_AUDIT_DATA_IPC;
5933 	ad.u.ipc_id = ipc_perms->key;
5934 
5935 	return avc_has_perm(&selinux_state,
5936 			    sid, isec->sid, isec->sclass, perms, &ad);
5937 }
5938 
5939 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5940 {
5941 	return msg_msg_alloc_security(msg);
5942 }
5943 
5944 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5945 {
5946 	msg_msg_free_security(msg);
5947 }
5948 
5949 /* message queue security operations */
5950 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5951 {
5952 	struct ipc_security_struct *isec;
5953 	struct common_audit_data ad;
5954 	u32 sid = current_sid();
5955 	int rc;
5956 
5957 	rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5958 	if (rc)
5959 		return rc;
5960 
5961 	isec = msq->security;
5962 
5963 	ad.type = LSM_AUDIT_DATA_IPC;
5964 	ad.u.ipc_id = msq->key;
5965 
5966 	rc = avc_has_perm(&selinux_state,
5967 			  sid, isec->sid, SECCLASS_MSGQ,
5968 			  MSGQ__CREATE, &ad);
5969 	if (rc) {
5970 		ipc_free_security(msq);
5971 		return rc;
5972 	}
5973 	return 0;
5974 }
5975 
5976 static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5977 {
5978 	ipc_free_security(msq);
5979 }
5980 
5981 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5982 {
5983 	struct ipc_security_struct *isec;
5984 	struct common_audit_data ad;
5985 	u32 sid = current_sid();
5986 
5987 	isec = msq->security;
5988 
5989 	ad.type = LSM_AUDIT_DATA_IPC;
5990 	ad.u.ipc_id = msq->key;
5991 
5992 	return avc_has_perm(&selinux_state,
5993 			    sid, isec->sid, SECCLASS_MSGQ,
5994 			    MSGQ__ASSOCIATE, &ad);
5995 }
5996 
5997 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5998 {
5999 	int err;
6000 	int perms;
6001 
6002 	switch (cmd) {
6003 	case IPC_INFO:
6004 	case MSG_INFO:
6005 		/* No specific object, just general system-wide information. */
6006 		return avc_has_perm(&selinux_state,
6007 				    current_sid(), SECINITSID_KERNEL,
6008 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6009 	case IPC_STAT:
6010 	case MSG_STAT:
6011 	case MSG_STAT_ANY:
6012 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6013 		break;
6014 	case IPC_SET:
6015 		perms = MSGQ__SETATTR;
6016 		break;
6017 	case IPC_RMID:
6018 		perms = MSGQ__DESTROY;
6019 		break;
6020 	default:
6021 		return 0;
6022 	}
6023 
6024 	err = ipc_has_perm(msq, perms);
6025 	return err;
6026 }
6027 
6028 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6029 {
6030 	struct ipc_security_struct *isec;
6031 	struct msg_security_struct *msec;
6032 	struct common_audit_data ad;
6033 	u32 sid = current_sid();
6034 	int rc;
6035 
6036 	isec = msq->security;
6037 	msec = msg->security;
6038 
6039 	/*
6040 	 * First time through, need to assign label to the message
6041 	 */
6042 	if (msec->sid == SECINITSID_UNLABELED) {
6043 		/*
6044 		 * Compute new sid based on current process and
6045 		 * message queue this message will be stored in
6046 		 */
6047 		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6048 					     SECCLASS_MSG, NULL, &msec->sid);
6049 		if (rc)
6050 			return rc;
6051 	}
6052 
6053 	ad.type = LSM_AUDIT_DATA_IPC;
6054 	ad.u.ipc_id = msq->key;
6055 
6056 	/* Can this process write to the queue? */
6057 	rc = avc_has_perm(&selinux_state,
6058 			  sid, isec->sid, SECCLASS_MSGQ,
6059 			  MSGQ__WRITE, &ad);
6060 	if (!rc)
6061 		/* Can this process send the message */
6062 		rc = avc_has_perm(&selinux_state,
6063 				  sid, msec->sid, SECCLASS_MSG,
6064 				  MSG__SEND, &ad);
6065 	if (!rc)
6066 		/* Can the message be put in the queue? */
6067 		rc = avc_has_perm(&selinux_state,
6068 				  msec->sid, isec->sid, SECCLASS_MSGQ,
6069 				  MSGQ__ENQUEUE, &ad);
6070 
6071 	return rc;
6072 }
6073 
6074 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6075 				    struct task_struct *target,
6076 				    long type, int mode)
6077 {
6078 	struct ipc_security_struct *isec;
