1 /* Keyring handling 2 * 3 * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/seq_file.h> 18 #include <linux/err.h> 19 #include <keys/keyring-type.h> 20 #include <linux/uaccess.h> 21 #include "internal.h" 22 23 #define rcu_dereference_locked_keyring(keyring) \ 24 (rcu_dereference_protected( \ 25 (keyring)->payload.subscriptions, \ 26 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem))) 27 28 #define rcu_deref_link_locked(klist, index, keyring) \ 29 (rcu_dereference_protected( \ 30 (klist)->keys[index], \ 31 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem))) 32 33 #define MAX_KEYRING_LINKS \ 34 min_t(size_t, USHRT_MAX - 1, \ 35 ((PAGE_SIZE - sizeof(struct keyring_list)) / sizeof(struct key *))) 36 37 #define KEY_LINK_FIXQUOTA 1UL 38 39 /* 40 * When plumbing the depths of the key tree, this sets a hard limit 41 * set on how deep we're willing to go. 42 */ 43 #define KEYRING_SEARCH_MAX_DEPTH 6 44 45 /* 46 * We keep all named keyrings in a hash to speed looking them up. 47 */ 48 #define KEYRING_NAME_HASH_SIZE (1 << 5) 49 50 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 51 static DEFINE_RWLOCK(keyring_name_lock); 52 53 static inline unsigned keyring_hash(const char *desc) 54 { 55 unsigned bucket = 0; 56 57 for (; *desc; desc++) 58 bucket += (unsigned char)*desc; 59 60 return bucket & (KEYRING_NAME_HASH_SIZE - 1); 61 } 62 63 /* 64 * The keyring key type definition. Keyrings are simply keys of this type and 65 * can be treated as ordinary keys in addition to having their own special 66 * operations. 67 */ 68 static int keyring_instantiate(struct key *keyring, 69 struct key_preparsed_payload *prep); 70 static int keyring_match(const struct key *keyring, const void *criterion); 71 static void keyring_revoke(struct key *keyring); 72 static void keyring_destroy(struct key *keyring); 73 static void keyring_describe(const struct key *keyring, struct seq_file *m); 74 static long keyring_read(const struct key *keyring, 75 char __user *buffer, size_t buflen); 76 77 struct key_type key_type_keyring = { 78 .name = "keyring", 79 .def_datalen = sizeof(struct keyring_list), 80 .instantiate = keyring_instantiate, 81 .match = keyring_match, 82 .revoke = keyring_revoke, 83 .destroy = keyring_destroy, 84 .describe = keyring_describe, 85 .read = keyring_read, 86 }; 87 EXPORT_SYMBOL(key_type_keyring); 88 89 /* 90 * Semaphore to serialise link/link calls to prevent two link calls in parallel 91 * introducing a cycle. 92 */ 93 static DECLARE_RWSEM(keyring_serialise_link_sem); 94 95 /* 96 * Publish the name of a keyring so that it can be found by name (if it has 97 * one). 98 */ 99 static void keyring_publish_name(struct key *keyring) 100 { 101 int bucket; 102 103 if (keyring->description) { 104 bucket = keyring_hash(keyring->description); 105 106 write_lock(&keyring_name_lock); 107 108 if (!keyring_name_hash[bucket].next) 109 INIT_LIST_HEAD(&keyring_name_hash[bucket]); 110 111 list_add_tail(&keyring->type_data.link, 112 &keyring_name_hash[bucket]); 113 114 write_unlock(&keyring_name_lock); 115 } 116 } 117 118 /* 119 * Initialise a keyring. 120 * 121 * Returns 0 on success, -EINVAL if given any data. 122 */ 123 static int keyring_instantiate(struct key *keyring, 124 struct key_preparsed_payload *prep) 125 { 126 int ret; 127 128 ret = -EINVAL; 129 if (prep->datalen == 0) { 130 /* make the keyring available by name if it has one */ 131 keyring_publish_name(keyring); 132 ret = 0; 133 } 134 135 return ret; 136 } 137 138 /* 139 * Match keyrings on their name 140 */ 141 static int keyring_match(const struct key *keyring, const void *description) 142 { 143 return keyring->description && 144 strcmp(keyring->description, description) == 0; 145 } 146 147 /* 148 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 149 * and dispose of its data. 150 * 151 * The garbage collector detects the final key_put(), removes the keyring from 152 * the serial number tree and then does RCU synchronisation before coming here, 153 * so we shouldn't need to worry about code poking around here with the RCU 154 * readlock held by this time. 155 */ 156 static void keyring_destroy(struct key *keyring) 157 { 158 struct keyring_list *klist; 159 int loop; 160 161 if (keyring->description) { 162 write_lock(&keyring_name_lock); 163 164 if (keyring->type_data.link.next != NULL && 165 !list_empty(&keyring->type_data.link)) 166 list_del(&keyring->type_data.link); 167 168 write_unlock(&keyring_name_lock); 169 } 170 171 klist = rcu_access_pointer(keyring->payload.subscriptions); 172 if (klist) { 173 for (loop = klist->nkeys - 1; loop >= 0; loop--) 174 key_put(rcu_access_pointer(klist->keys[loop])); 175 kfree(klist); 176 } 177 } 178 179 /* 180 * Describe a keyring for /proc. 181 */ 182 static void keyring_describe(const struct key *keyring, struct seq_file *m) 183 { 184 struct keyring_list *klist; 185 186 if (keyring->description) 187 seq_puts(m, keyring->description); 188 else 189 seq_puts(m, "[anon]"); 190 191 if (key_is_instantiated(keyring)) { 192 rcu_read_lock(); 193 klist = rcu_dereference(keyring->payload.subscriptions); 194 if (klist) 195 seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys); 196 else 197 seq_puts(m, ": empty"); 198 rcu_read_unlock(); 199 } 200 } 201 202 /* 203 * Read a list of key IDs from the keyring's contents in binary form 204 * 205 * The keyring's semaphore is read-locked by the caller. 206 */ 207 static long keyring_read(const struct key *keyring, 208 char __user *buffer, size_t buflen) 209 { 210 struct keyring_list *klist; 211 struct key *key; 212 size_t qty, tmp; 213 int loop, ret; 214 215 ret = 0; 216 klist = rcu_dereference_locked_keyring(keyring); 217 if (klist) { 218 /* calculate how much data we could return */ 219 qty = klist->nkeys * sizeof(key_serial_t); 220 221 if (buffer && buflen > 0) { 222 if (buflen > qty) 223 buflen = qty; 224 225 /* copy the IDs of the subscribed keys into the 226 * buffer */ 227 ret = -EFAULT; 228 229 for (loop = 0; loop < klist->nkeys; loop++) { 230 key = rcu_deref_link_locked(klist, loop, 231 keyring); 232 233 tmp = sizeof(key_serial_t); 234 if (tmp > buflen) 235 tmp = buflen; 236 237 if (copy_to_user(buffer, 238 &key->serial, 239 tmp) != 0) 240 goto error; 241 242 buflen -= tmp; 243 if (buflen == 0) 244 break; 245 buffer += tmp; 246 } 247 } 248 249 ret = qty; 250 } 251 252 error: 253 return ret; 254 } 255 256 /* 257 * Allocate a keyring and link into the destination keyring. 258 */ 259 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, 260 const struct cred *cred, key_perm_t perm, 261 unsigned long flags, struct key *dest) 262 { 263 struct key *keyring; 264 int ret; 265 266 keyring = key_alloc(&key_type_keyring, description, 267 uid, gid, cred, perm, flags); 268 if (!IS_ERR(keyring)) { 269 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL); 270 if (ret < 0) { 271 key_put(keyring); 272 keyring = ERR_PTR(ret); 273 } 274 } 275 276 return keyring; 277 } 278 EXPORT_SYMBOL(keyring_alloc); 279 280 /** 281 * keyring_search_aux - Search a keyring tree for a key matching some criteria 282 * @keyring_ref: A pointer to the keyring with possession indicator. 283 * @ctx: The keyring search context. 284 * 285 * Search the supplied keyring tree for a key that matches the criteria given. 286 * The root keyring and any linked keyrings must grant Search permission to the 287 * caller to be searchable and keys can only be found if they too grant Search 288 * to the caller. The possession flag on the root keyring pointer controls use 289 * of the possessor bits in permissions checking of the entire tree. In 290 * addition, the LSM gets to forbid keyring searches and key matches. 291 * 292 * The search is performed as a breadth-then-depth search up to the prescribed 293 * limit (KEYRING_SEARCH_MAX_DEPTH). 294 * 295 * Keys are matched to the type provided and are then filtered by the match 296 * function, which is given the description to use in any way it sees fit. The 297 * match function may use any attributes of a key that it wishes to to 298 * determine the match. Normally the match function from the key type would be 299 * used. 300 * 301 * RCU is used to prevent the keyring key lists from disappearing without the 302 * need to take lots of locks. 303 * 304 * Returns a pointer to the found key and increments the key usage count if 305 * successful; -EAGAIN if no matching keys were found, or if expired or revoked 306 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the 307 * specified keyring wasn't a keyring. 308 * 309 * In the case of a successful return, the possession attribute from 310 * @keyring_ref is propagated to the returned key reference. 