xref: /openbmc/linux/rust/alloc/vec/mod.rs (revision ff32fcca64437f679a2bf1c0a19d5def389a18e2)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! A contiguous growable array type with heap-allocated contents, written
4 //! `Vec<T>`.
5 //!
6 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7 //! *O*(1) pop (from the end).
8 //!
9 //! Vectors ensure they never allocate more than `isize::MAX` bytes.
10 //!
11 //! # Examples
12 //!
13 //! You can explicitly create a [`Vec`] with [`Vec::new`]:
14 //!
15 //! ```
16 //! let v: Vec<i32> = Vec::new();
17 //! ```
18 //!
19 //! ...or by using the [`vec!`] macro:
20 //!
21 //! ```
22 //! let v: Vec<i32> = vec![];
23 //!
24 //! let v = vec![1, 2, 3, 4, 5];
25 //!
26 //! let v = vec![0; 10]; // ten zeroes
27 //! ```
28 //!
29 //! You can [`push`] values onto the end of a vector (which will grow the vector
30 //! as needed):
31 //!
32 //! ```
33 //! let mut v = vec![1, 2];
34 //!
35 //! v.push(3);
36 //! ```
37 //!
38 //! Popping values works in much the same way:
39 //!
40 //! ```
41 //! let mut v = vec![1, 2];
42 //!
43 //! let two = v.pop();
44 //! ```
45 //!
46 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47 //!
48 //! ```
49 //! let mut v = vec![1, 2, 3];
50 //! let three = v[2];
51 //! v[1] = v[1] + 5;
52 //! ```
53 //!
54 //! [`push`]: Vec::push
55 
56 #![stable(feature = "rust1", since = "1.0.0")]
57 
58 #[cfg(not(no_global_oom_handling))]
59 use core::cmp;
60 use core::cmp::Ordering;
61 use core::convert::TryFrom;
62 use core::fmt;
63 use core::hash::{Hash, Hasher};
64 use core::intrinsics::{arith_offset, assume};
65 use core::iter;
66 #[cfg(not(no_global_oom_handling))]
67 use core::iter::FromIterator;
68 use core::marker::PhantomData;
69 use core::mem::{self, ManuallyDrop, MaybeUninit};
70 use core::ops::{self, Index, IndexMut, Range, RangeBounds};
71 use core::ptr::{self, NonNull};
72 use core::slice::{self, SliceIndex};
73 
74 use crate::alloc::{Allocator, Global};
75 #[cfg(not(no_borrow))]
76 use crate::borrow::{Cow, ToOwned};
77 use crate::boxed::Box;
78 use crate::collections::TryReserveError;
79 use crate::raw_vec::RawVec;
80 
81 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
82 pub use self::drain_filter::DrainFilter;
83 
84 mod drain_filter;
85 
86 #[cfg(not(no_global_oom_handling))]
87 #[stable(feature = "vec_splice", since = "1.21.0")]
88 pub use self::splice::Splice;
89 
90 #[cfg(not(no_global_oom_handling))]
91 mod splice;
92 
93 #[stable(feature = "drain", since = "1.6.0")]
94 pub use self::drain::Drain;
95 
96 mod drain;
97 
98 #[cfg(not(no_borrow))]
99 #[cfg(not(no_global_oom_handling))]
100 mod cow;
101 
102 #[cfg(not(no_global_oom_handling))]
103 pub(crate) use self::in_place_collect::AsVecIntoIter;
104 #[stable(feature = "rust1", since = "1.0.0")]
105 pub use self::into_iter::IntoIter;
106 
107 mod into_iter;
108 
109 #[cfg(not(no_global_oom_handling))]
110 use self::is_zero::IsZero;
111 
112 mod is_zero;
113 
114 #[cfg(not(no_global_oom_handling))]
115 mod in_place_collect;
116 
117 mod partial_eq;
118 
119 #[cfg(not(no_global_oom_handling))]
120 use self::spec_from_elem::SpecFromElem;
121 
122 #[cfg(not(no_global_oom_handling))]
123 mod spec_from_elem;
124 
125 use self::set_len_on_drop::SetLenOnDrop;
126 
127 mod set_len_on_drop;
128 
129 #[cfg(not(no_global_oom_handling))]
130 use self::in_place_drop::InPlaceDrop;
131 
132 #[cfg(not(no_global_oom_handling))]
133 mod in_place_drop;
134 
135 #[cfg(not(no_global_oom_handling))]
136 use self::spec_from_iter_nested::SpecFromIterNested;
137 
138 #[cfg(not(no_global_oom_handling))]
139 mod spec_from_iter_nested;
140 
141 #[cfg(not(no_global_oom_handling))]
142 use self::spec_from_iter::SpecFromIter;
143 
144 #[cfg(not(no_global_oom_handling))]
145 mod spec_from_iter;
146 
147 #[cfg(not(no_global_oom_handling))]
148 use self::spec_extend::SpecExtend;
149 
150 use self::spec_extend::TrySpecExtend;
151 
152 mod spec_extend;
153 
154 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
155 ///
156 /// # Examples
157 ///
158 /// ```
159 /// let mut vec = Vec::new();
160 /// vec.push(1);
161 /// vec.push(2);
162 ///
163 /// assert_eq!(vec.len(), 2);
164 /// assert_eq!(vec[0], 1);
165 ///
166 /// assert_eq!(vec.pop(), Some(2));
167 /// assert_eq!(vec.len(), 1);
168 ///
169 /// vec[0] = 7;
170 /// assert_eq!(vec[0], 7);
171 ///
172 /// vec.extend([1, 2, 3].iter().copied());
173 ///
174 /// for x in &vec {
175 ///     println!("{x}");
176 /// }
177 /// assert_eq!(vec, [7, 1, 2, 3]);
178 /// ```
179 ///
180 /// The [`vec!`] macro is provided for convenient initialization:
181 ///
182 /// ```
183 /// let mut vec1 = vec![1, 2, 3];
184 /// vec1.push(4);
185 /// let vec2 = Vec::from([1, 2, 3, 4]);
186 /// assert_eq!(vec1, vec2);
187 /// ```
188 ///
189 /// It can also initialize each element of a `Vec<T>` with a given value.
190 /// This may be more efficient than performing allocation and initialization
191 /// in separate steps, especially when initializing a vector of zeros:
192 ///
193 /// ```
194 /// let vec = vec![0; 5];
195 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
196 ///
197 /// // The following is equivalent, but potentially slower:
198 /// let mut vec = Vec::with_capacity(5);
199 /// vec.resize(5, 0);
200 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
201 /// ```
202 ///
203 /// For more information, see
204 /// [Capacity and Reallocation](#capacity-and-reallocation).
205 ///
206 /// Use a `Vec<T>` as an efficient stack:
207 ///
208 /// ```
209 /// let mut stack = Vec::new();
210 ///
211 /// stack.push(1);
212 /// stack.push(2);
213 /// stack.push(3);
214 ///
215 /// while let Some(top) = stack.pop() {
216 ///     // Prints 3, 2, 1
217 ///     println!("{top}");
218 /// }
219 /// ```
220 ///
221 /// # Indexing
222 ///
223 /// The `Vec` type allows to access values by index, because it implements the
224 /// [`Index`] trait. An example will be more explicit:
225 ///
226 /// ```
227 /// let v = vec![0, 2, 4, 6];
228 /// println!("{}", v[1]); // it will display '2'
229 /// ```
230 ///
231 /// However be careful: if you try to access an index which isn't in the `Vec`,
232 /// your software will panic! You cannot do this:
233 ///
234 /// ```should_panic
235 /// let v = vec![0, 2, 4, 6];
236 /// println!("{}", v[6]); // it will panic!
237 /// ```
238 ///
239 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
240 /// the `Vec`.
241 ///
242 /// # Slicing
243 ///
244 /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
245 /// To get a [slice][prim@slice], use [`&`]. Example:
246 ///
247 /// ```
248 /// fn read_slice(slice: &[usize]) {
249 ///     // ...
250 /// }
251 ///
252 /// let v = vec![0, 1];
253 /// read_slice(&v);
254 ///
255 /// // ... and that's all!
256 /// // you can also do it like this:
257 /// let u: &[usize] = &v;
258 /// // or like this:
259 /// let u: &[_] = &v;
260 /// ```
261 ///
262 /// In Rust, it's more common to pass slices as arguments rather than vectors
263 /// when you just want to provide read access. The same goes for [`String`] and
264 /// [`&str`].
265 ///
266 /// # Capacity and reallocation
267 ///
268 /// The capacity of a vector is the amount of space allocated for any future
269 /// elements that will be added onto the vector. This is not to be confused with
270 /// the *length* of a vector, which specifies the number of actual elements
271 /// within the vector. If a vector's length exceeds its capacity, its capacity
272 /// will automatically be increased, but its elements will have to be
273 /// reallocated.
274 ///
275 /// For example, a vector with capacity 10 and length 0 would be an empty vector
276 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
277 /// vector will not change its capacity or cause reallocation to occur. However,
278 /// if the vector's length is increased to 11, it will have to reallocate, which
279 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
280 /// whenever possible to specify how big the vector is expected to get.
281 ///
282 /// # Guarantees
283 ///
284 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
285 /// about its design. This ensures that it's as low-overhead as possible in
286 /// the general case, and can be correctly manipulated in primitive ways
287 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
288 /// If additional type parameters are added (e.g., to support custom allocators),
289 /// overriding their defaults may change the behavior.
290 ///
291 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
292 /// triplet. No more, no less. The order of these fields is completely
293 /// unspecified, and you should use the appropriate methods to modify these.
294 /// The pointer will never be null, so this type is null-pointer-optimized.
295 ///
296 /// However, the pointer might not actually point to allocated memory. In particular,
297 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
298 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
299 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
300 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
301 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
302 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
303 /// details are very subtle --- if you intend to allocate memory using a `Vec`
304 /// and use it for something else (either to pass to unsafe code, or to build your
305 /// own memory-backed collection), be sure to deallocate this memory by using
306 /// `from_raw_parts` to recover the `Vec` and then dropping it.
307 ///
308 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
309 /// (as defined by the allocator Rust is configured to use by default), and its
310 /// pointer points to [`len`] initialized, contiguous elements in order (what
311 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
312 /// logically uninitialized, contiguous elements.
313 ///
314 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
315 /// visualized as below. The top part is the `Vec` struct, it contains a
316 /// pointer to the head of the allocation in the heap, length and capacity.
317 /// The bottom part is the allocation on the heap, a contiguous memory block.
318 ///
319 /// ```text
320 ///             ptr      len  capacity
321 ///        +--------+--------+--------+
322 ///        | 0x0123 |      2 |      4 |
323 ///        +--------+--------+--------+
324 ///             |
325 ///             v
326 /// Heap   +--------+--------+--------+--------+
327 ///        |    'a' |    'b' | uninit | uninit |
328 ///        +--------+--------+--------+--------+
329 /// ```
330 ///
331 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
332 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
333 ///   layout (including the order of fields).
334 ///
335 /// `Vec` will never perform a "small optimization" where elements are actually
336 /// stored on the stack for two reasons:
337 ///
338 /// * It would make it more difficult for unsafe code to correctly manipulate
339 ///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
340 ///   only moved, and it would be more difficult to determine if a `Vec` had
341 ///   actually allocated memory.
342 ///
343 /// * It would penalize the general case, incurring an additional branch
344 ///   on every access.
345 ///
346 /// `Vec` will never automatically shrink itself, even if completely empty. This
347 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
348 /// and then filling it back up to the same [`len`] should incur no calls to
349 /// the allocator. If you wish to free up unused memory, use
350 /// [`shrink_to_fit`] or [`shrink_to`].
351 ///
352 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
353 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
354 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
355 /// accurate, and can be relied on. It can even be used to manually free the memory
356 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
357 /// when not necessary.
358 ///
359 /// `Vec` does not guarantee any particular growth strategy when reallocating
360 /// when full, nor when [`reserve`] is called. The current strategy is basic
361 /// and it may prove desirable to use a non-constant growth factor. Whatever
362 /// strategy is used will of course guarantee *O*(1) amortized [`push`].
363 ///
364 /// `vec![x; n]`, `vec![a, b, c, d]`, and
365 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
366 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
367 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
368 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
369 ///
370 /// `Vec` will not specifically overwrite any data that is removed from it,
371 /// but also won't specifically preserve it. Its uninitialized memory is
372 /// scratch space that it may use however it wants. It will generally just do
373 /// whatever is most efficient or otherwise easy to implement. Do not rely on
374 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
375 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
376 /// first, that might not actually happen because the optimizer does not consider
377 /// this a side-effect that must be preserved. There is one case which we will
378 /// not break, however: using `unsafe` code to write to the excess capacity,
379 /// and then increasing the length to match, is always valid.
380 ///
381 /// Currently, `Vec` does not guarantee the order in which elements are dropped.
382 /// The order has changed in the past and may change again.
383 ///
384 /// [`get`]: ../../std/vec/struct.Vec.html#method.get
385 /// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
386 /// [`String`]: crate::string::String
387 /// [`&str`]: type@str
388 /// [`shrink_to_fit`]: Vec::shrink_to_fit
389 /// [`shrink_to`]: Vec::shrink_to
390 /// [capacity]: Vec::capacity
391 /// [`capacity`]: Vec::capacity
392 /// [mem::size_of::\<T>]: core::mem::size_of
393 /// [len]: Vec::len
394 /// [`len`]: Vec::len
395 /// [`push`]: Vec::push
396 /// [`insert`]: Vec::insert
397 /// [`reserve`]: Vec::reserve
398 /// [`MaybeUninit`]: core::mem::MaybeUninit
399 /// [owned slice]: Box
400 #[stable(feature = "rust1", since = "1.0.0")]
401 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
402 #[rustc_insignificant_dtor]
403 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
404     buf: RawVec<T, A>,
405     len: usize,
406 }
407 
408 ////////////////////////////////////////////////////////////////////////////////
409 // Inherent methods
410 ////////////////////////////////////////////////////////////////////////////////
411 
412 impl<T> Vec<T> {
413     /// Constructs a new, empty `Vec<T>`.
