xref: /openbmc/linux/net/xfrm/xfrm_policy.c (revision ab5f5e8b144e4c804ef3aa1ce08a9ca9f01187ce)
1 /*
2  * xfrm_policy.c
3  *
4  * Changes:
5  *	Mitsuru KANDA @USAGI
6  * 	Kazunori MIYAZAWA @USAGI
7  * 	Kunihiro Ishiguro <kunihiro@ipinfusion.com>
8  * 		IPv6 support
9  * 	Kazunori MIYAZAWA @USAGI
10  * 	YOSHIFUJI Hideaki
11  * 		Split up af-specific portion
12  *	Derek Atkins <derek@ihtfp.com>		Add the post_input processor
13  *
14  */
15 
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
21 #include <linux/notifier.h>
22 #include <linux/netdevice.h>
23 #include <linux/netfilter.h>
24 #include <linux/module.h>
25 #include <linux/cache.h>
26 #include <net/xfrm.h>
27 #include <net/ip.h>
28 
29 #include "xfrm_hash.h"
30 
31 int sysctl_xfrm_larval_drop __read_mostly;
32 
33 DEFINE_MUTEX(xfrm_cfg_mutex);
34 EXPORT_SYMBOL(xfrm_cfg_mutex);
35 
36 static DEFINE_RWLOCK(xfrm_policy_lock);
37 
38 unsigned int xfrm_policy_count[XFRM_POLICY_MAX*2];
39 EXPORT_SYMBOL(xfrm_policy_count);
40 
41 static DEFINE_RWLOCK(xfrm_policy_afinfo_lock);
42 static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO];
43 
44 static struct kmem_cache *xfrm_dst_cache __read_mostly;
45 
46 static struct work_struct xfrm_policy_gc_work;
47 static HLIST_HEAD(xfrm_policy_gc_list);
48 static DEFINE_SPINLOCK(xfrm_policy_gc_lock);
49 
50 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family);
51 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo);
52 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family);
53 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo);
54 
55 static inline int
56 __xfrm4_selector_match(struct xfrm_selector *sel, struct flowi *fl)
57 {
58 	return  addr_match(&fl->fl4_dst, &sel->daddr, sel->prefixlen_d) &&
59 		addr_match(&fl->fl4_src, &sel->saddr, sel->prefixlen_s) &&
60 		!((xfrm_flowi_dport(fl) ^ sel->dport) & sel->dport_mask) &&
61 		!((xfrm_flowi_sport(fl) ^ sel->sport) & sel->sport_mask) &&
62 		(fl->proto == sel->proto || !sel->proto) &&
63 		(fl->oif == sel->ifindex || !sel->ifindex);
64 }
65 
66 static inline int
67 __xfrm6_selector_match(struct xfrm_selector *sel, struct flowi *fl)
68 {
69 	return  addr_match(&fl->fl6_dst, &sel->daddr, sel->prefixlen_d) &&
70 		addr_match(&fl->fl6_src, &sel->saddr, sel->prefixlen_s) &&
71 		!((xfrm_flowi_dport(fl) ^ sel->dport) & sel->dport_mask) &&
72 		!((xfrm_flowi_sport(fl) ^ sel->sport) & sel->sport_mask) &&
73 		(fl->proto == sel->proto || !sel->proto) &&
74 		(fl->oif == sel->ifindex || !sel->ifindex);
75 }
76 
77 int xfrm_selector_match(struct xfrm_selector *sel, struct flowi *fl,
78 		    unsigned short family)
79 {
80 	switch (family) {
81 	case AF_INET:
82 		return __xfrm4_selector_match(sel, fl);
83 	case AF_INET6:
84 		return __xfrm6_selector_match(sel, fl);
85 	}
86 	return 0;
87 }
88 
89 int xfrm_register_type(struct xfrm_type *type, unsigned short family)
90 {
91 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
92 	struct xfrm_type **typemap;
93 	int err = 0;
94 
95 	if (unlikely(afinfo == NULL))
96 		return -EAFNOSUPPORT;
97 	typemap = afinfo->type_map;
98 
99 	if (likely(typemap[type->proto] == NULL))
100 		typemap[type->proto] = type;
101 	else
102 		err = -EEXIST;
103 	xfrm_policy_unlock_afinfo(afinfo);
104 	return err;
105 }
106 EXPORT_SYMBOL(xfrm_register_type);
107 
108 int xfrm_unregister_type(struct xfrm_type *type, unsigned short family)
109 {
110 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
111 	struct xfrm_type **typemap;
112 	int err = 0;
113 
114 	if (unlikely(afinfo == NULL))
115 		return -EAFNOSUPPORT;
116 	typemap = afinfo->type_map;
117 
118 	if (unlikely(typemap[type->proto] != type))
119 		err = -ENOENT;
120 	else
121 		typemap[type->proto] = NULL;
122 	xfrm_policy_unlock_afinfo(afinfo);
123 	return err;
124 }
125 EXPORT_SYMBOL(xfrm_unregister_type);
126 
127 struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
128 {
129 	struct xfrm_policy_afinfo *afinfo;
130 	struct xfrm_type **typemap;
131 	struct xfrm_type *type;
132 	int modload_attempted = 0;
133 
134 retry:
135 	afinfo = xfrm_policy_get_afinfo(family);
136 	if (unlikely(afinfo == NULL))
137 		return NULL;
138 	typemap = afinfo->type_map;
139 
140 	type = typemap[proto];
141 	if (unlikely(type && !try_module_get(type->owner)))
142 		type = NULL;
143 	if (!type && !modload_attempted) {
144 		xfrm_policy_put_afinfo(afinfo);
145 		request_module("xfrm-type-%d-%d",
146 			       (int) family, (int) proto);
147 		modload_attempted = 1;
148 		goto retry;
149 	}
150 
151 	xfrm_policy_put_afinfo(afinfo);
152 	return type;
153 }
154 
155 int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl,
156 		    unsigned short family)
157 {
158 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
159 	int err = 0;
160 
161 	if (unlikely(afinfo == NULL))
162 		return -EAFNOSUPPORT;
163 
164 	if (likely(afinfo->dst_lookup != NULL))
165 		err = afinfo->dst_lookup(dst, fl);
166 	else
167 		err = -EINVAL;
168 	xfrm_policy_put_afinfo(afinfo);
169 	return err;
170 }
171 EXPORT_SYMBOL(xfrm_dst_lookup);
172 
173 void xfrm_put_type(struct xfrm_type *type)
174 {
175 	module_put(type->owner);
176 }
177 
178 int xfrm_register_mode(struct xfrm_mode *mode, int family)
179 {
180 	struct xfrm_policy_afinfo *afinfo;
181 	struct xfrm_mode **modemap;
182 	int err;
183 
184 	if (unlikely(mode->encap >= XFRM_MODE_MAX))
185 		return -EINVAL;
186 
187 	afinfo = xfrm_policy_lock_afinfo(family);
188 	if (unlikely(afinfo == NULL))
189 		return -EAFNOSUPPORT;
190 
191 	err = -EEXIST;
192 	modemap = afinfo->mode_map;
193 	if (likely(modemap[mode->encap] == NULL)) {
194 		modemap[mode->encap] = mode;
195 		err = 0;
196 	}
197 
198 	xfrm_policy_unlock_afinfo(afinfo);
199 	return err;
200 }
201 EXPORT_SYMBOL(xfrm_register_mode);
202 
203 int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
204 {
205 	struct xfrm_policy_afinfo *afinfo;
206 	struct xfrm_mode **modemap;
207 	int err;
208 
209 	if (unlikely(mode->encap >= XFRM_MODE_MAX))
210 		return -EINVAL;
211 
212 	afinfo = xfrm_policy_lock_afinfo(family);
213 	if (unlikely(afinfo == NULL))
214 		return -EAFNOSUPPORT;
215 
216 	err = -ENOENT;
217 	modemap = afinfo->mode_map;
218 	if (likely(modemap[mode->encap] == mode)) {
219 		modemap[mode->encap] = NULL;
220 		err = 0;
221 	}
222 
223 	xfrm_policy_unlock_afinfo(afinfo);
224 	return err;
225 }
226 EXPORT_SYMBOL(xfrm_unregister_mode);
227 
228 struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
229 {
230 	struct xfrm_policy_afinfo *afinfo;
231 	struct xfrm_mode *mode;
232 	int modload_attempted = 0;
233 
234 	if (unlikely(encap >= XFRM_MODE_MAX))
235 		return NULL;
236 
237 retry:
238 	afinfo = xfrm_policy_get_afinfo(family);
239 	if (unlikely(afinfo == NULL))
240 		return NULL;
241 
242 	mode = afinfo->mode_map[encap];
243 	if (unlikely(mode && !try_module_get(mode->owner)))
244 		mode = NULL;
245 	if (!mode && !modload_attempted) {
246 		xfrm_policy_put_afinfo(afinfo);
247 		request_module("xfrm-mode-%d-%d", family, encap);
248 		modload_attempted = 1;
249 		goto retry;
250 	}
251 
252 	xfrm_policy_put_afinfo(afinfo);
253 	return mode;
254 }
255 
256 void xfrm_put_mode(struct xfrm_mode *mode)
257 {
258 	module_put(mode->owner);
259 }
260 
261 static inline unsigned long make_jiffies(long secs)
262 {
263 	if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
264 		return MAX_SCHEDULE_TIMEOUT-1;
265 	else
266 		return secs*HZ;
267 }
268 
269 static void xfrm_policy_timer(unsigned long data)
270 {
271 	struct xfrm_policy *xp = (struct xfrm_policy*)data;
272 	unsigned long now = get_seconds();
273 	long next = LONG_MAX;
274 	int warn = 0;
275 	int dir;
276 
277 	read_lock(&xp->lock);
278 
279 	if (xp->dead)
280 		goto out;
281 
282 	dir = xfrm_policy_id2dir(xp->index);
283 
284 	if (xp->lft.hard_add_expires_seconds) {
285 		long tmo = xp->lft.hard_add_expires_seconds +
286 			xp->curlft.add_time - now;
287 		if (tmo <= 0)
288 			goto expired;
289 		if (tmo < next)
290 			next = tmo;
291 	}
292 	if (xp->lft.hard_use_expires_seconds) {
293 		long tmo = xp->lft.hard_use_expires_seconds +
294 			(xp->curlft.use_time ? : xp->curlft.add_time) - now;
295 		if (tmo <= 0)
296 			goto expired;
297 		if (tmo < next)
298 			next = tmo;
299 	}
300 	if (xp->lft.soft_add_expires_seconds) {
301 		long tmo = xp->lft.soft_add_expires_seconds +
302 			xp->curlft.add_time - now;
303 		if (tmo <= 0) {
304 			warn = 1;
305 			tmo = XFRM_KM_TIMEOUT;
306 		}
307 		if (tmo < next)
308 			next = tmo;
309 	}
310 	if (xp->lft.soft_use_expires_seconds) {
311 		long tmo = xp->lft.soft_use_expires_seconds +
312 			(xp->curlft.use_time ? : xp->curlft.add_time) - now;
313 		if (tmo <= 0) {
314 			warn = 1;
315 			tmo = XFRM_KM_TIMEOUT;
316 		}
317 		if (tmo < next)
318 			next = tmo;
319 	}
320 
321 	if (warn)
322 		km_policy_expired(xp, dir, 0, 0);
323 	if (next != LONG_MAX &&
324 	    !mod_timer(&xp->timer, jiffies + make_jiffies(next)))
325 		xfrm_pol_hold(xp);
326 
327 out:
328 	read_unlock(&xp->lock);
329 	xfrm_pol_put(xp);
330 	return;
331 
332 expired:
333 	read_unlock(&xp->lock);
334 	if (!xfrm_policy_delete(xp, dir))
335 		km_policy_expired(xp, dir, 1, 0);
336 	xfrm_pol_put(xp);
337 }
338 
339 
340 /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2
341  * SPD calls.
