1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 */ 6 #include <linux/bitops.h> 7 #include <linux/etherdevice.h> 8 #include <net/cfg80211.h> 9 #include <net/ip.h> 10 #include "core.h" 11 12 struct ieee80211_rate * 13 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 14 u32 basic_rates, int bitrate) 15 { 16 struct ieee80211_rate *result = &sband->bitrates[0]; 17 int i; 18 19 for (i = 0; i < sband->n_bitrates; i++) { 20 if (!(basic_rates & BIT(i))) 21 continue; 22 if (sband->bitrates[i].bitrate > bitrate) 23 continue; 24 result = &sband->bitrates[i]; 25 } 26 27 return result; 28 } 29 EXPORT_SYMBOL(ieee80211_get_response_rate); 30 31 int ieee80211_channel_to_frequency(int chan) 32 { 33 if (chan < 14) 34 return 2407 + chan * 5; 35 36 if (chan == 14) 37 return 2484; 38 39 /* FIXME: 802.11j 17.3.8.3.2 */ 40 return (chan + 1000) * 5; 41 } 42 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 43 44 int ieee80211_frequency_to_channel(int freq) 45 { 46 if (freq == 2484) 47 return 14; 48 49 if (freq < 2484) 50 return (freq - 2407) / 5; 51 52 /* FIXME: 802.11j 17.3.8.3.2 */ 53 return freq/5 - 1000; 54 } 55 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 56 57 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 58 int freq) 59 { 60 enum ieee80211_band band; 61 struct ieee80211_supported_band *sband; 62 int i; 63 64 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 65 sband = wiphy->bands[band]; 66 67 if (!sband) 68 continue; 69 70 for (i = 0; i < sband->n_channels; i++) { 71 if (sband->channels[i].center_freq == freq) 72 return &sband->channels[i]; 73 } 74 } 75 76 return NULL; 77 } 78 EXPORT_SYMBOL(__ieee80211_get_channel); 79 80 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 81 enum ieee80211_band band) 82 { 83 int i, want; 84 85 switch (band) { 86 case IEEE80211_BAND_5GHZ: 87 want = 3; 88 for (i = 0; i < sband->n_bitrates; i++) { 89 if (sband->bitrates[i].bitrate == 60 || 90 sband->bitrates[i].bitrate == 120 || 91 sband->bitrates[i].bitrate == 240) { 92 sband->bitrates[i].flags |= 93 IEEE80211_RATE_MANDATORY_A; 94 want--; 95 } 96 } 97 WARN_ON(want); 98 break; 99 case IEEE80211_BAND_2GHZ: 100 want = 7; 101 for (i = 0; i < sband->n_bitrates; i++) { 102 if (sband->bitrates[i].bitrate == 10) { 103 sband->bitrates[i].flags |= 104 IEEE80211_RATE_MANDATORY_B | 105 IEEE80211_RATE_MANDATORY_G; 106 want--; 107 } 108 109 if (sband->bitrates[i].bitrate == 20 || 110 sband->bitrates[i].bitrate == 55 || 111 sband->bitrates[i].bitrate == 110 || 112 sband->bitrates[i].bitrate == 60 || 113 sband->bitrates[i].bitrate == 120 || 114 sband->bitrates[i].bitrate == 240) { 115 sband->bitrates[i].flags |= 116 IEEE80211_RATE_MANDATORY_G; 117 want--; 118 } 119 120 if (sband->bitrates[i].bitrate != 10 && 121 sband->bitrates[i].bitrate != 20 && 122 sband->bitrates[i].bitrate != 55 && 123 sband->bitrates[i].bitrate != 110) 124 sband->bitrates[i].flags |= 125 IEEE80211_RATE_ERP_G; 126 } 127 WARN_ON(want != 0 && want != 3 && want != 6); 128 break; 129 case IEEE80211_NUM_BANDS: 130 WARN_ON(1); 131 break; 132 } 133 } 134 135 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 136 { 137 enum ieee80211_band band; 138 139 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 140 if (wiphy->bands[band]) 