311 */ 312 key_ref_t keyring_search_aux(key_ref_t keyring_ref, 313 struct keyring_search_context *ctx) 314 { 315 struct { 316 /* Need a separate keylist pointer for RCU purposes */ 317 struct key *keyring; 318 struct keyring_list *keylist; 319 int kix; 320 } stack[KEYRING_SEARCH_MAX_DEPTH]; 321 322 struct keyring_list *keylist; 323 unsigned long kflags; 324 struct key *keyring, *key; 325 key_ref_t key_ref; 326 long err; 327 int sp, nkeys, kix; 328 329 keyring = key_ref_to_ptr(keyring_ref); 330 ctx->possessed = is_key_possessed(keyring_ref); 331 key_check(keyring); 332 333 /* top keyring must have search permission to begin the search */ 334 err = key_task_permission(keyring_ref, ctx->cred, KEY_SEARCH); 335 if (err < 0) { 336 key_ref = ERR_PTR(err); 337 goto error; 338 } 339 340 key_ref = ERR_PTR(-ENOTDIR); 341 if (keyring->type != &key_type_keyring) 342 goto error; 343 344 rcu_read_lock(); 345 346 ctx->now = current_kernel_time(); 347 err = -EAGAIN; 348 sp = 0; 349 350 /* firstly we should check to see if this top-level keyring is what we 351 * are looking for */ 352 key_ref = ERR_PTR(-EAGAIN); 353 kflags = keyring->flags; 354 if (keyring->type == ctx->index_key.type && 355 ctx->match(keyring, ctx->match_data)) { 356 key = keyring; 357 if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK) 358 goto found; 359 360 /* check it isn't negative and hasn't expired or been 361 * revoked */ 362 if (kflags & (1 << KEY_FLAG_REVOKED)) 363 goto error_2; 364 if (key->expiry && ctx->now.tv_sec >= key->expiry) 365 goto error_2; 366 key_ref = ERR_PTR(key->type_data.reject_error); 367 if (kflags & (1 << KEY_FLAG_NEGATIVE)) 368 goto error_2; 369 goto found; 370 } 371 372 /* otherwise, the top keyring must not be revoked, expired, or 373 * negatively instantiated if we are to search it */ 374 key_ref = ERR_PTR(-EAGAIN); 375 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 376 (1 << KEY_FLAG_REVOKED) | 377 (1 << KEY_FLAG_NEGATIVE)) || 378 (keyring->expiry && ctx->now.tv_sec >= keyring->expiry)) 379 goto error_2; 380 381 /* start processing a new keyring */ 382 descend: 383 kflags = keyring->flags; 384 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 385 (1 << KEY_FLAG_REVOKED))) 386 goto not_this_keyring; 387 388 keylist = rcu_dereference(keyring->payload.subscriptions); 389 if (!keylist) 390 goto not_this_keyring; 391 392 /* iterate through the keys in this keyring first */ 393 nkeys = keylist->nkeys; 394 smp_rmb(); 395 for (kix = 0; kix < nkeys; kix++) { 396 key = rcu_dereference(keylist->keys[kix]); 397 kflags = key->flags; 398 399 /* ignore keys not of this type */ 400 if (key->type != ctx->index_key.type) 401 continue; 402 403 /* skip invalidated, revoked and expired keys */ 404 if (!(ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)) { 405 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 406 (1 << KEY_FLAG_REVOKED))) 407 continue; 408 409 if (key->expiry && ctx->now.tv_sec >= key->expiry) 410 continue; 411 } 412 413 /* keys that don't match */ 414 if (!ctx->match(key, ctx->match_data)) 415 continue; 416 417 /* key must have search permissions */ 418 if (key_task_permission(make_key_ref(key, ctx->possessed), 419 ctx->cred, KEY_SEARCH) < 0) 420 continue; 421 422 if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK) 423 goto found; 424 425 /* we set a different error code if we pass a negative key */ 426 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 427 err = key->type_data.reject_error; 428 continue; 429 } 430 431 goto found; 432 } 433 434 /* search through the keyrings nested in this one */ 435 kix = 0; 436 ascend: 437 nkeys = keylist->nkeys; 438 smp_rmb(); 439 for (; kix < nkeys; kix++) { 440 key = rcu_dereference(keylist->keys[kix]); 441 if (key->type != &key_type_keyring) 442 continue; 443 444 /* recursively search nested keyrings 445 * - only search keyrings for which we have search permission 446 */ 447 if (sp >= KEYRING_SEARCH_MAX_DEPTH) 448 continue; 449 450 if (key_task_permission(make_key_ref(key, ctx->possessed), 451 ctx->cred, KEY_SEARCH) < 0) 452 continue; 453 454 /* stack the current position */ 455 stack[sp].keyring = keyring; 456 stack[sp].keylist = keylist; 457 stack[sp].kix = kix; 458 sp++; 459 460 /* begin again with the new keyring */ 461 keyring = key; 462 goto descend; 463 } 464 465 /* the keyring we're looking at was disqualified or didn't contain a 466 * matching key */ 467 not_this_keyring: 468 if (sp > 0) { 469 /* resume the processing of a keyring higher up in the tree */ 470 sp--; 471 keyring = stack[sp].keyring; 472 keylist = stack[sp].keylist; 473 kix = stack[sp].kix + 1; 474 goto ascend; 475 } 476 477 key_ref = ERR_PTR(err); 478 goto error_2; 479 480 /* we found a viable match */ 481 found: 482 __key_get(key); 483 key->last_used_at = ctx->now.tv_sec; 484 keyring->last_used_at = ctx->now.tv_sec; 485 while (sp > 0) 486 stack[--sp].keyring->last_used_at = ctx->now.tv_sec; 487 key_check(key); 488 key_ref = make_key_ref(key, ctx->possessed); 489 error_2: 490 rcu_read_unlock(); 491 error: 492 return key_ref; 493 } 494 495 /** 496 * keyring_search - Search the supplied keyring tree for a matching key 497 * @keyring: The root of the keyring tree to be searched. 