xref: /openbmc/linux/security/keys/key.c (revision f606b9ac4abbe56816eee1941dccae9b6d3d8952)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
3  *
4  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/ima.h>
17 #include <linux/err.h>
18 #include "internal.h"
19 
20 struct kmem_cache *key_jar;
21 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
22 DEFINE_SPINLOCK(key_serial_lock);
23 
24 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
25 DEFINE_SPINLOCK(key_user_lock);
26 
27 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
30 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
31 
32 static LIST_HEAD(key_types_list);
33 static DECLARE_RWSEM(key_types_sem);
34 
35 /* We serialise key instantiation and link */
36 DEFINE_MUTEX(key_construction_mutex);
37 
38 #ifdef KEY_DEBUGGING
39 void __key_check(const struct key *key)
40 {
41 	printk("__key_check: key %p {%08x} should be {%08x}\n",
42 	       key, key->magic, KEY_DEBUG_MAGIC);
43 	BUG();
44 }
45 #endif
46 
47 /*
48  * Get the key quota record for a user, allocating a new record if one doesn't
49  * already exist.
50  */
51 struct key_user *key_user_lookup(kuid_t uid)
52 {
53 	struct key_user *candidate = NULL, *user;
54 	struct rb_node *parent, **p;
55 
56 try_again:
57 	parent = NULL;
58 	p = &key_user_tree.rb_node;
59 	spin_lock(&key_user_lock);
60 
61 	/* search the tree for a user record with a matching UID */
62 	while (*p) {
63 		parent = *p;
64 		user = rb_entry(parent, struct key_user, node);
65 
66 		if (uid_lt(uid, user->uid))
67 			p = &(*p)->rb_left;
68 		else if (uid_gt(uid, user->uid))
69 			p = &(*p)->rb_right;
70 		else
71 			goto found;
72 	}
73 
74 	/* if we get here, we failed to find a match in the tree */
75 	if (!candidate) {
76 		/* allocate a candidate user record if we don't already have
77 		 * one */
78 		spin_unlock(&key_user_lock);
79 
80 		user = NULL;
81 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82 		if (unlikely(!candidate))
83 			goto out;
84 
85 		/* the allocation may have scheduled, so we need to repeat the
86 		 * search lest someone else added the record whilst we were
87 		 * asleep */
88 		goto try_again;
89 	}
90 
91 	/* if we get here, then the user record still hadn't appeared on the
92 	 * second pass - so we use the candidate record */
93 	refcount_set(&candidate->usage, 1);
94 	atomic_set(&candidate->nkeys, 0);
95 	atomic_set(&candidate->nikeys, 0);
96 	candidate->uid = uid;
97 	candidate->qnkeys = 0;
98 	candidate->qnbytes = 0;
99 	spin_lock_init(&candidate->lock);
100 	mutex_init(&candidate->cons_lock);
101 
102 	rb_link_node(&candidate->node, parent, p);
103 	rb_insert_color(&candidate->node, &key_user_tree);
104 	spin_unlock(&key_user_lock);
105 	user = candidate;
106 	goto out;
107 
108 	/* okay - we found a user record for this UID */
109 found:
110 	refcount_inc(&user->usage);
111 	spin_unlock(&key_user_lock);
112 	kfree(candidate);
113 out:
114 	return user;
115 }
116 
117 /*
118  * Dispose of a user structure
119  */
120 void key_user_put(struct key_user *user)
121 {
122 	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123 		rb_erase(&user->node, &key_user_tree);
124 		spin_unlock(&key_user_lock);
125 
126 		kfree(user);
127 	}
128 }
129 
130 /*
131  * Allocate a serial number for a key.  These are assigned randomly to avoid
132  * security issues through covert channel problems.
133  */
134 static inline void key_alloc_serial(struct key *key)
135 {
136 	struct rb_node *parent, **p;
137 	struct key *xkey;
138 
139 	/* propose a random serial number and look for a hole for it in the
140 	 * serial number tree */
141 	do {
142 		get_random_bytes(&key->serial, sizeof(key->serial));
143 
144 		key->serial >>= 1; /* negative numbers are not permitted */
145 	} while (key->serial < 3);
146 
147 	spin_lock(&key_serial_lock);
148 
149 attempt_insertion:
150 	parent = NULL;
151 	p = &key_serial_tree.rb_node;
152 
153 	while (*p) {
154 		parent = *p;
155 		xkey = rb_entry(parent, struct key, serial_node);
156 
157 		if (key->serial < xkey->serial)
158 			p = &(*p)->rb_left;
159 		else if (key->serial > xkey->serial)
160 			p = &(*p)->rb_right;
161 		else
162 			goto serial_exists;
163 	}
164 
165 	/* we've found a suitable hole - arrange for this key to occupy it */
166 	rb_link_node(&key->serial_node, parent, p);
167 	rb_insert_color(&key->serial_node, &key_serial_tree);
168 
169 	spin_unlock(&key_serial_lock);
170 	return;
171 
172 	/* we found a key with the proposed serial number - walk the tree from
173 	 * that point looking for the next unused serial number */
174 serial_exists:
175 	for (;;) {
176 		key->serial++;
177 		if (key->serial < 3) {
178 			key->serial = 3;
179 			goto attempt_insertion;
180 		}
181 
182 		parent = rb_next(parent);
183 		if (!parent)
184 			goto attempt_insertion;
185 
186 		xkey = rb_entry(parent, struct key, serial_node);
187 		if (key->serial < xkey->serial)
188 			goto attempt_insertion;
189 	}
190 }
191 
192 /**
193  * key_alloc - Allocate a key of the specified type.
