xref: /openbmc/linux/net/xdp/xsk_queue.h (revision a5f1da6601a0b0b0ee747bd91225bda5aad2e3af)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13 
14 #include "xsk.h"
15 
16 struct xdp_ring {
17 	u32 producer ____cacheline_aligned_in_smp;
18 	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19 	 * pointer if the producer pointer is touched and vice versa.
20 	 */
21 	u32 pad1 ____cacheline_aligned_in_smp;
22 	u32 consumer ____cacheline_aligned_in_smp;
23 	u32 pad2 ____cacheline_aligned_in_smp;
24 	u32 flags;
25 	u32 pad3 ____cacheline_aligned_in_smp;
26 };
27 
28 /* Used for the RX and TX queues for packets */
29 struct xdp_rxtx_ring {
30 	struct xdp_ring ptrs;
31 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
32 };
33 
34 /* Used for the fill and completion queues for buffers */
35 struct xdp_umem_ring {
36 	struct xdp_ring ptrs;
37 	u64 desc[] ____cacheline_aligned_in_smp;
38 };
39 
40 struct xsk_queue {
41 	u32 ring_mask;
42 	u32 nentries;
43 	u32 cached_prod;
44 	u32 cached_cons;
45 	struct xdp_ring *ring;
46 	u64 invalid_descs;
47 	u64 queue_empty_descs;
48 	size_t ring_vmalloc_size;
49 };
50 
51 /* The structure of the shared state of the rings are a simple
52  * circular buffer, as outlined in
53  * Documentation/core-api/circular-buffers.rst. For the Rx and
54  * completion ring, the kernel is the producer and user space is the
55  * consumer. For the Tx and fill rings, the kernel is the consumer and
56  * user space is the producer.
57  *
58  * producer                         consumer
59  *
60  * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
61  *    STORE $data                   LOAD $data
62  *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
63  * }
64  *
65  * (A) pairs with (D), and (B) pairs with (C).
66  *
67  * Starting with (B), it protects the data from being written after
68  * the producer pointer. If this barrier was missing, the consumer
69  * could observe the producer pointer being set and thus load the data
70  * before the producer has written the new data. The consumer would in
71  * this case load the old data.
72  *
73  * (C) protects the consumer from speculatively loading the data before
74  * the producer pointer actually has been read. If we do not have this
75  * barrier, some architectures could load old data as speculative loads
76  * are not discarded as the CPU does not know there is a dependency
77  * between ->producer and data.
78  *
79  * (A) is a control dependency that separates the load of ->consumer
80  * from the stores of $data. In case ->consumer indicates there is no
81  * room in the buffer to store $data we do not. The dependency will
82  * order both of the stores after the loads. So no barrier is needed.
83  *
84  * (D) protects the load of the data to be observed to happen after the
85  * store of the consumer pointer. If we did not have this memory
86  * barrier, the producer could observe the consumer pointer being set
87  * and overwrite the data with a new value before the consumer got the
88  * chance to read the old value. The consumer would thus miss reading
89  * the old entry and very likely read the new entry twice, once right
90  * now and again after circling through the ring.
91  */
92 
93 /* The operations on the rings are the following:
94  *
95  * producer                           consumer
96  *
97  * RESERVE entries                    PEEK in the ring for entries
98  * WRITE data into the ring           READ data from the ring
99  * SUBMIT entries                     RELEASE entries
100  *
101  * The producer reserves one or more entries in the ring. It can then
102  * fill in these entries and finally submit them so that they can be
103  * seen and read by the consumer.
104  *
105  * The consumer peeks into the ring to see if the producer has written
106  * any new entries. If so, the consumer can then read these entries
107  * and when it is done reading them release them back to the producer
108  * so that the producer can use these slots to fill in new entries.
109  *
110  * The function names below reflect these operations.
