1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* XDP user-space ring structure 3 * Copyright(c) 2018 Intel Corporation. 4 */ 5 6 #ifndef _LINUX_XSK_QUEUE_H 7 #define _LINUX_XSK_QUEUE_H 8 9 #include <linux/types.h> 10 #include <linux/if_xdp.h> 11 #include <net/xdp_sock.h> 12 #include <net/xsk_buff_pool.h> 13 14 #include "xsk.h" 15 16 struct xdp_ring { 17 u32 producer ____cacheline_aligned_in_smp; 18 /* Hinder the adjacent cache prefetcher to prefetch the consumer 19 * pointer if the producer pointer is touched and vice versa. 20 */ 21 u32 pad1 ____cacheline_aligned_in_smp; 22 u32 consumer ____cacheline_aligned_in_smp; 23 u32 pad2 ____cacheline_aligned_in_smp; 24 u32 flags; 25 u32 pad3 ____cacheline_aligned_in_smp; 26 }; 27 28 /* Used for the RX and TX queues for packets */ 29 struct xdp_rxtx_ring { 30 struct xdp_ring ptrs; 31 struct xdp_desc desc[] ____cacheline_aligned_in_smp; 32 }; 33 34 /* Used for the fill and completion queues for buffers */ 35 struct xdp_umem_ring { 36 struct xdp_ring ptrs; 37 u64 desc[] ____cacheline_aligned_in_smp; 38 }; 39 40 struct xsk_queue { 41 u32 ring_mask; 42 u32 nentries; 43 u32 cached_prod; 44 u32 cached_cons; 45 struct xdp_ring *ring; 46 u64 invalid_descs; 47 u64 queue_empty_descs; 48 size_t ring_vmalloc_size; 49 }; 50 51 /* The structure of the shared state of the rings are a simple 52 * circular buffer, as outlined in 53 * Documentation/core-api/circular-buffers.rst. For the Rx and 54 * completion ring, the kernel is the producer and user space is the 55 * consumer. For the Tx and fill rings, the kernel is the consumer and 56 * user space is the producer. 57 * 58 * producer consumer 59 * 60 * if (LOAD ->consumer) { (A) LOAD.acq ->producer (C) 61 * STORE $data LOAD $data 62 * STORE.rel ->producer (B) STORE.rel ->consumer (D) 63 * } 64 * 65 * (A) pairs with (D), and (B) pairs with (C). 66 * 67 * Starting with (B), it protects the data from being written after 68 * the producer pointer. If this barrier was missing, the consumer 69 * could observe the producer pointer being set and thus load the data 70 * before the producer has written the new data. The consumer would in 71 * this case load the old data. 72 * 73 * (C) protects the consumer from speculatively loading the data before 74 * the producer pointer actually has been read. If we do not have this 75 * barrier, some architectures could load old data as speculative loads 76 * are not discarded as the CPU does not know there is a dependency 77 * between ->producer and data. 78 * 79 * (A) is a control dependency that separates the load of ->consumer 80 * from the stores of $data. In case ->consumer indicates there is no 81 * room in the buffer to store $data we do not. The dependency will 82 * order both of the stores after the loads. So no barrier is needed. 83 * 84 * (D) protects the load of the data to be observed to happen after the 85 * store of the consumer pointer. If we did not have this memory 86 * barrier, the producer could observe the consumer pointer being set 87 * and overwrite the data with a new value before the consumer got the 88 * chance to read the old value. The consumer would thus miss reading 89 * the old entry and very likely read the new entry twice, once right 90 * now and again after circling through the ring. 91 */ 92 93 /* The operations on the rings are the following: 94 * 95 * producer consumer 96 * 97 * RESERVE entries PEEK in the ring for entries 98 * WRITE data into the ring READ data from the ring 99 * SUBMIT entries RELEASE entries 100 * 101 * The producer reserves one or more entries in the ring. It can then 102 * fill in these entries and finally submit them so that they can be 103 * seen and read by the consumer. 104 * 105 * The consumer peeks into the ring to see if the producer has written 106 * any new entries. If so, the consumer can then read these entries 107 * and when it is done reading them release them back to the producer 108 * so that the producer can use these slots to fill in new entries. 109 * 110 * The function names below reflect these operations. 