1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 #include <linux/posix-timers.h> 79 #include <linux/syslog.h> 80 81 #include "avc.h" 82 #include "objsec.h" 83 #include "netif.h" 84 #include "netnode.h" 85 #include "netport.h" 86 #include "xfrm.h" 87 #include "netlabel.h" 88 #include "audit.h" 89 90 #define XATTR_SELINUX_SUFFIX "selinux" 91 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 92 93 #define NUM_SEL_MNT_OPTS 5 94 95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 96 extern struct security_operations *security_ops; 97 98 /* SECMARK reference count */ 99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 100 101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 102 int selinux_enforcing; 103 104 static int __init enforcing_setup(char *str) 105 { 106 unsigned long enforcing; 107 if (!strict_strtoul(str, 0, &enforcing)) 108 selinux_enforcing = enforcing ? 1 : 0; 109 return 1; 110 } 111 __setup("enforcing=", enforcing_setup); 112 #endif 113 114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 116 117 static int __init selinux_enabled_setup(char *str) 118 { 119 unsigned long enabled; 120 if (!strict_strtoul(str, 0, &enabled)) 121 selinux_enabled = enabled ? 1 : 0; 122 return 1; 123 } 124 __setup("selinux=", selinux_enabled_setup); 125 #else 126 int selinux_enabled = 1; 127 #endif 128 129 130 /* 131 * Minimal support for a secondary security module, 132 * just to allow the use of the capability module. 133 */ 134 static struct security_operations *secondary_ops; 135 136 /* Lists of inode and superblock security structures initialized 137 before the policy was loaded. */ 138 static LIST_HEAD(superblock_security_head); 139 static DEFINE_SPINLOCK(sb_security_lock); 140 141 static struct kmem_cache *sel_inode_cache; 142 143 /** 144 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 145 * 146 * Description: 147 * This function checks the SECMARK reference counter to see if any SECMARK 148 * targets are currently configured, if the reference counter is greater than 149 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 150 * enabled, false (0) if SECMARK is disabled. 151 * 152 */ 153 static int selinux_secmark_enabled(void) 154 { 155 return (atomic_read(&selinux_secmark_refcount) > 0); 156 } 157 158 /* 159 * initialise the security for the init task 160 */ 161 static void cred_init_security(void) 162 { 163 struct cred *cred = (struct cred *) current->real_cred; 164 struct task_security_struct *tsec; 165 166 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 167 if (!tsec) 168 panic("SELinux: Failed to initialize initial task.\n"); 169 170 tsec->osid = tsec->sid = SECINITSID_KERNEL; 171 cred->security = tsec; 172 } 173 174 /* 175 * get the security ID of a set of credentials 176 */ 177 static inline u32 cred_sid(const struct cred *cred) 178 { 179 const struct task_security_struct *tsec; 180 181 tsec = cred->security; 182 return tsec->sid; 183 } 184 185 /* 186 * get the objective security ID of a task 187 */ 188 static inline u32 task_sid(const struct task_struct *task) 189 { 190 u32 sid; 191 192 rcu_read_lock(); 193 sid = cred_sid(__task_cred(task)); 194 rcu_read_unlock(); 195 return sid; 196 } 197 198 /* 199 * get the subjective security ID of the current task 200 */ 201 static inline u32 current_sid(void) 202 { 203 const struct task_security_struct *tsec = current_cred()->security; 204 205 return tsec->sid; 206 } 207 208 /* Allocate and free functions for each kind of security blob. */ 209 210 static int inode_alloc_security(struct inode *inode) 211 { 212 struct inode_security_struct *isec; 213 u32 sid = current_sid(); 214 215 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 216 if (!isec) 217 return -ENOMEM; 218 219 mutex_init(&isec->lock); 220 INIT_LIST_HEAD(&isec->list); 221 isec->inode = inode; 222 isec->sid = SECINITSID_UNLABELED; 223 isec->sclass = SECCLASS_FILE; 224 isec->task_sid = sid; 225 inode->i_security = isec; 226 227 return 0; 228 } 229 230 static void inode_free_security(struct inode *inode) 231 { 232 struct inode_security_struct *isec = inode->i_security; 233 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 234 235 spin_lock(&sbsec->isec_lock); 236 if (!list_empty(&isec->list)) 237 list_del_init(&isec->list); 238 spin_unlock(&sbsec->isec_lock); 239 240 inode->i_security = NULL; 241 kmem_cache_free(sel_inode_cache, isec); 242 } 243 244 static int file_alloc_security(struct file *file) 245 { 246 struct file_security_struct *fsec; 247 u32 sid = current_sid(); 248 249 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 250 if (!fsec) 251 return -ENOMEM; 252 253 fsec->sid = sid; 254 fsec->fown_sid = sid; 255 file->f_security = fsec; 256 257 return 0; 258 } 259 260 static void file_free_security(struct file *file) 261 { 262 struct file_security_struct *fsec = file->f_security; 263 file->f_security = NULL; 264 kfree(fsec); 265 } 266 267 static int superblock_alloc_security(struct super_block *sb) 268 { 269 struct superblock_security_struct *sbsec; 270 271 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 272 if (!sbsec) 273 return -ENOMEM; 274 275 mutex_init(&sbsec->lock); 276 INIT_LIST_HEAD(&sbsec->list); 277 INIT_LIST_HEAD(&sbsec->isec_head); 278 spin_lock_init(&sbsec->isec_lock); 279 sbsec->sb = sb; 280 sbsec->sid = SECINITSID_UNLABELED; 281 sbsec->def_sid = SECINITSID_FILE; 282 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 283 sb->s_security = sbsec; 284 285 return 0; 286 } 287 288 static void superblock_free_security(struct super_block *sb) 289 { 290 struct superblock_security_struct *sbsec = sb->s_security; 291 292 spin_lock(&sb_security_lock); 293 if (!list_empty(&sbsec->list)) 294 list_del_init(&sbsec->list); 295 spin_unlock(&sb_security_lock); 296 297 sb->s_security = NULL; 298 kfree(sbsec); 299 } 300 301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 302 { 303 struct sk_security_struct *ssec; 304 305 ssec = kzalloc(sizeof(*ssec), priority); 306 if (!ssec) 307 return -ENOMEM; 308 309 ssec->peer_sid = SECINITSID_UNLABELED; 310 ssec->sid = SECINITSID_UNLABELED; 311 sk->sk_security = ssec; 312 313 selinux_netlbl_sk_security_reset(ssec); 314 315 return 0; 316 } 317 318 static void sk_free_security(struct sock *sk) 319 { 320 struct sk_security_struct *ssec = sk->sk_security; 321 322 sk->sk_security = NULL; 323 selinux_netlbl_sk_security_free(ssec); 324 kfree(ssec); 325 } 326 327 /* The security server must be initialized before 328 any labeling or access decisions can be provided. */ 329 extern int ss_initialized; 330 331 /* The file system's label must be initialized prior to use. */ 332 333 static char *labeling_behaviors[6] = { 334 "uses xattr", 335 "uses transition SIDs", 336 "uses task SIDs", 337 "uses genfs_contexts", 338 "not configured for labeling", 339 "uses mountpoint labeling", 340 }; 341 342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 343 344 static inline int inode_doinit(struct inode *inode) 345 { 346 return inode_doinit_with_dentry(inode, NULL); 347 } 348 349 enum { 350 Opt_error = -1, 351 Opt_context = 1, 352 Opt_fscontext = 2, 353 Opt_defcontext = 3, 354 Opt_rootcontext = 4, 355 Opt_labelsupport = 5, 356 }; 357 358 static const match_table_t tokens = { 359 {Opt_context, CONTEXT_STR "%s"}, 360 {Opt_fscontext, FSCONTEXT_STR "%s"}, 361 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 362 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 363 {Opt_labelsupport, LABELSUPP_STR}, 364 {Opt_error, NULL}, 365 }; 366 367 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 368 369 static int may_context_mount_sb_relabel(u32 sid, 370 struct superblock_security_struct *sbsec, 371 const struct cred *cred) 372 { 373 const struct task_security_struct *tsec = cred->security; 374 int rc; 375 376 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 377 FILESYSTEM__RELABELFROM, NULL); 378 if (rc) 379 return rc; 380 381 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 382 FILESYSTEM__RELABELTO, NULL); 383 return rc; 384 } 385 386 static int may_context_mount_inode_relabel(u32 sid, 387 struct superblock_security_struct *sbsec, 388 const struct cred *cred) 389 { 390 const struct task_security_struct *tsec = cred->security; 391 int rc; 392 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 393 FILESYSTEM__RELABELFROM, NULL); 394 if (rc) 395 return rc; 396 397 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 398 FILESYSTEM__ASSOCIATE, NULL); 399 return rc; 400 } 401 402 static int sb_finish_set_opts(struct super_block *sb) 403 { 404 struct superblock_security_struct *sbsec = sb->s_security; 405 struct dentry *root = sb->s_root; 406 struct inode *root_inode = root->d_inode; 407 int rc = 0; 408 409 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 410 /* Make sure that the xattr handler exists and that no 411 error other than -ENODATA is returned by getxattr on 412 the root directory. -ENODATA is ok, as this may be 413 the first boot of the SELinux kernel before we have 414 assigned xattr values to the filesystem. */ 415 if (!root_inode->i_op->getxattr) { 416 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 417 "xattr support\n", sb->s_id, sb->s_type->name); 418 rc = -EOPNOTSUPP; 419 goto out; 420 } 421 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 422 if (rc < 0 && rc != -ENODATA) { 423 if (rc == -EOPNOTSUPP) 424 printk(KERN_WARNING "SELinux: (dev %s, type " 425 "%s) has no security xattr handler\n", 426 sb->s_id, sb->s_type->name); 427 else 428 printk(KERN_WARNING "SELinux: (dev %s, type " 429 "%s) getxattr errno %d\n", sb->s_id, 430 sb->s_type->name, -rc); 431 goto out; 432 } 433 } 434 435 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP); 436 437 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 438 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 439 sb->s_id, sb->s_type->name); 440 else 441 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 442 sb->s_id, sb->s_type->name, 443 labeling_behaviors[sbsec->behavior-1]); 444 445 if (sbsec->behavior == SECURITY_FS_USE_GENFS || 446 sbsec->behavior == SECURITY_FS_USE_MNTPOINT || 447 sbsec->behavior == SECURITY_FS_USE_NONE || 448 sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 449 sbsec->flags &= ~SE_SBLABELSUPP; 450 451 /* Special handling for sysfs. Is genfs but also has setxattr handler*/ 452 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0) 453 sbsec->flags |= SE_SBLABELSUPP; 454 455 /* Initialize the root inode. */ 456 rc = inode_doinit_with_dentry(root_inode, root); 457 458 /* Initialize any other inodes associated with the superblock, e.g. 459 inodes created prior to initial policy load or inodes created 460 during get_sb by a pseudo filesystem that directly 461 populates itself. */ 462 spin_lock(&sbsec->isec_lock); 463 next_inode: 464 if (!list_empty(&sbsec->isec_head)) { 465 struct inode_security_struct *isec = 466 list_entry(sbsec->isec_head.next, 467 struct inode_security_struct, list); 468 struct inode *inode = isec->inode; 469 spin_unlock(&sbsec->isec_lock); 470 inode = igrab(inode); 471 if (inode) { 472 if (!IS_PRIVATE(inode)) 473 inode_doinit(inode); 474 iput(inode); 475 } 476 spin_lock(&sbsec->isec_lock); 477 list_del_init(&isec->list); 478 goto next_inode; 479 } 480 spin_unlock(&sbsec->isec_lock); 481 out: 482 return rc; 483 } 484 485 /* 486 * This function should allow an FS to ask what it's mount security 487 * options were so it can use those later for submounts, displaying 488 * mount options, or whatever. 489 */ 490 static int selinux_get_mnt_opts(const struct super_block *sb, 491 struct security_mnt_opts *opts) 492 { 493 int rc = 0, i; 494 struct superblock_security_struct *sbsec = sb->s_security; 495 char *context = NULL; 496 u32 len; 497 char tmp; 498 499 security_init_mnt_opts(opts); 500 501 if (!(sbsec->flags & SE_SBINITIALIZED)) 502 return -EINVAL; 503 504 if (!ss_initialized) 505 return -EINVAL; 506 507 tmp = sbsec->flags & SE_MNTMASK; 508 /* count the number of mount options for this sb */ 509 for (i = 0; i < 8; i++) { 510 if (tmp & 0x01) 511 opts->num_mnt_opts++; 512 tmp >>= 1; 513 } 514 /* Check if the Label support flag is set */ 515 if (sbsec->flags & SE_SBLABELSUPP) 516 opts->num_mnt_opts++; 517 518 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 519 if (!opts->mnt_opts) { 520 rc = -ENOMEM; 521 goto out_free; 522 } 523 524 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 525 if (!opts->mnt_opts_flags) { 526 rc = -ENOMEM; 527 goto out_free; 528 } 529 530 i = 0; 531 if (sbsec->flags & FSCONTEXT_MNT) { 532 rc = security_sid_to_context(sbsec->sid, &context, &len); 533 if (rc) 534 goto out_free; 535 opts->mnt_opts[i] = context; 536 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 537 } 538 if (sbsec->flags & CONTEXT_MNT) { 539 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 540 if (rc) 541 goto out_free; 542 opts->mnt_opts[i] = context; 543 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 544 } 545 if (sbsec->flags & DEFCONTEXT_MNT) { 546 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 547 if (rc) 548 goto out_free; 549 opts->mnt_opts[i] = context; 550 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 551 } 552 if (sbsec->flags & ROOTCONTEXT_MNT) { 553 struct inode *root = sbsec->sb->s_root->d_inode; 554 struct inode_security_struct *isec = root->i_security; 555 556 rc = security_sid_to_context(isec->sid, &context, &len); 557 if (rc) 558 goto out_free; 559 opts->mnt_opts[i] = context; 560 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 561 } 562 if (sbsec->flags & SE_SBLABELSUPP) { 563 opts->mnt_opts[i] = NULL; 564 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP; 565 } 566 567 BUG_ON(i != opts->num_mnt_opts); 568 569 return 0; 570 571 out_free: 572 security_free_mnt_opts(opts); 573 return rc; 574 } 575 576 static int bad_option(struct superblock_security_struct *sbsec, char flag, 577 u32 old_sid, u32 new_sid) 578 { 579 char mnt_flags = sbsec->flags & SE_MNTMASK; 580 581 /* check if the old mount command had the same options */ 582 if (sbsec->flags & SE_SBINITIALIZED) 583 if (!(sbsec->flags & flag) || 584 (old_sid != new_sid)) 585 return 1; 586 587 /* check if we were passed the same options twice, 588 * aka someone passed context=a,context=b 589 */ 590 if (!(sbsec->flags & SE_SBINITIALIZED)) 591 if (mnt_flags & flag) 592 return 1; 593 return 0; 594 } 595 596 /* 597 * Allow filesystems with binary mount data to explicitly set mount point 598 * labeling information. 599 */ 600 static int selinux_set_mnt_opts(struct super_block *sb, 601 struct security_mnt_opts *opts) 602 { 603 const struct cred *cred = current_cred(); 604 int rc = 0, i; 605 struct superblock_security_struct *sbsec = sb->s_security; 606 const char *name = sb->s_type->name; 607 struct inode *inode = sbsec->sb->s_root->d_inode; 608 struct inode_security_struct *root_isec = inode->i_security; 609 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 610 u32 defcontext_sid = 0; 611 char **mount_options = opts->mnt_opts; 612 int *flags = opts->mnt_opts_flags; 613 int num_opts = opts->num_mnt_opts; 614 615 mutex_lock(&sbsec->lock); 616 617 if (!ss_initialized) { 618 if (!num_opts) { 619 /* Defer initialization until selinux_complete_init, 620 after the initial policy is loaded and the security 621 server is ready to handle calls. */ 622 spin_lock(&sb_security_lock); 623 if (list_empty(&sbsec->list)) 624 list_add(&sbsec->list, &superblock_security_head); 625 spin_unlock(&sb_security_lock); 626 goto out; 627 } 628 rc = -EINVAL; 629 printk(KERN_WARNING "SELinux: Unable to set superblock options " 630 "before the security server is initialized\n"); 631 goto out; 632 } 633 634 /* 635 * Binary mount data FS will come through this function twice. Once 636 * from an explicit call and once from the generic calls from the vfs. 637 * Since the generic VFS calls will not contain any security mount data 638 * we need to skip the double mount verification. 639 * 640 * This does open a hole in which we will not notice if the first 641 * mount using this sb set explict options and a second mount using 642 * this sb does not set any security options. (The first options 643 * will be used for both mounts) 644 */ 645 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 646 && (num_opts == 0)) 647 goto out; 648 649 /* 650 * parse the mount options, check if they are valid sids. 651 * also check if someone is trying to mount the same sb more 652 * than once with different security options. 653 */ 654 for (i = 0; i < num_opts; i++) { 655 u32 sid; 656 657 if (flags[i] == SE_SBLABELSUPP) 658 continue; 659 rc = security_context_to_sid(mount_options[i], 660 strlen(mount_options[i]), &sid); 661 if (rc) { 662 printk(KERN_WARNING "SELinux: security_context_to_sid" 663 "(%s) failed for (dev %s, type %s) errno=%d\n", 664 mount_options[i], sb->s_id, name, rc); 665 goto out; 666 } 667 switch (flags[i]) { 668 case FSCONTEXT_MNT: 669 fscontext_sid = sid; 670 671 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 672 fscontext_sid)) 673 goto out_double_mount; 674 675 sbsec->flags |= FSCONTEXT_MNT; 676 break; 677 case CONTEXT_MNT: 678 context_sid = sid; 679 680 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 681 context_sid)) 682 goto out_double_mount; 683 684 sbsec->flags |= CONTEXT_MNT; 685 break; 686 case ROOTCONTEXT_MNT: 687 rootcontext_sid = sid; 688 689 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 690 rootcontext_sid)) 691 goto out_double_mount; 692 693 sbsec->flags |= ROOTCONTEXT_MNT; 694 695 break; 696 case DEFCONTEXT_MNT: 697 defcontext_sid = sid; 698 699 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 700 defcontext_sid)) 701 goto out_double_mount; 702 703 sbsec->flags |= DEFCONTEXT_MNT; 704 705 break; 706 default: 707 rc = -EINVAL; 708 goto out; 709 } 710 } 711 712 if (sbsec->flags & SE_SBINITIALIZED) { 713 /* previously mounted with options, but not on this attempt? */ 714 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 715 goto out_double_mount; 716 rc = 0; 717 goto out; 718 } 719 720 if (strcmp(sb->s_type->name, "proc") == 0) 721 sbsec->flags |= SE_SBPROC; 722 723 /* Determine the labeling behavior to use for this filesystem type. */ 724 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid); 725 if (rc) { 726 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 727 __func__, sb->s_type->name, rc); 728 goto out; 729 } 730 731 /* sets the context of the superblock for the fs being mounted. */ 732 if (fscontext_sid) { 733 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 734 if (rc) 735 goto out; 736 737 sbsec->sid = fscontext_sid; 738 } 739 740 /* 741 * Switch to using mount point labeling behavior. 