6079 	struct msg_security_struct *msec;
6080 	struct common_audit_data ad;
6081 	u32 sid = task_sid(target);
6082 	int rc;
6083 
6084 	isec = msq->security;
6085 	msec = msg->security;
6086 
6087 	ad.type = LSM_AUDIT_DATA_IPC;
6088 	ad.u.ipc_id = msq->key;
6089 
6090 	rc = avc_has_perm(&selinux_state,
6091 			  sid, isec->sid,
6092 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6093 	if (!rc)
6094 		rc = avc_has_perm(&selinux_state,
6095 				  sid, msec->sid,
6096 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6097 	return rc;
6098 }
6099 
6100 /* Shared Memory security operations */
6101 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6102 {
6103 	struct ipc_security_struct *isec;
6104 	struct common_audit_data ad;
6105 	u32 sid = current_sid();
6106 	int rc;
6107 
6108 	rc = ipc_alloc_security(shp, SECCLASS_SHM);
6109 	if (rc)
6110 		return rc;
6111 
6112 	isec = shp->security;
6113 
6114 	ad.type = LSM_AUDIT_DATA_IPC;
6115 	ad.u.ipc_id = shp->key;
6116 
6117 	rc = avc_has_perm(&selinux_state,
6118 			  sid, isec->sid, SECCLASS_SHM,
6119 			  SHM__CREATE, &ad);
6120 	if (rc) {
6121 		ipc_free_security(shp);
6122 		return rc;
6123 	}
6124 	return 0;
6125 }
6126 
6127 static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6128 {
6129 	ipc_free_security(shp);
6130 }
6131 
6132 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6133 {
6134 	struct ipc_security_struct *isec;
6135 	struct common_audit_data ad;
6136 	u32 sid = current_sid();
6137 
6138 	isec = shp->security;
6139 
6140 	ad.type = LSM_AUDIT_DATA_IPC;
6141 	ad.u.ipc_id = shp->key;
6142 
6143 	return avc_has_perm(&selinux_state,
6144 			    sid, isec->sid, SECCLASS_SHM,
6145 			    SHM__ASSOCIATE, &ad);
6146 }
6147 
6148 /* Note, at this point, shp is locked down */
6149 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6150 {
6151 	int perms;
6152 	int err;
6153 
6154 	switch (cmd) {
6155 	case IPC_INFO:
6156 	case SHM_INFO:
6157 		/* No specific object, just general system-wide information. */
6158 		return avc_has_perm(&selinux_state,
6159 				    current_sid(), SECINITSID_KERNEL,
6160 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6161 	case IPC_STAT:
6162 	case SHM_STAT:
6163 	case SHM_STAT_ANY:
6164 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6165 		break;
6166 	case IPC_SET:
6167 		perms = SHM__SETATTR;
6168 		break;
6169 	case SHM_LOCK:
6170 	case SHM_UNLOCK:
6171 		perms = SHM__LOCK;
6172 		break;
6173 	case IPC_RMID:
6174 		perms = SHM__DESTROY;
6175 		break;
6176 	default:
6177 		return 0;
6178 	}
6179 
6180 	err = ipc_has_perm(shp, perms);
6181 	return err;
6182 }
6183 
6184 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6185 			     char __user *shmaddr, int shmflg)
6186 {
6187 	u32 perms;
6188 
6189 	if (shmflg & SHM_RDONLY)
6190 		perms = SHM__READ;
6191 	else
6192 		perms = SHM__READ | SHM__WRITE;
6193 
6194 	return ipc_has_perm(shp, perms);
6195 }
6196 
6197 /* Semaphore security operations */
6198 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6199 {
6200 	struct ipc_security_struct *isec;
6201 	struct common_audit_data ad;
6202 	u32 sid = current_sid();
6203 	int rc;
6204 
6205 	rc = ipc_alloc_security(sma, SECCLASS_SEM);
6206 	if (rc)
6207 		return rc;
6208 
6209 	isec = sma->security;
6210 
6211 	ad.type = LSM_AUDIT_DATA_IPC;
6212 	ad.u.ipc_id = sma->key;
6213 
6214 	rc = avc_has_perm(&selinux_state,
6215 			  sid, isec->sid, SECCLASS_SEM,
6216 			  SEM__CREATE, &ad);
6217 	if (rc) {
6218 		ipc_free_security(sma);
6219 		return rc;
6220 	}
6221 	return 0;
6222 }
6223 
6224 static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6225 {
6226 	ipc_free_security(sma);
6227 }
6228 
6229 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6230 {
6231 	struct ipc_security_struct *isec;
6232 	struct common_audit_data ad;
