xref: /openbmc/linux/net/xdp/xsk_queue.h (revision 0c5f48599bed55c13d6f979ea824554bdebdf2ad)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3  * Copyright(c) 2018 Intel Corporation.
4  */
5 
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8 
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
13 
14 #include "xsk.h"
15 
16 struct xdp_ring {
17 	u32 producer ____cacheline_aligned_in_smp;
18 	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19 	 * pointer if the producer pointer is touched and vice versa.
20 	 */
21 	u32 pad1 ____cacheline_aligned_in_smp;
22 	u32 consumer ____cacheline_aligned_in_smp;
23 	u32 pad2 ____cacheline_aligned_in_smp;
24 	u32 flags;
25 	u32 pad3 ____cacheline_aligned_in_smp;
26 };
27 
28 /* Used for the RX and TX queues for packets */
29 struct xdp_rxtx_ring {
30 	struct xdp_ring ptrs;
31 	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
32 };
33 
34 /* Used for the fill and completion queues for buffers */
35 struct xdp_umem_ring {
36 	struct xdp_ring ptrs;
37 	u64 desc[] ____cacheline_aligned_in_smp;
38 };
39 
40 struct xsk_queue {
41 	u32 ring_mask;
42 	u32 nentries;
43 	u32 cached_prod;
44 	u32 cached_cons;
45 	struct xdp_ring *ring;
46 	u64 invalid_descs;
47 	u64 queue_empty_descs;
48 	size_t ring_vmalloc_size;
49 };
50 
51 /* The structure of the shared state of the rings are a simple
52  * circular buffer, as outlined in
53  * Documentation/core-api/circular-buffers.rst. For the Rx and
54  * completion ring, the kernel is the producer and user space is the
55  * consumer. For the Tx and fill rings, the kernel is the consumer and
56  * user space is the producer.
57  *
58  * producer                         consumer
59  *
60  * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
61  *    STORE $data                   LOAD $data
62  *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
63  * }
64  *
65  * (A) pairs with (D), and (B) pairs with (C).
66  *
67  * Starting with (B), it protects the data from being written after
68  * the producer pointer. If this barrier was missing, the consumer
69  * could observe the producer pointer being set and thus load the data
70  * before the producer has written the new data. The consumer would in
71  * this case load the old data.
72  *
73  * (C) protects the consumer from speculatively loading the data before
74  * the producer pointer actually has been read. If we do not have this
75  * barrier, some architectures could load old data as speculative loads
76  * are not discarded as the CPU does not know there is a dependency
77  * between ->producer and data.
78  *
79  * (A) is a control dependency that separates the load of ->consumer
80  * from the stores of $data. In case ->consumer indicates there is no
81  * room in the buffer to store $data we do not. The dependency will
82  * order both of the stores after the loads. So no barrier is needed.
83  *
84  * (D) protects the load of the data to be observed to happen after the
85  * store of the consumer pointer. If we did not have this memory
86  * barrier, the producer could observe the consumer pointer being set
87  * and overwrite the data with a new value before the consumer got the
88  * chance to read the old value. The consumer would thus miss reading
89  * the old entry and very likely read the new entry twice, once right
90  * now and again after circling through the ring.
91  */
92 
93 /* The operations on the rings are the following:
94  *
95  * producer                           consumer
96  *
97  * RESERVE entries                    PEEK in the ring for entries
98  * WRITE data into the ring           READ data from the ring
99  * SUBMIT entries                     RELEASE entries
100  *
101  * The producer reserves one or more entries in the ring. It can then
102  * fill in these entries and finally submit them so that they can be
103  * seen and read by the consumer.
104  *
105  * The consumer peeks into the ring to see if the producer has written
106  * any new entries. If so, the consumer can then read these entries
107  * and when it is done reading them release them back to the producer
108  * so that the producer can use these slots to fill in new entries.
109  *
110  * The function names below reflect these operations.