111 */ 112 113 /* Functions that read and validate content from consumer rings. */ 114 115 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr) 116 { 117 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 118 u32 idx = cached_cons & q->ring_mask; 119 120 *addr = ring->desc[idx]; 121 } 122 123 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr) 124 { 125 if (q->cached_cons != q->cached_prod) { 126 __xskq_cons_read_addr_unchecked(q, q->cached_cons, addr); 127 return true; 128 } 129 130 return false; 131 } 132 133 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool, 134 struct xdp_desc *desc) 135 { 136 u64 chunk, chunk_end; 137 138 chunk = xp_aligned_extract_addr(pool, desc->addr); 139 if (likely(desc->len)) { 140 chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1); 141 if (chunk != chunk_end) 142 return false; 143 } 144 145 if (chunk >= pool->addrs_cnt) 146 return false; 147 148 if (desc->options) 149 return false; 150 return true; 151 } 152 153 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool, 154 struct xdp_desc *desc) 155 { 156 u64 addr, base_addr; 157 158 base_addr = xp_unaligned_extract_addr(desc->addr); 159 addr = xp_unaligned_add_offset_to_addr(desc->addr); 160 161 if (desc->len > pool->chunk_size) 162 return false; 163 164 if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt || 165 addr + desc->len > pool->addrs_cnt || 166 xp_desc_crosses_non_contig_pg(pool, addr, desc->len)) 167 return false; 168 169 if (desc->options) 170 return false; 171 return true; 172 } 173 174 static inline bool xp_validate_desc(struct xsk_buff_pool *pool, 175 struct xdp_desc *desc) 176 { 177 return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) : 178 xp_aligned_validate_desc(pool, desc); 179 } 180 181 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q, 182 struct xdp_desc *d, 183 struct xsk_buff_pool *pool) 184 { 185 if (!xp_validate_desc(pool, d)) { 186 q->invalid_descs++; 187 return false; 188 } 189 return true; 190 } 191 192 static inline bool xskq_cons_read_desc(struct xsk_queue *q, 193 struct xdp_desc *desc, 194 struct xsk_buff_pool *pool) 195 { 196 while (q->cached_cons != q->cached_prod) { 197 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 198 u32 idx = q->cached_cons & q->ring_mask; 199 200 *desc = ring->desc[idx]; 201 if (xskq_cons_is_valid_desc(q, desc, pool)) 202 return true; 203 204 q->cached_cons++; 205 } 206 207 return false; 208 } 209 210 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt) 211 { 212 q->cached_cons += cnt; 213 } 214 215 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool, 216 u32 max) 217 { 218 u32 cached_cons = q->cached_cons, nb_entries = 0; 219 struct xdp_desc *descs = pool->tx_descs; 220 221 while (cached_cons != q->cached_prod && nb_entries < max) { 222 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 223 u32 idx = cached_cons & q->ring_mask; 224 225 descs[nb_entries] = ring->desc[idx]; 226 if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) { 227 /* Skip the entry */ 228 cached_cons++; 229 continue; 230 } 231 232 nb_entries++; 233 cached_cons++; 234 } 235 236 /* Release valid plus any invalid entries */ 237 xskq_cons_release_n(q, cached_cons - q->cached_cons); 238 return nb_entries; 239 } 240 241 /* Functions for consumers */ 242 243 static inline void __xskq_cons_release(struct xsk_queue *q) 244 { 245 smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */ 246 } 247 248 static inline void __xskq_cons_peek(struct xsk_queue *q) 249 { 250 /* Refresh the local pointer */ 251 q->cached_prod = smp_load_acquire(&q->ring->producer); /* C, matches B */ 252 } 253 254 static inline void xskq_cons_get_entries(struct xsk_queue *q) 255 { 256 __xskq_cons_release(q); 257 __xskq_cons_peek(q); 258 } 259 260 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max) 261 { 262 u32 entries = q->cached_prod - q->cached_cons; 263 264 if (entries >= max) 265 return max; 266 267 __xskq_cons_peek(q); 268 entries = q->cached_prod - q->cached_cons; 269 270 return entries >= max ? max : entries; 271 } 272 273 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt) 274 { 275 return xskq_cons_nb_entries(q, cnt) >= cnt; 276 } 277 278 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr) 