414     ///
415     /// The vector will not allocate until elements are pushed onto it.
416     ///
417     /// # Examples
418     ///
419     /// ```
420     /// # #![allow(unused_mut)]
421     /// let mut vec: Vec<i32> = Vec::new();
422     /// ```
423     #[inline]
424     #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
425     #[stable(feature = "rust1", since = "1.0.0")]
426     #[must_use]
427     pub const fn new() -> Self {
428         Vec { buf: RawVec::NEW, len: 0 }
429     }
430 
431     /// Constructs a new, empty `Vec<T>` with the specified capacity.
432     ///
433     /// The vector will be able to hold exactly `capacity` elements without
434     /// reallocating. If `capacity` is 0, the vector will not allocate.
435     ///
436     /// It is important to note that although the returned vector has the
437     /// *capacity* specified, the vector will have a zero *length*. For an
438     /// explanation of the difference between length and capacity, see
439     /// *[Capacity and reallocation]*.
440     ///
441     /// [Capacity and reallocation]: #capacity-and-reallocation
442     ///
443     /// # Panics
444     ///
445     /// Panics if the new capacity exceeds `isize::MAX` bytes.
446     ///
447     /// # Examples
448     ///
449     /// ```
450     /// let mut vec = Vec::with_capacity(10);
451     ///
452     /// // The vector contains no items, even though it has capacity for more
453     /// assert_eq!(vec.len(), 0);
454     /// assert_eq!(vec.capacity(), 10);
455     ///
456     /// // These are all done without reallocating...
457     /// for i in 0..10 {
458     ///     vec.push(i);
459     /// }
460     /// assert_eq!(vec.len(), 10);
461     /// assert_eq!(vec.capacity(), 10);
462     ///
463     /// // ...but this may make the vector reallocate
464     /// vec.push(11);
465     /// assert_eq!(vec.len(), 11);
466     /// assert!(vec.capacity() >= 11);
467     /// ```
468     #[cfg(not(no_global_oom_handling))]
469     #[inline]
470     #[stable(feature = "rust1", since = "1.0.0")]
471     #[must_use]
472     pub fn with_capacity(capacity: usize) -> Self {
473         Self::with_capacity_in(capacity, Global)
474     }
475 
476     /// Tries to construct a new, empty `Vec<T>` with the specified capacity.
477     ///
478     /// The vector will be able to hold exactly `capacity` elements without
479     /// reallocating. If `capacity` is 0, the vector will not allocate.
480     ///
481     /// It is important to note that although the returned vector has the
482     /// *capacity* specified, the vector will have a zero *length*. For an
483     /// explanation of the difference between length and capacity, see
484     /// *[Capacity and reallocation]*.
485     ///
486     /// [Capacity and reallocation]: #capacity-and-reallocation
487     ///
488     /// # Examples
489     ///
490     /// ```
491     /// let mut vec = Vec::try_with_capacity(10).unwrap();
492     ///
493     /// // The vector contains no items, even though it has capacity for more
494     /// assert_eq!(vec.len(), 0);
495     /// assert_eq!(vec.capacity(), 10);
496     ///
497     /// // These are all done without reallocating...
498     /// for i in 0..10 {
499     ///     vec.push(i);
500     /// }
501     /// assert_eq!(vec.len(), 10);
502     /// assert_eq!(vec.capacity(), 10);
503     ///
504     /// // ...but this may make the vector reallocate
505     /// vec.push(11);
506     /// assert_eq!(vec.len(), 11);
507     /// assert!(vec.capacity() >= 11);
508     ///
509     /// let mut result = Vec::try_with_capacity(usize::MAX);
510     /// assert!(result.is_err());
511     /// ```
512     #[inline]
513     #[stable(feature = "kernel", since = "1.0.0")]
514     pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
515         Self::try_with_capacity_in(capacity, Global)
516     }
517 
518     /// Creates a `Vec<T>` directly from the raw components of another vector.
519     ///
520     /// # Safety
521     ///
522     /// This is highly unsafe, due to the number of invariants that aren't
523     /// checked:
524     ///
525     /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
526     ///   (at least, it's highly likely to be incorrect if it wasn't).
527     /// * `T` needs to have the same alignment as what `ptr` was allocated with.
528     ///   (`T` having a less strict alignment is not sufficient, the alignment really
529     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
530     ///   allocated and deallocated with the same layout.)
531     /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
532     ///   to be the same size as the pointer was allocated with. (Because similar to
533     ///   alignment, [`dealloc`] must be called with the same layout `size`.)
534     /// * `length` needs to be less than or equal to `capacity`.
535     ///
536     /// Violating these may cause problems like corrupting the allocator's
537     /// internal data structures. For example it is normally **not** safe
538     /// to build a `Vec<u8>` from a pointer to a C `char` array with length
539     /// `size_t`, doing so is only safe if the array was initially allocated by
540     /// a `Vec` or `String`.
541     /// It's also not safe to build one from a `Vec<u16>` and its length, because
542     /// the allocator cares about the alignment, and these two types have different
543     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
544     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
545     /// these issues, it is often preferable to do casting/transmuting using
546     /// [`slice::from_raw_parts`] instead.
547     ///
548     /// The ownership of `ptr` is effectively transferred to the
549     /// `Vec<T>` which may then deallocate, reallocate or change the
550     /// contents of memory pointed to by the pointer at will. Ensure
551     /// that nothing else uses the pointer after calling this
552     /// function.
553     ///
554     /// [`String`]: crate::string::String
555     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
556     ///
557     /// # Examples
558     ///
559     /// ```
560     /// use std::ptr;
561     /// use std::mem;
562     ///
563     /// let v = vec![1, 2, 3];
564     ///
565     // FIXME Update this when vec_into_raw_parts is stabilized
566     /// // Prevent running `v`'s destructor so we are in complete control
567     /// // of the allocation.
568     /// let mut v = mem::ManuallyDrop::new(v);
569     ///
570     /// // Pull out the various important pieces of information about `v`
571     /// let p = v.as_mut_ptr();
572     /// let len = v.len();
573     /// let cap = v.capacity();
574     ///
575     /// unsafe {
576     ///     // Overwrite memory with 4, 5, 6
577     ///     for i in 0..len as isize {
578     ///         ptr::write(p.offset(i), 4 + i);
579     ///     }
580     ///
581     ///     // Put everything back together into a Vec
582     ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
583     ///     assert_eq!(rebuilt, [4, 5, 6]);
584     /// }
585     /// ```
586     #[inline]
587     #[stable(feature = "rust1", since = "1.0.0")]
588     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
589         unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
590     }
591 }
592 
593 impl<T, A: Allocator> Vec<T, A> {
594     /// Constructs a new, empty `Vec<T, A>`.
595     ///
596     /// The vector will not allocate until elements are pushed onto it.
597     ///
598     /// # Examples
599     ///
600     /// ```
601     /// #![feature(allocator_api)]
602     ///
603     /// use std::alloc::System;
604     ///
605     /// # #[allow(unused_mut)]
606     /// let mut vec: Vec<i32, _> = Vec::new_in(System);
607     /// ```
608     #[inline]
609     #[unstable(feature = "allocator_api", issue = "32838")]
610     pub const fn new_in(alloc: A) -> Self {
611         Vec { buf: RawVec::new_in(alloc), len: 0 }
612     }
613 
614     /// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided
615     /// allocator.
616     ///
617     /// The vector will be able to hold exactly `capacity` elements without
618     /// reallocating. If `capacity` is 0, the vector will not allocate.
619     ///
620     /// It is important to note that although the returned vector has the
621     /// *capacity* specified, the vector will have a zero *length*. For an
622     /// explanation of the difference between length and capacity, see
623     /// *[Capacity and reallocation]*.
624     ///
625     /// [Capacity and reallocation]: #capacity-and-reallocation
626     ///
627     /// # Panics
628     ///
629     /// Panics if the new capacity exceeds `isize::MAX` bytes.
630     ///
631     /// # Examples
632     ///
633     /// ```
634     /// #![feature(allocator_api)]
635     ///
636     /// use std::alloc::System;
637     ///
638     /// let mut vec = Vec::with_capacity_in(10, System);
639     ///
640     /// // The vector contains no items, even though it has capacity for more
641     /// assert_eq!(vec.len(), 0);
642     /// assert_eq!(vec.capacity(), 10);
643     ///
644     /// // These are all done without reallocating...
645     /// for i in 0..10 {
646     ///     vec.push(i);
647     /// }
648     /// assert_eq!(vec.len(), 10);
649     /// assert_eq!(vec.capacity(), 10);
650     ///
651     /// // ...but this may make the vector reallocate
652     /// vec.push(11);
653     /// assert_eq!(vec.len(), 11);
654     /// assert!(vec.capacity() >= 11);
655     /// ```
656     #[cfg(not(no_global_oom_handling))]
657     #[inline]
658     #[unstable(feature = "allocator_api", issue = "32838")]
659     pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
660         Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
661     }
662 
663     /// Tries to construct a new, empty `Vec<T, A>` with the specified capacity
664     /// with the provided allocator.
665     ///
666     /// The vector will be able to hold exactly `capacity` elements without
667     /// reallocating. If `capacity` is 0, the vector will not allocate.
668     ///
669     /// It is important to note that although the returned vector has the
670     /// *capacity* specified, the vector will have a zero *length*. For an
671     /// explanation of the difference between length and capacity, see
672     /// *[Capacity and reallocation]*.
673     ///
674     /// [Capacity and reallocation]: #capacity-and-reallocation
675     ///
676     /// # Examples
677     ///
678     /// ```
679     /// #![feature(allocator_api)]
680     ///
681     /// use std::alloc::System;
682     ///
683     /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
684     ///
685     /// // The vector contains no items, even though it has capacity for more
686     /// assert_eq!(vec.len(), 0);
687     /// assert_eq!(vec.capacity(), 10);
688     ///
689     /// // These are all done without reallocating...
690     /// for i in 0..10 {
691     ///     vec.push(i);
692     /// }
693     /// assert_eq!(vec.len(), 10);
694     /// assert_eq!(vec.capacity(), 10);
695     ///
696     /// // ...but this may make the vector reallocate
697     /// vec.push(11);
698     /// assert_eq!(vec.len(), 11);
699     /// assert!(vec.capacity() >= 11);
700     ///
701     /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
702     /// assert!(result.is_err());
703     /// ```
704     #[inline]
705     #[stable(feature = "kernel", since = "1.0.0")]
706     pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
707         Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
708     }
709 
710     /// Creates a `Vec<T, A>` directly from the raw components of another vector.
711     ///
712     /// # Safety
713     ///
714     /// This is highly unsafe, due to the number of invariants that aren't
715     /// checked:
716     ///
717     /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
718     ///   (at least, it's highly likely to be incorrect if it wasn't).
719     /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
720     ///   (`T` having a less strict alignment is not sufficient, the alignment really
721     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
722     ///   allocated and deallocated with the same layout.)
723     /// * `length` needs to be less than or equal to `capacity`.
724     /// * `capacity` needs to be the capacity that the pointer was allocated with.
725     ///
726     /// Violating these may cause problems like corrupting the allocator's
727     /// internal data structures. For example it is **not** safe
728     /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
729     /// It's also not safe to build one from a `Vec<u16>` and its length, because
730     /// the allocator cares about the alignment, and these two types have different
731     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
732     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
733     ///
734     /// The ownership of `ptr` is effectively transferred to the
735     /// `Vec<T>` which may then deallocate, reallocate or change the
736     /// contents of memory pointed to by the pointer at will. Ensure
737     /// that nothing else uses the pointer after calling this
738     /// function.
739     ///
740     /// [`String`]: crate::string::String
741     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
742     ///
743     /// # Examples
744     ///
745     /// ```
746     /// #![feature(allocator_api)]
747     ///
748     /// use std::alloc::System;
749     ///
750     /// use std::ptr;
751     /// use std::mem;
752     ///
753     /// let mut v = Vec::with_capacity_in(3, System);
754     /// v.push(1);
755     /// v.push(2);
756     /// v.push(3);
757     ///
758     // FIXME Update this when vec_into_raw_parts is stabilized
759     /// // Prevent running `v`'s destructor so we are in complete control
760     /// // of the allocation.
761     /// let mut v = mem::ManuallyDrop::new(v);
762     ///
763     /// // Pull out the various important pieces of information about `v`
764     /// let p = v.as_mut_ptr();
765     /// let len = v.len();
766     /// let cap = v.capacity();
767     /// let alloc = v.allocator();
768     ///
769     /// unsafe {
770     ///     // Overwrite memory with 4, 5, 6
771     ///     for i in 0..len as isize {
772     ///         ptr::write(p.offset(i), 4 + i);
773     ///     }
774     ///
775     ///     // Put everything back together into a Vec
776     ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
777     ///     assert_eq!(rebuilt, [4, 5, 6]);
778     /// }
779     /// ```
780     #[inline]
781     #[unstable(feature = "allocator_api", issue = "32838")]
782     pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
783         unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
784     }
785 
786     /// Decomposes a `Vec<T>` into its raw components.
787     ///
788     /// Returns the raw pointer to the underlying data, the length of
789     /// the vector (in elements), and the allocated capacity of the
790     /// data (in elements). These are the same arguments in the same
791     /// order as the arguments to [`from_raw_parts`].
792     ///
793     /// After calling this function, the caller is responsible for the
794     /// memory previously managed by the `Vec`. The only way to do
795     /// this is to convert the raw pointer, length, and capacity back
796     /// into a `Vec` with the [`from_raw_parts`] function, allowing
797     /// the destructor to perform the cleanup.
798     ///
799     /// [`from_raw_parts`]: Vec::from_raw_parts
800     ///
801     /// # Examples
802     ///
803     /// ```
804     /// #![feature(vec_into_raw_parts)]
805     /// let v: Vec<i32> = vec![-1, 0, 1];
806     ///
807     /// let (ptr, len, cap) = v.into_raw_parts();
808     ///
809     /// let rebuilt = unsafe {
810     ///     // We can now make changes to the components, such as
811     ///     // transmuting the raw pointer to a compatible type.