194  * @type: The type of key to allocate.
195  * @desc: The key description to allow the key to be searched out.
196  * @uid: The owner of the new key.
197  * @gid: The group ID for the new key's group permissions.
198  * @cred: The credentials specifying UID namespace.
199  * @perm: The permissions mask of the new key.
200  * @flags: Flags specifying quota properties.
201  * @restrict_link: Optional link restriction for new keyrings.
202  *
203  * Allocate a key of the specified type with the attributes given.  The key is
204  * returned in an uninstantiated state and the caller needs to instantiate the
205  * key before returning.
206  *
207  * The restrict_link structure (if not NULL) will be freed when the
208  * keyring is destroyed, so it must be dynamically allocated.
209  *
210  * The user's key count quota is updated to reflect the creation of the key and
211  * the user's key data quota has the default for the key type reserved.  The
212  * instantiation function should amend this as necessary.  If insufficient
213  * quota is available, -EDQUOT will be returned.
214  *
215  * The LSM security modules can prevent a key being created, in which case
216  * -EACCES will be returned.
217  *
218  * Returns a pointer to the new key if successful and an error code otherwise.
219  *
220  * Note that the caller needs to ensure the key type isn't uninstantiated.
221  * Internally this can be done by locking key_types_sem.  Externally, this can
222  * be done by either never unregistering the key type, or making sure
223  * key_alloc() calls don't race with module unloading.
224  */
225 struct key *key_alloc(struct key_type *type, const char *desc,
226 		      kuid_t uid, kgid_t gid, const struct cred *cred,
227 		      key_perm_t perm, unsigned long flags,
228 		      struct key_restriction *restrict_link)
229 {
230 	struct key_user *user = NULL;
231 	struct key *key;
232 	size_t desclen, quotalen;
233 	int ret;
234 
235 	key = ERR_PTR(-EINVAL);
236 	if (!desc || !*desc)
237 		goto error;
238 
239 	if (type->vet_description) {
240 		ret = type->vet_description(desc);
241 		if (ret < 0) {
242 			key = ERR_PTR(ret);
243 			goto error;
244 		}
245 	}
246 
247 	desclen = strlen(desc);
248 	quotalen = desclen + 1 + type->def_datalen;
249 
250 	/* get hold of the key tracking for this user */
251 	user = key_user_lookup(uid);
252 	if (!user)
253 		goto no_memory_1;
254 
255 	/* check that the user's quota permits allocation of another key and
256 	 * its description */
257 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 			key_quota_root_maxkeys : key_quota_maxkeys;
260 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 			key_quota_root_maxbytes : key_quota_maxbytes;
262 
263 		spin_lock(&user->lock);
264 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 			if (user->qnkeys + 1 > maxkeys ||
266 			    user->qnbytes + quotalen > maxbytes ||
267 			    user->qnbytes + quotalen < user->qnbytes)
268 				goto no_quota;
269 		}
270 
271 		user->qnkeys++;
272 		user->qnbytes += quotalen;
273 		spin_unlock(&user->lock);
274 	}
275 
276 	/* allocate and initialise the key and its description */
277 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278 	if (!key)
279 		goto no_memory_2;
280 
281 	key->index_key.desc_len = desclen;
282 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 	if (!key->index_key.description)
284 		goto no_memory_3;
285 	key->index_key.type = type;
286 	key_set_index_key(&key->index_key);
287 
288 	refcount_set(&key->usage, 1);
289 	init_rwsem(&key->sem);
290 	lockdep_set_class(&key->sem, &type->lock_class);
291 	key->user = user;
292 	key->quotalen = quotalen;
293 	key->datalen = type->def_datalen;
294 	key->uid = uid;
295 	key->gid = gid;
296 	key->perm = perm;
297 	key->expiry = TIME64_MAX;
298 	key->restrict_link = restrict_link;
299 	key->last_used_at = ktime_get_real_seconds();
300 
301 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 	if (flags & KEY_ALLOC_BUILT_IN)
304 		key->flags |= 1 << KEY_FLAG_BUILTIN;
305 	if (flags & KEY_ALLOC_UID_KEYRING)
306 		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307 	if (flags & KEY_ALLOC_SET_KEEP)
308 		key->flags |= 1 << KEY_FLAG_KEEP;
309 
310 #ifdef KEY_DEBUGGING
311 	key->magic = KEY_DEBUG_MAGIC;
312 #endif
313 
314 	/* let the security module know about the key */
315 	ret = security_key_alloc(key, cred, flags);
316 	if (ret < 0)
317 		goto security_error;
318 
319 	/* publish the key by giving it a serial number */
320 	refcount_inc(&key->domain_tag->usage);
321 	atomic_inc(&user->nkeys);
322 	key_alloc_serial(key);
323 
324 error:
325 	return key;
326 
327 security_error:
328 	kfree(key->description);
329 	kmem_cache_free(key_jar, key);
330 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
331 		spin_lock(&user->lock);
332 		user->qnkeys--;
333 		user->qnbytes -= quotalen;
334 		spin_unlock(&user->lock);
335 	}
336 	key_user_put(user);
337 	key = ERR_PTR(ret);
338 	goto error;
339 
340 no_memory_3:
341 	kmem_cache_free(key_jar, key);
342 no_memory_2:
343 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
344 		spin_lock(&user->lock);
345 		user->qnkeys--;
346 		user->qnbytes -= quotalen;
347 		spin_unlock(&user->lock);
348 	}
349 	key_user_put(user);
350 no_memory_1:
351 	key = ERR_PTR(-ENOMEM);
352 	goto error;
353 
354 no_quota:
355 	spin_unlock(&user->lock);
356 	key_user_put(user);
357 	key = ERR_PTR(-EDQUOT);
358 	goto error;
359 }
360 EXPORT_SYMBOL(key_alloc);
361 
362 /**
363  * key_payload_reserve - Adjust data quota reservation for the key's payload
364  * @key: The key to make the reservation for.
