1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com> 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 21 /** 22 * DOC: Wireless regulatory infrastructure 23 * 24 * The usual implementation is for a driver to read a device EEPROM to 25 * determine which regulatory domain it should be operating under, then 26 * looking up the allowable channels in a driver-local table and finally 27 * registering those channels in the wiphy structure. 28 * 29 * Another set of compliance enforcement is for drivers to use their 30 * own compliance limits which can be stored on the EEPROM. The host 31 * driver or firmware may ensure these are used. 32 * 33 * In addition to all this we provide an extra layer of regulatory 34 * conformance. For drivers which do not have any regulatory 35 * information CRDA provides the complete regulatory solution. 36 * For others it provides a community effort on further restrictions 37 * to enhance compliance. 38 * 39 * Note: When number of rules --> infinity we will not be able to 40 * index on alpha2 any more, instead we'll probably have to 41 * rely on some SHA1 checksum of the regdomain for example. 42 * 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/kernel.h> 48 #include <linux/export.h> 49 #include <linux/slab.h> 50 #include <linux/list.h> 51 #include <linux/ctype.h> 52 #include <linux/nl80211.h> 53 #include <linux/platform_device.h> 54 #include <linux/moduleparam.h> 55 #include <net/cfg80211.h> 56 #include "core.h" 57 #include "reg.h" 58 #include "regdb.h" 59 #include "nl80211.h" 60 61 #ifdef CONFIG_CFG80211_REG_DEBUG 62 #define REG_DBG_PRINT(format, args...) \ 63 printk(KERN_DEBUG pr_fmt(format), ##args) 64 #else 65 #define REG_DBG_PRINT(args...) 66 #endif 67 68 /** 69 * enum reg_request_treatment - regulatory request treatment 70 * 71 * @REG_REQ_OK: continue processing the regulatory request 72 * @REG_REQ_IGNORE: ignore the regulatory request 73 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should 74 * be intersected with the current one. 75 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current 76 * regulatory settings, and no further processing is required. 77 * @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no 78 * further processing is required, i.e., not need to update last_request 79 * etc. This should be used for user hints that do not provide an alpha2 80 * but some other type of regulatory hint, i.e., indoor operation. 81 */ 82 enum reg_request_treatment { 83 REG_REQ_OK, 84 REG_REQ_IGNORE, 85 REG_REQ_INTERSECT, 86 REG_REQ_ALREADY_SET, 87 REG_REQ_USER_HINT_HANDLED, 88 }; 89 90 static struct regulatory_request core_request_world = { 91 .initiator = NL80211_REGDOM_SET_BY_CORE, 92 .alpha2[0] = '0', 93 .alpha2[1] = '0', 94 .intersect = false, 95 .processed = true, 96 .country_ie_env = ENVIRON_ANY, 97 }; 98 99 /* 100 * Receipt of information from last regulatory request, 101 * protected by RTNL (and can be accessed with RCU protection) 102 */ 103 static struct regulatory_request __rcu *last_request = 104 (void __rcu *)&core_request_world; 105 106 /* To trigger userspace events */ 107 static struct platform_device *reg_pdev; 108 109 /* 110 * Central wireless core regulatory domains, we only need two, 111 * the current one and a world regulatory domain in case we have no 112 * information to give us an alpha2. 113 * (protected by RTNL, can be read under RCU) 114 */ 115 const struct ieee80211_regdomain __rcu *cfg80211_regdomain; 116 117 /* 118 * Number of devices that registered to the core 119 * that support cellular base station regulatory hints 120 * (protected by RTNL) 121 */ 122 static int reg_num_devs_support_basehint; 123 124 /* 125 * State variable indicating if the platform on which the devices 126 * are attached is operating in an indoor environment. The state variable 127 * is relevant for all registered devices. 128 * (protected by RTNL) 129 */ 130 static bool reg_is_indoor; 131 132 static const struct ieee80211_regdomain *get_cfg80211_regdom(void) 133 { 134 return rtnl_dereference(cfg80211_regdomain); 135 } 136 137 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy) 138 { 139 return rtnl_dereference(wiphy->regd); 140 } 141 142 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region) 143 { 144 switch (dfs_region) { 145 case NL80211_DFS_UNSET: 146 return "unset"; 147 case NL80211_DFS_FCC: 148 return "FCC"; 149 case NL80211_DFS_ETSI: 150 return "ETSI"; 151 case NL80211_DFS_JP: 152 return "JP"; 153 } 154 return "Unknown"; 155 } 156 157 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy) 158 { 159 const struct ieee80211_regdomain *regd = NULL; 160 const struct ieee80211_regdomain *wiphy_regd = NULL; 161 162 regd = get_cfg80211_regdom(); 163 if (!wiphy) 164 goto out; 165 166 wiphy_regd = get_wiphy_regdom(wiphy); 167 if (!wiphy_regd) 168 goto out; 169 170 if (wiphy_regd->dfs_region == regd->dfs_region) 171 goto out; 172 173 REG_DBG_PRINT("%s: device specific dfs_region " 174 "(%s) disagrees with cfg80211's " 175 "central dfs_region (%s)\n", 176 dev_name(&wiphy->dev), 177 reg_dfs_region_str(wiphy_regd->dfs_region), 178 reg_dfs_region_str(regd->dfs_region)); 179 180 out: 181 return regd->dfs_region; 182 } 183 184 static void rcu_free_regdom(const struct ieee80211_regdomain *r) 185 { 186 if (!r) 187 return; 188 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head); 189 } 190 191 static struct regulatory_request *get_last_request(void) 192 { 193 return rcu_dereference_rtnl(last_request); 194 } 195 196 /* Used to queue up regulatory hints */ 197 static LIST_HEAD(reg_requests_list); 198 static spinlock_t reg_requests_lock; 199 200 /* Used to queue up beacon hints for review */ 201 static LIST_HEAD(reg_pending_beacons); 202 static spinlock_t reg_pending_beacons_lock; 203 204 /* Used to keep track of processed beacon hints */ 205 static LIST_HEAD(reg_beacon_list); 206 207 struct reg_beacon { 208 struct list_head list; 209 struct ieee80211_channel chan; 210 }; 211 212 static void reg_todo(struct work_struct *work); 213 static DECLARE_WORK(reg_work, reg_todo); 214 215 static void reg_timeout_work(struct work_struct *work); 216 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); 217 218 /* We keep a static world regulatory domain in case of the absence of CRDA */ 219 static const struct ieee80211_regdomain world_regdom = { 220 .n_reg_rules = 6, 221 .alpha2 = "00", 222 .reg_rules = { 223 /* IEEE 802.11b/g, channels 1..11 */ 224 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), 225 /* IEEE 802.11b/g, channels 12..13. */ 226 REG_RULE(2467-10, 2472+10, 40, 6, 20, 227 NL80211_RRF_NO_IR), 228 /* IEEE 802.11 channel 14 - Only JP enables 229 * this and for 802.11b only */ 230 REG_RULE(2484-10, 2484+10, 20, 6, 20, 231 NL80211_RRF_NO_IR | 232 NL80211_RRF_NO_OFDM), 233 /* IEEE 802.11a, channel 36..48 */ 234 REG_RULE(5180-10, 5240+10, 160, 6, 20, 235 NL80211_RRF_NO_IR), 236 237 /* IEEE 802.11a, channel 52..64 - DFS required */ 238 REG_RULE(5260-10, 5320+10, 160, 6, 20, 239 NL80211_RRF_NO_IR | 240 NL80211_RRF_DFS), 241 242 /* IEEE 802.11a, channel 100..144 - DFS required */ 243 REG_RULE(5500-10, 5720+10, 160, 6, 20, 244 NL80211_RRF_NO_IR | 245 NL80211_RRF_DFS), 246 247 /* IEEE 802.11a, channel 149..165 */ 248 REG_RULE(5745-10, 5825+10, 80, 6, 20, 249 NL80211_RRF_NO_IR), 250 251 /* IEEE 802.11ad (60gHz), channels 1..3 */ 252 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0), 253 } 254 }; 255 256 /* protected by RTNL */ 257 static const struct ieee80211_regdomain *cfg80211_world_regdom = 258 &world_regdom; 259 260 static char *ieee80211_regdom = "00"; 261 static char user_alpha2[2]; 262 263 module_param(ieee80211_regdom, charp, 0444); 264 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); 265 266 static void reg_free_request(struct regulatory_request *request) 267 { 268 if (request != get_last_request()) 269 kfree(request); 270 } 271 272 static void reg_free_last_request(void) 273 { 274 struct regulatory_request *lr = get_last_request(); 275 276 if (lr != &core_request_world && lr) 277 kfree_rcu(lr, rcu_head); 278 } 279 280 static void reg_update_last_request(struct regulatory_request *request) 281 { 282 struct regulatory_request *lr; 283 284 lr = get_last_request(); 285 if (lr == request) 286 return; 287 288 reg_free_last_request(); 289 rcu_assign_pointer(last_request, request); 290 } 291 292 static void reset_regdomains(bool full_reset, 293 const struct ieee80211_regdomain *new_regdom) 294 { 295 const struct ieee80211_regdomain *r; 296 297 ASSERT_RTNL(); 298 299 r = get_cfg80211_regdom(); 300 301 /* avoid freeing static information or freeing something twice */ 302 if (r == cfg80211_world_regdom) 303 r = NULL; 304 if (cfg80211_world_regdom == &world_regdom) 305 cfg80211_world_regdom = NULL; 306 if (r == &world_regdom) 307 r = NULL; 308 309 rcu_free_regdom(r); 310 rcu_free_regdom(cfg80211_world_regdom); 311 312 cfg80211_world_regdom = &world_regdom; 313 rcu_assign_pointer(cfg80211_regdomain, new_regdom); 314 315 if (!full_reset) 316 return; 317 318 reg_update_last_request(&core_request_world); 319 } 320 321 /* 322 * Dynamic world regulatory domain requested by the wireless 323 * core upon initialization 324 */ 325 static void update_world_regdomain(const struct ieee80211_regdomain *rd) 326 { 327 struct