742 * sets the label used on all file below the mountpoint, and will set 743 * the superblock context if not already set. 744 */ 745 if (context_sid) { 746 if (!fscontext_sid) { 747 rc = may_context_mount_sb_relabel(context_sid, sbsec, 748 cred); 749 if (rc) 750 goto out; 751 sbsec->sid = context_sid; 752 } else { 753 rc = may_context_mount_inode_relabel(context_sid, sbsec, 754 cred); 755 if (rc) 756 goto out; 757 } 758 if (!rootcontext_sid) 759 rootcontext_sid = context_sid; 760 761 sbsec->mntpoint_sid = context_sid; 762 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 763 } 764 765 if (rootcontext_sid) { 766 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 767 cred); 768 if (rc) 769 goto out; 770 771 root_isec->sid = rootcontext_sid; 772 root_isec->initialized = 1; 773 } 774 775 if (defcontext_sid) { 776 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 777 rc = -EINVAL; 778 printk(KERN_WARNING "SELinux: defcontext option is " 779 "invalid for this filesystem type\n"); 780 goto out; 781 } 782 783 if (defcontext_sid != sbsec->def_sid) { 784 rc = may_context_mount_inode_relabel(defcontext_sid, 785 sbsec, cred); 786 if (rc) 787 goto out; 788 } 789 790 sbsec->def_sid = defcontext_sid; 791 } 792 793 rc = sb_finish_set_opts(sb); 794 out: 795 mutex_unlock(&sbsec->lock); 796 return rc; 797 out_double_mount: 798 rc = -EINVAL; 799 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 800 "security settings for (dev %s, type %s)\n", sb->s_id, name); 801 goto out; 802 } 803 804 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 805 struct super_block *newsb) 806 { 807 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 808 struct superblock_security_struct *newsbsec = newsb->s_security; 809 810 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 811 int set_context = (oldsbsec->flags & CONTEXT_MNT); 812 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 813 814 /* 815 * if the parent was able to be mounted it clearly had no special lsm 816 * mount options. thus we can safely put this sb on the list and deal 817 * with it later 818 */ 819 if (!ss_initialized) { 820 spin_lock(&sb_security_lock); 821 if (list_empty(&newsbsec->list)) 822 list_add(&newsbsec->list, &superblock_security_head); 823 spin_unlock(&sb_security_lock); 824 return; 825 } 826 827 /* how can we clone if the old one wasn't set up?? */ 828 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 829 830 /* if fs is reusing a sb, just let its options stand... */ 831 if (newsbsec->flags & SE_SBINITIALIZED) 832 return; 833 834 mutex_lock(&newsbsec->lock); 835 836 newsbsec->flags = oldsbsec->flags; 837 838 newsbsec->sid = oldsbsec->sid; 839 newsbsec->def_sid = oldsbsec->def_sid; 840 newsbsec->behavior = oldsbsec->behavior; 841 842 if (set_context) { 843 u32 sid = oldsbsec->mntpoint_sid; 844 845 if (!set_fscontext) 846 newsbsec->sid = sid; 847 if (!set_rootcontext) { 848 struct inode *newinode = newsb->s_root->d_inode; 849 struct inode_security_struct *newisec = newinode->i_security; 850 newisec->sid = sid; 851 } 852 newsbsec->mntpoint_sid = sid; 853 } 854 if (set_rootcontext) { 855 const struct inode *oldinode = oldsb->s_root->d_inode; 856 const struct inode_security_struct *oldisec = oldinode->i_security; 857 struct inode *newinode = newsb->s_root->d_inode; 858 struct inode_security_struct *newisec = newinode->i_security; 859 860 newisec->sid = oldisec->sid; 861 } 862 863 sb_finish_set_opts(newsb); 864 mutex_unlock(&newsbsec->lock); 865 } 866 867 static int selinux_parse_opts_str(char *options, 868 struct security_mnt_opts *opts) 869 { 870 char *p; 871 char *context = NULL, *defcontext = NULL; 872 char *fscontext = NULL, *rootcontext = NULL; 873 int rc, num_mnt_opts = 0; 874 875 opts->num_mnt_opts = 0; 876 877 /* Standard string-based options. */ 878 while ((p = strsep(&options, "|")) != NULL) { 879 int token; 880 substring_t args[MAX_OPT_ARGS]; 881 882 if (!*p) 883 continue; 884 885 token = match_token(p, tokens, args); 886 887 switch (token) { 888 case Opt_context: 889 if (context || defcontext) { 890 rc = -EINVAL; 891 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 892 goto out_err; 893 } 894 context = match_strdup(&args[0]); 895 if (!context) { 896 rc = -ENOMEM; 897 goto out_err; 898 } 899 break; 900 901 case Opt_fscontext: 902 if (fscontext) { 903 rc = -EINVAL; 904 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 905 goto out_err; 906 } 907 fscontext = match_strdup(&args[0]); 908 if (!fscontext) { 909 rc = -ENOMEM; 910 goto out_err; 911 } 912 break; 913 914 case Opt_rootcontext: 915 if (rootcontext) { 916 rc = -EINVAL; 917 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 918 goto out_err; 919 } 920 rootcontext = match_strdup(&args[0]); 921 if (!rootcontext) { 922 rc = -ENOMEM; 923 goto out_err; 924 } 925 break; 926 927 case Opt_defcontext: 928 if (context || defcontext) { 929 rc = -EINVAL; 930 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 931 goto out_err; 932 } 933 defcontext = match_strdup(&args[0]); 934 if (!defcontext) { 935 rc = -ENOMEM; 936 goto out_err; 937 } 938 break; 939 case Opt_labelsupport: 940 break; 941 default: 942 rc = -EINVAL; 943 printk(KERN_WARNING "SELinux: unknown mount option\n"); 944 goto out_err; 945 946 } 947 } 948 949 rc = -ENOMEM; 950 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 951 if (!opts->mnt_opts) 952 goto out_err; 953 954 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 955 if (!opts->mnt_opts_flags) { 956 kfree(opts->mnt_opts); 957 goto out_err; 958 } 959 960 if (fscontext) { 961 opts->mnt_opts[num_mnt_opts] = fscontext; 962 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 963 } 964 if (context) { 965 opts->mnt_opts[num_mnt_opts] = context; 966 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 967 } 968 if (rootcontext) { 969 opts->mnt_opts[num_mnt_opts] = rootcontext; 970 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 971 } 972 if (defcontext) { 973 opts->mnt_opts[num_mnt_opts] = defcontext; 974 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 975 } 976 977 opts->num_mnt_opts = num_mnt_opts; 978 return 0; 979 980 out_err: 981 kfree(context); 982 kfree(defcontext); 983 kfree(fscontext); 984 kfree(rootcontext); 985 return rc; 986 } 987 /* 988 * string mount options parsing and call set the sbsec 989 */ 990 static int superblock_doinit(struct super_block *sb, void *data) 991 { 992 int rc = 0; 993 char *options = data; 994 struct security_mnt_opts opts; 995 996 security_init_mnt_opts(&opts); 997 998 if (!data) 999 goto out; 1000 1001 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1002 1003 rc = selinux_parse_opts_str(options, &opts); 1004 if (rc) 1005 goto out_err; 1006 1007 out: 1008 rc = selinux_set_mnt_opts(sb, &opts); 1009 1010 out_err: 1011 security_free_mnt_opts(&opts); 1012 return rc; 1013 } 1014 1015 static void selinux_write_opts(struct seq_file *m, 1016 struct security_mnt_opts *opts) 1017 { 1018 int i; 1019 char *prefix; 1020 1021 for (i = 0; i < opts->num_mnt_opts; i++) { 1022 char *has_comma; 1023 1024 if (opts->mnt_opts[i]) 1025 has_comma = strchr(opts->mnt_opts[i], ','); 1026 else 1027 has_comma = NULL; 1028 1029 switch (opts->mnt_opts_flags[i]) { 1030 case CONTEXT_MNT: 1031 prefix = CONTEXT_STR; 1032 break; 1033 case FSCONTEXT_MNT: 1034 prefix = FSCONTEXT_STR; 1035 break; 1036 case ROOTCONTEXT_MNT: 1037 prefix = ROOTCONTEXT_STR; 1038 break; 1039 case DEFCONTEXT_MNT: 1040 prefix = DEFCONTEXT_STR; 1041 break; 1042 case SE_SBLABELSUPP: 1043 seq_putc(m, ','); 1044 seq_puts(m, LABELSUPP_STR); 1045 continue; 1046 default: 1047 BUG(); 1048 }; 1049 /* we need a comma before each option */ 1050 seq_putc(m, ','); 1051 seq_puts(m, prefix); 1052 if (has_comma) 1053 seq_putc(m, '\"'); 1054 seq_puts(m, opts->mnt_opts[i]); 1055 if (has_comma) 1056 seq_putc(m, '\"'); 1057 } 1058 } 1059 1060 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1061 { 1062 struct security_mnt_opts opts; 1063 int rc; 1064 1065 rc = selinux_get_mnt_opts(sb, &opts); 1066 if (rc) { 1067 /* before policy load we may get EINVAL, don't show anything */ 1068 if (rc == -EINVAL) 1069 rc = 0; 1070 return rc; 1071 } 1072 1073 selinux_write_opts(m, &opts); 1074 1075 security_free_mnt_opts(&opts); 1076 1077 return rc; 1078 } 1079 1080 static inline u16 inode_mode_to_security_class(umode_t mode) 1081 { 1082 switch (mode & S_IFMT) { 1083 case S_IFSOCK: 1084 return SECCLASS_SOCK_FILE; 1085 case S_IFLNK: 1086 return SECCLASS_LNK_FILE; 1087 case S_IFREG: 1088 return SECCLASS_FILE; 1089 case S_IFBLK: 1090 return SECCLASS_BLK_FILE; 1091 case S_IFDIR: 1092 return SECCLASS_DIR; 1093 case S_IFCHR: 1094 return SECCLASS_CHR_FILE; 1095 case S_IFIFO: 1096 return SECCLASS_FIFO_FILE; 1097 1098 } 1099 1100 return SECCLASS_FILE; 1101 } 1102 1103 static inline int default_protocol_stream(int protocol) 1104 { 1105 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1106 } 1107 1108 static inline int default_protocol_dgram(int protocol) 1109 { 1110 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1111 } 1112 1113 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1114 { 1115 switch (family) { 1116 case PF_UNIX: 1117 switch (type) { 1118 case SOCK_STREAM: 1119 case SOCK_SEQPACKET: 1120 return SECCLASS_UNIX_STREAM_SOCKET; 1121 case SOCK_DGRAM: 1122 return SECCLASS_UNIX_DGRAM_SOCKET; 1123 } 1124 break; 1125 case PF_INET: 1126 case PF_INET6: 1127 switch (type) { 1128 case SOCK_STREAM: 1129 if (default_protocol_stream(protocol)) 1130 return SECCLASS_TCP_SOCKET; 1131 else 1132 return SECCLASS_RAWIP_SOCKET; 1133 case SOCK_DGRAM: 1134 if (default_protocol_dgram(protocol)) 1135 return SECCLASS_UDP_SOCKET; 1136 else 1137 return SECCLASS_RAWIP_SOCKET; 1138 case SOCK_DCCP: 1139 return SECCLASS_DCCP_SOCKET; 1140 default: 1141 return SECCLASS_RAWIP_SOCKET; 1142 } 1143 break; 1144 case PF_NETLINK: 1145 switch (protocol) { 1146 case NETLINK_ROUTE: 1147 return SECCLASS_NETLINK_ROUTE_SOCKET; 1148 case NETLINK_FIREWALL: 1149 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1150 case NETLINK_INET_DIAG: 1151 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1152 case NETLINK_NFLOG: 1153 return SECCLASS_NETLINK_NFLOG_SOCKET; 1154 case NETLINK_XFRM: 1155 return SECCLASS_NETLINK_XFRM_SOCKET; 1156 case NETLINK_SELINUX: 1157 return SECCLASS_NETLINK_SELINUX_SOCKET; 1158 case NETLINK_AUDIT: 1159 return SECCLASS_NETLINK_AUDIT_SOCKET; 1160 case NETLINK_IP6_FW: 1161 return SECCLASS_NETLINK_IP6FW_SOCKET; 1162 case NETLINK_DNRTMSG: 1163 return SECCLASS_NETLINK_DNRT_SOCKET; 1164 case NETLINK_KOBJECT_UEVENT: 1165 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1166 default: 1167 return SECCLASS_NETLINK_SOCKET; 1168 } 1169 case PF_PACKET: 1170 return SECCLASS_PACKET_SOCKET; 1171 case PF_KEY: 1172 return SECCLASS_KEY_SOCKET; 1173 case PF_APPLETALK: 1174 return SECCLASS_APPLETALK_SOCKET; 1175 } 1176 1177 return SECCLASS_SOCKET; 1178 } 1179 1180 #ifdef CONFIG_PROC_FS 1181 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1182 u16 tclass, 1183 u32 *sid) 1184 { 1185 int buflen, rc; 1186 char *buffer, *path, *end; 1187 1188 buffer = (char *)__get_free_page(GFP_KERNEL); 1189 if (!buffer) 1190 return -ENOMEM; 1191 1192 buflen = PAGE_SIZE; 1193 end = buffer+buflen; 1194 *--end = '\0'; 1195 buflen--; 1196 path = end-1; 1197 *path = '/'; 1198 while (de && de != de->parent) { 1199 buflen -= de->namelen + 1; 1200 if (buflen < 0) 1201 break; 1202 end -= de->namelen; 1203 memcpy(end, de->name, de->namelen); 1204 *--end = '/'; 1205 path = end; 1206 de = de->parent; 1207 } 1208 rc = security_genfs_sid("proc", path, tclass, sid); 1209 free_page((unsigned long)buffer); 1210 return rc; 1211 } 1212 #else 1213 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1214 u16 tclass, 1215 u32 *sid) 1216 { 1217 return -EINVAL; 1218 } 1219 #endif 1220 1221 /* The inode's security attributes must be initialized before first use. */ 1222 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1223 { 1224 struct superblock_security_struct *sbsec = NULL; 1225 struct inode_security_struct *isec = inode->i_security; 1226 u32 sid; 1227 struct dentry *dentry; 1228 #define INITCONTEXTLEN 255 1229 char *context = NULL; 1230 unsigned len = 0; 1231 int rc = 0; 1232 1233 if (isec->initialized) 1234 goto out; 1235 1236 mutex_lock(&isec->lock); 1237 if (isec->initialized) 1238 goto out_unlock; 1239 1240 sbsec = inode->i_sb->s_security; 1241 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1242 /* Defer initialization until selinux_complete_init, 1243 after the initial policy is loaded and the security 1244 server is ready to handle calls. */ 1245 spin_lock(&sbsec->isec_lock); 1246 if (list_empty(&isec->list)) 1247 list_add(&isec->list, &sbsec->isec_head); 1248 spin_unlock(&sbsec->isec_lock); 1249 goto out_unlock; 1250 } 1251 1252 switch (sbsec->behavior) { 1253 case SECURITY_FS_USE_XATTR: 1254 if (!inode->i_op->getxattr) { 1255 isec->sid = sbsec->def_sid; 1256 break; 1257 } 1258 1259 /* Need a dentry, since the xattr API requires one. 1260 Life would be simpler if we could just pass the inode. */ 1261 if (opt_dentry) { 1262 /* Called from d_instantiate or d_splice_alias. */ 1263 dentry = dget(opt_dentry); 1264 } else { 1265 /* Called from selinux_complete_init, try to find a dentry. */ 1266 dentry = d_find_alias(inode); 1267 } 1268 if (!dentry) { 1269 /* 1270 * this is can be hit on boot when a file is accessed 1271 * before the policy is loaded. When we load policy we 1272 * may find inodes that have no dentry on the 1273 * sbsec->isec_head list. No reason to complain as these 1274 * will get fixed up the next time we go through 1275 * inode_doinit with a dentry, before these inodes could 1276 * be used again by userspace. 1277 */ 1278 goto out_unlock; 1279 } 1280 1281 len = INITCONTEXTLEN; 1282 context = kmalloc(len+1, GFP_NOFS); 1283 if (!context) { 1284 rc = -ENOMEM; 1285 dput(dentry); 1286 goto out_unlock; 1287 } 1288 context[len] = '\0'; 1289 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1290 context, len); 1291 if (rc == -ERANGE) { 1292 kfree(context); 1293 1294 /* Need a larger buffer. Query for the right size. */ 1295 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1296 NULL, 0); 1297 if (rc < 0) { 1298 dput(dentry); 1299 goto out_unlock; 1300 } 1301 len = rc; 1302 context = kmalloc(len+1, GFP_NOFS); 1303 if (!context) { 1304 rc = -ENOMEM; 1305 dput(dentry); 1306 goto out_unlock; 1307 } 1308 context[len] = '\0'; 1309 rc = inode->i_op->getxattr(dentry, 1310 XATTR_NAME_SELINUX, 1311 context, len); 1312 } 1313 dput(dentry); 1314 if (rc < 0) { 1315 if (rc != -ENODATA) { 1316 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1317 "%d for dev=%s ino=%ld\n", __func__, 1318 -rc, inode->i_sb->s_id, inode->i_ino); 1319 kfree(context); 1320 goto out_unlock; 1321 } 1322 /* Map ENODATA to the default file SID */ 1323 sid = sbsec->def_sid; 1324 rc = 0; 1325 } else { 1326 rc = security_context_to_sid_default(context, rc, &sid, 1327 sbsec->def_sid, 1328 GFP_NOFS); 1329 if (rc) { 1330 char *dev = inode->i_sb->s_id; 1331 unsigned long ino = inode->i_ino; 1332 1333 if (rc == -EINVAL) { 1334 if (printk_ratelimit()) 1335 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1336 "context=%s. This indicates you may need to relabel the inode or the " 1337 "filesystem in question.\n", ino, dev, context); 1338 } else { 1339 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1340 "returned %d for dev=%s ino=%ld\n", 1341 __func__, context, -rc, dev, ino); 1342 } 1343 kfree(context); 1344 /* Leave with the unlabeled SID */ 1345 rc = 0; 1346 break; 1347 } 1348 } 1349 kfree(context); 1350 isec->sid = sid; 1351 break; 1352 case SECURITY_FS_USE_TASK: 1353 isec->sid = isec->task_sid; 1354 break; 1355 case SECURITY_FS_USE_TRANS: 1356 /* Default to the fs SID. */ 1357 isec->sid = sbsec->sid; 1358 1359 /* Try to obtain a transition SID. */ 1360 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1361 rc = security_transition_sid(isec->task_sid, 1362 sbsec->sid, 1363 isec->sclass, 1364 &sid); 1365 if (rc) 1366 goto out_unlock; 1367 isec->sid = sid; 1368 break; 1369 case SECURITY_FS_USE_MNTPOINT: 1370 isec->sid = sbsec->mntpoint_sid; 1371 break; 1372 default: 1373 /* Default to the fs superblock SID. */ 1374 isec->sid = sbsec->sid; 1375 1376 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) { 1377 struct proc_inode *proci = PROC_I(inode); 1378 if (proci->pde) { 1379 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1380 rc = selinux_proc_get_sid(proci->pde, 1381 isec->sclass, 1382 &sid); 1383 if (rc) 1384 goto out_unlock; 1385 isec->sid = sid; 1386 } 1387 } 1388 break; 1389 } 1390 1391 isec->initialized = 1; 1392 1393 out_unlock: 1394 mutex_unlock(&isec->lock); 1395 out: 1396 if (isec->sclass == SECCLASS_FILE) 1397 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1398 return rc; 1399 } 1400 1401 /* Convert a Linux signal to an access vector. */ 1402 static inline u32 signal_to_av(int sig) 1403 { 1404 u32 perm = 0; 1405 1406 switch (sig) { 1407 case SIGCHLD: 1408 /* Commonly granted from child to parent. */ 1409 perm = PROCESS__SIGCHLD; 1410 break; 1411 case SIGKILL: 1412 /* Cannot be caught or ignored */ 1413 perm = PROCESS__SIGKILL; 1414 break; 1415 case SIGSTOP: 1416 /* Cannot be caught or ignored */ 1417 perm = PROCESS__SIGSTOP; 1418 break; 1419 default: 1420 /* All other signals. */ 1421 perm = PROCESS__SIGNAL; 1422 break; 1423 } 1424 1425 return perm; 1426 } 1427 1428 /* 1429 * Check permission between a pair of credentials 1430 * fork check, ptrace check, etc. 1431 */ 1432 static int cred_has_perm(const struct cred *actor, 1433 const struct cred *target, 1434 u32 perms) 1435 { 1436 u32 asid = cred_sid(actor), tsid = cred_sid(target); 1437 1438 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL); 1439 } 1440 1441 /* 1442 * Check permission between a pair of tasks, e.g. signal checks, 1443 * fork check, ptrace check, etc. 1444 * tsk1 is the actor and tsk2 is the target 1445 * - this uses the default subjective creds of tsk1 1446 */ 1447 static int task_has_perm(const struct task_struct *tsk1, 1448 const struct task_struct *tsk2, 1449 u32 perms) 1450 { 1451 const struct task_security_struct *__tsec1, *__tsec2; 1452 u32 sid1, sid2; 1453 1454 rcu_read_lock(); 1455 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid; 1456 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid; 1457 rcu_read_unlock(); 1458 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL); 1459 } 1460 1461 /* 1462 * Check permission between current and another task, e.g. signal checks, 1463 * fork check, ptrace check, etc. 1464 * current is the actor and tsk2 is the target 1465 * - this uses current's subjective creds 1466 */ 1467 static int current_has_perm(const struct task_struct *tsk, 1468 u32 perms) 1469 { 1470 u32 sid, tsid; 1471 1472 sid = current_sid(); 1473 tsid = task_sid(tsk); 1474 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL); 1475 } 1476 1477 #if CAP_LAST_CAP > 63 1478 #error Fix SELinux to handle capabilities > 63. 1479 #endif 1480 1481 /* Check whether a task is allowed to use a capability. */ 1482 static int task_has_capability(struct task_struct *tsk, 1483 const struct cred *cred, 1484 int cap, int audit) 1485 { 1486 struct common_audit_data ad; 1487 struct av_decision avd; 1488 u16 sclass; 1489 u32 sid = cred_sid(cred); 1490 u32 av = CAP_TO_MASK(cap); 1491 int rc; 1492 1493 COMMON_AUDIT_DATA_INIT(&ad, CAP); 1494 ad.tsk = tsk; 1495 ad.u.cap = cap; 1496 1497 switch (CAP_TO_INDEX(cap)) { 1498 case 0: 1499 sclass = SECCLASS_CAPABILITY; 1500 break; 1501 case 1: 1502 sclass = SECCLASS_CAPABILITY2; 1503 break; 1504 default: 1505 printk(KERN_ERR 1506 "SELinux: out of range capability %d\n", cap); 1507 BUG(); 1508 } 1509 1510 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1511 if (audit == SECURITY_CAP_AUDIT) 1512 avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1513 return rc; 1514 } 1515 1516 /* Check whether a task is allowed to use a system operation. */ 1517 static int task_has_system(struct task_struct *tsk, 1518 u32 perms) 1519 { 1520 u32 sid = task_sid(tsk); 1521 1522 return avc_has_perm(sid, SECINITSID_KERNEL, 1523 SECCLASS_SYSTEM, perms, NULL); 1524 } 1525 1526 /* Check whether a task has a particular permission to an inode. 