xref: /openbmc/linux/security/selinux/avc.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *     Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *      as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 
35 static const struct av_perm_to_string
36 {
37   u16 tclass;
38   u32 value;
39   const char *name;
40 } av_perm_to_string[] = {
41 #define S_(c, v, s) { c, v, s },
42 #include "av_perm_to_string.h"
43 #undef S_
44 };
45 
46 #ifdef CONFIG_AUDIT
47 static const char *class_to_string[] = {
48 #define S_(s) s,
49 #include "class_to_string.h"
50 #undef S_
51 };
52 #endif
53 
54 #define TB_(s) static const char * s [] = {
55 #define TE_(s) };
56 #define S_(s) s,
57 #include "common_perm_to_string.h"
58 #undef TB_
59 #undef TE_
60 #undef S_
61 
62 static const struct av_inherit
63 {
64     u16 tclass;
65     const char **common_pts;
66     u32 common_base;
67 } av_inherit[] = {
68 #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
69 #include "av_inherit.h"
70 #undef S_
71 };
72 
73 #define AVC_CACHE_SLOTS			512
74 #define AVC_DEF_CACHE_THRESHOLD		512
75 #define AVC_CACHE_RECLAIM		16
76 
77 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
78 #define avc_cache_stats_incr(field) 				\
79 do {								\
80 	per_cpu(avc_cache_stats, get_cpu()).field++;		\
81 	put_cpu();						\
82 } while (0)
83 #else
84 #define avc_cache_stats_incr(field)	do {} while (0)
85 #endif
86 
87 struct avc_entry {
88 	u32			ssid;
89 	u32			tsid;
90 	u16			tclass;
91 	struct av_decision	avd;
92 	atomic_t		used;	/* used recently */
93 };
94 
95 struct avc_node {
96 	struct avc_entry	ae;
97 	struct list_head	list;
98 	struct rcu_head         rhead;
99 };
100 
101 struct avc_cache {
102 	struct list_head	slots[AVC_CACHE_SLOTS];
103 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
104 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
105 	atomic_t		active_nodes;
106 	u32			latest_notif;	/* latest revocation notification */
107 };
108 
109 struct avc_callback_node {
110 	int (*callback) (u32 event, u32 ssid, u32 tsid,
111 	                 u16 tclass, u32 perms,
112 	                 u32 *out_retained);
113 	u32 events;
114 	u32 ssid;
115 	u32 tsid;
116 	u16 tclass;
117 	u32 perms;
118 	struct avc_callback_node *next;
119 };
120 
121 /* Exported via selinufs */
122 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
123 
124 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
125 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
126 #endif
127 
128 static struct avc_cache avc_cache;
129 static struct avc_callback_node *avc_callbacks;
130 static kmem_cache_t *avc_node_cachep;
131 
132 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
133 {
134 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
135 }
136 
137 /**
138  * avc_dump_av - Display an access vector in human-readable form.
139  * @tclass: target security class
140  * @av: access vector
141  */
142 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
143 {
144 	const char **common_pts = NULL;
145 	u32 common_base = 0;
146 	int i, i2, perm;
147 
148 	if (av == 0) {
149 		audit_log_format(ab, " null");
150 		return;
151 	}
152 
153 	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
154 		if (av_inherit[i].tclass == tclass) {
155 			common_pts = av_inherit[i].common_pts;
156 			common_base = av_inherit[i].common_base;
157 			break;
158 		}
159 	}
160 
161 	audit_log_format(ab, " {");
162 	i = 0;
163 	perm = 1;
164 	while (perm < common_base) {
165 		if (perm & av) {
166 			audit_log_format(ab, " %s", common_pts[i]);
167 			av &= ~perm;
168 		}
169 		i++;
170 		perm <<= 1;
171 	}
172 
173 	while (i < sizeof(av) * 8) {
174 		if (perm & av) {
175 			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
176 				if ((av_perm_to_string[i2].tclass == tclass) &&
177 				    (av_perm_to_string[i2].value == perm))
178 					break;
179 			}
180 			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
181 				audit_log_format(ab, " %s",
182 						 av_perm_to_string[i2].name);
183 				av &= ~perm;
184 			}
185 		}
186 		i++;
187 		perm <<= 1;
188 	}
189 
190 	if (av)
191 		audit_log_format(ab, " 0x%x", av);
192 
193 	audit_log_format(ab, " }");
194 }
195 
196 /**
197  * avc_dump_query - Display a SID pair and a class in human-readable form.