498 * @type: The type of keyring we want to find. 499 * @description: The name of the keyring we want to find. 500 * 501 * As keyring_search_aux() above, but using the current task's credentials and 502 * type's default matching function. 503 */ 504 key_ref_t keyring_search(key_ref_t keyring, 505 struct key_type *type, 506 const char *description) 507 { 508 struct keyring_search_context ctx = { 509 .index_key.type = type, 510 .index_key.description = description, 511 .cred = current_cred(), 512 .match = type->match, 513 .match_data = description, 514 .flags = (type->def_lookup_type | 515 KEYRING_SEARCH_DO_STATE_CHECK), 516 }; 517 518 if (!ctx.match) 519 return ERR_PTR(-ENOKEY); 520 521 return keyring_search_aux(keyring, &ctx); 522 } 523 EXPORT_SYMBOL(keyring_search); 524 525 /* 526 * Search the given keyring only (no recursion). 527 * 528 * The caller must guarantee that the keyring is a keyring and that the 529 * permission is granted to search the keyring as no check is made here. 530 * 531 * RCU is used to make it unnecessary to lock the keyring key list here. 532 * 533 * Returns a pointer to the found key with usage count incremented if 534 * successful and returns -ENOKEY if not found. Revoked keys and keys not 535 * providing the requested permission are skipped over. 536 * 537 * If successful, the possession indicator is propagated from the keyring ref 538 * to the returned key reference. 539 */ 540 key_ref_t __keyring_search_one(key_ref_t keyring_ref, 541 const struct keyring_index_key *index_key, 542 key_perm_t perm) 543 { 544 struct keyring_list *klist; 545 struct key *keyring, *key; 546 bool possessed; 547 int nkeys, loop; 548 549 keyring = key_ref_to_ptr(keyring_ref); 550 possessed = is_key_possessed(keyring_ref); 551 552 rcu_read_lock(); 553 554 klist = rcu_dereference(keyring->payload.subscriptions); 555 if (klist) { 556 nkeys = klist->nkeys; 557 smp_rmb(); 558 for (loop = 0; loop < nkeys ; loop++) { 559 key = rcu_dereference(klist->keys[loop]); 560 if (key->type == index_key->type && 561 (!key->type->match || 562 key->type->match(key, index_key->description)) && 563 key_permission(make_key_ref(key, possessed), 564 perm) == 0 && 565 !(key->flags & ((1 << KEY_FLAG_INVALIDATED) | 566 (1 << KEY_FLAG_REVOKED))) 567 ) 568 goto found; 569 } 570 } 571 572 rcu_read_unlock(); 573 return ERR_PTR(-ENOKEY); 574 575 found: 576 __key_get(key); 577 keyring->last_used_at = key->last_used_at = 578 current_kernel_time().tv_sec; 579 rcu_read_unlock(); 580 return make_key_ref(key, possessed); 581 } 582 583 /* 584 * Find a keyring with the specified name. 585 * 586 * All named keyrings in the current user namespace are searched, provided they 587 * grant Search permission directly to the caller (unless this check is 588 * skipped). Keyrings whose usage points have reached zero or who have been 589 * revoked are skipped. 590 * 591 * Returns a pointer to the keyring with the keyring's refcount having being 592 * incremented on success. -ENOKEY is returned if a key could not be found. 593 */ 594 struct key *find_keyring_by_name(const char *name, bool skip_perm_check) 595 { 596 struct key *keyring; 597 int bucket; 598 599 if (!name) 600 return ERR_PTR(-EINVAL); 601 602 bucket = keyring_hash(name); 603 604 read_lock(&keyring_name_lock); 605 606 if (keyring_name_hash[bucket].next) { 607 /* search this hash bucket for a keyring with a matching name 608 * that's readable and that hasn't been revoked */ 609 list_for_each_entry(keyring, 610 &keyring_name_hash[bucket], 611 type_data.link 612 ) { 613 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid)) 614 continue; 615 616 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 617 continue; 618 619 if (strcmp(keyring->description, name) != 0) 620 continue; 621 622 if (!skip_perm_check && 623 key_permission(make_key_ref(keyring, 0), 624 KEY_SEARCH) < 0) 625 continue; 626 627 /* we've got a match but we might end up racing with 628 * key_cleanup() if the keyring is currently 'dead' 629 * (ie. it has a zero usage count) */ 630 if (!atomic_inc_not_zero(&keyring->usage)) 631 continue; 632 keyring->last_used_at = current_kernel_time().tv_sec; 633 goto out; 634 } 635 } 636 637 keyring = ERR_PTR(-ENOKEY); 638 out: 639 read_unlock(&keyring_name_lock); 640 return keyring; 641 } 642 643 /* 644 * See if a cycle will will be created by inserting acyclic tree B in acyclic 645 * tree A at the topmost level (ie: as a direct child of A). 