1527 The 'adp' parameter is optional and allows other audit 1528 data to be passed (e.g. the dentry). */ 1529 static int inode_has_perm(const struct cred *cred, 1530 struct inode *inode, 1531 u32 perms, 1532 struct common_audit_data *adp) 1533 { 1534 struct inode_security_struct *isec; 1535 struct common_audit_data ad; 1536 u32 sid; 1537 1538 validate_creds(cred); 1539 1540 if (unlikely(IS_PRIVATE(inode))) 1541 return 0; 1542 1543 sid = cred_sid(cred); 1544 isec = inode->i_security; 1545 1546 if (!adp) { 1547 adp = &ad; 1548 COMMON_AUDIT_DATA_INIT(&ad, FS); 1549 ad.u.fs.inode = inode; 1550 } 1551 1552 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1553 } 1554 1555 /* Same as inode_has_perm, but pass explicit audit data containing 1556 the dentry to help the auditing code to more easily generate the 1557 pathname if needed. */ 1558 static inline int dentry_has_perm(const struct cred *cred, 1559 struct vfsmount *mnt, 1560 struct dentry *dentry, 1561 u32 av) 1562 { 1563 struct inode *inode = dentry->d_inode; 1564 struct common_audit_data ad; 1565 1566 COMMON_AUDIT_DATA_INIT(&ad, FS); 1567 ad.u.fs.path.mnt = mnt; 1568 ad.u.fs.path.dentry = dentry; 1569 return inode_has_perm(cred, inode, av, &ad); 1570 } 1571 1572 /* Check whether a task can use an open file descriptor to 1573 access an inode in a given way. Check access to the 1574 descriptor itself, and then use dentry_has_perm to 1575 check a particular permission to the file. 1576 Access to the descriptor is implicitly granted if it 1577 has the same SID as the process. If av is zero, then 1578 access to the file is not checked, e.g. for cases 1579 where only the descriptor is affected like seek. */ 1580 static int file_has_perm(const struct cred *cred, 1581 struct file *file, 1582 u32 av) 1583 { 1584 struct file_security_struct *fsec = file->f_security; 1585 struct inode *inode = file->f_path.dentry->d_inode; 1586 struct common_audit_data ad; 1587 u32 sid = cred_sid(cred); 1588 int rc; 1589 1590 COMMON_AUDIT_DATA_INIT(&ad, FS); 1591 ad.u.fs.path = file->f_path; 1592 1593 if (sid != fsec->sid) { 1594 rc = avc_has_perm(sid, fsec->sid, 1595 SECCLASS_FD, 1596 FD__USE, 1597 &ad); 1598 if (rc) 1599 goto out; 1600 } 1601 1602 /* av is zero if only checking access to the descriptor. */ 1603 rc = 0; 1604 if (av) 1605 rc = inode_has_perm(cred, inode, av, &ad); 1606 1607 out: 1608 return rc; 1609 } 1610 1611 /* Check whether a task can create a file. */ 1612 static int may_create(struct inode *dir, 1613 struct dentry *dentry, 1614 u16 tclass) 1615 { 1616 const struct cred *cred = current_cred(); 1617 const struct task_security_struct *tsec = cred->security; 1618 struct inode_security_struct *dsec; 1619 struct superblock_security_struct *sbsec; 1620 u32 sid, newsid; 1621 struct common_audit_data ad; 1622 int rc; 1623 1624 dsec = dir->i_security; 1625 sbsec = dir->i_sb->s_security; 1626 1627 sid = tsec->sid; 1628 newsid = tsec->create_sid; 1629 1630 COMMON_AUDIT_DATA_INIT(&ad, FS); 1631 ad.u.fs.path.dentry = dentry; 1632 1633 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1634 DIR__ADD_NAME | DIR__SEARCH, 1635 &ad); 1636 if (rc) 1637 return rc; 1638 1639 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 1640 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid); 1641 if (rc) 1642 return rc; 1643 } 1644 1645 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1646 if (rc) 1647 return rc; 1648 1649 return avc_has_perm(newsid, sbsec->sid, 1650 SECCLASS_FILESYSTEM, 1651 FILESYSTEM__ASSOCIATE, &ad); 1652 } 1653 1654 /* Check whether a task can create a key. */ 1655 static int may_create_key(u32 ksid, 1656 struct task_struct *ctx) 1657 { 1658 u32 sid = task_sid(ctx); 1659 1660 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1661 } 1662 1663 #define MAY_LINK 0 1664 #define MAY_UNLINK 1 1665 #define MAY_RMDIR 2 1666 1667 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1668 static int may_link(struct inode *dir, 1669 struct dentry *dentry, 1670 int kind) 1671 1672 { 1673 struct inode_security_struct *dsec, *isec; 1674 struct common_audit_data ad; 1675 u32 sid = current_sid(); 1676 u32 av; 1677 int rc; 1678 1679 dsec = dir->i_security; 1680 isec = dentry->d_inode->i_security; 1681 1682 COMMON_AUDIT_DATA_INIT(&ad, FS); 1683 ad.u.fs.path.dentry = dentry; 1684 1685 av = DIR__SEARCH; 1686 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1687 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1688 if (rc) 1689 return rc; 1690 1691 switch (kind) { 1692 case MAY_LINK: 1693 av = FILE__LINK; 1694 break; 1695 case MAY_UNLINK: 1696 av = FILE__UNLINK; 1697 break; 1698 case MAY_RMDIR: 1699 av = DIR__RMDIR; 1700 break; 1701 default: 1702 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1703 __func__, kind); 1704 return 0; 1705 } 1706 1707 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1708 return rc; 1709 } 1710 1711 static inline int may_rename(struct inode *old_dir, 1712 struct dentry *old_dentry, 1713 struct inode *new_dir, 1714 struct dentry *new_dentry) 1715 { 1716 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1717 struct common_audit_data ad; 1718 u32 sid = current_sid(); 1719 u32 av; 1720 int old_is_dir, new_is_dir; 1721 int rc; 1722 1723 old_dsec = old_dir->i_security; 1724 old_isec = old_dentry->d_inode->i_security; 1725 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1726 new_dsec = new_dir->i_security; 1727 1728 COMMON_AUDIT_DATA_INIT(&ad, FS); 1729 1730 ad.u.fs.path.dentry = old_dentry; 1731 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1732 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1733 if (rc) 1734 return rc; 1735 rc = avc_has_perm(sid, old_isec->sid, 1736 old_isec->sclass, FILE__RENAME, &ad); 1737 if (rc) 1738 return rc; 1739 if (old_is_dir && new_dir != old_dir) { 1740 rc = avc_has_perm(sid, old_isec->sid, 1741 old_isec->sclass, DIR__REPARENT, &ad); 1742 if (rc) 1743 return rc; 1744 } 1745 1746 ad.u.fs.path.dentry = new_dentry; 1747 av = DIR__ADD_NAME | DIR__SEARCH; 1748 if (new_dentry->d_inode) 1749 av |= DIR__REMOVE_NAME; 1750 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1751 if (rc) 1752 return rc; 1753 if (new_dentry->d_inode) { 1754 new_isec = new_dentry->d_inode->i_security; 1755 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1756 rc = avc_has_perm(sid, new_isec->sid, 1757 new_isec->sclass, 1758 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1759 if (rc) 1760 return rc; 1761 } 1762 1763 return 0; 1764 } 1765 1766 /* Check whether a task can perform a filesystem operation. */ 1767 static int superblock_has_perm(const struct cred *cred, 1768 struct super_block *sb, 1769 u32 perms, 1770 struct common_audit_data *ad) 1771 { 1772 struct superblock_security_struct *sbsec; 1773 u32 sid = cred_sid(cred); 1774 1775 sbsec = sb->s_security; 1776 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1777 } 1778 1779 /* Convert a Linux mode and permission mask to an access vector. */ 1780 static inline u32 file_mask_to_av(int mode, int mask) 1781 { 1782 u32 av = 0; 1783 1784 if ((mode & S_IFMT) != S_IFDIR) { 1785 if (mask & MAY_EXEC) 1786 av |= FILE__EXECUTE; 1787 if (mask & MAY_READ) 1788 av |= FILE__READ; 1789 1790 if (mask & MAY_APPEND) 1791 av |= FILE__APPEND; 1792 else if (mask & MAY_WRITE) 1793 av |= FILE__WRITE; 1794 1795 } else { 1796 if (mask & MAY_EXEC) 1797 av |= DIR__SEARCH; 1798 if (mask & MAY_WRITE) 1799 av |= DIR__WRITE; 1800 if (mask & MAY_READ) 1801 av |= DIR__READ; 1802 } 1803 1804 return av; 1805 } 1806 1807 /* Convert a Linux file to an access vector. */ 1808 static inline u32 file_to_av(struct file *file) 1809 { 1810 u32 av = 0; 1811 1812 if (file->f_mode & FMODE_READ) 1813 av |= FILE__READ; 1814 if (file->f_mode & FMODE_WRITE) { 1815 if (file->f_flags & O_APPEND) 1816 av |= FILE__APPEND; 1817 else 1818 av |= FILE__WRITE; 1819 } 1820 if (!av) { 1821 /* 1822 * Special file opened with flags 3 for ioctl-only use. 1823 */ 1824 av = FILE__IOCTL; 1825 } 1826 1827 return av; 1828 } 1829 1830 /* 1831 * Convert a file to an access vector and include the correct open 1832 * open permission. 1833 */ 1834 static inline u32 open_file_to_av(struct file *file) 1835 { 1836 u32 av = file_to_av(file); 1837 1838 if (selinux_policycap_openperm) { 1839 mode_t mode = file->f_path.dentry->d_inode->i_mode; 1840 /* 1841 * lnk files and socks do not really have an 'open' 1842 */ 1843 if (S_ISREG(mode)) 1844 av |= FILE__OPEN; 1845 else if (S_ISCHR(mode)) 1846 av |= CHR_FILE__OPEN; 1847 else if (S_ISBLK(mode)) 1848 av |= BLK_FILE__OPEN; 1849 else if (S_ISFIFO(mode)) 1850 av |= FIFO_FILE__OPEN; 1851 else if (S_ISDIR(mode)) 1852 av |= DIR__OPEN; 1853 else if (S_ISSOCK(mode)) 1854 av |= SOCK_FILE__OPEN; 1855 else 1856 printk(KERN_ERR "SELinux: WARNING: inside %s with " 1857 "unknown mode:%o\n", __func__, mode); 1858 } 1859 return av; 1860 } 1861 1862 /* Hook functions begin here. */ 1863 1864 static int selinux_ptrace_access_check(struct task_struct *child, 1865 unsigned int mode) 1866 { 1867 int rc; 1868 1869 rc = cap_ptrace_access_check(child, mode); 1870 if (rc) 1871 return rc; 1872 1873 if (mode == PTRACE_MODE_READ) { 1874 u32 sid = current_sid(); 1875 u32 csid = task_sid(child); 1876 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 1877 } 1878 1879 return current_has_perm(child, PROCESS__PTRACE); 1880 } 1881 1882 static int selinux_ptrace_traceme(struct task_struct *parent) 1883 { 1884 int rc; 1885 1886 rc = cap_ptrace_traceme(parent); 1887 if (rc) 1888 return rc; 1889 1890 return task_has_perm(parent, current, PROCESS__PTRACE); 1891 } 1892 1893 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1894 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1895 { 1896 int error; 1897 1898 error = current_has_perm(target, PROCESS__GETCAP); 1899 if (error) 1900 return error; 1901 1902 return cap_capget(target, effective, inheritable, permitted); 1903 } 1904 1905 static int selinux_capset(struct cred *new, const struct cred *old, 1906 const kernel_cap_t *effective, 1907 const kernel_cap_t *inheritable, 1908 const kernel_cap_t *permitted) 1909 { 1910 int error; 1911 1912 error = cap_capset(new, old, 1913 effective, inheritable, permitted); 1914 if (error) 1915 return error; 1916 1917 return cred_has_perm(old, new, PROCESS__SETCAP); 1918 } 1919 1920 /* 1921 * (This comment used to live with the selinux_task_setuid hook, 1922 * which was removed). 1923 * 1924 * Since setuid only affects the current process, and since the SELinux 1925 * controls are not based on the Linux identity attributes, SELinux does not 1926 * need to control this operation. However, SELinux does control the use of 1927 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 1928 */ 1929 1930 static int selinux_capable(struct task_struct *tsk, const struct cred *cred, 1931 int cap, int audit) 1932 { 1933 int rc; 1934 1935 rc = cap_capable(tsk, cred, cap, audit); 1936 if (rc) 1937 return rc; 1938 1939 return task_has_capability(tsk, cred, cap, audit); 1940 } 1941 1942 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1943 { 1944 int buflen, rc; 1945 char *buffer, *path, *end; 1946 1947 rc = -ENOMEM; 1948 buffer = (char *)__get_free_page(GFP_KERNEL); 1949 if (!buffer) 1950 goto out; 1951 1952 buflen = PAGE_SIZE; 1953 end = buffer+buflen; 1954 *--end = '\0'; 1955 buflen--; 1956 path = end-1; 1957 *path = '/'; 1958 while (table) { 1959 const char *name = table->procname; 1960 size_t namelen = strlen(name); 1961 buflen -= namelen + 1; 1962 if (buflen < 0) 1963 goto out_free; 1964 end -= namelen; 1965 memcpy(end, name, namelen); 1966 *--end = '/'; 1967 path = end; 1968 table = table->parent; 1969 } 1970 buflen -= 4; 1971 if (buflen < 0) 1972 goto out_free; 1973 end -= 4; 1974 memcpy(end, "/sys", 4); 1975 path = end; 1976 rc = security_genfs_sid("proc", path, tclass, sid); 1977 out_free: 1978 free_page((unsigned long)buffer); 1979 out: 1980 return rc; 1981 } 1982 1983 static int selinux_sysctl(ctl_table *table, int op) 1984 { 1985 int error = 0; 1986 u32 av; 1987 u32 tsid, sid; 1988 int rc; 1989 1990 sid = current_sid(); 1991 1992 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1993 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1994 if (rc) { 1995 /* Default to the well-defined sysctl SID. */ 1996 tsid = SECINITSID_SYSCTL; 1997 } 1998 1999 /* The op values are "defined" in sysctl.c, thereby creating 2000 * a bad coupling between this module and sysctl.c */ 2001 if (op == 001) { 2002 error = avc_has_perm(sid, tsid, 2003 SECCLASS_DIR, DIR__SEARCH, NULL); 2004 } else { 2005 av = 0; 2006 if (op & 004) 2007 av |= FILE__READ; 2008 if (op & 002) 2009 av |= FILE__WRITE; 2010 if (av) 2011 error = avc_has_perm(sid, tsid, 2012 SECCLASS_FILE, av, NULL); 2013 } 2014 2015 return error; 2016 } 2017 2018 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2019 { 2020 const struct cred *cred = current_cred(); 2021 int rc = 0; 2022 2023 if (!sb) 2024 return 0; 2025 2026 switch (cmds) { 2027 case Q_SYNC: 2028 case Q_QUOTAON: 2029 case Q_QUOTAOFF: 2030 case Q_SETINFO: 2031 case Q_SETQUOTA: 2032 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2033 break; 2034 case Q_GETFMT: 2035 case Q_GETINFO: 2036 case Q_GETQUOTA: 2037 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2038 break; 2039 default: 2040 rc = 0; /* let the kernel handle invalid cmds */ 2041 break; 2042 } 2043 return rc; 2044 } 2045 2046 static int selinux_quota_on(struct dentry *dentry) 2047 { 2048 const struct cred *cred = current_cred(); 2049 2050 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON); 2051 } 2052 2053 static int selinux_syslog(int type, bool from_file) 2054 { 2055 int rc; 2056 2057 rc = cap_syslog(type, from_file); 2058 if (rc) 2059 return rc; 2060 2061 switch (type) { 2062 case 3: /* Read last kernel messages */ 2063 case 10: /* Return size of the log buffer */ 2064 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 2065 break; 2066 case 6: /* Disable logging to console */ 2067 case 7: /* Enable logging to console */ 2068 case 8: /* Set level of messages printed to console */ 2069 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 2070 break; 2071 case 0: /* Close log */ 2072 case 1: /* Open log */ 2073 case 2: /* Read from log */ 2074 case 4: /* Read/clear last kernel messages */ 2075 case 5: /* Clear ring buffer */ 2076 default: 2077 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 2078 break; 2079 } 2080 return rc; 2081 } 2082 2083 /* 2084 * Check that a process has enough memory to allocate a new virtual 2085 * mapping. 0 means there is enough memory for the allocation to 2086 * succeed and -ENOMEM implies there is not. 2087 * 2088 * Do not audit the selinux permission check, as this is applied to all 2089 * processes that allocate mappings. 2090 */ 2091 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2092 { 2093 int rc, cap_sys_admin = 0; 2094 2095 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN, 2096 SECURITY_CAP_NOAUDIT); 2097 if (rc == 0) 2098 cap_sys_admin = 1; 2099 2100 return __vm_enough_memory(mm, pages, cap_sys_admin); 2101 } 2102 2103 /* binprm security operations */ 2104 2105 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2106 { 2107 const struct task_security_struct *old_tsec; 2108 struct task_security_struct *new_tsec; 2109 struct inode_security_struct *isec; 2110 struct common_audit_data ad; 2111 struct inode *inode = bprm->file->f_path.dentry->d_inode; 2112 int rc; 2113 2114 rc = cap_bprm_set_creds(bprm); 2115 if (rc) 2116 return rc; 2117 2118 /* SELinux context only depends on initial program or script and not 2119 * the script interpreter */ 2120 if (bprm->cred_prepared) 2121 return 0; 2122 2123 old_tsec = current_security(); 2124 new_tsec = bprm->cred->security; 2125 isec = inode->i_security; 2126 2127 /* Default to the current task SID. */ 2128 new_tsec->sid = old_tsec->sid; 2129 new_tsec->osid = old_tsec->sid; 2130 2131 /* Reset fs, key, and sock SIDs on execve. */ 2132 new_tsec->create_sid = 0; 2133 new_tsec->keycreate_sid = 0; 2134 new_tsec->sockcreate_sid = 0; 2135 2136 if (old_tsec->exec_sid) { 2137 new_tsec->sid = old_tsec->exec_sid; 2138 /* Reset exec SID on execve. */ 2139 new_tsec->exec_sid = 0; 2140 } else { 2141 /* Check for a default transition on this program. */ 2142 rc = security_transition_sid(old_tsec->sid, isec->sid, 2143 SECCLASS_PROCESS, &new_tsec->sid); 2144 if (rc) 2145 return rc; 2146 } 2147 2148 COMMON_AUDIT_DATA_INIT(&ad, FS); 2149 ad.u.fs.path = bprm->file->f_path; 2150 2151 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2152 new_tsec->sid = old_tsec->sid; 2153 2154 if (new_tsec->sid == old_tsec->sid) { 2155 rc = avc_has_perm(old_tsec->sid, isec->sid, 2156 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2157 if (rc) 2158 return rc; 2159 } else { 2160 /* Check permissions for the transition. */ 2161 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2162 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2163 if (rc) 2164 return rc; 2165 2166 rc = avc_has_perm(new_tsec->sid, isec->sid, 2167 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2168 if (rc) 2169 return rc; 2170 2171 /* Check for shared state */ 2172 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2173 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2174 SECCLASS_PROCESS, PROCESS__SHARE, 2175 NULL); 2176 if (rc) 2177 return -EPERM; 2178 } 2179 2180 /* Make sure that anyone attempting to ptrace over a task that 2181 * changes its SID has the appropriate permit */ 2182 if (bprm->unsafe & 2183 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2184 struct task_struct *tracer; 2185 struct task_security_struct *sec; 2186 u32 ptsid = 0; 2187 2188 rcu_read_lock(); 2189 tracer = tracehook_tracer_task(current); 2190 if (likely(tracer != NULL)) { 2191 sec = __task_cred(tracer)->security; 2192 ptsid = sec->sid; 2193 } 2194 rcu_read_unlock(); 2195 2196 if (ptsid != 0) { 2197 rc = avc_has_perm(ptsid, new_tsec->sid, 2198 SECCLASS_PROCESS, 2199 PROCESS__PTRACE, NULL); 2200 if (rc) 2201 return -EPERM; 2202 } 2203 } 2204 2205 /* Clear any possibly unsafe personality bits on exec: */ 2206 bprm->per_clear |= PER_CLEAR_ON_SETID; 2207 } 2208 2209 return 0; 2210 } 2211 2212 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2213 { 2214 const struct cred *cred = current_cred(); 2215 const struct task_security_struct *tsec = cred->security; 2216 u32 sid, osid; 2217 int atsecure = 0; 2218 2219 sid = tsec->sid; 2220 osid = tsec->osid; 2221 2222 if (osid != sid) { 2223 /* Enable secure mode for SIDs transitions unless 2224 the noatsecure permission is granted between 2225 the two SIDs, i.e. ahp returns 0. */ 2226 atsecure = avc_has_perm(osid, sid, 2227 SECCLASS_PROCESS, 2228 PROCESS__NOATSECURE, NULL); 2229 } 2230 2231 return (atsecure || cap_bprm_secureexec(bprm)); 2232 } 2233 2234 extern struct vfsmount *selinuxfs_mount; 2235 extern struct dentry *selinux_null; 2236 2237 /* Derived from fs/exec.c:flush_old_files. */ 2238 static inline void flush_unauthorized_files(const struct cred *cred, 2239 struct files_struct *files) 2240 { 2241 struct common_audit_data ad; 2242 struct file *file, *devnull = NULL; 2243 struct tty_struct *tty; 2244 struct fdtable *fdt; 2245 long j = -1; 2246 int drop_tty = 0; 2247 2248 tty = get_current_tty(); 2249 if (tty) { 2250 file_list_lock(); 2251 if (!list_empty(&tty->tty_files)) { 2252 struct inode *inode; 2253 2254 /* Revalidate access to controlling tty. 2255 Use inode_has_perm on the tty inode directly rather 2256 than using file_has_perm, as this particular open 2257 file may belong to another process and we are only 2258 interested in the inode-based check here. */ 2259 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list); 2260 inode = file->f_path.dentry->d_inode; 2261 if (inode_has_perm(cred, inode, 2262 FILE__READ | FILE__WRITE, NULL)) { 2263 drop_tty = 1; 2264 } 2265 } 2266 file_list_unlock(); 2267 tty_kref_put(tty); 2268 } 2269 /* Reset controlling tty. */ 2270 if (drop_tty) 2271 no_tty(); 2272 2273 /* Revalidate access to inherited open files. */ 2274 2275 COMMON_AUDIT_DATA_INIT(&ad, FS); 2276 2277 spin_lock(&files->file_lock); 2278 for (;;) { 2279 unsigned long set, i; 2280 int fd; 2281 2282 j++; 2283 i = j * __NFDBITS; 2284 fdt = files_fdtable(files); 2285 if (i >= fdt->max_fds) 2286 break; 2287 set = fdt->open_fds->fds_bits[j]; 2288 if (!set) 2289 continue; 2290 spin_unlock(&files->file_lock); 2291 for ( ; set ; i++, set >>= 1) { 2292 if (set & 1) { 2293 file = fget(i); 2294 if (!file) 2295 continue; 2296 if (file_has_perm(cred, 2297 file, 2298 file_to_av(file))) { 2299 sys_close(i); 2300 fd = get_unused_fd(); 2301 if (fd != i) { 2302 if (fd >= 0) 2303 put_unused_fd(fd); 2304 fput(file); 2305 continue; 2306 } 2307 if (devnull) { 2308 get_file(devnull); 2309 } else { 2310 devnull = dentry_open( 2311 dget(selinux_null), 2312 mntget(selinuxfs_mount), 2313 O_RDWR, cred); 2314 if (IS_ERR(devnull)) { 2315 devnull = NULL; 2316 put_unused_fd(fd); 2317 fput(file); 2318 continue; 2319 } 2320 } 2321 fd_install(fd, devnull); 2322 } 2323 fput(file); 2324 } 2325 } 2326 spin_lock(&files->file_lock); 2327 2328 } 2329 spin_unlock(&files->file_lock); 2330 } 2331 2332 /* 2333 * Prepare a process for imminent new credential changes due to exec 2334 */ 2335 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2336 { 2337 struct task_security_struct *new_tsec; 2338 struct rlimit *rlim, *initrlim; 2339 int rc, i; 2340 2341 new_tsec = bprm->cred->security; 2342 if (new_tsec->sid == new_tsec->osid) 2343 return; 2344 2345 /* Close files for which the new task SID is not authorized. */ 2346 flush_unauthorized_files(bprm->cred, current->files); 2347 2348 /* Always clear parent death signal on SID transitions. */ 2349 current->pdeath_signal = 0; 2350 2351 /* Check whether the new SID can inherit resource limits from the old 2352 * SID. If not, reset all soft limits to the lower of the current 2353 * task's hard limit and the init task's soft limit. 