regulatory_request *lr; 328 329 lr = get_last_request(); 330 331 WARN_ON(!lr); 332 333 reset_regdomains(false, rd); 334 335 cfg80211_world_regdom = rd; 336 } 337 338 bool is_world_regdom(const char *alpha2) 339 { 340 if (!alpha2) 341 return false; 342 return alpha2[0] == '0' && alpha2[1] == '0'; 343 } 344 345 static bool is_alpha2_set(const char *alpha2) 346 { 347 if (!alpha2) 348 return false; 349 return alpha2[0] && alpha2[1]; 350 } 351 352 static bool is_unknown_alpha2(const char *alpha2) 353 { 354 if (!alpha2) 355 return false; 356 /* 357 * Special case where regulatory domain was built by driver 358 * but a specific alpha2 cannot be determined 359 */ 360 return alpha2[0] == '9' && alpha2[1] == '9'; 361 } 362 363 static bool is_intersected_alpha2(const char *alpha2) 364 { 365 if (!alpha2) 366 return false; 367 /* 368 * Special case where regulatory domain is the 369 * result of an intersection between two regulatory domain 370 * structures 371 */ 372 return alpha2[0] == '9' && alpha2[1] == '8'; 373 } 374 375 static bool is_an_alpha2(const char *alpha2) 376 { 377 if (!alpha2) 378 return false; 379 return isalpha(alpha2[0]) && isalpha(alpha2[1]); 380 } 381 382 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) 383 { 384 if (!alpha2_x || !alpha2_y) 385 return false; 386 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1]; 387 } 388 389 static bool regdom_changes(const char *alpha2) 390 { 391 const struct ieee80211_regdomain *r = get_cfg80211_regdom(); 392 393 if (!r) 394 return true; 395 return !alpha2_equal(r->alpha2, alpha2); 396 } 397 398 /* 399 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets 400 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER 401 * has ever been issued. 402 */ 403 static bool is_user_regdom_saved(void) 404 { 405 if (user_alpha2[0] == '9' && user_alpha2[1] == '7') 406 return false; 407 408 /* This would indicate a mistake on the design */ 409 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2), 410 "Unexpected user alpha2: %c%c\n", 411 user_alpha2[0], user_alpha2[1])) 412 return false; 413 414 return true; 415 } 416 417 static const struct ieee80211_regdomain * 418 reg_copy_regd(const struct ieee80211_regdomain *src_regd) 419 { 420 struct ieee80211_regdomain *regd; 421 int size_of_regd; 422 unsigned int i; 423 424 size_of_regd = 425 sizeof(struct ieee80211_regdomain) + 426 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule); 427 428 regd = kzalloc(size_of_regd, GFP_KERNEL); 429 if (!regd) 430 return ERR_PTR(-ENOMEM); 431 432 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); 433 434 for (i = 0; i < src_regd->n_reg_rules; i++) 435 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], 436 sizeof(struct ieee80211_reg_rule)); 437 438 return regd; 439 } 440 441 #ifdef CONFIG_CFG80211_INTERNAL_REGDB 442 struct reg_regdb_search_request { 443 char alpha2[2]; 444 struct list_head list; 445 }; 446 447 static LIST_HEAD(reg_regdb_search_list); 448 static DEFINE_MUTEX(reg_regdb_search_mutex); 449 450 static void reg_regdb_search(struct work_struct *work) 451 { 452 struct reg_regdb_search_request *request; 453 const struct ieee80211_regdomain *curdom, *regdom = NULL; 454 int i; 455 456 rtnl_lock(); 457 458 mutex_lock(®_regdb_search_mutex); 459 while (!list_empty(®_regdb_search_list)) { 460 request = list_first_entry(®_regdb_search_list, 461 struct reg_regdb_search_request, 462 list); 463 list_del(&request->list); 464 465 for (i = 0; i < reg_regdb_size; i++) { 466 curdom = reg_regdb[i]; 467 468 if (alpha2_equal(request->alpha2, curdom->alpha2)) { 469 regdom = reg_copy_regd(curdom); 470 break; 471 } 472 } 473 474 kfree(request); 475 } 476 mutex_unlock(®_regdb_search_mutex); 477 478 if (!IS_ERR_OR_NULL(regdom)) 479 set_regdom(regdom); 480 481 rtnl_unlock(); 482 } 483 484 static DECLARE_WORK(reg_regdb_work, reg_regdb_search); 485 486 static void reg_regdb_query(const char *alpha2) 487 { 488 struct reg_regdb_search_request *request; 489 490 if (!alpha2) 491 return; 492 493 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); 494 if (!request) 495 return; 496 497 memcpy(request->alpha2, alpha2, 2); 498 499 mutex_lock(®_regdb_search_mutex); 500 list_add_tail(&request->list, ®_regdb_search_list); 501 mutex_unlock(®_regdb_search_mutex); 502 503 schedule_work(®_regdb_work); 504 } 505 506 /* Feel free to add any other sanity checks here */ 507 static void reg_regdb_size_check(void) 508 { 509 /* We should ideally BUILD_BUG_ON() but then random builds would fail */ 510 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); 511 } 512 #else 513 static inline void reg_regdb_size_check(void) {} 514 static inline void reg_regdb_query(const char *alpha2) {} 515 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ 516 517 /* 518 * This lets us keep regulatory code which is updated on a regulatory 519 * basis in userspace. 520 */ 521 static int call_crda(const char *alpha2) 522 { 523 char country[12]; 524 char *env[] = { country, NULL }; 525 526 snprintf(country, sizeof(country), "COUNTRY=%c%c", 527 alpha2[0], alpha2[1]); 528 529 if (!is_world_regdom((char *) alpha2)) 530 pr_info("Calling CRDA for country: %c%c\n", 531 alpha2[0], alpha2[1]); 532 else 533 pr_info("Calling CRDA to update world regulatory domain\n"); 534 535 /* query internal regulatory database (if it exists) */ 536 reg_regdb_query(alpha2); 537 538 return kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env); 539 } 540 541 static enum reg_request_treatment 542 reg_call_crda(struct regulatory_request *request) 543 { 544 if (call_crda(request->alpha2)) 545 return REG_REQ_IGNORE; 546 return REG_REQ_OK; 547 } 548 549 bool reg_is_valid_request(const char *alpha2) 550 { 551 struct regulatory_request *lr = get_last_request(); 552 553 if (!lr || lr->processed) 554 return false; 555 556 return alpha2_equal(lr->alpha2, alpha2); 557 } 558 559 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy) 560 { 561 struct regulatory_request *lr = get_last_request(); 562 563 /* 564 * Follow the driver's regulatory domain, if present, unless a country 565 * IE has been processed or a user wants to help complaince further 566 */ 567 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 568 lr->initiator != NL80211_REGDOM_SET_BY_USER && 569 wiphy->regd) 570 return get_wiphy_regdom(wiphy); 571 572 return get_cfg80211_regdom(); 573 } 574 575 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd, 576 const struct ieee80211_reg_rule *rule) 577 { 578 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 579 const struct ieee80211_freq_range *freq_range_tmp; 580 const struct ieee80211_reg_rule *tmp; 581 u32 start_freq, end_freq, idx, no; 582 583 for (idx = 0; idx < rd->n_reg_rules; idx++) 584 if (rule == &rd->reg_rules[idx]) 585 break; 586 587 if (idx == rd->n_reg_rules) 588 return 0; 589 590 /* get start_freq */ 591 no = idx; 592 593 while (no) { 594 tmp = &rd->reg_rules[--no]; 595 freq_range_tmp = &tmp->freq_range; 596 597 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz) 598 break; 599 600 freq_range = freq_range_tmp; 601 } 602 603 start_freq = freq_range->start_freq_khz; 604 605 /* get end_freq */ 606 freq_range = &rule->freq_range; 607 no = idx; 608 609 while (no < rd->n_reg_rules - 1) { 610 tmp = &rd->reg_rules[++no]; 611 freq_range_tmp = &tmp->freq_range; 612 613 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz) 614 break; 615 616 freq_range = freq_range_tmp; 617 } 618 619 end_freq = freq_range->end_freq_khz; 620 621 return end_freq - start_freq; 622 } 623 624 /* Sanity check on a regulatory rule */ 625 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) 626 { 627 const struct ieee80211_freq_range *freq_range = &rule->freq_range; 628 u32 freq_diff; 629 630 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) 631 return false; 632 633 if (freq_range->start_freq_khz > freq_range->end_freq_khz) 634 return false; 635 636 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 637 638 if (freq_range->end_freq_khz <= freq_range->start_freq_khz || 639 freq_range->max_bandwidth_khz > freq_diff) 640 return false; 641 642 return true; 643 } 644 645 static bool is_valid_rd(const struct ieee80211_regdomain *rd) 646 { 647 const struct ieee80211_reg_rule *reg_rule = NULL; 648 unsigned int i; 649 650 if (!rd->n_reg_rules) 651 return false; 652 653 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) 654 return false; 655 656 for (i = 0; i < rd->n_reg_rules; i++) { 657 reg_rule = &rd->reg_rules[i]; 658 if (!is_valid_reg_rule(reg_rule)) 659 return false; 660 } 661 662 return true; 663 } 664 665 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, 666 u32 center_freq_khz, u32 bw_khz) 667 { 668 u32 start_freq_khz, end_freq_khz; 669 670 start_freq_khz = center_freq_khz - (bw_khz/2); 671 end_freq_khz = center_freq_khz + (bw_khz/2); 672 673 if (start_freq_khz >= freq_range->start_freq_khz && 674 end_freq_khz <= freq_range->end_freq_khz) 675 return true; 676 677 return false; 678 } 679 680 /** 681 * freq_in_rule_band - tells us if a frequency is in a frequency band 682 * @freq_range: frequency rule we want to query 683 * @freq_khz: frequency we are inquiring about 684 * 685 * This lets us know if a specific frequency rule is or is not relevant to 686 * a specific frequency's band. Bands are device specific and artificial 687 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"), 688 * however it is safe for now to assume that a frequency rule should not be 689 * part of a frequency's band if the start freq or end freq are off by more 690 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the 691 * 60 GHz band. 692 * This resolution can be lowered and should be considered as we add 693 * regulatory rule support for other "bands". 