111  */
112 
113 /* Functions that read and validate content from consumer rings. */
114 
115 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
116 {
117 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
118 	u32 idx = cached_cons & q->ring_mask;
119 
120 	*addr = ring->desc[idx];
121 }
122 
123 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
124 {
125 	if (q->cached_cons != q->cached_prod) {
126 		__xskq_cons_read_addr_unchecked(q, q->cached_cons, addr);
127 		return true;
128 	}
129 
130 	return false;
131 }
132 
133 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
134 					    struct xdp_desc *desc)
135 {
136 	u64 offset = desc->addr & (pool->chunk_size - 1);
137 
138 	if (offset + desc->len > pool->chunk_size)
139 		return false;
140 
141 	if (desc->addr >= pool->addrs_cnt)
142 		return false;
143 
144 	if (desc->options)
145 		return false;
146 	return true;
147 }
148 
149 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
150 					      struct xdp_desc *desc)
151 {
152 	u64 addr, base_addr;
153 
154 	base_addr = xp_unaligned_extract_addr(desc->addr);
155 	addr = xp_unaligned_add_offset_to_addr(desc->addr);
156 
157 	if (desc->len > pool->chunk_size)
158 		return false;
159 
160 	if (base_addr >= pool->addrs_cnt || addr >= pool->addrs_cnt ||
161 	    addr + desc->len > pool->addrs_cnt ||
162 	    xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
163 		return false;
164 
165 	if (desc->options)
166 		return false;
167 	return true;
168 }
169 
170 static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
171 				    struct xdp_desc *desc)
172 {
173 	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
174 		xp_aligned_validate_desc(pool, desc);
175 }
176 
177 static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
178 					   struct xdp_desc *d,
179 					   struct xsk_buff_pool *pool)
180 {
181 	if (!xp_validate_desc(pool, d)) {
182 		q->invalid_descs++;
183 		return false;
184 	}
185 	return true;
186 }
187 
188 static inline bool xskq_cons_read_desc(struct xsk_queue *q,
189 				       struct xdp_desc *desc,
190 				       struct xsk_buff_pool *pool)
191 {
192 	while (q->cached_cons != q->cached_prod) {
193 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
194 		u32 idx = q->cached_cons & q->ring_mask;
195 
196 		*desc = ring->desc[idx];
197 		if (xskq_cons_is_valid_desc(q, desc, pool))
198 			return true;
199 
200 		q->cached_cons++;
201 	}
202 
203 	return false;
204 }
205 
206 static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
207 {
208 	q->cached_cons += cnt;
209 }
210 
211 static inline u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
212 					    u32 max)
213 {
214 	u32 cached_cons = q->cached_cons, nb_entries = 0;
215 	struct xdp_desc *descs = pool->tx_descs;
216 
217 	while (cached_cons != q->cached_prod && nb_entries < max) {
218 		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
219 		u32 idx = cached_cons & q->ring_mask;
220 
221 		descs[nb_entries] = ring->desc[idx];
222 		if (unlikely(!xskq_cons_is_valid_desc(q, &descs[nb_entries], pool))) {
223 			/* Skip the entry */
224 			cached_cons++;
225 			continue;
226 		}
227 
228 		nb_entries++;
229 		cached_cons++;
230 	}
231 
232 	/* Release valid plus any invalid entries */
233 	xskq_cons_release_n(q, cached_cons - q->cached_cons);
234 	return nb_entries;
235 }
236 
237 /* Functions for consumers */
238 
239 static inline void __xskq_cons_release(struct xsk_queue *q)
240 {
241 	smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
242 }
243 
244 static inline void __xskq_cons_peek(struct xsk_queue *q)
245 {
246 	/* Refresh the local pointer */
247 	q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
248 }
249 
250 static inline void xskq_cons_get_entries(struct xsk_queue *q)
251 {
252 	__xskq_cons_release(q);
253 	__xskq_cons_peek(q);
254 }
255 
256 static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
257 {
258 	u32 entries = q->cached_prod - q->cached_cons;
259 
260 	if (entries >= max)
261 		return max;
262 
263 	__xskq_cons_peek(q);
264 	entries = q->cached_prod - q->cached_cons;
265 
266 	return entries >= max ? max : entries;
267 }
268 
269 static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
270 {
271 	return xskq_cons_nb_entries(q, cnt) >= cnt;
272 }
273 
274 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
275 {
276 	if (q->cached_prod == q->cached_cons)
277 		xskq_cons_get_entries(q);
278 	return xskq_cons_read_addr_unchecked(q, addr);
279 }
280 
281 static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
282 				       struct xdp_desc *desc,
283 				       struct xsk_buff_pool *pool)
284 {
285 	if (q->cached_prod == q->cached_cons)
286 		xskq_cons_get_entries(q);
287 	return xskq_cons_read_desc(q, desc, pool);
288 }
289 
290 /* To improve performance in the xskq_cons_release functions, only update local state here.