2354 * 2355 * Note that the setting of hard limits (even to lower them) can be 2356 * controlled by the setrlimit check. The inclusion of the init task's 2357 * soft limit into the computation is to avoid resetting soft limits 2358 * higher than the default soft limit for cases where the default is 2359 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2360 */ 2361 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2362 PROCESS__RLIMITINH, NULL); 2363 if (rc) { 2364 for (i = 0; i < RLIM_NLIMITS; i++) { 2365 rlim = current->signal->rlim + i; 2366 initrlim = init_task.signal->rlim + i; 2367 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2368 } 2369 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur); 2370 } 2371 } 2372 2373 /* 2374 * Clean up the process immediately after the installation of new credentials 2375 * due to exec 2376 */ 2377 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2378 { 2379 const struct task_security_struct *tsec = current_security(); 2380 struct itimerval itimer; 2381 u32 osid, sid; 2382 int rc, i; 2383 2384 osid = tsec->osid; 2385 sid = tsec->sid; 2386 2387 if (sid == osid) 2388 return; 2389 2390 /* Check whether the new SID can inherit signal state from the old SID. 2391 * If not, clear itimers to avoid subsequent signal generation and 2392 * flush and unblock signals. 2393 * 2394 * This must occur _after_ the task SID has been updated so that any 2395 * kill done after the flush will be checked against the new SID. 2396 */ 2397 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2398 if (rc) { 2399 memset(&itimer, 0, sizeof itimer); 2400 for (i = 0; i < 3; i++) 2401 do_setitimer(i, &itimer, NULL); 2402 spin_lock_irq(¤t->sighand->siglock); 2403 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) { 2404 __flush_signals(current); 2405 flush_signal_handlers(current, 1); 2406 sigemptyset(¤t->blocked); 2407 } 2408 spin_unlock_irq(¤t->sighand->siglock); 2409 } 2410 2411 /* Wake up the parent if it is waiting so that it can recheck 2412 * wait permission to the new task SID. */ 2413 read_lock(&tasklist_lock); 2414 __wake_up_parent(current, current->real_parent); 2415 read_unlock(&tasklist_lock); 2416 } 2417 2418 /* superblock security operations */ 2419 2420 static int selinux_sb_alloc_security(struct super_block *sb) 2421 { 2422 return superblock_alloc_security(sb); 2423 } 2424 2425 static void selinux_sb_free_security(struct super_block *sb) 2426 { 2427 superblock_free_security(sb); 2428 } 2429 2430 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2431 { 2432 if (plen > olen) 2433 return 0; 2434 2435 return !memcmp(prefix, option, plen); 2436 } 2437 2438 static inline int selinux_option(char *option, int len) 2439 { 2440 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2441 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2442 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2443 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2444 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2445 } 2446 2447 static inline void take_option(char **to, char *from, int *first, int len) 2448 { 2449 if (!*first) { 2450 **to = ','; 2451 *to += 1; 2452 } else 2453 *first = 0; 2454 memcpy(*to, from, len); 2455 *to += len; 2456 } 2457 2458 static inline void take_selinux_option(char **to, char *from, int *first, 2459 int len) 2460 { 2461 int current_size = 0; 2462 2463 if (!*first) { 2464 **to = '|'; 2465 *to += 1; 2466 } else 2467 *first = 0; 2468 2469 while (current_size < len) { 2470 if (*from != '"') { 2471 **to = *from; 2472 *to += 1; 2473 } 2474 from += 1; 2475 current_size += 1; 2476 } 2477 } 2478 2479 static int selinux_sb_copy_data(char *orig, char *copy) 2480 { 2481 int fnosec, fsec, rc = 0; 2482 char *in_save, *in_curr, *in_end; 2483 char *sec_curr, *nosec_save, *nosec; 2484 int open_quote = 0; 2485 2486 in_curr = orig; 2487 sec_curr = copy; 2488 2489 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2490 if (!nosec) { 2491 rc = -ENOMEM; 2492 goto out; 2493 } 2494 2495 nosec_save = nosec; 2496 fnosec = fsec = 1; 2497 in_save = in_end = orig; 2498 2499 do { 2500 if (*in_end == '"') 2501 open_quote = !open_quote; 2502 if ((*in_end == ',' && open_quote == 0) || 2503 *in_end == '\0') { 2504 int len = in_end - in_curr; 2505 2506 if (selinux_option(in_curr, len)) 2507 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2508 else 2509 take_option(&nosec, in_curr, &fnosec, len); 2510 2511 in_curr = in_end + 1; 2512 } 2513 } while (*in_end++); 2514 2515 strcpy(in_save, nosec_save); 2516 free_page((unsigned long)nosec_save); 2517 out: 2518 return rc; 2519 } 2520 2521 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2522 { 2523 const struct cred *cred = current_cred(); 2524 struct common_audit_data ad; 2525 int rc; 2526 2527 rc = superblock_doinit(sb, data); 2528 if (rc) 2529 return rc; 2530 2531 /* Allow all mounts performed by the kernel */ 2532 if (flags & MS_KERNMOUNT) 2533 return 0; 2534 2535 COMMON_AUDIT_DATA_INIT(&ad, FS); 2536 ad.u.fs.path.dentry = sb->s_root; 2537 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2538 } 2539 2540 static int selinux_sb_statfs(struct dentry *dentry) 2541 { 2542 const struct cred *cred = current_cred(); 2543 struct common_audit_data ad; 2544 2545 COMMON_AUDIT_DATA_INIT(&ad, FS); 2546 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2547 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2548 } 2549 2550 static int selinux_mount(char *dev_name, 2551 struct path *path, 2552 char *type, 2553 unsigned long flags, 2554 void *data) 2555 { 2556 const struct cred *cred = current_cred(); 2557 2558 if (flags & MS_REMOUNT) 2559 return superblock_has_perm(cred, path->mnt->mnt_sb, 2560 FILESYSTEM__REMOUNT, NULL); 2561 else 2562 return dentry_has_perm(cred, path->mnt, path->dentry, 2563 FILE__MOUNTON); 2564 } 2565 2566 static int selinux_umount(struct vfsmount *mnt, int flags) 2567 { 2568 const struct cred *cred = current_cred(); 2569 2570 return superblock_has_perm(cred, mnt->mnt_sb, 2571 FILESYSTEM__UNMOUNT, NULL); 2572 } 2573 2574 /* inode security operations */ 2575 2576 static int selinux_inode_alloc_security(struct inode *inode) 2577 { 2578 return inode_alloc_security(inode); 2579 } 2580 2581 static void selinux_inode_free_security(struct inode *inode) 2582 { 2583 inode_free_security(inode); 2584 } 2585 2586 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2587 char **name, void **value, 2588 size_t *len) 2589 { 2590 const struct cred *cred = current_cred(); 2591 const struct task_security_struct *tsec = cred->security; 2592 struct inode_security_struct *dsec; 2593 struct superblock_security_struct *sbsec; 2594 u32 sid, newsid, clen; 2595 int rc; 2596 char *namep = NULL, *context; 2597 2598 dsec = dir->i_security; 2599 sbsec = dir->i_sb->s_security; 2600 2601 sid = tsec->sid; 2602 newsid = tsec->create_sid; 2603 2604 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) { 2605 rc = security_transition_sid(sid, dsec->sid, 2606 inode_mode_to_security_class(inode->i_mode), 2607 &newsid); 2608 if (rc) { 2609 printk(KERN_WARNING "%s: " 2610 "security_transition_sid failed, rc=%d (dev=%s " 2611 "ino=%ld)\n", 2612 __func__, 2613 -rc, inode->i_sb->s_id, inode->i_ino); 2614 return rc; 2615 } 2616 } 2617 2618 /* Possibly defer initialization to selinux_complete_init. */ 2619 if (sbsec->flags & SE_SBINITIALIZED) { 2620 struct inode_security_struct *isec = inode->i_security; 2621 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2622 isec->sid = newsid; 2623 isec->initialized = 1; 2624 } 2625 2626 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP)) 2627 return -EOPNOTSUPP; 2628 2629 if (name) { 2630 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2631 if (!namep) 2632 return -ENOMEM; 2633 *name = namep; 2634 } 2635 2636 if (value && len) { 2637 rc = security_sid_to_context_force(newsid, &context, &clen); 2638 if (rc) { 2639 kfree(namep); 2640 return rc; 2641 } 2642 *value = context; 2643 *len = clen; 2644 } 2645 2646 return 0; 2647 } 2648 2649 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2650 { 2651 return may_create(dir, dentry, SECCLASS_FILE); 2652 } 2653 2654 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2655 { 2656 return may_link(dir, old_dentry, MAY_LINK); 2657 } 2658 2659 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2660 { 2661 return may_link(dir, dentry, MAY_UNLINK); 2662 } 2663 2664 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2665 { 2666 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2667 } 2668 2669 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2670 { 2671 return may_create(dir, dentry, SECCLASS_DIR); 2672 } 2673 2674 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2675 { 2676 return may_link(dir, dentry, MAY_RMDIR); 2677 } 2678 2679 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2680 { 2681 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2682 } 2683 2684 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2685 struct inode *new_inode, struct dentry *new_dentry) 2686 { 2687 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2688 } 2689 2690 static int selinux_inode_readlink(struct dentry *dentry) 2691 { 2692 const struct cred *cred = current_cred(); 2693 2694 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2695 } 2696 2697 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2698 { 2699 const struct cred *cred = current_cred(); 2700 2701 return dentry_has_perm(cred, NULL, dentry, FILE__READ); 2702 } 2703 2704 static int selinux_inode_permission(struct inode *inode, int mask) 2705 { 2706 const struct cred *cred = current_cred(); 2707 2708 if (!mask) { 2709 /* No permission to check. Existence test. */ 2710 return 0; 2711 } 2712 2713 return inode_has_perm(cred, inode, 2714 file_mask_to_av(inode->i_mode, mask), NULL); 2715 } 2716 2717 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2718 { 2719 const struct cred *cred = current_cred(); 2720 unsigned int ia_valid = iattr->ia_valid; 2721 2722 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 2723 if (ia_valid & ATTR_FORCE) { 2724 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 2725 ATTR_FORCE); 2726 if (!ia_valid) 2727 return 0; 2728 } 2729 2730 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2731 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 2732 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2733 2734 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE); 2735 } 2736 2737 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2738 { 2739 const struct cred *cred = current_cred(); 2740 2741 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR); 2742 } 2743 2744 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2745 { 2746 const struct cred *cred = current_cred(); 2747 2748 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2749 sizeof XATTR_SECURITY_PREFIX - 1)) { 2750 if (!strcmp(name, XATTR_NAME_CAPS)) { 2751 if (!capable(CAP_SETFCAP)) 2752 return -EPERM; 2753 } else if (!capable(CAP_SYS_ADMIN)) { 2754 /* A different attribute in the security namespace. 2755 Restrict to administrator. */ 2756 return -EPERM; 2757 } 2758 } 2759 2760 /* Not an attribute we recognize, so just check the 2761 ordinary setattr permission. */ 2762 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR); 2763 } 2764 2765 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2766 const void *value, size_t size, int flags) 2767 { 2768 struct inode *inode = dentry->d_inode; 2769 struct inode_security_struct *isec = inode->i_security; 2770 struct superblock_security_struct *sbsec; 2771 struct common_audit_data ad; 2772 u32 newsid, sid = current_sid(); 2773 int rc = 0; 2774 2775 if (strcmp(name, XATTR_NAME_SELINUX)) 2776 return selinux_inode_setotherxattr(dentry, name); 2777 2778 sbsec = inode->i_sb->s_security; 2779 if (!(sbsec->flags & SE_SBLABELSUPP)) 2780 return -EOPNOTSUPP; 2781 2782 if (!is_owner_or_cap(inode)) 2783 return -EPERM; 2784 2785 COMMON_AUDIT_DATA_INIT(&ad, FS); 2786 ad.u.fs.path.dentry = dentry; 2787 2788 rc = avc_has_perm(sid, isec->sid, isec->sclass, 2789 FILE__RELABELFROM, &ad); 2790 if (rc) 2791 return rc; 2792 2793 rc = security_context_to_sid(value, size, &newsid); 2794 if (rc == -EINVAL) { 2795 if (!capable(CAP_MAC_ADMIN)) 2796 return rc; 2797 rc = security_context_to_sid_force(value, size, &newsid); 2798 } 2799 if (rc) 2800 return rc; 2801 2802 rc = avc_has_perm(sid, newsid, isec->sclass, 2803 FILE__RELABELTO, &ad); 2804 if (rc) 2805 return rc; 2806 2807 rc = security_validate_transition(isec->sid, newsid, sid, 2808 isec->sclass); 2809 if (rc) 2810 return rc; 2811 2812 return avc_has_perm(newsid, 2813 sbsec->sid, 2814 SECCLASS_FILESYSTEM, 2815 FILESYSTEM__ASSOCIATE, 2816 &ad); 2817 } 2818 2819 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2820 const void *value, size_t size, 2821 int flags) 2822 { 2823 struct inode *inode = dentry->d_inode; 2824 struct inode_security_struct *isec = inode->i_security; 2825 u32 newsid; 2826 int rc; 2827 2828 if (strcmp(name, XATTR_NAME_SELINUX)) { 2829 /* Not an attribute we recognize, so nothing to do. */ 2830 return; 2831 } 2832 2833 rc = security_context_to_sid_force(value, size, &newsid); 2834 if (rc) { 2835 printk(KERN_ERR "SELinux: unable to map context to SID" 2836 "for (%s, %lu), rc=%d\n", 2837 inode->i_sb->s_id, inode->i_ino, -rc); 2838 return; 2839 } 2840 2841 isec->sid = newsid; 2842 return; 2843 } 2844 2845 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2846 { 2847 const struct cred *cred = current_cred(); 2848 2849 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2850 } 2851 2852 static int selinux_inode_listxattr(struct dentry *dentry) 2853 { 2854 const struct cred *cred = current_cred(); 2855 2856 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR); 2857 } 2858 2859 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2860 { 2861 if (strcmp(name, XATTR_NAME_SELINUX)) 2862 return selinux_inode_setotherxattr(dentry, name); 2863 2864 /* No one is allowed to remove a SELinux security label. 2865 You can change the label, but all data must be labeled. */ 2866 return -EACCES; 2867 } 2868 2869 /* 2870 * Copy the inode security context value to the user. 2871 * 2872 * Permission check is handled by selinux_inode_getxattr hook. 2873 */ 2874 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2875 { 2876 u32 size; 2877 int error; 2878 char *context = NULL; 2879 struct inode_security_struct *isec = inode->i_security; 2880 2881 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2882 return -EOPNOTSUPP; 2883 2884 /* 2885 * If the caller has CAP_MAC_ADMIN, then get the raw context 2886 * value even if it is not defined by current policy; otherwise, 2887 * use the in-core value under current policy. 2888 * Use the non-auditing forms of the permission checks since 2889 * getxattr may be called by unprivileged processes commonly 2890 * and lack of permission just means that we fall back to the 2891 * in-core context value, not a denial. 2892 */ 2893 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN, 2894 SECURITY_CAP_NOAUDIT); 2895 if (!error) 2896 error = security_sid_to_context_force(isec->sid, &context, 2897 &size); 2898 else 2899 error = security_sid_to_context(isec->sid, &context, &size); 2900 if (error) 2901 return error; 2902 error = size; 2903 if (alloc) { 2904 *buffer = context; 2905 goto out_nofree; 2906 } 2907 kfree(context); 2908 out_nofree: 2909 return error; 2910 } 2911 2912 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2913 const void *value, size_t size, int flags) 2914 { 2915 struct inode_security_struct *isec = inode->i_security; 2916 u32 newsid; 2917 int rc; 2918 2919 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2920 return -EOPNOTSUPP; 2921 2922 if (!value || !size) 2923 return -EACCES; 2924 2925 rc = security_context_to_sid((void *)value, size, &newsid); 2926 if (rc) 2927 return rc; 2928 2929 isec->sid = newsid; 2930 isec->initialized = 1; 2931 return 0; 2932 } 2933 2934 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2935 { 2936 const int len = sizeof(XATTR_NAME_SELINUX); 2937 if (buffer && len <= buffer_size) 2938 memcpy(buffer, XATTR_NAME_SELINUX, len); 2939 return len; 2940 } 2941 2942 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2943 { 2944 struct inode_security_struct *isec = inode->i_security; 2945 *secid = isec->sid; 2946 } 2947 2948 /* file security operations */ 2949 2950 static int selinux_revalidate_file_permission(struct file *file, int mask) 2951 { 2952 const struct cred *cred = current_cred(); 2953 struct inode *inode = file->f_path.dentry->d_inode; 2954 2955 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2956 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2957 mask |= MAY_APPEND; 2958 2959 return file_has_perm(cred, file, 2960 file_mask_to_av(inode->i_mode, mask)); 2961 } 2962 2963 static int selinux_file_permission(struct file *file, int mask) 2964 { 2965 struct inode *inode = file->f_path.dentry->d_inode; 2966 struct file_security_struct *fsec = file->f_security; 2967 struct inode_security_struct *isec = inode->i_security; 2968 u32 sid = current_sid(); 2969 2970 if (!mask) 2971 /* No permission to check. Existence test. */ 2972 return 0; 2973 2974 if (sid == fsec->sid && fsec->isid == isec->sid && 2975 fsec->pseqno == avc_policy_seqno()) 2976 /* No change since dentry_open check. */ 2977 return 0; 2978 2979 return selinux_revalidate_file_permission(file, mask); 2980 } 2981 2982 static int selinux_file_alloc_security(struct file *file) 2983 { 2984 return file_alloc_security(file); 2985 } 2986 2987 static void selinux_file_free_security(struct file *file) 2988 { 2989 file_free_security(file); 2990 } 2991 2992 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2993 unsigned long arg) 2994 { 2995 const struct cred *cred = current_cred(); 2996 u32 av = 0; 2997 2998 if (_IOC_DIR(cmd) & _IOC_WRITE) 2999 av |= FILE__WRITE; 3000 if (_IOC_DIR(cmd) & _IOC_READ) 3001 av |= FILE__READ; 3002 if (!av) 3003 av = FILE__IOCTL; 3004 3005 return file_has_perm(cred, file, av); 3006 } 3007 3008 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3009 { 3010 const struct cred *cred = current_cred(); 3011 int rc = 0; 3012 3013 #ifndef CONFIG_PPC32 3014 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 3015 /* 3016 * We are making executable an anonymous mapping or a 3017 * private file mapping that will also be writable. 