342  */
343 
344 struct xfrm_policy *xfrm_policy_alloc(gfp_t gfp)
345 {
346 	struct xfrm_policy *policy;
347 
348 	policy = kzalloc(sizeof(struct xfrm_policy), gfp);
349 
350 	if (policy) {
351 		INIT_HLIST_NODE(&policy->bydst);
352 		INIT_HLIST_NODE(&policy->byidx);
353 		rwlock_init(&policy->lock);
354 		atomic_set(&policy->refcnt, 1);
355 		init_timer(&policy->timer);
356 		policy->timer.data = (unsigned long)policy;
357 		policy->timer.function = xfrm_policy_timer;
358 	}
359 	return policy;
360 }
361 EXPORT_SYMBOL(xfrm_policy_alloc);
362 
363 /* Destroy xfrm_policy: descendant resources must be released to this moment. */
364 
365 void __xfrm_policy_destroy(struct xfrm_policy *policy)
366 {
367 	BUG_ON(!policy->dead);
368 
369 	BUG_ON(policy->bundles);
370 
371 	if (del_timer(&policy->timer))
372 		BUG();
373 
374 	security_xfrm_policy_free(policy);
375 	kfree(policy);
376 }
377 EXPORT_SYMBOL(__xfrm_policy_destroy);
378 
379 static void xfrm_policy_gc_kill(struct xfrm_policy *policy)
380 {
381 	struct dst_entry *dst;
382 
383 	while ((dst = policy->bundles) != NULL) {
384 		policy->bundles = dst->next;
385 		dst_free(dst);
386 	}
387 
388 	if (del_timer(&policy->timer))
389 		atomic_dec(&policy->refcnt);
390 
391 	if (atomic_read(&policy->refcnt) > 1)
392 		flow_cache_flush();
393 
394 	xfrm_pol_put(policy);
395 }
396 
397 static void xfrm_policy_gc_task(struct work_struct *work)
398 {
399 	struct xfrm_policy *policy;
400 	struct hlist_node *entry, *tmp;
401 	struct hlist_head gc_list;
402 
403 	spin_lock_bh(&xfrm_policy_gc_lock);
404 	gc_list.first = xfrm_policy_gc_list.first;
405 	INIT_HLIST_HEAD(&xfrm_policy_gc_list);
406 	spin_unlock_bh(&xfrm_policy_gc_lock);
407 
408 	hlist_for_each_entry_safe(policy, entry, tmp, &gc_list, bydst)
409 		xfrm_policy_gc_kill(policy);
410 }
411 
412 /* Rule must be locked. Release descentant resources, announce
413  * entry dead. The rule must be unlinked from lists to the moment.
414  */
415 
416 static void xfrm_policy_kill(struct xfrm_policy *policy)
417 {
418 	int dead;
419 
420 	write_lock_bh(&policy->lock);
421 	dead = policy->dead;
422 	policy->dead = 1;
423 	write_unlock_bh(&policy->lock);
424 
425 	if (unlikely(dead)) {
426 		WARN_ON(1);
427 		return;
428 	}
429 
430 	spin_lock(&xfrm_policy_gc_lock);
431 	hlist_add_head(&policy->bydst, &xfrm_policy_gc_list);
432 	spin_unlock(&xfrm_policy_gc_lock);
433 
434 	schedule_work(&xfrm_policy_gc_work);
435 }
436 
437 struct xfrm_policy_hash {
438 	struct hlist_head	*table;
439 	unsigned int		hmask;
440 };
441 
442 static struct hlist_head xfrm_policy_inexact[XFRM_POLICY_MAX*2];
443 static struct xfrm_policy_hash xfrm_policy_bydst[XFRM_POLICY_MAX*2] __read_mostly;
444 static struct hlist_head *xfrm_policy_byidx __read_mostly;
445 static unsigned int xfrm_idx_hmask __read_mostly;
446 static unsigned int xfrm_policy_hashmax __read_mostly = 1 * 1024 * 1024;
447 
448 static inline unsigned int idx_hash(u32 index)
449 {
450 	return __idx_hash(index, xfrm_idx_hmask);
451 }
452 
453 static struct hlist_head *policy_hash_bysel(struct xfrm_selector *sel, unsigned short family, int dir)
454 {
455 	unsigned int hmask = xfrm_policy_bydst[dir].hmask;
456 	unsigned int hash = __sel_hash(sel, family, hmask);
457 
458 	return (hash == hmask + 1 ?
459 		&xfrm_policy_inexact[dir] :
460 		xfrm_policy_bydst[dir].table + hash);
461 }
462 
463 static struct hlist_head *policy_hash_direct(xfrm_address_t *daddr, xfrm_address_t *saddr, unsigned short family, int dir)
464 {
465 	unsigned int hmask = xfrm_policy_bydst[dir].hmask;
466 	unsigned int hash = __addr_hash(daddr, saddr, family, hmask);
467 
468 	return xfrm_policy_bydst[dir].table + hash;
469 }
470 
471 static void xfrm_dst_hash_transfer(struct hlist_head *list,
472 				   struct hlist_head *ndsttable,
473 				   unsigned int nhashmask)
474 {
475 	struct hlist_node *entry, *tmp;
476 	struct xfrm_policy *pol;
477 
478 	hlist_for_each_entry_safe(pol, entry, tmp, list, bydst) {
479 		unsigned int h;
480 
481 		h = __addr_hash(&pol->selector.daddr, &pol->selector.saddr,
482 				pol->family, nhashmask);
483 		hlist_add_head(&pol->bydst, ndsttable+h);
484 	}
485 }
486 
487 static void xfrm_idx_hash_transfer(struct hlist_head *list,
488 				   struct hlist_head *nidxtable,
489 				   unsigned int nhashmask)
490 {
491 	struct hlist_node *entry, *tmp;
492 	struct xfrm_policy *pol;
493 
494 	hlist_for_each_entry_safe(pol, entry, tmp, list, byidx) {
495 		unsigned int h;
496 
497 		h = __idx_hash(pol->index, nhashmask);
498 		hlist_add_head(&pol->byidx, nidxtable+h);
499 	}
500 }
501 
502 static unsigned long xfrm_new_hash_mask(unsigned int old_hmask)
503 {
504 	return ((old_hmask + 1) << 1) - 1;
505 }
506 
507 static void xfrm_bydst_resize(int dir)
508 {
509 	unsigned int hmask = xfrm_policy_bydst[dir].hmask;
510 	unsigned int nhashmask = xfrm_new_hash_mask(hmask);
511 	unsigned int nsize = (nhashmask + 1) * sizeof(struct hlist_head);
512 	struct hlist_head *odst = xfrm_policy_bydst[dir].table;
513 	struct hlist_head *ndst = xfrm_hash_alloc(nsize);
514 	int i;
515 
516 	if (!ndst)
517 		return;
518 
519 	write_lock_bh(&xfrm_policy_lock);
520 
521 	for (i = hmask; i >= 0; i--)
522 		xfrm_dst_hash_transfer(odst + i, ndst, nhashmask);
523 
524 	xfrm_policy_bydst[dir].table = ndst;
525 	xfrm_policy_bydst[dir].hmask = nhashmask;
526 
527 	write_unlock_bh(&xfrm_policy_lock);
528 
529 	xfrm_hash_free(odst, (hmask + 1) * sizeof(struct hlist_head));
530 }
531 
532 static void xfrm_byidx_resize(int total)
533 {
534 	unsigned int hmask = xfrm_idx_hmask;
535 	unsigned int nhashmask = xfrm_new_hash_mask(hmask);
536 	unsigned int nsize = (nhashmask + 1) * sizeof(struct hlist_head);
537 	struct hlist_head *oidx = xfrm_policy_byidx;
538 	struct hlist_head *nidx = xfrm_hash_alloc(nsize);
539 	int i;
540 
541 	if (!nidx)
542 		return;
543 
544 	write_lock_bh(&xfrm_policy_lock);
545 
546 	for (i = hmask; i >= 0; i--)
547 		xfrm_idx_hash_transfer(oidx + i, nidx, nhashmask);
548 
549 	xfrm_policy_byidx = nidx;
550 	xfrm_idx_hmask = nhashmask;
551 
552 	write_unlock_bh(&xfrm_policy_lock);
553 
554 	xfrm_hash_free(oidx, (hmask + 1) * sizeof(struct hlist_head));
555 }
556 
557 static inline int xfrm_bydst_should_resize(int dir, int *total)
558 {
559 	unsigned int cnt = xfrm_policy_count[dir];
560 	unsigned int hmask = xfrm_policy_bydst[dir].hmask;
561 
562 	if (total)
563 		*total += cnt;
564 
565 	if ((hmask + 1) < xfrm_policy_hashmax &&
566 	    cnt > hmask)
567 		return 1;
568 
569 	return 0;
570 }
571 
572 static inline int xfrm_byidx_should_resize(int total)
573 {
574 	unsigned int hmask = xfrm_idx_hmask;
575 
576 	if ((hmask + 1) < xfrm_policy_hashmax &&
577 	    total > hmask)
578 		return 1;
579 
580 	return 0;
581 }
582 
583 void xfrm_spd_getinfo(struct xfrmk_spdinfo *si)
584 {
585 	read_lock_bh(&xfrm_policy_lock);
586 	si->incnt = xfrm_policy_count[XFRM_POLICY_IN];
587 	si->outcnt = xfrm_policy_count[XFRM_POLICY_OUT];
588 	si->fwdcnt = xfrm_policy_count[XFRM_POLICY_FWD];
589 	si->inscnt = xfrm_policy_count[XFRM_POLICY_IN+XFRM_POLICY_MAX];
590 	si->outscnt = xfrm_policy_count[XFRM_POLICY_OUT+XFRM_POLICY_MAX];
591 	si->fwdscnt = xfrm_policy_count[XFRM_POLICY_FWD+XFRM_POLICY_MAX];
592 	si->spdhcnt = xfrm_idx_hmask;
593 	si->spdhmcnt = xfrm_policy_hashmax;
594 	read_unlock_bh(&xfrm_policy_lock);
595 }
596 EXPORT_SYMBOL(xfrm_spd_getinfo);
597 
598 static DEFINE_MUTEX(hash_resize_mutex);
599 static void xfrm_hash_resize(struct work_struct *__unused)
600 {
601 	int dir, total;
602 
603 	mutex_lock(&hash_resize_mutex);
604 
605 	total = 0;
606 	for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) {
607 		if (xfrm_bydst_should_resize(dir, &total))
608 			xfrm_bydst_resize(dir);
609 	}
610 	if (xfrm_byidx_should_resize(total))
611 		xfrm_byidx_resize(total);
612 
613 	mutex_unlock(&hash_resize_mutex);
614 }
615 
616 static DECLARE_WORK(xfrm_hash_work, xfrm_hash_resize);
617 
618 /* Generate new index... KAME seems to generate them ordered by cost
619  * of an absolute inpredictability of ordering of rules. This will not pass. */
620 static u32 xfrm_gen_index(u8 type, int dir)
621 {
622 	static u32 idx_generator;
623 
624 	for (;;) {
625 		struct hlist_node *entry;
626 		struct hlist_head *list;
627 		struct xfrm_policy *p;
628 		u32 idx;
629 		int found;
630 
631 		idx = (idx_generator | dir);
632 		idx_generator += 8;
633 		if (idx == 0)
634 			idx = 8;
635 		list = xfrm_policy_byidx + idx_hash(idx);
636 		found = 0;
637 		hlist_for_each_entry(p, entry, list, byidx) {
638 			if (p->index == idx) {
639 				found = 1;
640 				break;
641 			}
642 		}
643 		if (!found)
644 			return idx;
645 	}
646 }
647 
648 static inline int selector_cmp(struct xfrm_selector *s1, struct xfrm_selector *s2)
649 {
650 	u32 *p1 = (u32 *) s1;
651 	u32 *p2 = (u32 *) s2;
652 	int len = sizeof(struct xfrm_selector) / sizeof(u32);
653 	int i;
654 
655 	for (i = 0; i < len; i++) {
656 		if (p1[i] != p2[i])
657 			return 1;
658 	}
659 
660 	return 0;
661 }
662 
663 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl)
664 {
665 	struct xfrm_policy *pol;
666 	struct xfrm_policy *delpol;