694 **/ 695 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, 696 u32 freq_khz) 697 { 698 #define ONE_GHZ_IN_KHZ 1000000 699 /* 700 * From 802.11ad: directional multi-gigabit (DMG): 701 * Pertaining to operation in a frequency band containing a channel 702 * with the Channel starting frequency above 45 GHz. 703 */ 704 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ? 705 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ; 706 if (abs(freq_khz - freq_range->start_freq_khz) <= limit) 707 return true; 708 if (abs(freq_khz - freq_range->end_freq_khz) <= limit) 709 return true; 710 return false; 711 #undef ONE_GHZ_IN_KHZ 712 } 713 714 /* 715 * Later on we can perhaps use the more restrictive DFS 716 * region but we don't have information for that yet so 717 * for now simply disallow conflicts. 718 */ 719 static enum nl80211_dfs_regions 720 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1, 721 const enum nl80211_dfs_regions dfs_region2) 722 { 723 if (dfs_region1 != dfs_region2) 724 return NL80211_DFS_UNSET; 725 return dfs_region1; 726 } 727 728 /* 729 * Helper for regdom_intersect(), this does the real 730 * mathematical intersection fun 731 */ 732 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1, 733 const struct ieee80211_regdomain *rd2, 734 const struct ieee80211_reg_rule *rule1, 735 const struct ieee80211_reg_rule *rule2, 736 struct ieee80211_reg_rule *intersected_rule) 737 { 738 const struct ieee80211_freq_range *freq_range1, *freq_range2; 739 struct ieee80211_freq_range *freq_range; 740 const struct ieee80211_power_rule *power_rule1, *power_rule2; 741 struct ieee80211_power_rule *power_rule; 742 u32 freq_diff, max_bandwidth1, max_bandwidth2; 743 744 freq_range1 = &rule1->freq_range; 745 freq_range2 = &rule2->freq_range; 746 freq_range = &intersected_rule->freq_range; 747 748 power_rule1 = &rule1->power_rule; 749 power_rule2 = &rule2->power_rule; 750 power_rule = &intersected_rule->power_rule; 751 752 freq_range->start_freq_khz = max(freq_range1->start_freq_khz, 753 freq_range2->start_freq_khz); 754 freq_range->end_freq_khz = min(freq_range1->end_freq_khz, 755 freq_range2->end_freq_khz); 756 757 max_bandwidth1 = freq_range1->max_bandwidth_khz; 758 max_bandwidth2 = freq_range2->max_bandwidth_khz; 759 760 if (rule1->flags & NL80211_RRF_AUTO_BW) 761 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1); 762 if (rule2->flags & NL80211_RRF_AUTO_BW) 763 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2); 764 765 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2); 766 767 intersected_rule->flags = rule1->flags | rule2->flags; 768 769 /* 770 * In case NL80211_RRF_AUTO_BW requested for both rules 771 * set AUTO_BW in intersected rule also. Next we will 772 * calculate BW correctly in handle_channel function. 773 * In other case remove AUTO_BW flag while we calculate 774 * maximum bandwidth correctly and auto calculation is 775 * not required. 776 */ 777 if ((rule1->flags & NL80211_RRF_AUTO_BW) && 778 (rule2->flags & NL80211_RRF_AUTO_BW)) 779 intersected_rule->flags |= NL80211_RRF_AUTO_BW; 780 else 781 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW; 782 783 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; 784 if (freq_range->max_bandwidth_khz > freq_diff) 785 freq_range->max_bandwidth_khz = freq_diff; 786 787 power_rule->max_eirp = min(power_rule1->max_eirp, 788 power_rule2->max_eirp); 789 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, 790 power_rule2->max_antenna_gain); 791 792 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms, 793 rule2->dfs_cac_ms); 794 795 if (!is_valid_reg_rule(intersected_rule)) 796 return -EINVAL; 797 798 return 0; 799 } 800 801 /** 802 * regdom_intersect - do the intersection between two regulatory domains 803 * @rd1: first regulatory domain 804 * @rd2: second regulatory domain 805 * 806 * Use this function to get the intersection between two regulatory domains. 807 * Once completed we will mark the alpha2 for the rd as intersected, "98", 808 * as no one single alpha2 can represent this regulatory domain. 809 * 810 * Returns a pointer to the regulatory domain structure which will hold the 811 * resulting intersection of rules between rd1 and rd2. We will 812 * kzalloc() this structure for you. 813 */ 814 static struct ieee80211_regdomain * 815 regdom_intersect(const struct ieee80211_regdomain *rd1, 816 const struct ieee80211_regdomain *rd2) 817 { 818 int r, size_of_regd; 819 unsigned int x, y; 820 unsigned int num_rules = 0, rule_idx = 0; 821 const struct ieee80211_reg_rule *rule1, *rule2; 822 struct ieee80211_reg_rule *intersected_rule; 823 struct ieee80211_regdomain *rd; 824 /* This is just a dummy holder to help us count */ 825 struct ieee80211_reg_rule dummy_rule; 826 827 if (!rd1 || !rd2) 828 return NULL; 829 830 /* 831 * First we get a count of the rules we'll need, then we actually 832 * build them. This is to so we can malloc() and free() a 833 * regdomain once. The reason we use reg_rules_intersect() here 834 * is it will return -EINVAL if the rule computed makes no sense. 835 * All rules that do check out OK are valid. 836 */ 837 838 for (x = 0; x < rd1->n_reg_rules; x++) { 839 rule1 = &rd1->reg_rules[x]; 840 for (y = 0; y < rd2->n_reg_rules; y++) { 841 rule2 = &rd2->reg_rules[y]; 842 if (!reg_rules_intersect(rd1, rd2, rule1, rule2, 843 &dummy_rule)) 844 num_rules++; 845 } 846 } 847 848 if (!num_rules) 849 return NULL; 850 851 size_of_regd = sizeof(struct ieee80211_regdomain) + 852 num_rules * sizeof(struct ieee80211_reg_rule); 853 854 rd = kzalloc(size_of_regd, GFP_KERNEL); 855 if (!rd) 856 return NULL; 857 858 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) { 859 rule1 = &rd1->reg_rules[x]; 860 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) { 861 rule2 = &rd2->reg_rules[y]; 862 /* 863 * This time around instead of using the stack lets 864 * write to the target rule directly saving ourselves 865 * a memcpy() 866 */ 867 intersected_rule = &rd->reg_rules[rule_idx]; 868 r = reg_rules_intersect(rd1, rd2, rule1, rule2, 869 intersected_rule); 870 /* 871 * No need to memset here the intersected rule here as 872 * we're not using the stack anymore 873 */ 874 if (r) 875 continue; 876 rule_idx++; 877 } 878 } 879 880 if (rule_idx != num_rules) { 881 kfree(rd); 882 return NULL; 883 } 884 885 rd->n_reg_rules = num_rules; 886 rd->alpha2[0] = '9'; 887 rd->alpha2[1] = '8'; 888 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region, 889 rd2->dfs_region); 890 891 return rd; 892 } 893 894 /* 895 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may 896 * want to just have the channel structure use these 897 */ 898 static u32 map_regdom_flags(u32 rd_flags) 899 { 900 u32 channel_flags = 0; 901 if (rd_flags & NL80211_RRF_NO_IR_ALL) 902 channel_flags |= IEEE80211_CHAN_NO_IR; 903 if (rd_flags & NL80211_RRF_DFS) 904 channel_flags |= IEEE80211_CHAN_RADAR; 905 if (rd_flags & NL80211_RRF_NO_OFDM) 906 channel_flags |= IEEE80211_CHAN_NO_OFDM; 907 if (rd_flags & NL80211_RRF_NO_OUTDOOR) 908 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY; 909 return channel_flags; 910 } 911 912 static const struct ieee80211_reg_rule * 913 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq, 914 const struct ieee80211_regdomain *regd) 915 { 916 int i; 917 bool band_rule_found = false; 918 bool bw_fits = false; 919 920 if (!regd) 921 return ERR_PTR(-EINVAL); 922 923 for (i = 0; i < regd->n_reg_rules; i++) { 924 const struct ieee80211_reg_rule *rr; 925 const struct ieee80211_freq_range *fr = NULL; 926 927 rr = ®d->reg_rules[i]; 928 fr = &rr->freq_range; 929 930 /* 931 * We only need to know if one frequency rule was 932 * was in center_freq's band, that's enough, so lets 933 * not overwrite it once found 934 */ 935 if (!band_rule_found) 936 band_rule_found = freq_in_rule_band(fr, center_freq); 937 938 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20)); 939 940 if (band_rule_found && bw_fits) 941 return rr; 942 } 943 944 if (!band_rule_found) 945 return ERR_PTR(-ERANGE); 946 947 return ERR_PTR(-EINVAL); 948 } 949 950 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy, 951 u32 center_freq) 952 { 953 const struct ieee80211_regdomain *regd; 954 955 regd = reg_get_regdomain(wiphy); 956 957 return freq_reg_info_regd(wiphy, center_freq, regd); 958 } 959 EXPORT_SYMBOL(freq_reg_info); 960 961 const char *reg_initiator_name(enum nl80211_reg_initiator initiator) 962 { 963 switch (initiator) { 964 case NL80211_REGDOM_SET_BY_CORE: 965 return "core"; 966 case NL80211_REGDOM_SET_BY_USER: 967 return "user"; 968 case NL80211_REGDOM_SET_BY_DRIVER: 969 return "driver"; 970 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 971 return "country IE"; 972 default: 973 WARN_ON(1); 974 return "bug"; 975 } 976 } 977 EXPORT_SYMBOL(reg_initiator_name); 978 979 #ifdef CONFIG_CFG80211_REG_DEBUG 980 