1 /* Basic authentication token and access key management 2 * 3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/poison.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/security.h> 18 #include <linux/workqueue.h> 19 #include <linux/random.h> 20 #include <linux/err.h> 21 #include "internal.h" 22 23 struct kmem_cache *key_jar; 24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */ 25 DEFINE_SPINLOCK(key_serial_lock); 26 27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */ 28 DEFINE_SPINLOCK(key_user_lock); 29 30 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */ 31 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */ 32 unsigned int key_quota_maxkeys = 200; /* general key count quota */ 33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */ 34 35 static LIST_HEAD(key_types_list); 36 static DECLARE_RWSEM(key_types_sem); 37 38 /* We serialise key instantiation and link */ 39 DEFINE_MUTEX(key_construction_mutex); 40 41 #ifdef KEY_DEBUGGING 42 void __key_check(const struct key *key) 43 { 44 printk("__key_check: key %p {%08x} should be {%08x}\n", 45 key, key->magic, KEY_DEBUG_MAGIC); 46 BUG(); 47 } 48 #endif 49 50 /* 51 * Get the key quota record for a user, allocating a new record if one doesn't 52 * already exist. 53 */ 54 struct key_user *key_user_lookup(kuid_t uid) 55 { 56 struct key_user *candidate = NULL, *user; 57 struct rb_node *parent = NULL; 58 struct rb_node **p; 59 60 try_again: 61 p = &key_user_tree.rb_node; 62 spin_lock(&key_user_lock); 63 64 /* search the tree for a user record with a matching UID */ 65 while (*p) { 66 parent = *p; 67 user = rb_entry(parent, struct key_user, node); 68 69 if (uid_lt(uid, user->uid)) 70 p = &(*p)->rb_left; 71 else if (uid_gt(uid, user->uid)) 72 p = &(*p)->rb_right; 73 else 74 goto found; 75 } 76 77 /* if we get here, we failed to find a match in the tree */ 78 if (!candidate) { 79 /* allocate a candidate user record if we don't already have 80 * one */ 81 spin_unlock(&key_user_lock); 82 83 user = NULL; 84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL); 85 if (unlikely(!candidate)) 86 goto out; 87 88 /* the allocation may have scheduled, so we need to repeat the 89 * search lest someone else added the record whilst we were 90 * asleep */ 91 goto try_again; 92 } 93 94 /* if we get here, then the user record still hadn't appeared on the 95 * second pass - so we use the candidate record */ 96 atomic_set(&candidate->usage, 1); 97 atomic_set(&candidate->nkeys, 0); 98 atomic_set(&candidate->nikeys, 0); 99 candidate->uid = uid; 100 candidate->qnkeys = 0; 101 candidate->qnbytes = 0; 102 spin_lock_init(&candidate->lock); 103 mutex_init(&candidate->cons_lock); 104 105 rb_link_node(&candidate->node, parent, p); 106 rb_insert_color(&candidate->node, &key_user_tree); 107 spin_unlock(&key_user_lock); 108 user = candidate; 109 goto out; 110 111 /* okay - we found a user record for this UID */ 112 found: 113 atomic_inc(&user->usage); 114 spin_unlock(&key_user_lock); 115 kfree(candidate); 116 out: 117 return user; 118 } 119 120 /* 121 * Dispose of a user structure 122 */ 123 void key_user_put(struct key_user *user) 124 { 125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) { 126 rb_erase(&user->node, &key_user_tree); 127 spin_unlock(&key_user_lock); 128 129 kfree(user); 130 } 131 } 132 133 /* 134 * Allocate a serial number for a key. These are assigned randomly to avoid 135 * security issues through covert channel problems. 