365  * @datalen: The amount of data payload the caller now wants.
366  *
367  * Adjust the amount of the owning user's key data quota that a key reserves.
368  * If the amount is increased, then -EDQUOT may be returned if there isn't
369  * enough free quota available.
370  *
371  * If successful, 0 is returned.
372  */
373 int key_payload_reserve(struct key *key, size_t datalen)
374 {
375 	int delta = (int)datalen - key->datalen;
376 	int ret = 0;
377 
378 	key_check(key);
379 
380 	/* contemplate the quota adjustment */
381 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
382 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
383 			key_quota_root_maxbytes : key_quota_maxbytes;
384 
385 		spin_lock(&key->user->lock);
386 
387 		if (delta > 0 &&
388 		    (key->user->qnbytes + delta > maxbytes ||
389 		     key->user->qnbytes + delta < key->user->qnbytes)) {
390 			ret = -EDQUOT;
391 		}
392 		else {
393 			key->user->qnbytes += delta;
394 			key->quotalen += delta;
395 		}
396 		spin_unlock(&key->user->lock);
397 	}
398 
399 	/* change the recorded data length if that didn't generate an error */
400 	if (ret == 0)
401 		key->datalen = datalen;
402 
403 	return ret;
404 }
405 EXPORT_SYMBOL(key_payload_reserve);
406 
407 /*
408  * Change the key state to being instantiated.
409  */
410 static void mark_key_instantiated(struct key *key, int reject_error)
411 {
412 	/* Commit the payload before setting the state; barrier versus
413 	 * key_read_state().
414 	 */
415 	smp_store_release(&key->state,
416 			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
417 }
418 
419 /*
420  * Instantiate a key and link it into the target keyring atomically.  Must be
421  * called with the target keyring's semaphore writelocked.  The target key's
422  * semaphore need not be locked as instantiation is serialised by
423  * key_construction_mutex.
424  */
425 static int __key_instantiate_and_link(struct key *key,
426 				      struct key_preparsed_payload *prep,
427 				      struct key *keyring,
428 				      struct key *authkey,
429 				      struct assoc_array_edit **_edit)
430 {
431 	int ret, awaken;
432 
433 	key_check(key);
434 	key_check(keyring);
435 
436 	awaken = 0;
437 	ret = -EBUSY;
438 
439 	mutex_lock(&key_construction_mutex);
440 
441 	/* can't instantiate twice */
442 	if (key->state == KEY_IS_UNINSTANTIATED) {
443 		/* instantiate the key */
444 		ret = key->type->instantiate(key, prep);
445 
446 		if (ret == 0) {
447 			/* mark the key as being instantiated */
448 			atomic_inc(&key->user->nikeys);
449 			mark_key_instantiated(key, 0);
450 			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
451 
452 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
453 				awaken = 1;
454 
455 			/* and link it into the destination keyring */
456 			if (keyring) {
457 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
458 					set_bit(KEY_FLAG_KEEP, &key->flags);
459 
460 				__key_link(keyring, key, _edit);
461 			}
462 
463 			/* disable the authorisation key */
464 			if (authkey)
465 				key_invalidate(authkey);
466 
467 			if (prep->expiry != TIME64_MAX)
468 				key_set_expiry(key, prep->expiry);
469 		}
470 	}
471 
472 	mutex_unlock(&key_construction_mutex);
473 
474 	/* wake up anyone waiting for a key to be constructed */
475 	if (awaken)
476 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
477 
478 	return ret;
479 }
480 
481 /**
482  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
483  * @key: The key to instantiate.
484  * @data: The data to use to instantiate the keyring.
485  * @datalen: The length of @data.
486  * @keyring: Keyring to create a link in on success (or NULL).
487  * @authkey: The authorisation token permitting instantiation.
488  *
489  * Instantiate a key that's in the uninstantiated state using the provided data
490  * and, if successful, link it in to the destination keyring if one is
491  * supplied.