667 	struct hlist_head *chain;
668 	struct hlist_node *entry, *newpos;
669 	struct dst_entry *gc_list;
670 
671 	write_lock_bh(&xfrm_policy_lock);
672 	chain = policy_hash_bysel(&policy->selector, policy->family, dir);
673 	delpol = NULL;
674 	newpos = NULL;
675 	hlist_for_each_entry(pol, entry, chain, bydst) {
676 		if (pol->type == policy->type &&
677 		    !selector_cmp(&pol->selector, &policy->selector) &&
678 		    xfrm_sec_ctx_match(pol->security, policy->security) &&
679 		    !WARN_ON(delpol)) {
680 			if (excl) {
681 				write_unlock_bh(&xfrm_policy_lock);
682 				return -EEXIST;
683 			}
684 			delpol = pol;
685 			if (policy->priority > pol->priority)
686 				continue;
687 		} else if (policy->priority >= pol->priority) {
688 			newpos = &pol->bydst;
689 			continue;
690 		}
691 		if (delpol)
692 			break;
693 	}
694 	if (newpos)
695 		hlist_add_after(newpos, &policy->bydst);
696 	else
697 		hlist_add_head(&policy->bydst, chain);
698 	xfrm_pol_hold(policy);
699 	xfrm_policy_count[dir]++;
700 	atomic_inc(&flow_cache_genid);
701 	if (delpol) {
702 		hlist_del(&delpol->bydst);
703 		hlist_del(&delpol->byidx);
704 		xfrm_policy_count[dir]--;
705 	}
706 	policy->index = delpol ? delpol->index : xfrm_gen_index(policy->type, dir);
707 	hlist_add_head(&policy->byidx, xfrm_policy_byidx+idx_hash(policy->index));
708 	policy->curlft.add_time = get_seconds();
709 	policy->curlft.use_time = 0;
710 	if (!mod_timer(&policy->timer, jiffies + HZ))
711 		xfrm_pol_hold(policy);
712 	write_unlock_bh(&xfrm_policy_lock);
713 
714 	if (delpol)
715 		xfrm_policy_kill(delpol);
716 	else if (xfrm_bydst_should_resize(dir, NULL))
717 		schedule_work(&xfrm_hash_work);
718 
719 	read_lock_bh(&xfrm_policy_lock);
720 	gc_list = NULL;
721 	entry = &policy->bydst;
722 	hlist_for_each_entry_continue(policy, entry, bydst) {
723 		struct dst_entry *dst;
724 
725 		write_lock(&policy->lock);
726 		dst = policy->bundles;
727 		if (dst) {
728 			struct dst_entry *tail = dst;
729 			while (tail->next)
730 				tail = tail->next;
731 			tail->next = gc_list;
732 			gc_list = dst;
733 
734 			policy->bundles = NULL;
735 		}
736 		write_unlock(&policy->lock);
737 	}
738 	read_unlock_bh(&xfrm_policy_lock);
739 
740 	while (gc_list) {
741 		struct dst_entry *dst = gc_list;
742 
743 		gc_list = dst->next;
744 		dst_free(dst);
745 	}
746 
747 	return 0;
748 }
749 EXPORT_SYMBOL(xfrm_policy_insert);
750 
751 struct xfrm_policy *xfrm_policy_bysel_ctx(u8 type, int dir,
752 					  struct xfrm_selector *sel,
753 					  struct xfrm_sec_ctx *ctx, int delete,
754 					  int *err)
755 {
756 	struct xfrm_policy *pol, *ret;
757 	struct hlist_head *chain;
758 	struct hlist_node *entry;
759 
760 	*err = 0;
761 	write_lock_bh(&xfrm_policy_lock);
762 	chain = policy_hash_bysel(sel, sel->family, dir);
763 	ret = NULL;
764 	hlist_for_each_entry(pol, entry, chain, bydst) {
765 		if (pol->type == type &&
766 		    !selector_cmp(sel, &pol->selector) &&
767 		    xfrm_sec_ctx_match(ctx, pol->security)) {
768 			xfrm_pol_hold(pol);
769 			if (delete) {
770 				*err = security_xfrm_policy_delete(pol);
771 				if (*err) {
772 					write_unlock_bh(&xfrm_policy_lock);
773 					return pol;
774 				}
775 				hlist_del(&pol->bydst);
776 				hlist_del(&pol->byidx);
777 				xfrm_policy_count[dir]--;
778 			}
779 			ret = pol;
780 			break;
781 		}
782 	}
783 	write_unlock_bh(&xfrm_policy_lock);
784 
785 	if (ret && delete) {
786 		atomic_inc(&flow_cache_genid);
787 		xfrm_policy_kill(ret);
788 	}
789 	return ret;
790 }
791 EXPORT_SYMBOL(xfrm_policy_bysel_ctx);
792 
793 struct xfrm_policy *xfrm_policy_byid(u8 type, int dir, u32 id, int delete,
794 				     int *err)
795 {
796 	struct xfrm_policy *pol, *ret;
797 	struct hlist_head *chain;
798 	struct hlist_node *entry;
799 
800 	*err = -ENOENT;
801 	if (xfrm_policy_id2dir(id) != dir)
802 		return NULL;
803 
804 	*err = 0;
805 	write_lock_bh(&xfrm_policy_lock);
806 	chain = xfrm_policy_byidx + idx_hash(id);
807 	ret = NULL;
808 	hlist_for_each_entry(pol, entry, chain, byidx) {
809 		if (pol->type == type && pol->index == id) {
810 			xfrm_pol_hold(pol);
811 			if (delete) {
812 				*err = security_xfrm_policy_delete(pol);
813 				if (*err) {
814 					write_unlock_bh(&xfrm_policy_lock);
815 					return pol;
816 				}
817 				hlist_del(&pol->bydst);
818 				hlist_del(&pol->byidx);
819 				xfrm_policy_count[dir]--;
820 			}
821 			ret = pol;
822 			break;
823 		}
824 	}
825 	write_unlock_bh(&xfrm_policy_lock);
826 
827 	if (ret && delete) {
828 		atomic_inc(&flow_cache_genid);
829 		xfrm_policy_kill(ret);
830 	}
831 	return ret;
832 }
833 EXPORT_SYMBOL(xfrm_policy_byid);
834 
835 #ifdef CONFIG_SECURITY_NETWORK_XFRM
836 static inline int
837 xfrm_policy_flush_secctx_check(u8 type, struct xfrm_audit *audit_info)
838 {
839 	int dir, err = 0;
840 
841 	for (dir = 0; dir < XFRM_POLICY_MAX; dir++) {
842 		struct xfrm_policy *pol;
843 		struct hlist_node *entry;
844 		int i;
845 
846 		hlist_for_each_entry(pol, entry,
847 				     &xfrm_policy_inexact[dir], bydst) {
848 			if (pol->type != type)
849 				continue;
850 			err = security_xfrm_policy_delete(pol);
851 			if (err) {
852 				xfrm_audit_policy_delete(pol, 0,
853 							 audit_info->loginuid,
854 							 audit_info->secid);
855 				return err;
856 			}
857 		}
858 		for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) {
859 			hlist_for_each_entry(pol, entry,
860 					     xfrm_policy_bydst[dir].table + i,
861 					     bydst) {
862 				if (pol->type != type)
863 					continue;
864 				err = security_xfrm_policy_delete(pol);
865 				if (err) {
866 					xfrm_audit_policy_delete(pol, 0,
867 							audit_info->loginuid,
868 							audit_info->secid);
869 					return err;
870 				}
871 			}
872 		}
873 	}
874 	return err;
875 }
876 #else
877 static inline int
878 xfrm_policy_flush_secctx_check(u8 type, struct xfrm_audit *audit_info)
879 {
880 	return 0;
881 }
882 #endif
883 
884 int xfrm_policy_flush(u8 type, struct xfrm_audit *audit_info)
885 {
886 	int dir, err = 0;
887 
888 	write_lock_bh(&xfrm_policy_lock);
889 
890 	err = xfrm_policy_flush_secctx_check(type, audit_info);
891 	if (err)
892 		goto out;
893 
894 	for (dir = 0; dir < XFRM_POLICY_MAX; dir++) {
895 		struct xfrm_policy *pol;
896 		struct hlist_node *entry;
897 		int i, killed;
898 
899 		killed = 0;
900 	again1:
901 		hlist_for_each_entry(pol, entry,
902 				     &xfrm_policy_inexact[dir], bydst) {
903 			if (pol->type != type)
904 				continue;
905 			hlist_del(&pol->bydst);
906 			hlist_del(&pol->byidx);
907 			write_unlock_bh(&xfrm_policy_lock);
908 
909 			xfrm_audit_policy_delete(pol, 1, audit_info->loginuid,
910 						 audit_info->secid);
911 
912 			xfrm_policy_kill(pol);
913 			killed++;
914 
915 			write_lock_bh(&xfrm_policy_lock);
916 			goto again1;
917 		}
918 
919 		for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) {
920 	again2:
921 			hlist_for_each_entry(pol, entry,
922 					     xfrm_policy_bydst[dir].table + i,
923 					     bydst) {
924 				if (pol->type != type)
925 					continue;
926 				hlist_del(&pol->bydst);
927 				hlist_del(&pol->byidx);
928 				write_unlock_bh(&xfrm_policy_lock);
929 
930 				xfrm_audit_policy_delete(pol, 1,
931 							 audit_info->loginuid,
932 							 audit_info->secid);
933 				xfrm_policy_kill(pol);
934 				killed++;
935 
936 				write_lock_bh(&xfrm_policy_lock);
937 				goto again2;
938 			}
939 		}
940 
941 		xfrm_policy_count[dir] -= killed;
942 	}
943 	atomic_inc(&flow_cache_genid);
944 out:
945 	write_unlock_bh(&xfrm_policy_lock);
946 	return err;
947 }
948 EXPORT_SYMBOL(xfrm_policy_flush);
949 
950 int xfrm_policy_walk(u8 type, int (*func)(struct xfrm_policy *, int, int, void*),
951 		     void *data)
952 {
953 	struct xfrm_policy *pol, *last = NULL;
954 	struct hlist_node *entry;
955 	int dir, last_dir = 0, count, error;
956 
957 	read_lock_bh(&xfrm_policy_lock);
958 	count = 0;
959 
960 	for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
961 		struct hlist_head *table = xfrm_policy_bydst[dir].table;
962 		int i;
963 
964 		hlist_for_each_entry(pol, entry,
965 				     &xfrm_policy_inexact[dir], bydst) {
966 			if (pol->type != type)
967 				continue;
968 			if (last) {
969 				error = func(last, last_dir % XFRM_POLICY_MAX,
970 					     count, data);
971 				if (error)
972 					goto out;
973 			}
974 			last = pol;
975 			last_dir = dir;
976 			count++;
977 		}
978 		for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) {
979 			hlist_for_each_entry(pol, entry, table + i, bydst) {
980 				if (pol->type != type)
981 					continue;
982 				if (last) {
983 					error = func(last, last_dir % XFRM_POLICY_MAX,
984 						     count, data);
985 					if (error)
986 						goto out;
987 				}
988 				last = pol;
989 				last_dir = dir;
990 				count++;
991 			}
992 		}
993 	}
994 	if (count == 0) {
995 		error = -ENOENT;
996 		goto out;
997 	}
998 	error = func(last, last_dir % XFRM_POLICY_MAX, 0, data);
999 out:
1000 	read_unlock_bh(&xfrm_policy_lock);
1001 	return error;
1002 }
1003 EXPORT_SYMBOL(xfrm_policy_walk);
1004 
1005 /*
1006  * Find policy to apply to this flow.
