1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/security.h> 20 #include <linux/integrity.h> 21 #include <linux/ima.h> 22 #include <linux/evm.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mman.h> 25 #include <linux/mount.h> 26 #include <linux/personality.h> 27 #include <linux/backing-dev.h> 28 #include <net/flow.h> 29 30 #define MAX_LSM_EVM_XATTR 2 31 32 /* Boot-time LSM user choice */ 33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 34 CONFIG_DEFAULT_SECURITY; 35 36 static struct security_operations *security_ops; 37 static struct security_operations default_security_ops = { 38 .name = "default", 39 }; 40 41 static inline int __init verify(struct security_operations *ops) 42 { 43 /* verify the security_operations structure exists */ 44 if (!ops) 45 return -EINVAL; 46 security_fixup_ops(ops); 47 return 0; 48 } 49 50 static void __init do_security_initcalls(void) 51 { 52 initcall_t *call; 53 call = __security_initcall_start; 54 while (call < __security_initcall_end) { 55 (*call) (); 56 call++; 57 } 58 } 59 60 /** 61 * security_init - initializes the security framework 62 * 63 * This should be called early in the kernel initialization sequence. 64 */ 65 int __init security_init(void) 66 { 67 printk(KERN_INFO "Security Framework initialized\n"); 68 69 security_fixup_ops(&default_security_ops); 70 security_ops = &default_security_ops; 71 do_security_initcalls(); 72 73 return 0; 74 } 75 76 void reset_security_ops(void) 77 { 78 security_ops = &default_security_ops; 79 } 80 81 /* Save user chosen LSM */ 82 static int __init choose_lsm(char *str) 83 { 84 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 85 return 1; 86 } 87 __setup("security=", choose_lsm); 88 89 /** 90 * security_module_enable - Load given security module on boot ? 91 * @ops: a pointer to the struct security_operations that is to be checked. 92 * 93 * Each LSM must pass this method before registering its own operations 94 * to avoid security registration races. This method may also be used 95 * to check if your LSM is currently loaded during kernel initialization. 96 * 97 * Return true if: 98 * -The passed LSM is the one chosen by user at boot time, 99 * -or the passed LSM is configured as the default and the user did not 100 * choose an alternate LSM at boot time. 101 * Otherwise, return false. 102 */ 103 int __init security_module_enable(struct security_operations *ops) 104 { 105 return !strcmp(ops->name, chosen_lsm); 106 } 107 108 /** 109 * register_security - registers a security framework with the kernel 110 * @ops: a pointer to the struct security_options that is to be registered 111 * 112 * This function allows a security module to register itself with the 113 * kernel security subsystem. Some rudimentary checking is done on the @ops 114 * value passed to this function. You'll need to check first if your LSM 115 * is allowed to register its @ops by calling security_module_enable(@ops). 116 * 117 * If there is already a security module registered with the kernel, 118 * an error will be returned. Otherwise %0 is returned on success. 119 */ 120 int __init register_security(struct security_operations *ops) 121 { 122 if (verify(ops)) { 123 printk(KERN_DEBUG "%s could not verify " 124 "security_operations structure.\n", __func__); 125 return -EINVAL; 126 } 127 128 if (security_ops != &default_security_ops) 129 return -EAGAIN; 130 131 security_ops = ops; 132 133 return 0; 134 } 135 136 /* Security operations */ 137 138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 139 { 140 #ifdef CONFIG_SECURITY_YAMA_STACKED 141 int rc; 142 rc = yama_ptrace_access_check(child, mode); 143 if (rc) 144 return rc; 145 #endif 146 return security_ops->ptrace_access_check(child, mode); 147 } 148 149 int security_ptrace_traceme(struct task_struct *parent) 150 { 151 #ifdef CONFIG_SECURITY_YAMA_STACKED 152 int rc; 153 rc = yama_ptrace_traceme(parent); 154 if (rc) 155 return rc; 156 #endif 157 return security_ops->ptrace_traceme(parent); 158 } 159 160 int security_capget(struct task_struct *target, 161 kernel_cap_t *effective, 162 kernel_cap_t *inheritable, 163 kernel_cap_t *permitted) 164 { 165 return security_ops->capget(target, effective, inheritable, permitted); 166 } 167 168 int security_capset(struct cred *new, const struct cred *old, 169 const kernel_cap_t *effective, 170 const kernel_cap_t *inheritable, 171 const kernel_cap_t *permitted) 172 { 173 return security_ops->capset(new, old, 174 effective, inheritable, permitted); 175 } 176 177 int security_capable(const struct cred *cred, struct user_namespace *ns, 178 int cap) 179 { 180 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT); 181 } 182 183 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 184 int cap) 185 { 186 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 187 } 188 189 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 190 { 191 return