492  *
493  * If successful, 0 is returned, the authorisation token is revoked and anyone
494  * waiting for the key is woken up.  If the key was already instantiated,
495  * -EBUSY will be returned.
496  */
497 int key_instantiate_and_link(struct key *key,
498 			     const void *data,
499 			     size_t datalen,
500 			     struct key *keyring,
501 			     struct key *authkey)
502 {
503 	struct key_preparsed_payload prep;
504 	struct assoc_array_edit *edit = NULL;
505 	int ret;
506 
507 	memset(&prep, 0, sizeof(prep));
508 	prep.orig_description = key->description;
509 	prep.data = data;
510 	prep.datalen = datalen;
511 	prep.quotalen = key->type->def_datalen;
512 	prep.expiry = TIME64_MAX;
513 	if (key->type->preparse) {
514 		ret = key->type->preparse(&prep);
515 		if (ret < 0)
516 			goto error;
517 	}
518 
519 	if (keyring) {
520 		ret = __key_link_lock(keyring, &key->index_key);
521 		if (ret < 0)
522 			goto error;
523 
524 		ret = __key_link_begin(keyring, &key->index_key, &edit);
525 		if (ret < 0)
526 			goto error_link_end;
527 
528 		if (keyring->restrict_link && keyring->restrict_link->check) {
529 			struct key_restriction *keyres = keyring->restrict_link;
530 
531 			ret = keyres->check(keyring, key->type, &prep.payload,
532 					    keyres->key);
533 			if (ret < 0)
534 				goto error_link_end;
535 		}
536 	}
537 
538 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
539 
540 error_link_end:
541 	if (keyring)
542 		__key_link_end(keyring, &key->index_key, edit);
543 
544 error:
545 	if (key->type->preparse)
546 		key->type->free_preparse(&prep);
547 	return ret;
548 }
549 
550 EXPORT_SYMBOL(key_instantiate_and_link);
551 
552 /**
553  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
554  * @key: The key to instantiate.
555  * @timeout: The timeout on the negative key.
556  * @error: The error to return when the key is hit.
557  * @keyring: Keyring to create a link in on success (or NULL).
558  * @authkey: The authorisation token permitting instantiation.
559  *
560  * Negatively instantiate a key that's in the uninstantiated state and, if
561  * successful, set its timeout and stored error and link it in to the
562  * destination keyring if one is supplied.  The key and any links to the key
563  * will be automatically garbage collected after the timeout expires.
564  *
565  * Negative keys are used to rate limit repeated request_key() calls by causing
566  * them to return the stored error code (typically ENOKEY) until the negative
567  * key expires.
568  *
569  * If successful, 0 is returned, the authorisation token is revoked and anyone
570  * waiting for the key is woken up.  If the key was already instantiated,
571  * -EBUSY will be returned.
572  */
573 int key_reject_and_link(struct key *key,
574 			unsigned timeout,
575 			unsigned error,
576 			struct key *keyring,
577 			struct key *authkey)
578 {
579 	struct assoc_array_edit *edit = NULL;
580 	int ret, awaken, link_ret = 0;
581 
582 	key_check(key);
583 	key_check(keyring);
584 
585 	awaken = 0;
586 	ret = -EBUSY;
587 
588 	if (keyring) {
589 		if (keyring->restrict_link)
590 			return -EPERM;
591 
592 		link_ret = __key_link_lock(keyring, &key->index_key);
593 		if (link_ret == 0) {
594 			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
595 			if (link_ret < 0)
596 				__key_link_end(keyring, &key->index_key, edit);
597 		}
598 	}
599 
600 	mutex_lock(&key_construction_mutex);
601 
602 	/* can't instantiate twice */
603 	if (key->state == KEY_IS_UNINSTANTIATED) {
604 		/* mark the key as being negatively instantiated */
605 		atomic_inc(&key->user->nikeys);
606 		mark_key_instantiated(key, -error);
607 		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
608 		key_set_expiry(key, ktime_get_real_seconds() + timeout);
609 
610 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
611 			awaken = 1;
612 
613 		ret = 0;
614 
615 		/* and link it into the destination keyring */
616 		if (keyring && link_ret == 0)
617 			__key_link(keyring, key, &edit);
618 
619 		/* disable the authorisation key */
620 		if (authkey)
621 			key_invalidate(authkey);
622 	}
623 
624 	mutex_unlock(&key_construction_mutex);
625 
626 	if (keyring && link_ret == 0)
627 		__key_link_end(keyring, &key->index_key, edit);
628 
629 	/* wake up anyone waiting for a key to be constructed */
630 	if (awaken)
631 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
632 
633 	return ret == 0 ? link_ret : ret;
634 }
635 EXPORT_SYMBOL(key_reject_and_link);
636 
637 /**
638  * key_put - Discard a reference to a key.
639  * @key: The key to discard a reference from.
640  *
641  * Discard a reference to a key, and when all the references are gone, we
642  * schedule the cleanup task to come and pull it out of the tree in process
643  * context at some later time.