198  * @ssid: source security identifier
199  * @tsid: target security identifier
200  * @tclass: target security class
201  */
202 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
203 {
204 	int rc;
205 	char *scontext;
206 	u32 scontext_len;
207 
208  	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
209 	if (rc)
210 		audit_log_format(ab, "ssid=%d", ssid);
211 	else {
212 		audit_log_format(ab, "scontext=%s", scontext);
213 		kfree(scontext);
214 	}
215 
216 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
217 	if (rc)
218 		audit_log_format(ab, " tsid=%d", tsid);
219 	else {
220 		audit_log_format(ab, " tcontext=%s", scontext);
221 		kfree(scontext);
222 	}
223 	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
224 }
225 
226 /**
227  * avc_init - Initialize the AVC.
228  *
229  * Initialize the access vector cache.
230  */
231 void __init avc_init(void)
232 {
233 	int i;
234 
235 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
236 		INIT_LIST_HEAD(&avc_cache.slots[i]);
237 		spin_lock_init(&avc_cache.slots_lock[i]);
238 	}
239 	atomic_set(&avc_cache.active_nodes, 0);
240 	atomic_set(&avc_cache.lru_hint, 0);
241 
242 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
243 					     0, SLAB_PANIC, NULL, NULL);
244 
245 	audit_log(current->audit_context, "AVC INITIALIZED\n");
246 }
247 
248 int avc_get_hash_stats(char *page)
249 {
250 	int i, chain_len, max_chain_len, slots_used;
251 	struct avc_node *node;
252 
253 	rcu_read_lock();
254 
255 	slots_used = 0;
256 	max_chain_len = 0;
257 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
258 		if (!list_empty(&avc_cache.slots[i])) {
259 			slots_used++;
260 			chain_len = 0;
261 			list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
262 				chain_len++;
263 			if (chain_len > max_chain_len)
264 				max_chain_len = chain_len;
265 		}
266 	}
267 
268 	rcu_read_unlock();
269 
270 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
271 			 "longest chain: %d\n",
272 			 atomic_read(&avc_cache.active_nodes),
273 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
274 }
275 
276 static void avc_node_free(struct rcu_head *rhead)
277 {
278 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
279 	kmem_cache_free(avc_node_cachep, node);
280 	avc_cache_stats_incr(frees);
281 }
282 
283 static void avc_node_delete(struct avc_node *node)
284 {
285 	list_del_rcu(&node->list);
286 	call_rcu(&node->rhead, avc_node_free);
287 	atomic_dec(&avc_cache.active_nodes);
288 }
289 
290 static void avc_node_kill(struct avc_node *node)
291 {
292 	kmem_cache_free(avc_node_cachep, node);
293 	avc_cache_stats_incr(frees);
294 	atomic_dec(&avc_cache.active_nodes);
295 }
296 
297 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
298 {
299 	list_replace_rcu(&old->list, &new->list);
300 	call_rcu(&old->rhead, avc_node_free);
301 	atomic_dec(&avc_cache.active_nodes);
302 }
303 
304 static inline int avc_reclaim_node(void)
305 {
306 	struct avc_node *node;
307 	int hvalue, try, ecx;
308 	unsigned long flags;
309 
310 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
311 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
312 
313 		if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
314 			continue;
315 
316 		list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
317 			if (atomic_dec_and_test(&node->ae.used)) {
318 				/* Recently Unused */
319 				avc_node_delete(node);
320 				avc_cache_stats_incr(reclaims);