security_ops->quotactl(cmds, type, id, sb); 192 } 193 194 int security_quota_on(struct dentry *dentry) 195 { 196 return security_ops->quota_on(dentry); 197 } 198 199 int security_syslog(int type) 200 { 201 return security_ops->syslog(type); 202 } 203 204 int security_settime(const struct timespec *ts, const struct timezone *tz) 205 { 206 return security_ops->settime(ts, tz); 207 } 208 209 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 210 { 211 return security_ops->vm_enough_memory(mm, pages); 212 } 213 214 int security_bprm_set_creds(struct linux_binprm *bprm) 215 { 216 return security_ops->bprm_set_creds(bprm); 217 } 218 219 int security_bprm_check(struct linux_binprm *bprm) 220 { 221 int ret; 222 223 ret = security_ops->bprm_check_security(bprm); 224 if (ret) 225 return ret; 226 return ima_bprm_check(bprm); 227 } 228 229 void security_bprm_committing_creds(struct linux_binprm *bprm) 230 { 231 security_ops->bprm_committing_creds(bprm); 232 } 233 234 void security_bprm_committed_creds(struct linux_binprm *bprm) 235 { 236 security_ops->bprm_committed_creds(bprm); 237 } 238 239 int security_bprm_secureexec(struct linux_binprm *bprm) 240 { 241 return security_ops->bprm_secureexec(bprm); 242 } 243 244 int security_sb_alloc(struct super_block *sb) 245 { 246 return security_ops->sb_alloc_security(sb); 247 } 248 249 void security_sb_free(struct super_block *sb) 250 { 251 security_ops->sb_free_security(sb); 252 } 253 254 int security_sb_copy_data(char *orig, char *copy) 255 { 256 return security_ops->sb_copy_data(orig, copy); 257 } 258 EXPORT_SYMBOL(security_sb_copy_data); 259 260 int security_sb_remount(struct super_block *sb, void *data) 261 { 262 return security_ops->sb_remount(sb, data); 263 } 264 265 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 266 { 267 return security_ops->sb_kern_mount(sb, flags, data); 268 } 269 270 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 271 { 272 return security_ops->sb_show_options(m, sb); 273 } 274 275 int security_sb_statfs(struct dentry *dentry) 276 { 277 return security_ops->sb_statfs(dentry); 278 } 279 280 int security_sb_mount(const char *dev_name, struct path *path, 281 const char *type, unsigned long flags, void *data) 282 { 283 return security_ops->sb_mount(dev_name, path, type, flags, data); 284 } 285 286 int security_sb_umount(struct vfsmount *mnt, int flags) 287 { 288 return security_ops->sb_umount(mnt, flags); 289 } 290 291 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 292 { 293 return security_ops->sb_pivotroot(old_path, new_path); 294 } 295 296 int security_sb_set_mnt_opts(struct super_block *sb, 297 struct security_mnt_opts *opts, 298 unsigned long kern_flags, 299 unsigned long *set_kern_flags) 300 { 301 return security_ops->sb_set_mnt_opts(sb, opts, kern_flags, 302 set_kern_flags); 303 } 304 EXPORT_SYMBOL(security_sb_set_mnt_opts); 305 306 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 307 struct super_block *newsb) 308 { 309 return security_ops->sb_clone_mnt_opts(oldsb, newsb); 310 } 311 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 312 313 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 314 { 315 return security_ops->sb_parse_opts_str(options, opts); 316 } 317 EXPORT_SYMBOL(security_sb_parse_opts_str); 318 319 int security_inode_alloc(struct inode *inode) 320 { 321 inode->i_security = NULL; 322 return security_ops->inode_alloc_security(inode); 323 } 324 325 void security_inode_free(struct inode *inode) 326 { 327 integrity_inode_free(inode); 328 security_ops->inode_free_security(inode); 329 } 330 331 int security_dentry_init_security(struct dentry *dentry, int mode, 332 struct qstr *name, void **ctx, 333 u32 *ctxlen) 334 { 335 return security_ops->dentry_init_security(dentry, mode, name, 336 ctx, ctxlen); 337 } 338 EXPORT_SYMBOL(security_dentry_init_security); 339 340 int security_inode_init_security(struct inode *inode, struct inode *dir, 341 const struct qstr *qstr, 342 const initxattrs initxattrs, void *fs_data) 343 { 344 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 345 struct xattr *lsm_xattr, *evm_xattr, *xattr; 346 int ret; 347 348 if (unlikely(IS_PRIVATE(inode))) 349 return 0; 350 351 memset(new_xattrs, 0, sizeof new_xattrs); 352 if (!initxattrs) 353 return security_ops->inode_init_security(inode, dir, qstr, 354 NULL, NULL, NULL); 355 lsm_xattr = new_xattrs; 356 ret = security_ops->inode_init_security(inode, dir, qstr, 357 &lsm_xattr->name, 358 &lsm_xattr->value, 359 &lsm_xattr->value_len); 360 if (ret) 361 goto out; 362 363 evm_xattr = lsm_xattr + 1; 364 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 365 if (ret) 366 goto out; 367 ret = initxattrs(inode, new_xattrs, fs_data); 368 out: 369 for (xattr = new_xattrs; xattr->name != NULL; xattr++) { 370 kfree(xattr->name); 371 kfree(xattr->value); 372 } 373 return (ret == -EOPNOTSUPP) ? 