644  */
645 void key_put(struct key *key)
646 {
647 	if (key) {
648 		key_check(key);
649 
650 		if (refcount_dec_and_test(&key->usage))
651 			schedule_work(&key_gc_work);
652 	}
653 }
654 EXPORT_SYMBOL(key_put);
655 
656 /*
657  * Find a key by its serial number.
658  */
659 struct key *key_lookup(key_serial_t id)
660 {
661 	struct rb_node *n;
662 	struct key *key;
663 
664 	spin_lock(&key_serial_lock);
665 
666 	/* search the tree for the specified key */
667 	n = key_serial_tree.rb_node;
668 	while (n) {
669 		key = rb_entry(n, struct key, serial_node);
670 
671 		if (id < key->serial)
672 			n = n->rb_left;
673 		else if (id > key->serial)
674 			n = n->rb_right;
675 		else
676 			goto found;
677 	}
678 
679 not_found:
680 	key = ERR_PTR(-ENOKEY);
681 	goto error;
682 
683 found:
684 	/* A key is allowed to be looked up only if someone still owns a
685 	 * reference to it - otherwise it's awaiting the gc.
686 	 */
687 	if (!refcount_inc_not_zero(&key->usage))
688 		goto not_found;
689 
690 error:
691 	spin_unlock(&key_serial_lock);
692 	return key;
693 }
694 
695 /*
696  * Find and lock the specified key type against removal.
697  *
698  * We return with the sem read-locked if successful.  If the type wasn't
699  * available -ENOKEY is returned instead.
700  */
701 struct key_type *key_type_lookup(const char *type)
702 {
703 	struct key_type *ktype;
704 
705 	down_read(&key_types_sem);
706 
707 	/* look up the key type to see if it's one of the registered kernel
708 	 * types */
709 	list_for_each_entry(ktype, &key_types_list, link) {
710 		if (strcmp(ktype->name, type) == 0)
711 			goto found_kernel_type;
712 	}
713 
714 	up_read(&key_types_sem);
715 	ktype = ERR_PTR(-ENOKEY);
716 
717 found_kernel_type:
718 	return ktype;
719 }
720 
721 void key_set_timeout(struct key *key, unsigned timeout)
722 {
723 	time64_t expiry = TIME64_MAX;
724 
725 	/* make the changes with the locks held to prevent races */
726 	down_write(&key->sem);
727 
728 	if (timeout > 0)
729 		expiry = ktime_get_real_seconds() + timeout;
730 	key_set_expiry(key, expiry);
731 
732 	up_write(&key->sem);
733 }
734 EXPORT_SYMBOL_GPL(key_set_timeout);
735 
736 /*
737  * Unlock a key type locked by key_type_lookup().
738  */
739 void key_type_put(struct key_type *ktype)
740 {
741 	up_read(&key_types_sem);
742 }
743 
744 /*
745  * Attempt to update an existing key.
746  *
747  * The key is given to us with an incremented refcount that we need to discard
748  * if we get an error.
749  */
750 static inline key_ref_t __key_update(key_ref_t key_ref,
751 				     struct key_preparsed_payload *prep)
752 {
753 	struct key *key = key_ref_to_ptr(key_ref);
754 	int ret;
755 
756 	/* need write permission on the key to update it */
757 	ret = key_permission(key_ref, KEY_NEED_WRITE);
758 	if (ret < 0)
759 		goto error;
760 
761 	ret = -EEXIST;
762 	if (!key->type->update)
763 		goto error;
764 
765 	down_write(&key->sem);
766 
767 	ret = key->type->update(key, prep);
768 	if (ret == 0) {
769 		/* Updating a negative key positively instantiates it */
770 		mark_key_instantiated(key, 0);
771 		notify_key(key, NOTIFY_KEY_UPDATED, 0);
772 	}
773 
774 	up_write(&key->sem);
775 
776 	if (ret < 0)
777 		goto error;
778 out:
779 	return key_ref;
780 
781 error:
782 	key_put(key);
783 	key_ref = ERR_PTR(ret);
784 	goto out;
785 }
786 
787 /*
788  * Create or potentially update a key. The combined logic behind
789  * key_create_or_update() and key_create()
790  */
791 static key_ref_t __key_create_or_update(key_ref_t keyring_ref,
792 					const char *type,
793 					const char *description,
794 					const void *payload,
795 					size_t plen,
796 					key_perm_t perm,
797 					unsigned long flags,
798 					bool allow_update)
799 {
800 	struct keyring_index_key index_key = {
801 		.description	= description,
802 	};
803 	struct key_preparsed_payload prep;
804 	struct assoc_array_edit *edit = NULL;
805 	const struct cred *cred = current_cred();
806 	struct key *keyring, *key = NULL;
807 	key_ref_t key_ref;
808 	int ret;
809 	struct key_restriction *restrict_link = NULL;
810 
811 	/* look up the key type to see if it's one of the registered kernel
812 	 * types */
813 	index_key.type = key_type_lookup(type);
814 	if (IS_ERR(index_key.type)) {
815 		key_ref = ERR_PTR(-ENODEV);
816 		goto error;
817 	}
818 
819 	key_ref = ERR_PTR(-EINVAL);
820 	if (!index_key.type->instantiate ||
821 	    (!index_key.description && !index_key.type->preparse))
822 		goto error_put_type;
823 
824 	keyring = key_ref_to_ptr(keyring_ref);
825 