111  */
112 
113 /* Functions that read and validate content from consumer rings. */
114 
115 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
116 {
117 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
118 	u32 idx = cached_cons & q->ring_mask;
119 
120 	*addr = ring->desc[idx];
121 }
122 
123 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
124 {
125 	if (q->cached_cons != q->cached_prod) {
126 		__xskq_cons_read_addr_unchecked(q, q->cached_cons, addr);
127 		return true;
128 	}
129 
130 	return false;
131 }
132 
133 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
134 					    struct xdp_desc *desc)
135 {
136 	u64 chunk, chunk_end;
137 
138 	chunk = xp_aligned_extract_addr(pool, desc->addr);
139 	if (likely(desc->len)) {
140 		chunk_end = xp_aligned_extract_addr(pool, desc->addr + desc->len - 1);
141 		if (chunk != chunk_end)
142 			return false;
143 	}
144 
145 	if (chunk >= pool->addrs_cnt)
146 		return false;
147 
148 	if (desc->options)
149 		return false;
150 	return true;
151 }
152 
153 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
154 					      struct xdp_desc *desc)
155 {
156 	u64 addr, base_addr;
157 
158 	base_addr = xp_unaligned_extract_addr(desc->addr);
159 	addr = xp_unaligned_add_offset_to_addr(desc->addr);
160 
161 	if (desc->len > pool->chunk_size)
162 		return false;
163 
164 	if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
165 	    addr + desc->len > pool->addrs_cnt ||
166 	    xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
167 		return false;
168 
169 	if (desc->options)
170 		return false;
171 	return true;
172 }
173 
174 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
175 				    struct xdp_desc *desc)
176 {
177 	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
178 		xp_aligned_validate_desc(pool, desc);
179 }
180 
181 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
182 					   struct xdp_desc *d,
183 					   struct xsk_buff_pool *pool)
184 {
185 	if (!xp_validate_desc(pool, d)) {
186 		q->invalid_descs++;
187 		return false;
188 	}
189 	return true;
190 }
191 
192 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
193 				       struct xdp_desc *desc,
194 				       struct xsk_buff_pool *pool)
195 {
196 	while (q->cached_cons != q->cached_prod) {
197 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
198 		u32 idx = q->cached_cons & q->ring_mask;
199 
200 		*desc = ring->desc[idx];
201 		if (xskq_cons_is_valid_desc(q, desc, pool))
202 			return true;
203 
204 		q->cached_cons++;
205 	}
206 
207 	return false;
208 }
209 
210 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
211 {
212 	q->cached_cons += cnt;
213 }
214 
215 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
216 					    u32 max)
217 {
218 	u32 cached_cons = q->cached_cons, nb_entries = 0;
219 	struct xdp_desc *descs = pool->tx_descs;
220 
221 	while (cached_cons != q->cached_prod && nb_entries < max) {
222 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
223 		u32 idx = cached_cons & q->ring_mask;
224 
225 		descs[nb_entries] = ring->desc[idx];
226 		if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) {
227 			/* Skip the entry */
228 			cached_cons++;
229 			continue;
230 		}
231 
232 		nb_entries++;
233 		cached_cons++;
234 	}
235 
236 	/* Release valid plus any invalid entries */
237 	xskq_cons_release_n(q, cached_cons - q->cached_cons);
238 	return nb_entries;
239 }
240 
241 /* Functions for consumers */
242 
243 static inline void __xskq_cons_release(struct xsk_queue *q)
244 {
245 	smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
246 }
247 
248 static inline void __xskq_cons_peek(struct xsk_queue *q)
249 {
250 	/* Refresh the local pointer */
251 	q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
252 }
253 
254 static inline void xskq_cons_get_entries(struct xsk_queue *q)
255 {
256 	__xskq_cons_release(q);
257 	__xskq_cons_peek(q);
258 }
259 
260 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
261 {
262 	u32 entries = q->cached_prod - q->cached_cons;
263 
264 	if (entries >= max)
265 		return max;
266 
267 	__xskq_cons_peek(q);
268 	entries = q->cached_prod - q->cached_cons;
269 
270 	return entries >= max ? max : entries;
271 }
272 
273 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
274 {
275 	return xskq_cons_nb_entries(q, cnt) >= cnt;
276 }
277 
278 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
279 {
280 	if (q->cached_prod == q->cached_cons)
281 		xskq_cons_get_entries(q);
282 	return xskq_cons_read_addr_unchecked(q, addr);
283 }
284 
285 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
286 				       struct xdp_desc *desc,
287 				       struct xsk_buff_pool *pool)
288 {
289 	if (q->cached_prod == q->cached_cons)
290 		xskq_cons_get_entries(q);
291 	return xskq_cons_read_desc(q, desc, pool);
292 }
293 
294 /* To improve performance in the xskq_cons_release functions, only update local state here.