136 */ 137 static inline void key_alloc_serial(struct key *key) 138 { 139 struct rb_node *parent, **p; 140 struct key *xkey; 141 142 /* propose a random serial number and look for a hole for it in the 143 * serial number tree */ 144 do { 145 get_random_bytes(&key->serial, sizeof(key->serial)); 146 147 key->serial >>= 1; /* negative numbers are not permitted */ 148 } while (key->serial < 3); 149 150 spin_lock(&key_serial_lock); 151 152 attempt_insertion: 153 parent = NULL; 154 p = &key_serial_tree.rb_node; 155 156 while (*p) { 157 parent = *p; 158 xkey = rb_entry(parent, struct key, serial_node); 159 160 if (key->serial < xkey->serial) 161 p = &(*p)->rb_left; 162 else if (key->serial > xkey->serial) 163 p = &(*p)->rb_right; 164 else 165 goto serial_exists; 166 } 167 168 /* we've found a suitable hole - arrange for this key to occupy it */ 169 rb_link_node(&key->serial_node, parent, p); 170 rb_insert_color(&key->serial_node, &key_serial_tree); 171 172 spin_unlock(&key_serial_lock); 173 return; 174 175 /* we found a key with the proposed serial number - walk the tree from 176 * that point looking for the next unused serial number */ 177 serial_exists: 178 for (;;) { 179 key->serial++; 180 if (key->serial < 3) { 181 key->serial = 3; 182 goto attempt_insertion; 183 } 184 185 parent = rb_next(parent); 186 if (!parent) 187 goto attempt_insertion; 188 189 xkey = rb_entry(parent, struct key, serial_node); 190 if (key->serial < xkey->serial) 191 goto attempt_insertion; 192 } 193 } 194 195 /** 196 * key_alloc - Allocate a key of the specified type. 197 * @type: The type of key to allocate. 198 * @desc: The key description to allow the key to be searched out. 199 * @uid: The owner of the new key. 200 * @gid: The group ID for the new key's group permissions. 201 * @cred: The credentials specifying UID namespace. 202 * @perm: The permissions mask of the new key. 203 * @flags: Flags specifying quota properties. 204 * 205 * Allocate a key of the specified type with the attributes given. The key is 206 * returned in an uninstantiated state and the caller needs to instantiate the 207 * key before returning. 208 * 209 * The user's key count quota is updated to reflect the creation of the key and 210 * the user's key data quota has the default for the key type reserved. The 211 * instantiation function should amend this as necessary. If insufficient 212 * quota is available, -EDQUOT will be returned. 213 * 214 * The LSM security modules can prevent a key being created, in which case 215 * -EACCES will be returned. 216 * 217 * Returns a pointer to the new key if successful and an error code otherwise. 218 * 219 * Note that the caller needs to ensure the key type isn't uninstantiated. 220 * Internally this can be done by locking key_types_sem. Externally, this can 221 * be done by either never unregistering the key type, or making sure 222 * key_alloc() calls don't race with module unloading. 223 */ 224 struct key *key_alloc(struct key_type *type, const char *desc, 225 kuid_t uid, kgid_t gid, const struct cred *cred, 226 key_perm_t perm, unsigned long flags) 227 { 228 struct key_user *user = NULL; 229 struct key *key; 230 size_t desclen, quotalen; 231 int ret; 232 233 key = ERR_PTR(-EINVAL); 234 if (!desc || !*desc) 235 goto error; 236 237 if (type->vet_description) { 238 ret = type->vet_description(desc); 239 if (ret < 0) { 240 key = ERR_PTR(ret); 241 goto error; 242 } 243 } 244 245 desclen = strlen(desc); 246 quotalen = desclen + 1 + type->def_datalen; 247 248 /* get hold of the key tracking for this user */ 249 user = key_user_lookup(uid); 250 if (!user) 251 goto no_memory_1; 252 253 /* check that the user's quota permits allocation of another key and 254 * its description */ 255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ? 257 key_quota_root_maxkeys : key_quota_maxkeys; 258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ? 