826 	key_check(keyring);
827 
828 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
829 		restrict_link = keyring->restrict_link;
830 
831 	key_ref = ERR_PTR(-ENOTDIR);
832 	if (keyring->type != &key_type_keyring)
833 		goto error_put_type;
834 
835 	memset(&prep, 0, sizeof(prep));
836 	prep.orig_description = description;
837 	prep.data = payload;
838 	prep.datalen = plen;
839 	prep.quotalen = index_key.type->def_datalen;
840 	prep.expiry = TIME64_MAX;
841 	if (index_key.type->preparse) {
842 		ret = index_key.type->preparse(&prep);
843 		if (ret < 0) {
844 			key_ref = ERR_PTR(ret);
845 			goto error_free_prep;
846 		}
847 		if (!index_key.description)
848 			index_key.description = prep.description;
849 		key_ref = ERR_PTR(-EINVAL);
850 		if (!index_key.description)
851 			goto error_free_prep;
852 	}
853 	index_key.desc_len = strlen(index_key.description);
854 	key_set_index_key(&index_key);
855 
856 	ret = __key_link_lock(keyring, &index_key);
857 	if (ret < 0) {
858 		key_ref = ERR_PTR(ret);
859 		goto error_free_prep;
860 	}
861 
862 	ret = __key_link_begin(keyring, &index_key, &edit);
863 	if (ret < 0) {
864 		key_ref = ERR_PTR(ret);
865 		goto error_link_end;
866 	}
867 
868 	if (restrict_link && restrict_link->check) {
869 		ret = restrict_link->check(keyring, index_key.type,
870 					   &prep.payload, restrict_link->key);
871 		if (ret < 0) {
872 			key_ref = ERR_PTR(ret);
873 			goto error_link_end;
874 		}
875 	}
876 
877 	/* if we're going to allocate a new key, we're going to have
878 	 * to modify the keyring */
879 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
880 	if (ret < 0) {
881 		key_ref = ERR_PTR(ret);
882 		goto error_link_end;
883 	}
884 
885 	/* if it's requested and possible to update this type of key, search
886 	 * for an existing key of the same type and description in the
887 	 * destination keyring and update that instead if possible
888 	 */
889 	if (allow_update) {
890 		if (index_key.type->update) {
891 			key_ref = find_key_to_update(keyring_ref, &index_key);
892 			if (key_ref)
893 				goto found_matching_key;
894 		}
895 	} else {
896 		key_ref = find_key_to_update(keyring_ref, &index_key);
897 		if (key_ref) {
898 			key_ref_put(key_ref);
899 			key_ref = ERR_PTR(-EEXIST);
900 			goto error_link_end;
901 		}
902 	}
903 
904 	/* if the client doesn't provide, decide on the permissions we want */
905 	if (perm == KEY_PERM_UNDEF) {
906 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
907 		perm |= KEY_USR_VIEW;
908 
909 		if (index_key.type->read)
910 			perm |= KEY_POS_READ;
911 
912 		if (index_key.type == &key_type_keyring ||
913 		    index_key.type->update)
914 			perm |= KEY_POS_WRITE;
915 	}
916 
917 	/* allocate a new key */
918 	key = key_alloc(index_key.type, index_key.description,
919 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
920 	if (IS_ERR(key)) {
921 		key_ref = ERR_CAST(key);
922 		goto error_link_end;
923 	}
924 
925 	/* instantiate it and link it into the target keyring */
926 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
927 	if (ret < 0) {
928 		key_put(key);
929 		key_ref = ERR_PTR(ret);
930 		goto error_link_end;
931 	}
932 
933 	ima_post_key_create_or_update(keyring, key, payload, plen,
934 				      flags, true);
935 
936 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
937 
938 error_link_end:
939 	__key_link_end(keyring, &index_key, edit);
940 error_free_prep:
941 	if (index_key.type->preparse)
942 		index_key.type->free_preparse(&prep);
943 error_put_type:
944 	key_type_put(index_key.type);
945 error:
946 	return key_ref;
947 
948  found_matching_key:
949 	/* we found a matching key, so we're going to try to update it
950 	 * - we can drop the locks first as we have the key pinned
951 	 */
952 	__key_link_end(keyring, &index_key, edit);
953 
954 	key = key_ref_to_ptr(key_ref);
955 	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
956 		ret = wait_for_key_construction(key, true);
957 		if (ret < 0) {
958 			key_ref_put(key_ref);
959 			key_ref = ERR_PTR(ret);
960 			goto error_free_prep;
961 		}
962 	}
963 
964 	key_ref = __key_update(key_ref, &prep);
965 
966 	if (!IS_ERR(key_ref))
967 		ima_post_key_create_or_update(keyring, key,
968 					      payload, plen,
969 					      flags, false);
970 
971 	goto error_free_prep;
972 }
973 
974 /**
975  * key_create_or_update - Update or create and instantiate a key.
976  * @keyring_ref: A pointer to the destination keyring with possession flag.
977  * @type: The type of key.
978  * @description: The searchable description for the key.