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 981 struct ieee80211_channel *chan, 982 const struct ieee80211_reg_rule *reg_rule) 983 { 984 const struct ieee80211_power_rule *power_rule; 985 const struct ieee80211_freq_range *freq_range; 986 char max_antenna_gain[32], bw[32]; 987 988 power_rule = ®_rule->power_rule; 989 freq_range = ®_rule->freq_range; 990 991 if (!power_rule->max_antenna_gain) 992 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A"); 993 else 994 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d", 995 power_rule->max_antenna_gain); 996 997 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 998 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 999 freq_range->max_bandwidth_khz, 1000 reg_get_max_bandwidth(regd, reg_rule)); 1001 else 1002 snprintf(bw, sizeof(bw), "%d KHz", 1003 freq_range->max_bandwidth_khz); 1004 1005 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n", 1006 chan->center_freq); 1007 1008 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n", 1009 freq_range->start_freq_khz, freq_range->end_freq_khz, 1010 bw, max_antenna_gain, 1011 power_rule->max_eirp); 1012 } 1013 #else 1014 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd, 1015 struct ieee80211_channel *chan, 1016 const struct ieee80211_reg_rule *reg_rule) 1017 { 1018 return; 1019 } 1020 #endif 1021 1022 /* 1023 * Note that right now we assume the desired channel bandwidth 1024 * is always 20 MHz for each individual channel (HT40 uses 20 MHz 1025 * per channel, the primary and the extension channel). 1026 */ 1027 static void handle_channel(struct wiphy *wiphy, 1028 enum nl80211_reg_initiator initiator, 1029 struct ieee80211_channel *chan) 1030 { 1031 u32 flags, bw_flags = 0; 1032 const struct ieee80211_reg_rule *reg_rule = NULL; 1033 const struct ieee80211_power_rule *power_rule = NULL; 1034 const struct ieee80211_freq_range *freq_range = NULL; 1035 struct wiphy *request_wiphy = NULL; 1036 struct regulatory_request *lr = get_last_request(); 1037 const struct ieee80211_regdomain *regd; 1038 u32 max_bandwidth_khz; 1039 1040 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1041 1042 flags = chan->orig_flags; 1043 1044 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq)); 1045 if (IS_ERR(reg_rule)) { 1046 /* 1047 * We will disable all channels that do not match our 1048 * received regulatory rule unless the hint is coming 1049 * from a Country IE and the Country IE had no information 1050 * about a band. The IEEE 802.11 spec allows for an AP 1051 * to send only a subset of the regulatory rules allowed, 1052 * so an AP in the US that only supports 2.4 GHz may only send 1053 * a country IE with information for the 2.4 GHz band 1054 * while 5 GHz is still supported. 1055 */ 1056 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1057 PTR_ERR(reg_rule) == -ERANGE) 1058 return; 1059 1060 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1061 request_wiphy && request_wiphy == wiphy && 1062 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1063 REG_DBG_PRINT("Disabling freq %d MHz for good\n", 1064 chan->center_freq); 1065 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1066 chan->flags = chan->orig_flags; 1067 } else { 1068 REG_DBG_PRINT("Disabling freq %d MHz\n", 1069 chan->center_freq); 1070 chan->flags |= IEEE80211_CHAN_DISABLED; 1071 } 1072 return; 1073 } 1074 1075 regd = reg_get_regdomain(wiphy); 1076 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1077 1078 power_rule = ®_rule->power_rule; 1079 freq_range = ®_rule->freq_range; 1080 1081 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1082 /* Check if auto calculation requested */ 1083 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1084 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1085 1086 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1087 bw_flags = IEEE80211_CHAN_NO_HT40; 1088 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1089 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1090 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1091 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1092 1093 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1094 request_wiphy && request_wiphy == wiphy && 1095 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) { 1096 /* 1097 * This guarantees the driver's requested regulatory domain 1098 * will always be used as a base for further regulatory 1099 * settings 1100 */ 1101 chan->flags = chan->orig_flags = 1102 map_regdom_flags(reg_rule->flags) | bw_flags; 1103 chan->max_antenna_gain = chan->orig_mag = 1104 (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1105 chan->max_reg_power = chan->max_power = chan->orig_mpwr = 1106 (int) MBM_TO_DBM(power_rule->max_eirp); 1107 1108 if (chan->flags & IEEE80211_CHAN_RADAR) { 1109 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1110 if (reg_rule->dfs_cac_ms) 1111 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1112 } 1113 1114 return; 1115 } 1116 1117 chan->dfs_state = NL80211_DFS_USABLE; 1118 chan->dfs_state_entered = jiffies; 1119 1120 chan->beacon_found = false; 1121 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); 1122 chan->max_antenna_gain = 1123 min_t(int, chan->orig_mag, 1124 MBI_TO_DBI(power_rule->max_antenna_gain)); 1125 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); 1126 1127 if (chan->flags & IEEE80211_CHAN_RADAR) { 1128 if (reg_rule->dfs_cac_ms) 1129 chan->dfs_cac_ms = reg_rule->dfs_cac_ms; 1130 else 1131 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS; 1132 } 1133 1134 if (chan->orig_mpwr) { 1135 /* 1136 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER 1137 * will always follow the passed country IE power settings. 1138 */ 1139 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 1140 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER) 1141 chan->max_power = chan->max_reg_power; 1142 else 1143 chan->max_power = min(chan->orig_mpwr, 1144 chan->max_reg_power); 1145 } else 1146 chan->max_power = chan->max_reg_power; 1147 } 1148 1149 static void handle_band(struct wiphy *wiphy, 1150 enum nl80211_reg_initiator initiator, 1151 struct ieee80211_supported_band *sband) 1152 { 1153 unsigned int i; 1154 1155 if (!sband) 1156 return; 1157 1158 for (i = 0; i < sband->n_channels; i++) 1159 handle_channel(wiphy, initiator, &sband->channels[i]); 1160 } 1161 1162 static bool reg_request_cell_base(struct regulatory_request *request) 1163 { 1164 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1165 return false; 1166 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE; 1167 } 1168 1169 static bool reg_request_indoor(struct regulatory_request *request) 1170 { 1171 if (request->initiator != NL80211_REGDOM_SET_BY_USER) 1172 return false; 1173 return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR; 1174 } 1175 1176 bool reg_last_request_cell_base(void) 1177 { 1178 return reg_request_cell_base(get_last_request()); 1179 } 1180 1181 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS 1182 /* Core specific check */ 1183 static enum reg_request_treatment 1184 reg_ignore_cell_hint(struct regulatory_request *pending_request) 1185 { 1186 struct regulatory_request *lr = get_last_request(); 1187 1188 if (!reg_num_devs_support_basehint) 1189 return REG_REQ_IGNORE; 1190 1191 if (reg_request_cell_base(lr) && 1192 !regdom_changes(pending_request->alpha2)) 1193 return REG_REQ_ALREADY_SET; 1194 1195 return REG_REQ_OK; 1196 } 1197 1198 /* Device specific check */ 1199 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1200 { 1201 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS); 1202 } 1203 #else 1204 static int reg_ignore_cell_hint(struct regulatory_request *pending_request) 1205 { 1206 return REG_REQ_IGNORE; 1207 } 1208 1209 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy) 1210 { 1211 return true; 1212 } 1213 #endif 1214 1215 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy) 1216 { 1217 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG && 1218 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)) 1219 return true; 1220 return false; 1221 } 1222 1223 static bool ignore_reg_update(struct wiphy *wiphy, 1224 enum nl80211_reg_initiator initiator) 1225 { 1226 struct regulatory_request *lr = get_last_request(); 1227 1228 if (!lr) { 1229 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1230 "since last_request is not set\n", 1231 reg_initiator_name(initiator)); 1232 return true; 1233 } 1234 1235 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1236 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) { 1237 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1238 "since the driver uses its own custom " 1239 "regulatory domain\n", 1240 reg_initiator_name(initiator)); 1241 return true; 1242 } 1243 1244 /* 1245 * wiphy->regd will be set once the device has its own 1246 * desired regulatory domain set 1247 */ 1248 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd && 1249 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1250 !is_world_regdom(lr->alpha2)) { 1251 REG_DBG_PRINT("Ignoring regulatory request set by %s " 1252 "since the driver requires its own regulatory " 1253 "domain to be set first\n", 1254 reg_initiator_name(initiator)); 1255 return true; 1256 } 1257 1258 if (reg_request_cell_base(lr)) 