321 				ecx++;
322 				if (ecx >= AVC_CACHE_RECLAIM) {
323 					spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
324 					goto out;
325 				}
326 			}
327 		}
328 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
329 	}
330 out:
331 	return ecx;
332 }
333 
334 static struct avc_node *avc_alloc_node(void)
335 {
336 	struct avc_node *node;
337 
338 	node = kmem_cache_alloc(avc_node_cachep, SLAB_ATOMIC);
339 	if (!node)
340 		goto out;
341 
342 	memset(node, 0, sizeof(*node));
343 	INIT_RCU_HEAD(&node->rhead);
344 	INIT_LIST_HEAD(&node->list);
345 	atomic_set(&node->ae.used, 1);
346 	avc_cache_stats_incr(allocations);
347 
348 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
349 		avc_reclaim_node();
350 
351 out:
352 	return node;
353 }
354 
355 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
356 {
357 	node->ae.ssid = ssid;
358 	node->ae.tsid = tsid;
359 	node->ae.tclass = tclass;
360 	memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
361 }
362 
363 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
364 {
365 	struct avc_node *node, *ret = NULL;
366 	int hvalue;
367 
368 	hvalue = avc_hash(ssid, tsid, tclass);
369 	list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
370 		if (ssid == node->ae.ssid &&
371 		    tclass == node->ae.tclass &&
372 		    tsid == node->ae.tsid) {
373 			ret = node;
374 			break;
375 		}
376 	}
377 
378 	if (ret == NULL) {
379 		/* cache miss */
380 		goto out;
381 	}
382 
383 	/* cache hit */
384 	if (atomic_read(&ret->ae.used) != 1)
385 		atomic_set(&ret->ae.used, 1);
386 out:
387 	return ret;
388 }
389 
390 /**
391  * avc_lookup - Look up an AVC entry.
392  * @ssid: source security identifier
393  * @tsid: target security identifier
394  * @tclass: target security class
395  * @requested: requested permissions, interpreted based on @tclass
396  *
397  * Look up an AVC entry that is valid for the
398  * @requested permissions between the SID pair
399  * (@ssid, @tsid), interpreting the permissions
400  * based on @tclass.  If a valid AVC entry exists,
401  * then this function return the avc_node.
402  * Otherwise, this function returns NULL.
403  */
404 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
405 {
406 	struct avc_node *node;
407 
408 	avc_cache_stats_incr(lookups);
409 	node = avc_search_node(ssid, tsid, tclass);
410 
411 	if (node && ((node->ae.avd.decided & requested) == requested)) {
412 		avc_cache_stats_incr(hits);
413 		goto out;
414 	}
415 
416 	node = NULL;
417 	avc_cache_stats_incr(misses);
418 out:
419 	return node;
420 }
421 
422 static int avc_latest_notif_update(int seqno, int is_insert)
423 {
424 	int ret = 0;
425 	static DEFINE_SPINLOCK(notif_lock);
426 	unsigned long flag;
427 
428 	spin_lock_irqsave(&notif_lock, flag);
429 	if (is_insert) {
430 		if (seqno < avc_cache.latest_notif) {
431 			printk(KERN_WARNING "avc:  seqno %d < latest_notif %d\n",
432 			       seqno, avc_cache.latest_notif);
433 			ret = -EAGAIN;
434 		}
435 	} else {
436 		if (seqno > avc_cache.latest_notif)
437 			avc_cache.latest_notif = seqno;
438 	}
439 	spin_unlock_irqrestore(&notif_lock, flag);
440 
441 	return ret;
442 }
443 
444 /**
445  * avc_insert - Insert an AVC entry.
446  * @ssid: source security identifier
447  * @tsid: target security identifier
448  * @tclass: target security class
449  * @ae: AVC entry
450  *
451  * Insert an AVC entry for the SID pair
452  * (@ssid, @tsid) and class @tclass.