3018 * This has an additional check. 3019 */ 3020 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM); 3021 if (rc) 3022 goto error; 3023 } 3024 #endif 3025 3026 if (file) { 3027 /* read access is always possible with a mapping */ 3028 u32 av = FILE__READ; 3029 3030 /* write access only matters if the mapping is shared */ 3031 if (shared && (prot & PROT_WRITE)) 3032 av |= FILE__WRITE; 3033 3034 if (prot & PROT_EXEC) 3035 av |= FILE__EXECUTE; 3036 3037 return file_has_perm(cred, file, av); 3038 } 3039 3040 error: 3041 return rc; 3042 } 3043 3044 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 3045 unsigned long prot, unsigned long flags, 3046 unsigned long addr, unsigned long addr_only) 3047 { 3048 int rc = 0; 3049 u32 sid = current_sid(); 3050 3051 /* 3052 * notice that we are intentionally putting the SELinux check before 3053 * the secondary cap_file_mmap check. This is such a likely attempt 3054 * at bad behaviour/exploit that we always want to get the AVC, even 3055 * if DAC would have also denied the operation. 3056 */ 3057 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3058 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3059 MEMPROTECT__MMAP_ZERO, NULL); 3060 if (rc) 3061 return rc; 3062 } 3063 3064 /* do DAC check on address space usage */ 3065 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only); 3066 if (rc || addr_only) 3067 return rc; 3068 3069 if (selinux_checkreqprot) 3070 prot = reqprot; 3071 3072 return file_map_prot_check(file, prot, 3073 (flags & MAP_TYPE) == MAP_SHARED); 3074 } 3075 3076 static int selinux_file_mprotect(struct vm_area_struct *vma, 3077 unsigned long reqprot, 3078 unsigned long prot) 3079 { 3080 const struct cred *cred = current_cred(); 3081 3082 if (selinux_checkreqprot) 3083 prot = reqprot; 3084 3085 #ifndef CONFIG_PPC32 3086 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3087 int rc = 0; 3088 if (vma->vm_start >= vma->vm_mm->start_brk && 3089 vma->vm_end <= vma->vm_mm->brk) { 3090 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP); 3091 } else if (!vma->vm_file && 3092 vma->vm_start <= vma->vm_mm->start_stack && 3093 vma->vm_end >= vma->vm_mm->start_stack) { 3094 rc = current_has_perm(current, PROCESS__EXECSTACK); 3095 } else if (vma->vm_file && vma->anon_vma) { 3096 /* 3097 * We are making executable a file mapping that has 3098 * had some COW done. Since pages might have been 3099 * written, check ability to execute the possibly 3100 * modified content. This typically should only 3101 * occur for text relocations. 3102 */ 3103 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3104 } 3105 if (rc) 3106 return rc; 3107 } 3108 #endif 3109 3110 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3111 } 3112 3113 static int selinux_file_lock(struct file *file, unsigned int cmd) 3114 { 3115 const struct cred *cred = current_cred(); 3116 3117 return file_has_perm(cred, file, FILE__LOCK); 3118 } 3119 3120 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3121 unsigned long arg) 3122 { 3123 const struct cred *cred = current_cred(); 3124 int err = 0; 3125 3126 switch (cmd) { 3127 case F_SETFL: 3128 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3129 err = -EINVAL; 3130 break; 3131 } 3132 3133 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3134 err = file_has_perm(cred, file, FILE__WRITE); 3135 break; 3136 } 3137 /* fall through */ 3138 case F_SETOWN: 3139 case F_SETSIG: 3140 case F_GETFL: 3141 case F_GETOWN: 3142 case F_GETSIG: 3143 /* Just check FD__USE permission */ 3144 err = file_has_perm(cred, file, 0); 3145 break; 3146 case F_GETLK: 3147 case F_SETLK: 3148 case F_SETLKW: 3149 #if BITS_PER_LONG == 32 3150 case F_GETLK64: 3151 case F_SETLK64: 3152 case F_SETLKW64: 3153 #endif 3154 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3155 err = -EINVAL; 3156 break; 3157 } 3158 err = file_has_perm(cred, file, FILE__LOCK); 3159 break; 3160 } 3161 3162 return err; 3163 } 3164 3165 static int selinux_file_set_fowner(struct file *file) 3166 { 3167 struct file_security_struct *fsec; 3168 3169 fsec = file->f_security; 3170 fsec->fown_sid = current_sid(); 3171 3172 return 0; 3173 } 3174 3175 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3176 struct fown_struct *fown, int signum) 3177 { 3178 struct file *file; 3179 u32 sid = task_sid(tsk); 3180 u32 perm; 3181 struct file_security_struct *fsec; 3182 3183 /* struct fown_struct is never outside the context of a struct file */ 3184 file = container_of(fown, struct file, f_owner); 3185 3186 fsec = file->f_security; 3187 3188 if (!signum) 3189 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3190 else 3191 perm = signal_to_av(signum); 3192 3193 return avc_has_perm(fsec->fown_sid, sid, 3194 SECCLASS_PROCESS, perm, NULL); 3195 } 3196 3197 static int selinux_file_receive(struct file *file) 3198 { 3199 const struct cred *cred = current_cred(); 3200 3201 return file_has_perm(cred, file, file_to_av(file)); 3202 } 3203 3204 static int selinux_dentry_open(struct file *file, const struct cred *cred) 3205 { 3206 struct file_security_struct *fsec; 3207 struct inode *inode; 3208 struct inode_security_struct *isec; 3209 3210 inode = file->f_path.dentry->d_inode; 3211 fsec = file->f_security; 3212 isec = inode->i_security; 3213 /* 3214 * Save inode label and policy sequence number 3215 * at open-time so that selinux_file_permission 3216 * can determine whether revalidation is necessary. 3217 * Task label is already saved in the file security 3218 * struct as its SID. 3219 */ 3220 fsec->isid = isec->sid; 3221 fsec->pseqno = avc_policy_seqno(); 3222 /* 3223 * Since the inode label or policy seqno may have changed 3224 * between the selinux_inode_permission check and the saving 3225 * of state above, recheck that access is still permitted. 3226 * Otherwise, access might never be revalidated against the 3227 * new inode label or new policy. 3228 * This check is not redundant - do not remove. 3229 */ 3230 return inode_has_perm(cred, inode, open_file_to_av(file), NULL); 3231 } 3232 3233 /* task security operations */ 3234 3235 static int selinux_task_create(unsigned long clone_flags) 3236 { 3237 return current_has_perm(current, PROCESS__FORK); 3238 } 3239 3240 /* 3241 * allocate the SELinux part of blank credentials 3242 */ 3243 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3244 { 3245 struct task_security_struct *tsec; 3246 3247 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3248 if (!tsec) 3249 return -ENOMEM; 3250 3251 cred->security = tsec; 3252 return 0; 3253 } 3254 3255 /* 3256 * detach and free the LSM part of a set of credentials 3257 */ 3258 static void selinux_cred_free(struct cred *cred) 3259 { 3260 struct task_security_struct *tsec = cred->security; 3261 3262 BUG_ON((unsigned long) cred->security < PAGE_SIZE); 3263 cred->security = (void *) 0x7UL; 3264 kfree(tsec); 3265 } 3266 3267 /* 3268 * prepare a new set of credentials for modification 3269 */ 3270 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3271 gfp_t gfp) 3272 { 3273 const struct task_security_struct *old_tsec; 3274 struct task_security_struct *tsec; 3275 3276 old_tsec = old->security; 3277 3278 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3279 if (!tsec) 3280 return -ENOMEM; 3281 3282 new->security = tsec; 3283 return 0; 3284 } 3285 3286 /* 3287 * transfer the SELinux data to a blank set of creds 3288 */ 3289 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3290 { 3291 const struct task_security_struct *old_tsec = old->security; 3292 struct task_security_struct *tsec = new->security; 3293 3294 *tsec = *old_tsec; 3295 } 3296 3297 /* 3298 * set the security data for a kernel service 3299 * - all the creation contexts are set to unlabelled 3300 */ 3301 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3302 { 3303 struct task_security_struct *tsec = new->security; 3304 u32 sid = current_sid(); 3305 int ret; 3306 3307 ret = avc_has_perm(sid, secid, 3308 SECCLASS_KERNEL_SERVICE, 3309 KERNEL_SERVICE__USE_AS_OVERRIDE, 3310 NULL); 3311 if (ret == 0) { 3312 tsec->sid = secid; 3313 tsec->create_sid = 0; 3314 tsec->keycreate_sid = 0; 3315 tsec->sockcreate_sid = 0; 3316 } 3317 return ret; 3318 } 3319 3320 /* 3321 * set the file creation context in a security record to the same as the 3322 * objective context of the specified inode 3323 */ 3324 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3325 { 3326 struct inode_security_struct *isec = inode->i_security; 3327 struct task_security_struct *tsec = new->security; 3328 u32 sid = current_sid(); 3329 int ret; 3330 3331 ret = avc_has_perm(sid, isec->sid, 3332 SECCLASS_KERNEL_SERVICE, 3333 KERNEL_SERVICE__CREATE_FILES_AS, 3334 NULL); 3335 3336 if (ret == 0) 3337 tsec->create_sid = isec->sid; 3338 return 0; 3339 } 3340 3341 static int selinux_kernel_module_request(char *kmod_name) 3342 { 3343 u32 sid; 3344 struct common_audit_data ad; 3345 3346 sid = task_sid(current); 3347 3348 COMMON_AUDIT_DATA_INIT(&ad, KMOD); 3349 ad.u.kmod_name = kmod_name; 3350 3351 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM, 3352 SYSTEM__MODULE_REQUEST, &ad); 3353 } 3354 3355 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3356 { 3357 return current_has_perm(p, PROCESS__SETPGID); 3358 } 3359 3360 static int selinux_task_getpgid(struct task_struct *p) 3361 { 3362 return current_has_perm(p, PROCESS__GETPGID); 3363 } 3364 3365 static int selinux_task_getsid(struct task_struct *p) 3366 { 3367 return current_has_perm(p, PROCESS__GETSESSION); 3368 } 3369 3370 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3371 { 3372 *secid = task_sid(p); 3373 } 3374 3375 static int selinux_task_setnice(struct task_struct *p, int nice) 3376 { 3377 int rc; 3378 3379 rc = cap_task_setnice(p, nice); 3380 if (rc) 3381 return rc; 3382 3383 return current_has_perm(p, PROCESS__SETSCHED); 3384 } 3385 3386 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3387 { 3388 int rc; 3389 3390 rc = cap_task_setioprio(p, ioprio); 3391 if (rc) 3392 return rc; 3393 3394 return current_has_perm(p, PROCESS__SETSCHED); 3395 } 3396 3397 static int selinux_task_getioprio(struct task_struct *p) 3398 { 3399 return current_has_perm(p, PROCESS__GETSCHED); 3400 } 3401 3402 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3403 { 3404 struct rlimit *old_rlim = current->signal->rlim + resource; 3405 3406 /* Control the ability to change the hard limit (whether 3407 lowering or raising it), so that the hard limit can 3408 later be used as a safe reset point for the soft limit 3409 upon context transitions. See selinux_bprm_committing_creds. */ 3410 if (old_rlim->rlim_max != new_rlim->rlim_max) 3411 return current_has_perm(current, PROCESS__SETRLIMIT); 3412 3413 return 0; 3414 } 3415 3416 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3417 { 3418 int rc; 3419 3420 rc = cap_task_setscheduler(p, policy, lp); 3421 if (rc) 3422 return rc; 3423 3424 return current_has_perm(p, PROCESS__SETSCHED); 3425 } 3426 3427 static int selinux_task_getscheduler(struct task_struct *p) 3428 { 3429 return current_has_perm(p, PROCESS__GETSCHED); 3430 } 3431 3432 static int selinux_task_movememory(struct task_struct *p) 3433 { 3434 return current_has_perm(p, PROCESS__SETSCHED); 3435 } 3436 3437 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3438 int sig, u32 secid) 3439 { 3440 u32 perm; 3441 int rc; 3442 3443 if (!sig) 3444 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3445 else 3446 perm = signal_to_av(sig); 3447 if (secid) 3448 rc = avc_has_perm(secid, task_sid(p), 3449 SECCLASS_PROCESS, perm, NULL); 3450 else 3451 rc = current_has_perm(p, perm); 3452 return rc; 3453 } 3454 3455 static int selinux_task_wait(struct task_struct *p) 3456 { 3457 return task_has_perm(p, current, PROCESS__SIGCHLD); 3458 } 3459 3460 static void selinux_task_to_inode(struct task_struct *p, 3461 struct inode *inode) 3462 { 3463 struct inode_security_struct *isec = inode->i_security; 3464 u32 sid = task_sid(p); 3465 3466 isec->sid = sid; 3467 isec->initialized = 1; 3468 } 3469 3470 /* Returns error only if unable to parse addresses */ 3471 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3472 struct common_audit_data *ad, u8 *proto) 3473 { 3474 int offset, ihlen, ret = -EINVAL; 3475 struct iphdr _iph, *ih; 3476 3477 offset = skb_network_offset(skb); 3478 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3479 if (ih == NULL) 3480 goto out; 3481 3482 ihlen = ih->ihl * 4; 3483 if (ihlen < sizeof(_iph)) 3484 goto out; 3485 3486 ad->u.net.v4info.saddr = ih->saddr; 3487 ad->u.net.v4info.daddr = ih->daddr; 3488 ret = 0; 3489 3490 if (proto) 3491 *proto = ih->protocol; 3492 3493 switch (ih->protocol) { 3494 case IPPROTO_TCP: { 3495 struct tcphdr _tcph, *th; 3496 3497 if (ntohs(ih->frag_off) & IP_OFFSET) 3498 break; 3499 3500 offset += ihlen; 3501 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3502 if (th == NULL) 3503 break; 3504 3505 ad->u.net.sport = th->source; 3506 ad->u.net.dport = th->dest; 3507 break; 3508 } 3509 3510 case IPPROTO_UDP: { 3511 struct udphdr _udph, *uh; 3512 3513 if (ntohs(ih->frag_off) & IP_OFFSET) 3514 break; 3515 3516 offset += ihlen; 3517 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3518 if (uh == NULL) 3519 break; 3520 3521 ad->u.net.sport = uh->source; 3522 ad->u.net.dport = uh->dest; 3523 break; 3524 } 3525 3526 case IPPROTO_DCCP: { 3527 struct dccp_hdr _dccph, *dh; 3528 3529 if (ntohs(ih->frag_off) & IP_OFFSET) 3530 break; 3531 3532 offset += ihlen; 3533 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3534 if (dh == NULL) 3535 break; 3536 3537 ad->u.net.sport = dh->dccph_sport; 3538 ad->u.net.dport = dh->dccph_dport; 3539 break; 3540 } 3541 3542 default: 3543 break; 3544 } 3545 out: 3546 return ret; 3547 } 3548 3549 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3550 3551 /* Returns error only if unable to parse addresses */ 3552 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3553 struct common_audit_data *ad, u8 *proto) 3554 { 3555 u8 nexthdr; 3556 int ret = -EINVAL, offset; 3557 struct ipv6hdr _ipv6h, *ip6; 3558 3559 offset = skb_network_offset(skb); 3560 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3561 if (ip6 == NULL) 3562 goto out; 3563 3564 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3565 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3566 ret = 0; 3567 3568 nexthdr = ip6->nexthdr; 3569 offset += sizeof(_ipv6h); 3570 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3571 if (offset < 0) 3572 goto out; 3573 3574 if (proto) 3575 *proto = nexthdr; 3576 3577 switch (nexthdr) { 3578 case IPPROTO_TCP: { 3579 struct tcphdr _tcph, *th; 3580 3581 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3582 if (th == NULL) 3583 break; 3584 3585 ad->u.net.sport = th->source; 3586 ad->u.net.dport = th->dest; 3587 break; 3588 } 3589 3590 case IPPROTO_UDP: { 3591 struct udphdr _udph, *uh; 3592 3593 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3594 if (uh == NULL) 3595 break; 3596 3597 ad->u.net.sport = uh->source; 3598 ad->u.net.dport = uh->dest; 3599 break; 3600 } 3601 3602 case IPPROTO_DCCP: { 3603 struct dccp_hdr _dccph, *dh; 3604 3605 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3606 if (dh == NULL) 3607 break; 3608 3609 ad->u.net.sport = dh->dccph_sport; 3610 ad->u.net.dport = dh->dccph_dport; 3611 break; 3612 } 3613 3614 /* includes fragments */ 3615 default: 3616 break; 3617 } 3618 out: 3619 return ret; 3620 } 3621 3622 #endif /* IPV6 */ 3623 3624 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 3625 char **_addrp, int src, u8 *proto) 3626 { 3627 char *addrp; 3628 int ret; 3629 3630 switch (ad->u.net.family) { 3631 case PF_INET: 3632 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3633 if (ret) 3634 goto parse_error; 3635 addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3636 &ad->u.net.v4info.daddr); 3637 goto okay; 3638 3639 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3640 case PF_INET6: 3641 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3642 if (ret) 3643 goto parse_error; 3644 addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3645 &ad->u.net.v6info.daddr); 3646 goto okay; 3647 #endif /* IPV6 */ 3648 default: 3649 addrp = NULL; 3650 goto okay; 3651 } 3652 3653 parse_error: 3654 printk(KERN_WARNING 3655 "SELinux: failure in selinux_parse_skb()," 3656 " unable to parse packet\n"); 3657 return ret; 3658 3659 okay: 3660 if (_addrp) 3661 *_addrp = addrp; 3662 return 0; 3663 } 3664 3665 /** 3666 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3667 * @skb: the packet 3668 * @family: protocol family 3669 * @sid: the packet's peer label SID 3670 * 3671 * Description: 3672 * Check the various different forms of network peer labeling and determine 3673 * the peer label/SID for the packet; most of the magic actually occurs in 3674 * the security server function security_net_peersid_cmp(). The function 3675 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3676 * or -EACCES if @sid is invalid due to inconsistencies with the different 3677 * peer labels. 