xref: /openbmc/linux/security/commoncap.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /* Common capabilities, needed by capability.o and root_plug.o
2  *
3  *	This program is free software; you can redistribute it and/or modify
4  *	it under the terms of the GNU General Public License as published by
5  *	the Free Software Foundation; either version 2 of the License, or
6  *	(at your option) any later version.
7  *
8  */
9 
10 #include <linux/config.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/smp_lock.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 
27 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
28 {
29 	NETLINK_CB(skb).eff_cap = current->cap_effective;
30 	return 0;
31 }
32 
33 EXPORT_SYMBOL(cap_netlink_send);
34 
35 int cap_netlink_recv(struct sk_buff *skb)
36 {
37 	if (!cap_raised(NETLINK_CB(skb).eff_cap, CAP_NET_ADMIN))
38 		return -EPERM;
39 	return 0;
40 }
41 
42 EXPORT_SYMBOL(cap_netlink_recv);
43 
44 int cap_capable (struct task_struct *tsk, int cap)
45 {
46 	/* Derived from include/linux/sched.h:capable. */
47 	if (cap_raised(tsk->cap_effective, cap))
48 		return 0;
49 	return -EPERM;
50 }
51 
52 int cap_settime(struct timespec *ts, struct timezone *tz)
53 {
54 	if (!capable(CAP_SYS_TIME))
55 		return -EPERM;
56 	return 0;
57 }
58 
59 int cap_ptrace (struct task_struct *parent, struct task_struct *child)
60 {
61 	/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
62 	if (!cap_issubset (child->cap_permitted, current->cap_permitted) &&
63 	    !capable(CAP_SYS_PTRACE))
64 		return -EPERM;
65 	return 0;
66 }
67 
68 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
69 		kernel_cap_t *inheritable, kernel_cap_t *permitted)
70 {
71 	/* Derived from kernel/capability.c:sys_capget. */
72 	*effective = cap_t (target->cap_effective);
73 	*inheritable = cap_t (target->cap_inheritable);
74 	*permitted = cap_t (target->cap_permitted);
75 	return 0;
76 }
77 
78 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
79 		      kernel_cap_t *inheritable, kernel_cap_t *permitted)
80 {
81 	/* Derived from kernel/capability.c:sys_capset. */
82 	/* verify restrictions on target's new Inheritable set */
83 	if (!cap_issubset (*inheritable,
84 			   cap_combine (target->cap_inheritable,
85 					current->cap_permitted))) {
86 		return -EPERM;
87 	}
88 
89 	/* verify restrictions on target's new Permitted set */
90 	if (!cap_issubset (*permitted,
91 			   cap_combine (target->cap_permitted,
92 					current->cap_permitted))) {
93 		return -EPERM;
94 	}
95 
96 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
97 	if (!cap_issubset (*effective, *permitted)) {
98 		return -EPERM;
99 	}
100 
101 	return 0;
102 }
103 
104 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
105 		     kernel_cap_t *inheritable, kernel_cap_t *permitted)
106 {
107 	target->cap_effective = *effective;
108 	target->cap_inheritable = *inheritable;
109 	target->cap_permitted = *permitted;
110 }
111 
112 int cap_bprm_set_security (struct linux_binprm *bprm)
113 {
114 	/* Copied from fs/exec.c:prepare_binprm. */
115 
116 	/* We don't have VFS support for capabilities yet */
117 	cap_clear (bprm->cap_inheritable);
118 	cap_clear (bprm->cap_permitted);
119 	cap_clear (bprm->cap_effective);
120 
121 	/*  To support inheritance of root-permissions and suid-root
122 	 *  executables under compatibility mode, we raise all three
123 	 *  capability sets for the file.
124 	 *
125 	 *  If only the real uid is 0, we only raise the inheritable
126 	 *  and permitted sets of the executable file.
127 	 */
128 
129 	if (!issecure (SECURE_NOROOT)) {
130 		if (bprm->e_uid == 0 || current->uid == 0) {
131 			cap_set_full (bprm->cap_inheritable);
132 			cap_set_full (bprm->cap_permitted);
133 		}
134 		if (bprm->e_uid == 0)
135 			cap_set_full (bprm->cap_effective);
136 	}
137 	return 0;
138 }
139 
140 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
141 {
142 	/* Derived from fs/exec.c:compute_creds. */
143 	kernel_cap_t new_permitted, working;
144 
145 	new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
146 	working = cap_intersect (bprm->cap_inheritable,
147 				 current->cap_inheritable);
148 	new_permitted = cap_combine (new_permitted, working);
149 
150 	if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
151 	    !cap_issubset (new_permitted, current->cap_permitted)) {
152 		current->mm->dumpable = 0;
153 
154 		if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
155 			if (!capable(CAP_SETUID)) {
156 				bprm->e_uid = current->uid;
157 				bprm->e_gid = current->gid;
158 			}
159 			if (!capable (CAP_SETPCAP)) {
160 				new_permitted = cap_intersect (new_permitted,
161 							current->cap_permitted);
162 			}
163 		}
164 	}
165 
166 	current->suid = current->euid = current->fsuid = bprm->e_uid;
167 	current->sgid = current->egid = current->fsgid = bprm->e_gid;
168 
169 	/* For init, we want to retain the capabilities set
170 	 * in the init_task struct. Thus we skip the usual
171 	 * capability rules */
172 	if (current->pid != 1) {
173 		current->cap_permitted = new_permitted;
174 		current->cap_effective =
175 		    cap_intersect (new_permitted, bprm->cap_effective);
176 	}
177 
178 	/* AUD: Audit candidate if current->cap_effective is set */
179 
180 	current->keep_capabilities = 0;
181 }
182 
183 int cap_bprm_secureexec (struct linux_binprm *bprm)
184 {
185 	/* If/when this module is enhanced to incorporate capability
186 	   bits on files, the test below should be extended to also perform a
187 	   test between the old and new capability sets.  For now,
188 	   it simply preserves the legacy decision algorithm used by
189 	   the old userland. */
190 	return (current->euid != current->uid ||
191 		current->egid != current->gid);
192 }
193 
194 int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
195 		       size_t size, int flags)
196 {
197 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
198 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
199 	    !capable(CAP_SYS_ADMIN))
200 		return -EPERM;
201 	return 0;
202 }
203 
204 int cap_inode_removexattr(struct dentry *dentry, char *name)
205 {
206 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
207 		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
208 	    !capable(CAP_SYS_ADMIN))
209 		return -EPERM;
210 	return 0;
211 }
212 
213 /* moved from kernel/sys.c. */
214 /*
215  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
216  * a process after a call to setuid, setreuid, or setresuid.
