xref: /openbmc/linux/security/selinux/avc.c (revision 9cdf083f981b8d37b3212400a359368661385099)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *     Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *      as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
38 #undef S_
39 };
40 
41 static const char *class_to_string[] = {
42 #define S_(s) s,
43 #include "class_to_string.h"
44 #undef S_
45 };
46 
47 #define TB_(s) static const char * s [] = {
48 #define TE_(s) };
49 #define S_(s) s,
50 #include "common_perm_to_string.h"
51 #undef TB_
52 #undef TE_
53 #undef S_
54 
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
57 #include "av_inherit.h"
58 #undef S_
59 };
60 
61 const struct selinux_class_perm selinux_class_perm = {
62 	av_perm_to_string,
63 	ARRAY_SIZE(av_perm_to_string),
64 	class_to_string,
65 	ARRAY_SIZE(class_to_string),
66 	av_inherit,
67 	ARRAY_SIZE(av_inherit)
68 };
69 
70 #define AVC_CACHE_SLOTS			512
71 #define AVC_DEF_CACHE_THRESHOLD		512
72 #define AVC_CACHE_RECLAIM		16
73 
74 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
75 #define avc_cache_stats_incr(field) 				\
76 do {								\
77 	per_cpu(avc_cache_stats, get_cpu()).field++;		\
78 	put_cpu();						\
79 } while (0)
80 #else
81 #define avc_cache_stats_incr(field)	do {} while (0)
82 #endif
83 
84 struct avc_entry {
85 	u32			ssid;
86 	u32			tsid;
87 	u16			tclass;
88 	struct av_decision	avd;
89 	atomic_t		used;	/* used recently */
90 };
91 
92 struct avc_node {
93 	struct avc_entry	ae;
94 	struct list_head	list;
95 	struct rcu_head         rhead;
96 };
97 
98 struct avc_cache {
99 	struct list_head	slots[AVC_CACHE_SLOTS];
100 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
101 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
102 	atomic_t		active_nodes;
103 	u32			latest_notif;	/* latest revocation notification */
104 };
105 
106 struct avc_callback_node {
107 	int (*callback) (u32 event, u32 ssid, u32 tsid,
108 	                 u16 tclass, u32 perms,
109 	                 u32 *out_retained);
110 	u32 events;
111 	u32 ssid;
112 	u32 tsid;
113 	u16 tclass;
114 	u32 perms;
115 	struct avc_callback_node *next;
116 };
117 
118 /* Exported via selinufs */
119 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
120 
121 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
122 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
123 #endif
124 
125 static struct avc_cache avc_cache;
126 static struct avc_callback_node *avc_callbacks;
127 static struct kmem_cache *avc_node_cachep;
128 
129 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
130 {
131 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
132 }
133 
134 /**
135  * avc_dump_av - Display an access vector in human-readable form.
136  * @tclass: target security class
137  * @av: access vector
138  */
139 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
140 {
141 	const char **common_pts = NULL;
142 	u32 common_base = 0;
143 	int i, i2, perm;
144 
145 	if (av == 0) {
146 		audit_log_format(ab, " null");
147 		return;
148 	}
149 
150 	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
151 		if (av_inherit[i].tclass == tclass) {
152 			common_pts = av_inherit[i].common_pts;
153 			common_base = av_inherit[i].common_base;
154 			break;
155 		}
156 	}
157 
158 	audit_log_format(ab, " {");
159 	i = 0;
160 	perm = 1;
161 	while (perm < common_base) {
162 		if (perm & av) {
163 			audit_log_format(ab, " %s", common_pts[i]);
164 			av &= ~perm;
165 		}
166 		i++;
167 		perm <<= 1;
168 	}
169 
170 	while (i < sizeof(av) * 8) {
171 		if (perm & av) {
172 			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
173 				if ((av_perm_to_string[i2].tclass == tclass) &&
174 				    (av_perm_to_string[i2].value == perm))
175 					break;
176 			}
177 			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
178 				audit_log_format(ab, " %s",
179 						 av_perm_to_string[i2].name);
180 				av &= ~perm;
181 			}
182 		}
183 		i++;
184 		perm <<= 1;
185 	}
186 
187 	if (av)
188 		audit_log_format(ab, " 0x%x", av);
189 
190 	audit_log_format(ab, " }");
191 }
192 
193 /**
194  * avc_dump_query - Display a SID pair and a class in human-readable form.