453  * The access vectors and the sequence number are
454  * normally provided by the security server in
455  * response to a security_compute_av() call.  If the
456  * sequence number @ae->avd.seqno is not less than the latest
457  * revocation notification, then the function copies
458  * the access vectors into a cache entry, returns
459  * avc_node inserted. Otherwise, this function returns NULL.
460  */
461 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
462 {
463 	struct avc_node *pos, *node = NULL;
464 	int hvalue;
465 	unsigned long flag;
466 
467 	if (avc_latest_notif_update(ae->avd.seqno, 1))
468 		goto out;
469 
470 	node = avc_alloc_node();
471 	if (node) {
472 		hvalue = avc_hash(ssid, tsid, tclass);
473 		avc_node_populate(node, ssid, tsid, tclass, ae);
474 
475 		spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
476 		list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
477 			if (pos->ae.ssid == ssid &&
478 			    pos->ae.tsid == tsid &&
479 			    pos->ae.tclass == tclass) {
480 			    	avc_node_replace(node, pos);
481 				goto found;
482 			}
483 		}
484 		list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
485 found:
486 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
487 	}
488 out:
489 	return node;
490 }
491 
492 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
493 				       struct in6_addr *addr, u16 port,
494 				       char *name1, char *name2)
495 {
496 	if (!ipv6_addr_any(addr))
497 		audit_log_format(ab, " %s=%04x:%04x:%04x:%04x:%04x:"
498 				 "%04x:%04x:%04x", name1, NIP6(*addr));
499 	if (port)
500 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
501 }
502 
503 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, u32 addr,
504 				       u16 port, char *name1, char *name2)
505 {
506 	if (addr)
507 		audit_log_format(ab, " %s=%d.%d.%d.%d", name1, NIPQUAD(addr));
508 	if (port)
509 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
510 }
511 
512 /**
513  * avc_audit - Audit the granting or denial of permissions.
514  * @ssid: source security identifier
515  * @tsid: target security identifier
516  * @tclass: target security class
517  * @requested: requested permissions
518  * @avd: access vector decisions
519  * @result: result from avc_has_perm_noaudit
520  * @a:  auxiliary audit data
521  *
522  * Audit the granting or denial of permissions in accordance
523  * with the policy.  This function is typically called by
524  * avc_has_perm() after a permission check, but can also be
525  * called directly by callers who use avc_has_perm_noaudit()
526  * in order to separate the permission check from the auditing.
527  * For example, this separation is useful when the permission check must
528  * be performed under a lock, to allow the lock to be released
529  * before calling the auditing code.
530  */
531 void avc_audit(u32 ssid, u32 tsid,
532                u16 tclass, u32 requested,
533                struct av_decision *avd, int result, struct avc_audit_data *a)
534 {
535 	struct task_struct *tsk = current;
536 	struct inode *inode = NULL;
537 	u32 denied, audited;
538 	struct audit_buffer *ab;
539 
540 	denied = requested & ~avd->allowed;
541 	if (denied) {
542 		audited = denied;
543 		if (!(audited & avd->auditdeny))
544 			return;
545 	} else if (result) {
546 		audited = denied = requested;
547         } else {
548 		audited = requested;
549 		if (!(audited & avd->auditallow))
550 			return;
551 	}
552 
553 	ab = audit_log_start(current->audit_context);
554 	if (!ab)
555 		return;		/* audit_panic has been called */
556 	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
557 	avc_dump_av(ab, tclass,audited);
558 	audit_log_format(ab, " for ");
559 	if (a && a->tsk)
560 		tsk = a->tsk;
561 	if (tsk && tsk->pid) {
562 		struct mm_struct *mm;
563 		struct vm_area_struct *vma;
564 		audit_log_format(ab, " pid=%d", tsk->pid);
565 		if (tsk == current)
566 			mm = current->mm;
567 		else
568 			mm = get_task_mm(tsk);