0 : ret; 374 } 375 EXPORT_SYMBOL(security_inode_init_security); 376 377 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 378 const struct qstr *qstr, char **name, 379 void **value, size_t *len) 380 { 381 if (unlikely(IS_PRIVATE(inode))) 382 return -EOPNOTSUPP; 383 return security_ops->inode_init_security(inode, dir, qstr, name, value, 384 len); 385 } 386 EXPORT_SYMBOL(security_old_inode_init_security); 387 388 #ifdef CONFIG_SECURITY_PATH 389 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 390 unsigned int dev) 391 { 392 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 393 return 0; 394 return security_ops->path_mknod(dir, dentry, mode, dev); 395 } 396 EXPORT_SYMBOL(security_path_mknod); 397 398 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode) 399 { 400 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 401 return 0; 402 return security_ops->path_mkdir(dir, dentry, mode); 403 } 404 EXPORT_SYMBOL(security_path_mkdir); 405 406 int security_path_rmdir(struct path *dir, struct dentry *dentry) 407 { 408 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 409 return 0; 410 return security_ops->path_rmdir(dir, dentry); 411 } 412 413 int security_path_unlink(struct path *dir, struct dentry *dentry) 414 { 415 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 416 return 0; 417 return security_ops->path_unlink(dir, dentry); 418 } 419 EXPORT_SYMBOL(security_path_unlink); 420 421 int security_path_symlink(struct path *dir, struct dentry *dentry, 422 const char *old_name) 423 { 424 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 425 return 0; 426 return security_ops->path_symlink(dir, dentry, old_name); 427 } 428 429 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 430 struct dentry *new_dentry) 431 { 432 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 433 return 0; 434 return security_ops->path_link(old_dentry, new_dir, new_dentry); 435 } 436 437 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 438 struct path *new_dir, struct dentry *new_dentry) 439 { 440 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 441 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 442 return 0; 443 return security_ops->path_rename(old_dir, old_dentry, new_dir, 444 new_dentry); 445 } 446 EXPORT_SYMBOL(security_path_rename); 447 448 int security_path_truncate(struct path *path) 449 { 450 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 451 return 0; 452 return security_ops->path_truncate(path); 453 } 454 455 int security_path_chmod(struct path *path, umode_t mode) 456 { 457 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 458 return 0; 459 return security_ops->path_chmod(path, mode); 460 } 461 462 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid) 463 { 464 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 465 return 0; 466 return security_ops->path_chown(path, uid, gid); 467 } 468 469 int security_path_chroot(struct path *path) 470 { 471 return security_ops->path_chroot(path); 472 } 473 #endif 474 475 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 476 { 477 if (unlikely(IS_PRIVATE(dir))) 478 return 0; 479 return security_ops->inode_create(dir, dentry, mode); 480 } 481 EXPORT_SYMBOL_GPL(security_inode_create); 482 483 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 484 struct dentry *new_dentry) 485 { 486 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 487 return 0; 488 return security_ops->inode_link(old_dentry, dir, new_dentry); 489 } 490 491 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 492 { 493 if (unlikely(IS_PRIVATE(dentry->d_inode))) 494 return 0; 495 return security_ops->inode_unlink(dir, dentry); 496 } 497 498 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 499 const char *old_name) 500 { 501 if (unlikely(IS_PRIVATE(dir))) 502 return 0; 503 return security_ops->inode_symlink(dir, dentry, old_name); 504 } 505 506 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 507 { 508 if (unlikely(IS_PRIVATE(dir))) 509 return 0; 510 return security_ops->inode_mkdir(dir, dentry, mode); 511 } 512 EXPORT_SYMBOL_GPL(security_inode_mkdir); 513 514 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 515 { 516 if (unlikely(IS_PRIVATE(dentry->d_inode))) 517 return 0; 518 return security_ops->inode_rmdir(dir, dentry); 519 } 520 521 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 522 { 523 if (unlikely(IS_PRIVATE(dir))) 524 return 0; 525 return security_ops->inode_mknod(dir, dentry, mode, dev); 526 } 527 528 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 529 struct inode *new_dir, struct dentry *new_dentry) 530 { 531 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 532 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 533 return 0; 534 return security_ops->inode_rename(old_dir, old_dentry, 535 new_dir, new_dentry); 536 } 537 538 int security_inode_readlink(struct dentry *dentry) 539 { 540 if (unlikely(IS_PRIVATE(dentry->d_inode))) 541 