195  * @ssid: source security identifier
196  * @tsid: target security identifier
197  * @tclass: target security class
198  */
199 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
200 {
201 	int rc;
202 	char *scontext;
203 	u32 scontext_len;
204 
205  	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
206 	if (rc)
207 		audit_log_format(ab, "ssid=%d", ssid);
208 	else {
209 		audit_log_format(ab, "scontext=%s", scontext);
210 		kfree(scontext);
211 	}
212 
213 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
214 	if (rc)
215 		audit_log_format(ab, " tsid=%d", tsid);
216 	else {
217 		audit_log_format(ab, " tcontext=%s", scontext);
218 		kfree(scontext);
219 	}
220 	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
221 }
222 
223 /**
224  * avc_init - Initialize the AVC.
225  *
226  * Initialize the access vector cache.
227  */
228 void __init avc_init(void)
229 {
230 	int i;
231 
232 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
233 		INIT_LIST_HEAD(&avc_cache.slots[i]);
234 		spin_lock_init(&avc_cache.slots_lock[i]);
235 	}
236 	atomic_set(&avc_cache.active_nodes, 0);
237 	atomic_set(&avc_cache.lru_hint, 0);
238 
239 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
240 					     0, SLAB_PANIC, NULL, NULL);
241 
242 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
243 }
244 
245 int avc_get_hash_stats(char *page)
246 {
247 	int i, chain_len, max_chain_len, slots_used;
248 	struct avc_node *node;
249 
250 	rcu_read_lock();
251 
252 	slots_used = 0;
253 	max_chain_len = 0;
254 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
255 		if (!list_empty(&avc_cache.slots[i])) {
256 			slots_used++;
257 			chain_len = 0;
258 			list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
259 				chain_len++;
260 			if (chain_len > max_chain_len)
261 				max_chain_len = chain_len;
262 		}
263 	}
264 
265 	rcu_read_unlock();
266 
267 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
268 			 "longest chain: %d\n",
269 			 atomic_read(&avc_cache.active_nodes),
270 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
271 }
272 
273 static void avc_node_free(struct rcu_head *rhead)
274 {
275 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
276 	kmem_cache_free(avc_node_cachep, node);
277 	avc_cache_stats_incr(frees);
278 }
279 
280 static void avc_node_delete(struct avc_node *node)
281 {
282 	list_del_rcu(&node->list);
283 	call_rcu(&node->rhead, avc_node_free);
284 	atomic_dec(&avc_cache.active_nodes);
285 }
286 
287 static void avc_node_kill(struct avc_node *node)
288 {
289 	kmem_cache_free(avc_node_cachep, node);
290 	avc_cache_stats_incr(frees);
291 	atomic_dec(&avc_cache.active_nodes);
292 }
293 
294 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
295 {
296 	list_replace_rcu(&old->list, &new->list);
297 	call_rcu(&old->rhead, avc_node_free);
298 	atomic_dec(&avc_cache.active_nodes);
299 }
300 
301 static inline int avc_reclaim_node(void)
302 {
303 	struct avc_node *node;
304 	int hvalue, try, ecx;
305 	unsigned long flags;
306 
307 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
308 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
309 
310 		if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
311 			continue;
312 
313 		list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
314 			if (atomic_dec_and_test(&node->ae.used)) {
315 				/* Recently Unused */
316 				avc_node_delete(node);
317 				avc_cache_stats_incr(reclaims);
318 				ecx++;
319 				if (ecx >= AVC_CACHE_RECLAIM) {
320 					spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
321 					goto out;
322 				}
323 			}
324 		}
325 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
326 	}
327 out:
328 	return ecx;
329 }
330 
331 static struct avc_node *avc_alloc_node(void)
332 {
333 	struct avc_node *node;
334 
335 	node = kmem_cache_alloc(avc_node_cachep, GFP_ATOMIC);
336 	if (!node)
337 		goto out;
338 
339 	memset(node, 0, sizeof(*node));
340 	INIT_RCU_HEAD(&node->rhead);
341 	INIT_LIST_HEAD(&node->list);
342 	atomic_set(&node->ae.used, 1);
343 	avc_cache_stats_incr(allocations);
344 
345 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
346 		avc_reclaim_node();
347 
348 out:
349 	return node;
350 }
351 
352 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
353 {
354 	node->ae.ssid = ssid;
355 	node->ae.tsid = tsid;
356 	node->ae.tclass = tclass;
357 	memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
358 }
359 
360 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
361 {
362 	struct avc_node *node, *ret = NULL;
363 	int hvalue;
364 
365 	hvalue = avc_hash(ssid, tsid, tclass);
366 	list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
367 		if (ssid == node->ae.ssid &&
368 		    tclass == node->ae.tclass &&
369 		    tsid == node->ae.tsid) {
370 			ret = node;
371 			break;
372 		}
373 	}
374 
375 	if (ret == NULL) {
376 		/* cache miss */
377 		goto out;
378 	}
379 
380 	/* cache hit */
381 	if (atomic_read(&ret->ae.used) != 1)
382 		atomic_set(&ret->ae.used, 1);
383 out:
384 	return ret;
385 }
386 
387 /**
388  * avc_lookup - Look up an AVC entry.