569 		if (mm) {
570 			if (down_read_trylock(&mm->mmap_sem)) {
571 				vma = mm->mmap;
572 				while (vma) {
573 					if ((vma->vm_flags & VM_EXECUTABLE) &&
574 					    vma->vm_file) {
575 						audit_log_d_path(ab, "exe=",
576 							vma->vm_file->f_dentry,
577 							vma->vm_file->f_vfsmnt);
578 						break;
579 					}
580 					vma = vma->vm_next;
581 				}
582 				up_read(&mm->mmap_sem);
583 			} else {
584 				audit_log_format(ab, " comm=%s", tsk->comm);
585 			}
586 			if (tsk != current)
587 				mmput(mm);
588 		} else {
589 			audit_log_format(ab, " comm=%s", tsk->comm);
590 		}
591 	}
592 	if (a) {
593 		switch (a->type) {
594 		case AVC_AUDIT_DATA_IPC:
595 			audit_log_format(ab, " key=%d", a->u.ipc_id);
596 			break;
597 		case AVC_AUDIT_DATA_CAP:
598 			audit_log_format(ab, " capability=%d", a->u.cap);
599 			break;
600 		case AVC_AUDIT_DATA_FS:
601 			if (a->u.fs.dentry) {
602 				struct dentry *dentry = a->u.fs.dentry;
603 				if (a->u.fs.mnt) {
604 					audit_log_d_path(ab, "path=", dentry,
605 							a->u.fs.mnt);
606 				} else {
607 					audit_log_format(ab, " name=%s",
608 							 dentry->d_name.name);
609 				}
610 				inode = dentry->d_inode;
611 			} else if (a->u.fs.inode) {
612 				struct dentry *dentry;
613 				inode = a->u.fs.inode;
614 				dentry = d_find_alias(inode);
615 				if (dentry) {
616 					audit_log_format(ab, " name=%s",
617 							 dentry->d_name.name);
618 					dput(dentry);
619 				}
620 			}
621 			if (inode)
622 				audit_log_format(ab, " dev=%s ino=%ld",
623 						 inode->i_sb->s_id,
624 						 inode->i_ino);
625 			break;
626 		case AVC_AUDIT_DATA_NET:
627 			if (a->u.net.sk) {
628 				struct sock *sk = a->u.net.sk;
629 				struct unix_sock *u;
630 				int len = 0;
631 				char *p = NULL;
632 
633 				switch (sk->sk_family) {
634 				case AF_INET: {
635 					struct inet_sock *inet = inet_sk(sk);
636 
637 					avc_print_ipv4_addr(ab, inet->rcv_saddr,
638 							    inet->sport,
639 							    "laddr", "lport");
640 					avc_print_ipv4_addr(ab, inet->daddr,
641 							    inet->dport,
642 							    "faddr", "fport");
643 					break;
644 				}
645 				case AF_INET6: {
646 					struct inet_sock *inet = inet_sk(sk);
647 					struct ipv6_pinfo *inet6 = inet6_sk(sk);
648 
649 					avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
650 							    inet->sport,
651 							    "laddr", "lport");
652 					avc_print_ipv6_addr(ab, &inet6->daddr,
653 							    inet->dport,
654 							    "faddr", "fport");
655 					break;
656 				}
657 				case AF_UNIX:
658 					u = unix_sk(sk);
659 					if (u->dentry) {
660 						audit_log_d_path(ab, "path=",
661 							u->dentry, u->mnt);
662 						break;
663 					}
664 					if (!u->addr)
665 						break;
666 					len = u->addr->len-sizeof(short);
667 					p = &u->addr->name->sun_path[0];
668 					if (*p)
669 						audit_log_format(ab,
670 							"path=%*.*s", len,
671 							len, p);
672 					else
673 						audit_log_format(ab,
674 							"path=@%*.*s", len-1,
675 							len-1, p+1);
676 					break;
677 				}
678 			}
679 
680 			switch (a->u.net.family) {
681 			case AF_INET:
682 				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
683 						    a->u.net.sport,
684 						    "saddr", "src");
685 				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
686 						    a->u.net.dport,
687 						    "daddr", "dest");
688 				break;
689 			case AF_INET6:
690 				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
691 						    a->u.net.sport,
692 						    "saddr", "src");
693 				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
694 						    a->u.net.dport,
695 						    "daddr", "dest");
696 				break;
697 			}
698 			if (a->u.net.netif)
699 				audit_log_format(ab, " netif=%s",
700 					a->u.net.netif);
701 			break;
702 		}
703 	}
704 	audit_log_format(ab, " ");
705 	avc_dump_query(ab, ssid, tsid, tclass);
706 	audit_log_end(ab);
707 }
708 
709 /**
710  * avc_add_callback - Register a callback for security events.