646 * 647 * Since we are adding B to A at the top level, checking for cycles should just 648 * be a matter of seeing if node A is somewhere in tree B. 649 */ 650 static int keyring_detect_cycle(struct key *A, struct key *B) 651 { 652 struct { 653 struct keyring_list *keylist; 654 int kix; 655 } stack[KEYRING_SEARCH_MAX_DEPTH]; 656 657 struct keyring_list *keylist; 658 struct key *subtree, *key; 659 int sp, nkeys, kix, ret; 660 661 rcu_read_lock(); 662 663 ret = -EDEADLK; 664 if (A == B) 665 goto cycle_detected; 666 667 subtree = B; 668 sp = 0; 669 670 /* start processing a new keyring */ 671 descend: 672 if (test_bit(KEY_FLAG_REVOKED, &subtree->flags)) 673 goto not_this_keyring; 674 675 keylist = rcu_dereference(subtree->payload.subscriptions); 676 if (!keylist) 677 goto not_this_keyring; 678 kix = 0; 679 680 ascend: 681 /* iterate through the remaining keys in this keyring */ 682 nkeys = keylist->nkeys; 683 smp_rmb(); 684 for (; kix < nkeys; kix++) { 685 key = rcu_dereference(keylist->keys[kix]); 686 687 if (key == A) 688 goto cycle_detected; 689 690 /* recursively check nested keyrings */ 691 if (key->type == &key_type_keyring) { 692 if (sp >= KEYRING_SEARCH_MAX_DEPTH) 693 goto too_deep; 694 695 /* stack the current position */ 696 stack[sp].keylist = keylist; 697 stack[sp].kix = kix; 698 sp++; 699 700 /* begin again with the new keyring */ 701 subtree = key; 702 goto descend; 703 } 704 } 705 706 /* the keyring we're looking at was disqualified or didn't contain a 707 * matching key */ 708 not_this_keyring: 709 if (sp > 0) { 710 /* resume the checking of a keyring higher up in the tree */ 711 sp--; 712 keylist = stack[sp].keylist; 713 kix = stack[sp].kix + 1; 714 goto ascend; 715 } 716 717 ret = 0; /* no cycles detected */ 718 719 error: 720 rcu_read_unlock(); 721 return ret; 722 723 too_deep: 724 ret = -ELOOP; 725 goto error; 726 727 cycle_detected: 728 ret = -EDEADLK; 729 goto error; 730 } 731 732 /* 733 * Dispose of a keyring list after the RCU grace period, freeing the unlinked 734 * key 735 */ 736 static void keyring_unlink_rcu_disposal(struct rcu_head *rcu) 737 { 738 struct keyring_list *klist = 739 container_of(rcu, struct keyring_list, rcu); 740 741 if (klist->delkey != USHRT_MAX) 742 key_put(rcu_access_pointer(klist->keys[klist->delkey])); 743 kfree(klist); 744 } 745 746 /* 747 * Preallocate memory so that a key can be linked into to a keyring. 748 */ 749 int __key_link_begin(struct key *keyring, const struct keyring_index_key *index_key, 750 unsigned long *_prealloc) 751 __acquires(&keyring->sem) 752 __acquires(&keyring_serialise_link_sem) 753 { 754 struct keyring_list *klist, *nklist; 755 unsigned long prealloc; 756 unsigned max; 757 time_t lowest_lru; 758 size_t size; 759 int loop, lru, ret; 760 761 kenter("%d,%s,%s,", 762 key_serial(keyring), index_key->type->name, index_key->description); 763 764 if (keyring->type != &key_type_keyring) 765 return -ENOTDIR; 766 767 down_write(&keyring->sem); 768 769 ret = -EKEYREVOKED; 770 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags)) 771 goto error_krsem; 772 773 /* serialise link/link calls to prevent parallel calls causing a cycle 774 * when linking two keyring in opposite orders */ 775 if (index_key->type == &key_type_keyring) 776 down_write(&keyring_serialise_link_sem); 777 778 klist = rcu_dereference_locked_keyring(keyring); 779 780 /* see if there's a matching key we can displace */ 781 lru = -1; 782 if (klist && klist->nkeys > 0) { 783 lowest_lru = TIME_T_MAX; 784 for (loop = klist->nkeys - 1; loop >= 0; loop--) { 785 struct key *key = rcu_deref_link_locked(klist, loop, 786 keyring); 787 if (key->type == index_key->type && 788 strcmp(key->description, index_key->description) == 0) { 789 /* Found a match - we'll replace the link with 790 * one to the new key. We record the slot 791 * position. 