389  * @ssid: source security identifier
390  * @tsid: target security identifier
391  * @tclass: target security class
392  * @requested: requested permissions, interpreted based on @tclass
393  *
394  * Look up an AVC entry that is valid for the
395  * @requested permissions between the SID pair
396  * (@ssid, @tsid), interpreting the permissions
397  * based on @tclass.  If a valid AVC entry exists,
398  * then this function return the avc_node.
399  * Otherwise, this function returns NULL.
400  */
401 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
402 {
403 	struct avc_node *node;
404 
405 	avc_cache_stats_incr(lookups);
406 	node = avc_search_node(ssid, tsid, tclass);
407 
408 	if (node && ((node->ae.avd.decided & requested) == requested)) {
409 		avc_cache_stats_incr(hits);
410 		goto out;
411 	}
412 
413 	node = NULL;
414 	avc_cache_stats_incr(misses);
415 out:
416 	return node;
417 }
418 
419 static int avc_latest_notif_update(int seqno, int is_insert)
420 {
421 	int ret = 0;
422 	static DEFINE_SPINLOCK(notif_lock);
423 	unsigned long flag;
424 
425 	spin_lock_irqsave(&notif_lock, flag);
426 	if (is_insert) {
427 		if (seqno < avc_cache.latest_notif) {
428 			printk(KERN_WARNING "avc:  seqno %d < latest_notif %d\n",
429 			       seqno, avc_cache.latest_notif);
430 			ret = -EAGAIN;
431 		}
432 	} else {
433 		if (seqno > avc_cache.latest_notif)
434 			avc_cache.latest_notif = seqno;
435 	}
436 	spin_unlock_irqrestore(&notif_lock, flag);
437 
438 	return ret;
439 }
440 
441 /**
442  * avc_insert - Insert an AVC entry.
443  * @ssid: source security identifier
444  * @tsid: target security identifier
445  * @tclass: target security class
446  * @ae: AVC entry
447  *
448  * Insert an AVC entry for the SID pair
449  * (@ssid, @tsid) and class @tclass.
450  * The access vectors and the sequence number are
451  * normally provided by the security server in
452  * response to a security_compute_av() call.  If the
453  * sequence number @ae->avd.seqno is not less than the latest
454  * revocation notification, then the function copies
455  * the access vectors into a cache entry, returns
456  * avc_node inserted. Otherwise, this function returns NULL.
457  */
458 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
459 {
460 	struct avc_node *pos, *node = NULL;
461 	int hvalue;
462 	unsigned long flag;
463 
464 	if (avc_latest_notif_update(ae->avd.seqno, 1))
465 		goto out;
466 
467 	node = avc_alloc_node();
468 	if (node) {
469 		hvalue = avc_hash(ssid, tsid, tclass);
470 		avc_node_populate(node, ssid, tsid, tclass, ae);
471 
472 		spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
473 		list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
474 			if (pos->ae.ssid == ssid &&
475 			    pos->ae.tsid == tsid &&
476 			    pos->ae.tclass == tclass) {
477 			    	avc_node_replace(node, pos);
478 				goto found;
479 			}
480 		}
481 		list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
482 found:
483 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
484 	}
485 out:
486 	return node;
487 }
488 
489 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
490 				       struct in6_addr *addr, __be16 port,
491 				       char *name1, char *name2)
492 {
493 	if (!ipv6_addr_any(addr))
494 		audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr));
495 	if (port)
496 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
497 }
498 
499 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
500 				       __be16 port, char *name1, char *name2)
501 {
502 	if (addr)
503 		audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr));
504 	if (port)
505 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
506 }
507 
508 /**
509  * avc_audit - Audit the granting or denial of permissions.