141 set_mandatory_flags_band(wiphy->bands[band], band); 142 } 143 144 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 145 struct key_params *params, int key_idx, 146 const u8 *mac_addr) 147 { 148 int i; 149 150 if (key_idx > 5) 151 return -EINVAL; 152 153 /* 154 * Disallow pairwise keys with non-zero index unless it's WEP 155 * (because current deployments use pairwise WEP keys with 156 * non-zero indizes but 802.11i clearly specifies to use zero) 157 */ 158 if (mac_addr && key_idx && 159 params->cipher != WLAN_CIPHER_SUITE_WEP40 && 160 params->cipher != WLAN_CIPHER_SUITE_WEP104) 161 return -EINVAL; 162 163 switch (params->cipher) { 164 case WLAN_CIPHER_SUITE_WEP40: 165 if (params->key_len != WLAN_KEY_LEN_WEP40) 166 return -EINVAL; 167 break; 168 case WLAN_CIPHER_SUITE_TKIP: 169 if (params->key_len != WLAN_KEY_LEN_TKIP) 170 return -EINVAL; 171 break; 172 case WLAN_CIPHER_SUITE_CCMP: 173 if (params->key_len != WLAN_KEY_LEN_CCMP) 174 return -EINVAL; 175 break; 176 case WLAN_CIPHER_SUITE_WEP104: 177 if (params->key_len != WLAN_KEY_LEN_WEP104) 178 return -EINVAL; 179 break; 180 case WLAN_CIPHER_SUITE_AES_CMAC: 181 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 182 return -EINVAL; 183 break; 184 default: 185 return -EINVAL; 186 } 187 188 if (params->seq) { 189 switch (params->cipher) { 190 case WLAN_CIPHER_SUITE_WEP40: 191 case WLAN_CIPHER_SUITE_WEP104: 192 /* These ciphers do not use key sequence */ 193 return -EINVAL; 194 case WLAN_CIPHER_SUITE_TKIP: 195 case WLAN_CIPHER_SUITE_CCMP: 196 case WLAN_CIPHER_SUITE_AES_CMAC: 197 if (params->seq_len != 6) 198 return -EINVAL; 199 break; 200 } 201 } 202 203 for (i = 0; i < rdev->wiphy.n_cipher_suites; i++) 204 if (params->cipher == rdev->wiphy.cipher_suites[i]) 205 break; 206 if (i == rdev->wiphy.n_cipher_suites) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 213 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 214 const unsigned char rfc1042_header[] __aligned(2) = 215 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 216 EXPORT_SYMBOL(rfc1042_header); 217 218 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 219 const unsigned char bridge_tunnel_header[] __aligned(2) = 220 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 221 EXPORT_SYMBOL(bridge_tunnel_header); 222 223 unsigned int ieee80211_hdrlen(__le16 fc) 224 { 225 unsigned int hdrlen = 24; 226 227 if (ieee80211_is_data(fc)) { 228 if (ieee80211_has_a4(fc)) 229 hdrlen = 30; 230 if (ieee80211_is_data_qos(fc)) 231 hdrlen += IEEE80211_QOS_CTL_LEN; 232 goto out; 233 } 234 235 if (ieee80211_is_ctl(fc)) { 236 /* 237 * ACK and CTS are 10 bytes, all others 16. To see how 238 * to get this condition consider 239 * subtype mask: 0b0000000011110000 (0x00F0) 240 * ACK subtype: 0b0000000011010000 (0x00D0) 241 * CTS subtype: 0b0000000011000000 (0x00C0) 242 * bits that matter: ^^^ (0x00E0) 243 * value of those: 0b0000000011000000 (0x00C0) 244 */ 245 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 246 hdrlen = 10; 247 else 248 hdrlen = 16; 249 } 250 out: 251 return hdrlen; 252 } 253 EXPORT_SYMBOL(ieee80211_hdrlen); 254 255 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 256 { 257 const struct ieee80211_hdr *hdr = 258 (const struct ieee80211_hdr *)skb->data; 259 unsigned int hdrlen; 260 261 if (unlikely(skb->len < 10)) 262 return 0; 263 hdrlen = ieee80211_hdrlen(hdr->frame_control); 264 if (unlikely(hdrlen > skb->len)) 265 return 0; 266 return hdrlen; 267 } 268 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 269 270 static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 271 { 272 int ae = meshhdr->flags & MESH_FLAGS_AE; 273 /* 7.1.3.5a.2 */ 274 switch (ae) { 275 case 0: 276 return 6; 277 case MESH_FLAGS_AE_A4: 278 return 12; 279 case MESH_FLAGS_AE_A5_A6: 280 return 18; 281 case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6): 282 return 24; 283 default: 284 return 6; 285 } 286 } 287 288 int ieee80211_data_to_8023(struct sk_buff *skb, u8 *addr, 289 enum nl80211_iftype iftype) 290 { 291 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 292 u16 hdrlen, ethertype; 293 u8 *payload; 294 u8 dst[ETH_ALEN]; 295 u8 src[ETH_ALEN] __aligned(2); 296 297 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 298 return -1; 299 300 hdrlen = ieee80211_hdrlen(hdr->frame_control); 301 302 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 303 * header 304 * IEEE 802.11 address fields: 305 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 306 * 0 0 DA SA BSSID n/a 307 * 0 1 DA BSSID SA n/a 308 * 1 0 BSSID SA DA n/a 309 * 1 1 RA TA DA SA 310 */ 311 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 312 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 313 314 switch (hdr->frame_control & 315 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 316 case cpu_to_le16(IEEE80211_FCTL_TODS): 317 if (unlikely(iftype != NL80211_IFTYPE_AP && 318 iftype != NL80211_IFTYPE_AP_VLAN)) 319 return -1; 320 break; 321 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 322 if (unlikely(iftype != NL80211_IFTYPE_WDS && 323 iftype != NL80211_IFTYPE_MESH_POINT && 324 iftype != NL80211_IFTYPE_AP_VLAN && 325 iftype != NL80211_IFTYPE_STATION)) 326 return -1; 327 if (iftype == NL80211_IFTYPE_MESH_POINT) { 328 struct ieee80211s_hdr *meshdr = 329 (struct ieee80211s_hdr *) (skb->data + hdrlen); 330 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 331 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 332 memcpy(dst, meshdr->eaddr1, ETH_ALEN); 333 memcpy(src, meshdr->eaddr2, ETH_ALEN); 334 } 335 } 336 break; 337 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 338 if ((iftype != NL80211_IFTYPE_STATION && 339 iftype != NL80211_IFTYPE_MESH_POINT) || 340 (is_multicast_ether_addr(dst) && 341 !compare_ether_addr(src, addr))) 342 return -1; 343 if (iftype == NL80211_IFTYPE_MESH_POINT) { 344 struct ieee80211s_hdr *meshdr = 345 (struct ieee80211s_hdr *) (skb->data + hdrlen); 346 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 347 if (meshdr->flags & MESH_FLAGS_AE_A4) 348 memcpy(src, meshdr->eaddr1, ETH_ALEN); 349 } 350 break; 351 case cpu_to_le16(0): 352 if (iftype != NL80211_IFTYPE_ADHOC) 353 return -1; 354 break; 355 } 356 357 if (unlikely(skb->len - hdrlen < 8)) 358 return -1; 359 360 payload = skb->data + hdrlen; 361 ethertype = (payload[6] << 8) | payload[7]; 362 363 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && 364 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 365 compare_ether_addr(payload, bridge_tunnel_header) == 