711  * @callback: callback function
712  * @events: security events
713  * @ssid: source security identifier or %SECSID_WILD
714  * @tsid: target security identifier or %SECSID_WILD
715  * @tclass: target security class
716  * @perms: permissions
717  *
718  * Register a callback function for events in the set @events
719  * related to the SID pair (@ssid, @tsid) and
720  * and the permissions @perms, interpreting
721  * @perms based on @tclass.  Returns %0 on success or
722  * -%ENOMEM if insufficient memory exists to add the callback.
723  */
724 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
725                                      u16 tclass, u32 perms,
726                                      u32 *out_retained),
727                      u32 events, u32 ssid, u32 tsid,
728                      u16 tclass, u32 perms)
729 {
730 	struct avc_callback_node *c;
731 	int rc = 0;
732 
733 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
734 	if (!c) {
735 		rc = -ENOMEM;
736 		goto out;
737 	}
738 
739 	c->callback = callback;
740 	c->events = events;
741 	c->ssid = ssid;
742 	c->tsid = tsid;
743 	c->perms = perms;
744 	c->next = avc_callbacks;
745 	avc_callbacks = c;
746 out:
747 	return rc;
748 }
749 
750 static inline int avc_sidcmp(u32 x, u32 y)
751 {
752 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
753 }
754 
755 /**
756  * avc_update_node Update an AVC entry
757  * @event : Updating event
758  * @perms : Permission mask bits
759  * @ssid,@tsid,@tclass : identifier of an AVC entry
760  *
761  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
762  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
763  * otherwise, this function update the AVC entry. The original AVC-entry object
764  * will release later by RCU.
765  */
766 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
767 {
768 	int hvalue, rc = 0;
769 	unsigned long flag;
770 	struct avc_node *pos, *node, *orig = NULL;
771 
772 	node = avc_alloc_node();
773 	if (!node) {
774 		rc = -ENOMEM;
775 		goto out;
776 	}
777 
778 	/* Lock the target slot */
779 	hvalue = avc_hash(ssid, tsid, tclass);
780 	spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
781 
782 	list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
783 		if ( ssid==pos->ae.ssid &&
784 		     tsid==pos->ae.tsid &&
785 		     tclass==pos->ae.tclass ){
786 			orig = pos;
787 			break;
788 		}
789 	}
790 
791 	if (!orig) {
792 		rc = -ENOENT;
793 		avc_node_kill(node);
794 		goto out_unlock;
795 	}
796 
797 	/*
798 	 * Copy and replace original node.