3678 * 3679 */ 3680 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3681 { 3682 int err; 3683 u32 xfrm_sid; 3684 u32 nlbl_sid; 3685 u32 nlbl_type; 3686 3687 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3688 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3689 3690 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3691 if (unlikely(err)) { 3692 printk(KERN_WARNING 3693 "SELinux: failure in selinux_skb_peerlbl_sid()," 3694 " unable to determine packet's peer label\n"); 3695 return -EACCES; 3696 } 3697 3698 return 0; 3699 } 3700 3701 /* socket security operations */ 3702 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3703 u32 perms) 3704 { 3705 struct inode_security_struct *isec; 3706 struct common_audit_data ad; 3707 u32 sid; 3708 int err = 0; 3709 3710 isec = SOCK_INODE(sock)->i_security; 3711 3712 if (isec->sid == SECINITSID_KERNEL) 3713 goto out; 3714 sid = task_sid(task); 3715 3716 COMMON_AUDIT_DATA_INIT(&ad, NET); 3717 ad.u.net.sk = sock->sk; 3718 err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 3719 3720 out: 3721 return err; 3722 } 3723 3724 static int selinux_socket_create(int family, int type, 3725 int protocol, int kern) 3726 { 3727 const struct cred *cred = current_cred(); 3728 const struct task_security_struct *tsec = cred->security; 3729 u32 sid, newsid; 3730 u16 secclass; 3731 int err = 0; 3732 3733 if (kern) 3734 goto out; 3735 3736 sid = tsec->sid; 3737 newsid = tsec->sockcreate_sid ?: sid; 3738 3739 secclass = socket_type_to_security_class(family, type, protocol); 3740 err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL); 3741 3742 out: 3743 return err; 3744 } 3745 3746 static int selinux_socket_post_create(struct socket *sock, int family, 3747 int type, int protocol, int kern) 3748 { 3749 const struct cred *cred = current_cred(); 3750 const struct task_security_struct *tsec = cred->security; 3751 struct inode_security_struct *isec; 3752 struct sk_security_struct *sksec; 3753 u32 sid, newsid; 3754 int err = 0; 3755 3756 sid = tsec->sid; 3757 newsid = tsec->sockcreate_sid; 3758 3759 isec = SOCK_INODE(sock)->i_security; 3760 3761 if (kern) 3762 isec->sid = SECINITSID_KERNEL; 3763 else if (newsid) 3764 isec->sid = newsid; 3765 else 3766 isec->sid = sid; 3767 3768 isec->sclass = socket_type_to_security_class(family, type, protocol); 3769 isec->initialized = 1; 3770 3771 if (sock->sk) { 3772 sksec = sock->sk->sk_security; 3773 sksec->sid = isec->sid; 3774 sksec->sclass = isec->sclass; 3775 err = selinux_netlbl_socket_post_create(sock->sk, family); 3776 } 3777 3778 return err; 3779 } 3780 3781 /* Range of port numbers used to automatically bind. 3782 Need to determine whether we should perform a name_bind 3783 permission check between the socket and the port number. */ 3784 3785 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3786 { 3787 u16 family; 3788 int err; 3789 3790 err = socket_has_perm(current, sock, SOCKET__BIND); 3791 if (err) 3792 goto out; 3793 3794 /* 3795 * If PF_INET or PF_INET6, check name_bind permission for the port. 3796 * Multiple address binding for SCTP is not supported yet: we just 3797 * check the first address now. 3798 */ 3799 family = sock->sk->sk_family; 3800 if (family == PF_INET || family == PF_INET6) { 3801 char *addrp; 3802 struct inode_security_struct *isec; 3803 struct common_audit_data ad; 3804 struct sockaddr_in *addr4 = NULL; 3805 struct sockaddr_in6 *addr6 = NULL; 3806 unsigned short snum; 3807 struct sock *sk = sock->sk; 3808 u32 sid, node_perm; 3809 3810 isec = SOCK_INODE(sock)->i_security; 3811 3812 if (family == PF_INET) { 3813 addr4 = (struct sockaddr_in *)address; 3814 snum = ntohs(addr4->sin_port); 3815 addrp = (char *)&addr4->sin_addr.s_addr; 3816 } else { 3817 addr6 = (struct sockaddr_in6 *)address; 3818 snum = ntohs(addr6->sin6_port); 3819 addrp = (char *)&addr6->sin6_addr.s6_addr; 3820 } 3821 3822 if (snum) { 3823 int low, high; 3824 3825 inet_get_local_port_range(&low, &high); 3826 3827 if (snum < max(PROT_SOCK, low) || snum > high) { 3828 err = sel_netport_sid(sk->sk_protocol, 3829 snum, &sid); 3830 if (err) 3831 goto out; 3832 COMMON_AUDIT_DATA_INIT(&ad, NET); 3833 ad.u.net.sport = htons(snum); 3834 ad.u.net.family = family; 3835 err = avc_has_perm(isec->sid, sid, 3836 isec->sclass, 3837 SOCKET__NAME_BIND, &ad); 3838 if (err) 3839 goto out; 3840 } 3841 } 3842 3843 switch (isec->sclass) { 3844 case SECCLASS_TCP_SOCKET: 3845 node_perm = TCP_SOCKET__NODE_BIND; 3846 break; 3847 3848 case SECCLASS_UDP_SOCKET: 3849 node_perm = UDP_SOCKET__NODE_BIND; 3850 break; 3851 3852 case SECCLASS_DCCP_SOCKET: 3853 node_perm = DCCP_SOCKET__NODE_BIND; 3854 break; 3855 3856 default: 3857 node_perm = RAWIP_SOCKET__NODE_BIND; 3858 break; 3859 } 3860 3861 err = sel_netnode_sid(addrp, family, &sid); 3862 if (err) 3863 goto out; 3864 3865 COMMON_AUDIT_DATA_INIT(&ad, NET); 3866 ad.u.net.sport = htons(snum); 3867 ad.u.net.family = family; 3868 3869 if (family == PF_INET) 3870 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3871 else 3872 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3873 3874 err = avc_has_perm(isec->sid, sid, 3875 isec->sclass, node_perm, &ad); 3876 if (err) 3877 goto out; 3878 } 3879 out: 3880 return err; 3881 } 3882 3883 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3884 { 3885 struct sock *sk = sock->sk; 3886 struct inode_security_struct *isec; 3887 int err; 3888 3889 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3890 if (err) 3891 return err; 3892 3893 /* 3894 * If a TCP or DCCP socket, check name_connect permission for the port. 3895 */ 3896 isec = SOCK_INODE(sock)->i_security; 3897 if (isec->sclass == SECCLASS_TCP_SOCKET || 3898 isec->sclass == SECCLASS_DCCP_SOCKET) { 3899 struct common_audit_data ad; 3900 struct sockaddr_in *addr4 = NULL; 3901 struct sockaddr_in6 *addr6 = NULL; 3902 unsigned short snum; 3903 u32 sid, perm; 3904 3905 if (sk->sk_family == PF_INET) { 3906 addr4 = (struct sockaddr_in *)address; 3907 if (addrlen < sizeof(struct sockaddr_in)) 3908 return -EINVAL; 3909 snum = ntohs(addr4->sin_port); 3910 } else { 3911 addr6 = (struct sockaddr_in6 *)address; 3912 if (addrlen < SIN6_LEN_RFC2133) 3913 return -EINVAL; 3914 snum = ntohs(addr6->sin6_port); 3915 } 3916 3917 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3918 if (err) 3919 goto out; 3920 3921 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3922 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3923 3924 COMMON_AUDIT_DATA_INIT(&ad, NET); 3925 ad.u.net.dport = htons(snum); 3926 ad.u.net.family = sk->sk_family; 3927 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3928 if (err) 3929 goto out; 3930 } 3931 3932 err = selinux_netlbl_socket_connect(sk, address); 3933 3934 out: 3935 return err; 3936 } 3937 3938 static int selinux_socket_listen(struct socket *sock, int backlog) 3939 { 3940 return socket_has_perm(current, sock, SOCKET__LISTEN); 3941 } 3942 3943 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3944 { 3945 int err; 3946 struct inode_security_struct *isec; 3947 struct inode_security_struct *newisec; 3948 3949 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3950 if (err) 3951 return err; 3952 3953 newisec = SOCK_INODE(newsock)->i_security; 3954 3955 isec = SOCK_INODE(sock)->i_security; 3956 newisec->sclass = isec->sclass; 3957 newisec->sid = isec->sid; 3958 newisec->initialized = 1; 3959 3960 return 0; 3961 } 3962 3963 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3964 int size) 3965 { 3966 return socket_has_perm(current, sock, SOCKET__WRITE); 3967 } 3968 3969 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3970 int size, int flags) 3971 { 3972 return socket_has_perm(current, sock, SOCKET__READ); 3973 } 3974 3975 static int selinux_socket_getsockname(struct socket *sock) 3976 { 3977 return socket_has_perm(current, sock, SOCKET__GETATTR); 3978 } 3979 3980 static int selinux_socket_getpeername(struct socket *sock) 3981 { 3982 return socket_has_perm(current, sock, SOCKET__GETATTR); 3983 } 3984 3985 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3986 { 3987 int err; 3988 3989 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3990 if (err) 3991 return err; 3992 3993 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3994 } 3995 3996 static int selinux_socket_getsockopt(struct socket *sock, int level, 3997 int optname) 3998 { 3999 return socket_has_perm(current, sock, SOCKET__GETOPT); 4000 } 4001 4002 static int selinux_socket_shutdown(struct socket *sock, int how) 4003 { 4004 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 4005 } 4006 4007 static int selinux_socket_unix_stream_connect(struct socket *sock, 4008 struct socket *other, 4009 struct sock *newsk) 4010 { 4011 struct sk_security_struct *ssec; 4012 struct inode_security_struct *isec; 4013 struct inode_security_struct *other_isec; 4014 struct common_audit_data ad; 4015 int err; 4016 4017 isec = SOCK_INODE(sock)->i_security; 4018 other_isec = SOCK_INODE(other)->i_security; 4019 4020 COMMON_AUDIT_DATA_INIT(&ad, NET); 4021 ad.u.net.sk = other->sk; 4022 4023 err = avc_has_perm(isec->sid, other_isec->sid, 4024 isec->sclass, 4025 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4026 if (err) 4027 return err; 4028 4029 /* connecting socket */ 4030 ssec = sock->sk->sk_security; 4031 ssec->peer_sid = other_isec->sid; 4032 4033 /* server child socket */ 4034 ssec = newsk->sk_security; 4035 ssec->peer_sid = isec->sid; 4036 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 4037 4038 return err; 4039 } 4040 4041 static int selinux_socket_unix_may_send(struct socket *sock, 4042 struct socket *other) 4043 { 4044 struct inode_security_struct *isec; 4045 struct inode_security_struct *other_isec; 4046 struct common_audit_data ad; 4047 int err; 4048 4049 isec = SOCK_INODE(sock)->i_security; 4050 other_isec = SOCK_INODE(other)->i_security; 4051 4052 COMMON_AUDIT_DATA_INIT(&ad, NET); 4053 ad.u.net.sk = other->sk; 4054 4055 err = avc_has_perm(isec->sid, other_isec->sid, 4056 isec->sclass, SOCKET__SENDTO, &ad); 4057 if (err) 4058 return err; 4059 4060 return 0; 4061 } 4062 4063 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 4064 u32 peer_sid, 4065 struct common_audit_data *ad) 4066 { 4067 int err; 4068 u32 if_sid; 4069 u32 node_sid; 4070 4071 err = sel_netif_sid(ifindex, &if_sid); 4072 if (err) 4073 return err; 4074 err = avc_has_perm(peer_sid, if_sid, 4075 SECCLASS_NETIF, NETIF__INGRESS, ad); 4076 if (err) 4077 return err; 4078 4079 err = sel_netnode_sid(addrp, family, &node_sid); 4080 if (err) 4081 return err; 4082 return avc_has_perm(peer_sid, node_sid, 4083 SECCLASS_NODE, NODE__RECVFROM, ad); 4084 } 4085 4086 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4087 u16 family) 4088 { 4089 int err = 0; 4090 struct sk_security_struct *sksec = sk->sk_security; 4091 u32 peer_sid; 4092 u32 sk_sid = sksec->sid; 4093 struct common_audit_data ad; 4094 char *addrp; 4095 4096 COMMON_AUDIT_DATA_INIT(&ad, NET); 4097 ad.u.net.netif = skb->skb_iif; 4098 ad.u.net.family = family; 4099 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4100 if (err) 4101 return err; 4102 4103 if (selinux_secmark_enabled()) { 4104 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4105 PACKET__RECV, &ad); 4106 if (err) 4107 return err; 4108 } 4109 4110 if (selinux_policycap_netpeer) { 4111 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4112 if (err) 4113 return err; 4114 err = avc_has_perm(sk_sid, peer_sid, 4115 SECCLASS_PEER, PEER__RECV, &ad); 4116 if (err) 4117 selinux_netlbl_err(skb, err, 0); 4118 } else { 4119 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4120 if (err) 4121 return err; 4122 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4123 } 4124 4125 return err; 4126 } 4127 4128 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4129 { 4130 int err; 4131 struct sk_security_struct *sksec = sk->sk_security; 4132 u16 family = sk->sk_family; 4133 u32 sk_sid = sksec->sid; 4134 struct common_audit_data ad; 4135 char *addrp; 4136 u8 secmark_active; 4137 u8 peerlbl_active; 4138 4139 if (family != PF_INET && family != PF_INET6) 4140 return 0; 4141 4142 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4143 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4144 family = PF_INET; 4145 4146 /* If any sort of compatibility mode is enabled then handoff processing 4147 * to the selinux_sock_rcv_skb_compat() function to deal with the 4148 * special handling. We do this in an attempt to keep this function 4149 * as fast and as clean as possible. */ 4150 if (!selinux_policycap_netpeer) 4151 return selinux_sock_rcv_skb_compat(sk, skb, family); 4152 4153 secmark_active = selinux_secmark_enabled(); 4154 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4155 if (!secmark_active && !peerlbl_active) 4156 return 0; 4157 4158 COMMON_AUDIT_DATA_INIT(&ad, NET); 4159 ad.u.net.netif = skb->skb_iif; 4160 ad.u.net.family = family; 4161 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4162 if (err) 4163 return err; 4164 4165 if (peerlbl_active) { 4166 u32 peer_sid; 4167 4168 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4169 if (err) 4170 return err; 4171 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family, 4172 peer_sid, &ad); 4173 if (err) { 4174 selinux_netlbl_err(skb, err, 0); 4175 return err; 4176 } 4177 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4178 PEER__RECV, &ad); 4179 if (err) 4180 selinux_netlbl_err(skb, err, 0); 4181 } 4182 4183 if (secmark_active) { 4184 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4185 PACKET__RECV, &ad); 4186 if (err) 4187 return err; 4188 } 4189 4190 return err; 4191 } 4192 4193 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4194 int __user *optlen, unsigned len) 4195 { 4196 int err = 0; 4197 char *scontext; 4198 u32 scontext_len; 4199 struct sk_security_struct *ssec; 4200 struct inode_security_struct *isec; 4201 u32 peer_sid = SECSID_NULL; 4202 4203 isec = SOCK_INODE(sock)->i_security; 4204 4205 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4206 isec->sclass == SECCLASS_TCP_SOCKET) { 4207 ssec = sock->sk->sk_security; 4208 peer_sid = ssec->peer_sid; 4209 } 4210 if (peer_sid == SECSID_NULL) { 4211 err = -ENOPROTOOPT; 4212 goto out; 4213 } 4214 4215 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4216 4217 if (err) 4218 goto out; 4219 4220 if (scontext_len > len) { 4221 err = -ERANGE; 4222 goto out_len; 4223 } 4224 4225 if (copy_to_user(optval, scontext, scontext_len)) 4226 err = -EFAULT; 4227 4228 out_len: 4229 if (put_user(scontext_len, optlen)) 4230 err = -EFAULT; 4231 4232 kfree(scontext); 4233 out: 4234 return err; 4235 } 4236 4237 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4238 { 4239 u32 peer_secid = SECSID_NULL; 4240 u16 family; 4241 4242 if (skb && skb->protocol == htons(ETH_P_IP)) 4243 family = PF_INET; 4244 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4245 family = PF_INET6; 4246 else if (sock) 4247 family = sock->sk->sk_family; 4248 else 4249 goto out; 4250 4251 if (sock && family == PF_UNIX) 4252 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4253 else if (skb) 4254 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4255 4256 out: 4257 *secid = peer_secid; 4258 if (peer_secid == SECSID_NULL) 4259 return -EINVAL; 4260 return 0; 4261 } 4262 4263 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4264 { 4265 return sk_alloc_security(sk, family, priority); 4266 } 4267 4268 static void selinux_sk_free_security(struct sock *sk) 4269 { 4270 sk_free_security(sk); 4271 } 4272 4273 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4274 { 4275 struct sk_security_struct *ssec = sk->sk_security; 4276 struct sk_security_struct *newssec = newsk->sk_security; 4277 4278 newssec->sid = ssec->sid; 4279 newssec->peer_sid = ssec->peer_sid; 4280 newssec->sclass = ssec->sclass; 4281 4282 selinux_netlbl_sk_security_reset(newssec); 4283 } 4284 4285 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4286 { 4287 if (!sk) 4288 *secid = SECINITSID_ANY_SOCKET; 4289 else { 4290 struct sk_security_struct *sksec = sk->sk_security; 4291 4292 *secid = sksec->sid; 4293 } 4294 } 4295 4296 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4297 { 4298 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4299 struct sk_security_struct *sksec = sk->sk_security; 4300 4301 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4302 sk->sk_family == PF_UNIX) 4303 isec->sid = sksec->sid; 4304 sksec->sclass = isec->sclass; 4305 } 4306 4307 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4308 struct request_sock *req) 4309 { 4310 struct sk_security_struct *sksec = sk->sk_security; 4311 int err; 4312 u16 family = sk->sk_family; 4313 u32 newsid; 4314 u32 peersid; 4315 4316 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4317 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4318 family = PF_INET; 4319 4320 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4321 if (err) 4322 return err; 4323 if (peersid == SECSID_NULL) { 4324 req->secid = sksec->sid; 4325 req->peer_secid = SECSID_NULL; 4326 } else { 4327 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4328 if (err) 4329 return err; 4330 req->secid = newsid; 4331 req->peer_secid = peersid; 4332 } 4333 4334 return selinux_netlbl_inet_conn_request(req, family); 4335 } 4336 4337 static void selinux_inet_csk_clone(struct sock *newsk, 4338 const struct request_sock *req) 4339 { 4340 struct sk_security_struct *newsksec = newsk->sk_security; 4341 4342 newsksec->sid = req->secid; 4343 newsksec->peer_sid = req->peer_secid; 4344 /* NOTE: Ideally, we should also get the isec->sid for the 4345 new socket in sync, but we don't have the isec available yet. 4346 So we will wait until sock_graft to do it, by which 4347 time it will have been created and available. */ 4348 4349 /* We don't need to take any sort of lock here as we are the only 4350 * thread with access to newsksec */ 4351 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4352 } 4353 4354 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4355 { 4356 u16 family = sk->sk_family; 4357 struct sk_security_struct *sksec = sk->sk_security; 4358 4359 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4360 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4361 family = PF_INET; 4362 4363 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4364 } 4365 4366 static void selinux_req_classify_flow(const struct request_sock *req, 4367 struct flowi *fl) 4368 { 4369 fl->secid = req->secid; 4370 } 4371 4372 static int selinux_tun_dev_create(void) 4373 { 4374 u32 sid = current_sid(); 4375 4376 /* we aren't taking into account the "sockcreate" SID since the socket 4377 * that is being created here is not a socket in the traditional sense, 4378 * instead it is a private sock, accessible only to the kernel, and 4379 * representing a wide range of network traffic spanning multiple 4380 * connections unlike traditional sockets - check the TUN driver to 4381 * get a better understanding of why this socket is special */ 4382 4383 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4384 NULL); 4385 } 4386 4387 static void selinux_tun_dev_post_create(struct sock *sk) 4388 { 4389 struct sk_security_struct *sksec = sk->sk_security; 4390 4391 /* we don't currently perform any NetLabel based labeling here and it 4392 * isn't clear that we would want to do so anyway; while we could apply 4393 * labeling without the support of the TUN user the resulting labeled 4394 * traffic from the other end of the connection would almost certainly 4395 * cause confusion to the TUN user that had no idea network labeling 4396 * protocols were being used */ 4397 4398 /* see the comments in selinux_tun_dev_create() about why we don't use 4399 * the sockcreate SID here */ 4400 4401 sksec->sid = current_sid(); 4402 sksec->sclass = SECCLASS_TUN_SOCKET; 4403 } 4404 4405 static int selinux_tun_dev_attach(struct sock *sk) 4406 { 4407 struct sk_security_struct *sksec = sk->sk_security; 4408 u32 sid = current_sid(); 4409 int err; 4410 4411 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET, 4412 TUN_SOCKET__RELABELFROM, NULL); 4413 if (err) 4414 return err; 4415 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 4416 TUN_SOCKET__RELABELTO, NULL); 4417 if (err) 4418 return err; 4419 4420 sksec->sid = sid; 4421 4422 return 0; 4423 } 4424 4425 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4426 { 4427 int err = 0; 4428 u32 perm; 4429 struct nlmsghdr *nlh; 4430 struct socket *sock = sk->sk_socket; 4431 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4432 4433 if (skb->len < NLMSG_SPACE(0)) { 4434 err = -EINVAL; 4435 goto out; 4436 } 4437 nlh = nlmsg_hdr(skb); 4438 4439 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4440 if (err) { 4441 if (err == -EINVAL) { 4442 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4443 "SELinux: unrecognized netlink message" 4444 " type=%hu for sclass=%hu\n", 4445 nlh->nlmsg_type, isec->sclass); 4446 if (!selinux_enforcing || security_get_allow_unknown()) 4447 err = 0; 4448 } 4449 4450 /* Ignore */ 4451 if (err == -ENOENT) 4452 err = 0; 4453 goto out; 4454 } 4455 4456 err = socket_has_perm(current, sock, perm); 4457 out: 4458 return err; 4459 } 4460 4461 #ifdef CONFIG_NETFILTER 4462 4463 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4464 u16 family) 4465 { 4466 int err; 4467 char *addrp; 4468 u32 peer_sid; 4469 struct common_audit_data ad; 4470 u8 secmark_active; 4471 u8 netlbl_active; 4472 u8 peerlbl_active; 4473 4474 if (!selinux_policycap_netpeer) 4475 return NF_ACCEPT; 4476 4477 secmark_active = selinux_secmark_enabled(); 4478 