812     ///     let ptr = ptr as *mut u32;
813     ///
814     ///     Vec::from_raw_parts(ptr, len, cap)
815     /// };
816     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
817     /// ```
818     #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
819     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
820         let mut me = ManuallyDrop::new(self);
821         (me.as_mut_ptr(), me.len(), me.capacity())
822     }
823 
824     /// Decomposes a `Vec<T>` into its raw components.
825     ///
826     /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
827     /// the allocated capacity of the data (in elements), and the allocator. These are the same
828     /// arguments in the same order as the arguments to [`from_raw_parts_in`].
829     ///
830     /// After calling this function, the caller is responsible for the
831     /// memory previously managed by the `Vec`. The only way to do
832     /// this is to convert the raw pointer, length, and capacity back
833     /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
834     /// the destructor to perform the cleanup.
835     ///
836     /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
837     ///
838     /// # Examples
839     ///
840     /// ```
841     /// #![feature(allocator_api, vec_into_raw_parts)]
842     ///
843     /// use std::alloc::System;
844     ///
845     /// let mut v: Vec<i32, System> = Vec::new_in(System);
846     /// v.push(-1);
847     /// v.push(0);
848     /// v.push(1);
849     ///
850     /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
851     ///
852     /// let rebuilt = unsafe {
853     ///     // We can now make changes to the components, such as
854     ///     // transmuting the raw pointer to a compatible type.
855     ///     let ptr = ptr as *mut u32;
856     ///
857     ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
858     /// };
859     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
860     /// ```
861     #[unstable(feature = "allocator_api", issue = "32838")]
862     // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
863     pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
864         let mut me = ManuallyDrop::new(self);
865         let len = me.len();
866         let capacity = me.capacity();
867         let ptr = me.as_mut_ptr();
868         let alloc = unsafe { ptr::read(me.allocator()) };
869         (ptr, len, capacity, alloc)
870     }
871 
872     /// Returns the number of elements the vector can hold without
873     /// reallocating.
874     ///
875     /// # Examples
876     ///
877     /// ```
878     /// let vec: Vec<i32> = Vec::with_capacity(10);
879     /// assert_eq!(vec.capacity(), 10);
880     /// ```
881     #[inline]
882     #[stable(feature = "rust1", since = "1.0.0")]
883     pub fn capacity(&self) -> usize {
884         self.buf.capacity()
885     }
886 
887     /// Reserves capacity for at least `additional` more elements to be inserted
888     /// in the given `Vec<T>`. The collection may reserve more space to avoid
889     /// frequent reallocations. After calling `reserve`, capacity will be
890     /// greater than or equal to `self.len() + additional`. Does nothing if
891     /// capacity is already sufficient.
892     ///
893     /// # Panics
894     ///
895     /// Panics if the new capacity exceeds `isize::MAX` bytes.
896     ///
897     /// # Examples
898     ///
899     /// ```
900     /// let mut vec = vec![1];
901     /// vec.reserve(10);
902     /// assert!(vec.capacity() >= 11);
903     /// ```
904     #[cfg(not(no_global_oom_handling))]
905     #[stable(feature = "rust1", since = "1.0.0")]
906     pub fn reserve(&mut self, additional: usize) {
907         self.buf.reserve(self.len, additional);
908     }
909 
910     /// Reserves the minimum capacity for exactly `additional` more elements to
911     /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
912     /// capacity will be greater than or equal to `self.len() + additional`.
913     /// Does nothing if the capacity is already sufficient.
914     ///
915     /// Note that the allocator may give the collection more space than it
916     /// requests. Therefore, capacity can not be relied upon to be precisely
917     /// minimal. Prefer [`reserve`] if future insertions are expected.
918     ///
919     /// [`reserve`]: Vec::reserve
920     ///
921     /// # Panics
922     ///
923     /// Panics if the new capacity exceeds `isize::MAX` bytes.
924     ///
925     /// # Examples
926     ///
927     /// ```
928     /// let mut vec = vec![1];
929     /// vec.reserve_exact(10);
930     /// assert!(vec.capacity() >= 11);
931     /// ```
932     #[cfg(not(no_global_oom_handling))]
933     #[stable(feature = "rust1", since = "1.0.0")]
934     pub fn reserve_exact(&mut self, additional: usize) {
935         self.buf.reserve_exact(self.len, additional);
936     }
937 
938     /// Tries to reserve capacity for at least `additional` more elements to be inserted
939     /// in the given `Vec<T>`. The collection may reserve more space to avoid
940     /// frequent reallocations. After calling `try_reserve`, capacity will be
941     /// greater than or equal to `self.len() + additional`. Does nothing if
942     /// capacity is already sufficient.
943     ///
944     /// # Errors
945     ///
946     /// If the capacity overflows, or the allocator reports a failure, then an error
947     /// is returned.
948     ///
949     /// # Examples
950     ///
951     /// ```
952     /// use std::collections::TryReserveError;
953     ///
954     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
955     ///     let mut output = Vec::new();
956     ///
957     ///     // Pre-reserve the memory, exiting if we can't
958     ///     output.try_reserve(data.len())?;
959     ///
960     ///     // Now we know this can't OOM in the middle of our complex work
961     ///     output.extend(data.iter().map(|&val| {
962     ///         val * 2 + 5 // very complicated
963     ///     }));
964     ///
965     ///     Ok(output)
966     /// }
967     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
968     /// ```
969     #[stable(feature = "try_reserve", since = "1.57.0")]
970     pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
971         self.buf.try_reserve(self.len, additional)
972     }
973 
974     /// Tries to reserve the minimum capacity for exactly `additional`
975     /// elements to be inserted in the given `Vec<T>`. After calling
976     /// `try_reserve_exact`, capacity will be greater than or equal to
977     /// `self.len() + additional` if it returns `Ok(())`.
978     /// Does nothing if the capacity is already sufficient.
979     ///
980     /// Note that the allocator may give the collection more space than it
981     /// requests. Therefore, capacity can not be relied upon to be precisely
982     /// minimal. Prefer [`try_reserve`] if future insertions are expected.
983     ///
984     /// [`try_reserve`]: Vec::try_reserve
985     ///
986     /// # Errors
987     ///
988     /// If the capacity overflows, or the allocator reports a failure, then an error
989     /// is returned.
990     ///
991     /// # Examples
992     ///
993     /// ```
994     /// use std::collections::TryReserveError;
995     ///
996     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
997     ///     let mut output = Vec::new();
998     ///
999     ///     // Pre-reserve the memory, exiting if we can't
1000     ///     output.try_reserve_exact(data.len())?;
1001     ///
1002     ///     // Now we know this can't OOM in the middle of our complex work
1003     ///     output.extend(data.iter().map(|&val| {
1004     ///         val * 2 + 5 // very complicated
1005     ///     }));
1006     ///
1007     ///     Ok(output)
1008     /// }
1009     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1010     /// ```
1011     #[stable(feature = "try_reserve", since = "1.57.0")]
1012     pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1013         self.buf.try_reserve_exact(self.len, additional)
1014     }
1015 
1016     /// Shrinks the capacity of the vector as much as possible.
1017     ///
1018     /// It will drop down as close as possible to the length but the allocator
1019     /// may still inform the vector that there is space for a few more elements.
1020     ///
1021     /// # Examples
1022     ///
1023     /// ```
1024     /// let mut vec = Vec::with_capacity(10);
1025     /// vec.extend([1, 2, 3]);
1026     /// assert_eq!(vec.capacity(), 10);
1027     /// vec.shrink_to_fit();
1028     /// assert!(vec.capacity() >= 3);
1029     /// ```
1030     #[cfg(not(no_global_oom_handling))]
1031     #[stable(feature = "rust1", since = "1.0.0")]
1032     pub fn shrink_to_fit(&mut self) {
1033         // The capacity is never less than the length, and there's nothing to do when
1034         // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1035         // by only calling it with a greater capacity.
1036         if self.capacity() > self.len {
1037             self.buf.shrink_to_fit(self.len);
1038         }
1039     }
1040 
1041     /// Shrinks the capacity of the vector with a lower bound.
1042     ///
1043     /// The capacity will remain at least as large as both the length
1044     /// and the supplied value.
1045     ///
1046     /// If the current capacity is less than the lower limit, this is a no-op.
1047     ///
1048     /// # Examples
1049     ///
1050     /// ```
1051     /// let mut vec = Vec::with_capacity(10);
1052     /// vec.extend([1, 2, 3]);
1053     /// assert_eq!(vec.capacity(), 10);
1054     /// vec.shrink_to(4);
1055     /// assert!(vec.capacity() >= 4);
1056     /// vec.shrink_to(0);
1057     /// assert!(vec.capacity() >= 3);
1058     /// ```
1059     #[cfg(not(no_global_oom_handling))]
1060     #[stable(feature = "shrink_to", since = "1.56.0")]
1061     pub fn shrink_to(&mut self, min_capacity: usize) {
1062         if self.capacity() > min_capacity {
1063             self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1064         }
1065     }
1066 
1067     /// Converts the vector into [`Box<[T]>`][owned slice].
1068     ///
1069     /// Note that this will drop any excess capacity.
1070     ///
1071     /// [owned slice]: Box
1072     ///
1073     /// # Examples
1074     ///
1075     /// ```
1076     /// let v = vec![1, 2, 3];
1077     ///
1078     /// let slice = v.into_boxed_slice();
1079     /// ```
1080     ///
1081     /// Any excess capacity is removed:
1082     ///
1083     /// ```
1084     /// let mut vec = Vec::with_capacity(10);
1085     /// vec.extend([1, 2, 3]);
1086     ///
1087     /// assert_eq!(vec.capacity(), 10);
1088     /// let slice = vec.into_boxed_slice();
1089     /// assert_eq!(slice.into_vec().capacity(), 3);
1090     /// ```
1091     #[cfg(not(no_global_oom_handling))]
1092     #[stable(feature = "rust1", since = "1.0.0")]
1093     pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1094         unsafe {
1095             self.shrink_to_fit();
1096             let me = ManuallyDrop::new(self);
1097             let buf = ptr::read(&me.buf);
1098             let len = me.len();
1099             buf.into_box(len).assume_init()
1100         }
1101     }
1102 
1103     /// Shortens the vector, keeping the first `len` elements and dropping
1104     /// the rest.
1105     ///
1106     /// If `len` is greater than the vector's current length, this has no
1107     /// effect.
1108     ///
1109     /// The [`drain`] method can emulate `truncate`, but causes the excess
1110     /// elements to be returned instead of dropped.
1111     ///
1112     /// Note that this method has no effect on the allocated capacity
1113     /// of the vector.
1114     ///
1115     /// # Examples
1116     ///
1117     /// Truncating a five element vector to two elements:
1118     ///
1119     /// ```
1120     /// let mut vec = vec![1, 2, 3, 4, 5];
1121     /// vec.truncate(2);
1122     /// assert_eq!(vec, [1, 2]);
1123     /// ```
1124     ///
1125     /// No truncation occurs when `len` is greater than the vector's current
1126     /// length:
1127     ///
1128     /// ```
1129     /// let mut vec = vec![1, 2, 3];
1130     /// vec.truncate(8);
1131     /// assert_eq!(vec, [1, 2, 3]);
1132     /// ```
1133     ///
1134     /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1135     /// method.
1136     ///
1137     /// ```
1138     /// let mut vec = vec![1, 2, 3];
1139     /// vec.truncate(0);
1140     /// assert_eq!(vec, []);
1141     /// ```
1142     ///
1143     /// [`clear`]: Vec::clear
1144     /// [`drain`]: Vec::drain
1145     #[stable(feature = "rust1", since = "1.0.0")]
1146     pub fn truncate(&mut self, len: usize) {
1147         // This is safe because:
1148         //
1149         // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1150         //   case avoids creating an invalid slice, and
1151         // * the `len` of the vector is shrunk before calling `drop_in_place`,
1152         //   such that no value will be dropped twice in case `drop_in_place`
1153         //   were to panic once (if it panics twice, the program aborts).
1154         unsafe {
1155             // Note: It's intentional that this is `>` and not `>=`.
1156             //       Changing it to `>=` has negative performance
1157             //       implications in some cases. See #78884 for more.
1158             if len > self.len {
1159                 return;
1160             }
1161             let remaining_len = self.len - len;
1162             let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1163             self.len = len;
1164             ptr::drop_in_place(s);
1165         }
1166     }
1167 
1168     /// Extracts a slice containing the entire vector.
1169     ///
1170     /// Equivalent to `&s[..]`.
1171     ///
1172     /// # Examples
1173     ///
1174     /// ```
1175     /// use std::io::{self, Write};
1176     /// let buffer = vec![1, 2, 3, 5, 8];
1177     /// io::sink().write(buffer.as_slice()).unwrap();
1178     /// ```
1179     #[inline]
1180     #[stable(feature = "vec_as_slice", since = "1.7.0")]
1181     pub fn as_slice(&self) -> &[T] {
1182         self
1183     }
1184 
1185     /// Extracts a mutable slice of the entire vector.
1186     ///
1187     /// Equivalent to `&mut s[..]`.
1188     ///
1189     /// # Examples
1190     ///
1191     /// ```
1192     /// use std::io::{self, Read};
1193     /// let mut buffer = vec![0; 3];
1194     /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1195     /// ```
1196     #[inline]
1197     #[stable(feature = "vec_as_slice", since = "1.7.0")]
1198     pub fn as_mut_slice(&mut self) -> &mut [T] {
1199         self
1200     }
1201 
1202     /// Returns a raw pointer to the vector's buffer.
1203     ///
1204     /// The caller must ensure that the vector outlives the pointer this
1205     /// function returns, or else it will end up pointing to garbage.
1206     /// Modifying the vector may cause its buffer to be reallocated,
1207     /// which would also make any pointers to it invalid.
1208     ///
1209     /// The caller must also ensure that the memory the pointer (non-transitively) points to
1210     /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1211     /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1212     ///
1213     /// # Examples
1214     ///
1215     /// ```
1216     /// let x = vec![1, 2, 4];
1217     /// let x_ptr = x.as_ptr();
1218     ///
1219     /// unsafe {
1220     ///     for i in 0..x.len() {
1221     ///         assert_eq!(*x_ptr.add(i), 1 << i);
1222     ///     }
1223     /// }
1224     /// ```
1225     ///
1226     /// [`as_mut_ptr`]: Vec::as_mut_ptr
1227     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1228     #[inline]
1229     pub fn as_ptr(&self) -> *const T {
1230         // We shadow the slice method of the same name to avoid going through
1231         // `deref`, which creates an intermediate reference.