1259 return reg_dev_ignore_cell_hint(wiphy); 1260 1261 return false; 1262 } 1263 1264 static bool reg_is_world_roaming(struct wiphy *wiphy) 1265 { 1266 const struct ieee80211_regdomain *cr = get_cfg80211_regdom(); 1267 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy); 1268 struct regulatory_request *lr = get_last_request(); 1269 1270 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2))) 1271 return true; 1272 1273 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && 1274 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1275 return true; 1276 1277 return false; 1278 } 1279 1280 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx, 1281 struct reg_beacon *reg_beacon) 1282 { 1283 struct ieee80211_supported_band *sband; 1284 struct ieee80211_channel *chan; 1285 bool channel_changed = false; 1286 struct ieee80211_channel chan_before; 1287 1288 sband = wiphy->bands[reg_beacon->chan.band]; 1289 chan = &sband->channels[chan_idx]; 1290 1291 if (likely(chan->center_freq != reg_beacon->chan.center_freq)) 1292 return; 1293 1294 if (chan->beacon_found) 1295 return; 1296 1297 chan->beacon_found = true; 1298 1299 if (!reg_is_world_roaming(wiphy)) 1300 return; 1301 1302 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS) 1303 return; 1304 1305 chan_before.center_freq = chan->center_freq; 1306 chan_before.flags = chan->flags; 1307 1308 if (chan->flags & IEEE80211_CHAN_NO_IR) { 1309 chan->flags &= ~IEEE80211_CHAN_NO_IR; 1310 channel_changed = true; 1311 } 1312 1313 if (channel_changed) 1314 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); 1315 } 1316 1317 /* 1318 * Called when a scan on a wiphy finds a beacon on 1319 * new channel 1320 */ 1321 static void wiphy_update_new_beacon(struct wiphy *wiphy, 1322 struct reg_beacon *reg_beacon) 1323 { 1324 unsigned int i; 1325 struct ieee80211_supported_band *sband; 1326 1327 if (!wiphy->bands[reg_beacon->chan.band]) 1328 return; 1329 1330 sband = wiphy->bands[reg_beacon->chan.band]; 1331 1332 for (i = 0; i < sband->n_channels; i++) 1333 handle_reg_beacon(wiphy, i, reg_beacon); 1334 } 1335 1336 /* 1337 * Called upon reg changes or a new wiphy is added 1338 */ 1339 static void wiphy_update_beacon_reg(struct wiphy *wiphy) 1340 { 1341 unsigned int i; 1342 struct ieee80211_supported_band *sband; 1343 struct reg_beacon *reg_beacon; 1344 1345 list_for_each_entry(reg_beacon, ®_beacon_list, list) { 1346 if (!wiphy->bands[reg_beacon->chan.band]) 1347 continue; 1348 sband = wiphy->bands[reg_beacon->chan.band]; 1349 for (i = 0; i < sband->n_channels; i++) 1350 handle_reg_beacon(wiphy, i, reg_beacon); 1351 } 1352 } 1353 1354 /* Reap the advantages of previously found beacons */ 1355 static void reg_process_beacons(struct wiphy *wiphy) 1356 { 1357 /* 1358 * Means we are just firing up cfg80211, so no beacons would 1359 * have been processed yet. 1360 */ 1361 if (!last_request) 1362 return; 1363 wiphy_update_beacon_reg(wiphy); 1364 } 1365 1366 static bool is_ht40_allowed(struct ieee80211_channel *chan) 1367 { 1368 if (!chan) 1369 return false; 1370 if (chan->flags & IEEE80211_CHAN_DISABLED) 1371 return false; 1372 /* This would happen when regulatory rules disallow HT40 completely */ 1373 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40) 1374 return false; 1375 return true; 1376 } 1377 1378 static void reg_process_ht_flags_channel(struct wiphy *wiphy, 1379 struct ieee80211_channel *channel) 1380 { 1381 struct ieee80211_supported_band *sband = wiphy->bands[channel->band]; 1382 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; 1383 unsigned int i; 1384 1385 if (!is_ht40_allowed(channel)) { 1386 channel->flags |= IEEE80211_CHAN_NO_HT40; 1387 return; 1388 } 1389 1390 /* 1391 * We need to ensure the extension channels exist to 1392 * be able to use HT40- or HT40+, this finds them (or not) 1393 */ 1394 for (i = 0; i < sband->n_channels; i++) { 1395 struct ieee80211_channel *c = &sband->channels[i]; 1396 1397 if (c->center_freq == (channel->center_freq - 20)) 1398 channel_before = c; 1399 if (c->center_freq == (channel->center_freq + 20)) 1400 channel_after = c; 1401 } 1402 1403 /* 1404 * Please note that this assumes target bandwidth is 20 MHz, 1405 * if that ever changes we also need to change the below logic 1406 * to include that as well. 1407 */ 1408 if (!is_ht40_allowed(channel_before)) 1409 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; 1410 else 1411 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; 1412 1413 if (!is_ht40_allowed(channel_after)) 1414 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; 1415 else 1416 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; 1417 } 1418 1419 static void reg_process_ht_flags_band(struct wiphy *wiphy, 1420 struct ieee80211_supported_band *sband) 1421 { 1422 unsigned int i; 1423 1424 if (!sband) 1425 return; 1426 1427 for (i = 0; i < sband->n_channels; i++) 1428 reg_process_ht_flags_channel(wiphy, &sband->channels[i]); 1429 } 1430 1431 static void reg_process_ht_flags(struct wiphy *wiphy) 1432 { 1433 enum ieee80211_band band; 1434 1435 if (!wiphy) 1436 return; 1437 1438 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1439 reg_process_ht_flags_band(wiphy, wiphy->bands[band]); 1440 } 1441 1442 static void reg_call_notifier(struct wiphy *wiphy, 1443 struct regulatory_request *request) 1444 { 1445 if (wiphy->reg_notifier) 1446 wiphy->reg_notifier(wiphy, request); 1447 } 1448 1449 static void wiphy_update_regulatory(struct wiphy *wiphy, 1450 enum nl80211_reg_initiator initiator) 1451 { 1452 enum ieee80211_band band; 1453 struct regulatory_request *lr = get_last_request(); 1454 1455 if (ignore_reg_update(wiphy, initiator)) { 1456 /* 1457 * Regulatory updates set by CORE are ignored for custom 1458 * regulatory cards. Let us notify the changes to the driver, 1459 * as some drivers used this to restore its orig_* reg domain. 1460 */ 1461 if (initiator == NL80211_REGDOM_SET_BY_CORE && 1462 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) 1463 reg_call_notifier(wiphy, lr); 1464 return; 1465 } 1466 1467 lr->dfs_region = get_cfg80211_regdom()->dfs_region; 1468 1469 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1470 handle_band(wiphy, initiator, wiphy->bands[band]); 1471 1472 reg_process_beacons(wiphy); 1473 reg_process_ht_flags(wiphy); 1474 reg_call_notifier(wiphy, lr); 1475 } 1476 1477 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) 1478 { 1479 struct cfg80211_registered_device *rdev; 1480 struct wiphy *wiphy; 1481 1482 ASSERT_RTNL(); 1483 1484 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 1485 wiphy = &rdev->wiphy; 1486 wiphy_update_regulatory(wiphy, initiator); 1487 } 1488 } 1489 1490 static void handle_channel_custom(struct wiphy *wiphy, 1491 struct ieee80211_channel *chan, 1492 const struct ieee80211_regdomain *regd) 1493 { 1494 u32 bw_flags = 0; 1495 const struct ieee80211_reg_rule *reg_rule = NULL; 1496 const struct ieee80211_power_rule *power_rule = NULL; 1497 const struct ieee80211_freq_range *freq_range = NULL; 1498 u32 max_bandwidth_khz; 1499 1500 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq), 1501 regd); 1502 1503 if (IS_ERR(reg_rule)) { 1504 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n", 1505 chan->center_freq); 1506 chan->orig_flags |= IEEE80211_CHAN_DISABLED; 1507 chan->flags = chan->orig_flags; 1508 return; 1509 } 1510 1511 chan_reg_rule_print_dbg(regd, chan, reg_rule); 1512 1513 power_rule = ®_rule->power_rule; 1514 freq_range = ®_rule->freq_range; 1515 1516 max_bandwidth_khz = freq_range->max_bandwidth_khz; 1517 /* Check if auto calculation requested */ 1518 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 1519 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule); 1520 1521 if (max_bandwidth_khz < MHZ_TO_KHZ(40)) 1522 bw_flags = IEEE80211_CHAN_NO_HT40; 1523 if (max_bandwidth_khz < MHZ_TO_KHZ(80)) 1524 bw_flags |= IEEE80211_CHAN_NO_80MHZ; 1525 if (max_bandwidth_khz < MHZ_TO_KHZ(160)) 1526 bw_flags |= IEEE80211_CHAN_NO_160MHZ; 1527 1528 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; 1529 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); 1530 chan->max_reg_power = chan->max_power = 1531 (int) MBM_TO_DBM(power_rule->max_eirp); 1532 } 1533 1534 static void handle_band_custom(struct wiphy *wiphy, 1535 struct ieee80211_supported_band *sband, 1536 const struct ieee80211_regdomain *regd) 1537 { 1538 unsigned int i; 1539 1540 if (!sband) 1541 return; 1542 1543 for (i = 0; i < sband->n_channels; i++) 1544 handle_channel_custom(wiphy, &sband->channels[i], regd); 1545 } 1546 1547 /* Used by drivers prior to wiphy registration */ 1548 void wiphy_apply_custom_regulatory(struct wiphy *wiphy, 1549 const struct ieee80211_regdomain *regd) 1550 { 1551 enum ieee80211_band band; 1552 unsigned int bands_set = 0; 1553 1554 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG), 1555 "wiphy should have REGULATORY_CUSTOM_REG\n"); 1556 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG; 1557 1558 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 1559 if (!wiphy->bands[band]) 1560 continue; 1561 handle_band_custom(wiphy, wiphy->bands[band], regd); 1562 bands_set++; 1563 } 1564 1565 /* 1566 * no point in calling this if it won't have any effect 1567 * on your device's supported bands. 