259 key_quota_root_maxbytes : key_quota_maxbytes; 260 261 spin_lock(&user->lock); 262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) { 263 if (user->qnkeys + 1 >= maxkeys || 264 user->qnbytes + quotalen >= maxbytes || 265 user->qnbytes + quotalen < user->qnbytes) 266 goto no_quota; 267 } 268 269 user->qnkeys++; 270 user->qnbytes += quotalen; 271 spin_unlock(&user->lock); 272 } 273 274 /* allocate and initialise the key and its description */ 275 key = kmem_cache_alloc(key_jar, GFP_KERNEL); 276 if (!key) 277 goto no_memory_2; 278 279 if (desc) { 280 key->index_key.desc_len = desclen; 281 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL); 282 if (!key->description) 283 goto no_memory_3; 284 } 285 286 atomic_set(&key->usage, 1); 287 init_rwsem(&key->sem); 288 lockdep_set_class(&key->sem, &type->lock_class); 289 key->index_key.type = type; 290 key->user = user; 291 key->quotalen = quotalen; 292 key->datalen = type->def_datalen; 293 key->uid = uid; 294 key->gid = gid; 295 key->perm = perm; 296 key->flags = 0; 297 key->expiry = 0; 298 key->payload.data = NULL; 299 key->security = NULL; 300 301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) 302 key->flags |= 1 << KEY_FLAG_IN_QUOTA; 303 304 memset(&key->type_data, 0, sizeof(key->type_data)); 305 306 #ifdef KEY_DEBUGGING 307 key->magic = KEY_DEBUG_MAGIC; 308 #endif 309 310 /* let the security module know about the key */ 311 ret = security_key_alloc(key, cred, flags); 312 if (ret < 0) 313 goto security_error; 314 315 /* publish the key by giving it a serial number */ 316 atomic_inc(&user->nkeys); 317 key_alloc_serial(key); 318 319 error: 320 return key; 321 322 security_error: 323 kfree(key->description); 324 kmem_cache_free(key_jar, key); 325 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 326 spin_lock(&user->lock); 327 user->qnkeys--; 328 user->qnbytes -= quotalen; 329 spin_unlock(&user->lock); 330 } 331 key_user_put(user); 332 key = ERR_PTR(ret); 333 goto error; 334 335 no_memory_3: 336 kmem_cache_free(key_jar, key); 337 no_memory_2: 338 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) { 339 spin_lock(&user->lock); 340 user->qnkeys--; 341 user->qnbytes -= quotalen; 342 spin_unlock(&user->lock); 343 } 344 key_user_put(user); 345 no_memory_1: 346 key = ERR_PTR(-ENOMEM); 347 goto error; 348 349 no_quota: 350 spin_unlock(&user->lock); 351 key_user_put(user); 352 key = ERR_PTR(-EDQUOT); 353 goto error; 354 } 355 EXPORT_SYMBOL(key_alloc); 356 357 /** 358 * key_payload_reserve - Adjust data quota reservation for the key's payload 359 * @key: The key to make the reservation for. 360 * @datalen: The amount of data payload the caller now wants. 361 * 362 * Adjust the amount of the owning user's key data quota that a key reserves. 363 * If the amount is increased, then -EDQUOT may be returned if there isn't 364 * enough free quota available. 365 * 366 * If successful, 0 is returned. 367 */ 368 int key_payload_reserve(struct key *key, size_t datalen) 369 { 370 int delta = (int)datalen - key->datalen; 371 int ret = 0; 372 373 key_check(key); 374 375 /* contemplate the quota adjustment */ 376 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) { 377 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ? 378 key_quota_root_maxbytes : key_quota_maxbytes; 379 380 spin_lock(&key->user->lock); 381 382 if (delta > 0 && 383 (key->user->qnbytes + delta >= maxbytes || 384 key->user->qnbytes + delta < key->user->qnbytes)) { 385 ret = -EDQUOT; 386 } 387 else { 388 key->user->qnbytes += delta; 389 key->quotalen += delta; 390 } 391 spin_unlock(&key->user->lock); 392 } 393 394 /* change the recorded data length if that didn't generate an error */ 395 if (ret == 0) 396 key->datalen = datalen; 397 398 return ret; 399 } 400 EXPORT_SYMBOL(key_payload_reserve); 401 402 /* 403 * Instantiate a key and link it into the target keyring atomically. Must be 404 * called with the target keyring's semaphore writelocked. The target key's 405 * semaphore need not be locked as instantiation is serialised by 406 * key_construction_mutex. 