510  * @ssid: source security identifier
511  * @tsid: target security identifier
512  * @tclass: target security class
513  * @requested: requested permissions
514  * @avd: access vector decisions
515  * @result: result from avc_has_perm_noaudit
516  * @a:  auxiliary audit data
517  *
518  * Audit the granting or denial of permissions in accordance
519  * with the policy.  This function is typically called by
520  * avc_has_perm() after a permission check, but can also be
521  * called directly by callers who use avc_has_perm_noaudit()
522  * in order to separate the permission check from the auditing.
523  * For example, this separation is useful when the permission check must
524  * be performed under a lock, to allow the lock to be released
525  * before calling the auditing code.
526  */
527 void avc_audit(u32 ssid, u32 tsid,
528                u16 tclass, u32 requested,
529                struct av_decision *avd, int result, struct avc_audit_data *a)
530 {
531 	struct task_struct *tsk = current;
532 	struct inode *inode = NULL;
533 	u32 denied, audited;
534 	struct audit_buffer *ab;
535 
536 	denied = requested & ~avd->allowed;
537 	if (denied) {
538 		audited = denied;
539 		if (!(audited & avd->auditdeny))
540 			return;
541 	} else if (result) {
542 		audited = denied = requested;
543         } else {
544 		audited = requested;
545 		if (!(audited & avd->auditallow))
546 			return;
547 	}
548 
549 	ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
550 	if (!ab)
551 		return;		/* audit_panic has been called */
552 	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
553 	avc_dump_av(ab, tclass,audited);
554 	audit_log_format(ab, " for ");
555 	if (a && a->tsk)
556 		tsk = a->tsk;
557 	if (tsk && tsk->pid) {
558 		audit_log_format(ab, " pid=%d comm=", tsk->pid);
559 		audit_log_untrustedstring(ab, tsk->comm);
560 	}
561 	if (a) {
562 		switch (a->type) {
563 		case AVC_AUDIT_DATA_IPC:
564 			audit_log_format(ab, " key=%d", a->u.ipc_id);
565 			break;
566 		case AVC_AUDIT_DATA_CAP:
567 			audit_log_format(ab, " capability=%d", a->u.cap);
568 			break;
569 		case AVC_AUDIT_DATA_FS:
570 			if (a->u.fs.dentry) {
571 				struct dentry *dentry = a->u.fs.dentry;
572 				if (a->u.fs.mnt)
573 					audit_avc_path(dentry, a->u.fs.mnt);
574 				audit_log_format(ab, " name=");
575 				audit_log_untrustedstring(ab, dentry->d_name.name);
576 				inode = dentry->d_inode;
577 			} else if (a->u.fs.inode) {
578 				struct dentry *dentry;
579 				inode = a->u.fs.inode;
580 				dentry = d_find_alias(inode);
581 				if (dentry) {
582 					audit_log_format(ab, " name=");
583 					audit_log_untrustedstring(ab, dentry->d_name.name);
584 					dput(dentry);
585 				}
586 			}
587 			if (inode)
588 				audit_log_format(ab, " dev=%s ino=%ld",
589 						 inode->i_sb->s_id,
590 						 inode->i_ino);
591 			break;
592 		case AVC_AUDIT_DATA_NET:
593 			if (a->u.net.sk) {
594 				struct sock *sk = a->u.net.sk;
595 				struct unix_sock *u;
596 				int len = 0;
597 				char *p = NULL;
598 
599 				switch (sk->sk_family) {
600 				case AF_INET: {
601 					struct inet_sock *inet = inet_sk(sk);
602 
603 					avc_print_ipv4_addr(ab, inet->rcv_saddr,
604 							    inet->sport,
605 							    "laddr", "lport");
606 					avc_print_ipv4_addr(ab, inet->daddr,
607 							    inet->dport,
608 							    "faddr", "fport");
609 					break;
610 				}
611 				case AF_INET6: {
612 					struct inet_sock *inet = inet_sk(sk);
613 					struct ipv6_pinfo *inet6 = inet6_sk(sk);
614 
615 					avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
616 							    inet->sport,
617 							    "laddr", "lport");
618 					avc_print_ipv6_addr(ab, &inet6->daddr,
619 							    inet->dport,
620 							    "faddr", "fport");
621 					break;
622 				}
623 				case AF_UNIX:
624 					u = unix_sk(sk);
625 					if (u->dentry) {
626 						audit_avc_path(u->dentry, u->mnt);