291  * Reflect this to global state when we get new entries from the ring in
292  * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
293  */
294 static inline void xskq_cons_release(struct xsk_queue *q)
295 {
296 	q->cached_cons++;
297 }
298 
299 static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
300 {
301 	/* No barriers needed since data is not accessed */
302 	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
303 }
304 
305 /* Functions for producers */
306 
307 static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
308 {
309 	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
310 
311 	if (free_entries >= max)
312 		return max;
313 
314 	/* Refresh the local tail pointer */
315 	q->cached_cons = READ_ONCE(q->ring->consumer);
316 	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
317 
318 	return free_entries >= max ? max : free_entries;
319 }
320 
321 static inline bool xskq_prod_is_full(struct xsk_queue *q)
322 {
323 	return xskq_prod_nb_free(q, 1) ? false : true;
324 }
325 
326 static inline void xskq_prod_cancel(struct xsk_queue *q)
327 {
328 	q->cached_prod--;
329 }
330 
331 static inline int xskq_prod_reserve(struct xsk_queue *q)
332 {
333 	if (xskq_prod_is_full(q))
334 		return -ENOSPC;
335 
336 	/* A, matches D */
337 	q->cached_prod++;
338 	return 0;
339 }
340 
341 static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
342 {
343 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
344 
345 	if (xskq_prod_is_full(q))
346 		return -ENOSPC;
347 
348 	/* A, matches D */
349 	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
350 	return 0;
351 }
352 
353 static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
354 					      u32 nb_entries)
355 {
356 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
357 	u32 i, cached_prod;
358 
359 	/* A, matches D */
360 	cached_prod = q->cached_prod;
361 	for (i = 0; i < nb_entries; i++)
362 		ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
363 	q->cached_prod = cached_prod;
364 }
365 
366 static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
367 					 u64 addr, u32 len)
368 {
369 	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
370 	u32 idx;
371 
372 	if (xskq_prod_is_full(q))
373 		return -ENOBUFS;
374 
375 	/* A, matches D */
376 	idx = q->cached_prod++ & q->ring_mask;
377 	ring->desc[idx].addr = addr;
378 	ring->desc[idx].len = len;
379 
380 	return 0;
381 }
382 
383 static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
384 {
385 	smp_store_release(&q->ring->producer, idx); /* B, matches C */
386 }
387 
388 static inline void xskq_prod_submit(struct xsk_queue *q)
389 {
390 	__xskq_prod_submit(q, q->cached_prod);
391 }
392 
393 static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
394 {
395 	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
396 	u32 idx = q->ring->producer;
397 
398 	ring->desc[idx++ & q->ring_mask] = addr;
399 
400 	__xskq_prod_submit(q, idx);
401 }
402 
403 static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
404 {
405 	__xskq_prod_submit(q, q->ring->producer + nb_entries);
406 }
407 
408 static inline bool xskq_prod_is_empty(struct xsk_queue *q)
409 {
410 	/* No barriers needed since data is not accessed */
411 	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
412 }
413 
414 /* For both producers and consumers */
415 
416 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
417 {
418 	return q ? q->invalid_descs : 0;
419 }
420 
421 static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
422 {
423 	return q ? q->queue_empty_descs : 0;
424 }
425 
426 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
427 void xskq_destroy(struct xsk_queue *q_ops);
428 
429 #endif /* _LINUX_XSK_QUEUE_H */
430