407 */ 408 static int __key_instantiate_and_link(struct key *key, 409 struct key_preparsed_payload *prep, 410 struct key *keyring, 411 struct key *authkey, 412 unsigned long *_prealloc) 413 { 414 int ret, awaken; 415 416 key_check(key); 417 key_check(keyring); 418 419 awaken = 0; 420 ret = -EBUSY; 421 422 mutex_lock(&key_construction_mutex); 423 424 /* can't instantiate twice */ 425 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 426 /* instantiate the key */ 427 ret = key->type->instantiate(key, prep); 428 429 if (ret == 0) { 430 /* mark the key as being instantiated */ 431 atomic_inc(&key->user->nikeys); 432 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 433 434 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 435 awaken = 1; 436 437 /* and link it into the destination keyring */ 438 if (keyring) 439 __key_link(keyring, key, _prealloc); 440 441 /* disable the authorisation key */ 442 if (authkey) 443 key_revoke(authkey); 444 } 445 } 446 447 mutex_unlock(&key_construction_mutex); 448 449 /* wake up anyone waiting for a key to be constructed */ 450 if (awaken) 451 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 452 453 return ret; 454 } 455 456 /** 457 * key_instantiate_and_link - Instantiate a key and link it into the keyring. 458 * @key: The key to instantiate. 459 * @data: The data to use to instantiate the keyring. 460 * @datalen: The length of @data. 461 * @keyring: Keyring to create a link in on success (or NULL). 462 * @authkey: The authorisation token permitting instantiation. 463 * 464 * Instantiate a key that's in the uninstantiated state using the provided data 465 * and, if successful, link it in to the destination keyring if one is 466 * supplied. 467 * 468 * If successful, 0 is returned, the authorisation token is revoked and anyone 469 * waiting for the key is woken up. If the key was already instantiated, 470 * -EBUSY will be returned. 471 */ 472 int key_instantiate_and_link(struct key *key, 473 const void *data, 474 size_t datalen, 475 struct key *keyring, 476 struct key *authkey) 477 { 478 struct key_preparsed_payload prep; 479 unsigned long prealloc; 480 int ret; 481 482 memset(&prep, 0, sizeof(prep)); 483 prep.data = data; 484 prep.datalen = datalen; 485 prep.quotalen = key->type->def_datalen; 486 if (key->type->preparse) { 487 ret = key->type->preparse(&prep); 488 if (ret < 0) 489 goto error; 490 } 491 492 if (keyring) { 493 ret = __key_link_begin(keyring, &key->index_key, &prealloc); 494 if (ret < 0) 495 goto error_free_preparse; 496 } 497 498 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, 499 &prealloc); 500 501 if (keyring) 502 __key_link_end(keyring, &key->index_key, prealloc); 503 504 error_free_preparse: 505 if (key->type->preparse) 506 key->type->free_preparse(&prep); 507 error: 508 return ret; 509 } 510 511 EXPORT_SYMBOL(key_instantiate_and_link); 512 513 /** 514 * key_reject_and_link - Negatively instantiate a key and link it into the keyring. 515 * @key: The key to instantiate. 516 * @timeout: The timeout on the negative key. 517 * @error: The error to return when the key is hit. 518 * @keyring: Keyring to create a link in on success (or NULL). 519 * @authkey: The authorisation token permitting instantiation. 520 * 521 * Negatively instantiate a key that's in the uninstantiated state and, if 522 * successful, set its timeout and stored error and link it in to the 523 * destination keyring if one is supplied. The key and any links to the key 524 * will be automatically garbage collected after the timeout expires. 525 * 526 * Negative keys are used to rate limit repeated request_key() calls by causing 527 * them to return the stored error code (typically ENOKEY) until the negative 528 * key expires. 529 * 530 * If successful, 0 is returned, the authorisation token is revoked and anyone 531 * waiting for the key is woken up. If the key was already instantiated, 532 * -EBUSY will be returned. 