1007  *
1008  * Returns 0 if policy found, else an -errno.
1009  */
1010 static int xfrm_policy_match(struct xfrm_policy *pol, struct flowi *fl,
1011 			     u8 type, u16 family, int dir)
1012 {
1013 	struct xfrm_selector *sel = &pol->selector;
1014 	int match, ret = -ESRCH;
1015 
1016 	if (pol->family != family ||
1017 	    pol->type != type)
1018 		return ret;
1019 
1020 	match = xfrm_selector_match(sel, fl, family);
1021 	if (match)
1022 		ret = security_xfrm_policy_lookup(pol, fl->secid, dir);
1023 
1024 	return ret;
1025 }
1026 
1027 static struct xfrm_policy *xfrm_policy_lookup_bytype(u8 type, struct flowi *fl,
1028 						     u16 family, u8 dir)
1029 {
1030 	int err;
1031 	struct xfrm_policy *pol, *ret;
1032 	xfrm_address_t *daddr, *saddr;
1033 	struct hlist_node *entry;
1034 	struct hlist_head *chain;
1035 	u32 priority = ~0U;
1036 
1037 	daddr = xfrm_flowi_daddr(fl, family);
1038 	saddr = xfrm_flowi_saddr(fl, family);
1039 	if (unlikely(!daddr || !saddr))
1040 		return NULL;
1041 
1042 	read_lock_bh(&xfrm_policy_lock);
1043 	chain = policy_hash_direct(daddr, saddr, family, dir);
1044 	ret = NULL;
1045 	hlist_for_each_entry(pol, entry, chain, bydst) {
1046 		err = xfrm_policy_match(pol, fl, type, family, dir);
1047 		if (err) {
1048 			if (err == -ESRCH)
1049 				continue;
1050 			else {
1051 				ret = ERR_PTR(err);
1052 				goto fail;
1053 			}
1054 		} else {
1055 			ret = pol;
1056 			priority = ret->priority;
1057 			break;
1058 		}
1059 	}
1060 	chain = &xfrm_policy_inexact[dir];
1061 	hlist_for_each_entry(pol, entry, chain, bydst) {
1062 		err = xfrm_policy_match(pol, fl, type, family, dir);
1063 		if (err) {
1064 			if (err == -ESRCH)
1065 				continue;
1066 			else {
1067 				ret = ERR_PTR(err);
1068 				goto fail;
1069 			}
1070 		} else if (pol->priority < priority) {
1071 			ret = pol;
1072 			break;
1073 		}
1074 	}
1075 	if (ret)
1076 		xfrm_pol_hold(ret);
1077 fail:
1078 	read_unlock_bh(&xfrm_policy_lock);
1079 
1080 	return ret;
1081 }
1082 
1083 static int xfrm_policy_lookup(struct flowi *fl, u16 family, u8 dir,
1084 			       void **objp, atomic_t **obj_refp)
1085 {
1086 	struct xfrm_policy *pol;
1087 	int err = 0;
1088 
1089 #ifdef CONFIG_XFRM_SUB_POLICY
1090 	pol = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_SUB, fl, family, dir);
1091 	if (IS_ERR(pol)) {
1092 		err = PTR_ERR(pol);
1093 		pol = NULL;
1094 	}
1095 	if (pol || err)
1096 		goto end;
1097 #endif
1098 	pol = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN, fl, family, dir);
1099 	if (IS_ERR(pol)) {
1100 		err = PTR_ERR(pol);
1101 		pol = NULL;
1102 	}
1103 #ifdef CONFIG_XFRM_SUB_POLICY
1104 end:
1105 #endif
1106 	if ((*objp = (void *) pol) != NULL)
1107 		*obj_refp = &pol->refcnt;
1108 	return err;
1109 }
1110 
1111 static inline int policy_to_flow_dir(int dir)
1112 {
1113 	if (XFRM_POLICY_IN == FLOW_DIR_IN &&
1114 	    XFRM_POLICY_OUT == FLOW_DIR_OUT &&
1115 	    XFRM_POLICY_FWD == FLOW_DIR_FWD)
1116 		return dir;
1117 	switch (dir) {
1118 	default:
1119 	case XFRM_POLICY_IN:
1120 		return FLOW_DIR_IN;
1121 	case XFRM_POLICY_OUT:
1122 		return FLOW_DIR_OUT;
1123 	case XFRM_POLICY_FWD:
1124 		return FLOW_DIR_FWD;
1125 	}
1126 }
1127 
1128 static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl)
1129 {
1130 	struct xfrm_policy *pol;
1131 
1132 	read_lock_bh(&xfrm_policy_lock);
1133 	if ((pol = sk->sk_policy[dir]) != NULL) {
1134 		int match = xfrm_selector_match(&pol->selector, fl,
1135 						sk->sk_family);
1136 		int err = 0;
1137 
1138 		if (match) {
1139 			err = security_xfrm_policy_lookup(pol, fl->secid,
1140 					policy_to_flow_dir(dir));
1141 			if (!err)
1142 				xfrm_pol_hold(pol);
1143 			else if (err == -ESRCH)
1144 				pol = NULL;
1145 			else
1146 				pol = ERR_PTR(err);
1147 		} else
1148 			pol = NULL;
1149 	}
1150 	read_unlock_bh(&xfrm_policy_lock);
1151 	return pol;
1152 }
1153 
1154 static void __xfrm_policy_link(struct xfrm_policy *pol, int dir)
1155 {
1156 	struct hlist_head *chain = policy_hash_bysel(&pol->selector,
1157 						     pol->family, dir);
1158 
1159 	hlist_add_head(&pol->bydst, chain);
1160 	hlist_add_head(&pol->byidx, xfrm_policy_byidx+idx_hash(pol->index));
1161 	xfrm_policy_count[dir]++;
1162 	xfrm_pol_hold(pol);
1163 
1164 	if (xfrm_bydst_should_resize(dir, NULL))
1165 		schedule_work(&xfrm_hash_work);
1166 }
1167 
1168 static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol,
1169 						int dir)
1170 {
1171 	if (hlist_unhashed(&pol->bydst))
1172 		return NULL;
1173 
1174 	hlist_del(&pol->bydst);
1175 	hlist_del(&pol->byidx);
1176 	xfrm_policy_count[dir]--;
1177 
1178 	return pol;
1179 }
1180 
1181 int xfrm_policy_delete(struct xfrm_policy *pol, int dir)
1182 {
1183 	write_lock_bh(&xfrm_policy_lock);
1184 	pol = __xfrm_policy_unlink(pol, dir);
1185 	write_unlock_bh(&xfrm_policy_lock);
1186 	if (pol) {
1187 		if (dir < XFRM_POLICY_MAX)
1188 			atomic_inc(&flow_cache_genid);
1189 		xfrm_policy_kill(pol);
1190 		return 0;
1191 	}
1192 	return -ENOENT;
1193 }
1194 EXPORT_SYMBOL(xfrm_policy_delete);
1195 
1196 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol)
1197 {
1198 	struct xfrm_policy *old_pol;
1199 
1200 #ifdef CONFIG_XFRM_SUB_POLICY
1201 	if (pol && pol->type != XFRM_POLICY_TYPE_MAIN)
1202 		return -EINVAL;
1203 #endif
1204 
1205 	write_lock_bh(&xfrm_policy_lock);
1206 	old_pol = sk->sk_policy[dir];
1207 	sk->sk_policy[dir] = pol;
1208 	if (pol) {
1209 		pol->curlft.add_time = get_seconds();
1210 		pol->index = xfrm_gen_index(pol->type, XFRM_POLICY_MAX+dir);
1211 		__xfrm_policy_link(pol, XFRM_POLICY_MAX+dir);
1212 	}
1213 	if (old_pol)
1214 		__xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir);
1215 	write_unlock_bh(&xfrm_policy_lock);
1216 
1217 	if (old_pol) {
1218 		xfrm_policy_kill(old_pol);
1219 	}
1220 	return 0;
1221 }
1222 
1223 static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir)
1224 {
1225 	struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC);
1226 
1227 	if (newp) {
1228 		newp->selector = old->selector;
1229 		if (security_xfrm_policy_clone(old, newp)) {
1230 			kfree(newp);
1231 			return NULL;  /* ENOMEM */
1232 		}
1233 		newp->lft = old->lft;
1234 		newp->curlft = old->curlft;
1235 		newp->action = old->action;
1236 		newp->flags = old->flags;
1237 		newp->xfrm_nr = old->xfrm_nr;
1238 		newp->index = old->index;
1239 		newp->type = old->type;
1240 		memcpy(newp->xfrm_vec, old->xfrm_vec,
1241 		       newp->xfrm_nr*sizeof(struct xfrm_tmpl));
1242 		write_lock_bh(&xfrm_policy_lock);
1243 		__xfrm_policy_link(newp, XFRM_POLICY_MAX+dir);
1244 		write_unlock_bh(&xfrm_policy_lock);
1245 		xfrm_pol_put(newp);
1246 	}
1247 	return newp;
1248 }
1249 
1250 int __xfrm_sk_clone_policy(struct sock *sk)
1251 {
1252 	struct xfrm_policy *p0 = sk->sk_policy[0],
1253 			   *p1 = sk->sk_policy[1];
1254 
1255 	sk->sk_policy[0] = sk->sk_policy[1] = NULL;
1256 	if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL)
1257 		return -ENOMEM;
1258 	if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL)
1259 		return -ENOMEM;
1260 	return 0;
1261 }
1262 
1263 static int
1264 xfrm_get_saddr(xfrm_address_t *local, xfrm_address_t *remote,
1265 	       unsigned short family)
1266 {
1267 	int err;
1268 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1269 
1270 	if (unlikely(afinfo == NULL))
1271 		return -EINVAL;
1272 	err = afinfo->get_saddr(local, remote);
1273 	xfrm_policy_put_afinfo(afinfo);
1274 	return err;
1275 }
1276 
1277 /* Resolve list of templates for the flow, given policy. */
1278 
1279 static int
1280 xfrm_tmpl_resolve_one(struct xfrm_policy *policy, struct flowi *fl,
1281 		      struct xfrm_state **xfrm,
1282 		      unsigned short family)
1283 {
1284 	int nx;
1285 	int i, error;
1286 	xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family);
1287 	xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family);
1288 	xfrm_address_t tmp;
1289 
1290 	for (nx=0, i = 0; i < policy->xfrm_nr; i++) {
1291 		struct xfrm_state *x;
1292 		xfrm_address_t *remote = daddr;
1293 		xfrm_address_t *local  = saddr;
1294 		struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i];
1295 
1296 		if (tmpl->mode == XFRM_MODE_TUNNEL ||
1297 		    tmpl->mode == XFRM_MODE_BEET) {
1298 			remote = &tmpl->id.daddr;
1299 			local = &tmpl->saddr;
1300 			family = tmpl->encap_family;
1301 			if (xfrm_addr_any(local, family)) {
1302 				error = xfrm_get_saddr(&tmp, remote, family);
1303 				if (error)
1304 					goto fail;
1305 				local = &tmp;
1306 			}
1307 		}
1308 
1309 		x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family);
1310 
1311 		if (x && x->km.state == XFRM_STATE_VALID) {
1312 			xfrm[nx++] = x;
1313 			daddr = remote;
1314 			saddr = local;
1315 			continue;
1316 		}
1317 		if (x) {
1318 			error = (x->km.state == XFRM_STATE_ERROR ?