627 						audit_log_format(ab, " name=");
628 						audit_log_untrustedstring(ab, u->dentry->d_name.name);
629 						break;
630 					}
631 					if (!u->addr)
632 						break;
633 					len = u->addr->len-sizeof(short);
634 					p = &u->addr->name->sun_path[0];
635 					audit_log_format(ab, " path=");
636 					if (*p)
637 						audit_log_untrustedstring(ab, p);
638 					else
639 						audit_log_hex(ab, p, len);
640 					break;
641 				}
642 			}
643 
644 			switch (a->u.net.family) {
645 			case AF_INET:
646 				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
647 						    a->u.net.sport,
648 						    "saddr", "src");
649 				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
650 						    a->u.net.dport,
651 						    "daddr", "dest");
652 				break;
653 			case AF_INET6:
654 				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
655 						    a->u.net.sport,
656 						    "saddr", "src");
657 				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
658 						    a->u.net.dport,
659 						    "daddr", "dest");
660 				break;
661 			}
662 			if (a->u.net.netif)
663 				audit_log_format(ab, " netif=%s",
664 					a->u.net.netif);
665 			break;
666 		}
667 	}
668 	audit_log_format(ab, " ");
669 	avc_dump_query(ab, ssid, tsid, tclass);
670 	audit_log_end(ab);
671 }
672 
673 /**
674  * avc_add_callback - Register a callback for security events.
675  * @callback: callback function
676  * @events: security events
677  * @ssid: source security identifier or %SECSID_WILD
678  * @tsid: target security identifier or %SECSID_WILD
679  * @tclass: target security class
680  * @perms: permissions
681  *
682  * Register a callback function for events in the set @events
683  * related to the SID pair (@ssid, @tsid) and
684  * and the permissions @perms, interpreting
685  * @perms based on @tclass.  Returns %0 on success or
686  * -%ENOMEM if insufficient memory exists to add the callback.
687  */
688 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
689                                      u16 tclass, u32 perms,
690                                      u32 *out_retained),
691                      u32 events, u32 ssid, u32 tsid,
692                      u16 tclass, u32 perms)
693 {
694 	struct avc_callback_node *c;
695 	int rc = 0;
696 
697 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
698 	if (!c) {
699 		rc = -ENOMEM;
700 		goto out;
701 	}
702 
703 	c->callback = callback;
704 	c->events = events;
705 	c->ssid = ssid;
706 	c->tsid = tsid;
707 	c->perms = perms;
708 	c->next = avc_callbacks;
709 	avc_callbacks = c;
710 out:
711 	return rc;
712 }
713 
714 static inline int avc_sidcmp(u32 x, u32 y)
715 {
716 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
717 }
718 
719 /**
720  * avc_update_node Update an AVC entry
721  * @event : Updating event
722  * @perms : Permission mask bits
723  * @ssid,@tsid,@tclass : identifier of an AVC entry
724  *
725  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
726  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
727  * otherwise, this function update the AVC entry. The original AVC-entry object
728  * will release later by RCU.
729  */
730 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
731 {
732 	int hvalue, rc = 0;
733 	unsigned long flag;
734 	struct avc_node *pos, *node, *orig = NULL;
735 
736 	node = avc_alloc_node();
737 	if (!node) {
738 		rc = -ENOMEM;
739 		goto out;
740 	}
741 
742 	/* Lock the target slot */
743 	hvalue = avc_hash(ssid, tsid, tclass);
744 	spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
745 
746 	list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
747 		if ( ssid==pos->ae.ssid &&
748 		     tsid==pos->ae.tsid &&
749 		     tclass==pos->ae.tclass ){
750 			orig = pos;
751 			break;
752 		}
753 	}
754 
755 	if (!orig) {
756 		rc = -ENOENT;
757 		avc_node_kill(node);
758 		goto out_unlock;
759 	}
760 
761 	/*
762 	 * Copy and replace original node.