return 0; 542 return security_ops->inode_readlink(dentry); 543 } 544 545 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 546 { 547 if (unlikely(IS_PRIVATE(dentry->d_inode))) 548 return 0; 549 return security_ops->inode_follow_link(dentry, nd); 550 } 551 552 int security_inode_permission(struct inode *inode, int mask) 553 { 554 if (unlikely(IS_PRIVATE(inode))) 555 return 0; 556 return security_ops->inode_permission(inode, mask); 557 } 558 559 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 560 { 561 int ret; 562 563 if (unlikely(IS_PRIVATE(dentry->d_inode))) 564 return 0; 565 ret = security_ops->inode_setattr(dentry, attr); 566 if (ret) 567 return ret; 568 return evm_inode_setattr(dentry, attr); 569 } 570 EXPORT_SYMBOL_GPL(security_inode_setattr); 571 572 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 573 { 574 if (unlikely(IS_PRIVATE(dentry->d_inode))) 575 return 0; 576 return security_ops->inode_getattr(mnt, dentry); 577 } 578 579 int security_inode_setxattr(struct dentry *dentry, const char *name, 580 const void *value, size_t size, int flags) 581 { 582 int ret; 583 584 if (unlikely(IS_PRIVATE(dentry->d_inode))) 585 return 0; 586 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 587 if (ret) 588 return ret; 589 ret = ima_inode_setxattr(dentry, name, value, size); 590 if (ret) 591 return ret; 592 return evm_inode_setxattr(dentry, name, value, size); 593 } 594 595 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 596 const void *value, size_t size, int flags) 597 { 598 if (unlikely(IS_PRIVATE(dentry->d_inode))) 599 return; 600 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 601 evm_inode_post_setxattr(dentry, name, value, size); 602 } 603 604 int security_inode_getxattr(struct dentry *dentry, const char *name) 605 { 606 if (unlikely(IS_PRIVATE(dentry->d_inode))) 607 return 0; 608 return security_ops->inode_getxattr(dentry, name); 609 } 610 611 int security_inode_listxattr(struct dentry *dentry) 612 { 613 if (unlikely(IS_PRIVATE(dentry->d_inode))) 614 return 0; 615 return security_ops->inode_listxattr(dentry); 616 } 617 618 int security_inode_removexattr(struct dentry *dentry, const char *name) 619 { 620 int ret; 621 622 if (unlikely(IS_PRIVATE(dentry->d_inode))) 623 return 0; 624 ret = security_ops->inode_removexattr(dentry, name); 625 if (ret) 626 return ret; 627 ret = ima_inode_removexattr(dentry, name); 628 if (ret) 629 return ret; 630 return evm_inode_removexattr(dentry, name); 631 } 632 633 int security_inode_need_killpriv(struct dentry *dentry) 634 { 635 return security_ops->inode_need_killpriv(dentry); 636 } 637 638 int security_inode_killpriv(struct dentry *dentry) 639 { 640 return security_ops->inode_killpriv(dentry); 641 } 642 643 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 644 { 645 if (unlikely(IS_PRIVATE(inode))) 646 return -EOPNOTSUPP; 647 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 648 } 649 650 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 651 { 652 if (unlikely(IS_PRIVATE(inode))) 653 return -EOPNOTSUPP; 654 return security_ops->inode_setsecurity(inode, name, value, size, flags); 655 } 656 657 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 658 { 659 if (unlikely(IS_PRIVATE(inode))) 660 return 0; 661 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 662 } 663 664 void security_inode_getsecid(const struct inode *inode, u32 *secid) 665 { 666 security_ops->inode_getsecid(inode, secid); 667 } 668 669 int security_file_permission(struct file *file, int mask) 670 { 671 int ret; 672 673 ret = security_ops->file_permission(file, mask); 674 if (ret) 675 return ret; 676 677 return fsnotify_perm(file, mask); 678 } 679 680 int security_file_alloc(struct file *file) 681 { 682 return security_ops->file_alloc_security(file); 683 } 684 685 void security_file_free(struct file *file) 686 { 687 security_ops->file_free_security(file); 688 } 689 690 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 691 { 692 return security_ops->file_ioctl(file, cmd, arg); 693 } 694 695 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 696 { 697 /* 698 * Does we have PROT_READ and does the application expect 699 * it to imply PROT_EXEC? If not, nothing to talk about... 700 */ 701 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 702 return prot; 703 if (!(current->personality & READ_IMPLIES_EXEC)) 704 return prot; 705 /* 706 * if that's an anonymous mapping, let it. 707 */ 708 if (!file) 709 return prot | PROT_EXEC; 710 /* 711 * ditto if it's not on noexec mount, except that on !MMU we need 712 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case 713 */ 714 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) { 715 #ifndef CONFIG_MMU 716 unsigned long caps = 0; 717 struct address_space *mapping = file->f_mapping; 718 if (mapping && mapping->backing_dev_info) 719 caps = mapping->backing_dev_info->capabilities; 720 if (!