1319 				 -EINVAL : -EAGAIN);
1320 			xfrm_state_put(x);
1321 		}
1322 
1323 		if (!tmpl->optional)
1324 			goto fail;
1325 	}
1326 	return nx;
1327 
1328 fail:
1329 	for (nx--; nx>=0; nx--)
1330 		xfrm_state_put(xfrm[nx]);
1331 	return error;
1332 }
1333 
1334 static int
1335 xfrm_tmpl_resolve(struct xfrm_policy **pols, int npols, struct flowi *fl,
1336 		  struct xfrm_state **xfrm,
1337 		  unsigned short family)
1338 {
1339 	struct xfrm_state *tp[XFRM_MAX_DEPTH];
1340 	struct xfrm_state **tpp = (npols > 1) ? tp : xfrm;
1341 	int cnx = 0;
1342 	int error;
1343 	int ret;
1344 	int i;
1345 
1346 	for (i = 0; i < npols; i++) {
1347 		if (cnx + pols[i]->xfrm_nr >= XFRM_MAX_DEPTH) {
1348 			error = -ENOBUFS;
1349 			goto fail;
1350 		}
1351 
1352 		ret = xfrm_tmpl_resolve_one(pols[i], fl, &tpp[cnx], family);
1353 		if (ret < 0) {
1354 			error = ret;
1355 			goto fail;
1356 		} else
1357 			cnx += ret;
1358 	}
1359 
1360 	/* found states are sorted for outbound processing */
1361 	if (npols > 1)
1362 		xfrm_state_sort(xfrm, tpp, cnx, family);
1363 
1364 	return cnx;
1365 
1366  fail:
1367 	for (cnx--; cnx>=0; cnx--)
1368 		xfrm_state_put(tpp[cnx]);
1369 	return error;
1370 
1371 }
1372 
1373 /* Check that the bundle accepts the flow and its components are
1374  * still valid.
1375  */
1376 
1377 static struct dst_entry *
1378 xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family)
1379 {
1380 	struct dst_entry *x;
1381 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1382 	if (unlikely(afinfo == NULL))
1383 		return ERR_PTR(-EINVAL);
1384 	x = afinfo->find_bundle(fl, policy);
1385 	xfrm_policy_put_afinfo(afinfo);
1386 	return x;
1387 }
1388 
1389 /* Allocate chain of dst_entry's, attach known xfrm's, calculate
1390  * all the metrics... Shortly, bundle a bundle.
1391  */
1392 
1393 static int
1394 xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx,
1395 		   struct flowi *fl, struct dst_entry **dst_p,
1396 		   unsigned short family)
1397 {
1398 	int err;
1399 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1400 	if (unlikely(afinfo == NULL))
1401 		return -EINVAL;
1402 	err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p);
1403 	xfrm_policy_put_afinfo(afinfo);
1404 	return err;
1405 }
1406 
1407 static int inline
1408 xfrm_dst_alloc_copy(void **target, void *src, int size)
1409 {
1410 	if (!*target) {
1411 		*target = kmalloc(size, GFP_ATOMIC);
1412 		if (!*target)
1413 			return -ENOMEM;
1414 	}
1415 	memcpy(*target, src, size);
1416 	return 0;
1417 }
1418 
1419 static int inline
1420 xfrm_dst_update_parent(struct dst_entry *dst, struct xfrm_selector *sel)
1421 {
1422 #ifdef CONFIG_XFRM_SUB_POLICY
1423 	struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1424 	return xfrm_dst_alloc_copy((void **)&(xdst->partner),
1425 				   sel, sizeof(*sel));
1426 #else
1427 	return 0;
1428 #endif
1429 }
1430 
1431 static int inline
1432 xfrm_dst_update_origin(struct dst_entry *dst, struct flowi *fl)
1433 {
1434 #ifdef CONFIG_XFRM_SUB_POLICY
1435 	struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1436 	return xfrm_dst_alloc_copy((void **)&(xdst->origin), fl, sizeof(*fl));
1437 #else
1438 	return 0;
1439 #endif
1440 }
1441 
1442 static int stale_bundle(struct dst_entry *dst);
1443 
1444 /* Main function: finds/creates a bundle for given flow.
1445  *
1446  * At the moment we eat a raw IP route. Mostly to speed up lookups
1447  * on interfaces with disabled IPsec.
1448  */
1449 int __xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl,
1450 		  struct sock *sk, int flags)
1451 {
1452 	struct xfrm_policy *policy;
1453 	struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX];
1454 	int npols;
1455 	int pol_dead;
1456 	int xfrm_nr;
1457 	int pi;
1458 	struct xfrm_state *xfrm[XFRM_MAX_DEPTH];
1459 	struct dst_entry *dst, *dst_orig = *dst_p;
1460 	int nx = 0;
1461 	int err;
1462 	u32 genid;
1463 	u16 family;
1464 	u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT);
1465 
1466 restart:
1467 	genid = atomic_read(&flow_cache_genid);
1468 	policy = NULL;
1469 	for (pi = 0; pi < ARRAY_SIZE(pols); pi++)
1470 		pols[pi] = NULL;
1471 	npols = 0;
1472 	pol_dead = 0;
1473 	xfrm_nr = 0;
1474 
1475 	if (sk && sk->sk_policy[XFRM_POLICY_OUT]) {
1476 		policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl);
1477 		if (IS_ERR(policy))
1478 			return PTR_ERR(policy);
1479 	}
1480 
1481 	if (!policy) {
1482 		/* To accelerate a bit...  */
1483 		if ((dst_orig->flags & DST_NOXFRM) ||
1484 		    !xfrm_policy_count[XFRM_POLICY_OUT])
1485 			return 0;
1486 
1487 		policy = flow_cache_lookup(fl, dst_orig->ops->family,
1488 					   dir, xfrm_policy_lookup);
1489 		if (IS_ERR(policy))
1490 			return PTR_ERR(policy);
1491 	}
1492 
1493 	if (!policy)
1494 		return 0;
1495 
1496 	family = dst_orig->ops->family;
1497 	policy->curlft.use_time = get_seconds();
1498 	pols[0] = policy;
1499 	npols ++;
1500 	xfrm_nr += pols[0]->xfrm_nr;
1501 
1502 	switch (policy->action) {
1503 	case XFRM_POLICY_BLOCK:
1504 		/* Prohibit the flow */
1505 		err = -EPERM;
1506 		goto error;
1507 
1508 	case XFRM_POLICY_ALLOW:
1509 #ifndef CONFIG_XFRM_SUB_POLICY
1510 		if (policy->xfrm_nr == 0) {
1511 			/* Flow passes not transformed. */
1512 			xfrm_pol_put(policy);
1513 			return 0;
1514 		}
1515 #endif
1516 
1517 		/* Try to find matching bundle.
1518 		 *
1519 		 * LATER: help from flow cache. It is optional, this
1520 		 * is required only for output policy.
1521 		 */
1522 		dst = xfrm_find_bundle(fl, policy, family);
1523 		if (IS_ERR(dst)) {
1524 			err = PTR_ERR(dst);
1525 			goto error;
1526 		}
1527 
1528 		if (dst)
1529 			break;
1530 
1531 #ifdef CONFIG_XFRM_SUB_POLICY
1532 		if (pols[0]->type != XFRM_POLICY_TYPE_MAIN) {
1533 			pols[1] = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN,
1534 							    fl, family,
1535 							    XFRM_POLICY_OUT);
1536 			if (pols[1]) {
1537 				if (IS_ERR(pols[1])) {
1538 					err = PTR_ERR(pols[1]);
1539 					goto error;
1540 				}
1541 				if (pols[1]->action == XFRM_POLICY_BLOCK) {
1542 					err = -EPERM;
1543 					goto error;
1544 				}
1545 				npols ++;
1546 				xfrm_nr += pols[1]->xfrm_nr;
1547 			}
1548 		}
1549 
1550 		/*
1551 		 * Because neither flowi nor bundle information knows about
1552 		 * transformation template size. On more than one policy usage
1553 		 * we can realize whether all of them is bypass or not after
1554 		 * they are searched. See above not-transformed bypass
1555 		 * is surrounded by non-sub policy configuration, too.
1556 		 */
1557 		if (xfrm_nr == 0) {
1558 			/* Flow passes not transformed. */
1559 			xfrm_pols_put(pols, npols);
1560 			return 0;
1561 		}
1562 
1563 #endif
1564 		nx = xfrm_tmpl_resolve(pols, npols, fl, xfrm, family);
1565 
1566 		if (unlikely(nx<0)) {
1567 			err = nx;
1568 			if (err == -EAGAIN && sysctl_xfrm_larval_drop) {
1569 				/* EREMOTE tells the caller to generate
1570 				 * a one-shot blackhole route.
1571 				 */
1572 				xfrm_pol_put(policy);
1573 				return -EREMOTE;
1574 			}
1575 			if (err == -EAGAIN && flags) {
1576 				DECLARE_WAITQUEUE(wait, current);
1577 
1578 				add_wait_queue(&km_waitq, &wait);
1579 				set_current_state(TASK_INTERRUPTIBLE);
1580 				schedule();
1581 				set_current_state(TASK_RUNNING);
1582 				remove_wait_queue(&km_waitq, &wait);
1583 
1584 				nx = xfrm_tmpl_resolve(pols, npols, fl, xfrm, family);
1585 
1586 				if (nx == -EAGAIN && signal_pending(current)) {
1587 					err = -ERESTART;
1588 					goto error;
1589 				}
1590 				if (nx == -EAGAIN ||
1591 				    genid != atomic_read(&flow_cache_genid)) {
1592 					xfrm_pols_put(pols, npols);
1593 					goto restart;
1594 				}
1595 				err = nx;
1596 			}
1597 			if (err < 0)
1598 				goto error;
1599 		}
1600 		if (nx == 0) {
1601 			/* Flow passes not transformed. */
1602 			xfrm_pols_put(pols, npols);
1603 			return 0;
1604 		}
1605 
1606 		dst = dst_orig;
1607 		err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family);
1608 
1609 		if (unlikely(err)) {
1610 			int i;
1611 			for (i=0; i<nx; i++)
1612 				xfrm_state_put(xfrm[i]);
1613 			goto error;
1614 		}
1615 
1616 		for (pi = 0; pi < npols; pi++) {
1617 			read_lock_bh(&pols[pi]->lock);
1618 			pol_dead |= pols[pi]->dead;
1619 			read_unlock_bh(&pols[pi]->lock);
1620 		}
1621 
1622 		write_lock_bh(&policy->lock);
1623 		if (unlikely(pol_dead || stale_bundle(dst))) {
1624 			/* Wow! While we worked on resolving, this
1625 			 * policy has gone. Retry. It is not paranoia,
1626 			 * we just cannot enlist new bundle to dead object.
1627 			 * We can't enlist stable bundles either.