1232         let ptr = self.buf.ptr();
1233         unsafe {
1234             assume(!ptr.is_null());
1235         }
1236         ptr
1237     }
1238 
1239     /// Returns an unsafe mutable pointer to the vector's buffer.
1240     ///
1241     /// The caller must ensure that the vector outlives the pointer this
1242     /// function returns, or else it will end up pointing to garbage.
1243     /// Modifying the vector may cause its buffer to be reallocated,
1244     /// which would also make any pointers to it invalid.
1245     ///
1246     /// # Examples
1247     ///
1248     /// ```
1249     /// // Allocate vector big enough for 4 elements.
1250     /// let size = 4;
1251     /// let mut x: Vec<i32> = Vec::with_capacity(size);
1252     /// let x_ptr = x.as_mut_ptr();
1253     ///
1254     /// // Initialize elements via raw pointer writes, then set length.
1255     /// unsafe {
1256     ///     for i in 0..size {
1257     ///         *x_ptr.add(i) = i as i32;
1258     ///     }
1259     ///     x.set_len(size);
1260     /// }
1261     /// assert_eq!(&*x, &[0, 1, 2, 3]);
1262     /// ```
1263     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1264     #[inline]
1265     pub fn as_mut_ptr(&mut self) -> *mut T {
1266         // We shadow the slice method of the same name to avoid going through
1267         // `deref_mut`, which creates an intermediate reference.
1268         let ptr = self.buf.ptr();
1269         unsafe {
1270             assume(!ptr.is_null());
1271         }
1272         ptr
1273     }
1274 
1275     /// Returns a reference to the underlying allocator.
1276     #[unstable(feature = "allocator_api", issue = "32838")]
1277     #[inline]
1278     pub fn allocator(&self) -> &A {
1279         self.buf.allocator()
1280     }
1281 
1282     /// Forces the length of the vector to `new_len`.
1283     ///
1284     /// This is a low-level operation that maintains none of the normal
1285     /// invariants of the type. Normally changing the length of a vector
1286     /// is done using one of the safe operations instead, such as
1287     /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1288     ///
1289     /// [`truncate`]: Vec::truncate
1290     /// [`resize`]: Vec::resize
1291     /// [`extend`]: Extend::extend
1292     /// [`clear`]: Vec::clear
1293     ///
1294     /// # Safety
1295     ///
1296     /// - `new_len` must be less than or equal to [`capacity()`].
1297     /// - The elements at `old_len..new_len` must be initialized.
1298     ///
1299     /// [`capacity()`]: Vec::capacity
1300     ///
1301     /// # Examples
1302     ///
1303     /// This method can be useful for situations in which the vector
1304     /// is serving as a buffer for other code, particularly over FFI:
1305     ///
1306     /// ```no_run
1307     /// # #![allow(dead_code)]
1308     /// # // This is just a minimal skeleton for the doc example;
1309     /// # // don't use this as a starting point for a real library.
1310     /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1311     /// # const Z_OK: i32 = 0;
1312     /// # extern "C" {
1313     /// #     fn deflateGetDictionary(
1314     /// #         strm: *mut std::ffi::c_void,
1315     /// #         dictionary: *mut u8,
1316     /// #         dictLength: *mut usize,
1317     /// #     ) -> i32;
1318     /// # }
1319     /// # impl StreamWrapper {
1320     /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1321     ///     // Per the FFI method's docs, "32768 bytes is always enough".
1322     ///     let mut dict = Vec::with_capacity(32_768);
1323     ///     let mut dict_length = 0;
1324     ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1325     ///     // 1. `dict_length` elements were initialized.
1326     ///     // 2. `dict_length` <= the capacity (32_768)
1327     ///     // which makes `set_len` safe to call.
1328     ///     unsafe {
1329     ///         // Make the FFI call...
1330     ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1331     ///         if r == Z_OK {
1332     ///             // ...and update the length to what was initialized.
1333     ///             dict.set_len(dict_length);
1334     ///             Some(dict)
1335     ///         } else {
1336     ///             None
1337     ///         }
1338     ///     }
1339     /// }
1340     /// # }
1341     /// ```
1342     ///
1343     /// While the following example is sound, there is a memory leak since
1344     /// the inner vectors were not freed prior to the `set_len` call:
1345     ///
1346     /// ```
1347     /// let mut vec = vec![vec![1, 0, 0],
1348     ///                    vec![0, 1, 0],
1349     ///                    vec![0, 0, 1]];
1350     /// // SAFETY:
1351     /// // 1. `old_len..0` is empty so no elements need to be initialized.
1352     /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1353     /// unsafe {
1354     ///     vec.set_len(0);
1355     /// }
1356     /// ```
1357     ///
1358     /// Normally, here, one would use [`clear`] instead to correctly drop
1359     /// the contents and thus not leak memory.
1360     #[inline]
1361     #[stable(feature = "rust1", since = "1.0.0")]
1362     pub unsafe fn set_len(&mut self, new_len: usize) {
1363         debug_assert!(new_len <= self.capacity());
1364 
1365         self.len = new_len;
1366     }
1367 
1368     /// Removes an element from the vector and returns it.
1369     ///
1370     /// The removed element is replaced by the last element of the vector.
1371     ///
1372     /// This does not preserve ordering, but is *O*(1).
1373     /// If you need to preserve the element order, use [`remove`] instead.
1374     ///
1375     /// [`remove`]: Vec::remove
1376     ///
1377     /// # Panics
1378     ///
1379     /// Panics if `index` is out of bounds.
1380     ///
1381     /// # Examples
1382     ///
1383     /// ```
1384     /// let mut v = vec!["foo", "bar", "baz", "qux"];
1385     ///
1386     /// assert_eq!(v.swap_remove(1), "bar");
1387     /// assert_eq!(v, ["foo", "qux", "baz"]);
1388     ///
1389     /// assert_eq!(v.swap_remove(0), "foo");
1390     /// assert_eq!(v, ["baz", "qux"]);
1391     /// ```
1392     #[inline]
1393     #[stable(feature = "rust1", since = "1.0.0")]
1394     pub fn swap_remove(&mut self, index: usize) -> T {
1395         #[cold]
1396         #[inline(never)]
1397         fn assert_failed(index: usize, len: usize) -> ! {
1398             panic!("swap_remove index (is {index}) should be < len (is {len})");
1399         }
1400 
1401         let len = self.len();
1402         if index >= len {
1403             assert_failed(index, len);
1404         }
1405         unsafe {
1406             // We replace self[index] with the last element. Note that if the
1407             // bounds check above succeeds there must be a last element (which
1408             // can be self[index] itself).
1409             let value = ptr::read(self.as_ptr().add(index));
1410             let base_ptr = self.as_mut_ptr();
1411             ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1412             self.set_len(len - 1);
1413             value
1414         }
1415     }
1416 
1417     /// Inserts an element at position `index` within the vector, shifting all
1418     /// elements after it to the right.
1419     ///
1420     /// # Panics
1421     ///
1422     /// Panics if `index > len`.
1423     ///
1424     /// # Examples
1425     ///
1426     /// ```
1427     /// let mut vec = vec![1, 2, 3];
1428     /// vec.insert(1, 4);
1429     /// assert_eq!(vec, [1, 4, 2, 3]);
1430     /// vec.insert(4, 5);
1431     /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1432     /// ```
1433     #[cfg(not(no_global_oom_handling))]
1434     #[stable(feature = "rust1", since = "1.0.0")]
1435     pub fn insert(&mut self, index: usize, element: T) {
1436         #[cold]
1437         #[inline(never)]
1438         fn assert_failed(index: usize, len: usize) -> ! {
1439             panic!("insertion index (is {index}) should be <= len (is {len})");
1440         }
1441 
1442         let len = self.len();
1443         if index > len {
1444             assert_failed(index, len);
1445         }
1446 
1447         // space for the new element
1448         if len == self.buf.capacity() {
1449             self.reserve(1);
1450         }
1451 
1452         unsafe {
1453             // infallible
1454             // The spot to put the new value
1455             {
1456                 let p = self.as_mut_ptr().add(index);
1457                 // Shift everything over to make space. (Duplicating the
1458                 // `index`th element into two consecutive places.)
1459                 ptr::copy(p, p.offset(1), len - index);
1460                 // Write it in, overwriting the first copy of the `index`th
1461                 // element.
1462                 ptr::write(p, element);
1463             }
1464             self.set_len(len + 1);
1465         }
1466     }
1467 
1468     /// Removes and returns the element at position `index` within the vector,
1469     /// shifting all elements after it to the left.
1470     ///
1471     /// Note: Because this shifts over the remaining elements, it has a
1472     /// worst-case performance of *O*(*n*). If you don't need the order of elements
1473     /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1474     /// elements from the beginning of the `Vec`, consider using
1475     /// [`VecDeque::pop_front`] instead.
1476     ///
1477     /// [`swap_remove`]: Vec::swap_remove
1478     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1479     ///
1480     /// # Panics
1481     ///
1482     /// Panics if `index` is out of bounds.
1483     ///
1484     /// # Examples
1485     ///
1486     /// ```
1487     /// let mut v = vec![1, 2, 3];
1488     /// assert_eq!(v.remove(1), 2);
1489     /// assert_eq!(v, [1, 3]);
1490     /// ```
1491     #[stable(feature = "rust1", since = "1.0.0")]
1492     #[track_caller]
1493     pub fn remove(&mut self, index: usize) -> T {
1494         #[cold]
1495         #[inline(never)]
1496         #[track_caller]
1497         fn assert_failed(index: usize, len: usize) -> ! {
1498             panic!("removal index (is {index}) should be < len (is {len})");
1499         }
1500 
1501         let len = self.len();
1502         if index >= len {
1503             assert_failed(index, len);
1504         }
1505         unsafe {
1506             // infallible
1507             let ret;
1508             {
1509                 // the place we are taking from.
1510                 let ptr = self.as_mut_ptr().add(index);
1511                 // copy it out, unsafely having a copy of the value on
1512                 // the stack and in the vector at the same time.
1513                 ret = ptr::read(ptr);
1514 
1515                 // Shift everything down to fill in that spot.
1516                 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1517             }
1518             self.set_len(len - 1);
1519             ret
1520         }
1521     }
1522 
1523     /// Retains only the elements specified by the predicate.
1524     ///
1525     /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1526     /// This method operates in place, visiting each element exactly once in the
1527     /// original order, and preserves the order of the retained elements.
1528     ///
1529     /// # Examples
1530     ///
1531     /// ```
1532     /// let mut vec = vec![1, 2, 3, 4];
1533     /// vec.retain(|&x| x % 2 == 0);
1534     /// assert_eq!(vec, [2, 4]);
1535     /// ```
1536     ///
1537     /// Because the elements are visited exactly once in the original order,
1538     /// external state may be used to decide which elements to keep.
1539     ///
1540     /// ```
1541     /// let mut vec = vec![1, 2, 3, 4, 5];
1542     /// let keep = [false, true, true, false, true];
1543     /// let mut iter = keep.iter();
1544     /// vec.retain(|_| *iter.next().unwrap());
1545     /// assert_eq!(vec, [2, 3, 5]);
1546     /// ```
1547     #[stable(feature = "rust1", since = "1.0.0")]
1548     pub fn retain<F>(&mut self, mut f: F)
1549     where
1550         F: FnMut(&T) -> bool,
1551     {
1552         self.retain_mut(|elem| f(elem));
1553     }
1554 
1555     /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1556     ///
1557     /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1558     /// This method operates in place, visiting each element exactly once in the
1559     /// original order, and preserves the order of the retained elements.
1560     ///
1561     /// # Examples
1562     ///
1563     /// ```
1564     /// let mut vec = vec![1, 2, 3, 4];
1565     /// vec.retain_mut(|x| if *x > 3 {
1566     ///     false
1567     /// } else {
1568     ///     *x += 1;
1569     ///     true
1570     /// });
1571     /// assert_eq!(vec, [2, 3, 4]);
1572     /// ```
1573     #[stable(feature = "vec_retain_mut", since = "1.61.0")]
1574     pub fn retain_mut<F>(&mut self, mut f: F)
1575     where
1576         F: FnMut(&mut T) -> bool,
1577     {
1578         let original_len = self.len();
1579         // Avoid double drop if the drop guard is not executed,
1580         // since we may make some holes during the process.
1581         unsafe { self.set_len(0) };
1582 
1583         // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1584         //      |<-              processed len   ->| ^- next to check
1585         //                  |<-  deleted cnt     ->|
1586         //      |<-              original_len                          ->|
1587         // Kept: Elements which predicate returns true on.
1588         // Hole: Moved or dropped element slot.
1589         // Unchecked: Unchecked valid elements.
1590         //
1591         // This drop guard will be invoked when predicate or `drop` of element panicked.
1592         // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1593         // In cases when predicate and `drop` never panick, it will be optimized out.
1594         struct BackshiftOnDrop<'a, T, A: Allocator> {
1595             v: &'a mut Vec<T, A>,
1596             processed_len: usize,
1597             deleted_cnt: usize,
1598             original_len: usize,
1599         }
1600 
1601         impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1602             fn drop(&mut self) {
1603                 if self.deleted_cnt > 0 {
1604                     // SAFETY: Trailing unchecked items must be valid since we never touch them.
1605                     unsafe {
1606                         ptr::copy(
1607                             self.v.as_ptr().add(self.processed_len),
1608                             self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1609                             self.original_len - self.processed_len,
1610                         );
1611                     }
1612                 }
1613                 // SAFETY: After filling holes, all items are in contiguous memory.
1614                 unsafe {
1615                     self.v.set_len(self.original_len - self.deleted_cnt);
1616                 }
1617             }
1618         }
1619 
1620         let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1621 
1622         fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1623             original_len: usize,
1624             f: &mut F,
1625             g: &mut BackshiftOnDrop<'_, T, A>,
1626         ) where
1627             F: FnMut(&mut T) -> bool,
1628         {
1629             while g.processed_len != original_len {
1630                 // SAFETY: Unchecked element must be valid.