763 	 */
764 
765 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
766 
767 	switch (event) {
768 	case AVC_CALLBACK_GRANT:
769 		node->ae.avd.allowed |= perms;
770 		break;
771 	case AVC_CALLBACK_TRY_REVOKE:
772 	case AVC_CALLBACK_REVOKE:
773 		node->ae.avd.allowed &= ~perms;
774 		break;
775 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
776 		node->ae.avd.auditallow |= perms;
777 		break;
778 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
779 		node->ae.avd.auditallow &= ~perms;
780 		break;
781 	case AVC_CALLBACK_AUDITDENY_ENABLE:
782 		node->ae.avd.auditdeny |= perms;
783 		break;
784 	case AVC_CALLBACK_AUDITDENY_DISABLE:
785 		node->ae.avd.auditdeny &= ~perms;
786 		break;
787 	}
788 	avc_node_replace(node, orig);
789 out_unlock:
790 	spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
791 out:
792 	return rc;
793 }
794 
795 /**
796  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
797  * @seqno: policy sequence number
798  */
799 int avc_ss_reset(u32 seqno)
800 {
801 	struct avc_callback_node *c;
802 	int i, rc = 0, tmprc;
803 	unsigned long flag;
804 	struct avc_node *node;
805 
806 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
807 		spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
808 		list_for_each_entry(node, &avc_cache.slots[i], list)
809 			avc_node_delete(node);
810 		spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
811 	}
812 
813 	for (c = avc_callbacks; c; c = c->next) {
814 		if (c->events & AVC_CALLBACK_RESET) {
815 			tmprc = c->callback(AVC_CALLBACK_RESET,
816 			                    0, 0, 0, 0, NULL);
817 			/* save the first error encountered for the return
818 			   value and continue processing the callbacks */
819 			if (!rc)
820 				rc = tmprc;
821 		}
822 	}
823 
824 	avc_latest_notif_update(seqno, 0);
825 	return rc;
826 }
827 
828 /**
829  * avc_has_perm_noaudit - Check permissions but perform no auditing.
830  * @ssid: source security identifier
831  * @tsid: target security identifier
832  * @tclass: target security class
833  * @requested: requested permissions, interpreted based on @tclass
834  * @avd: access vector decisions
835  *
836  * Check the AVC to determine whether the @requested permissions are granted
837  * for the SID pair (@ssid, @tsid), interpreting the permissions
838  * based on @tclass, and call the security server on a cache miss to obtain
839  * a new decision and add it to the cache.  Return a copy of the decisions
840  * in @avd.  Return %0 if all @requested permissions are granted,
841  * -%EACCES if any permissions are denied, or another -errno upon
842  * other errors.  This function is typically called by avc_has_perm(),
843  * but may also be called directly to separate permission checking from
844  * auditing, e.g. in cases where a lock must be held for the check but
845  * should be released for the auditing.
846  */
847 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
848                          u16 tclass, u32 requested,
849                          struct av_decision *avd)
850 {
851 	struct avc_node *node;
852 	struct avc_entry entry, *p_ae;
853 	int rc = 0;
854 	u32 denied;
855 
856 	rcu_read_lock();
857 
858 	node = avc_lookup(ssid, tsid, tclass, requested);
859 	if (!node) {
860 		rcu_read_unlock();
861 		rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
862 		if (rc)
863 			goto out;
864 		rcu_read_lock();
865 		node = avc_insert(ssid,tsid,tclass,&entry);
866 	}
867 
868 	p_ae = node ? &node->ae : &entry;
869 
870 	if (avd)
871 		memcpy(avd, &p_ae->avd, sizeof(*avd));
872 
873 	denied = requested & ~(p_ae->avd.allowed);
874 
875 	if (!requested || denied) {
876 		if (selinux_enforcing)
877 			rc = -EACCES;
878 		else
879 			if (node)
880 				avc_update_node(AVC_CALLBACK_GRANT,requested,
881 						ssid,tsid,tclass);
882 	}
883 
884 	rcu_read_unlock();
885 out:
886 	return rc;
887 }
888 
889 /**
890  * avc_has_perm - Check permissions and perform any appropriate auditing.
891  * @ssid: source security identifier
892  * @tsid: target security identifier
893  * @tclass: target security class
894  * @requested: requested permissions, interpreted based on @tclass
895  * @auditdata: auxiliary audit data
896  *
897  * Check the AVC to determine whether the @requested permissions are granted
898  * for the SID pair (@ssid, @tsid), interpreting the permissions
899  * based on @tclass, and call the security server on a cache miss to obtain
900  * a new decision and add it to the cache.  Audit the granting or denial of
901  * permissions in accordance with the policy.  Return %0 if all @requested
902  * permissions are granted, -%EACCES if any permissions are denied, or
903  * another -errno upon other errors.
904  */
905 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
906                  u32 requested, struct avc_audit_data *auditdata)
907 {
908 	struct av_decision avd;
909 	int rc;
910 
911 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd);
912 	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
913 	return rc;
914 }
915