979  * @payload: The data to use to instantiate or update the key.
980  * @plen: The length of @payload.
981  * @perm: The permissions mask for a new key.
982  * @flags: The quota flags for a new key.
983  *
984  * Search the destination keyring for a key of the same description and if one
985  * is found, update it, otherwise create and instantiate a new one and create a
986  * link to it from that keyring.
987  *
988  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
989  * concocted.
990  *
991  * Returns a pointer to the new key if successful, -ENODEV if the key type
992  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
993  * caller isn't permitted to modify the keyring or the LSM did not permit
994  * creation of the key.
995  *
996  * On success, the possession flag from the keyring ref will be tacked on to
997  * the key ref before it is returned.
998  */
999 key_ref_t key_create_or_update(key_ref_t keyring_ref,
1000 			       const char *type,
1001 			       const char *description,
1002 			       const void *payload,
1003 			       size_t plen,
1004 			       key_perm_t perm,
1005 			       unsigned long flags)
1006 {
1007 	return __key_create_or_update(keyring_ref, type, description, payload,
1008 				      plen, perm, flags, true);
1009 }
1010 EXPORT_SYMBOL(key_create_or_update);
1011 
1012 /**
1013  * key_create - Create and instantiate a key.
1014  * @keyring_ref: A pointer to the destination keyring with possession flag.
1015  * @type: The type of key.
1016  * @description: The searchable description for the key.
1017  * @payload: The data to use to instantiate or update the key.
1018  * @plen: The length of @payload.
1019  * @perm: The permissions mask for a new key.
1020  * @flags: The quota flags for a new key.
1021  *
1022  * Create and instantiate a new key and link to it from the destination keyring.
1023  *
1024  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
1025  * concocted.
1026  *
1027  * Returns a pointer to the new key if successful, -EEXIST if a key with the
1028  * same description already exists, -ENODEV if the key type wasn't available,
1029  * -ENOTDIR if the keyring wasn't a keyring, -EACCES if the caller isn't
1030  * permitted to modify the keyring or the LSM did not permit creation of the
1031  * key.
1032  *
1033  * On success, the possession flag from the keyring ref will be tacked on to
1034  * the key ref before it is returned.
1035  */
1036 key_ref_t key_create(key_ref_t keyring_ref,
1037 		     const char *type,
1038 		     const char *description,
1039 		     const void *payload,
1040 		     size_t plen,
1041 		     key_perm_t perm,
1042 		     unsigned long flags)
1043 {
1044 	return __key_create_or_update(keyring_ref, type, description, payload,
1045 				      plen, perm, flags, false);
1046 }
1047 EXPORT_SYMBOL(key_create);
1048 
1049 /**
1050  * key_update - Update a key's contents.
1051  * @key_ref: The pointer (plus possession flag) to the key.
1052  * @payload: The data to be used to update the key.
1053  * @plen: The length of @payload.
1054  *
1055  * Attempt to update the contents of a key with the given payload data.  The
1056  * caller must be granted Write permission on the key.  Negative keys can be
1057  * instantiated by this method.
1058  *
1059  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1060  * type does not support updating.  The key type may return other errors.
1061  */
1062 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1063 {
1064 	struct key_preparsed_payload prep;
1065 	struct key *key = key_ref_to_ptr(key_ref);
1066 	int ret;
1067 
1068 	key_check(key);
1069 
1070 	/* the key must be writable */
1071 	ret = key_permission(key_ref, KEY_NEED_WRITE);
1072 	if (ret < 0)
1073 		return ret;
1074 
1075 	/* attempt to update it if supported */
1076 	if (!key->type->update)
1077 		return -EOPNOTSUPP;
1078 
1079 	memset(&prep, 0, sizeof(prep));
1080 	prep.data = payload;
1081 	prep.datalen = plen;
1082 	prep.quotalen = key->type->def_datalen;
1083 	prep.expiry = TIME64_MAX;
1084 	if (key->type->preparse) {
1085 		ret = key->type->preparse(&prep);
1086 		if (ret < 0)
1087 			goto error;
1088 	}
1089 
1090 	down_write(&key->sem);
1091 
1092 	ret = key->type->update(key, &prep);
1093 	if (ret == 0) {
1094 		/* Updating a negative key positively instantiates it */
1095 		mark_key_instantiated(key, 0);
1096 		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1097 	}
1098 
1099 	up_write(&key->sem);
1100 
1101 error:
1102 	if (key->type->preparse)
1103 		key->type->free_preparse(&prep);
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL(key_update);
1107 
1108 /**
1109  * key_revoke - Revoke a key.
1110  * @key: The key to be revoked.
1111  *
1112  * Mark a key as being revoked and ask the type to free up its resources.  The
1113  * revocation timeout is set and the key and all its links will be
1114  * automatically garbage collected after key_gc_delay amount of time if they
1115  * are not manually dealt with first.