295  * Reflect this to global state when we get new entries from the ring in
296  * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
297  */
298 static inline void xskq_cons_release(struct xsk_queue *q)
299 {
300 	q->cached_cons++;
301 }
302 
303 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
304 {
305 	/* No barriers needed since data is not accessed */
306 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
307 }
308 
309 /* Functions for producers */
310 
311 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
312 {
313 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
314 
315 	if (free_entries >= max)
316 		return max;
317 
318 	/* Refresh the local tail pointer */
319 	q->cached_cons = READ_ONCE(q->ring->consumer);
320 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
321 
322 	return free_entries >= max ? max : free_entries;
323 }
324 
325 static inline bool xskq_prod_is_full(struct xsk_queue *q)
326 {
327 	return xskq_prod_nb_free(q, 1) ? false : true;
328 }
329 
330 static inline void xskq_prod_cancel(struct xsk_queue *q)
331 {
332 	q->cached_prod--;
333 }
334 
335 static inline int xskq_prod_reserve(struct xsk_queue *q)
336 {
337 	if (xskq_prod_is_full(q))
338 		return -ENOSPC;
339 
340 	/* A, matches D */
341 	q->cached_prod++;
342 	return 0;
343 }
344 
345 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
346 {
347 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
348 
349 	if (xskq_prod_is_full(q))
350 		return -ENOSPC;
351 
352 	/* A, matches D */
353 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
354 	return 0;
355 }
356 
357 static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
358 					      u32 nb_entries)
359 {
360 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
361 	u32 i, cached_prod;
362 
363 	/* A, matches D */
364 	cached_prod = q->cached_prod;
365 	for (i = 0; i < nb_entries; i++)
366 		ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
367 	q->cached_prod = cached_prod;
368 }
369 
370 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
371 					 u64 addr, u32 len)
372 {
373 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
374 	u32 idx;
375 
376 	if (xskq_prod_is_full(q))
377 		return -ENOBUFS;
378 
379 	/* A, matches D */
380 	idx = q->cached_prod++ & q->ring_mask;
381 	ring->desc[idx].addr = addr;
382 	ring->desc[idx].len = len;
383 
384 	return 0;
385 }
386 
387 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
388 {
389 	smp_store_release(&q->ring->producer, idx); /* B, matches C */
390 }
391 
392 static inline void xskq_prod_submit(struct xsk_queue *q)
393 {
394 	__xskq_prod_submit(q, q->cached_prod);
395 }
396 
397 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
398 {
399 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
400 	u32 idx = q->ring->producer;
401 
402 	ring->desc[idx++ & q->ring_mask] = addr;
403 
404 	__xskq_prod_submit(q, idx);
405 }
406 
407 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
408 {
409 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
410 }
411 
412 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
413 {
414 	/* No barriers needed since data is not accessed */
415 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
416 }
417 
418 /* For both producers and consumers */
419 
420 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
421 {
422 	return q ? q->invalid_descs : 0;
423 }
424 
425 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
426 {
427 	return q ? q->queue_empty_descs : 0;
428 }
429 
430 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
431 void xskq_destroy(struct xsk_queue *q_ops);
432 
433 #endif /* _LINUX_XSK_QUEUE_H */
434