(caps & BDI_CAP_EXEC_MAP)) 721 return prot; 722 #endif 723 return prot | PROT_EXEC; 724 } 725 /* anything on noexec mount won't get PROT_EXEC */ 726 return prot; 727 } 728 729 int security_mmap_file(struct file *file, unsigned long prot, 730 unsigned long flags) 731 { 732 int ret; 733 ret = security_ops->mmap_file(file, prot, 734 mmap_prot(file, prot), flags); 735 if (ret) 736 return ret; 737 return ima_file_mmap(file, prot); 738 } 739 740 int security_mmap_addr(unsigned long addr) 741 { 742 return security_ops->mmap_addr(addr); 743 } 744 745 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 746 unsigned long prot) 747 { 748 return security_ops->file_mprotect(vma, reqprot, prot); 749 } 750 751 int security_file_lock(struct file *file, unsigned int cmd) 752 { 753 return security_ops->file_lock(file, cmd); 754 } 755 756 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 757 { 758 return security_ops->file_fcntl(file, cmd, arg); 759 } 760 761 int security_file_set_fowner(struct file *file) 762 { 763 return security_ops->file_set_fowner(file); 764 } 765 766 int security_file_send_sigiotask(struct task_struct *tsk, 767 struct fown_struct *fown, int sig) 768 { 769 return security_ops->file_send_sigiotask(tsk, fown, sig); 770 } 771 772 int security_file_receive(struct file *file) 773 { 774 return security_ops->file_receive(file); 775 } 776 777 int security_file_open(struct file *file, const struct cred *cred) 778 { 779 int ret; 780 781 ret = security_ops->file_open(file, cred); 782 if (ret) 783 return ret; 784 785 return fsnotify_perm(file, MAY_OPEN); 786 } 787 788 int security_task_create(unsigned long clone_flags) 789 { 790 return security_ops->task_create(clone_flags); 791 } 792 793 void security_task_free(struct task_struct *task) 794 { 795 #ifdef CONFIG_SECURITY_YAMA_STACKED 796 yama_task_free(task); 797 #endif 798 security_ops->task_free(task); 799 } 800 801 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 802 { 803 return security_ops->cred_alloc_blank(cred, gfp); 804 } 805 806 void security_cred_free(struct cred *cred) 807 { 808 security_ops->cred_free(cred); 809 } 810 811 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 812 { 813 return security_ops->cred_prepare(new, old, gfp); 814 } 815 816 void security_transfer_creds(struct cred *new, const struct cred *old) 817 { 818 security_ops->cred_transfer(new, old); 819 } 820 821 int security_kernel_act_as(struct cred *new, u32 secid) 822 { 823 return security_ops->kernel_act_as(new, secid); 824 } 825 826 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 827 { 828 return security_ops->kernel_create_files_as(new, inode); 829 } 830 831 int security_kernel_module_request(char *kmod_name) 832 { 833 return security_ops->kernel_module_request(kmod_name); 834 } 835 836 int security_kernel_module_from_file(struct file *file) 837 { 838 int ret; 839 840 ret = security_ops->kernel_module_from_file(file); 841 if (ret) 842 return ret; 843 return ima_module_check(file); 844 } 845 846 int security_task_fix_setuid(struct cred *new, const struct cred *old, 847 int flags) 848 { 849 return security_ops->task_fix_setuid(new, old, flags); 850 } 851 852 int security_task_setpgid(struct task_struct *p, pid_t pgid) 853 { 854 return security_ops->task_setpgid(p, pgid); 855 } 856 857 int security_task_getpgid(struct task_struct *p) 858 { 859 return security_ops->task_getpgid(p); 860 } 861 862 int security_task_getsid(struct task_struct *p) 863 { 864 return security_ops->task_getsid(p); 865 } 866 867 void security_task_getsecid(struct task_struct *p, u32 *secid) 868 { 869 security_ops->task_getsecid(p, secid); 870 } 871 EXPORT_SYMBOL(security_task_getsecid); 872 873 int security_task_setnice(struct task_struct *p, int nice) 874 { 875 return security_ops->task_setnice(p, nice); 876 } 877 878 int security_task_setioprio(struct task_struct *p, int ioprio) 879 { 880 return security_ops->task_setioprio(p, ioprio); 881 } 882 883 int security_task_getioprio(struct task_struct *p) 884 { 885 return security_ops->task_getioprio(p); 886 } 887 888 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 889 struct rlimit *new_rlim) 890 { 891 return security_ops->task_setrlimit(p, resource, new_rlim); 892 } 893 894 int security_task_setscheduler(struct task_struct *p) 895 { 896 return security_ops->task_setscheduler(p); 897 } 898 899 int security_task_getscheduler(struct task_struct *p) 900 { 901 return security_ops->task_getscheduler(p); 902 } 903 904 int security_task_movememory(struct task_struct *p) 905 { 906 return security_ops->task_movememory(p); 907 } 908 909 int security_task_kill(struct task_struct *p, struct siginfo *info, 910 int sig, u32 secid) 911 { 912 return security_ops->task_kill(p, info, sig, secid); 913 } 914 915 int security_task_wait(struct task_struct *p) 916 { 917 return security_ops->task_wait(p); 918 } 919 920 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 