1628 			 */
1629 			write_unlock_bh(&policy->lock);
1630 			if (dst)
1631 				dst_free(dst);
1632 
1633 			err = -EHOSTUNREACH;
1634 			goto error;
1635 		}
1636 
1637 		if (npols > 1)
1638 			err = xfrm_dst_update_parent(dst, &pols[1]->selector);
1639 		else
1640 			err = xfrm_dst_update_origin(dst, fl);
1641 		if (unlikely(err)) {
1642 			write_unlock_bh(&policy->lock);
1643 			if (dst)
1644 				dst_free(dst);
1645 			goto error;
1646 		}
1647 
1648 		dst->next = policy->bundles;
1649 		policy->bundles = dst;
1650 		dst_hold(dst);
1651 		write_unlock_bh(&policy->lock);
1652 	}
1653 	*dst_p = dst;
1654 	dst_release(dst_orig);
1655 	xfrm_pols_put(pols, npols);
1656 	return 0;
1657 
1658 error:
1659 	dst_release(dst_orig);
1660 	xfrm_pols_put(pols, npols);
1661 	*dst_p = NULL;
1662 	return err;
1663 }
1664 EXPORT_SYMBOL(__xfrm_lookup);
1665 
1666 int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl,
1667 		struct sock *sk, int flags)
1668 {
1669 	int err = __xfrm_lookup(dst_p, fl, sk, flags);
1670 
1671 	if (err == -EREMOTE) {
1672 		dst_release(*dst_p);
1673 		*dst_p = NULL;
1674 		err = -EAGAIN;
1675 	}
1676 
1677 	return err;
1678 }
1679 EXPORT_SYMBOL(xfrm_lookup);
1680 
1681 static inline int
1682 xfrm_secpath_reject(int idx, struct sk_buff *skb, struct flowi *fl)
1683 {
1684 	struct xfrm_state *x;
1685 	int err;
1686 
1687 	if (!skb->sp || idx < 0 || idx >= skb->sp->len)
1688 		return 0;
1689 	x = skb->sp->xvec[idx];
1690 	if (!x->type->reject)
1691 		return 0;
1692 	xfrm_state_hold(x);
1693 	err = x->type->reject(x, skb, fl);
1694 	xfrm_state_put(x);
1695 	return err;
1696 }
1697 
1698 /* When skb is transformed back to its "native" form, we have to
1699  * check policy restrictions. At the moment we make this in maximally
1700  * stupid way. Shame on me. :-) Of course, connected sockets must
1701  * have policy cached at them.
1702  */
1703 
1704 static inline int
1705 xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x,
1706 	      unsigned short family)
1707 {
1708 	if (xfrm_state_kern(x))
1709 		return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, tmpl->encap_family);
1710 	return	x->id.proto == tmpl->id.proto &&
1711 		(x->id.spi == tmpl->id.spi || !tmpl->id.spi) &&
1712 		(x->props.reqid == tmpl->reqid || !tmpl->reqid) &&
1713 		x->props.mode == tmpl->mode &&
1714 		((tmpl->aalgos & (1<<x->props.aalgo)) ||
1715 		 !(xfrm_id_proto_match(tmpl->id.proto, IPSEC_PROTO_ANY))) &&
1716 		!(x->props.mode != XFRM_MODE_TRANSPORT &&
1717 		  xfrm_state_addr_cmp(tmpl, x, family));
1718 }
1719 
1720 /*
1721  * 0 or more than 0 is returned when validation is succeeded (either bypass
1722  * because of optional transport mode, or next index of the mathced secpath
1723  * state with the template.
1724  * -1 is returned when no matching template is found.
1725  * Otherwise "-2 - errored_index" is returned.
1726  */
1727 static inline int
1728 xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start,
1729 	       unsigned short family)
1730 {
1731 	int idx = start;
1732 
1733 	if (tmpl->optional) {
1734 		if (tmpl->mode == XFRM_MODE_TRANSPORT)
1735 			return start;
1736 	} else
1737 		start = -1;
1738 	for (; idx < sp->len; idx++) {
1739 		if (xfrm_state_ok(tmpl, sp->xvec[idx], family))
1740 			return ++idx;
1741 		if (sp->xvec[idx]->props.mode != XFRM_MODE_TRANSPORT) {
1742 			if (start == -1)
1743 				start = -2-idx;
1744 			break;
1745 		}
1746 	}
1747 	return start;
1748 }
1749 
1750 int
1751 xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family)
1752 {
1753 	struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1754 	int err;
1755 
1756 	if (unlikely(afinfo == NULL))
1757 		return -EAFNOSUPPORT;
1758 
1759 	afinfo->decode_session(skb, fl);
1760 	err = security_xfrm_decode_session(skb, &fl->secid);
1761 	xfrm_policy_put_afinfo(afinfo);
1762 	return err;
1763 }
1764 EXPORT_SYMBOL(xfrm_decode_session);
1765 
1766 static inline int secpath_has_nontransport(struct sec_path *sp, int k, int *idxp)
1767 {
1768 	for (; k < sp->len; k++) {
1769 		if (sp->xvec[k]->props.mode != XFRM_MODE_TRANSPORT) {
1770 			*idxp = k;
1771 			return 1;
1772 		}
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb,
1779 			unsigned short family)
1780 {
1781 	struct xfrm_policy *pol;
1782 	struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX];
1783 	int npols = 0;
1784 	int xfrm_nr;
1785 	int pi;
1786 	struct flowi fl;
1787 	u8 fl_dir = policy_to_flow_dir(dir);
1788 	int xerr_idx = -1;
1789 
1790 	if (xfrm_decode_session(skb, &fl, family) < 0)
1791 		return 0;
1792 	nf_nat_decode_session(skb, &fl, family);
1793 
1794 	/* First, check used SA against their selectors. */
1795 	if (skb->sp) {
1796 		int i;
1797 
1798 		for (i=skb->sp->len-1; i>=0; i--) {
1799 			struct xfrm_state *x = skb->sp->xvec[i];
1800 			if (!xfrm_selector_match(&x->sel, &fl, family))
1801 				return 0;
1802 		}
1803 	}
1804 
1805 	pol = NULL;
1806 	if (sk && sk->sk_policy[dir]) {
1807 		pol = xfrm_sk_policy_lookup(sk, dir, &fl);
1808 		if (IS_ERR(pol))
1809 			return 0;
1810 	}
1811 
1812 	if (!pol)
1813 		pol = flow_cache_lookup(&fl, family, fl_dir,
1814 					xfrm_policy_lookup);
1815 
1816 	if (IS_ERR(pol))
1817 		return 0;
1818 
1819 	if (!pol) {
1820 		if (skb->sp && secpath_has_nontransport(skb->sp, 0, &xerr_idx)) {
1821 			xfrm_secpath_reject(xerr_idx, skb, &fl);
1822 			return 0;
1823 		}
1824 		return 1;
1825 	}
1826 
1827 	pol->curlft.use_time = get_seconds();
1828 
1829 	pols[0] = pol;
1830 	npols ++;
1831 #ifdef CONFIG_XFRM_SUB_POLICY
1832 	if (pols[0]->type != XFRM_POLICY_TYPE_MAIN) {
1833 		pols[1] = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN,
1834 						    &fl, family,
1835 						    XFRM_POLICY_IN);
1836 		if (pols[1]) {
1837 			if (IS_ERR(pols[1]))
1838 				return 0;
1839 			pols[1]->curlft.use_time = get_seconds();
1840 			npols ++;
1841 		}
1842 	}
1843 #endif
1844 
1845 	if (pol->action == XFRM_POLICY_ALLOW) {
1846 		struct sec_path *sp;
1847 		static struct sec_path dummy;
1848 		struct xfrm_tmpl *tp[XFRM_MAX_DEPTH];
1849 		struct xfrm_tmpl *stp[XFRM_MAX_DEPTH];
1850 		struct xfrm_tmpl **tpp = tp;
1851 		int ti = 0;
1852 		int i, k;
1853 
1854 		if ((sp = skb->sp) == NULL)
1855 			sp = &dummy;
1856 
1857 		for (pi = 0; pi < npols; pi++) {
1858 			if (pols[pi] != pol &&
1859 			    pols[pi]->action != XFRM_POLICY_ALLOW)
1860 				goto reject;
1861 			if (ti + pols[pi]->xfrm_nr >= XFRM_MAX_DEPTH)
1862 				goto reject_error;
1863 			for (i = 0; i < pols[pi]->xfrm_nr; i++)
1864 				tpp[ti++] = &pols[pi]->xfrm_vec[i];
1865 		}
1866 		xfrm_nr = ti;
1867 		if (npols > 1) {
1868 			xfrm_tmpl_sort(stp, tpp, xfrm_nr, family);
1869 			tpp = stp;
1870 		}
1871 
1872 		/* For each tunnel xfrm, find the first matching tmpl.
1873 		 * For each tmpl before that, find corresponding xfrm.
1874 		 * Order is _important_. Later we will implement
1875 		 * some barriers, but at the moment barriers
1876 		 * are implied between each two transformations.
1877 		 */
1878 		for (i = xfrm_nr-1, k = 0; i >= 0; i--) {
1879 			k = xfrm_policy_ok(tpp[i], sp, k, family);
1880 			if (k < 0) {
1881 				if (k < -1)
1882 					/* "-2 - errored_index" returned */
1883 					xerr_idx = -(2+k);
1884 				goto reject;
1885 			}
1886 		}
1887 
1888 		if (secpath_has_nontransport(sp, k, &xerr_idx))
1889 			goto reject;
1890 
1891 		xfrm_pols_put(pols, npols);
1892 		return 1;
1893 	}
1894 
1895 reject:
1896 	xfrm_secpath_reject(xerr_idx, skb, &fl);
1897 reject_error:
1898 	xfrm_pols_put(pols, npols);
1899 	return 0;
1900 }
1901 EXPORT_SYMBOL(__xfrm_policy_check);
1902 
1903 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family)
1904 {
1905 	struct flowi fl;
1906 
1907 	if (xfrm_decode_session(skb, &fl, family) < 0)
1908 		return 0;
1909 
1910 	return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0;
1911 }
1912 EXPORT_SYMBOL(__xfrm_route_forward);
1913 
1914 /* Optimize later using cookies and generation ids. */
1915 
1916 static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie)
1917 {
1918 	/* Code (such as __xfrm4_bundle_create()) sets dst->obsolete
1919 	 * to "-1" to force all XFRM destinations to get validated by
1920 	 * dst_ops->check on every use.  We do this because when a
1921 	 * normal route referenced by an XFRM dst is obsoleted we do
1922 	 * not go looking around for all parent referencing XFRM dsts
1923 	 * so that we can invalidate them.  It is just too much work.
1924 	 * Instead we make the checks here on every use.  For example:
1925 	 *
1926 	 *	XFRM dst A --> IPv4 dst X
1927 	 *
1928 	 * X is the "xdst->route" of A (X is also the "dst->path" of A
1929 	 * in this example).  If X is marked obsolete, "A" will not
1930 	 * notice.  That's what we are validating here via the
1931 	 * stale_bundle() check.
1932 	 *
1933 	 * When a policy's bundle is pruned, we dst_free() the XFRM
1934 	 * dst which causes it's ->obsolete field to be set to a
1935 	 * positive non-zero integer.  If an XFRM dst has been pruned
1936 	 * like this, we want to force a new route lookup.