533 */ 534 int key_reject_and_link(struct key *key, 535 unsigned timeout, 536 unsigned error, 537 struct key *keyring, 538 struct key *authkey) 539 { 540 unsigned long prealloc; 541 struct timespec now; 542 int ret, awaken, link_ret = 0; 543 544 key_check(key); 545 key_check(keyring); 546 547 awaken = 0; 548 ret = -EBUSY; 549 550 if (keyring) 551 link_ret = __key_link_begin(keyring, &key->index_key, &prealloc); 552 553 mutex_lock(&key_construction_mutex); 554 555 /* can't instantiate twice */ 556 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) { 557 /* mark the key as being negatively instantiated */ 558 atomic_inc(&key->user->nikeys); 559 set_bit(KEY_FLAG_NEGATIVE, &key->flags); 560 set_bit(KEY_FLAG_INSTANTIATED, &key->flags); 561 key->type_data.reject_error = -error; 562 now = current_kernel_time(); 563 key->expiry = now.tv_sec + timeout; 564 key_schedule_gc(key->expiry + key_gc_delay); 565 566 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) 567 awaken = 1; 568 569 ret = 0; 570 571 /* and link it into the destination keyring */ 572 if (keyring && link_ret == 0) 573 __key_link(keyring, key, &prealloc); 574 575 /* disable the authorisation key */ 576 if (authkey) 577 key_revoke(authkey); 578 } 579 580 mutex_unlock(&key_construction_mutex); 581 582 if (keyring) 583 __key_link_end(keyring, &key->index_key, prealloc); 584 585 /* wake up anyone waiting for a key to be constructed */ 586 if (awaken) 587 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT); 588 589 return ret == 0 ? link_ret : ret; 590 } 591 EXPORT_SYMBOL(key_reject_and_link); 592 593 /** 594 * key_put - Discard a reference to a key. 595 * @key: The key to discard a reference from. 596 * 597 * Discard a reference to a key, and when all the references are gone, we 598 * schedule the cleanup task to come and pull it out of the tree in process 599 * context at some later time. 600 */ 601 void key_put(struct key *key) 602 { 603 if (key) { 604 key_check(key); 605 606 if (atomic_dec_and_test(&key->usage)) 607 schedule_work(&key_gc_work); 608 } 609 } 610 EXPORT_SYMBOL(key_put); 611 612 /* 613 * Find a key by its serial number. 614 */ 615 struct key *key_lookup(key_serial_t id) 616 { 617 struct rb_node *n; 618 struct key *key; 619 620 spin_lock(&key_serial_lock); 621 622 /* search the tree for the specified key */ 623 n = key_serial_tree.rb_node; 624 while (n) { 625 key = rb_entry(n, struct key, serial_node); 626 627 if (id < key->serial) 628 n = n->rb_left; 629 else if (id > key->serial) 630 n = n->rb_right; 631 else 632 goto found; 633 } 634 635 not_found: 636 key = ERR_PTR(-ENOKEY); 637 goto error; 638 639 found: 640 /* pretend it doesn't exist if it is awaiting deletion */ 641 if (atomic_read(&key->usage) == 0) 642 goto not_found; 643 644 /* this races with key_put(), but that doesn't matter since key_put() 645 * doesn't actually change the key 646 */ 647 __key_get(key); 648 649 error: 650 spin_unlock(&key_serial_lock); 651 return key; 652 } 653 654 /* 655 * Find and lock the specified key type against removal. 656 * 657 * We return with the sem read-locked if successful. If the type wasn't 658 * available -ENOKEY is returned instead. 659 */ 660 struct key_type *key_type_lookup(const char *type) 661 { 662 struct key_type *ktype; 663 664 down_read(&key_types_sem); 665 666 /* look up the key type to see if it's one of the registered kernel 667 * types */ 668 list_for_each_entry(ktype, &key_types_list, link) { 669 if (strcmp(ktype->name, type) == 0) 670 goto found_kernel_type; 671 } 672 673 up_read(&key_types_sem); 674 ktype = ERR_PTR(-ENOKEY); 675 676 found_kernel_type: 677 return ktype; 678 } 679 680 void key_set_timeout(struct key *key, unsigned timeout) 681 { 682 struct timespec now; 683 time_t expiry = 0; 684 685 /* make the changes with the locks held to prevent races */ 686 down_write(&key->sem); 687 688 if (timeout > 0) { 689 now = current_kernel_time(); 690 expiry = now.tv_sec + timeout; 691 } 692 693 key->expiry = expiry; 694 key_schedule_gc(key->expiry + key_gc_delay); 695 696 up_write(&key->sem); 697 } 698 EXPORT_SYMBOL_GPL(key_set_timeout); 699 700 /* 701 * Unlock a key type locked by key_type_lookup(). 