792 */ 793 klist->delkey = loop; 794 prealloc = 0; 795 goto done; 796 } 797 if (key->last_used_at < lowest_lru) { 798 lowest_lru = key->last_used_at; 799 lru = loop; 800 } 801 } 802 } 803 804 /* If the keyring is full then do an LRU discard */ 805 if (klist && 806 klist->nkeys == klist->maxkeys && 807 klist->maxkeys >= MAX_KEYRING_LINKS) { 808 kdebug("LRU discard %d\n", lru); 809 klist->delkey = lru; 810 prealloc = 0; 811 goto done; 812 } 813 814 /* check that we aren't going to overrun the user's quota */ 815 ret = key_payload_reserve(keyring, 816 keyring->datalen + KEYQUOTA_LINK_BYTES); 817 if (ret < 0) 818 goto error_sem; 819 820 if (klist && klist->nkeys < klist->maxkeys) { 821 /* there's sufficient slack space to append directly */ 822 klist->delkey = klist->nkeys; 823 prealloc = KEY_LINK_FIXQUOTA; 824 } else { 825 /* grow the key list */ 826 max = 4; 827 if (klist) { 828 max += klist->maxkeys; 829 if (max > MAX_KEYRING_LINKS) 830 max = MAX_KEYRING_LINKS; 831 BUG_ON(max <= klist->maxkeys); 832 } 833 834 size = sizeof(*klist) + sizeof(struct key *) * max; 835 836 ret = -ENOMEM; 837 nklist = kmalloc(size, GFP_KERNEL); 838 if (!nklist) 839 goto error_quota; 840 841 nklist->maxkeys = max; 842 if (klist) { 843 memcpy(nklist->keys, klist->keys, 844 sizeof(struct key *) * klist->nkeys); 845 nklist->delkey = klist->nkeys; 846 nklist->nkeys = klist->nkeys + 1; 847 klist->delkey = USHRT_MAX; 848 } else { 849 nklist->nkeys = 1; 850 nklist->delkey = 0; 851 } 852 853 /* add the key into the new space */ 854 RCU_INIT_POINTER(nklist->keys[nklist->delkey], NULL); 855 prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA; 856 } 857 858 done: 859 *_prealloc = prealloc; 860 kleave(" = 0"); 861 return 0; 862 863 error_quota: 864 /* undo the quota changes */ 865 key_payload_reserve(keyring, 866 keyring->datalen - KEYQUOTA_LINK_BYTES); 867 error_sem: 868 if (index_key->type == &key_type_keyring) 869 up_write(&keyring_serialise_link_sem); 870 error_krsem: 871 up_write(&keyring->sem); 872 kleave(" = %d", ret); 873 return ret; 874 } 875 876 /* 877 * Check already instantiated keys aren't going to be a problem. 878 * 879 * The caller must have called __key_link_begin(). Don't need to call this for 880 * keys that were created since __key_link_begin() was called. 881 */ 882 int __key_link_check_live_key(struct key *keyring, struct key *key) 883 { 884 if (key->type == &key_type_keyring) 885 /* check that we aren't going to create a cycle by linking one 886 * keyring to another */ 887 return keyring_detect_cycle(keyring, key); 888 return 0; 889 } 890 891 /* 892 * Link a key into to a keyring. 893 * 894 * Must be called with __key_link_begin() having being called. Discards any 895 * already extant link to matching key if there is one, so that each keyring 896 * holds at most one link to any given key of a particular type+description 897 * combination. 898 */ 899 void __key_link(struct key *keyring, struct key *key, 900 unsigned long *_prealloc) 901 { 902 struct keyring_list *klist, *nklist; 903 struct key *discard; 904 905 nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA); 906 *_prealloc = 0; 907 908 kenter("%d,%d,%p", keyring->serial, key->serial, nklist); 909 910 klist = rcu_dereference_locked_keyring(keyring); 911 912 __key_get(key); 913 keyring->last_used_at = key->last_used_at = 914 current_kernel_time().tv_sec; 915 916 /* there's a matching key we can displace or an empty slot in a newly 917 * allocated list we can fill */ 918 if (nklist) { 919 kdebug("reissue %hu/%hu/%hu", 920 nklist->delkey, nklist->nkeys, nklist->maxkeys); 921 922 RCU_INIT_POINTER(nklist->keys[nklist->delkey], key); 923 924 rcu_assign_pointer(keyring->payload.subscriptions, nklist); 925 926 /* dispose of the old keyring list and, if there was one, the 927 * displaced key */ 928 if (klist) { 929 kdebug("dispose %hu/%hu/%hu", 930 klist->delkey, klist->nkeys, klist->maxkeys); 931 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal); 932 } 933 } else if (klist->delkey < klist->nkeys) { 934 kdebug("replace %hu/%hu/%hu", 935 klist->delkey, klist->nkeys, klist->maxkeys); 936 937 discard = rcu_dereference_protected( 938 klist->keys[klist->delkey], 939 rwsem_is_locked(&keyring->sem)); 940 rcu_assign_pointer(klist->keys[klist->delkey], key); 941 /* The garbage collector will take care of RCU 942 * synchronisation */ 943 key_put(discard); 944 } else { 945 /* there's sufficient slack space to append directly */ 946 kdebug("append %hu/%hu/%hu", 947 klist->delkey, klist->nkeys, klist->maxkeys); 948 949 RCU_INIT_POINTER(klist->keys[klist->delkey], key); 950 smp_wmb(); 951 klist->nkeys++; 952 } 953 } 954 955 /* 956 * Finish linking a key into to a keyring. 957 * 958 * Must be called with __key_link_begin() having being called. 