921 unsigned long arg4, unsigned long arg5) 922 { 923 #ifdef CONFIG_SECURITY_YAMA_STACKED 924 int rc; 925 rc = yama_task_prctl(option, arg2, arg3, arg4, arg5); 926 if (rc != -ENOSYS) 927 return rc; 928 #endif 929 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 930 } 931 932 void security_task_to_inode(struct task_struct *p, struct inode *inode) 933 { 934 security_ops->task_to_inode(p, inode); 935 } 936 937 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 938 { 939 return security_ops->ipc_permission(ipcp, flag); 940 } 941 942 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 943 { 944 security_ops->ipc_getsecid(ipcp, secid); 945 } 946 947 int security_msg_msg_alloc(struct msg_msg *msg) 948 { 949 return security_ops->msg_msg_alloc_security(msg); 950 } 951 952 void security_msg_msg_free(struct msg_msg *msg) 953 { 954 security_ops->msg_msg_free_security(msg); 955 } 956 957 int security_msg_queue_alloc(struct msg_queue *msq) 958 { 959 return security_ops->msg_queue_alloc_security(msq); 960 } 961 962 void security_msg_queue_free(struct msg_queue *msq) 963 { 964 security_ops->msg_queue_free_security(msq); 965 } 966 967 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 968 { 969 return security_ops->msg_queue_associate(msq, msqflg); 970 } 971 972 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 973 { 974 return security_ops->msg_queue_msgctl(msq, cmd); 975 } 976 977 int security_msg_queue_msgsnd(struct msg_queue *msq, 978 struct msg_msg *msg, int msqflg) 979 { 980 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 981 } 982 983 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 984 struct task_struct *target, long type, int mode) 985 { 986 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 987 } 988 989 int security_shm_alloc(struct shmid_kernel *shp) 990 { 991 return security_ops->shm_alloc_security(shp); 992 } 993 994 void security_shm_free(struct shmid_kernel *shp) 995 { 996 security_ops->shm_free_security(shp); 997 } 998 999 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 1000 { 1001 return security_ops->shm_associate(shp, shmflg); 1002 } 1003 1004 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 1005 { 1006 return security_ops->shm_shmctl(shp, cmd); 1007 } 1008 1009 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 1010 { 1011 return security_ops->shm_shmat(shp, shmaddr, shmflg); 1012 } 1013 1014 int security_sem_alloc(struct sem_array *sma) 1015 { 1016 return security_ops->sem_alloc_security(sma); 1017 } 1018 1019 void security_sem_free(struct sem_array *sma) 1020 { 1021 security_ops->sem_free_security(sma); 1022 } 1023 1024 int security_sem_associate(struct sem_array *sma, int semflg) 1025 { 1026 return security_ops->sem_associate(sma, semflg); 1027 } 1028 1029 int security_sem_semctl(struct sem_array *sma, int cmd) 1030 { 1031 return security_ops->sem_semctl(sma, cmd); 1032 } 1033 1034 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 1035 unsigned nsops, int alter) 1036 { 1037 return security_ops->sem_semop(sma, sops, nsops, alter); 1038 } 1039 1040 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1041 { 1042 if (unlikely(inode && IS_PRIVATE(inode))) 1043 return; 1044 security_ops->d_instantiate(dentry, inode); 1045 } 1046 EXPORT_SYMBOL(security_d_instantiate); 1047 1048 int security_getprocattr(struct task_struct *p, char *name, char **value) 1049 { 1050 return security_ops->getprocattr(p, name, value); 1051 } 1052 1053 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1054 { 1055 return security_ops->setprocattr(p, name, value, size); 1056 } 1057 1058 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1059 { 1060 return security_ops->netlink_send(sk, skb); 1061 } 1062 1063 int security_ismaclabel(const char *name) 1064 { 1065 return security_ops->ismaclabel(name); 1066 } 1067 EXPORT_SYMBOL(security_ismaclabel); 1068 1069 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1070 { 1071 return security_ops->secid_to_secctx(secid, secdata, seclen); 1072 } 1073 EXPORT_SYMBOL(security_secid_to_secctx); 1074 1075 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1076 { 1077 return security_ops->secctx_to_secid(secdata, seclen, secid); 1078 } 1079 EXPORT_SYMBOL(security_secctx_to_secid); 1080 1081 void security_release_secctx(char *secdata, u32 seclen) 1082 { 1083 security_ops->release_secctx(secdata, seclen); 1084 } 1085 EXPORT_SYMBOL(security_release_secctx); 1086 1087 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1088 { 1089 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1090 } 1091 EXPORT_SYMBOL(security_inode_notifysecctx); 1092 1093 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1094 { 1095 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1096 } 1097 EXPORT_SYMBOL(security_inode_setsecctx); 1098 1099 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1100 { 1101 