0)) { 366 /* remove RFC1042 or Bridge-Tunnel encapsulation and 367 * replace EtherType */ 368 skb_pull(skb, hdrlen + 6); 369 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 370 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 371 } else { 372 struct ethhdr *ehdr; 373 __be16 len; 374 375 skb_pull(skb, hdrlen); 376 len = htons(skb->len); 377 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 378 memcpy(ehdr->h_dest, dst, ETH_ALEN); 379 memcpy(ehdr->h_source, src, ETH_ALEN); 380 ehdr->h_proto = len; 381 } 382 return 0; 383 } 384 EXPORT_SYMBOL(ieee80211_data_to_8023); 385 386 int ieee80211_data_from_8023(struct sk_buff *skb, u8 *addr, 387 enum nl80211_iftype iftype, u8 *bssid, bool qos) 388 { 389 struct ieee80211_hdr hdr; 390 u16 hdrlen, ethertype; 391 __le16 fc; 392 const u8 *encaps_data; 393 int encaps_len, skip_header_bytes; 394 int nh_pos, h_pos; 395 int head_need; 396 397 if (unlikely(skb->len < ETH_HLEN)) 398 return -EINVAL; 399 400 nh_pos = skb_network_header(skb) - skb->data; 401 h_pos = skb_transport_header(skb) - skb->data; 402 403 /* convert Ethernet header to proper 802.11 header (based on 404 * operation mode) */ 405 ethertype = (skb->data[12] << 8) | skb->data[13]; 406 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 407 408 switch (iftype) { 409 case NL80211_IFTYPE_AP: 410 case NL80211_IFTYPE_AP_VLAN: 411 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 412 /* DA BSSID SA */ 413 memcpy(hdr.addr1, skb->data, ETH_ALEN); 414 memcpy(hdr.addr2, addr, ETH_ALEN); 415 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 416 hdrlen = 24; 417 break; 418 case NL80211_IFTYPE_STATION: 419 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 420 /* BSSID SA DA */ 421 memcpy(hdr.addr1, bssid, ETH_ALEN); 422 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 423 memcpy(hdr.addr3, skb->data, ETH_ALEN); 424 hdrlen = 24; 425 break; 426 case NL80211_IFTYPE_ADHOC: 427 /* DA SA BSSID */ 428 memcpy(hdr.addr1, skb->data, ETH_ALEN); 429 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 430 memcpy(hdr.addr3, bssid, ETH_ALEN); 431 hdrlen = 24; 432 break; 433 default: 434 return -EOPNOTSUPP; 435 } 436 437 if (qos) { 438 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 439 hdrlen += 2; 440 } 441 442 hdr.frame_control = fc; 443 hdr.duration_id = 0; 444 hdr.seq_ctrl = 0; 445 446 skip_header_bytes = ETH_HLEN; 447 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 448 encaps_data = bridge_tunnel_header; 449 encaps_len = sizeof(bridge_tunnel_header); 450 skip_header_bytes -= 2; 451 } else if (ethertype > 0x600) { 452 encaps_data = rfc1042_header; 453 encaps_len = sizeof(rfc1042_header); 454 skip_header_bytes -= 2; 455 } else { 456 encaps_data = NULL; 457 encaps_len = 0; 458 } 459 460 skb_pull(skb, skip_header_bytes); 461 nh_pos -= skip_header_bytes; 462 h_pos -= skip_header_bytes; 463 464 head_need = hdrlen + encaps_len - skb_headroom(skb); 465 466 if (head_need > 0 || skb_cloned(skb)) { 467 head_need = max(head_need, 0); 468 if (head_need) 469 skb_orphan(skb); 470 471 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) { 472 printk(KERN_ERR "failed to reallocate Tx buffer\n"); 473 return -ENOMEM; 474 } 475 skb->truesize += head_need; 476 } 477 478 if (encaps_data) { 479 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 480 nh_pos += encaps_len; 481 h_pos += encaps_len; 482 } 483 484 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 485 486 nh_pos += hdrlen; 487 h_pos += hdrlen; 488 489 /* Update skb pointers to various headers since this modified frame 490 * is going to go through Linux networking code that may potentially 491 * need things like pointer to IP header. */ 492 skb_set_mac_header(skb, 0); 493 skb_set_network_header(skb, nh_pos); 494 skb_set_transport_header(skb, h_pos); 495 496 return 0; 497 } 498 EXPORT_SYMBOL(ieee80211_data_from_8023); 499 500 /* Given a data frame determine the 802.1p/1d tag to use. */ 501 unsigned int cfg80211_classify8021d(struct sk_buff *skb) 502 { 503 unsigned int dscp; 504 505 /* skb->priority values from 256->263 are magic values to 506 * directly indicate a specific 802.1d priority. This is used 507 * to allow 802.1d priority to be passed directly in from VLAN 508 * tags, etc. 509 */ 510 if (skb->priority >= 256 && skb->priority <= 263) 511 return skb->priority - 256; 512 513 switch (skb->protocol) { 514 case htons(ETH_P_IP): 515 dscp = ip_hdr(skb)->tos & 0xfc; 516 break; 517 default: 518 return 0; 519 } 520 521 return dscp >> 5; 522 } 523 EXPORT_SYMBOL(cfg80211_classify8021d); 524 525 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 526 { 527 u8 *end, *pos; 528 529 pos = bss->information_elements; 530 if (pos == NULL) 531 return NULL; 532 end = pos + bss->len_information_elements; 533 534 while (pos + 1 < end) { 535 if (pos + 2 + pos[1] > end) 536 break; 537 if (pos[0] == ie) 538 return pos; 539 pos += 2 + pos[1]; 540 } 541 542 return NULL; 543 } 544 EXPORT_SYMBOL(ieee80211_bss_get_ie); 545 546 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 547 { 548 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy); 549 struct net_device *dev = wdev->netdev; 550 int i; 551 552 if (!wdev->connect_keys) 553 return; 554 555 for (i = 0; i < 6; i++) { 556 if (!wdev->connect_keys->params[i].cipher) 557 continue; 558 if (rdev->ops->add_key(wdev->wiphy, dev, i, NULL, 559 &wdev->connect_keys->params[i])) { 560 printk(KERN_ERR "%s: failed to set key %d\n", 561 dev->name, i); 562 continue; 563 } 564 if (wdev->connect_keys->def == i) 565 if (rdev->ops->set_default_key(wdev->wiphy, dev, i)) { 566 printk(KERN_ERR "%s: failed to set defkey %d\n", 567 dev->name, i); 568 continue; 569 } 570 if (wdev->connect_keys->defmgmt == i) 571 if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i)) 572 printk(KERN_ERR "%s: failed to set mgtdef %d\n", 573 dev->name, i); 574 } 575 576 kfree(wdev->connect_keys); 577 wdev->connect_keys = NULL; 578 } 579 580 static void cfg80211_process_wdev_events(struct wireless_dev *wdev) 581 { 582 struct cfg80211_event *ev; 583 unsigned long flags; 584 const u8 *bssid = NULL; 585 586 spin_lock_irqsave(&wdev->event_lock, flags); 587 while (!list_empty(&wdev->event_list)) { 588 ev = list_first_entry(&wdev->event_list, 589 struct cfg80211_event, list); 590 list_del(&ev->list); 591 spin_unlock_irqrestore(&wdev->event_lock, flags); 592 593 wdev_lock(wdev); 594 switch (ev->type) { 595 case EVENT_CONNECT_RESULT: 596 if (!is_zero_ether_addr(ev->cr.bssid)) 597 bssid = ev->cr.bssid; 598 __cfg80211_connect_result( 599 wdev->netdev, bssid, 600 ev->cr.req_ie, ev->cr.req_ie_len, 601 ev->cr.resp_ie, ev->cr.resp_ie_len, 602 ev->cr.status, 603 ev->cr.status == WLAN_STATUS_SUCCESS, 604 NULL); 605 break; 606 case EVENT_ROAMED: 607 __cfg80211_roamed(wdev, ev->rm.bssid, 608 ev->rm.req_ie, ev->rm.req_ie_len, 609 ev->rm.resp_ie, ev->rm.resp_ie_len); 610 break; 611 case EVENT_DISCONNECTED: 612 __cfg80211_disconnected(wdev->netdev, 613 ev->dc.ie, ev->dc.ie_len, 614 ev->dc.reason, true); 615 break; 616 case EVENT_IBSS_JOINED: 617 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid); 618 break; 619 } 620 wdev_unlock(wdev); 621 622 kfree(ev); 623 624 spin_lock_irqsave(&wdev->event_lock, flags); 625 } 626 spin_unlock_irqrestore(&wdev->event_lock, flags); 627 } 628 629 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 630 { 631 struct wireless_dev *wdev; 632 633 ASSERT_RTNL(); 634 ASSERT_RDEV_LOCK(rdev); 635 636 mutex_lock(&rdev->devlist_mtx); 637 638 list_for_each_entry(wdev, &rdev->netdev_list, list) 639 cfg80211_process_wdev_events(wdev); 640 641 mutex_unlock(&rdev->devlist_mtx); 642 } 643 644 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 645 struct net_device *dev, enum nl80211_iftype ntype, 646 u32 *flags, struct vif_params *params) 647 { 648 int err; 649 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 650 651 ASSERT_RDEV_LOCK(rdev); 652 653 /* don't support changing VLANs, you just re-create them */ 654 if (otype == NL80211_IFTYPE_AP_VLAN) 655 return -EOPNOTSUPP; 656 657 if (!rdev->ops->change_virtual_intf || 658 !(rdev->wiphy.interface_modes & (1 << ntype))) 659 return -EOPNOTSUPP; 660 661 /* if it's part of a bridge, reject changing type to station/ibss */ 662 if (dev->br_port && (ntype == NL80211_IFTYPE_ADHOC || 663 ntype == NL80211_IFTYPE_STATION)) 664 return -EBUSY; 665 666 if (ntype != otype) { 667 dev->ieee80211_ptr->use_4addr = false; 668 669 switch (otype) { 670 case NL80211_IFTYPE_ADHOC: 671 cfg80211_leave_ibss(rdev, dev, false); 672 break; 673 case NL80211_IFTYPE_STATION: 674 cfg80211_disconnect(rdev, dev, 675 WLAN_REASON_DEAUTH_LEAVING, true); 676 break; 677 case NL80211_IFTYPE_MESH_POINT: 678 /* mesh should be handled? */ 679 break; 680 default: 681 break; 682 } 683 684 cfg80211_process_rdev_events(rdev); 685 } 686 687 err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, 688 ntype, flags, params); 689 690 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 691 692 if (!err && params && params->use_4addr != -1) 693 dev->ieee80211_ptr->use_4addr = params->use_4addr; 694 695 if (!err) { 696 dev->priv_flags &= ~IFF_DONT_BRIDGE; 697 switch (ntype) { 698 case NL80211_IFTYPE_STATION: 699 if (dev->ieee80211_ptr->use_4addr) 700 break; 701 /* fall through */ 702 case NL80211_IFTYPE_ADHOC: 703 dev->priv_flags |= IFF_DONT_BRIDGE; 704 break; 705 case NL80211_IFTYPE_AP: 706 case NL80211_IFTYPE_AP_VLAN: 707 case NL80211_IFTYPE_WDS: 708 case NL80211_IFTYPE_MESH_POINT: 709 /* bridging OK */ 710 break; 711 case NL80211_IFTYPE_MONITOR: 712 /* monitor can't bridge anyway */ 713 break; 714 case NL80211_IFTYPE_UNSPECIFIED: 715 case __NL80211_IFTYPE_AFTER_LAST: 716 /* not happening */ 717 break; 718 } 719 } 720 721 return err; 722 } 723