1631                 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1632                 if !f(cur) {
1633                     // Advance early to avoid double drop if `drop_in_place` panicked.
1634                     g.processed_len += 1;
1635                     g.deleted_cnt += 1;
1636                     // SAFETY: We never touch this element again after dropped.
1637                     unsafe { ptr::drop_in_place(cur) };
1638                     // We already advanced the counter.
1639                     if DELETED {
1640                         continue;
1641                     } else {
1642                         break;
1643                     }
1644                 }
1645                 if DELETED {
1646                     // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1647                     // We use copy for move, and never touch this element again.
1648                     unsafe {
1649                         let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1650                         ptr::copy_nonoverlapping(cur, hole_slot, 1);
1651                     }
1652                 }
1653                 g.processed_len += 1;
1654             }
1655         }
1656 
1657         // Stage 1: Nothing was deleted.
1658         process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1659 
1660         // Stage 2: Some elements were deleted.
1661         process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1662 
1663         // All item are processed. This can be optimized to `set_len` by LLVM.
1664         drop(g);
1665     }
1666 
1667     /// Removes all but the first of consecutive elements in the vector that resolve to the same
1668     /// key.
1669     ///
1670     /// If the vector is sorted, this removes all duplicates.
1671     ///
1672     /// # Examples
1673     ///
1674     /// ```
1675     /// let mut vec = vec![10, 20, 21, 30, 20];
1676     ///
1677     /// vec.dedup_by_key(|i| *i / 10);
1678     ///
1679     /// assert_eq!(vec, [10, 20, 30, 20]);
1680     /// ```
1681     #[stable(feature = "dedup_by", since = "1.16.0")]
1682     #[inline]
1683     pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1684     where
1685         F: FnMut(&mut T) -> K,
1686         K: PartialEq,
1687     {
1688         self.dedup_by(|a, b| key(a) == key(b))
1689     }
1690 
1691     /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1692     /// relation.
1693     ///
1694     /// The `same_bucket` function is passed references to two elements from the vector and
1695     /// must determine if the elements compare equal. The elements are passed in opposite order
1696     /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1697     ///
1698     /// If the vector is sorted, this removes all duplicates.
1699     ///
1700     /// # Examples
1701     ///
1702     /// ```
1703     /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1704     ///
1705     /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1706     ///
1707     /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1708     /// ```
1709     #[stable(feature = "dedup_by", since = "1.16.0")]
1710     pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1711     where
1712         F: FnMut(&mut T, &mut T) -> bool,
1713     {
1714         let len = self.len();
1715         if len <= 1 {
1716             return;
1717         }
1718 
1719         /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1720         struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1721             /* Offset of the element we want to check if it is duplicate */
1722             read: usize,
1723 
1724             /* Offset of the place where we want to place the non-duplicate
1725              * when we find it. */
1726             write: usize,
1727 
1728             /* The Vec that would need correction if `same_bucket` panicked */
1729             vec: &'a mut Vec<T, A>,
1730         }
1731 
1732         impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1733             fn drop(&mut self) {
1734                 /* This code gets executed when `same_bucket` panics */
1735 
1736                 /* SAFETY: invariant guarantees that `read - write`
1737                  * and `len - read` never overflow and that the copy is always
1738                  * in-bounds. */
1739                 unsafe {
1740                     let ptr = self.vec.as_mut_ptr();
1741                     let len = self.vec.len();
1742 
1743                     /* How many items were left when `same_bucket` panicked.
1744                      * Basically vec[read..].len() */
1745                     let items_left = len.wrapping_sub(self.read);
1746 
1747                     /* Pointer to first item in vec[write..write+items_left] slice */
1748                     let dropped_ptr = ptr.add(self.write);
1749                     /* Pointer to first item in vec[read..] slice */
1750                     let valid_ptr = ptr.add(self.read);
1751 
1752                     /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1753                      * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1754                     ptr::copy(valid_ptr, dropped_ptr, items_left);
1755 
1756                     /* How many items have been already dropped
1757                      * Basically vec[read..write].len() */
1758                     let dropped = self.read.wrapping_sub(self.write);
1759 
1760                     self.vec.set_len(len - dropped);
1761                 }
1762             }
1763         }
1764 
1765         let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1766         let ptr = gap.vec.as_mut_ptr();
1767 
1768         /* Drop items while going through Vec, it should be more efficient than
1769          * doing slice partition_dedup + truncate */
1770 
1771         /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1772          * are always in-bounds and read_ptr never aliases prev_ptr */
1773         unsafe {
1774             while gap.read < len {
1775                 let read_ptr = ptr.add(gap.read);
1776                 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1777 
1778                 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1779                     // Increase `gap.read` now since the drop may panic.
1780                     gap.read += 1;
1781                     /* We have found duplicate, drop it in-place */
1782                     ptr::drop_in_place(read_ptr);
1783                 } else {
1784                     let write_ptr = ptr.add(gap.write);
1785 
1786                     /* Because `read_ptr` can be equal to `write_ptr`, we either
1787                      * have to use `copy` or conditional `copy_nonoverlapping`.
1788                      * Looks like the first option is faster. */
1789                     ptr::copy(read_ptr, write_ptr, 1);
1790 
1791                     /* We have filled that place, so go further */
1792                     gap.write += 1;
1793                     gap.read += 1;
1794                 }
1795             }
1796 
1797             /* Technically we could let `gap` clean up with its Drop, but
1798              * when `same_bucket` is guaranteed to not panic, this bloats a little
1799              * the codegen, so we just do it manually */
1800             gap.vec.set_len(gap.write);
1801             mem::forget(gap);
1802         }
1803     }
1804 
1805     /// Appends an element to the back of a collection.
1806     ///
1807     /// # Panics
1808     ///
1809     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1810     ///
1811     /// # Examples
1812     ///
1813     /// ```
1814     /// let mut vec = vec![1, 2];
1815     /// vec.push(3);
1816     /// assert_eq!(vec, [1, 2, 3]);
1817     /// ```
1818     #[cfg(not(no_global_oom_handling))]
1819     #[inline]
1820     #[stable(feature = "rust1", since = "1.0.0")]
1821     pub fn push(&mut self, value: T) {
1822         // This will panic or abort if we would allocate > isize::MAX bytes
1823         // or if the length increment would overflow for zero-sized types.
1824         if self.len == self.buf.capacity() {
1825             self.buf.reserve_for_push(self.len);
1826         }
1827         unsafe {
1828             let end = self.as_mut_ptr().add(self.len);
1829             ptr::write(end, value);
1830             self.len += 1;
1831         }
1832     }
1833 
1834     /// Tries to append an element to the back of a collection.
1835     ///
1836     /// # Examples
1837     ///
1838     /// ```
1839     /// let mut vec = vec![1, 2];
1840     /// vec.try_push(3).unwrap();
1841     /// assert_eq!(vec, [1, 2, 3]);
1842     /// ```
1843     #[inline]
1844     #[stable(feature = "kernel", since = "1.0.0")]
1845     pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1846         if self.len == self.buf.capacity() {
1847             self.buf.try_reserve_for_push(self.len)?;
1848         }
1849         unsafe {
1850             let end = self.as_mut_ptr().add(self.len);
1851             ptr::write(end, value);
1852             self.len += 1;
1853         }
1854         Ok(())
1855     }
1856 
1857     /// Removes the last element from a vector and returns it, or [`None`] if it
1858     /// is empty.
1859     ///
1860     /// If you'd like to pop the first element, consider using
1861     /// [`VecDeque::pop_front`] instead.
1862     ///
1863     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1864     ///
1865     /// # Examples
1866     ///
1867     /// ```
1868     /// let mut vec = vec![1, 2, 3];
1869     /// assert_eq!(vec.pop(), Some(3));
1870     /// assert_eq!(vec, [1, 2]);
1871     /// ```
1872     #[inline]
1873     #[stable(feature = "rust1", since = "1.0.0")]
1874     pub fn pop(&mut self) -> Option<T> {
1875         if self.len == 0 {
1876             None
1877         } else {
1878             unsafe {
1879                 self.len -= 1;
1880                 Some(ptr::read(self.as_ptr().add(self.len())))
1881             }
1882         }
1883     }
1884 
1885     /// Moves all the elements of `other` into `self`, leaving `other` empty.
1886     ///
1887     /// # Panics
1888     ///
1889     /// Panics if the number of elements in the vector overflows a `usize`.
1890     ///
1891     /// # Examples
1892     ///
1893     /// ```
1894     /// let mut vec = vec![1, 2, 3];
1895     /// let mut vec2 = vec![4, 5, 6];
1896     /// vec.append(&mut vec2);
1897     /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1898     /// assert_eq!(vec2, []);
1899     /// ```
1900     #[cfg(not(no_global_oom_handling))]
1901     #[inline]
1902     #[stable(feature = "append", since = "1.4.0")]
1903     pub fn append(&mut self, other: &mut Self) {
1904         unsafe {
1905             self.append_elements(other.as_slice() as _);
1906             other.set_len(0);
1907         }
1908     }
1909 
1910     /// Appends elements to `self` from other buffer.
1911     #[cfg(not(no_global_oom_handling))]
1912     #[inline]
1913     unsafe fn append_elements(&mut self, other: *const [T]) {
1914         let count = unsafe { (*other).len() };
1915         self.reserve(count);
1916         let len = self.len();
1917         unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
1918         self.len += count;
1919     }
1920 
1921     /// Tries to append elements to `self` from other buffer.
1922     #[inline]
1923     unsafe fn try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError> {
1924         let count = unsafe { (*other).len() };
1925         self.try_reserve(count)?;
1926         let len = self.len();
1927         unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
1928         self.len += count;
1929         Ok(())
1930     }
1931 
1932     /// Removes the specified range from the vector in bulk, returning all
1933     /// removed elements as an iterator. If the iterator is dropped before
1934     /// being fully consumed, it drops the remaining removed elements.
1935     ///
1936     /// The returned iterator keeps a mutable borrow on the vector to optimize
1937     /// its implementation.
1938     ///
1939     /// # Panics
1940     ///
1941     /// Panics if the starting point is greater than the end point or if
1942     /// the end point is greater than the length of the vector.
1943     ///
1944     /// # Leaking
1945     ///
1946     /// If the returned iterator goes out of scope without being dropped (due to
1947     /// [`mem::forget`], for example), the vector may have lost and leaked
1948     /// elements arbitrarily, including elements outside the range.
1949     ///
1950     /// # Examples
1951     ///
1952     /// ```
1953     /// let mut v = vec![1, 2, 3];
1954     /// let u: Vec<_> = v.drain(1..).collect();
1955     /// assert_eq!(v, &[1]);
1956     /// assert_eq!(u, &[2, 3]);
1957     ///
1958     /// // A full range clears the vector, like `clear()` does
1959     /// v.drain(..);
1960     /// assert_eq!(v, &[]);
1961     /// ```
1962     #[stable(feature = "drain", since = "1.6.0")]
1963     pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
1964     where
1965         R: RangeBounds<usize>,
1966     {
1967         // Memory safety
1968         //
1969         // When the Drain is first created, it shortens the length of
1970         // the source vector to make sure no uninitialized or moved-from elements
1971         // are accessible at all if the Drain's destructor never gets to run.
1972         //
1973         // Drain will ptr::read out the values to remove.
1974         // When finished, remaining tail of the vec is copied back to cover
1975         // the hole, and the vector length is restored to the new length.
1976         //
1977         let len = self.len();
1978         let Range { start, end } = slice::range(range, ..len);
1979 
1980         unsafe {
1981             // set self.vec length's to start, to be safe in case Drain is leaked
1982             self.set_len(start);
1983             // Use the borrow in the IterMut to indicate borrowing behavior of the
1984             // whole Drain iterator (like &mut T).
1985             let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
1986             Drain {
1987                 tail_start: end,
1988                 tail_len: len - end,
1989                 iter: range_slice.iter(),
1990                 vec: NonNull::from(self),
1991             }
1992         }
1993     }
1994 
1995     /// Clears the vector, removing all values.
1996     ///
1997     /// Note that this method has no effect on the allocated capacity
1998     /// of the vector.
1999     ///
2000     /// # Examples
2001     ///
2002     /// ```
2003     /// let mut v = vec![1, 2, 3];
2004     ///
2005     /// v.clear();
2006     ///
2007     /// assert!(v.is_empty());
2008     /// ```
2009     #[inline]
2010     #[stable(feature = "rust1", since = "1.0.0")]
2011     pub fn clear(&mut self) {
2012         let elems: *mut [T] = self.as_mut_slice();
2013 
2014         // SAFETY:
2015         // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2016         // - Setting `self.len` before calling `drop_in_place` means that,
2017         //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2018         //   do nothing (leaking the rest of the elements) instead of dropping
2019         //   some twice.
2020         unsafe {
2021             self.len = 0;
2022             ptr::drop_in_place(elems);
2023         }
2024     }
2025 
2026     /// Returns the number of elements in the vector, also referred to
2027     /// as its 'length'.
2028     ///
2029     /// # Examples
2030     ///
2031     /// ```
2032     /// let a = vec![1, 2, 3];
2033     /// assert_eq!(a.len(), 3);
2034     /// ```
2035     #[inline]
2036     #[stable(feature = "rust1", since = "1.0.0")]
2037     pub fn len(&self) -> usize {
2038         self.len
2039     }
2040 
2041     /// Returns `true` if the vector contains no elements.
2042     ///
2043     /// # Examples
2044     ///
2045     /// ```
2046     /// let mut v = Vec::new();
2047     /// assert!(v.is_empty());
2048     ///
2049     /// v.push(1);
2050     /// assert!(!v.is_empty());
2051     /// ```
2052     #[stable(feature = "rust1", since = "1.0.0")]
2053     pub fn is_empty(&self) -> bool {
2054         self.len() == 0
2055     }
2056 
2057     /// Splits the collection into two at the given index.