702 */ 703 void key_type_put(struct key_type *ktype) 704 { 705 up_read(&key_types_sem); 706 } 707 708 /* 709 * Attempt to update an existing key. 710 * 711 * The key is given to us with an incremented refcount that we need to discard 712 * if we get an error. 713 */ 714 static inline key_ref_t __key_update(key_ref_t key_ref, 715 struct key_preparsed_payload *prep) 716 { 717 struct key *key = key_ref_to_ptr(key_ref); 718 int ret; 719 720 /* need write permission on the key to update it */ 721 ret = key_permission(key_ref, KEY_WRITE); 722 if (ret < 0) 723 goto error; 724 725 ret = -EEXIST; 726 if (!key->type->update) 727 goto error; 728 729 down_write(&key->sem); 730 731 ret = key->type->update(key, prep); 732 if (ret == 0) 733 /* updating a negative key instantiates it */ 734 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 735 736 up_write(&key->sem); 737 738 if (ret < 0) 739 goto error; 740 out: 741 return key_ref; 742 743 error: 744 key_put(key); 745 key_ref = ERR_PTR(ret); 746 goto out; 747 } 748 749 /** 750 * key_create_or_update - Update or create and instantiate a key. 751 * @keyring_ref: A pointer to the destination keyring with possession flag. 752 * @type: The type of key. 753 * @description: The searchable description for the key. 754 * @payload: The data to use to instantiate or update the key. 755 * @plen: The length of @payload. 756 * @perm: The permissions mask for a new key. 757 * @flags: The quota flags for a new key. 758 * 759 * Search the destination keyring for a key of the same description and if one 760 * is found, update it, otherwise create and instantiate a new one and create a 761 * link to it from that keyring. 762 * 763 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be 764 * concocted. 765 * 766 * Returns a pointer to the new key if successful, -ENODEV if the key type 767 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the 768 * caller isn't permitted to modify the keyring or the LSM did not permit 769 * creation of the key. 770 * 771 * On success, the possession flag from the keyring ref will be tacked on to 772 * the key ref before it is returned. 773 */ 774 key_ref_t key_create_or_update(key_ref_t keyring_ref, 775 const char *type, 776 const char *description, 777 const void *payload, 778 size_t plen, 779 key_perm_t perm, 780 unsigned long flags) 781 { 782 struct keyring_index_key index_key = { 783 .description = description, 784 }; 785 struct key_preparsed_payload prep; 786 const struct cred *cred = current_cred(); 787 unsigned long prealloc; 788 struct key *keyring, *key = NULL; 789 key_ref_t key_ref; 790 int ret; 791 792 /* look up the key type to see if it's one of the registered kernel 793 * types */ 794 index_key.type = key_type_lookup(type); 795 if (IS_ERR(index_key.type)) { 796 key_ref = ERR_PTR(-ENODEV); 797 goto error; 798 } 799 800 key_ref = ERR_PTR(-EINVAL); 801 if (!index_key.type->match || !index_key.type->instantiate || 802 (!index_key.description && !index_key.type->preparse)) 803 goto error_put_type; 804 805 keyring = key_ref_to_ptr(keyring_ref); 806 807 key_check(keyring); 808 809 key_ref = ERR_PTR(-ENOTDIR); 810 if (keyring->type != &key_type_keyring) 811 goto error_put_type; 812 813 memset(&prep, 0, sizeof(prep)); 814 prep.data = payload; 815 prep.datalen = plen; 816 prep.quotalen = index_key.type->def_datalen; 817 if (index_key.type->preparse) { 818 ret = index_key.type->preparse(&prep); 819 if (ret < 0) { 820 key_ref = ERR_PTR(ret); 821 goto error_put_type; 822 } 823 if (!index_key.description) 824 index_key.description = prep.description; 825 key_ref = ERR_PTR(-EINVAL); 826 if (!index_key.description) 827 goto error_free_prep; 828 } 829 index_key.desc_len = strlen(index_key.description); 830 831 ret = __key_link_begin(keyring, &index_key, &prealloc); 832 if (ret < 0) { 833 key_ref = ERR_PTR(ret); 834 goto error_free_prep; 835 } 836 837 /* if we're going to allocate a new