6233 	u32 sid = current_sid();
6234 
6235 	isec = sma->security;
6236 
6237 	ad.type = LSM_AUDIT_DATA_IPC;
6238 	ad.u.ipc_id = sma->key;
6239 
6240 	return avc_has_perm(&selinux_state,
6241 			    sid, isec->sid, SECCLASS_SEM,
6242 			    SEM__ASSOCIATE, &ad);
6243 }
6244 
6245 /* Note, at this point, sma is locked down */
6246 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6247 {
6248 	int err;
6249 	u32 perms;
6250 
6251 	switch (cmd) {
6252 	case IPC_INFO:
6253 	case SEM_INFO:
6254 		/* No specific object, just general system-wide information. */
6255 		return avc_has_perm(&selinux_state,
6256 				    current_sid(), SECINITSID_KERNEL,
6257 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6258 	case GETPID:
6259 	case GETNCNT:
6260 	case GETZCNT:
6261 		perms = SEM__GETATTR;
6262 		break;
6263 	case GETVAL:
6264 	case GETALL:
6265 		perms = SEM__READ;
6266 		break;
6267 	case SETVAL:
6268 	case SETALL:
6269 		perms = SEM__WRITE;
6270 		break;
6271 	case IPC_RMID:
6272 		perms = SEM__DESTROY;
6273 		break;
6274 	case IPC_SET:
6275 		perms = SEM__SETATTR;
6276 		break;
6277 	case IPC_STAT:
6278 	case SEM_STAT:
6279 	case SEM_STAT_ANY:
6280 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6281 		break;
6282 	default:
6283 		return 0;
6284 	}
6285 
6286 	err = ipc_has_perm(sma, perms);
6287 	return err;
6288 }
6289 
6290 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6291 			     struct sembuf *sops, unsigned nsops, int alter)
6292 {
6293 	u32 perms;
6294 
6295 	if (alter)
6296 		perms = SEM__READ | SEM__WRITE;
6297 	else
6298 		perms = SEM__READ;
6299 
6300 	return ipc_has_perm(sma, perms);
6301 }
6302 
6303 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6304 {
6305 	u32 av = 0;
6306 
6307 	av = 0;
6308 	if (flag & S_IRUGO)
6309 		av |= IPC__UNIX_READ;
6310 	if (flag & S_IWUGO)
6311 		av |= IPC__UNIX_WRITE;
6312 
6313 	if (av == 0)
6314 		return 0;
6315 
6316 	return ipc_has_perm(ipcp, av);
6317 }
6318 
6319 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6320 {
6321 	struct ipc_security_struct *isec = ipcp->security;
6322 	*secid = isec->sid;
6323 }
6324 
6325 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6326 {
6327 	if (inode)
6328 		inode_doinit_with_dentry(inode, dentry);
6329 }
6330 
6331 static int selinux_getprocattr(struct task_struct *p,
6332 			       char *name, char **value)
6333 {
6334 	const struct task_security_struct *__tsec;
6335 	u32 sid;
6336 	int error;
6337 	unsigned len;
6338 
6339 	rcu_read_lock();
6340 	__tsec = __task_cred(p)->security;
6341 
6342 	if (current != p) {
6343 		error = avc_has_perm(&selinux_state,
6344 				     current_sid(), __tsec->sid,
6345 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6346 		if (error)
6347 			goto bad;
6348 	}
6349 
6350 	if (!strcmp(name, "current"))
6351 		sid = __tsec->sid;
6352 	else if (!strcmp(name, "prev"))
6353 		sid = __tsec->osid;
6354 	else if (!strcmp(name, "exec"))
6355 		sid = __tsec->exec_sid;
6356 	else if (!strcmp(name, "fscreate"))
6357 		sid = __tsec->create_sid;
6358 	else if (!strcmp(name, "keycreate"))
6359 		sid = __tsec->keycreate_sid;
6360 	else if (!strcmp(name, "sockcreate"))
6361 		sid = __tsec->sockcreate_sid;
6362 	else {
6363 		error = -EINVAL;
6364 		goto bad;
6365 	}
6366 	rcu_read_unlock();
6367 
6368 	if (!sid)
6369 		return 0;
6370 
6371 	error = security_sid_to_context(&selinux_state, sid, value, &len);
6372 	if (error)
6373 		return error;
6374 	return len;
6375 
6376 bad:
6377 	rcu_read_unlock();
6378 	return error;
6379 }
6380 
6381 static int selinux_setprocattr(const char *name, void *value, size_t size)
6382 {
6383 	struct task_security_struct *tsec;
6384 	struct cred *new;
6385 	u32 mysid = current_sid(), sid = 0, ptsid;
6386 	int error;
6387 	char *str = value;
6388 
6389 	/*
6390 	 * Basic control over ability to set these attributes at all.