netlbl_active = netlbl_enabled(); 4479 peerlbl_active = netlbl_active || selinux_xfrm_enabled(); 4480 if (!secmark_active && !peerlbl_active) 4481 return NF_ACCEPT; 4482 4483 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4484 return NF_DROP; 4485 4486 COMMON_AUDIT_DATA_INIT(&ad, NET); 4487 ad.u.net.netif = ifindex; 4488 ad.u.net.family = family; 4489 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4490 return NF_DROP; 4491 4492 if (peerlbl_active) { 4493 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4494 peer_sid, &ad); 4495 if (err) { 4496 selinux_netlbl_err(skb, err, 1); 4497 return NF_DROP; 4498 } 4499 } 4500 4501 if (secmark_active) 4502 if (avc_has_perm(peer_sid, skb->secmark, 4503 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4504 return NF_DROP; 4505 4506 if (netlbl_active) 4507 /* we do this in the FORWARD path and not the POST_ROUTING 4508 * path because we want to make sure we apply the necessary 4509 * labeling before IPsec is applied so we can leverage AH 4510 * protection */ 4511 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4512 return NF_DROP; 4513 4514 return NF_ACCEPT; 4515 } 4516 4517 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4518 struct sk_buff *skb, 4519 const struct net_device *in, 4520 const struct net_device *out, 4521 int (*okfn)(struct sk_buff *)) 4522 { 4523 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4524 } 4525 4526 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4527 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4528 struct sk_buff *skb, 4529 const struct net_device *in, 4530 const struct net_device *out, 4531 int (*okfn)(struct sk_buff *)) 4532 { 4533 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4534 } 4535 #endif /* IPV6 */ 4536 4537 static unsigned int selinux_ip_output(struct sk_buff *skb, 4538 u16 family) 4539 { 4540 u32 sid; 4541 4542 if (!netlbl_enabled()) 4543 return NF_ACCEPT; 4544 4545 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4546 * because we want to make sure we apply the necessary labeling 4547 * before IPsec is applied so we can leverage AH protection */ 4548 if (skb->sk) { 4549 struct sk_security_struct *sksec = skb->sk->sk_security; 4550 sid = sksec->sid; 4551 } else 4552 sid = SECINITSID_KERNEL; 4553 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4554 return NF_DROP; 4555 4556 return NF_ACCEPT; 4557 } 4558 4559 static unsigned int selinux_ipv4_output(unsigned int hooknum, 4560 struct sk_buff *skb, 4561 const struct net_device *in, 4562 const struct net_device *out, 4563 int (*okfn)(struct sk_buff *)) 4564 { 4565 return selinux_ip_output(skb, PF_INET); 4566 } 4567 4568 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4569 int ifindex, 4570 u16 family) 4571 { 4572 struct sock *sk = skb->sk; 4573 struct sk_security_struct *sksec; 4574 struct common_audit_data ad; 4575 char *addrp; 4576 u8 proto; 4577 4578 if (sk == NULL) 4579 return NF_ACCEPT; 4580 sksec = sk->sk_security; 4581 4582 COMMON_AUDIT_DATA_INIT(&ad, NET); 4583 ad.u.net.netif = ifindex; 4584 ad.u.net.family = family; 4585 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4586 return NF_DROP; 4587 4588 if (selinux_secmark_enabled()) 4589 if (avc_has_perm(sksec->sid, skb->secmark, 4590 SECCLASS_PACKET, PACKET__SEND, &ad)) 4591 return NF_DROP; 4592 4593 if (selinux_policycap_netpeer) 4594 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4595 return NF_DROP; 4596 4597 return NF_ACCEPT; 4598 } 4599 4600 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4601 u16 family) 4602 { 4603 u32 secmark_perm; 4604 u32 peer_sid; 4605 struct sock *sk; 4606 struct common_audit_data ad; 4607 char *addrp; 4608 u8 secmark_active; 4609 u8 peerlbl_active; 4610 4611 /* If any sort of compatibility mode is enabled then handoff processing 4612 * to the selinux_ip_postroute_compat() function to deal with the 4613 * special handling. We do this in an attempt to keep this function 4614 * as fast and as clean as possible. */ 4615 if (!selinux_policycap_netpeer) 4616 return selinux_ip_postroute_compat(skb, ifindex, family); 4617 #ifdef CONFIG_XFRM 4618 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4619 * packet transformation so allow the packet to pass without any checks 4620 * since we'll have another chance to perform access control checks 4621 * when the packet is on it's final way out. 4622 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4623 * is NULL, in this case go ahead and apply access control. */ 4624 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL) 4625 return NF_ACCEPT; 4626 #endif 4627 secmark_active = selinux_secmark_enabled(); 4628 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4629 if (!secmark_active && !peerlbl_active) 4630 return NF_ACCEPT; 4631 4632 /* if the packet is being forwarded then get the peer label from the 4633 * packet itself; otherwise check to see if it is from a local 4634 * application or the kernel, if from an application get the peer label 4635 * from the sending socket, otherwise use the kernel's sid */ 4636 sk = skb->sk; 4637 if (sk == NULL) { 4638 switch (family) { 4639 case PF_INET: 4640 if (IPCB(skb)->flags & IPSKB_FORWARDED) 4641 secmark_perm = PACKET__FORWARD_OUT; 4642 else 4643 secmark_perm = PACKET__SEND; 4644 break; 4645 case PF_INET6: 4646 if (IP6CB(skb)->flags & IP6SKB_FORWARDED) 4647 secmark_perm = PACKET__FORWARD_OUT; 4648 else 4649 secmark_perm = PACKET__SEND; 4650 break; 4651 default: 4652 return NF_DROP; 4653 } 4654 if (secmark_perm == PACKET__FORWARD_OUT) { 4655 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4656 return NF_DROP; 4657 } else 4658 peer_sid = SECINITSID_KERNEL; 4659 } else { 4660 struct sk_security_struct *sksec = sk->sk_security; 4661 peer_sid = sksec->sid; 4662 secmark_perm = PACKET__SEND; 4663 } 4664 4665 COMMON_AUDIT_DATA_INIT(&ad, NET); 4666 ad.u.net.netif = ifindex; 4667 ad.u.net.family = family; 4668 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 4669 return NF_DROP; 4670 4671 if (secmark_active) 4672 if (avc_has_perm(peer_sid, skb->secmark, 4673 SECCLASS_PACKET, secmark_perm, &ad)) 4674 return NF_DROP; 4675 4676 if (peerlbl_active) { 4677 u32 if_sid; 4678 u32 node_sid; 4679 4680 if (sel_netif_sid(ifindex, &if_sid)) 4681 return NF_DROP; 4682 if (avc_has_perm(peer_sid, if_sid, 4683 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4684 return NF_DROP; 4685 4686 if (sel_netnode_sid(addrp, family, &node_sid)) 4687 return NF_DROP; 4688 if (avc_has_perm(peer_sid, node_sid, 4689 SECCLASS_NODE, NODE__SENDTO, &ad)) 4690 return NF_DROP; 4691 } 4692 4693 return NF_ACCEPT; 4694 } 4695 4696 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4697 struct sk_buff *skb, 4698 const struct net_device *in, 4699 const struct net_device *out, 4700 int (*okfn)(struct sk_buff *)) 4701 { 4702 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4703 } 4704 4705 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4706 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4707 struct sk_buff *skb, 4708 const struct net_device *in, 4709 const struct net_device *out, 4710 int (*okfn)(struct sk_buff *)) 4711 { 4712 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4713 } 4714 #endif /* IPV6 */ 4715 4716 #endif /* CONFIG_NETFILTER */ 4717 4718 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4719 { 4720 int err; 4721 4722 err = cap_netlink_send(sk, skb); 4723 if (err) 4724 return err; 4725 4726 return selinux_nlmsg_perm(sk, skb); 4727 } 4728 4729 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4730 { 4731 int err; 4732 struct common_audit_data ad; 4733 4734 err = cap_netlink_recv(skb, capability); 4735 if (err) 4736 return err; 4737 4738 COMMON_AUDIT_DATA_INIT(&ad, CAP); 4739 ad.u.cap = capability; 4740 4741 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4742 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4743 } 4744 4745 static int ipc_alloc_security(struct task_struct *task, 4746 struct kern_ipc_perm *perm, 4747 u16 sclass) 4748 { 4749 struct ipc_security_struct *isec; 4750 u32 sid; 4751 4752 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4753 if (!isec) 4754 return -ENOMEM; 4755 4756 sid = task_sid(task); 4757 isec->sclass = sclass; 4758 isec->sid = sid; 4759 perm->security = isec; 4760 4761 return 0; 4762 } 4763 4764 static void ipc_free_security(struct kern_ipc_perm *perm) 4765 { 4766 struct ipc_security_struct *isec = perm->security; 4767 perm->security = NULL; 4768 kfree(isec); 4769 } 4770 4771 static int msg_msg_alloc_security(struct msg_msg *msg) 4772 { 4773 struct msg_security_struct *msec; 4774 4775 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4776 if (!msec) 4777 return -ENOMEM; 4778 4779 msec->sid = SECINITSID_UNLABELED; 4780 msg->security = msec; 4781 4782 return 0; 4783 } 4784 4785 static void msg_msg_free_security(struct msg_msg *msg) 4786 { 4787 struct msg_security_struct *msec = msg->security; 4788 4789 msg->security = NULL; 4790 kfree(msec); 4791 } 4792 4793 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4794 u32 perms) 4795 { 4796 struct ipc_security_struct *isec; 4797 struct common_audit_data ad; 4798 u32 sid = current_sid(); 4799 4800 isec = ipc_perms->security; 4801 4802 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4803 ad.u.ipc_id = ipc_perms->key; 4804 4805 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 4806 } 4807 4808 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4809 { 4810 return msg_msg_alloc_security(msg); 4811 } 4812 4813 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4814 { 4815 msg_msg_free_security(msg); 4816 } 4817 4818 /* message queue security operations */ 4819 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4820 { 4821 struct ipc_security_struct *isec; 4822 struct common_audit_data ad; 4823 u32 sid = current_sid(); 4824 int rc; 4825 4826 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4827 if (rc) 4828 return rc; 4829 4830 isec = msq->q_perm.security; 4831 4832 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4833 ad.u.ipc_id = msq->q_perm.key; 4834 4835 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4836 MSGQ__CREATE, &ad); 4837 if (rc) { 4838 ipc_free_security(&msq->q_perm); 4839 return rc; 4840 } 4841 return 0; 4842 } 4843 4844 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4845 { 4846 ipc_free_security(&msq->q_perm); 4847 } 4848 4849 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4850 { 4851 struct ipc_security_struct *isec; 4852 struct common_audit_data ad; 4853 u32 sid = current_sid(); 4854 4855 isec = msq->q_perm.security; 4856 4857 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4858 ad.u.ipc_id = msq->q_perm.key; 4859 4860 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4861 MSGQ__ASSOCIATE, &ad); 4862 } 4863 4864 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4865 { 4866 int err; 4867 int perms; 4868 4869 switch (cmd) { 4870 case IPC_INFO: 4871 case MSG_INFO: 4872 /* No specific object, just general system-wide information. */ 4873 return task_has_system(current, SYSTEM__IPC_INFO); 4874 case IPC_STAT: 4875 case MSG_STAT: 4876 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4877 break; 4878 case IPC_SET: 4879 perms = MSGQ__SETATTR; 4880 break; 4881 case IPC_RMID: 4882 perms = MSGQ__DESTROY; 4883 break; 4884 default: 4885 return 0; 4886 } 4887 4888 err = ipc_has_perm(&msq->q_perm, perms); 4889 return err; 4890 } 4891 4892 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4893 { 4894 struct ipc_security_struct *isec; 4895 struct msg_security_struct *msec; 4896 struct common_audit_data ad; 4897 u32 sid = current_sid(); 4898 int rc; 4899 4900 isec = msq->q_perm.security; 4901 msec = msg->security; 4902 4903 /* 4904 * First time through, need to assign label to the message 4905 */ 4906 if (msec->sid == SECINITSID_UNLABELED) { 4907 /* 4908 * Compute new sid based on current process and 4909 * message queue this message will be stored in 4910 */ 4911 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 4912 &msec->sid); 4913 if (rc) 4914 return rc; 4915 } 4916 4917 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4918 ad.u.ipc_id = msq->q_perm.key; 4919 4920 /* Can this process write to the queue? */ 4921 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 4922 MSGQ__WRITE, &ad); 4923 if (!rc) 4924 /* Can this process send the message */ 4925 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 4926 MSG__SEND, &ad); 4927 if (!rc) 4928 /* Can the message be put in the queue? */ 4929 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 4930 MSGQ__ENQUEUE, &ad); 4931 4932 return rc; 4933 } 4934 4935 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4936 struct task_struct *target, 4937 long type, int mode) 4938 { 4939 struct ipc_security_struct *isec; 4940 struct msg_security_struct *msec; 4941 struct common_audit_data ad; 4942 u32 sid = task_sid(target); 4943 int rc; 4944 4945 isec = msq->q_perm.security; 4946 msec = msg->security; 4947 4948 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4949 ad.u.ipc_id = msq->q_perm.key; 4950 4951 rc = avc_has_perm(sid, isec->sid, 4952 SECCLASS_MSGQ, MSGQ__READ, &ad); 4953 if (!rc) 4954 rc = avc_has_perm(sid, msec->sid, 4955 SECCLASS_MSG, MSG__RECEIVE, &ad); 4956 return rc; 4957 } 4958 4959 /* Shared Memory security operations */ 4960 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4961 { 4962 struct ipc_security_struct *isec; 4963 struct common_audit_data ad; 4964 u32 sid = current_sid(); 4965 int rc; 4966 4967 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4968 if (rc) 4969 return rc; 4970 4971 isec = shp->shm_perm.security; 4972 4973 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4974 ad.u.ipc_id = shp->shm_perm.key; 4975 4976 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 4977 SHM__CREATE, &ad); 4978 if (rc) { 4979 ipc_free_security(&shp->shm_perm); 4980 return rc; 4981 } 4982 return 0; 4983 } 4984 4985 static void selinux_shm_free_security(struct shmid_kernel *shp) 4986 { 4987 ipc_free_security(&shp->shm_perm); 4988 } 4989 4990 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4991 { 4992 struct ipc_security_struct *isec; 4993 struct common_audit_data ad; 4994 u32 sid = current_sid(); 4995 4996 isec = shp->shm_perm.security; 4997 4998 COMMON_AUDIT_DATA_INIT(&ad, IPC); 4999 ad.u.ipc_id = shp->shm_perm.key; 5000 5001 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5002 SHM__ASSOCIATE, &ad); 5003 } 5004 5005 /* Note, at this point, shp is locked down */ 5006 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5007 { 5008 int perms; 5009 int err; 5010 5011 switch (cmd) { 5012 case IPC_INFO: 5013 case SHM_INFO: 5014 /* No specific object, just general system-wide information. */ 5015 return task_has_system(current, SYSTEM__IPC_INFO); 5016 case IPC_STAT: 5017 case SHM_STAT: 5018 perms = SHM__GETATTR | SHM__ASSOCIATE; 5019 break; 5020 case IPC_SET: 5021 perms = SHM__SETATTR; 5022 break; 5023 case SHM_LOCK: 5024 case SHM_UNLOCK: 5025 perms = SHM__LOCK; 5026 break; 5027 case IPC_RMID: 5028 perms = SHM__DESTROY; 5029 break; 5030 default: 5031 return 0; 5032 } 5033 5034 err = ipc_has_perm(&shp->shm_perm, perms); 5035 return err; 5036 } 5037 5038 static int selinux_shm_shmat(struct shmid_kernel *shp, 5039 char __user *shmaddr, int shmflg) 5040 { 5041 u32 perms; 5042 5043 if (shmflg & SHM_RDONLY) 5044 perms = SHM__READ; 5045 else 5046 perms = SHM__READ | SHM__WRITE; 5047 5048 return ipc_has_perm(&shp->shm_perm, perms); 5049 } 5050 5051 /* Semaphore security operations */ 5052 static int selinux_sem_alloc_security(struct sem_array *sma) 5053 { 5054 struct ipc_security_struct *isec; 5055 struct common_audit_data ad; 5056 u32 sid = current_sid(); 5057 int rc; 5058 5059 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5060 if (rc) 5061 return rc; 5062 5063 isec = sma->sem_perm.security; 5064 5065 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5066 ad.u.ipc_id = sma->sem_perm.key; 5067 5068 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5069 SEM__CREATE, &ad); 5070 if (rc) { 5071 ipc_free_security(&sma->sem_perm); 5072 return rc; 5073 } 5074 return 0; 5075 } 5076 5077 static void selinux_sem_free_security(struct sem_array *sma) 5078 { 5079 ipc_free_security(&sma->sem_perm); 5080 } 5081 5082 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5083 { 5084 struct ipc_security_struct *isec; 5085 struct common_audit_data ad; 5086 u32 sid = current_sid(); 5087 5088 isec = sma->sem_perm.security; 5089 5090 COMMON_AUDIT_DATA_INIT(&ad, IPC); 5091 ad.u.ipc_id = sma->sem_perm.key; 5092 5093 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5094 SEM__ASSOCIATE, &ad); 5095 } 5096 5097 /* Note, at this point, sma is locked down */ 5098 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5099 { 5100 int err; 5101 u32 perms; 5102 5103 switch (cmd) { 5104 case IPC_INFO: 5105 case SEM_INFO: 5106 /* No specific object, just general system-wide information. */ 5107 return task_has_system(current, SYSTEM__IPC_INFO); 5108 case GETPID: 5109 case GETNCNT: 5110 case GETZCNT: 5111 perms = SEM__GETATTR; 5112 break; 5113 case GETVAL: 5114 case GETALL: 5115 perms = SEM__READ; 5116 break; 5117 case SETVAL: 5118 case SETALL: 5119 perms = SEM__WRITE; 5120 break; 5121 case IPC_RMID: 5122 perms = SEM__DESTROY; 5123 break; 5124 case IPC_SET: 5125 perms = SEM__SETATTR; 5126 break; 5127 case IPC_STAT: 5128 case SEM_STAT: 5129 perms = SEM__GETATTR | SEM__ASSOCIATE; 5130 break; 5131 default: 5132 return 0; 5133 } 5134 5135 err = ipc_has_perm(&sma->sem_perm, perms); 5136 return err; 5137 } 5138 5139 static int selinux_sem_semop(struct sem_array *sma, 5140 struct sembuf *sops, unsigned nsops, int alter) 5141 { 5142 u32 perms; 5143 5144 if (alter) 5145 perms = SEM__READ | SEM__WRITE; 5146 else 5147 perms = SEM__READ; 5148 5149 return ipc_has_perm(&sma->sem_perm, perms); 5150 } 5151 5152 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5153 { 5154 u32 av = 0; 5155 5156 av = 0; 5157 if (flag & S_IRUGO) 5158 av |= IPC__UNIX_READ; 5159 if (flag & S_IWUGO) 5160 av |= IPC__UNIX_WRITE; 5161 5162 if (av == 0) 5163 return 0; 5164 5165 return ipc_has_perm(ipcp, av); 5166 } 5167 5168 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5169 { 5170 struct ipc_security_struct *isec = ipcp->security; 5171 *secid = isec->sid; 5172 } 5173 5174 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5175 { 5176 if (inode) 5177 inode_doinit_with_dentry(inode, dentry); 5178 } 5179 5180 static int selinux_getprocattr(struct task_struct *p, 5181 char *name, char **value) 5182 { 5183 const struct task_security_struct *__tsec; 5184 u32 sid; 5185 int error; 5186 unsigned len; 5187 5188 if (current != p) { 5189 error = current_has_perm(p, PROCESS__GETATTR); 5190 if (error) 5191 return error; 5192 } 5193 5194 rcu_read_lock(); 5195 __tsec = __task_cred(p)->security; 5196 5197 if (!strcmp(name, "current")) 5198 sid = __tsec->sid; 5199 else if (!strcmp(name, "prev")) 5200 sid = __tsec->osid; 5201 else if (!strcmp(name, "exec")) 5202 sid = __tsec->exec_sid; 5203 else if (!strcmp(name, "fscreate")) 5204 sid = __tsec->create_sid; 5205 else if (!strcmp(name, "keycreate")) 5206 sid = __tsec->keycreate_sid; 5207 else if (!strcmp(name, "sockcreate")) 5208 sid = __tsec->sockcreate_sid; 5209 else 5210 goto invalid; 5211 rcu_read_unlock(); 5212 5213 if (!sid) 5214 return 0; 5215 5216 error = security_sid_to_context(sid, value, &len); 5217 if (error) 5218 return error; 5219 return len; 5220 5221 invalid: 5222 rcu_read_unlock(); 5223 return -EINVAL; 5224 } 5225 5226 static int selinux_setprocattr(struct task_struct *p, 5227 char *name, void *value, size_t size) 5228 { 5229 struct task_security_struct *tsec; 5230 struct task_struct *tracer; 5231 struct cred *new; 5232 u32 sid = 0, ptsid; 5233 int error; 5234 char *str = value; 5235 5236 if (current != p) { 5237 /* SELinux only allows a process to change its own 5238 security attributes. */ 5239 return -EACCES; 5240 } 5241 5242 /* 5243 * Basic control over ability to set these attributes at all. 5244 * current == p, but we'll pass them separately in case the 5245 * above restriction is ever removed. 