key, we're going to have 838 * to modify the keyring */ 839 ret = key_permission(keyring_ref, KEY_WRITE); 840 if (ret < 0) { 841 key_ref = ERR_PTR(ret); 842 goto error_link_end; 843 } 844 845 /* if it's possible to update this type of key, search for an existing 846 * key of the same type and description in the destination keyring and 847 * update that instead if possible 848 */ 849 if (index_key.type->update) { 850 key_ref = __keyring_search_one(keyring_ref, &index_key); 851 if (!IS_ERR(key_ref)) 852 goto found_matching_key; 853 } 854 855 /* if the client doesn't provide, decide on the permissions we want */ 856 if (perm == KEY_PERM_UNDEF) { 857 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 858 perm |= KEY_USR_VIEW; 859 860 if (index_key.type->read) 861 perm |= KEY_POS_READ; 862 863 if (index_key.type == &key_type_keyring || 864 index_key.type->update) 865 perm |= KEY_POS_WRITE; 866 } 867 868 /* allocate a new key */ 869 key = key_alloc(index_key.type, index_key.description, 870 cred->fsuid, cred->fsgid, cred, perm, flags); 871 if (IS_ERR(key)) { 872 key_ref = ERR_CAST(key); 873 goto error_link_end; 874 } 875 876 /* instantiate it and link it into the target keyring */ 877 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &prealloc); 878 if (ret < 0) { 879 key_put(key); 880 key_ref = ERR_PTR(ret); 881 goto error_link_end; 882 } 883 884 key_ref = make_key_ref(key, is_key_possessed(keyring_ref)); 885 886 error_link_end: 887 __key_link_end(keyring, &index_key, prealloc); 888 error_free_prep: 889 if (index_key.type->preparse) 890 index_key.type->free_preparse(&prep); 891 error_put_type: 892 key_type_put(index_key.type); 893 error: 894 return key_ref; 895 896 found_matching_key: 897 /* we found a matching key, so we're going to try to update it 898 * - we can drop the locks first as we have the key pinned 899 */ 900 __key_link_end(keyring, &index_key, prealloc); 901 902 key_ref = __key_update(key_ref, &prep); 903 goto error_free_prep; 904 } 905 EXPORT_SYMBOL(key_create_or_update); 906 907 /** 908 * key_update - Update a key's contents. 909 * @key_ref: The pointer (plus possession flag) to the key. 910 * @payload: The data to be used to update the key. 911 * @plen: The length of @payload. 912 * 913 * Attempt to update the contents of a key with the given payload data. The 914 * caller must be granted Write permission on the key. Negative keys can be 915 * instantiated by this method. 916 * 917 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key 918 * type does not support updating. The key type may return other errors. 919 */ 920 int key_update(key_ref_t key_ref, const void *payload, size_t plen) 921 { 922 struct key_preparsed_payload prep; 923 struct key *key = key_ref_to_ptr(key_ref); 924 int ret; 925 926 key_check(key); 927 928 /* the key must be writable */ 929 ret = key_permission(key_ref, KEY_WRITE); 930 if (ret < 0) 931 goto error; 932 933 /* attempt to update it if supported */ 934 ret = -EOPNOTSUPP; 935 if (!key->type->update) 936 goto error; 937 938 memset(&prep, 0, sizeof(prep)); 939 prep.data = payload; 940 prep.datalen = plen; 941 prep.quotalen = key->type->def_datalen; 942 if (key->type->preparse) { 943 ret = key->type->preparse(&prep); 944 if (ret < 0) 945 goto error; 946 } 947 948 down_write(&key->sem); 949 950 ret = key->type->update(key, &prep); 951 if (ret == 0) 952 /* updating a negative key instantiates it */ 953 clear_bit(KEY_FLAG_NEGATIVE, &key->flags); 954 955 up_write(&key->sem); 956 957 if (key->type->preparse) 958 key->type->free_preparse(&prep); 959 error: 960 return ret; 961 } 962 EXPORT_SYMBOL(key_update); 963 964 /** 965 * key_revoke - Revoke a key. 966 * @key: The key to be revoked. 967 * 968 * Mark a key as being revoked and ask the type to free up its resources. The 969 * revocation timeout is set and the key and all its links will be 970 * automatically garbage collected after key_gc_delay amount of time if they 971 * are not manually dealt with first. 