2058     ///
2059     /// Returns a newly allocated vector containing the elements in the range
2060     /// `[at, len)`. After the call, the original vector will be left containing
2061     /// the elements `[0, at)` with its previous capacity unchanged.
2062     ///
2063     /// # Panics
2064     ///
2065     /// Panics if `at > len`.
2066     ///
2067     /// # Examples
2068     ///
2069     /// ```
2070     /// let mut vec = vec![1, 2, 3];
2071     /// let vec2 = vec.split_off(1);
2072     /// assert_eq!(vec, [1]);
2073     /// assert_eq!(vec2, [2, 3]);
2074     /// ```
2075     #[cfg(not(no_global_oom_handling))]
2076     #[inline]
2077     #[must_use = "use `.truncate()` if you don't need the other half"]
2078     #[stable(feature = "split_off", since = "1.4.0")]
2079     pub fn split_off(&mut self, at: usize) -> Self
2080     where
2081         A: Clone,
2082     {
2083         #[cold]
2084         #[inline(never)]
2085         fn assert_failed(at: usize, len: usize) -> ! {
2086             panic!("`at` split index (is {at}) should be <= len (is {len})");
2087         }
2088 
2089         if at > self.len() {
2090             assert_failed(at, self.len());
2091         }
2092 
2093         if at == 0 {
2094             // the new vector can take over the original buffer and avoid the copy
2095             return mem::replace(
2096                 self,
2097                 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2098             );
2099         }
2100 
2101         let other_len = self.len - at;
2102         let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2103 
2104         // Unsafely `set_len` and copy items to `other`.
2105         unsafe {
2106             self.set_len(at);
2107             other.set_len(other_len);
2108 
2109             ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2110         }
2111         other
2112     }
2113 
2114     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2115     ///
2116     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2117     /// difference, with each additional slot filled with the result of
2118     /// calling the closure `f`. The return values from `f` will end up
2119     /// in the `Vec` in the order they have been generated.
2120     ///
2121     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2122     ///
2123     /// This method uses a closure to create new values on every push. If
2124     /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2125     /// want to use the [`Default`] trait to generate values, you can
2126     /// pass [`Default::default`] as the second argument.
2127     ///
2128     /// # Examples
2129     ///
2130     /// ```
2131     /// let mut vec = vec![1, 2, 3];
2132     /// vec.resize_with(5, Default::default);
2133     /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2134     ///
2135     /// let mut vec = vec![];
2136     /// let mut p = 1;
2137     /// vec.resize_with(4, || { p *= 2; p });
2138     /// assert_eq!(vec, [2, 4, 8, 16]);
2139     /// ```
2140     #[cfg(not(no_global_oom_handling))]
2141     #[stable(feature = "vec_resize_with", since = "1.33.0")]
2142     pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2143     where
2144         F: FnMut() -> T,
2145     {
2146         let len = self.len();
2147         if new_len > len {
2148             self.extend_with(new_len - len, ExtendFunc(f));
2149         } else {
2150             self.truncate(new_len);
2151         }
2152     }
2153 
2154     /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2155     /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2156     /// `'a`. If the type has only static references, or none at all, then this
2157     /// may be chosen to be `'static`.
2158     ///
2159     /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2160     /// so the leaked allocation may include unused capacity that is not part
2161     /// of the returned slice.
2162     ///
2163     /// This function is mainly useful for data that lives for the remainder of
2164     /// the program's life. Dropping the returned reference will cause a memory
2165     /// leak.
2166     ///
2167     /// # Examples
2168     ///
2169     /// Simple usage:
2170     ///
2171     /// ```
2172     /// let x = vec![1, 2, 3];
2173     /// let static_ref: &'static mut [usize] = x.leak();
2174     /// static_ref[0] += 1;
2175     /// assert_eq!(static_ref, &[2, 2, 3]);
2176     /// ```
2177     #[cfg(not(no_global_oom_handling))]
2178     #[stable(feature = "vec_leak", since = "1.47.0")]
2179     #[inline]
2180     pub fn leak<'a>(self) -> &'a mut [T]
2181     where
2182         A: 'a,
2183     {
2184         let mut me = ManuallyDrop::new(self);
2185         unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2186     }
2187 
2188     /// Returns the remaining spare capacity of the vector as a slice of
2189     /// `MaybeUninit<T>`.
2190     ///
2191     /// The returned slice can be used to fill the vector with data (e.g. by
2192     /// reading from a file) before marking the data as initialized using the
2193     /// [`set_len`] method.
2194     ///
2195     /// [`set_len`]: Vec::set_len
2196     ///
2197     /// # Examples
2198     ///
2199     /// ```
2200     /// // Allocate vector big enough for 10 elements.
2201     /// let mut v = Vec::with_capacity(10);
2202     ///
2203     /// // Fill in the first 3 elements.
2204     /// let uninit = v.spare_capacity_mut();
2205     /// uninit[0].write(0);
2206     /// uninit[1].write(1);
2207     /// uninit[2].write(2);
2208     ///
2209     /// // Mark the first 3 elements of the vector as being initialized.
2210     /// unsafe {
2211     ///     v.set_len(3);
2212     /// }
2213     ///
2214     /// assert_eq!(&v, &[0, 1, 2]);
2215     /// ```
2216     #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2217     #[inline]
2218     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2219         // Note:
2220         // This method is not implemented in terms of `split_at_spare_mut`,
2221         // to prevent invalidation of pointers to the buffer.
2222         unsafe {
2223             slice::from_raw_parts_mut(
2224                 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2225                 self.buf.capacity() - self.len,
2226             )
2227         }
2228     }
2229 
2230     /// Returns vector content as a slice of `T`, along with the remaining spare
2231     /// capacity of the vector as a slice of `MaybeUninit<T>`.
2232     ///
2233     /// The returned spare capacity slice can be used to fill the vector with data
2234     /// (e.g. by reading from a file) before marking the data as initialized using
2235     /// the [`set_len`] method.
2236     ///
2237     /// [`set_len`]: Vec::set_len
2238     ///
2239     /// Note that this is a low-level API, which should be used with care for
2240     /// optimization purposes. If you need to append data to a `Vec`
2241     /// you can use [`push`], [`extend`], [`extend_from_slice`],
2242     /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2243     /// [`resize_with`], depending on your exact needs.
2244     ///
2245     /// [`push`]: Vec::push
2246     /// [`extend`]: Vec::extend
2247     /// [`extend_from_slice`]: Vec::extend_from_slice
2248     /// [`extend_from_within`]: Vec::extend_from_within
2249     /// [`insert`]: Vec::insert
2250     /// [`append`]: Vec::append
2251     /// [`resize`]: Vec::resize
2252     /// [`resize_with`]: Vec::resize_with
2253     ///
2254     /// # Examples
2255     ///
2256     /// ```
2257     /// #![feature(vec_split_at_spare)]
2258     ///
2259     /// let mut v = vec![1, 1, 2];
2260     ///
2261     /// // Reserve additional space big enough for 10 elements.
2262     /// v.reserve(10);
2263     ///
2264     /// let (init, uninit) = v.split_at_spare_mut();
2265     /// let sum = init.iter().copied().sum::<u32>();
2266     ///
2267     /// // Fill in the next 4 elements.
2268     /// uninit[0].write(sum);
2269     /// uninit[1].write(sum * 2);
2270     /// uninit[2].write(sum * 3);
2271     /// uninit[3].write(sum * 4);
2272     ///
2273     /// // Mark the 4 elements of the vector as being initialized.
2274     /// unsafe {
2275     ///     let len = v.len();
2276     ///     v.set_len(len + 4);
2277     /// }
2278     ///
2279     /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2280     /// ```
2281     #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2282     #[inline]
2283     pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2284         // SAFETY:
2285         // - len is ignored and so never changed
2286         let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2287         (init, spare)
2288     }
2289 
2290     /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2291     ///
2292     /// This method provides unique access to all vec parts at once in `extend_from_within`.
2293     unsafe fn split_at_spare_mut_with_len(
2294         &mut self,
2295     ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2296         let ptr = self.as_mut_ptr();
2297         // SAFETY:
2298         // - `ptr` is guaranteed to be valid for `self.len` elements
2299         // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2300         // uninitialized
2301         let spare_ptr = unsafe { ptr.add(self.len) };
2302         let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2303         let spare_len = self.buf.capacity() - self.len;
2304 
2305         // SAFETY:
2306         // - `ptr` is guaranteed to be valid for `self.len` elements
2307         // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2308         unsafe {
2309             let initialized = slice::from_raw_parts_mut(ptr, self.len);
2310             let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2311 
2312             (initialized, spare, &mut self.len)
2313         }
2314     }
2315 }
2316 
2317 impl<T: Clone, A: Allocator> Vec<T, A> {
2318     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2319     ///
2320     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2321     /// difference, with each additional slot filled with `value`.
2322     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2323     ///
2324     /// This method requires `T` to implement [`Clone`],
2325     /// in order to be able to clone the passed value.
2326     /// If you need more flexibility (or want to rely on [`Default`] instead of
2327     /// [`Clone`]), use [`Vec::resize_with`].
2328     /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2329     ///
2330     /// # Examples
2331     ///
2332     /// ```
2333     /// let mut vec = vec!["hello"];
2334     /// vec.resize(3, "world");
2335     /// assert_eq!(vec, ["hello", "world", "world"]);
2336     ///
2337     /// let mut vec = vec![1, 2, 3, 4];
2338     /// vec.resize(2, 0);
2339     /// assert_eq!(vec, [1, 2]);
2340     /// ```
2341     #[cfg(not(no_global_oom_handling))]
2342     #[stable(feature = "vec_resize", since = "1.5.0")]
2343     pub fn resize(&mut self, new_len: usize, value: T) {
2344         let len = self.len();
2345 
2346         if new_len > len {
2347             self.extend_with(new_len - len, ExtendElement(value))
2348         } else {
2349             self.truncate(new_len);
2350         }
2351     }
2352 
2353     /// Tries to resize the `Vec` in-place so that `len` is equal to `new_len`.
2354     ///
2355     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2356     /// difference, with each additional slot filled with `value`.
2357     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2358     ///
2359     /// This method requires `T` to implement [`Clone`],
2360     /// in order to be able to clone the passed value.
2361     /// If you need more flexibility (or want to rely on [`Default`] instead of
2362     /// [`Clone`]), use [`Vec::resize_with`].
2363     /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2364     ///
2365     /// # Examples
2366     ///
2367     /// ```
2368     /// let mut vec = vec!["hello"];
2369     /// vec.try_resize(3, "world").unwrap();
2370     /// assert_eq!(vec, ["hello", "world", "world"]);
2371     ///
2372     /// let mut vec = vec![1, 2, 3, 4];
2373     /// vec.try_resize(2, 0).unwrap();
2374     /// assert_eq!(vec, [1, 2]);
2375     ///
2376     /// let mut vec = vec![42];
2377     /// let result = vec.try_resize(usize::MAX, 0);
2378     /// assert!(result.is_err());
2379     /// ```
2380     #[stable(feature = "kernel", since = "1.0.0")]
2381     pub fn try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError> {
2382         let len = self.len();
2383 
2384         if new_len > len {
2385             self.try_extend_with(new_len - len, ExtendElement(value))
2386         } else {
2387             self.truncate(new_len);
2388             Ok(())
2389         }
2390     }
2391 
2392     /// Clones and appends all elements in a slice to the `Vec`.
2393     ///
2394     /// Iterates over the slice `other`, clones each element, and then appends
2395     /// it to this `Vec`. The `other` slice is traversed in-order.
2396     ///
2397     /// Note that this function is same as [`extend`] except that it is
2398     /// specialized to work with slices instead. If and when Rust gets
2399     /// specialization this function will likely be deprecated (but still
2400     /// available).
2401     ///
2402     /// # Examples
2403     ///
2404     /// ```
2405     /// let mut vec = vec![1];
2406     /// vec.extend_from_slice(&[2, 3, 4]);
2407     /// assert_eq!(vec, [1, 2, 3, 4]);
2408     /// ```
2409     ///
2410     /// [`extend`]: Vec::extend
2411     #[cfg(not(no_global_oom_handling))]
2412     #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
2413     pub fn extend_from_slice(&mut self, other: &[T]) {
2414         self.spec_extend(other.iter())
2415     }
2416 
2417     /// Tries to clone and append all elements in a slice to the `Vec`.
2418     ///
2419     /// Iterates over the slice `other`, clones each element, and then appends
2420     /// it to this `Vec`. The `other` slice is traversed in-order.
2421     ///
2422     /// Note that this function is same as [`extend`] except that it is
2423     /// specialized to work with slices instead. If and when Rust gets
2424     /// specialization this function will likely be deprecated (but still
2425     /// available).
2426     ///
2427     /// # Examples
2428     ///
2429     /// ```
2430     /// let mut vec = vec![1];
2431     /// vec.try_extend_from_slice(&[2, 3, 4]).unwrap();
2432     /// assert_eq!(vec, [1, 2, 3, 4]);
2433     /// ```
2434     ///
2435     /// [`extend`]: Vec::extend
2436     #[stable(feature = "kernel", since = "1.0.0")]
2437     pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError> {
2438         self.try_spec_extend(other.iter())
2439     }
2440 
2441     /// Copies elements from `src` range to the end of the vector.
2442     ///
2443     /// # Panics
2444     ///
2445     /// Panics if the starting point is greater than the end point or if
2446     /// the end point is greater than the length of the vector.
2447     ///
2448     /// # Examples
2449     ///
2450     /// ```
2451     /// let mut vec = vec![0, 1, 2, 3, 4];
2452     ///
2453     /// vec.extend_from_within(2..);
2454     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2455     ///
2456     /// vec.extend_from_within(..2);
2457     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2458     ///
2459     /// vec.extend_from_within(4..8);
2460     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2461     /// ```
2462     #[cfg(not(no_global_oom_handling))]
2463     #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
2464     pub fn extend_from_within<R>(&mut self, src: R)
2465     where
2466         R: RangeBounds<usize>,
2467     {
2468         let range = slice::range(src, ..self.len());
2469         self.reserve(range.len());
2470 
2471         // SAFETY:
2472         // - `slice::range` guarantees  that the given range is valid for indexing self
2473         unsafe {
2474             self.spec_extend_from_within(range);
2475         }
2476     }
2477 }
2478 
2479 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2480     /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2481     ///
2482     /// # Panics
2483     ///
2484     /// Panics if the length of the resulting vector would overflow a `usize`.