6391 	 */
6392 	if (!strcmp(name, "exec"))
6393 		error = avc_has_perm(&selinux_state,
6394 				     mysid, mysid, SECCLASS_PROCESS,
6395 				     PROCESS__SETEXEC, NULL);
6396 	else if (!strcmp(name, "fscreate"))
6397 		error = avc_has_perm(&selinux_state,
6398 				     mysid, mysid, SECCLASS_PROCESS,
6399 				     PROCESS__SETFSCREATE, NULL);
6400 	else if (!strcmp(name, "keycreate"))
6401 		error = avc_has_perm(&selinux_state,
6402 				     mysid, mysid, SECCLASS_PROCESS,
6403 				     PROCESS__SETKEYCREATE, NULL);
6404 	else if (!strcmp(name, "sockcreate"))
6405 		error = avc_has_perm(&selinux_state,
6406 				     mysid, mysid, SECCLASS_PROCESS,
6407 				     PROCESS__SETSOCKCREATE, NULL);
6408 	else if (!strcmp(name, "current"))
6409 		error = avc_has_perm(&selinux_state,
6410 				     mysid, mysid, SECCLASS_PROCESS,
6411 				     PROCESS__SETCURRENT, NULL);
6412 	else
6413 		error = -EINVAL;
6414 	if (error)
6415 		return error;
6416 
6417 	/* Obtain a SID for the context, if one was specified. */
6418 	if (size && str[0] && str[0] != '\n') {
6419 		if (str[size-1] == '\n') {
6420 			str[size-1] = 0;
6421 			size--;
6422 		}
6423 		error = security_context_to_sid(&selinux_state, value, size,
6424 						&sid, GFP_KERNEL);
6425 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6426 			if (!has_cap_mac_admin(true)) {
6427 				struct audit_buffer *ab;
6428 				size_t audit_size;
6429 
6430 				/* We strip a nul only if it is at the end, otherwise the
6431 				 * context contains a nul and we should audit that */
6432 				if (str[size - 1] == '\0')
6433 					audit_size = size - 1;
6434 				else
6435 					audit_size = size;
6436 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6437 				audit_log_format(ab, "op=fscreate invalid_context=");
6438 				audit_log_n_untrustedstring(ab, value, audit_size);
6439 				audit_log_end(ab);
6440 
6441 				return error;
6442 			}
6443 			error = security_context_to_sid_force(
6444 						      &selinux_state,
6445 						      value, size, &sid);
6446 		}
6447 		if (error)
6448 			return error;
6449 	}
6450 
6451 	new = prepare_creds();
6452 	if (!new)
6453 		return -ENOMEM;
6454 
6455 	/* Permission checking based on the specified context is
6456 	   performed during the actual operation (execve,
6457 	   open/mkdir/...), when we know the full context of the
6458 	   operation.  See selinux_bprm_set_creds for the execve
6459 	   checks and may_create for the file creation checks. The
6460 	   operation will then fail if the context is not permitted. */
6461 	tsec = new->security;
6462 	if (!strcmp(name, "exec")) {
6463 		tsec->exec_sid = sid;
6464 	} else if (!strcmp(name, "fscreate")) {
6465 		tsec->create_sid = sid;
6466 	} else if (!strcmp(name, "keycreate")) {
6467 		error = avc_has_perm(&selinux_state,
6468 				     mysid, sid, SECCLASS_KEY, KEY__CREATE,
6469 				     NULL);
6470 		if (error)
6471 			goto abort_change;
6472 		tsec->keycreate_sid = sid;
6473 	} else if (!strcmp(name, "sockcreate")) {
6474 		tsec->sockcreate_sid = sid;
6475 	} else if (!strcmp(name, "current")) {
6476 		error = -EINVAL;
6477 		if (sid == 0)
6478 			goto abort_change;
6479 
6480 		/* Only allow single threaded processes to change context */
6481 		error = -EPERM;
6482 		if (!current_is_single_threaded()) {
6483 			error = security_bounded_transition(&selinux_state,
6484 							    tsec->sid, sid);
6485 			if (error)
6486 				goto abort_change;
6487 		}
6488 
6489 		/* Check permissions for the transition. */
6490 		error = avc_has_perm(&selinux_state,
6491 				     tsec->sid, sid, SECCLASS_PROCESS,
6492 				     PROCESS__DYNTRANSITION, NULL);
6493 		if (error)
6494 			goto abort_change;
6495 
6496 		/* Check for ptracing, and update the task SID if ok.