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1102 } 1103 EXPORT_SYMBOL(security_inode_getsecctx); 1104 1105 #ifdef CONFIG_SECURITY_NETWORK 1106 1107 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1108 { 1109 return security_ops->unix_stream_connect(sock, other, newsk); 1110 } 1111 EXPORT_SYMBOL(security_unix_stream_connect); 1112 1113 int security_unix_may_send(struct socket *sock, struct socket *other) 1114 { 1115 return security_ops->unix_may_send(sock, other); 1116 } 1117 EXPORT_SYMBOL(security_unix_may_send); 1118 1119 int security_socket_create(int family, int type, int protocol, int kern) 1120 { 1121 return security_ops->socket_create(family, type, protocol, kern); 1122 } 1123 1124 int security_socket_post_create(struct socket *sock, int family, 1125 int type, int protocol, int kern) 1126 { 1127 return security_ops->socket_post_create(sock, family, type, 1128 protocol, kern); 1129 } 1130 1131 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1132 { 1133 return security_ops->socket_bind(sock, address, addrlen); 1134 } 1135 1136 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1137 { 1138 return security_ops->socket_connect(sock, address, addrlen); 1139 } 1140 1141 int security_socket_listen(struct socket *sock, int backlog) 1142 { 1143 return security_ops->socket_listen(sock, backlog); 1144 } 1145 1146 int security_socket_accept(struct socket *sock, struct socket *newsock) 1147 { 1148 return security_ops->socket_accept(sock, newsock); 1149 } 1150 1151 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1152 { 1153 return security_ops->socket_sendmsg(sock, msg, size); 1154 } 1155 1156 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1157 int size, int flags) 1158 { 1159 return security_ops->socket_recvmsg(sock, msg, size, flags); 1160 } 1161 1162 int security_socket_getsockname(struct socket *sock) 1163 { 1164 return security_ops->socket_getsockname(sock); 1165 } 1166 1167 int security_socket_getpeername(struct socket *sock) 1168 { 1169 return security_ops->socket_getpeername(sock); 1170 } 1171 1172 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1173 { 1174 return security_ops->socket_getsockopt(sock, level, optname); 1175 } 1176 1177 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1178 { 1179 return security_ops->socket_setsockopt(sock, level, optname); 1180 } 1181 1182 int security_socket_shutdown(struct socket *sock, int how) 1183 { 1184 return security_ops->socket_shutdown(sock, how); 1185 } 1186 1187 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1188 { 1189 return security_ops->socket_sock_rcv_skb(sk, skb); 1190 } 1191 EXPORT_SYMBOL(security_sock_rcv_skb); 1192 1193 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1194 int __user *optlen, unsigned len) 1195 { 1196 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1197 } 1198 1199 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1200 { 1201 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1202 } 1203 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1204 1205 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1206 { 1207 return security_ops->sk_alloc_security(sk, family, priority); 1208 } 1209 1210 void security_sk_free(struct sock *sk) 1211 { 1212 security_ops->sk_free_security(sk); 1213 } 1214 1215 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1216 { 1217 security_ops->sk_clone_security(sk, newsk); 1218 } 1219 EXPORT_SYMBOL(security_sk_clone); 1220 1221 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1222 { 1223 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1224 } 1225 EXPORT_SYMBOL(security_sk_classify_flow); 1226 1227 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1228 { 1229 security_ops->req_classify_flow(req, fl); 1230 } 1231 EXPORT_SYMBOL(security_req_classify_flow); 1232 1233 void security_sock_graft(struct sock *sk, struct socket *parent) 1234 { 1235 security_ops->sock_graft(sk, parent); 1236 } 1237 EXPORT_SYMBOL(security_sock_graft); 1238 1239 int security_inet_conn_request(struct sock *sk, 1240 struct sk_buff *skb, struct request_sock *req) 1241 { 1242 return security_ops->inet_conn_request(sk, skb, req); 1243 } 1244 EXPORT_SYMBOL(security_inet_conn_request); 1245 1246 void security_inet_csk_clone(struct sock *newsk, 1247 const struct request_sock *req) 1248 { 1249 security_ops->inet_csk_clone(newsk, req); 1250 } 1251 1252 void security_inet_conn_established(struct sock *sk, 1253 struct sk_buff *skb) 1254 { 1255 security_ops->inet_conn_established(sk, skb); 1256 } 1257 1258 int security_secmark_relabel_packet(u32 secid) 1259 { 1260 return security_ops->secmark_relabel_packet(secid); 1261 } 1262 EXPORT_SYMBOL(security_secmark_relabel_packet); 1263 1264 void security_secmark_refcount_inc(void) 1265 { 1266 security_ops->secmark_refcount_inc(); 1267 } 1268 EXPORT_SYMBOL(security_secmark_refcount_inc); 1269 1270 void security_secmark_refcount_dec(void) 