2485     ///
2486     /// This is only possible when flattening a vector of arrays of zero-sized
2487     /// types, and thus tends to be irrelevant in practice. If
2488     /// `size_of::<T>() > 0`, this will never panic.
2489     ///
2490     /// # Examples
2491     ///
2492     /// ```
2493     /// #![feature(slice_flatten)]
2494     ///
2495     /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2496     /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2497     ///
2498     /// let mut flattened = vec.into_flattened();
2499     /// assert_eq!(flattened.pop(), Some(6));
2500     /// ```
2501     #[unstable(feature = "slice_flatten", issue = "95629")]
2502     pub fn into_flattened(self) -> Vec<T, A> {
2503         let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2504         let (new_len, new_cap) = if mem::size_of::<T>() == 0 {
2505             (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2506         } else {
2507             // SAFETY:
2508             // - `cap * N` cannot overflow because the allocation is already in
2509             // the address space.
2510             // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2511             // valid elements in the allocation.
2512             unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2513         };
2514         // SAFETY:
2515         // - `ptr` was allocated by `self`
2516         // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2517         // - `new_cap` refers to the same sized allocation as `cap` because
2518         // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2519         // - `len` <= `cap`, so `len * N` <= `cap * N`.
2520         unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2521     }
2522 }
2523 
2524 // This code generalizes `extend_with_{element,default}`.
2525 trait ExtendWith<T> {
2526     fn next(&mut self) -> T;
2527     fn last(self) -> T;
2528 }
2529 
2530 struct ExtendElement<T>(T);
2531 impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
2532     fn next(&mut self) -> T {
2533         self.0.clone()
2534     }
2535     fn last(self) -> T {
2536         self.0
2537     }
2538 }
2539 
2540 struct ExtendFunc<F>(F);
2541 impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
2542     fn next(&mut self) -> T {
2543         (self.0)()
2544     }
2545     fn last(mut self) -> T {
2546         (self.0)()
2547     }
2548 }
2549 
2550 impl<T, A: Allocator> Vec<T, A> {
2551     #[cfg(not(no_global_oom_handling))]
2552     /// Extend the vector by `n` values, using the given generator.
2553     fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
2554         self.reserve(n);
2555 
2556         unsafe {
2557             let mut ptr = self.as_mut_ptr().add(self.len());
2558             // Use SetLenOnDrop to work around bug where compiler
2559             // might not realize the store through `ptr` through self.set_len()
2560             // don't alias.
2561             let mut local_len = SetLenOnDrop::new(&mut self.len);
2562 
2563             // Write all elements except the last one
2564             for _ in 1..n {
2565                 ptr::write(ptr, value.next());
2566                 ptr = ptr.offset(1);
2567                 // Increment the length in every step in case next() panics
2568                 local_len.increment_len(1);
2569             }
2570 
2571             if n > 0 {
2572                 // We can write the last element directly without cloning needlessly
2573                 ptr::write(ptr, value.last());
2574                 local_len.increment_len(1);
2575             }
2576 
2577             // len set by scope guard
2578         }
2579     }
2580 
2581     /// Try to extend the vector by `n` values, using the given generator.
2582     fn try_extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) -> Result<(), TryReserveError> {
2583         self.try_reserve(n)?;
2584 
2585         unsafe {
2586             let mut ptr = self.as_mut_ptr().add(self.len());
2587             // Use SetLenOnDrop to work around bug where compiler
2588             // might not realize the store through `ptr` through self.set_len()
2589             // don't alias.
2590             let mut local_len = SetLenOnDrop::new(&mut self.len);
2591 
2592             // Write all elements except the last one
2593             for _ in 1..n {
2594                 ptr::write(ptr, value.next());
2595                 ptr = ptr.offset(1);
2596                 // Increment the length in every step in case next() panics
2597                 local_len.increment_len(1);
2598             }
2599 
2600             if n > 0 {
2601                 // We can write the last element directly without cloning needlessly
2602                 ptr::write(ptr, value.last());
2603                 local_len.increment_len(1);
2604             }
2605 
2606             // len set by scope guard
2607             Ok(())
2608         }
2609     }
2610 }
2611 
2612 impl<T: PartialEq, A: Allocator> Vec<T, A> {
2613     /// Removes consecutive repeated elements in the vector according to the
2614     /// [`PartialEq`] trait implementation.
2615     ///
2616     /// If the vector is sorted, this removes all duplicates.
2617     ///
2618     /// # Examples
2619     ///
2620     /// ```
2621     /// let mut vec = vec![1, 2, 2, 3, 2];
2622     ///
2623     /// vec.dedup();
2624     ///
2625     /// assert_eq!(vec, [1, 2, 3, 2]);
2626     /// ```
2627     #[stable(feature = "rust1", since = "1.0.0")]
2628     #[inline]
2629     pub fn dedup(&mut self) {
2630         self.dedup_by(|a, b| a == b)
2631     }
2632 }
2633 
2634 ////////////////////////////////////////////////////////////////////////////////
2635 // Internal methods and functions
2636 ////////////////////////////////////////////////////////////////////////////////
2637 
2638 #[doc(hidden)]
2639 #[cfg(not(no_global_oom_handling))]
2640 #[stable(feature = "rust1", since = "1.0.0")]
2641 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2642     <T as SpecFromElem>::from_elem(elem, n, Global)
2643 }
2644 
2645 #[doc(hidden)]
2646 #[cfg(not(no_global_oom_handling))]
2647 #[unstable(feature = "allocator_api", issue = "32838")]
2648 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2649     <T as SpecFromElem>::from_elem(elem, n, alloc)
2650 }
2651 
2652 trait ExtendFromWithinSpec {
2653     /// # Safety
2654     ///
2655     /// - `src` needs to be valid index
2656     /// - `self.capacity() - self.len()` must be `>= src.len()`
2657     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2658 }
2659 
2660 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2661     default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2662         // SAFETY:
2663         // - len is increased only after initializing elements
2664         let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2665 
2666         // SAFETY:
2667         // - caller guaratees that src is a valid index
2668         let to_clone = unsafe { this.get_unchecked(src) };
2669 
2670         iter::zip(to_clone, spare)
2671             .map(|(src, dst)| dst.write(src.clone()))
2672             // Note:
2673             // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2674             // - len is increased after each element to prevent leaks (see issue #82533)
2675             .for_each(|_| *len += 1);
2676     }
2677 }
2678 
2679 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2680     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2681         let count = src.len();
2682         {
2683             let (init, spare) = self.split_at_spare_mut();
2684 
2685             // SAFETY:
2686             // - caller guaratees that `src` is a valid index
2687             let source = unsafe { init.get_unchecked(src) };
2688 
2689             // SAFETY:
2690             // - Both pointers are created from unique slice references (`&mut [_]`)
2691             //   so they are valid and do not overlap.
2692             // - Elements are :Copy so it's OK to to copy them, without doing
2693             //   anything with the original values
2694             // - `count` is equal to the len of `source`, so source is valid for
2695             //   `count` reads
2696             // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2697             //   is valid for `count` writes
2698             unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2699         }
2700 
2701         // SAFETY:
2702         // - The elements were just initialized by `copy_nonoverlapping`
2703         self.len += count;
2704     }
2705 }
2706 
2707 ////////////////////////////////////////////////////////////////////////////////
2708 // Common trait implementations for Vec
2709 ////////////////////////////////////////////////////////////////////////////////
2710 
2711 #[stable(feature = "rust1", since = "1.0.0")]
2712 impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2713     type Target = [T];
2714 
2715     fn deref(&self) -> &[T] {
2716         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2717     }
2718 }
2719 
2720 #[stable(feature = "rust1", since = "1.0.0")]
2721 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
2722     fn deref_mut(&mut self) -> &mut [T] {
2723         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2724     }
2725 }
2726 
2727 #[cfg(not(no_global_oom_handling))]
2728 trait SpecCloneFrom {
2729     fn clone_from(this: &mut Self, other: &Self);
2730 }
2731 
2732 #[cfg(not(no_global_oom_handling))]
2733 impl<T: Clone, A: Allocator> SpecCloneFrom for Vec<T, A> {
2734     default fn clone_from(this: &mut Self, other: &Self) {
2735         // drop anything that will not be overwritten
2736         this.truncate(other.len());
2737 
2738         // self.len <= other.len due to the truncate above, so the
2739         // slices here are always in-bounds.
2740         let (init, tail) = other.split_at(this.len());
2741 
2742         // reuse the contained values' allocations/resources.
2743         this.clone_from_slice(init);
2744         this.extend_from_slice(tail);
2745     }
2746 }
2747 
2748 #[cfg(not(no_global_oom_handling))]
2749 impl<T: Copy, A: Allocator> SpecCloneFrom for Vec<T, A> {
2750     fn clone_from(this: &mut Self, other: &Self) {
2751         this.clear();
2752         this.extend_from_slice(other);
2753     }
2754 }
2755 
2756 #[cfg(not(no_global_oom_handling))]
2757 #[stable(feature = "rust1", since = "1.0.0")]
2758 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2759     #[cfg(not(test))]
2760     fn clone(&self) -> Self {
2761         let alloc = self.allocator().clone();
2762         <[T]>::to_vec_in(&**self, alloc)
2763     }
2764 
2765     // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2766     // required for this method definition, is not available. Instead use the
2767     // `slice::to_vec`  function which is only available with cfg(test)
2768     // NB see the slice::hack module in slice.rs for more information
2769     #[cfg(test)]
2770     fn clone(&self) -> Self {
2771         let alloc = self.allocator().clone();
2772         crate::slice::to_vec(&**self, alloc)
2773     }
2774 
2775     fn clone_from(&mut self, other: &Self) {
2776         SpecCloneFrom::clone_from(self, other)
2777     }
2778 }
2779 
2780 /// The hash of a vector is the same as that of the corresponding slice,
2781 /// as required by the `core::borrow::Borrow` implementation.
2782 ///
2783 /// ```
2784 /// #![feature(build_hasher_simple_hash_one)]
2785 /// use std::hash::BuildHasher;
2786 ///
2787 /// let b = std::collections::hash_map::RandomState::new();
2788 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2789 /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2790 /// assert_eq!(b.hash_one(v), b.hash_one(s));
2791 /// ```
2792 #[stable(feature = "rust1", since = "1.0.0")]
2793 impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2794     #[inline]
2795     fn hash<H: Hasher>(&self, state: &mut H) {
2796         Hash::hash(&**self, state)
2797     }
2798 }
2799 
2800 #[stable(feature = "rust1", since = "1.0.0")]
2801 #[rustc_on_unimplemented(
2802     message = "vector indices are of type `usize` or ranges of `usize`",
2803     label = "vector indices are of type `usize` or ranges of `usize`"
2804 )]
2805 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2806     type Output = I::Output;
2807 
2808     #[inline]
2809     fn index(&self, index: I) -> &Self::Output {
2810         Index::index(&**self, index)
2811     }
2812 }
2813 
2814 #[stable(feature = "rust1", since = "1.0.0")]
2815 #[rustc_on_unimplemented(
2816     message = "vector indices are of type `usize` or ranges of `usize`",
2817     label = "vector indices are of type `usize` or ranges of `usize`"
2818 )]
2819 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2820     #[inline]
2821     fn index_mut(&mut self, index: I) -> &mut Self::Output {
2822         IndexMut::index_mut(&mut **self, index)
2823     }
2824 }
2825 
2826 #[cfg(not(no_global_oom_handling))]
2827 #[stable(feature = "rust1", since = "1.0.0")]
2828 impl<T> FromIterator<T> for Vec<T> {
2829     #[inline]
2830     fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2831         <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2832     }
2833 }
2834 
2835 #[stable(feature = "rust1", since = "1.0.0")]
2836 impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2837     type Item = T;
2838     type IntoIter = IntoIter<T, A>;
2839 
2840     /// Creates a consuming iterator, that is, one that moves each value out of
2841     /// the vector (from start to end). The vector cannot be used after calling
2842     /// this.
2843     ///
2844     /// # Examples
2845     ///
2846     /// ```
2847     /// let v = vec!["a".to_string(), "b".to_string()];
2848     /// for s in v.into_iter() {
2849     ///     // s has type String, not &String
2850     ///     println!("{s}");
2851     /// }
2852     /// ```
2853     #[inline]
2854     fn into_iter(self) -> IntoIter<T, A> {
2855         unsafe {
2856             let mut me = ManuallyDrop::new(self);
2857             let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2858             let begin = me.as_mut_ptr();
2859             let end = if mem::size_of::<T>() == 0 {
2860                 arith_offset(begin as *const i8, me.len() as isize) as *const T
2861             } else {
2862                 begin.add(me.len()) as *const T
2863             };
2864             let cap = me.buf.capacity();
2865             IntoIter {
2866                 buf: NonNull::new_unchecked(begin),
2867                 phantom: PhantomData,
2868                 cap,
2869                 alloc,
2870                 ptr: begin,
2871                 end,
2872             }
2873         }
2874     }
2875 }
2876 
2877 #[stable(feature = "rust1", since = "1.0.0")]
2878 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
2879     type Item = &'a T;
2880     type IntoIter = slice::Iter<'a, T>;
2881 
2882     fn into_iter(self) -> slice::Iter<'a, T> {
2883         self.iter()
2884     }
2885 }
2886 
2887 #[stable(feature = "rust1", since = "1.0.0")]
2888 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
2889     type Item = &'a mut T;
2890     type IntoIter = slice::IterMut<'a, T>;
2891 
2892     fn into_iter(self) -> slice::IterMut<'a, T> {
2893         self.iter_mut()
2894     }
2895 }
2896 
2897 #[cfg(not(no_global_oom_handling))]
2898 #[stable(feature = "rust1", since = "1.0.0")]
2899 impl<T, A: Allocator> Extend<T> for Vec<T, A> {
2900     #[inline]
2901     fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2902         <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
2903     }
2904 
2905     #[inline]
2906     fn extend_one(&mut self, item: T) {
2907         self.push(item);
2908     }
2909 
2910     #[inline]
2911     fn extend_reserve(&mut self, additional: usize) {
2912         self.reserve(additional);
2913     }
2914 }
2915 
2916 impl<T, A: Allocator> Vec<T, A> {
2917     // leaf method to which various SpecFrom/SpecExtend implementations delegate when
2918     // they have no further optimizations to apply
2919     #[cfg(not(no_global_oom_handling))]
2920     fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
2921         // This is the case for a general iterator.