6497 		   Otherwise, leave SID unchanged and fail. */
6498 		ptsid = ptrace_parent_sid();
6499 		if (ptsid != 0) {
6500 			error = avc_has_perm(&selinux_state,
6501 					     ptsid, sid, SECCLASS_PROCESS,
6502 					     PROCESS__PTRACE, NULL);
6503 			if (error)
6504 				goto abort_change;
6505 		}
6506 
6507 		tsec->sid = sid;
6508 	} else {
6509 		error = -EINVAL;
6510 		goto abort_change;
6511 	}
6512 
6513 	commit_creds(new);
6514 	return size;
6515 
6516 abort_change:
6517 	abort_creds(new);
6518 	return error;
6519 }
6520 
6521 static int selinux_ismaclabel(const char *name)
6522 {
6523 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6524 }
6525 
6526 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6527 {
6528 	return security_sid_to_context(&selinux_state, secid,
6529 				       secdata, seclen);
6530 }
6531 
6532 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6533 {
6534 	return security_context_to_sid(&selinux_state, secdata, seclen,
6535 				       secid, GFP_KERNEL);
6536 }
6537 
6538 static void selinux_release_secctx(char *secdata, u32 seclen)
6539 {
6540 	kfree(secdata);
6541 }
6542 
6543 static void selinux_inode_invalidate_secctx(struct inode *inode)
6544 {
6545 	struct inode_security_struct *isec = inode->i_security;
6546 
6547 	spin_lock(&isec->lock);
6548 	isec->initialized = LABEL_INVALID;
6549 	spin_unlock(&isec->lock);
6550 }
6551 
6552 /*
6553  *	called with inode->i_mutex locked
6554  */
6555 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6556 {
6557 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6558 }
6559 
6560 /*
6561  *	called with inode->i_mutex locked
6562  */
6563 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6564 {
6565 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6566 }
6567 
6568 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6569 {
6570 	int len = 0;
6571 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6572 						ctx, true);
6573 	if (len < 0)
6574 		return len;
6575 	*ctxlen = len;
6576 	return 0;
6577 }
6578 #ifdef CONFIG_KEYS
6579 
6580 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6581 			     unsigned long flags)
6582 {
6583 	const struct task_security_struct *tsec;
6584 	struct key_security_struct *ksec;
6585 
6586 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6587 	if (!ksec)
6588 		return -ENOMEM;
6589 
6590 	tsec = cred->security;
6591 	if (tsec->keycreate_sid)
6592 		ksec->sid = tsec->keycreate_sid;
6593 	else
6594 		ksec->sid = tsec->sid;
6595 
6596 	k->security = ksec;
6597 	return 0;
6598 }
6599 
6600 static void selinux_key_free(struct key *k)
6601 {
6602 	struct key_security_struct *ksec = k->security;
6603 
6604 	k->security = NULL;
6605 	kfree(ksec);
6606 }
6607 
6608 static int selinux_key_permission(key_ref_t key_ref,
6609 				  const struct cred *cred,
6610 				  unsigned perm)
6611 {
6612 	struct key *key;
6613 	struct key_security_struct *ksec;
6614 	u32 sid;
6615 
6616 	/* if no specific permissions are requested, we skip the
6617 	   permission check. No serious, additional covert channels
6618 	   appear to be created. */
6619 	if (perm == 0)
6620 		return 0;
6621 
6622 	sid = cred_sid(cred);
6623 
6624 	key = key_ref_to_ptr(key_ref);
6625 	ksec = key->security;
6626 
6627 	return avc_has_perm(&selinux_state,
6628 			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6629 }
6630 
6631 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6632 {
6633 	struct key_security_struct *ksec = key->security;
6634 	char *context = NULL;
6635 	unsigned len;
6636 	int rc;
6637 
6638 	rc = security_sid_to_context(&selinux_state, ksec->sid,
6639 				     &context, &len);
6640 	if (!rc)
6641 		rc = len;
6642 	*_buffer = context;
6643 	return rc;
6644 }
6645 #endif
6646 
6647 #ifdef CONFIG_SECURITY_INFINIBAND
6648 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6649 {
6650 	struct common_audit_data ad;
6651 	int err;
6652 	u32 sid = 0;
6653 	struct ib_security_struct *sec = ib_sec;
6654 	struct lsm_ibpkey_audit ibpkey;
6655 
6656 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6657 	if (err)
6658 		return err;
6659 
6660 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6661 	ibpkey.subnet_prefix = subnet_prefix;
6662 	ibpkey.pkey = pkey_val;
6663 	ad.u.ibpkey = &ibpkey;
6664 	return avc_has_perm(&selinux_state,
6665 			    sec->sid, sid,
6666 			    SECCLASS_INFINIBAND_PKEY,
6667 			    INFINIBAND_PKEY__ACCESS, &ad);
6668 }
6669 
6670 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6671 					    u8 port_num)
6672 {
6673 	struct common_audit_data ad;
6674 	int err;
6675 	u32 sid = 0;
6676 	struct ib_security_struct *sec = ib_sec;
6677 	struct lsm_ibendport_audit ibendport;
6678 
6679 	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6680 				      &sid);
6681 
6682 	if (err)
6683 		return err;
6684 
6685 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6686 	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6687 	ibendport.port = port_num;
6688 	ad.u.ibendport = &ibendport;
6689 	return avc_has_perm(&selinux_state,
6690 			    sec->sid, sid,
6691 			    SECCLASS_INFINIBAND_ENDPORT,
6692 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6693 }
6694 
6695 static int selinux_ib_alloc_security(void **ib_sec)
6696 {
6697 	struct ib_security_struct *sec;
6698 
6699 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6700 	if (!sec)
6701 		return -ENOMEM;
6702 	sec->sid = current_sid();
6703 
6704 	*ib_sec = sec;
6705 	return 0;
6706 }
6707 
6708 static void selinux_ib_free_security(void *ib_sec)
6709 {
6710 	kfree(ib_sec);
6711 }
6712 #endif
6713 
6714 #ifdef CONFIG_BPF_SYSCALL
6715 static int selinux_bpf(int cmd, union bpf_attr *attr,
6716 				     unsigned int size)
6717 {
6718 	u32 sid = current_sid();
6719 	int ret;
6720 
6721 	switch (cmd) {
6722 	case BPF_MAP_CREATE:
6723 		ret = avc_has_perm(&selinux_state,
6724 				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6725 				   NULL);
6726 		break;
6727 	case BPF_PROG_LOAD:
6728 		ret = avc_has_perm(&selinux_state,
6729 				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6730 				   NULL);
6731 		break;
6732 	default:
6733 		ret = 0;
6734 		break;
6735 	}
6736 
6737 	return ret;
6738 }
6739 
6740 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6741 {
6742 	u32 av = 0;
6743 
6744 	if (fmode & FMODE_READ)
6745 		av |= BPF__MAP_READ;
6746 	if (fmode & FMODE_WRITE)
6747 		av |= BPF__MAP_WRITE;
6748 	return av;
6749 }
6750 
6751 /* This function will check the file pass through unix socket or binder to see
6752  * if it is a bpf related object. And apply correspinding checks on the bpf
6753  * object based on the type. The bpf maps and programs, not like other files and
6754  * socket, are using a shared anonymous inode inside the kernel as their inode.