1937 	 */
1938 	if (dst->obsolete < 0 && !stale_bundle(dst))
1939 		return dst;
1940 
1941 	return NULL;
1942 }
1943 
1944 static int stale_bundle(struct dst_entry *dst)
1945 {
1946 	return !xfrm_bundle_ok(NULL, (struct xfrm_dst *)dst, NULL, AF_UNSPEC, 0);
1947 }
1948 
1949 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev)
1950 {
1951 	while ((dst = dst->child) && dst->xfrm && dst->dev == dev) {
1952 		dst->dev = &loopback_dev;
1953 		dev_hold(&loopback_dev);
1954 		dev_put(dev);
1955 	}
1956 }
1957 EXPORT_SYMBOL(xfrm_dst_ifdown);
1958 
1959 static void xfrm_link_failure(struct sk_buff *skb)
1960 {
1961 	/* Impossible. Such dst must be popped before reaches point of failure. */
1962 	return;
1963 }
1964 
1965 static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst)
1966 {
1967 	if (dst) {
1968 		if (dst->obsolete) {
1969 			dst_release(dst);
1970 			dst = NULL;
1971 		}
1972 	}
1973 	return dst;
1974 }
1975 
1976 static void prune_one_bundle(struct xfrm_policy *pol, int (*func)(struct dst_entry *), struct dst_entry **gc_list_p)
1977 {
1978 	struct dst_entry *dst, **dstp;
1979 
1980 	write_lock(&pol->lock);
1981 	dstp = &pol->bundles;
1982 	while ((dst=*dstp) != NULL) {
1983 		if (func(dst)) {
1984 			*dstp = dst->next;
1985 			dst->next = *gc_list_p;
1986 			*gc_list_p = dst;
1987 		} else {
1988 			dstp = &dst->next;
1989 		}
1990 	}
1991 	write_unlock(&pol->lock);
1992 }
1993 
1994 static void xfrm_prune_bundles(int (*func)(struct dst_entry *))
1995 {
1996 	struct dst_entry *gc_list = NULL;
1997 	int dir;
1998 
1999 	read_lock_bh(&xfrm_policy_lock);
2000 	for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) {
2001 		struct xfrm_policy *pol;
2002 		struct hlist_node *entry;
2003 		struct hlist_head *table;
2004 		int i;
2005 
2006 		hlist_for_each_entry(pol, entry,
2007 				     &xfrm_policy_inexact[dir], bydst)
2008 			prune_one_bundle(pol, func, &gc_list);
2009 
2010 		table = xfrm_policy_bydst[dir].table;
2011 		for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) {
2012 			hlist_for_each_entry(pol, entry, table + i, bydst)
2013 				prune_one_bundle(pol, func, &gc_list);
2014 		}
2015 	}
2016 	read_unlock_bh(&xfrm_policy_lock);
2017 
2018 	while (gc_list) {
2019 		struct dst_entry *dst = gc_list;
2020 		gc_list = dst->next;
2021 		dst_free(dst);
2022 	}
2023 }
2024 
2025 static int unused_bundle(struct dst_entry *dst)
2026 {
2027 	return !atomic_read(&dst->__refcnt);
2028 }
2029 
2030 static void __xfrm_garbage_collect(void)
2031 {
2032 	xfrm_prune_bundles(unused_bundle);
2033 }
2034 
2035 static int xfrm_flush_bundles(void)
2036 {
2037 	xfrm_prune_bundles(stale_bundle);
2038 	return 0;
2039 }
2040 
2041 void xfrm_init_pmtu(struct dst_entry *dst)
2042 {
2043 	do {
2044 		struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
2045 		u32 pmtu, route_mtu_cached;
2046 
2047 		pmtu = dst_mtu(dst->child);
2048 		xdst->child_mtu_cached = pmtu;
2049 
2050 		pmtu = xfrm_state_mtu(dst->xfrm, pmtu);
2051 
2052 		route_mtu_cached = dst_mtu(xdst->route);
2053 		xdst->route_mtu_cached = route_mtu_cached;
2054 
2055 		if (pmtu > route_mtu_cached)
2056 			pmtu = route_mtu_cached;
2057 
2058 		dst->metrics[RTAX_MTU-1] = pmtu;
2059 	} while ((dst = dst->next));
2060 }
2061 
2062 EXPORT_SYMBOL(xfrm_init_pmtu);
2063 
2064 /* Check that the bundle accepts the flow and its components are
2065  * still valid.
2066  */
2067 
2068 int xfrm_bundle_ok(struct xfrm_policy *pol, struct xfrm_dst *first,
2069 		struct flowi *fl, int family, int strict)
2070 {
2071 	struct dst_entry *dst = &first->u.dst;
2072 	struct xfrm_dst *last;
2073 	u32 mtu;
2074 
2075 	if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) ||
2076 	    (dst->dev && !netif_running(dst->dev)))
2077 		return 0;
2078 #ifdef CONFIG_XFRM_SUB_POLICY
2079 	if (fl) {
2080 		if (first->origin && !flow_cache_uli_match(first->origin, fl))
2081 			return 0;
2082 		if (first->partner &&
2083 		    !xfrm_selector_match(first->partner, fl, family))
2084 			return 0;
2085 	}
2086 #endif
2087 
2088 	last = NULL;
2089 
2090 	do {
2091 		struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
2092 
2093 		if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family))
2094 			return 0;
2095 		if (fl && pol &&
2096 		    !security_xfrm_state_pol_flow_match(dst->xfrm, pol, fl))
2097 			return 0;
2098 		if (dst->xfrm->km.state != XFRM_STATE_VALID)
2099 			return 0;
2100 		if (xdst->genid != dst->xfrm->genid)
2101 			return 0;
2102 
2103 		if (strict && fl && dst->xfrm->props.mode != XFRM_MODE_TUNNEL &&
2104 		    !xfrm_state_addr_flow_check(dst->xfrm, fl, family))
2105 			return 0;
2106 
2107 		mtu = dst_mtu(dst->child);
2108 		if (xdst->child_mtu_cached != mtu) {
2109 			last = xdst;
2110 			xdst->child_mtu_cached = mtu;
2111 		}
2112 
2113 		if (!dst_check(xdst->route, xdst->route_cookie))
2114 			return 0;
2115 		mtu = dst_mtu(xdst->route);
2116 		if (xdst->route_mtu_cached != mtu) {
2117 			last = xdst;
2118 			xdst->route_mtu_cached = mtu;
2119 		}
2120 
2121 		dst = dst->child;
2122 	} while (dst->xfrm);
2123 
2124 	if (likely(!last))
2125 		return 1;
2126 
2127 	mtu = last->child_mtu_cached;
2128 	for (;;) {
2129 		dst = &last->u.dst;
2130 
2131 		mtu = xfrm_state_mtu(dst->xfrm, mtu);
2132 		if (mtu > last->route_mtu_cached)
2133 			mtu = last->route_mtu_cached;
2134 		dst->metrics[RTAX_MTU-1] = mtu;
2135 
2136 		if (last == first)
2137 			break;
2138 
2139 		last = (struct xfrm_dst *)last->u.dst.next;
2140 		last->child_mtu_cached = mtu;
2141 	}
2142 
2143 	return 1;
2144 }
2145 
2146 EXPORT_SYMBOL(xfrm_bundle_ok);
2147 
2148 int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo)
2149 {
2150 	int err = 0;
2151 	if (unlikely(afinfo == NULL))
2152 		return -EINVAL;
2153 	if (unlikely(afinfo->family >= NPROTO))
2154 		return -EAFNOSUPPORT;
2155 	write_lock_bh(&xfrm_policy_afinfo_lock);
2156 	if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL))
2157 		err = -ENOBUFS;
2158 	else {
2159 		struct dst_ops *dst_ops = afinfo->dst_ops;
2160 		if (likely(dst_ops->kmem_cachep == NULL))
2161 			dst_ops->kmem_cachep = xfrm_dst_cache;
2162 		if (likely(dst_ops->check == NULL))
2163 			dst_ops->check = xfrm_dst_check;
2164 		if (likely(dst_ops->negative_advice == NULL))
2165 			dst_ops->negative_advice = xfrm_negative_advice;
2166 		if (likely(dst_ops->link_failure == NULL))
2167 			dst_ops->link_failure = xfrm_link_failure;
2168 		if (likely(afinfo->garbage_collect == NULL))
2169 			afinfo->garbage_collect = __xfrm_garbage_collect;
2170 		xfrm_policy_afinfo[afinfo->family] = afinfo;
2171 	}
2172 	write_unlock_bh(&xfrm_policy_afinfo_lock);
2173 	return err;
2174 }
2175 EXPORT_SYMBOL(xfrm_policy_register_afinfo);
2176 
2177 int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo)
2178 {
2179 	int err = 0;
2180 	if (unlikely(afinfo == NULL))
2181 		return -EINVAL;
2182 	if (unlikely(afinfo->family >= NPROTO))
2183 		return -EAFNOSUPPORT;
2184 	write_lock_bh(&xfrm_policy_afinfo_lock);
2185 	if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) {
2186 		if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo))
2187 			err = -EINVAL;
2188 		else {
2189 			struct dst_ops *dst_ops = afinfo->dst_ops;
2190 			xfrm_policy_afinfo[afinfo->family] = NULL;
2191 			dst_ops->kmem_cachep = NULL;
2192 			dst_ops->check = NULL;
2193 			dst_ops->negative_advice = NULL;
2194 			dst_ops->link_failure = NULL;
2195 			afinfo->garbage_collect = NULL;
2196 		}
2197 	}
2198 	write_unlock_bh(&xfrm_policy_afinfo_lock);
2199 	return err;
2200 }
2201 EXPORT_SYMBOL(xfrm_policy_unregister_afinfo);
2202 
2203 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family)
2204 {
2205 	struct xfrm_policy_afinfo *afinfo;
2206 	if (unlikely(family >= NPROTO))
2207 		return NULL;
2208 	read_lock(&xfrm_policy_afinfo_lock);
2209 	afinfo = xfrm_policy_afinfo[family];
2210 	if (unlikely(!afinfo))
2211 		read_unlock(&xfrm_policy_afinfo_lock);
2212 	return afinfo;
2213 }
2214 
2215 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo)
2216 {
2217 	read_unlock(&xfrm_policy_afinfo_lock);
2218 }
2219 
2220 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family)
2221 {
2222 	struct xfrm_policy_afinfo *afinfo;
2223 	if (unlikely(family >= NPROTO))
2224 		return NULL;
2225 	write_lock_bh(&xfrm_policy_afinfo_lock);
2226 	afinfo = xfrm_policy_afinfo[family];
2227 	if (unlikely(!afinfo))
2228 		write_unlock_bh(&xfrm_policy_afinfo_lock);
2229 	return afinfo;
2230 }
2231 
2232 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo)
2233 {
2234 	write_unlock_bh(&xfrm_policy_afinfo_lock);
2235 }
2236 
2237 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
2238 {
2239 	switch (event) {
2240 	case NETDEV_DOWN:
2241 		xfrm_flush_bundles();
2242 	}
2243 	return NOTIFY_DONE;
2244 }
2245 
2246 static struct notifier_block xfrm_dev_notifier = {
2247 	xfrm_dev_event,
2248 	NULL,
2249 	0
2250 };
2251 
2252 static void __init xfrm_policy_init(void)
2253 {
2254 	unsigned int hmask, sz;
2255 	int dir;
2256 
2257 	xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache",
2258 					   sizeof(struct xfrm_dst),
2259 					   0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2260 					   NULL);
2261 
2262 	hmask = 8 - 1;
2263 	sz = (hmask+1) * sizeof(struct hlist_head);
2264 
2265 	xfrm_policy_byidx = xfrm_hash_alloc(sz);
2266 	xfrm_idx_hmask = hmask;
2267 	if (!xfrm_policy_byidx)
2268 		panic("XFRM: failed to allocate byidx hash\n");