2922         //
2923         // This function should be the moral equivalent of:
2924         //
2925         //      for item in iterator {
2926         //          self.push(item);
2927         //      }
2928         while let Some(element) = iterator.next() {
2929             let len = self.len();
2930             if len == self.capacity() {
2931                 let (lower, _) = iterator.size_hint();
2932                 self.reserve(lower.saturating_add(1));
2933             }
2934             unsafe {
2935                 ptr::write(self.as_mut_ptr().add(len), element);
2936                 // Since next() executes user code which can panic we have to bump the length
2937                 // after each step.
2938                 // NB can't overflow since we would have had to alloc the address space
2939                 self.set_len(len + 1);
2940             }
2941         }
2942     }
2943 
2944     // leaf method to which various SpecFrom/SpecExtend implementations delegate when
2945     // they have no further optimizations to apply
2946     fn try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError> {
2947         // This is the case for a general iterator.
2948         //
2949         // This function should be the moral equivalent of:
2950         //
2951         //      for item in iterator {
2952         //          self.push(item);
2953         //      }
2954         while let Some(element) = iterator.next() {
2955             let len = self.len();
2956             if len == self.capacity() {
2957                 let (lower, _) = iterator.size_hint();
2958                 self.try_reserve(lower.saturating_add(1))?;
2959             }
2960             unsafe {
2961                 ptr::write(self.as_mut_ptr().add(len), element);
2962                 // Since next() executes user code which can panic we have to bump the length
2963                 // after each step.
2964                 // NB can't overflow since we would have had to alloc the address space
2965                 self.set_len(len + 1);
2966             }
2967         }
2968 
2969         Ok(())
2970     }
2971 
2972     /// Creates a splicing iterator that replaces the specified range in the vector
2973     /// with the given `replace_with` iterator and yields the removed items.
2974     /// `replace_with` does not need to be the same length as `range`.
2975     ///
2976     /// `range` is removed even if the iterator is not consumed until the end.
2977     ///
2978     /// It is unspecified how many elements are removed from the vector
2979     /// if the `Splice` value is leaked.
2980     ///
2981     /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
2982     ///
2983     /// This is optimal if:
2984     ///
2985     /// * The tail (elements in the vector after `range`) is empty,
2986     /// * or `replace_with` yields fewer or equal elements than `range`’s length
2987     /// * or the lower bound of its `size_hint()` is exact.
2988     ///
2989     /// Otherwise, a temporary vector is allocated and the tail is moved twice.
2990     ///
2991     /// # Panics
2992     ///
2993     /// Panics if the starting point is greater than the end point or if
2994     /// the end point is greater than the length of the vector.
2995     ///
2996     /// # Examples
2997     ///
2998     /// ```
2999     /// let mut v = vec![1, 2, 3, 4];
3000     /// let new = [7, 8, 9];
3001     /// let u: Vec<_> = v.splice(1..3, new).collect();
3002     /// assert_eq!(v, &[1, 7, 8, 9, 4]);
3003     /// assert_eq!(u, &[2, 3]);
3004     /// ```
3005     #[cfg(not(no_global_oom_handling))]
3006     #[inline]
3007     #[stable(feature = "vec_splice", since = "1.21.0")]
3008     pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3009     where
3010         R: RangeBounds<usize>,
3011         I: IntoIterator<Item = T>,
3012     {
3013         Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3014     }
3015 
3016     /// Creates an iterator which uses a closure to determine if an element should be removed.
3017     ///
3018     /// If the closure returns true, then the element is removed and yielded.
3019     /// If the closure returns false, the element will remain in the vector and will not be yielded
3020     /// by the iterator.
3021     ///
3022     /// Using this method is equivalent to the following code:
3023     ///
3024     /// ```
3025     /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
3026     /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3027     /// let mut i = 0;
3028     /// while i < vec.len() {
3029     ///     if some_predicate(&mut vec[i]) {
3030     ///         let val = vec.remove(i);
3031     ///         // your code here
3032     ///     } else {
3033     ///         i += 1;
3034     ///     }
3035     /// }
3036     ///
3037     /// # assert_eq!(vec, vec![1, 4, 5]);
3038     /// ```
3039     ///
3040     /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
3041     /// because it can backshift the elements of the array in bulk.
3042     ///
3043     /// Note that `drain_filter` also lets you mutate every element in the filter closure,
3044     /// regardless of whether you choose to keep or remove it.
3045     ///
3046     /// # Examples
3047     ///
3048     /// Splitting an array into evens and odds, reusing the original allocation:
3049     ///
3050     /// ```
3051     /// #![feature(drain_filter)]
3052     /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3053     ///
3054     /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
3055     /// let odds = numbers;
3056     ///
3057     /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3058     /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3059     /// ```
3060     #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
3061     pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
3062     where
3063         F: FnMut(&mut T) -> bool,
3064     {
3065         let old_len = self.len();
3066 
3067         // Guard against us getting leaked (leak amplification)
3068         unsafe {
3069             self.set_len(0);
3070         }
3071 
3072         DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
3073     }
3074 }
3075 
3076 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
3077 ///
3078 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3079 /// append the entire slice at once.
3080 ///
3081 /// [`copy_from_slice`]: slice::copy_from_slice
3082 #[cfg(not(no_global_oom_handling))]
3083 #[stable(feature = "extend_ref", since = "1.2.0")]
3084 impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
3085     fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3086         self.spec_extend(iter.into_iter())
3087     }
3088 
3089     #[inline]
3090     fn extend_one(&mut self, &item: &'a T) {
3091         self.push(item);
3092     }
3093 
3094     #[inline]
3095     fn extend_reserve(&mut self, additional: usize) {
3096         self.reserve(additional);
3097     }
3098 }
3099 
3100 /// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
3101 #[stable(feature = "rust1", since = "1.0.0")]
3102 impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
3103     #[inline]
3104     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
3105         PartialOrd::partial_cmp(&**self, &**other)
3106     }
3107 }
3108 
3109 #[stable(feature = "rust1", since = "1.0.0")]
3110 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
3111 
3112 /// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
3113 #[stable(feature = "rust1", since = "1.0.0")]
3114 impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3115     #[inline]
3116     fn cmp(&self, other: &Self) -> Ordering {
3117         Ord::cmp(&**self, &**other)
3118     }
3119 }
3120 
3121 #[stable(feature = "rust1", since = "1.0.0")]
3122 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
3123     fn drop(&mut self) {
3124         unsafe {
3125             // use drop for [T]
3126             // use a raw slice to refer to the elements of the vector as weakest necessary type;
3127             // could avoid questions of validity in certain cases
3128             ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
3129         }
3130         // RawVec handles deallocation
3131     }
3132 }
3133 
3134 #[stable(feature = "rust1", since = "1.0.0")]
3135 #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
3136 impl<T> const Default for Vec<T> {
3137     /// Creates an empty `Vec<T>`.
3138     fn default() -> Vec<T> {
3139         Vec::new()
3140     }
3141 }
3142 
3143 #[stable(feature = "rust1", since = "1.0.0")]
3144 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
3145     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3146         fmt::Debug::fmt(&**self, f)
3147     }
3148 }
3149 
3150 #[stable(feature = "rust1", since = "1.0.0")]
3151 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
3152     fn as_ref(&self) -> &Vec<T, A> {
3153         self
3154     }
3155 }
3156 
3157 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3158 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
3159     fn as_mut(&mut self) -> &mut Vec<T, A> {
3160         self
3161     }
3162 }
3163 
3164 #[stable(feature = "rust1", since = "1.0.0")]
3165 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
3166     fn as_ref(&self) -> &[T] {
3167         self
3168     }
3169 }
3170 
3171 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3172 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
3173     fn as_mut(&mut self) -> &mut [T] {
3174         self
3175     }
3176 }
3177 
3178 #[cfg(not(no_global_oom_handling))]
3179 #[stable(feature = "rust1", since = "1.0.0")]
3180 impl<T: Clone> From<&[T]> for Vec<T> {
3181     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3182     ///
3183     /// # Examples
3184     ///
3185     /// ```
3186     /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3187     /// ```
3188     #[cfg(not(test))]
3189     fn from(s: &[T]) -> Vec<T> {
3190         s.to_vec()
3191     }
3192     #[cfg(test)]
3193     fn from(s: &[T]) -> Vec<T> {
3194         crate::slice::to_vec(s, Global)
3195     }
3196 }
3197 
3198 #[cfg(not(no_global_oom_handling))]
3199 #[stable(feature = "vec_from_mut", since = "1.19.0")]
3200 impl<T: Clone> From<&mut [T]> for Vec<T> {
3201     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3202     ///
3203     /// # Examples
3204     ///
3205     /// ```
3206     /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3207     /// ```
3208     #[cfg(not(test))]
3209     fn from(s: &mut [T]) -> Vec<T> {
3210         s.to_vec()
3211     }
3212     #[cfg(test)]
3213     fn from(s: &mut [T]) -> Vec<T> {
3214         crate::slice::to_vec(s, Global)
3215     }
3216 }
3217 
3218 #[cfg(not(no_global_oom_handling))]
3219 #[stable(feature = "vec_from_array", since = "1.44.0")]
3220 impl<T, const N: usize> From<[T; N]> for Vec<T> {
3221     /// Allocate a `Vec<T>` and move `s`'s items into it.
3222     ///
3223     /// # Examples
3224     ///
3225     /// ```
3226     /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3227     /// ```
3228     #[cfg(not(test))]
3229     fn from(s: [T; N]) -> Vec<T> {
3230         <[T]>::into_vec(box s)
3231     }
3232 
3233     #[cfg(test)]
3234     fn from(s: [T; N]) -> Vec<T> {
3235         crate::slice::into_vec(box s)
3236     }
3237 }
3238 
3239 #[cfg(not(no_borrow))]
3240 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3241 impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3242 where
3243     [T]: ToOwned<Owned = Vec<T>>,
3244 {
3245     /// Convert a clone-on-write slice into a vector.
3246     ///
3247     /// If `s` already owns a `Vec<T>`, it will be returned directly.
3248     /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3249     /// filled by cloning `s`'s items into it.
3250     ///
3251     /// # Examples
3252     ///
3253     /// ```
3254     /// # use std::borrow::Cow;
3255     /// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]);
3256     /// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]);
3257     /// assert_eq!(Vec::from(o), Vec::from(b));
3258     /// ```
3259     fn from(s: Cow<'a, [T]>) -> Vec<T> {
3260         s.into_owned()
3261     }
3262 }
3263 
3264 // note: test pulls in libstd, which causes errors here
3265 #[cfg(not(test))]
3266 #[stable(feature = "vec_from_box", since = "1.18.0")]
3267 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3268     /// Convert a boxed slice into a vector by transferring ownership of
3269     /// the existing heap allocation.
3270     ///
3271     /// # Examples
3272     ///
3273     /// ```
3274     /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3275     /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3276     /// ```
3277     fn from(s: Box<[T], A>) -> Self {
3278         s.into_vec()
3279     }
3280 }
3281 
3282 // note: test pulls in libstd, which causes errors here
3283 #[cfg(not(no_global_oom_handling))]
3284 #[cfg(not(test))]
3285 #[stable(feature = "box_from_vec", since = "1.20.0")]
3286 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3287     /// Convert a vector into a boxed slice.
3288     ///
3289     /// If `v` has excess capacity, its items will be moved into a
3290     /// newly-allocated buffer with exactly the right capacity.
3291     ///
3292     /// # Examples
3293     ///
3294     /// ```
3295     /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3296     /// ```
3297     fn from(v: Vec<T, A>) -> Self {
3298         v.into_boxed_slice()
3299     }
3300 }
3301 
3302 #[cfg(not(no_global_oom_handling))]
3303 #[stable(feature = "rust1", since = "1.0.0")]
3304 impl From<&str> for Vec<u8> {
3305     /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3306     ///
3307     /// # Examples
3308     ///
3309     /// ```
3310     /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3311     /// ```
3312     fn from(s: &str) -> Vec<u8> {
3313         From::from(s.as_bytes())
3314     }
3315 }
3316 
3317 #[stable(feature = "array_try_from_vec", since = "1.48.0")]
3318 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3319     type Error = Vec<T, A>;
3320 
3321     /// Gets the entire contents of the `Vec<T>` as an array,
3322     /// if its size exactly matches that of the requested array.
3323     ///
3324     /// # Examples
3325     ///
3326     /// ```
3327     /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3328     /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3329     /// ```
3330     ///
3331     /// If the length doesn't match, the input comes back in `Err`:
3332     /// ```
3333     /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3334     /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3335     /// ```
3336     ///
3337     /// If you're fine with just getting a prefix of the `Vec<T>`,
3338     /// you can call [`.truncate(N)`](Vec::truncate) first.
3339     /// ```
3340     /// let mut v = String::from("hello world").into_bytes();
3341     /// v.sort();
3342     /// v.truncate(2);
3343     /// let [a, b]: [_; 2] = v.try_into().unwrap();
3344     /// assert_eq!(a, b' ');
3345     /// assert_eq!(b, b'd');
3346     /// ```
3347     fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3348         if vec.len() != N {
3349             return Err(vec);
3350         }
3351 
3352         // SAFETY: `.set_len(0)` is always sound.
3353         unsafe { vec.set_len(0) };
3354 
3355         // SAFETY: A `Vec`'s pointer is always aligned properly, and
3356         // the alignment the array needs is the same as the items.
3357         // We checked earlier that we have sufficient items.
3358         // The items will not double-drop as the `set_len`
3359         // tells the `Vec` not to also drop them.
3360         let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3361         Ok(array)
3362     }
3363 }
3364