xref: /openbmc/linux/rust/kernel/sync/arc.rs (revision 17f671602cc6a15e65869c387492c5753c6f3cd5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //!
16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
17 
18 use crate::{bindings, error::Result, types::Opaque};
19 use alloc::boxed::Box;
20 use core::{
21     marker::{PhantomData, Unsize},
22     mem::ManuallyDrop,
23     ops::Deref,
24     ptr::NonNull,
25 };
26 
27 /// A reference-counted pointer to an instance of `T`.
28 ///
29 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
30 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
31 ///
32 /// # Invariants
33 ///
34 /// The reference count on an instance of [`Arc`] is always non-zero.
35 /// The object pointed to by [`Arc`] is always pinned.
36 ///
37 /// # Examples
38 ///
39 /// ```
40 /// use kernel::sync::Arc;
41 ///
42 /// struct Example {
43 ///     a: u32,
44 ///     b: u32,
45 /// }
46 ///
47 /// // Create a ref-counted instance of `Example`.
48 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
49 ///
50 /// // Get a new pointer to `obj` and increment the refcount.
51 /// let cloned = obj.clone();
52 ///
53 /// // Assert that both `obj` and `cloned` point to the same underlying object.
54 /// assert!(core::ptr::eq(&*obj, &*cloned));
55 ///
56 /// // Destroy `obj` and decrement its refcount.
57 /// drop(obj);
58 ///
59 /// // Check that the values are still accessible through `cloned`.
60 /// assert_eq!(cloned.a, 10);
61 /// assert_eq!(cloned.b, 20);
62 ///
63 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
64 /// ```
65 ///
66 /// Using `Arc<T>` as the type of `self`:
67 ///
68 /// ```
69 /// use kernel::sync::Arc;
70 ///
71 /// struct Example {
72 ///     a: u32,
73 ///     b: u32,
74 /// }
75 ///
76 /// impl Example {
77 ///     fn take_over(self: Arc<Self>) {
78 ///         // ...
79 ///     }
80 ///
81 ///     fn use_reference(self: &Arc<Self>) {
82 ///         // ...
83 ///     }
84 /// }
85 ///
86 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
87 /// obj.use_reference();
88 /// obj.take_over();
89 /// ```
90 ///
91 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
92 ///
93 /// ```
94 /// use kernel::sync::Arc;
95 ///
96 /// trait MyTrait {}
97 ///
98 /// struct Example;
99 /// impl MyTrait for Example {}
100 ///
101 /// // `obj` has type `Arc<Example>`.
102 /// let obj: Arc<Example> = Arc::try_new(Example)?;
103 ///
104 /// // `coerced` has type `Arc<dyn MyTrait>`.
105 /// let coerced: Arc<dyn MyTrait> = obj;
106 /// ```
107 pub struct Arc<T: ?Sized> {
108     ptr: NonNull<ArcInner<T>>,
109     _p: PhantomData<ArcInner<T>>,
110 }
111 
112 #[repr(C)]
113 struct ArcInner<T: ?Sized> {
114     refcount: Opaque<bindings::refcount_t>,
115     data: T,
116 }
117 
118 // This is to allow [`Arc`] (and variants) to be used as the type of `self`.
119 impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
120 
121 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
122 // dynamically-sized type (DST) `U`.
123 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
124 
125 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
126 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
127 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` directly, for
128 // example, when the reference count reaches zero and `T` is dropped.
129 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
130 
131 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` for the
132 // same reason as above. `T` needs to be `Send` as well because a thread can clone an `&Arc<T>`
133 // into an `Arc<T>`, which may lead to `T` being accessed by the same reasoning as above.
134 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
135 
136 impl<T> Arc<T> {
137     /// Constructs a new reference counted instance of `T`.
138     pub fn try_new(contents: T) -> Result<Self> {
139         // INVARIANT: The refcount is initialised to a non-zero value.
140         let value = ArcInner {
141             // SAFETY: There are no safety requirements for this FFI call.