6755  * So checking that inode cannot identify if the process have privilege to
6756  * access the bpf object and that's why we have to add this additional check in
6757  * selinux_file_receive and selinux_binder_transfer_files.
6758  */
6759 static int bpf_fd_pass(struct file *file, u32 sid)
6760 {
6761 	struct bpf_security_struct *bpfsec;
6762 	struct bpf_prog *prog;
6763 	struct bpf_map *map;
6764 	int ret;
6765 
6766 	if (file->f_op == &bpf_map_fops) {
6767 		map = file->private_data;
6768 		bpfsec = map->security;
6769 		ret = avc_has_perm(&selinux_state,
6770 				   sid, bpfsec->sid, SECCLASS_BPF,
6771 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6772 		if (ret)
6773 			return ret;
6774 	} else if (file->f_op == &bpf_prog_fops) {
6775 		prog = file->private_data;
6776 		bpfsec = prog->aux->security;
6777 		ret = avc_has_perm(&selinux_state,
6778 				   sid, bpfsec->sid, SECCLASS_BPF,
6779 				   BPF__PROG_RUN, NULL);
6780 		if (ret)
6781 			return ret;
6782 	}
6783 	return 0;
6784 }
6785 
6786 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6787 {
6788 	u32 sid = current_sid();
6789 	struct bpf_security_struct *bpfsec;
6790 
6791 	bpfsec = map->security;
6792 	return avc_has_perm(&selinux_state,
6793 			    sid, bpfsec->sid, SECCLASS_BPF,
6794 			    bpf_map_fmode_to_av(fmode), NULL);
6795 }
6796 
6797 static int selinux_bpf_prog(struct bpf_prog *prog)
6798 {
6799 	u32 sid = current_sid();
6800 	struct bpf_security_struct *bpfsec;
6801 
6802 	bpfsec = prog->aux->security;
6803 	return avc_has_perm(&selinux_state,
6804 			    sid, bpfsec->sid, SECCLASS_BPF,
6805 			    BPF__PROG_RUN, NULL);
6806 }
6807 
6808 static int selinux_bpf_map_alloc(struct bpf_map *map)
6809 {
6810 	struct bpf_security_struct *bpfsec;
6811 
6812 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6813 	if (!bpfsec)
6814 		return -ENOMEM;
6815 
6816 	bpfsec->sid = current_sid();
6817 	map->security = bpfsec;
6818 
6819 	return 0;
6820 }
6821 
6822 static void selinux_bpf_map_free(struct bpf_map *map)
6823 {
6824 	struct bpf_security_struct *bpfsec = map->security;
6825 
6826 	map->security = NULL;
6827 	kfree(bpfsec);
6828 }
6829 
6830 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6831 {
6832 	struct bpf_security_struct *bpfsec;
6833 
6834 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6835 	if (!bpfsec)
6836 		return -ENOMEM;
6837 
6838 	bpfsec->sid = current_sid();
6839 	aux->security = bpfsec;
6840 
6841 	return 0;
6842 }
6843 
6844 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6845 {
6846 	struct bpf_security_struct *bpfsec = aux->security;
6847 
6848 	aux->security = NULL;
6849 	kfree(bpfsec);
6850 }
6851 #endif
6852 
6853 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6854 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6855 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6856 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6857 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6858 
6859 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6860 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6861 	LSM_HOOK_INIT(capget, selinux_capget),
6862 	LSM_HOOK_INIT(capset, selinux_capset),
6863 	LSM_HOOK_INIT(capable, selinux_capable),
6864 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6865 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6866 	LSM_HOOK_INIT(syslog, selinux_syslog),
6867 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6868 
6869 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6870 
6871 	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6872 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6873 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6874 
6875 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6876 	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6877 	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6878 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6879 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6880 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6881 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6882 	LSM_HOOK_INIT(sb_mount, selinux_mount),
6883 	LSM_HOOK_INIT(sb_umount, selinux_umount),
6884 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6885 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6886 	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6887 
6888 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6889 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6890 
6891 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6892 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6893 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6894 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6895 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6896 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6897 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6898 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6899 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6900 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6901 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6902 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6903 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6904 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6905 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6906 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6907 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6908 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6909 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6910 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6911 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6912 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6913 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6914 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6915 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6916 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6917 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6918 
6919 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6920 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6921 	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6922 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6923 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6924 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6925 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6926 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6927 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6928 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6929 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6930 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6931 