1271 { 1272 security_ops->secmark_refcount_dec(); 1273 } 1274 EXPORT_SYMBOL(security_secmark_refcount_dec); 1275 1276 int security_tun_dev_alloc_security(void **security) 1277 { 1278 return security_ops->tun_dev_alloc_security(security); 1279 } 1280 EXPORT_SYMBOL(security_tun_dev_alloc_security); 1281 1282 void security_tun_dev_free_security(void *security) 1283 { 1284 security_ops->tun_dev_free_security(security); 1285 } 1286 EXPORT_SYMBOL(security_tun_dev_free_security); 1287 1288 int security_tun_dev_create(void) 1289 { 1290 return security_ops->tun_dev_create(); 1291 } 1292 EXPORT_SYMBOL(security_tun_dev_create); 1293 1294 int security_tun_dev_attach_queue(void *security) 1295 { 1296 return security_ops->tun_dev_attach_queue(security); 1297 } 1298 EXPORT_SYMBOL(security_tun_dev_attach_queue); 1299 1300 int security_tun_dev_attach(struct sock *sk, void *security) 1301 { 1302 return security_ops->tun_dev_attach(sk, security); 1303 } 1304 EXPORT_SYMBOL(security_tun_dev_attach); 1305 1306 int security_tun_dev_open(void *security) 1307 { 1308 return security_ops->tun_dev_open(security); 1309 } 1310 EXPORT_SYMBOL(security_tun_dev_open); 1311 1312 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk) 1313 { 1314 security_ops->skb_owned_by(skb, sk); 1315 } 1316 1317 #endif /* CONFIG_SECURITY_NETWORK */ 1318 1319 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1320 1321 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1322 { 1323 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1324 } 1325 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1326 1327 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1328 struct xfrm_sec_ctx **new_ctxp) 1329 { 1330 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1331 } 1332 1333 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1334 { 1335 security_ops->xfrm_policy_free_security(ctx); 1336 } 1337 EXPORT_SYMBOL(security_xfrm_policy_free); 1338 1339 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1340 { 1341 return security_ops->xfrm_policy_delete_security(ctx); 1342 } 1343 1344 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1345 { 1346 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1347 } 1348 EXPORT_SYMBOL(security_xfrm_state_alloc); 1349 1350 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1351 struct xfrm_sec_ctx *polsec, u32 secid) 1352 { 1353 if (!polsec) 1354 return 0; 1355 /* 1356 * We want the context to be taken from secid which is usually 1357 * from the sock. 1358 */ 1359 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1360 } 1361 1362 int security_xfrm_state_delete(struct xfrm_state *x) 1363 { 1364 return security_ops->xfrm_state_delete_security(x); 1365 } 1366 EXPORT_SYMBOL(security_xfrm_state_delete); 1367 1368 void security_xfrm_state_free(struct xfrm_state *x) 1369 { 1370 security_ops->xfrm_state_free_security(x); 1371 } 1372 1373 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1374 { 1375 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1376 } 1377 1378 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1379 struct xfrm_policy *xp, 1380 const struct flowi *fl) 1381 { 1382 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1383 } 1384 1385 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1386 { 1387 return security_ops->xfrm_decode_session(skb, secid, 1); 1388 } 1389 1390 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1391 { 1392 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1393 1394 BUG_ON(rc); 1395 } 1396 EXPORT_SYMBOL(security_skb_classify_flow); 1397 1398 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1399 1400 #ifdef CONFIG_KEYS 1401 1402 int security_key_alloc(struct key *key, const struct cred *cred, 1403 unsigned long flags) 1404 { 1405 return security_ops->key_alloc(key, cred, flags); 1406 } 1407 1408 void security_key_free(struct key *key) 1409 { 1410 security_ops->key_free(key); 1411 } 1412 1413 int security_key_permission(key_ref_t key_ref, 1414 const struct cred *cred, key_perm_t perm) 1415 { 1416 return security_ops->key_permission(key_ref, cred, perm); 1417 } 1418 1419 int security_key_getsecurity(struct key *key, char **_buffer) 1420 { 1421 return security_ops->key_getsecurity(key, _buffer); 1422 } 1423 1424 #endif /* CONFIG_KEYS */ 1425 1426 #ifdef CONFIG_AUDIT 1427 1428 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1429 { 1430 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1431 } 1432 1433 int security_audit_rule_known(struct audit_krule *krule) 1434 { 1435 return security_ops->audit_rule_known(krule); 1436 } 1437 1438 void security_audit_rule_free(void *lsmrule) 1439 { 1440 security_ops->audit_rule_free(lsmrule); 1441 } 1442 1443 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1444 struct audit_context *actx) 1445 { 1446 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1447 } 1448 1449 #endif /* CONFIG_AUDIT */ 1450