142             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
143             data: contents,
144         };
145 
146         let inner = Box::try_new(value)?;
147 
148         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
149         // `Arc` object.
150         Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
151     }
152 }
153 
154 impl<T: ?Sized> Arc<T> {
155     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
156     ///
157     /// # Safety
158     ///
159     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
160     /// count, one of which will be owned by the new [`Arc`] instance.
161     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
162         // INVARIANT: By the safety requirements, the invariants hold.
163         Arc {
164             ptr: inner,
165             _p: PhantomData,
166         }
167     }
168 
169     /// Returns an [`ArcBorrow`] from the given [`Arc`].
170     ///
171     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
172     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
173     #[inline]
174     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
175         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
176         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
177         // reference can be created.
178         unsafe { ArcBorrow::new(self.ptr) }
179     }
180 }
181 
182 impl<T: ?Sized> Deref for Arc<T> {
183     type Target = T;
184 
185     fn deref(&self) -> &Self::Target {
186         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
187         // safe to dereference it.
188         unsafe { &self.ptr.as_ref().data }
189     }
190 }
191 
192 impl<T: ?Sized> Clone for Arc<T> {
193     fn clone(&self) -> Self {
194         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
195         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
196         // safe to increment the refcount.
197         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
198 
199         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
200         unsafe { Self::from_inner(self.ptr) }
201     }
202 }
203 
204 impl<T: ?Sized> Drop for Arc<T> {
205     fn drop(&mut self) {
206         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
207         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
208         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
209         // freed/invalid memory as long as it is never dereferenced.
210         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
211 
212         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
213         // this instance is being dropped, so the broken invariant is not observable.
214         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
215         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
216         if is_zero {
217             // The count reached zero, we must free the memory.
218             //
219             // SAFETY: The pointer was initialised from the result of `Box::leak`.
220             unsafe { Box::from_raw(self.ptr.as_ptr()) };
221         }
222     }
223 }
224 
225 /// A borrowed reference to an [`Arc`] instance.
226 ///
227 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
228 /// to use just `&T`, which we can trivially get from an `Arc<T>` instance.
229 ///
230 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
231 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
232 /// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double
233 /// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if
234 /// needed.
235 ///
236 /// # Invariants
237 ///
238 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
239 /// lifetime of the [`ArcBorrow`] instance.
240 ///
241 /// # Example
242 ///
243 /// ```
244 /// use crate::sync::{Arc, ArcBorrow};
245 ///
246 /// struct Example;
247 ///
248 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
249 ///     e.into()
250 /// }
251 ///
252 /// let obj = Arc::try_new(Example)?;
253 /// let cloned = do_something(obj.as_arc_borrow());
254 ///
255 /// // Assert that both `obj` and `cloned` point to the same underlying object.
256 /// assert!(core::ptr::eq(&*obj, &*cloned));
257 /// ```
258 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
259     inner: NonNull<ArcInner<T>>,
260     _p: PhantomData<&'a ()>,
261 }
262 
263 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
264     fn clone(&self) -> Self {
265         *self
266     }
267 }
268 
269 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
270 
271 impl<T: ?Sized> ArcBorrow<'_, T> {
272     /// Creates a new [`ArcBorrow`] instance.
273     ///
274     /// # Safety
275     ///
276     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
277     /// 1. That `inner` remains valid;
278     /// 2. That no mutable references to `inner` are created.
279     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
280         // INVARIANT: The safety requirements guarantee the invariants.
281         Self {
282             inner,
283             _p: PhantomData,
284         }
285     }
286 }
287 
288 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
289     fn from(b: ArcBorrow<'_, T>) -> Self {
290         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
291         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
292         // increment.
293         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
294             .deref()
295             .clone()
296     }
297 }
298 
299 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
300     type Target = T;
301 
302     fn deref(&self) -> &Self::Target {
303         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
304         // references to it, so it is safe to create a shared reference.
305         unsafe { &self.inner.as_ref().data }
306     }
307 }
308