5246 */ 5247 if (!strcmp(name, "exec")) 5248 error = current_has_perm(p, PROCESS__SETEXEC); 5249 else if (!strcmp(name, "fscreate")) 5250 error = current_has_perm(p, PROCESS__SETFSCREATE); 5251 else if (!strcmp(name, "keycreate")) 5252 error = current_has_perm(p, PROCESS__SETKEYCREATE); 5253 else if (!strcmp(name, "sockcreate")) 5254 error = current_has_perm(p, PROCESS__SETSOCKCREATE); 5255 else if (!strcmp(name, "current")) 5256 error = current_has_perm(p, PROCESS__SETCURRENT); 5257 else 5258 error = -EINVAL; 5259 if (error) 5260 return error; 5261 5262 /* Obtain a SID for the context, if one was specified. */ 5263 if (size && str[1] && str[1] != '\n') { 5264 if (str[size-1] == '\n') { 5265 str[size-1] = 0; 5266 size--; 5267 } 5268 error = security_context_to_sid(value, size, &sid); 5269 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5270 if (!capable(CAP_MAC_ADMIN)) 5271 return error; 5272 error = security_context_to_sid_force(value, size, 5273 &sid); 5274 } 5275 if (error) 5276 return error; 5277 } 5278 5279 new = prepare_creds(); 5280 if (!new) 5281 return -ENOMEM; 5282 5283 /* Permission checking based on the specified context is 5284 performed during the actual operation (execve, 5285 open/mkdir/...), when we know the full context of the 5286 operation. See selinux_bprm_set_creds for the execve 5287 checks and may_create for the file creation checks. The 5288 operation will then fail if the context is not permitted. */ 5289 tsec = new->security; 5290 if (!strcmp(name, "exec")) { 5291 tsec->exec_sid = sid; 5292 } else if (!strcmp(name, "fscreate")) { 5293 tsec->create_sid = sid; 5294 } else if (!strcmp(name, "keycreate")) { 5295 error = may_create_key(sid, p); 5296 if (error) 5297 goto abort_change; 5298 tsec->keycreate_sid = sid; 5299 } else if (!strcmp(name, "sockcreate")) { 5300 tsec->sockcreate_sid = sid; 5301 } else if (!strcmp(name, "current")) { 5302 error = -EINVAL; 5303 if (sid == 0) 5304 goto abort_change; 5305 5306 /* Only allow single threaded processes to change context */ 5307 error = -EPERM; 5308 if (!current_is_single_threaded()) { 5309 error = security_bounded_transition(tsec->sid, sid); 5310 if (error) 5311 goto abort_change; 5312 } 5313 5314 /* Check permissions for the transition. */ 5315 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5316 PROCESS__DYNTRANSITION, NULL); 5317 if (error) 5318 goto abort_change; 5319 5320 /* Check for ptracing, and update the task SID if ok. 5321 Otherwise, leave SID unchanged and fail. */ 5322 ptsid = 0; 5323 task_lock(p); 5324 tracer = tracehook_tracer_task(p); 5325 if (tracer) 5326 ptsid = task_sid(tracer); 5327 task_unlock(p); 5328 5329 if (tracer) { 5330 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5331 PROCESS__PTRACE, NULL); 5332 if (error) 5333 goto abort_change; 5334 } 5335 5336 tsec->sid = sid; 5337 } else { 5338 error = -EINVAL; 5339 goto abort_change; 5340 } 5341 5342 commit_creds(new); 5343 return size; 5344 5345 abort_change: 5346 abort_creds(new); 5347 return error; 5348 } 5349 5350 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5351 { 5352 return security_sid_to_context(secid, secdata, seclen); 5353 } 5354 5355 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5356 { 5357 return security_context_to_sid(secdata, seclen, secid); 5358 } 5359 5360 static void selinux_release_secctx(char *secdata, u32 seclen) 5361 { 5362 kfree(secdata); 5363 } 5364 5365 /* 5366 * called with inode->i_mutex locked 5367 */ 5368 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 5369 { 5370 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 5371 } 5372 5373 /* 5374 * called with inode->i_mutex locked 5375 */ 5376 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 5377 { 5378 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 5379 } 5380 5381 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 5382 { 5383 int len = 0; 5384 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 5385 ctx, true); 5386 if (len < 0) 5387 return len; 5388 *ctxlen = len; 5389 return 0; 5390 } 5391 #ifdef CONFIG_KEYS 5392 5393 static int selinux_key_alloc(struct key *k, const struct cred *cred, 5394 unsigned long flags) 5395 { 5396 const struct task_security_struct *tsec; 5397 struct key_security_struct *ksec; 5398 5399 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5400 if (!ksec) 5401 return -ENOMEM; 5402 5403 tsec = cred->security; 5404 if (tsec->keycreate_sid) 5405 ksec->sid = tsec->keycreate_sid; 5406 else 5407 ksec->sid = tsec->sid; 5408 5409 k->security = ksec; 5410 return 0; 5411 } 5412 5413 static void selinux_key_free(struct key *k) 5414 { 5415 struct key_security_struct *ksec = k->security; 5416 5417 k->security = NULL; 5418 kfree(ksec); 5419 } 5420 5421 static int selinux_key_permission(key_ref_t key_ref, 5422 const struct cred *cred, 5423 key_perm_t perm) 5424 { 5425 struct key *key; 5426 struct key_security_struct *ksec; 5427 u32 sid; 5428 5429 /* if no specific permissions are requested, we skip the 5430 permission check. No serious, additional covert channels 5431 appear to be created. */ 5432 if (perm == 0) 5433 return 0; 5434 5435 sid = cred_sid(cred); 5436 5437 key = key_ref_to_ptr(key_ref); 5438 ksec = key->security; 5439 5440 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 5441 } 5442 5443 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5444 { 5445 struct key_security_struct *ksec = key->security; 5446 char *context = NULL; 5447 unsigned len; 5448 int rc; 5449 5450 rc = security_sid_to_context(ksec->sid, &context, &len); 5451 if (!rc) 5452 rc = len; 5453 *_buffer = context; 5454 return rc; 5455 } 5456 5457 #endif 5458 5459 static struct security_operations selinux_ops = { 5460 .name = "selinux", 5461 5462 .ptrace_access_check = selinux_ptrace_access_check, 5463 .ptrace_traceme = selinux_ptrace_traceme, 5464 .capget = selinux_capget, 5465 .capset = selinux_capset, 5466 .sysctl = selinux_sysctl, 5467 .capable = selinux_capable, 5468 .quotactl = selinux_quotactl, 5469 .quota_on = selinux_quota_on, 5470 .syslog = selinux_syslog, 5471 .vm_enough_memory = selinux_vm_enough_memory, 5472 5473 .netlink_send = selinux_netlink_send, 5474 .netlink_recv = selinux_netlink_recv, 5475 5476 .bprm_set_creds = selinux_bprm_set_creds, 5477 .bprm_committing_creds = selinux_bprm_committing_creds, 5478 .bprm_committed_creds = selinux_bprm_committed_creds, 5479 .bprm_secureexec = selinux_bprm_secureexec, 5480 5481 .sb_alloc_security = selinux_sb_alloc_security, 5482 .sb_free_security = selinux_sb_free_security, 5483 .sb_copy_data = selinux_sb_copy_data, 5484 .sb_kern_mount = selinux_sb_kern_mount, 5485 .sb_show_options = selinux_sb_show_options, 5486 .sb_statfs = selinux_sb_statfs, 5487 .sb_mount = selinux_mount, 5488 .sb_umount = selinux_umount, 5489 .sb_set_mnt_opts = selinux_set_mnt_opts, 5490 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5491 .sb_parse_opts_str = selinux_parse_opts_str, 5492 5493 5494 .inode_alloc_security = selinux_inode_alloc_security, 5495 .inode_free_security = selinux_inode_free_security, 5496 .inode_init_security = selinux_inode_init_security, 5497 .inode_create = selinux_inode_create, 5498 .inode_link = selinux_inode_link, 5499 .inode_unlink = selinux_inode_unlink, 5500 .inode_symlink = selinux_inode_symlink, 5501 .inode_mkdir = selinux_inode_mkdir, 5502 .inode_rmdir = selinux_inode_rmdir, 5503 .inode_mknod = selinux_inode_mknod, 5504 .inode_rename = selinux_inode_rename, 5505 .inode_readlink = selinux_inode_readlink, 5506 .inode_follow_link = selinux_inode_follow_link, 5507 .inode_permission = selinux_inode_permission, 5508 .inode_setattr = selinux_inode_setattr, 5509 .inode_getattr = selinux_inode_getattr, 5510 .inode_setxattr = selinux_inode_setxattr, 5511 .inode_post_setxattr = selinux_inode_post_setxattr, 5512 .inode_getxattr = selinux_inode_getxattr, 5513 .inode_listxattr = selinux_inode_listxattr, 5514 .inode_removexattr = selinux_inode_removexattr, 5515 .inode_getsecurity = selinux_inode_getsecurity, 5516 .inode_setsecurity = selinux_inode_setsecurity, 5517 .inode_listsecurity = selinux_inode_listsecurity, 5518 .inode_getsecid = selinux_inode_getsecid, 5519 5520 .file_permission = selinux_file_permission, 5521 .file_alloc_security = selinux_file_alloc_security, 5522 .file_free_security = selinux_file_free_security, 5523 .file_ioctl = selinux_file_ioctl, 5524 .file_mmap = selinux_file_mmap, 5525 .file_mprotect = selinux_file_mprotect, 5526 .file_lock = selinux_file_lock, 5527 .file_fcntl = selinux_file_fcntl, 5528 .file_set_fowner = selinux_file_set_fowner, 5529 .file_send_sigiotask = selinux_file_send_sigiotask, 5530 .file_receive = selinux_file_receive, 5531 5532 .dentry_open = selinux_dentry_open, 5533 5534 .task_create = selinux_task_create, 5535 .cred_alloc_blank = selinux_cred_alloc_blank, 5536 .cred_free = selinux_cred_free, 5537 .cred_prepare = selinux_cred_prepare, 5538 .cred_transfer = selinux_cred_transfer, 5539 .kernel_act_as = selinux_kernel_act_as, 5540 .kernel_create_files_as = selinux_kernel_create_files_as, 5541 .kernel_module_request = selinux_kernel_module_request, 5542 .task_setpgid = selinux_task_setpgid, 5543 .task_getpgid = selinux_task_getpgid, 5544 .task_getsid = selinux_task_getsid, 5545 .task_getsecid = selinux_task_getsecid, 5546 .task_setnice = selinux_task_setnice, 5547 .task_setioprio = selinux_task_setioprio, 5548 .task_getioprio = selinux_task_getioprio, 5549 .task_setrlimit = selinux_task_setrlimit, 5550 .task_setscheduler = selinux_task_setscheduler, 5551 .task_getscheduler = selinux_task_getscheduler, 5552 .task_movememory = selinux_task_movememory, 5553 .task_kill = selinux_task_kill, 5554 .task_wait = selinux_task_wait, 5555 .task_to_inode = selinux_task_to_inode, 5556 5557 .ipc_permission = selinux_ipc_permission, 5558 .ipc_getsecid = selinux_ipc_getsecid, 5559 5560 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5561 .msg_msg_free_security = selinux_msg_msg_free_security, 5562 5563 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5564 .msg_queue_free_security = selinux_msg_queue_free_security, 5565 .msg_queue_associate = selinux_msg_queue_associate, 5566 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5567 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5568 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5569 5570 .shm_alloc_security = selinux_shm_alloc_security, 5571 .shm_free_security = selinux_shm_free_security, 5572 .shm_associate = selinux_shm_associate, 5573 .shm_shmctl = selinux_shm_shmctl, 5574 .shm_shmat = selinux_shm_shmat, 5575 5576 .sem_alloc_security = selinux_sem_alloc_security, 5577 .sem_free_security = selinux_sem_free_security, 5578 .sem_associate = selinux_sem_associate, 5579 .sem_semctl = selinux_sem_semctl, 5580 .sem_semop = selinux_sem_semop, 5581 5582 .d_instantiate = selinux_d_instantiate, 5583 5584 .getprocattr = selinux_getprocattr, 5585 .setprocattr = selinux_setprocattr, 5586 5587 .secid_to_secctx = selinux_secid_to_secctx, 5588 .secctx_to_secid = selinux_secctx_to_secid, 5589 .release_secctx = selinux_release_secctx, 5590 .inode_notifysecctx = selinux_inode_notifysecctx, 5591 .inode_setsecctx = selinux_inode_setsecctx, 5592 .inode_getsecctx = selinux_inode_getsecctx, 5593 5594 .unix_stream_connect = selinux_socket_unix_stream_connect, 5595 .unix_may_send = selinux_socket_unix_may_send, 5596 5597 .socket_create = selinux_socket_create, 5598 .socket_post_create = selinux_socket_post_create, 5599 .socket_bind = selinux_socket_bind, 5600 .socket_connect = selinux_socket_connect, 5601 .socket_listen = selinux_socket_listen, 5602 .socket_accept = selinux_socket_accept, 5603 .socket_sendmsg = selinux_socket_sendmsg, 5604 .socket_recvmsg = selinux_socket_recvmsg, 5605 .socket_getsockname = selinux_socket_getsockname, 5606 .socket_getpeername = selinux_socket_getpeername, 5607 .socket_getsockopt = selinux_socket_getsockopt, 5608 .socket_setsockopt = selinux_socket_setsockopt, 5609 .socket_shutdown = selinux_socket_shutdown, 5610 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5611 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5612 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5613 .sk_alloc_security = selinux_sk_alloc_security, 5614 .sk_free_security = selinux_sk_free_security, 5615 .sk_clone_security = selinux_sk_clone_security, 5616 .sk_getsecid = selinux_sk_getsecid, 5617 .sock_graft = selinux_sock_graft, 5618 .inet_conn_request = selinux_inet_conn_request, 5619 .inet_csk_clone = selinux_inet_csk_clone, 5620 .inet_conn_established = selinux_inet_conn_established, 5621 .req_classify_flow = selinux_req_classify_flow, 5622 .tun_dev_create = selinux_tun_dev_create, 5623 .tun_dev_post_create = selinux_tun_dev_post_create, 5624 .tun_dev_attach = selinux_tun_dev_attach, 5625 5626 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5627 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5628 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5629 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5630 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5631 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5632 .xfrm_state_free_security = selinux_xfrm_state_free, 5633 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5634 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5635 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5636 .xfrm_decode_session = selinux_xfrm_decode_session, 5637 #endif 5638 5639 #ifdef CONFIG_KEYS 5640 .key_alloc = selinux_key_alloc, 5641 .key_free = selinux_key_free, 5642 .key_permission = selinux_key_permission, 5643 .key_getsecurity = selinux_key_getsecurity, 5644 #endif 5645 5646 #ifdef CONFIG_AUDIT 5647 .audit_rule_init = selinux_audit_rule_init, 5648 .audit_rule_known = selinux_audit_rule_known, 5649 .audit_rule_match = selinux_audit_rule_match, 5650 .audit_rule_free = selinux_audit_rule_free, 5651 #endif 5652 }; 5653 5654 static __init int selinux_init(void) 5655 { 5656 if (!security_module_enable(&selinux_ops)) { 5657 selinux_enabled = 0; 5658 return 0; 5659 } 5660 5661 if (!selinux_enabled) { 5662 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5663 return 0; 5664 } 5665 5666 printk(KERN_INFO "SELinux: Initializing.\n"); 5667 5668 /* Set the security state for the initial task. */ 5669 cred_init_security(); 5670 5671 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5672 sizeof(struct inode_security_struct), 5673 0, SLAB_PANIC, NULL); 5674 avc_init(); 5675 5676 secondary_ops = security_ops; 5677 if (!secondary_ops) 5678 panic("SELinux: No initial security operations\n"); 5679 if (register_security(&selinux_ops)) 5680 panic("SELinux: Unable to register with kernel.\n"); 5681 5682 if (selinux_enforcing) 5683 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5684 else 5685 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5686 5687 return 0; 5688 } 5689 5690 void selinux_complete_init(void) 5691 { 5692 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5693 5694 /* Set up any superblocks initialized prior to the policy load. */ 5695 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5696 spin_lock(&sb_lock); 5697 spin_lock(&sb_security_lock); 5698 next_sb: 5699 if (!list_empty(&superblock_security_head)) { 5700 struct superblock_security_struct *sbsec = 5701 list_entry(superblock_security_head.next, 5702 struct superblock_security_struct, 5703 list); 5704 struct super_block *sb = sbsec->sb; 5705 sb->s_count++; 5706 spin_unlock(&sb_security_lock); 5707 spin_unlock(&sb_lock); 5708 down_read(&sb->s_umount); 5709 if (sb->s_root) 5710 superblock_doinit(sb, NULL); 5711 drop_super(sb); 5712 spin_lock(&sb_lock); 5713 spin_lock(&sb_security_lock); 5714 list_del_init(&sbsec->list); 5715 goto next_sb; 5716 } 5717 spin_unlock(&sb_security_lock); 5718 spin_unlock(&sb_lock); 5719 } 5720 5721 /* SELinux requires early initialization in order to label 5722 all processes and objects when they are created. */ 5723 security_initcall(selinux_init); 5724 5725 #if defined(CONFIG_NETFILTER) 5726 5727 static struct nf_hook_ops selinux_ipv4_ops[] = { 5728 { 5729 .hook = selinux_ipv4_postroute, 5730 .owner = THIS_MODULE, 5731 .pf = PF_INET, 5732 .hooknum = NF_INET_POST_ROUTING, 5733 .priority = NF_IP_PRI_SELINUX_LAST, 5734 }, 5735 { 5736 .hook = selinux_ipv4_forward, 5737 .owner = THIS_MODULE, 5738 .pf = PF_INET, 5739 .hooknum = NF_INET_FORWARD, 5740 .priority = NF_IP_PRI_SELINUX_FIRST, 5741 }, 5742 { 5743 .hook = selinux_ipv4_output, 5744 .owner = THIS_MODULE, 5745 .pf = PF_INET, 5746 .hooknum = NF_INET_LOCAL_OUT, 5747 .priority = NF_IP_PRI_SELINUX_FIRST, 5748 } 5749 }; 5750 5751 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5752 5753 static struct nf_hook_ops selinux_ipv6_ops[] = { 5754 { 5755 .hook = selinux_ipv6_postroute, 5756 .owner = THIS_MODULE, 5757 .pf = PF_INET6, 5758 .hooknum = NF_INET_POST_ROUTING, 5759 .priority = NF_IP6_PRI_SELINUX_LAST, 5760 }, 5761 { 5762 .hook = selinux_ipv6_forward, 5763 .owner = THIS_MODULE, 5764 .pf = PF_INET6, 5765 .hooknum = NF_INET_FORWARD, 5766 .priority = NF_IP6_PRI_SELINUX_FIRST, 5767 } 5768 }; 5769 5770 #endif /* IPV6 */ 5771 5772 static int __init selinux_nf_ip_init(void) 5773 { 5774 int err = 0; 5775 5776 if (!selinux_enabled) 5777 goto out; 5778 5779 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5780 5781 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5782 if (err) 5783 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5784 5785 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5786 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5787 if (err) 5788 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5789 #endif /* IPV6 */ 5790 5791 out: 5792 return err; 5793 } 5794 5795 __initcall(selinux_nf_ip_init); 5796 5797 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5798 static void selinux_nf_ip_exit(void) 5799 { 5800 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5801 5802 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5803 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5804 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5805 #endif /* IPV6 */ 5806 } 5807 #endif 5808 5809 #else /* CONFIG_NETFILTER */ 5810 5811 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5812 #define selinux_nf_ip_exit() 5813 #endif 5814 5815 #endif /* CONFIG_NETFILTER */ 5816 5817 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5818 static int selinux_disabled; 5819 5820 int selinux_disable(void) 5821 { 5822 extern void exit_sel_fs(void); 5823 5824 if (ss_initialized) { 5825 /* Not permitted after initial policy load. */ 5826 return -EINVAL; 5827 } 5828 5829 if (selinux_disabled) { 5830 /* Only do this once. */ 5831 return -EINVAL; 5832 } 5833 5834 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5835 5836 selinux_disabled = 1; 5837 selinux_enabled = 0; 5838 5839 /* Reset security_ops to the secondary module, dummy or capability. */ 5840 security_ops = secondary_ops; 5841 5842 /* Try to destroy the avc node cache */ 5843 avc_disable(); 5844 5845 /* Unregister netfilter hooks. */ 5846 selinux_nf_ip_exit(); 5847 5848 /* Unregister selinuxfs. */ 5849 exit_sel_fs(); 5850 5851 return 0; 5852 } 5853 #endif 5854