217  *
218  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
219  *  {r,e,s}uid != 0, the permitted and effective capabilities are
220  *  cleared.
221  *
222  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
223  *  capabilities of the process are cleared.
224  *
225  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
226  *  capabilities are set to the permitted capabilities.
227  *
228  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
229  *  never happen.
230  *
231  *  -astor
232  *
233  * cevans - New behaviour, Oct '99
234  * A process may, via prctl(), elect to keep its capabilities when it
235  * calls setuid() and switches away from uid==0. Both permitted and
236  * effective sets will be retained.
237  * Without this change, it was impossible for a daemon to drop only some
238  * of its privilege. The call to setuid(!=0) would drop all privileges!
239  * Keeping uid 0 is not an option because uid 0 owns too many vital
240  * files..
241  * Thanks to Olaf Kirch and Peter Benie for spotting this.
242  */
243 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
244 					int old_suid)
245 {
246 	if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
247 	    (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
248 	    !current->keep_capabilities) {
249 		cap_clear (current->cap_permitted);
250 		cap_clear (current->cap_effective);
251 	}
252 	if (old_euid == 0 && current->euid != 0) {
253 		cap_clear (current->cap_effective);
254 	}
255 	if (old_euid != 0 && current->euid == 0) {
256 		current->cap_effective = current->cap_permitted;
257 	}
258 }
259 
260 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
261 			  int flags)
262 {
263 	switch (flags) {
264 	case LSM_SETID_RE:
265 	case LSM_SETID_ID:
266 	case LSM_SETID_RES:
267 		/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
268 		if (!issecure (SECURE_NO_SETUID_FIXUP)) {
269 			cap_emulate_setxuid (old_ruid, old_euid, old_suid);
270 		}
271 		break;
272 	case LSM_SETID_FS:
273 		{
274 			uid_t old_fsuid = old_ruid;
275 
276 			/* Copied from kernel/sys.c:setfsuid. */
277 
278 			/*
279 			 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
280 			 *          if not, we might be a bit too harsh here.
281 			 */
282 
283 			if (!issecure (SECURE_NO_SETUID_FIXUP)) {
284 				if (old_fsuid == 0 && current->fsuid != 0) {
285 					cap_t (current->cap_effective) &=
286 					    ~CAP_FS_MASK;
287 				}
288 				if (old_fsuid != 0 && current->fsuid == 0) {
289 					cap_t (current->cap_effective) |=
290 					    (cap_t (current->cap_permitted) &
291 					     CAP_FS_MASK);
292 				}
293 			}
294 			break;
295 		}
296 	default:
297 		return -EINVAL;
298 	}
299 
300 	return 0;
301 }
302 
303 void cap_task_reparent_to_init (struct task_struct *p)
304 {
305 	p->cap_effective = CAP_INIT_EFF_SET;
306 	p->cap_inheritable = CAP_INIT_INH_SET;
307 	p->cap_permitted = CAP_FULL_SET;
308 	p->keep_capabilities = 0;
309 	return;
310 }
311 
312 int cap_syslog (int type)
313 {
314 	if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
315 		return -EPERM;
316 	return 0;
317 }
318 
319 int cap_vm_enough_memory(long pages)
320 {
321 	int cap_sys_admin = 0;
322 
323 	if (cap_capable(current, CAP_SYS_ADMIN) == 0)
324 		cap_sys_admin = 1;
325 	return __vm_enough_memory(pages, cap_sys_admin);
326 }
327 
328 EXPORT_SYMBOL(cap_capable);
329 EXPORT_SYMBOL(cap_settime);
330 EXPORT_SYMBOL(cap_ptrace);
331 EXPORT_SYMBOL(cap_capget);
332 EXPORT_SYMBOL(cap_capset_check);
333 EXPORT_SYMBOL(cap_capset_set);
334 EXPORT_SYMBOL(cap_bprm_set_security);
335 EXPORT_SYMBOL(cap_bprm_apply_creds);
336 EXPORT_SYMBOL(cap_bprm_secureexec);
337 EXPORT_SYMBOL(cap_inode_setxattr);
338 EXPORT_SYMBOL(cap_inode_removexattr);
339 EXPORT_SYMBOL(cap_task_post_setuid);
340 EXPORT_SYMBOL(cap_task_reparent_to_init);
341 EXPORT_SYMBOL(cap_syslog);
342 EXPORT_SYMBOL(cap_vm_enough_memory);
343 
344 MODULE_DESCRIPTION("Standard Linux Common Capabilities Security Module");
345 MODULE_LICENSE("GPL");
346