279 { 280 if (q->cached_prod == q->cached_cons) 281 xskq_cons_get_entries(q); 282 return xskq_cons_read_addr_unchecked(q, addr); 283 } 284 285 static inline bool xskq_cons_peek_desc(struct xsk_queue *q, 286 struct xdp_desc *desc, 287 struct xsk_buff_pool *pool) 288 { 289 if (q->cached_prod == q->cached_cons) 290 xskq_cons_get_entries(q); 291 return xskq_cons_read_desc(q, desc, pool); 292 } 293 294 /* To improve performance in the xskq_cons_release functions, only update local state here. 295 * Reflect this to global state when we get new entries from the ring in 296 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop. 297 */ 298 static inline void xskq_cons_release(struct xsk_queue *q) 299 { 300 q->cached_cons++; 301 } 302 303 static inline u32 xskq_cons_present_entries(struct xsk_queue *q) 304 { 305 /* No barriers needed since data is not accessed */ 306 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer); 307 } 308 309 /* Functions for producers */ 310 311 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max) 312 { 313 u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 314 315 if (free_entries >= max) 316 return max; 317 318 /* Refresh the local tail pointer */ 319 q->cached_cons = READ_ONCE(q->ring->consumer); 320 free_entries = q->nentries - (q->cached_prod - q->cached_cons); 321 322 return free_entries >= max ? max : free_entries; 323 } 324 325 static inline bool xskq_prod_is_full(struct xsk_queue *q) 326 { 327 return xskq_prod_nb_free(q, 1) ? false : true; 328 } 329 330 static inline void xskq_prod_cancel(struct xsk_queue *q) 331 { 332 q->cached_prod--; 333 } 334 335 static inline int xskq_prod_reserve(struct xsk_queue *q) 336 { 337 if (xskq_prod_is_full(q)) 338 return -ENOSPC; 339 340 /* A, matches D */ 341 q->cached_prod++; 342 return 0; 343 } 344 345 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr) 346 { 347 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 348 349 if (xskq_prod_is_full(q)) 350 return -ENOSPC; 351 352 /* A, matches D */ 353 ring->desc[q->cached_prod++ & q->ring_mask] = addr; 354 return 0; 355 } 356 357 static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs, 358 u32 nb_entries) 359 { 360 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 361 u32 i, cached_prod; 362 363 /* A, matches D */ 364 cached_prod = q->cached_prod; 365 for (i = 0; i < nb_entries; i++) 366 ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr; 367 q->cached_prod = cached_prod; 368 } 369 370 static inline int xskq_prod_reserve_desc(struct xsk_queue *q, 371 u64 addr, u32 len) 372 { 373 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring; 374 u32 idx; 375 376 if (xskq_prod_is_full(q)) 377 return -ENOBUFS; 378 379 /* A, matches D */ 380 idx = q->cached_prod++ & q->ring_mask; 381 ring->desc[idx].addr = addr; 382 ring->desc[idx].len = len; 383 384 return 0; 385 } 386 387 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx) 388 { 389 smp_store_release(&q->ring->producer, idx); /* B, matches C */ 390 } 391 392 static inline void xskq_prod_submit(struct xsk_queue *q) 393 { 394 __xskq_prod_submit(q, q->cached_prod); 395 } 396 397 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr) 398 { 399 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring; 400 u32 idx = q->ring->producer; 401 402 ring->desc[idx++ & q->ring_mask] = addr; 403 404 __xskq_prod_submit(q, idx); 405 } 406 407 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries) 408 { 409 __xskq_prod_submit(q, q->ring->producer + nb_entries); 410 } 411 412 static inline bool xskq_prod_is_empty(struct xsk_queue *q) 413 { 414 /* No barriers needed since data is not accessed */ 415 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer); 416 } 417 418 /* For both producers and consumers */ 419 420 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q) 421 { 422 return q ? q->invalid_descs : 0; 423 } 424 425 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q) 426 { 427 return q ? q->queue_empty_descs : 0; 428 } 429 430 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue); 431 void xskq_destroy(struct xsk_queue *q_ops); 432 433 #endif /* _LINUX_XSK_QUEUE_H */ 434