1116  */
1117 void key_revoke(struct key *key)
1118 {
1119 	time64_t time;
1120 
1121 	key_check(key);
1122 
1123 	/* make sure no one's trying to change or use the key when we mark it
1124 	 * - we tell lockdep that we might nest because we might be revoking an
1125 	 *   authorisation key whilst holding the sem on a key we've just
1126 	 *   instantiated
1127 	 */
1128 	down_write_nested(&key->sem, 1);
1129 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1130 		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1131 		if (key->type->revoke)
1132 			key->type->revoke(key);
1133 
1134 		/* set the death time to no more than the expiry time */
1135 		time = ktime_get_real_seconds();
1136 		if (key->revoked_at == 0 || key->revoked_at > time) {
1137 			key->revoked_at = time;
1138 			key_schedule_gc(key->revoked_at + key_gc_delay);
1139 		}
1140 	}
1141 
1142 	up_write(&key->sem);
1143 }
1144 EXPORT_SYMBOL(key_revoke);
1145 
1146 /**
1147  * key_invalidate - Invalidate a key.
1148  * @key: The key to be invalidated.
1149  *
1150  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1151  * is ignored by all searches and other operations from this point.
1152  */
1153 void key_invalidate(struct key *key)
1154 {
1155 	kenter("%d", key_serial(key));
1156 
1157 	key_check(key);
1158 
1159 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1160 		down_write_nested(&key->sem, 1);
1161 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1162 			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1163 			key_schedule_gc_links();
1164 		}
1165 		up_write(&key->sem);
1166 	}
1167 }
1168 EXPORT_SYMBOL(key_invalidate);
1169 
1170 /**
1171  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1172  * @key: The key to be instantiated
1173  * @prep: The preparsed data to load.
1174  *
1175  * Instantiate a key from preparsed data.  We assume we can just copy the data
1176  * in directly and clear the old pointers.
1177  *
1178  * This can be pointed to directly by the key type instantiate op pointer.
1179  */
1180 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1181 {
1182 	int ret;
1183 
1184 	pr_devel("==>%s()\n", __func__);
1185 
1186 	ret = key_payload_reserve(key, prep->quotalen);
1187 	if (ret == 0) {
1188 		rcu_assign_keypointer(key, prep->payload.data[0]);
1189 		key->payload.data[1] = prep->payload.data[1];
1190 		key->payload.data[2] = prep->payload.data[2];
1191 		key->payload.data[3] = prep->payload.data[3];
1192 		prep->payload.data[0] = NULL;
1193 		prep->payload.data[1] = NULL;
1194 		prep->payload.data[2] = NULL;
1195 		prep->payload.data[3] = NULL;
1196 	}
1197 	pr_devel("<==%s() = %d\n", __func__, ret);
1198 	return ret;
1199 }
1200 EXPORT_SYMBOL(generic_key_instantiate);
1201 
1202 /**
1203  * register_key_type - Register a type of key.
1204  * @ktype: The new key type.
1205  *
1206  * Register a new key type.
1207  *
1208  * Returns 0 on success or -EEXIST if a type of this name already exists.
1209  */
1210 int register_key_type(struct key_type *ktype)
1211 {
1212 	struct key_type *p;
1213 	int ret;
1214 
1215 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1216 
1217 	ret = -EEXIST;
1218 	down_write(&key_types_sem);
1219 
1220 	/* disallow key types with the same name */
1221 	list_for_each_entry(p, &key_types_list, link) {
1222 		if (strcmp(p->name, ktype->name) == 0)
1223 			goto out;
1224 	}
1225 
1226 	/* store the type */
1227 	list_add(&ktype->link, &key_types_list);
1228 
1229 	pr_notice("Key type %s registered\n", ktype->name);
1230 	ret = 0;
1231 
1232 out:
1233 	up_write(&key_types_sem);
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL(register_key_type);
1237 
1238 /**
1239  * unregister_key_type - Unregister a type of key.
1240  * @ktype: The key type.
1241  *
1242  * Unregister a key type and mark all the extant keys of this type as dead.
1243  * Those keys of this type are then destroyed to get rid of their payloads and
1244  * they and their links will be garbage collected as soon as possible.
1245  */
1246 void unregister_key_type(struct key_type *ktype)
1247 {
1248 	down_write(&key_types_sem);
1249 	list_del_init(&ktype->link);
1250 	downgrade_write(&key_types_sem);
1251 	key_gc_keytype(ktype);
1252 	pr_notice("Key type %s unregistered\n", ktype->name);
1253 	up_read(&key_types_sem);
1254 }
1255 EXPORT_SYMBOL(unregister_key_type);
1256 
1257 /*
1258  * Initialise the key management state.
1259  */
1260 void __init key_init(void)
1261 {
1262 	/* allocate a slab in which we can store keys */
1263 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1264 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1265 
1266 	/* add the special key types */
1267 	list_add_tail(&key_type_keyring.link, &key_types_list);
1268 	list_add_tail(&key_type_dead.link, &key_types_list);
1269 	list_add_tail(&key_type_user.link, &key_types_list);
1270 	list_add_tail(&key_type_logon.link, &key_types_list);
1271 
1272 	/* record the root user tracking */
1273 	rb_link_node(&root_key_user.node,
1274 		     NULL,
1275 		     &key_user_tree.rb_node);
1276 
1277 	rb_insert_color(&root_key_user.node,
1278 			&key_user_tree);
1279 }
1280