6932 	LSM_HOOK_INIT(file_open, selinux_file_open),
6933 
6934 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6935 	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6936 	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6937 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6938 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6939 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6940 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6941 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6942 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6943 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6944 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6945 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6946 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6947 	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6948 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6949 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6950 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6951 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6952 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6953 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6954 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6955 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6956 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6957 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6958 
6959 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6960 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6961 
6962 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6963 	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6964 
6965 	LSM_HOOK_INIT(msg_queue_alloc_security,
6966 			selinux_msg_queue_alloc_security),
6967 	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6968 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6969 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6970 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6971 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6972 
6973 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6974 	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6975 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6976 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6977 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6978 
6979 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6980 	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6981 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6982 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6983 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6984 
6985 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6986 
6987 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6988 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6989 
6990 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6991 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6992 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6993 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6994 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6995 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6996 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6997 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6998 
6999 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7000 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7001 
7002 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7003 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7004 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7005 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7006 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7007 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7008 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7009 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7010 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7011 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7012 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7013 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7014 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7015 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7016 	LSM_HOOK_INIT(socket_getpeersec_stream,
7017 			selinux_socket_getpeersec_stream),
7018 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7019 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7020 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7021 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7022 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7023 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7024 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7025 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7026 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7027 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7028 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7029 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7030 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7031 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7032 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7033 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7034 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7035 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7036 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7037 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7038 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7039 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7040 #ifdef CONFIG_SECURITY_INFINIBAND
7041 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7042 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7043 		      selinux_ib_endport_manage_subnet),
7044 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7045 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7046 #endif
7047 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7048 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7049 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7050 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7051 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7052 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7053 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7054 			selinux_xfrm_state_alloc_acquire),
7055 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7056 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7057 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7058 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7059 			selinux_xfrm_state_pol_flow_match),