1568 */ 1569 WARN_ON(!bands_set); 1570 } 1571 EXPORT_SYMBOL(wiphy_apply_custom_regulatory); 1572 1573 static void reg_set_request_processed(void) 1574 { 1575 bool need_more_processing = false; 1576 struct regulatory_request *lr = get_last_request(); 1577 1578 lr->processed = true; 1579 1580 spin_lock(®_requests_lock); 1581 if (!list_empty(®_requests_list)) 1582 need_more_processing = true; 1583 spin_unlock(®_requests_lock); 1584 1585 if (lr->initiator == NL80211_REGDOM_SET_BY_USER) 1586 cancel_delayed_work(®_timeout); 1587 1588 if (need_more_processing) 1589 schedule_work(®_work); 1590 } 1591 1592 /** 1593 * reg_process_hint_core - process core regulatory requests 1594 * @pending_request: a pending core regulatory request 1595 * 1596 * The wireless subsystem can use this function to process 1597 * a regulatory request issued by the regulatory core. 1598 * 1599 * Returns one of the different reg request treatment values. 1600 */ 1601 static enum reg_request_treatment 1602 reg_process_hint_core(struct regulatory_request *core_request) 1603 { 1604 1605 core_request->intersect = false; 1606 core_request->processed = false; 1607 1608 reg_update_last_request(core_request); 1609 1610 return reg_call_crda(core_request); 1611 } 1612 1613 static enum reg_request_treatment 1614 __reg_process_hint_user(struct regulatory_request *user_request) 1615 { 1616 struct regulatory_request *lr = get_last_request(); 1617 1618 if (reg_request_indoor(user_request)) { 1619 reg_is_indoor = true; 1620 return REG_REQ_USER_HINT_HANDLED; 1621 } 1622 1623 if (reg_request_cell_base(user_request)) 1624 return reg_ignore_cell_hint(user_request); 1625 1626 if (reg_request_cell_base(lr)) 1627 return REG_REQ_IGNORE; 1628 1629 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) 1630 return REG_REQ_INTERSECT; 1631 /* 1632 * If the user knows better the user should set the regdom 1633 * to their country before the IE is picked up 1634 */ 1635 if (lr->initiator == NL80211_REGDOM_SET_BY_USER && 1636 lr->intersect) 1637 return REG_REQ_IGNORE; 1638 /* 1639 * Process user requests only after previous user/driver/core 1640 * requests have been processed 1641 */ 1642 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE || 1643 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER || 1644 lr->initiator == NL80211_REGDOM_SET_BY_USER) && 1645 regdom_changes(lr->alpha2)) 1646 return REG_REQ_IGNORE; 1647 1648 if (!regdom_changes(user_request->alpha2)) 1649 return REG_REQ_ALREADY_SET; 1650 1651 return REG_REQ_OK; 1652 } 1653 1654 /** 1655 * reg_process_hint_user - process user regulatory requests 1656 * @user_request: a pending user regulatory request 1657 * 1658 * The wireless subsystem can use this function to process 1659 * a regulatory request initiated by userspace. 1660 * 1661 * Returns one of the different reg request treatment values. 1662 */ 1663 static enum reg_request_treatment 1664 reg_process_hint_user(struct regulatory_request *user_request) 1665 { 1666 enum reg_request_treatment treatment; 1667 1668 treatment = __reg_process_hint_user(user_request); 1669 if (treatment == REG_REQ_IGNORE || 1670 treatment == REG_REQ_ALREADY_SET || 1671 treatment == REG_REQ_USER_HINT_HANDLED) { 1672 reg_free_request(user_request); 1673 return treatment; 1674 } 1675 1676 user_request->intersect = treatment == REG_REQ_INTERSECT; 1677 user_request->processed = false; 1678 1679 reg_update_last_request(user_request); 1680 1681 user_alpha2[0] = user_request->alpha2[0]; 1682 user_alpha2[1] = user_request->alpha2[1]; 1683 1684 return reg_call_crda(user_request); 1685 } 1686 1687 static enum reg_request_treatment 1688 __reg_process_hint_driver(struct regulatory_request *driver_request) 1689 { 1690 struct regulatory_request *lr = get_last_request(); 1691 1692 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) { 1693 if (regdom_changes(driver_request->alpha2)) 1694 return REG_REQ_OK; 1695 return REG_REQ_ALREADY_SET; 1696 } 1697 1698 /* 1699 * This would happen if you unplug and plug your card 1700 * back in or if you add a new device for which the previously 1701 * loaded card also agrees on the regulatory domain. 1702 */ 1703 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER && 1704 !regdom_changes(driver_request->alpha2)) 1705 return REG_REQ_ALREADY_SET; 1706 1707 return REG_REQ_INTERSECT; 1708 } 1709 1710 /** 1711 * reg_process_hint_driver - process driver regulatory requests 1712 * @driver_request: a pending driver regulatory request 1713 * 1714 * The wireless subsystem can use this function to process 1715 * a regulatory request issued by an 802.11 driver. 1716 * 1717 * Returns one of the different reg request treatment values. 1718 */ 1719 static enum reg_request_treatment 1720 reg_process_hint_driver(struct wiphy *wiphy, 1721 struct regulatory_request *driver_request) 1722 { 1723 const struct ieee80211_regdomain *regd; 1724 enum reg_request_treatment treatment; 1725 1726 treatment = __reg_process_hint_driver(driver_request); 1727 1728 switch (treatment) { 1729 case REG_REQ_OK: 1730 break; 1731 case REG_REQ_IGNORE: 1732 case REG_REQ_USER_HINT_HANDLED: 1733 reg_free_request(driver_request); 1734 return treatment; 1735 case REG_REQ_INTERSECT: 1736 /* fall through */ 1737 case REG_REQ_ALREADY_SET: 1738 regd = reg_copy_regd(get_cfg80211_regdom()); 1739 if (IS_ERR(regd)) { 1740 reg_free_request(driver_request); 1741 return REG_REQ_IGNORE; 1742 } 1743 rcu_assign_pointer(wiphy->regd, regd); 1744 } 1745 1746 1747 driver_request->intersect = treatment == REG_REQ_INTERSECT; 1748 driver_request->processed = false; 1749 1750 reg_update_last_request(driver_request); 1751 1752 /* 1753 * Since CRDA will not be called in this case as we already 1754 * have applied the requested regulatory domain before we just 1755 * inform userspace we have processed the request 1756 */ 1757 if (treatment == REG_REQ_ALREADY_SET) { 1758 nl80211_send_reg_change_event(driver_request); 1759 reg_set_request_processed(); 1760 return treatment; 1761 } 1762 1763 return reg_call_crda(driver_request); 1764 } 1765 1766 static enum reg_request_treatment 1767 __reg_process_hint_country_ie(struct wiphy *wiphy, 1768 struct regulatory_request *country_ie_request) 1769 { 1770 struct wiphy *last_wiphy = NULL; 1771 struct regulatory_request *lr = get_last_request(); 1772 1773 if (reg_request_cell_base(lr)) { 1774 /* Trust a Cell base station over the AP's country IE */ 1775 if (regdom_changes(country_ie_request->alpha2)) 1776 return REG_REQ_IGNORE; 1777 return REG_REQ_ALREADY_SET; 1778 } else { 1779 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE) 1780 return REG_REQ_IGNORE; 1781 } 1782 1783 if (unlikely(!is_an_alpha2(country_ie_request->alpha2))) 1784 return -EINVAL; 1785 1786 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) 1787 return REG_REQ_OK; 1788 1789 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 1790 1791 if (last_wiphy != wiphy) { 1792 /* 1793 * Two cards with two APs claiming different 1794 * Country IE alpha2s. We could 1795 * intersect them, but that seems unlikely 1796 * to be correct. Reject second one for now. 1797 */ 1798 if (regdom_changes(country_ie_request->alpha2)) 1799 return REG_REQ_IGNORE; 1800 return REG_REQ_ALREADY_SET; 1801 } 1802 /* 1803 * Two consecutive Country IE hints on the same wiphy. 1804 * This should be picked up early by the driver/stack 1805 */ 1806 if (WARN_ON(regdom_changes(country_ie_request->alpha2))) 1807 return REG_REQ_OK; 1808 return REG_REQ_ALREADY_SET; 1809 } 1810 1811 /** 1812 * reg_process_hint_country_ie - process regulatory requests from country IEs 1813 * @country_ie_request: a regulatory request from a country IE 1814 * 1815 * The wireless subsystem can use this function to process 1816 * a regulatory request issued by a country Information Element. 1817 * 1818 * Returns one of the different reg request treatment values. 1819 */ 1820 static enum reg_request_treatment 1821 reg_process_hint_country_ie(struct wiphy *wiphy, 1822 struct regulatory_request *country_ie_request) 1823 { 1824 enum reg_request_treatment treatment; 1825 1826 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request); 1827 1828 switch (treatment) { 1829 case REG_REQ_OK: 1830 break; 1831 case REG_REQ_IGNORE: 1832 case REG_REQ_USER_HINT_HANDLED: 1833 /* fall through */ 1834 case REG_REQ_ALREADY_SET: 1835 reg_free_request(country_ie_request); 1836 return treatment; 1837 case REG_REQ_INTERSECT: 1838 reg_free_request(country_ie_request); 1839 /* 1840 * This doesn't happen yet, not sure we 1841 * ever want to support it for this case. 1842 */ 1843 WARN_ONCE(1, "Unexpected intersection for country IEs"); 1844 return REG_REQ_IGNORE; 1845 } 1846 1847 country_ie_request->intersect = false; 1848 country_ie_request->processed = false; 1849 1850 reg_update_last_request(country_ie_request); 1851 1852 return reg_call_crda(country_ie_request); 1853 } 1854 1855 /* This processes *all* regulatory hints */ 1856 static void reg_process_hint(struct regulatory_request *reg_request) 1857 { 1858 struct wiphy *wiphy = NULL; 1859 enum reg_request_treatment treatment; 1860 1861 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID) 1862 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); 1863 1864 switch (reg_request->initiator) { 1865 case NL80211_REGDOM_SET_BY_CORE: 1866 reg_process_hint_core(reg_request); 1867 return; 1868 case NL80211_REGDOM_SET_BY_USER: 1869 treatment = reg_process_hint_user(reg_request); 1870 if (treatment == REG_REQ_IGNORE || 1871 treatment == REG_REQ_ALREADY_SET || 1872 treatment == REG_REQ_USER_HINT_HANDLED) 1873 return; 1874 queue_delayed_work(system_power_efficient_wq, 1875 ®_timeout, msecs_to_jiffies(3142)); 1876 return; 1877 case NL80211_REGDOM_SET_BY_DRIVER: 1878 if (!wiphy) 1879 goto out_free; 1880 treatment = reg_process_hint_driver(wiphy, reg_request); 1881 break; 1882 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 1883 if (!wiphy) 1884 goto out_free; 1885 treatment = reg_process_hint_country_ie(wiphy, reg_request); 1886 break; 1887 default: 1888 WARN(1, "invalid initiator %d\n", reg_request->initiator); 1889 goto out_free; 1890 } 1891 1892 /* This is required so that the orig_* parameters are saved */ 1893 if (treatment == REG_REQ_ALREADY_SET && wiphy && 1894 wiphy->regulatory_flags & REGULATORY_STRICT_REG) 1895 wiphy_update_regulatory(wiphy, reg_request->initiator); 1896 1897 return; 1898 1899 out_free: 1900 reg_free_request(reg_request); 1901 } 1902 1903 /* 1904 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* 1905 * Regulatory hints come on a first come first serve basis and we 1906 * must process each one atomically. 