959 */ 960 void __key_link_end(struct key *keyring, 961 const struct keyring_index_key *index_key, 962 unsigned long prealloc) 963 __releases(&keyring->sem) 964 __releases(&keyring_serialise_link_sem) 965 { 966 BUG_ON(index_key->type == NULL); 967 BUG_ON(index_key->type->name == NULL); 968 kenter("%d,%s,%lx", keyring->serial, index_key->type->name, prealloc); 969 970 if (index_key->type == &key_type_keyring) 971 up_write(&keyring_serialise_link_sem); 972 973 if (prealloc) { 974 if (prealloc & KEY_LINK_FIXQUOTA) 975 key_payload_reserve(keyring, 976 keyring->datalen - 977 KEYQUOTA_LINK_BYTES); 978 kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA)); 979 } 980 up_write(&keyring->sem); 981 } 982 983 /** 984 * key_link - Link a key to a keyring 985 * @keyring: The keyring to make the link in. 986 * @key: The key to link to. 987 * 988 * Make a link in a keyring to a key, such that the keyring holds a reference 989 * on that key and the key can potentially be found by searching that keyring. 990 * 991 * This function will write-lock the keyring's semaphore and will consume some 992 * of the user's key data quota to hold the link. 993 * 994 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, 995 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is 996 * full, -EDQUOT if there is insufficient key data quota remaining to add 997 * another link or -ENOMEM if there's insufficient memory. 998 * 999 * It is assumed that the caller has checked that it is permitted for a link to 1000 * be made (the keyring should have Write permission and the key Link 1001 * permission). 1002 */ 1003 int key_link(struct key *keyring, struct key *key) 1004 { 1005 unsigned long prealloc; 1006 int ret; 1007 1008 key_check(keyring); 1009 key_check(key); 1010 1011 ret = __key_link_begin(keyring, &key->index_key, &prealloc); 1012 if (ret == 0) { 1013 ret = __key_link_check_live_key(keyring, key); 1014 if (ret == 0) 1015 __key_link(keyring, key, &prealloc); 1016 __key_link_end(keyring, &key->index_key, prealloc); 1017 } 1018 1019 return ret; 1020 } 1021 EXPORT_SYMBOL(key_link); 1022 1023 /** 1024 * key_unlink - Unlink the first link to a key from a keyring. 1025 * @keyring: The keyring to remove the link from. 1026 * @key: The key the link is to. 1027 * 1028 * Remove a link from a keyring to a key. 1029 * 1030 * This function will write-lock the keyring's semaphore. 1031 * 1032 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if 1033 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient 1034 * memory. 1035 * 1036 * It is assumed that the caller has checked that it is permitted for a link to 1037 * be removed (the keyring should have Write permission; no permissions are 1038 * required on the key). 1039 */ 1040 int key_unlink(struct key *keyring, struct key *key) 1041 { 1042 struct keyring_list *klist, *nklist; 1043 int loop, ret; 1044 1045 key_check(keyring); 1046 key_check(key); 1047 1048 ret = -ENOTDIR; 1049 if (keyring->type != &key_type_keyring) 1050 goto error; 1051 1052 down_write(&keyring->sem); 1053 1054 klist = rcu_dereference_locked_keyring(keyring); 1055 if (klist) { 1056 /* search the keyring for the key */ 1057 for (loop = 0; loop < klist->nkeys; loop++) 1058 if (rcu_access_pointer(klist->keys[loop]) == key) 1059 goto key_is_present; 1060 } 1061 1062 up_write(&keyring->sem); 1063 ret = -ENOENT; 1064 goto error; 1065 1066 key_is_present: 1067 /* we need to copy the key list for RCU purposes */ 1068 nklist = kmalloc(sizeof(*klist) + 1069 sizeof(struct key *) * klist->maxkeys, 1070 GFP_KERNEL); 1071 if (!nklist) 1072 goto nomem; 1073 nklist->maxkeys = klist->maxkeys; 1074 nklist->nkeys = klist->nkeys - 1; 1075 1076 if (loop > 0) 1077 memcpy(&nklist->keys[0], 1078 &klist->keys[0], 1079 loop * sizeof(struct key *)); 1080 1081 if (loop < nklist->nkeys) 1082 memcpy(&nklist->keys[loop], 1083 &klist->keys[loop + 1], 1084 (nklist->nkeys - loop) * sizeof(struct key *)); 1085 1086 /* adjust the user's quota */ 1087 key_payload_reserve(keyring, 1088 keyring->datalen - KEYQUOTA_LINK_BYTES); 1089 1090 rcu_assign_pointer(keyring->payload.subscriptions, nklist); 1091 1092 up_write(&keyring->sem); 1093 1094 /* schedule for later cleanup */ 1095 klist->delkey = loop; 1096 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal); 1097 1098 ret = 0; 1099 1100 error: 1101 return ret; 1102 nomem: 1103 ret = -ENOMEM; 1104 up_write(&keyring->sem); 1105 goto error; 1106 } 1107 EXPORT_SYMBOL(key_unlink); 1108 1109 /* 1110 * Dispose of a keyring list after the RCU grace period, releasing the keys it 1111 * links to. 1112 */ 1113 static void keyring_clear_rcu_disposal(struct rcu_head *rcu) 1114 { 1115 struct keyring_list *klist; 1116 int loop; 1117 1118 klist = container_of(rcu, struct keyring_list, rcu); 1119 1120 for (loop = klist->nkeys - 1; loop >= 0; loop--) 1121 key_put(rcu_access_pointer(klist->keys[loop])); 1122 1123 kfree(klist); 1124 } 1125 1126 /** 1127 * keyring_clear - Clear a keyring 1128 * @keyring: The keyring to clear. 