7060 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7061 #endif
7062 
7063 #ifdef CONFIG_KEYS
7064 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7065 	LSM_HOOK_INIT(key_free, selinux_key_free),
7066 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7067 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7068 #endif
7069 
7070 #ifdef CONFIG_AUDIT
7071 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7072 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7073 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7074 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7075 #endif
7076 
7077 #ifdef CONFIG_BPF_SYSCALL
7078 	LSM_HOOK_INIT(bpf, selinux_bpf),
7079 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7080 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7081 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7082 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7083 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7084 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7085 #endif
7086 };
7087 
7088 static __init int selinux_init(void)
7089 {
7090 	if (!security_module_enable("selinux")) {
7091 		selinux_enabled = 0;
7092 		return 0;
7093 	}
7094 
7095 	if (!selinux_enabled) {
7096 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
7097 		return 0;
7098 	}
7099 
7100 	printk(KERN_INFO "SELinux:  Initializing.\n");
7101 
7102 	memset(&selinux_state, 0, sizeof(selinux_state));
7103 	enforcing_set(&selinux_state, selinux_enforcing_boot);
7104 	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7105 	selinux_ss_init(&selinux_state.ss);
7106 	selinux_avc_init(&selinux_state.avc);
7107 
7108 	/* Set the security state for the initial task. */
7109 	cred_init_security();
7110 
7111 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7112 
7113 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
7114 					    sizeof(struct inode_security_struct),
7115 					    0, SLAB_PANIC, NULL);
7116 	file_security_cache = kmem_cache_create("selinux_file_security",
7117 					    sizeof(struct file_security_struct),
7118 					    0, SLAB_PANIC, NULL);
7119 	avc_init();
7120 
7121 	avtab_cache_init();
7122 
7123 	ebitmap_cache_init();
7124 
7125 	hashtab_cache_init();
7126 
7127 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7128 
7129 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7130 		panic("SELinux: Unable to register AVC netcache callback\n");
7131 
7132 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7133 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7134 
7135 	if (selinux_enforcing_boot)
7136 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
7137 	else
7138 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
7139 
7140 	return 0;
7141 }
7142 
7143 static void delayed_superblock_init(struct super_block *sb, void *unused)
7144 {
7145 	superblock_doinit(sb, NULL);
7146 }
7147 
7148 void selinux_complete_init(void)
7149 {
7150 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
7151 
7152 	/* Set up any superblocks initialized prior to the policy load. */
7153 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
7154 	iterate_supers(delayed_superblock_init, NULL);
7155 }
7156 
7157 /* SELinux requires early initialization in order to label
7158    all processes and objects when they are created. */
7159 security_initcall(selinux_init);
7160 
7161 #if defined(CONFIG_NETFILTER)
7162 
7163 static const struct nf_hook_ops selinux_nf_ops[] = {
7164 	{
7165 		.hook =		selinux_ipv4_postroute,
7166 		.pf =		NFPROTO_IPV4,
7167 		.hooknum =	NF_INET_POST_ROUTING,
7168 		.priority =	NF_IP_PRI_SELINUX_LAST,
7169 	},
7170 	{
7171 		.hook =		selinux_ipv4_forward,
7172 		.pf =		NFPROTO_IPV4,
7173 		.hooknum =	NF_INET_FORWARD,
7174 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7175 	},
7176 	{
7177 		.hook =		selinux_ipv4_output,
7178 		.pf =		NFPROTO_IPV4,
7179 		.hooknum =	NF_INET_LOCAL_OUT,
7180 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7181 	},
7182 #if IS_ENABLED(CONFIG_IPV6)
7183 	{
7184 		.hook =		selinux_ipv6_postroute,
7185 		.pf =		NFPROTO_IPV6,
7186 		.hooknum =	NF_INET_POST_ROUTING,
7187 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7188 	},
7189 	{
7190 		.hook =		selinux_ipv6_forward,
7191 		.pf =		NFPROTO_IPV6,
7192 		.hooknum =	NF_INET_FORWARD,
7193 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7194 	},
7195 	{
7196 		.hook =		selinux_ipv6_output,
7197 		.pf =		NFPROTO_IPV6,
7198 		.hooknum =	NF_INET_LOCAL_OUT,
7199 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7200 	},
7201 #endif	/* IPV6 */
7202 };
7203 
7204 static int __net_init selinux_nf_register(struct net *net)
7205 {
7206 	return nf_register_net_hooks(net, selinux_nf_ops,
7207 				     ARRAY_SIZE(selinux_nf_ops));
7208 }
7209 
7210 static void __net_exit selinux_nf_unregister(struct net *net)
7211 {
7212 	nf_unregister_net_hooks(net, selinux_nf_ops,
7213 				ARRAY_SIZE(selinux_nf_ops));
7214 }
7215 
7216 static struct pernet_operations selinux_net_ops = {
7217 	.init = selinux_nf_register,
7218 	.exit = selinux_nf_unregister,
7219 };
7220 
7221 static int __init selinux_nf_ip_init(void)
7222 {
7223 	int err;
7224 
7225 	if (!selinux_enabled)
7226 		return 0;
7227 
7228 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
7229 
7230 	err = register_pernet_subsys(&selinux_net_ops);
7231 	if (err)
7232 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7233 
7234 	return 0;
7235 }
7236 __initcall(selinux_nf_ip_init);
7237 
7238 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7239 static void selinux_nf_ip_exit(void)
7240 {
7241 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
7242 
7243 	unregister_pernet_subsys(&selinux_net_ops);
7244 }
7245 #endif
7246 
7247 #else /* CONFIG_NETFILTER */
7248 
7249 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7250 #define selinux_nf_ip_exit()
7251 #endif
7252 
7253 #endif /* CONFIG_NETFILTER */
7254 
7255 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7256 int selinux_disable(struct selinux_state *state)
7257 {
7258 	if (state->initialized) {
7259 		/* Not permitted after initial policy load. */
7260 		return -EINVAL;
7261 	}
7262 
7263 	if (state->disabled) {
7264 		/* Only do this once. */
7265 		return -EINVAL;
7266 	}
7267 
7268 	state->disabled = 1;
7269 
7270 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
7271 
7272 	selinux_enabled = 0;
7273 
7274 	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7275 
7276 	/* Try to destroy the avc node cache */
7277 	avc_disable();
7278 
7279 	/* Unregister netfilter hooks. */
7280 	selinux_nf_ip_exit();
7281 
7282 	/* Unregister selinuxfs. */
7283 	exit_sel_fs();
7284 
7285 	return 0;
7286 }
7287 #endif
7288