1907 */ 1908 static void reg_process_pending_hints(void) 1909 { 1910 struct regulatory_request *reg_request, *lr; 1911 1912 lr = get_last_request(); 1913 1914 /* When last_request->processed becomes true this will be rescheduled */ 1915 if (lr && !lr->processed) { 1916 reg_process_hint(lr); 1917 return; 1918 } 1919 1920 spin_lock(®_requests_lock); 1921 1922 if (list_empty(®_requests_list)) { 1923 spin_unlock(®_requests_lock); 1924 return; 1925 } 1926 1927 reg_request = list_first_entry(®_requests_list, 1928 struct regulatory_request, 1929 list); 1930 list_del_init(®_request->list); 1931 1932 spin_unlock(®_requests_lock); 1933 1934 reg_process_hint(reg_request); 1935 } 1936 1937 /* Processes beacon hints -- this has nothing to do with country IEs */ 1938 static void reg_process_pending_beacon_hints(void) 1939 { 1940 struct cfg80211_registered_device *rdev; 1941 struct reg_beacon *pending_beacon, *tmp; 1942 1943 /* This goes through the _pending_ beacon list */ 1944 spin_lock_bh(®_pending_beacons_lock); 1945 1946 list_for_each_entry_safe(pending_beacon, tmp, 1947 ®_pending_beacons, list) { 1948 list_del_init(&pending_beacon->list); 1949 1950 /* Applies the beacon hint to current wiphys */ 1951 list_for_each_entry(rdev, &cfg80211_rdev_list, list) 1952 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); 1953 1954 /* Remembers the beacon hint for new wiphys or reg changes */ 1955 list_add_tail(&pending_beacon->list, ®_beacon_list); 1956 } 1957 1958 spin_unlock_bh(®_pending_beacons_lock); 1959 } 1960 1961 static void reg_todo(struct work_struct *work) 1962 { 1963 rtnl_lock(); 1964 reg_process_pending_hints(); 1965 reg_process_pending_beacon_hints(); 1966 rtnl_unlock(); 1967 } 1968 1969 static void queue_regulatory_request(struct regulatory_request *request) 1970 { 1971 request->alpha2[0] = toupper(request->alpha2[0]); 1972 request->alpha2[1] = toupper(request->alpha2[1]); 1973 1974 spin_lock(®_requests_lock); 1975 list_add_tail(&request->list, ®_requests_list); 1976 spin_unlock(®_requests_lock); 1977 1978 schedule_work(®_work); 1979 } 1980 1981 /* 1982 * Core regulatory hint -- happens during cfg80211_init() 1983 * and when we restore regulatory settings. 1984 */ 1985 static int regulatory_hint_core(const char *alpha2) 1986 { 1987 struct regulatory_request *request; 1988 1989 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 1990 if (!request) 1991 return -ENOMEM; 1992 1993 request->alpha2[0] = alpha2[0]; 1994 request->alpha2[1] = alpha2[1]; 1995 request->initiator = NL80211_REGDOM_SET_BY_CORE; 1996 1997 queue_regulatory_request(request); 1998 1999 return 0; 2000 } 2001 2002 /* User hints */ 2003 int regulatory_hint_user(const char *alpha2, 2004 enum nl80211_user_reg_hint_type user_reg_hint_type) 2005 { 2006 struct regulatory_request *request; 2007 2008 if (WARN_ON(!alpha2)) 2009 return -EINVAL; 2010 2011 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2012 if (!request) 2013 return -ENOMEM; 2014 2015 request->wiphy_idx = WIPHY_IDX_INVALID; 2016 request->alpha2[0] = alpha2[0]; 2017 request->alpha2[1] = alpha2[1]; 2018 request->initiator = NL80211_REGDOM_SET_BY_USER; 2019 request->user_reg_hint_type = user_reg_hint_type; 2020 2021 queue_regulatory_request(request); 2022 2023 return 0; 2024 } 2025 2026 int regulatory_hint_indoor_user(void) 2027 { 2028 struct regulatory_request *request; 2029 2030 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2031 if (!request) 2032 return -ENOMEM; 2033 2034 request->wiphy_idx = WIPHY_IDX_INVALID; 2035 request->initiator = NL80211_REGDOM_SET_BY_USER; 2036 request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR; 2037 queue_regulatory_request(request); 2038 2039 return 0; 2040 } 2041 2042 /* Driver hints */ 2043 int regulatory_hint(struct wiphy *wiphy, const char *alpha2) 2044 { 2045 struct regulatory_request *request; 2046 2047 if (WARN_ON(!alpha2 || !wiphy)) 2048 return -EINVAL; 2049 2050 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG; 2051 2052 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); 2053 if (!request) 2054 return -ENOMEM; 2055 2056 request->wiphy_idx = get_wiphy_idx(wiphy); 2057 2058 request->alpha2[0] = alpha2[0]; 2059 request->alpha2[1] = alpha2[1]; 2060 request->initiator = NL80211_REGDOM_SET_BY_DRIVER; 2061 2062 queue_regulatory_request(request); 2063 2064 return 0; 2065 } 2066 EXPORT_SYMBOL(regulatory_hint); 2067 2068 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band, 2069 const u8 *country_ie, u8 country_ie_len) 2070 { 2071 char alpha2[2]; 2072 enum environment_cap env = ENVIRON_ANY; 2073 struct regulatory_request *request = NULL, *lr; 2074 2075 /* IE len must be evenly divisible by 2 */ 2076 if (country_ie_len & 0x01) 2077 return; 2078 2079 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) 2080 return; 2081 2082 request = kzalloc(sizeof(*request), GFP_KERNEL); 2083 if (!request) 2084 return; 2085 2086 alpha2[0] = country_ie[0]; 2087 alpha2[1] = country_ie[1]; 2088 2089 if (country_ie[2] == 'I') 2090 env = ENVIRON_INDOOR; 2091 else if (country_ie[2] == 'O') 2092 env = ENVIRON_OUTDOOR; 2093 2094 rcu_read_lock(); 2095 lr = get_last_request(); 2096 2097 if (unlikely(!lr)) 2098 goto out; 2099 2100 /* 2101 * We will run this only upon a successful connection on cfg80211. 2102 * We leave conflict resolution to the workqueue, where can hold 2103 * the RTNL. 2104 */ 2105 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && 2106 lr->wiphy_idx != WIPHY_IDX_INVALID) 2107 goto out; 2108 2109 request->wiphy_idx = get_wiphy_idx(wiphy); 2110 request->alpha2[0] = alpha2[0]; 2111 request->alpha2[1] = alpha2[1]; 2112 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; 2113 request->country_ie_env = env; 2114 2115 queue_regulatory_request(request); 2116 request = NULL; 2117 out: 2118 kfree(request); 2119 rcu_read_unlock(); 2120 } 2121 2122 static void restore_alpha2(char *alpha2, bool reset_user) 2123 { 2124 /* indicates there is no alpha2 to consider for restoration */ 2125 alpha2[0] = '9'; 2126 alpha2[1] = '7'; 2127 2128 /* The user setting has precedence over the module parameter */ 2129 if (is_user_regdom_saved()) { 2130 /* Unless we're asked to ignore it and reset it */ 2131 if (reset_user) { 2132 REG_DBG_PRINT("Restoring regulatory settings including user preference\n"); 2133 user_alpha2[0] = '9'; 2134 user_alpha2[1] = '7'; 2135 2136 /* 2137 * If we're ignoring user settings, we still need to 2138 * check the module parameter to ensure we put things 2139 * back as they were for a full restore. 2140 */ 2141 if (!is_world_regdom(ieee80211_regdom)) { 2142 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2143 ieee80211_regdom[0], ieee80211_regdom[1]); 2144 alpha2[0] = ieee80211_regdom[0]; 2145 alpha2[1] = ieee80211_regdom[1]; 2146 } 2147 } else { 2148 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n", 2149 user_alpha2[0], user_alpha2[1]); 2150 alpha2[0] = user_alpha2[0]; 2151 alpha2[1] = user_alpha2[1]; 2152 } 2153 } else if (!is_world_regdom(ieee80211_regdom)) { 2154 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n", 2155 ieee80211_regdom[0], ieee80211_regdom[1]); 2156 alpha2[0] = ieee80211_regdom[0]; 2157 alpha2[1] = ieee80211_regdom[1]; 2158 } else 2159 REG_DBG_PRINT("Restoring regulatory settings\n"); 2160 } 2161 2162 static void restore_custom_reg_settings(struct wiphy *wiphy) 2163 { 2164 struct ieee80211_supported_band *sband; 2165 enum ieee80211_band band; 2166 struct ieee80211_channel *chan; 2167 int i; 2168 2169 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 2170 sband = wiphy->bands[band]; 2171 if (!sband) 2172 continue; 2173 for (i = 0; i < sband->n_channels; i++) { 2174 chan = &sband->channels[i]; 2175 chan->flags = chan->orig_flags; 2176 chan->max_antenna_gain = chan->orig_mag; 2177 chan->max_power = chan->orig_mpwr; 2178 chan->beacon_found = false; 2179 } 2180 } 2181 } 2182 2183 /* 2184 * Restoring regulatory settings involves ingoring any 2185 * possibly stale country IE information and user regulatory 2186 * settings if so desired, this includes any beacon hints 2187 * learned as we could have traveled outside to another country 2188 * after disconnection. To restore regulatory settings we do 2189 * exactly what we did at bootup: 2190 * 2191 * - send a core regulatory hint 2192 * - send a user regulatory hint if applicable 2193 * 2194 * Device drivers that send a regulatory hint for a specific country 2195 * keep their own regulatory domain on wiphy->regd so that does does 2196 * not need to be remembered. 