2269 
2270 	for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) {
2271 		struct xfrm_policy_hash *htab;
2272 
2273 		INIT_HLIST_HEAD(&xfrm_policy_inexact[dir]);
2274 
2275 		htab = &xfrm_policy_bydst[dir];
2276 		htab->table = xfrm_hash_alloc(sz);
2277 		htab->hmask = hmask;
2278 		if (!htab->table)
2279 			panic("XFRM: failed to allocate bydst hash\n");
2280 	}
2281 
2282 	INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task);
2283 	register_netdevice_notifier(&xfrm_dev_notifier);
2284 }
2285 
2286 void __init xfrm_init(void)
2287 {
2288 	xfrm_state_init();
2289 	xfrm_policy_init();
2290 	xfrm_input_init();
2291 }
2292 
2293 #ifdef CONFIG_AUDITSYSCALL
2294 static inline void xfrm_audit_common_policyinfo(struct xfrm_policy *xp,
2295 						struct audit_buffer *audit_buf)
2296 {
2297 	if (xp->security)
2298 		audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
2299 				 xp->security->ctx_alg, xp->security->ctx_doi,
2300 				 xp->security->ctx_str);
2301 
2302 	switch(xp->selector.family) {
2303 	case AF_INET:
2304 		audit_log_format(audit_buf, " src=%u.%u.%u.%u dst=%u.%u.%u.%u",
2305 				 NIPQUAD(xp->selector.saddr.a4),
2306 				 NIPQUAD(xp->selector.daddr.a4));
2307 		break;
2308 	case AF_INET6:
2309 		{
2310 			struct in6_addr saddr6, daddr6;
2311 
2312 			memcpy(&saddr6, xp->selector.saddr.a6,
2313 				sizeof(struct in6_addr));
2314 			memcpy(&daddr6, xp->selector.daddr.a6,
2315 				sizeof(struct in6_addr));
2316 			audit_log_format(audit_buf,
2317 				" src=" NIP6_FMT " dst=" NIP6_FMT,
2318 				NIP6(saddr6), NIP6(daddr6));
2319 		}
2320 		break;
2321 	}
2322 }
2323 
2324 void
2325 xfrm_audit_policy_add(struct xfrm_policy *xp, int result, u32 auid, u32 sid)
2326 {
2327 	struct audit_buffer *audit_buf;
2328 	extern int audit_enabled;
2329 
2330 	if (audit_enabled == 0)
2331 		return;
2332 	audit_buf = xfrm_audit_start(sid, auid);
2333 	if (audit_buf == NULL)
2334 		return;
2335 	audit_log_format(audit_buf, " op=SPD-add res=%u", result);
2336 	xfrm_audit_common_policyinfo(xp, audit_buf);
2337 	audit_log_end(audit_buf);
2338 }
2339 EXPORT_SYMBOL_GPL(xfrm_audit_policy_add);
2340 
2341 void
2342 xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, u32 auid, u32 sid)
2343 {
2344 	struct audit_buffer *audit_buf;
2345 	extern int audit_enabled;
2346 
2347 	if (audit_enabled == 0)
2348 		return;
2349 	audit_buf = xfrm_audit_start(sid, auid);
2350 	if (audit_buf == NULL)
2351 		return;
2352 	audit_log_format(audit_buf, " op=SPD-delete res=%u", result);
2353 	xfrm_audit_common_policyinfo(xp, audit_buf);
2354 	audit_log_end(audit_buf);
2355 }
2356 EXPORT_SYMBOL_GPL(xfrm_audit_policy_delete);
2357 #endif
2358 
2359 #ifdef CONFIG_XFRM_MIGRATE
2360 static int xfrm_migrate_selector_match(struct xfrm_selector *sel_cmp,
2361 				       struct xfrm_selector *sel_tgt)
2362 {
2363 	if (sel_cmp->proto == IPSEC_ULPROTO_ANY) {
2364 		if (sel_tgt->family == sel_cmp->family &&
2365 		    xfrm_addr_cmp(&sel_tgt->daddr, &sel_cmp->daddr,
2366 				  sel_cmp->family) == 0 &&
2367 		    xfrm_addr_cmp(&sel_tgt->saddr, &sel_cmp->saddr,
2368 				  sel_cmp->family) == 0 &&
2369 		    sel_tgt->prefixlen_d == sel_cmp->prefixlen_d &&
2370 		    sel_tgt->prefixlen_s == sel_cmp->prefixlen_s) {
2371 			return 1;
2372 		}
2373 	} else {
2374 		if (memcmp(sel_tgt, sel_cmp, sizeof(*sel_tgt)) == 0) {
2375 			return 1;
2376 		}
2377 	}
2378 	return 0;
2379 }
2380 
2381 static struct xfrm_policy * xfrm_migrate_policy_find(struct xfrm_selector *sel,
2382 						     u8 dir, u8 type)
2383 {
2384 	struct xfrm_policy *pol, *ret = NULL;
2385 	struct hlist_node *entry;
2386 	struct hlist_head *chain;
2387 	u32 priority = ~0U;
2388 
2389 	read_lock_bh(&xfrm_policy_lock);
2390 	chain = policy_hash_direct(&sel->daddr, &sel->saddr, sel->family, dir);
2391 	hlist_for_each_entry(pol, entry, chain, bydst) {
2392 		if (xfrm_migrate_selector_match(sel, &pol->selector) &&
2393 		    pol->type == type) {
2394 			ret = pol;
2395 			priority = ret->priority;
2396 			break;
2397 		}
2398 	}
2399 	chain = &xfrm_policy_inexact[dir];
2400 	hlist_for_each_entry(pol, entry, chain, bydst) {
2401 		if (xfrm_migrate_selector_match(sel, &pol->selector) &&
2402 		    pol->type == type &&
2403 		    pol->priority < priority) {
2404 			ret = pol;
2405 			break;
2406 		}
2407 	}
2408 
2409 	if (ret)
2410 		xfrm_pol_hold(ret);
2411 
2412 	read_unlock_bh(&xfrm_policy_lock);
2413 
2414 	return ret;
2415 }
2416 
2417 static int migrate_tmpl_match(struct xfrm_migrate *m, struct xfrm_tmpl *t)
2418 {
2419 	int match = 0;
2420 
2421 	if (t->mode == m->mode && t->id.proto == m->proto &&
2422 	    (m->reqid == 0 || t->reqid == m->reqid)) {
2423 		switch (t->mode) {
2424 		case XFRM_MODE_TUNNEL:
2425 		case XFRM_MODE_BEET:
2426 			if (xfrm_addr_cmp(&t->id.daddr, &m->old_daddr,
2427 					  m->old_family) == 0 &&
2428 			    xfrm_addr_cmp(&t->saddr, &m->old_saddr,
2429 					  m->old_family) == 0) {
2430 				match = 1;
2431 			}
2432 			break;
2433 		case XFRM_MODE_TRANSPORT:
2434 			/* in case of transport mode, template does not store
2435 			   any IP addresses, hence we just compare mode and
2436 			   protocol */
2437 			match = 1;
2438 			break;
2439 		default:
2440 			break;
2441 		}
2442 	}
2443 	return match;
2444 }
2445 
2446 /* update endpoint address(es) of template(s) */
2447 static int xfrm_policy_migrate(struct xfrm_policy *pol,
2448 			       struct xfrm_migrate *m, int num_migrate)
2449 {
2450 	struct xfrm_migrate *mp;
2451 	struct dst_entry *dst;
2452 	int i, j, n = 0;
2453 
2454 	write_lock_bh(&pol->lock);
2455 	if (unlikely(pol->dead)) {
2456 		/* target policy has been deleted */
2457 		write_unlock_bh(&pol->lock);
2458 		return -ENOENT;
2459 	}
2460 
2461 	for (i = 0; i < pol->xfrm_nr; i++) {
2462 		for (j = 0, mp = m; j < num_migrate; j++, mp++) {
2463 			if (!migrate_tmpl_match(mp, &pol->xfrm_vec[i]))
2464 				continue;
2465 			n++;
2466 			if (pol->xfrm_vec[i].mode != XFRM_MODE_TUNNEL)
2467 				continue;
2468 			/* update endpoints */
2469 			memcpy(&pol->xfrm_vec[i].id.daddr, &mp->new_daddr,
2470 			       sizeof(pol->xfrm_vec[i].id.daddr));
2471 			memcpy(&pol->xfrm_vec[i].saddr, &mp->new_saddr,
2472 			       sizeof(pol->xfrm_vec[i].saddr));
2473 			pol->xfrm_vec[i].encap_family = mp->new_family;
2474 			/* flush bundles */
2475 			while ((dst = pol->bundles) != NULL) {
2476 				pol->bundles = dst->next;
2477 				dst_free(dst);
2478 			}
2479 		}
2480 	}
2481 
2482 	write_unlock_bh(&pol->lock);
2483 
2484 	if (!n)
2485 		return -ENODATA;
2486 
2487 	return 0;
2488 }
2489 
2490 static int xfrm_migrate_check(struct xfrm_migrate *m, int num_migrate)
2491 {
2492 	int i, j;
2493 
2494 	if (num_migrate < 1 || num_migrate > XFRM_MAX_DEPTH)
2495 		return -EINVAL;
2496 
2497 	for (i = 0; i < num_migrate; i++) {
2498 		if ((xfrm_addr_cmp(&m[i].old_daddr, &m[i].new_daddr,
2499 				   m[i].old_family) == 0) &&
2500 		    (xfrm_addr_cmp(&m[i].old_saddr, &m[i].new_saddr,
2501 				   m[i].old_family) == 0))
2502 			return -EINVAL;
2503 		if (xfrm_addr_any(&m[i].new_daddr, m[i].new_family) ||
2504 		    xfrm_addr_any(&m[i].new_saddr, m[i].new_family))
2505 			return -EINVAL;
2506 
2507 		/* check if there is any duplicated entry */
2508 		for (j = i + 1; j < num_migrate; j++) {
2509 			if (!memcmp(&m[i].old_daddr, &m[j].old_daddr,
2510 				    sizeof(m[i].old_daddr)) &&
2511 			    !memcmp(&m[i].old_saddr, &m[j].old_saddr,
2512 				    sizeof(m[i].old_saddr)) &&
2513 			    m[i].proto == m[j].proto &&
2514 			    m[i].mode == m[j].mode &&
2515 			    m[i].reqid == m[j].reqid &&
2516 			    m[i].old_family == m[j].old_family)
2517 				return -EINVAL;
2518 		}
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 int xfrm_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
2525 		 struct xfrm_migrate *m, int num_migrate)
2526 {
2527 	int i, err, nx_cur = 0, nx_new = 0;
2528 	struct xfrm_policy *pol = NULL;
2529 	struct xfrm_state *x, *xc;
2530 	struct xfrm_state *x_cur[XFRM_MAX_DEPTH];
2531 	struct xfrm_state *x_new[XFRM_MAX_DEPTH];
2532 	struct xfrm_migrate *mp;
2533 
2534 	if ((err = xfrm_migrate_check(m, num_migrate)) < 0)
2535 		goto out;
2536 
2537 	/* Stage 1 - find policy */
2538 	if ((pol = xfrm_migrate_policy_find(sel, dir, type)) == NULL) {
2539 		err = -ENOENT;
2540 		goto out;
2541 	}
2542 
2543 	/* Stage 2 - find and update state(s) */
2544 	for (i = 0, mp = m; i < num_migrate; i++, mp++) {
2545 		if ((x = xfrm_migrate_state_find(mp))) {
2546 			x_cur[nx_cur] = x;
2547 			nx_cur++;
2548 			if ((xc = xfrm_state_migrate(x, mp))) {
2549 				x_new[nx_new] = xc;
2550 				nx_new++;
2551 			} else {
2552 				err = -ENODATA;
2553 				goto restore_state;
2554 			}
2555 		}
2556 	}
2557 
2558 	/* Stage 3 - update policy */
2559 	if ((err = xfrm_policy_migrate(pol, m, num_migrate)) < 0)
2560 		goto restore_state;
2561 
2562 	/* Stage 4 - delete old state(s) */
2563 	if (nx_cur) {
2564 		xfrm_states_put(x_cur, nx_cur);
2565 		xfrm_states_delete(x_cur, nx_cur);
2566 	}
2567 
2568 	/* Stage 5 - announce */
2569 	km_migrate(sel, dir, type, m, num_migrate);
2570 
2571 	xfrm_pol_put(pol);
2572 
2573 	return 0;
2574 out:
2575 	return err;
2576 
2577 restore_state:
2578 	if (pol)
2579 		xfrm_pol_put(pol);
2580 	if (nx_cur)
2581 		xfrm_states_put(x_cur, nx_cur);
2582 	if (nx_new)
2583 		xfrm_states_delete(x_new, nx_new);
2584 
2585 	return err;
2586 }
2587 EXPORT_SYMBOL(xfrm_migrate);
2588 #endif
2589