799 	 */
800 
801 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
802 
803 	switch (event) {
804 	case AVC_CALLBACK_GRANT:
805 		node->ae.avd.allowed |= perms;
806 		break;
807 	case AVC_CALLBACK_TRY_REVOKE:
808 	case AVC_CALLBACK_REVOKE:
809 		node->ae.avd.allowed &= ~perms;
810 		break;
811 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
812 		node->ae.avd.auditallow |= perms;
813 		break;
814 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
815 		node->ae.avd.auditallow &= ~perms;
816 		break;
817 	case AVC_CALLBACK_AUDITDENY_ENABLE:
818 		node->ae.avd.auditdeny |= perms;
819 		break;
820 	case AVC_CALLBACK_AUDITDENY_DISABLE:
821 		node->ae.avd.auditdeny &= ~perms;
822 		break;
823 	}
824 	avc_node_replace(node, orig);
825 out_unlock:
826 	spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
827 out:
828 	return rc;
829 }
830 
831 /**
832  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
833  * @seqno: policy sequence number
834  */
835 int avc_ss_reset(u32 seqno)
836 {
837 	struct avc_callback_node *c;
838 	int i, rc = 0;
839 	unsigned long flag;
840 	struct avc_node *node;
841 
842 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
843 		spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
844 		list_for_each_entry(node, &avc_cache.slots[i], list)
845 			avc_node_delete(node);
846 		spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
847 	}
848 
849 	for (c = avc_callbacks; c; c = c->next) {
850 		if (c->events & AVC_CALLBACK_RESET) {
851 			rc = c->callback(AVC_CALLBACK_RESET,
852 					 0, 0, 0, 0, NULL);
853 			if (rc)
854 				goto out;
855 		}
856 	}
857 
858 	avc_latest_notif_update(seqno, 0);
859 out:
860 	return rc;
861 }
862 
863 /**
864  * avc_has_perm_noaudit - Check permissions but perform no auditing.
865  * @ssid: source security identifier
866  * @tsid: target security identifier
867  * @tclass: target security class
868  * @requested: requested permissions, interpreted based on @tclass
869  * @avd: access vector decisions
870  *
871  * Check the AVC to determine whether the @requested permissions are granted
872  * for the SID pair (@ssid, @tsid), interpreting the permissions
873  * based on @tclass, and call the security server on a cache miss to obtain
874  * a new decision and add it to the cache.  Return a copy of the decisions
875  * in @avd.  Return %0 if all @requested permissions are granted,
876  * -%EACCES if any permissions are denied, or another -errno upon
877  * other errors.  This function is typically called by avc_has_perm(),
878  * but may also be called directly to separate permission checking from
879  * auditing, e.g. in cases where a lock must be held for the check but
880  * should be released for the auditing.
881  */
882 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
883                          u16 tclass, u32 requested,
884                          struct av_decision *avd)
885 {
886 	struct avc_node *node;
887 	struct avc_entry entry, *p_ae;
888 	int rc = 0;
889 	u32 denied;
890 
891 	rcu_read_lock();
892 
893 	node = avc_lookup(ssid, tsid, tclass, requested);
894 	if (!node) {
895 		rcu_read_unlock();
896 		rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
897 		if (rc)
898 			goto out;
899 		rcu_read_lock();
900 		node = avc_insert(ssid,tsid,tclass,&entry);
901 	}
902 
903 	p_ae = node ? &node->ae : &entry;
904 
905 	if (avd)
906 		memcpy(avd, &p_ae->avd, sizeof(*avd));
907 
908 	denied = requested & ~(p_ae->avd.allowed);
909 
910 	if (!requested || denied) {
911 		if (selinux_enforcing)
912 			rc = -EACCES;
913 		else
914 			if (node)
915 				avc_update_node(AVC_CALLBACK_GRANT,requested,
916 						ssid,tsid,tclass);
917 	}
918 
919 	rcu_read_unlock();
920 out:
921 	return rc;
922 }
923 
924 /**
925  * avc_has_perm - Check permissions and perform any appropriate auditing.
926  * @ssid: source security identifier
927  * @tsid: target security identifier
928  * @tclass: target security class
929  * @requested: requested permissions, interpreted based on @tclass
930  * @auditdata: auxiliary audit data
931  *
932  * Check the AVC to determine whether the @requested permissions are granted
933  * for the SID pair (@ssid, @tsid), interpreting the permissions
934  * based on @tclass, and call the security server on a cache miss to obtain
935  * a new decision and add it to the cache.  Audit the granting or denial of
936  * permissions in accordance with the policy.  Return %0 if all @requested
937  * permissions are granted, -%EACCES if any permissions are denied, or
938  * another -errno upon other errors.
939  */
940 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
941                  u32 requested, struct avc_audit_data *auditdata)
942 {
943 	struct av_decision avd;
944 	int rc;
945 
946 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd);
947 	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
948 	return rc;
949 }
950