972 */ 973 void key_revoke(struct key *key) 974 { 975 struct timespec now; 976 time_t time; 977 978 key_check(key); 979 980 /* make sure no one's trying to change or use the key when we mark it 981 * - we tell lockdep that we might nest because we might be revoking an 982 * authorisation key whilst holding the sem on a key we've just 983 * instantiated 984 */ 985 down_write_nested(&key->sem, 1); 986 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) && 987 key->type->revoke) 988 key->type->revoke(key); 989 990 /* set the death time to no more than the expiry time */ 991 now = current_kernel_time(); 992 time = now.tv_sec; 993 if (key->revoked_at == 0 || key->revoked_at > time) { 994 key->revoked_at = time; 995 key_schedule_gc(key->revoked_at + key_gc_delay); 996 } 997 998 up_write(&key->sem); 999 } 1000 EXPORT_SYMBOL(key_revoke); 1001 1002 /** 1003 * key_invalidate - Invalidate a key. 1004 * @key: The key to be invalidated. 1005 * 1006 * Mark a key as being invalidated and have it cleaned up immediately. The key 1007 * is ignored by all searches and other operations from this point. 1008 */ 1009 void key_invalidate(struct key *key) 1010 { 1011 kenter("%d", key_serial(key)); 1012 1013 key_check(key); 1014 1015 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) { 1016 down_write_nested(&key->sem, 1); 1017 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) 1018 key_schedule_gc_links(); 1019 up_write(&key->sem); 1020 } 1021 } 1022 EXPORT_SYMBOL(key_invalidate); 1023 1024 /** 1025 * register_key_type - Register a type of key. 1026 * @ktype: The new key type. 1027 * 1028 * Register a new key type. 1029 * 1030 * Returns 0 on success or -EEXIST if a type of this name already exists. 1031 */ 1032 int register_key_type(struct key_type *ktype) 1033 { 1034 struct key_type *p; 1035 int ret; 1036 1037 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class)); 1038 1039 ret = -EEXIST; 1040 down_write(&key_types_sem); 1041 1042 /* disallow key types with the same name */ 1043 list_for_each_entry(p, &key_types_list, link) { 1044 if (strcmp(p->name, ktype->name) == 0) 1045 goto out; 1046 } 1047 1048 /* store the type */ 1049 list_add(&ktype->link, &key_types_list); 1050 1051 pr_notice("Key type %s registered\n", ktype->name); 1052 ret = 0; 1053 1054 out: 1055 up_write(&key_types_sem); 1056 return ret; 1057 } 1058 EXPORT_SYMBOL(register_key_type); 1059 1060 /** 1061 * unregister_key_type - Unregister a type of key. 1062 * @ktype: The key type. 1063 * 1064 * Unregister a key type and mark all the extant keys of this type as dead. 1065 * Those keys of this type are then destroyed to get rid of their payloads and 1066 * they and their links will be garbage collected as soon as possible. 1067 */ 1068 void unregister_key_type(struct key_type *ktype) 1069 { 1070 down_write(&key_types_sem); 1071 list_del_init(&ktype->link); 1072 downgrade_write(&key_types_sem); 1073 key_gc_keytype(ktype); 1074 pr_notice("Key type %s unregistered\n", ktype->name); 1075 up_read(&key_types_sem); 1076 } 1077 EXPORT_SYMBOL(unregister_key_type); 1078 1079 /* 1080 * Initialise the key management state. 1081 */ 1082 void __init key_init(void) 1083 { 1084 /* allocate a slab in which we can store keys */ 1085 key_jar = kmem_cache_create("key_jar", sizeof(struct key), 1086 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1087 1088 /* add the special key types */ 1089 list_add_tail(&key_type_keyring.link, &key_types_list); 1090 list_add_tail(&key_type_dead.link, &key_types_list); 1091 list_add_tail(&key_type_user.link, &key_types_list); 1092 list_add_tail(&key_type_logon.link, &key_types_list); 1093 1094 /* record the root user tracking */ 1095 rb_link_node(&root_key_user.node, 1096 NULL, 1097 &key_user_tree.rb_node); 1098 1099 rb_insert_color(&root_key_user.node, 1100 &key_user_tree); 1101 } 1102