1129 * 1130 * Clear the contents of the specified keyring. 1131 * 1132 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. 1133 */ 1134 int keyring_clear(struct key *keyring) 1135 { 1136 struct keyring_list *klist; 1137 int ret; 1138 1139 ret = -ENOTDIR; 1140 if (keyring->type == &key_type_keyring) { 1141 /* detach the pointer block with the locks held */ 1142 down_write(&keyring->sem); 1143 1144 klist = rcu_dereference_locked_keyring(keyring); 1145 if (klist) { 1146 /* adjust the quota */ 1147 key_payload_reserve(keyring, 1148 sizeof(struct keyring_list)); 1149 1150 rcu_assign_pointer(keyring->payload.subscriptions, 1151 NULL); 1152 } 1153 1154 up_write(&keyring->sem); 1155 1156 /* free the keys after the locks have been dropped */ 1157 if (klist) 1158 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1159 1160 ret = 0; 1161 } 1162 1163 return ret; 1164 } 1165 EXPORT_SYMBOL(keyring_clear); 1166 1167 /* 1168 * Dispose of the links from a revoked keyring. 1169 * 1170 * This is called with the key sem write-locked. 1171 */ 1172 static void keyring_revoke(struct key *keyring) 1173 { 1174 struct keyring_list *klist; 1175 1176 klist = rcu_dereference_locked_keyring(keyring); 1177 1178 /* adjust the quota */ 1179 key_payload_reserve(keyring, 0); 1180 1181 if (klist) { 1182 rcu_assign_pointer(keyring->payload.subscriptions, NULL); 1183 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1184 } 1185 } 1186 1187 /* 1188 * Collect garbage from the contents of a keyring, replacing the old list with 1189 * a new one with the pointers all shuffled down. 1190 * 1191 * Dead keys are classed as oned that are flagged as being dead or are revoked, 1192 * expired or negative keys that were revoked or expired before the specified 1193 * limit. 1194 */ 1195 void keyring_gc(struct key *keyring, time_t limit) 1196 { 1197 struct keyring_list *klist, *new; 1198 struct key *key; 1199 int loop, keep, max; 1200 1201 kenter("{%x,%s}", key_serial(keyring), keyring->description); 1202 1203 down_write(&keyring->sem); 1204 1205 klist = rcu_dereference_locked_keyring(keyring); 1206 if (!klist) 1207 goto no_klist; 1208 1209 /* work out how many subscriptions we're keeping */ 1210 keep = 0; 1211 for (loop = klist->nkeys - 1; loop >= 0; loop--) 1212 if (!key_is_dead(rcu_deref_link_locked(klist, loop, keyring), 1213 limit)) 1214 keep++; 1215 1216 if (keep == klist->nkeys) 1217 goto just_return; 1218 1219 /* allocate a new keyring payload */ 1220 max = roundup(keep, 4); 1221 new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *), 1222 GFP_KERNEL); 1223 if (!new) 1224 goto nomem; 1225 new->maxkeys = max; 1226 new->nkeys = 0; 1227 new->delkey = 0; 1228 1229 /* install the live keys 1230 * - must take care as expired keys may be updated back to life 1231 */ 1232 keep = 0; 1233 for (loop = klist->nkeys - 1; loop >= 0; loop--) { 1234 key = rcu_deref_link_locked(klist, loop, keyring); 1235 if (!key_is_dead(key, limit)) { 1236 if (keep >= max) 1237 goto discard_new; 1238 RCU_INIT_POINTER(new->keys[keep++], key_get(key)); 1239 } 1240 } 1241 new->nkeys = keep; 1242 1243 /* adjust the quota */ 1244 key_payload_reserve(keyring, 1245 sizeof(struct keyring_list) + 1246 KEYQUOTA_LINK_BYTES * keep); 1247 1248 if (keep == 0) { 1249 rcu_assign_pointer(keyring->payload.subscriptions, NULL); 1250 kfree(new); 1251 } else { 1252 rcu_assign_pointer(keyring->payload.subscriptions, new); 1253 } 1254 1255 up_write(&keyring->sem); 1256 1257 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1258 kleave(" [yes]"); 1259 return; 1260 1261 discard_new: 1262 new->nkeys = keep; 1263 keyring_clear_rcu_disposal(&new->rcu); 1264 up_write(&keyring->sem); 1265 kleave(" [discard]"); 1266 return; 1267 1268 just_return: 1269 up_write(&keyring->sem); 1270 kleave(" [no dead]"); 1271 return; 1272 1273 no_klist: 1274 up_write(&keyring->sem); 1275 kleave(" [no_klist]"); 1276 return; 1277 1278 nomem: 1279 up_write(&keyring->sem); 1280 kleave(" [oom]"); 1281 } 1282