2197 */ 2198 static void restore_regulatory_settings(bool reset_user) 2199 { 2200 char alpha2[2]; 2201 char world_alpha2[2]; 2202 struct reg_beacon *reg_beacon, *btmp; 2203 struct regulatory_request *reg_request, *tmp; 2204 LIST_HEAD(tmp_reg_req_list); 2205 struct cfg80211_registered_device *rdev; 2206 2207 ASSERT_RTNL(); 2208 2209 reg_is_indoor = false; 2210 2211 reset_regdomains(true, &world_regdom); 2212 restore_alpha2(alpha2, reset_user); 2213 2214 /* 2215 * If there's any pending requests we simply 2216 * stash them to a temporary pending queue and 2217 * add then after we've restored regulatory 2218 * settings. 2219 */ 2220 spin_lock(®_requests_lock); 2221 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2222 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER) 2223 continue; 2224 list_move_tail(®_request->list, &tmp_reg_req_list); 2225 } 2226 spin_unlock(®_requests_lock); 2227 2228 /* Clear beacon hints */ 2229 spin_lock_bh(®_pending_beacons_lock); 2230 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2231 list_del(®_beacon->list); 2232 kfree(reg_beacon); 2233 } 2234 spin_unlock_bh(®_pending_beacons_lock); 2235 2236 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2237 list_del(®_beacon->list); 2238 kfree(reg_beacon); 2239 } 2240 2241 /* First restore to the basic regulatory settings */ 2242 world_alpha2[0] = cfg80211_world_regdom->alpha2[0]; 2243 world_alpha2[1] = cfg80211_world_regdom->alpha2[1]; 2244 2245 list_for_each_entry(rdev, &cfg80211_rdev_list, list) { 2246 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG) 2247 restore_custom_reg_settings(&rdev->wiphy); 2248 } 2249 2250 regulatory_hint_core(world_alpha2); 2251 2252 /* 2253 * This restores the ieee80211_regdom module parameter 2254 * preference or the last user requested regulatory 2255 * settings, user regulatory settings takes precedence. 2256 */ 2257 if (is_an_alpha2(alpha2)) 2258 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER); 2259 2260 spin_lock(®_requests_lock); 2261 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list); 2262 spin_unlock(®_requests_lock); 2263 2264 REG_DBG_PRINT("Kicking the queue\n"); 2265 2266 schedule_work(®_work); 2267 } 2268 2269 void regulatory_hint_disconnect(void) 2270 { 2271 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n"); 2272 restore_regulatory_settings(false); 2273 } 2274 2275 static bool freq_is_chan_12_13_14(u16 freq) 2276 { 2277 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || 2278 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || 2279 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) 2280 return true; 2281 return false; 2282 } 2283 2284 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan) 2285 { 2286 struct reg_beacon *pending_beacon; 2287 2288 list_for_each_entry(pending_beacon, ®_pending_beacons, list) 2289 if (beacon_chan->center_freq == 2290 pending_beacon->chan.center_freq) 2291 return true; 2292 return false; 2293 } 2294 2295 int regulatory_hint_found_beacon(struct wiphy *wiphy, 2296 struct ieee80211_channel *beacon_chan, 2297 gfp_t gfp) 2298 { 2299 struct reg_beacon *reg_beacon; 2300 bool processing; 2301 2302 if (beacon_chan->beacon_found || 2303 beacon_chan->flags & IEEE80211_CHAN_RADAR || 2304 (beacon_chan->band == IEEE80211_BAND_2GHZ && 2305 !freq_is_chan_12_13_14(beacon_chan->center_freq))) 2306 return 0; 2307 2308 spin_lock_bh(®_pending_beacons_lock); 2309 processing = pending_reg_beacon(beacon_chan); 2310 spin_unlock_bh(®_pending_beacons_lock); 2311 2312 if (processing) 2313 return 0; 2314 2315 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); 2316 if (!reg_beacon) 2317 return -ENOMEM; 2318 2319 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n", 2320 beacon_chan->center_freq, 2321 ieee80211_frequency_to_channel(beacon_chan->center_freq), 2322 wiphy_name(wiphy)); 2323 2324 memcpy(®_beacon->chan, beacon_chan, 2325 sizeof(struct ieee80211_channel)); 2326 2327 /* 2328 * Since we can be called from BH or and non-BH context 2329 * we must use spin_lock_bh() 2330 */ 2331 spin_lock_bh(®_pending_beacons_lock); 2332 list_add_tail(®_beacon->list, ®_pending_beacons); 2333 spin_unlock_bh(®_pending_beacons_lock); 2334 2335 schedule_work(®_work); 2336 2337 return 0; 2338 } 2339 2340 static void print_rd_rules(const struct ieee80211_regdomain *rd) 2341 { 2342 unsigned int i; 2343 const struct ieee80211_reg_rule *reg_rule = NULL; 2344 const struct ieee80211_freq_range *freq_range = NULL; 2345 const struct ieee80211_power_rule *power_rule = NULL; 2346 char bw[32], cac_time[32]; 2347 2348 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n"); 2349 2350 for (i = 0; i < rd->n_reg_rules; i++) { 2351 reg_rule = &rd->reg_rules[i]; 2352 freq_range = ®_rule->freq_range; 2353 power_rule = ®_rule->power_rule; 2354 2355 if (reg_rule->flags & NL80211_RRF_AUTO_BW) 2356 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO", 2357 freq_range->max_bandwidth_khz, 2358 reg_get_max_bandwidth(rd, reg_rule)); 2359 else 2360 snprintf(bw, sizeof(bw), "%d KHz", 2361 freq_range->max_bandwidth_khz); 2362 2363 if (reg_rule->flags & NL80211_RRF_DFS) 2364 scnprintf(cac_time, sizeof(cac_time), "%u s", 2365 reg_rule->dfs_cac_ms/1000); 2366 else 2367 scnprintf(cac_time, sizeof(cac_time), "N/A"); 2368 2369 2370 /* 2371 * There may not be documentation for max antenna gain 2372 * in certain regions 2373 */ 2374 if (power_rule->max_antenna_gain) 2375 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n", 2376 freq_range->start_freq_khz, 2377 freq_range->end_freq_khz, 2378 bw, 2379 power_rule->max_antenna_gain, 2380 power_rule->max_eirp, 2381 cac_time); 2382 else 2383 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n", 2384 freq_range->start_freq_khz, 2385 freq_range->end_freq_khz, 2386 bw, 2387 power_rule->max_eirp, 2388 cac_time); 2389 } 2390 } 2391 2392 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region) 2393 { 2394 switch (dfs_region) { 2395 case NL80211_DFS_UNSET: 2396 case NL80211_DFS_FCC: 2397 case NL80211_DFS_ETSI: 2398 case NL80211_DFS_JP: 2399 return true; 2400 default: 2401 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", 2402 dfs_region); 2403 return false; 2404 } 2405 } 2406 2407 static void print_regdomain(const struct ieee80211_regdomain *rd) 2408 { 2409 struct regulatory_request *lr = get_last_request(); 2410 2411 if (is_intersected_alpha2(rd->alpha2)) { 2412 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { 2413 struct cfg80211_registered_device *rdev; 2414 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx); 2415 if (rdev) { 2416 pr_info("Current regulatory domain updated by AP to: %c%c\n", 2417 rdev->country_ie_alpha2[0], 2418 rdev->country_ie_alpha2[1]); 2419 } else 2420 pr_info("Current regulatory domain intersected:\n"); 2421 } else 2422 pr_info("Current regulatory domain intersected:\n"); 2423 } else if (is_world_regdom(rd->alpha2)) { 2424 pr_info("World regulatory domain updated:\n"); 2425 } else { 2426 if (is_unknown_alpha2(rd->alpha2)) 2427 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); 2428 else { 2429 if (reg_request_cell_base(lr)) 2430 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n", 2431 rd->alpha2[0], rd->alpha2[1]); 2432 else 2433 pr_info("Regulatory domain changed to country: %c%c\n", 2434 rd->alpha2[0], rd->alpha2[1]); 2435 } 2436 } 2437 2438 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region)); 2439 print_rd_rules(rd); 2440 } 2441 2442 static void print_regdomain_info(const struct ieee80211_regdomain *rd) 2443 { 2444 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); 2445 print_rd_rules(rd); 2446 } 2447 2448 static int reg_set_rd_core(const struct ieee80211_regdomain *rd) 2449 { 2450 if (!is_world_regdom(rd->alpha2)) 2451 return -EINVAL; 2452 update_world_regdomain(rd); 2453 return 0; 2454 } 2455 2456 static int reg_set_rd_user(const struct ieee80211_regdomain *rd, 2457 struct regulatory_request *user_request) 2458 { 2459 const struct ieee80211_regdomain *intersected_rd = NULL; 2460 2461 if (!regdom_changes(rd->alpha2)) 2462 return -EALREADY; 2463 2464 if (!is_valid_rd(rd)) { 2465 pr_err("Invalid regulatory domain detected:\n"); 2466 print_regdomain_info(rd); 2467 return -EINVAL; 2468 } 2469 2470 if (!user_request->intersect) { 2471 reset_regdomains(false, rd); 2472 return 0; 2473 } 2474 2475 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2476 if (!intersected_rd) 2477 return -EINVAL; 2478 2479 kfree(rd); 2480 rd = NULL; 2481 reset_regdomains(false, intersected_rd); 2482 2483 return 0; 2484 } 2485 2486 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd, 2487 struct regulatory_request *driver_request) 2488 { 2489 const struct ieee80211_regdomain *regd; 2490 const struct ieee80211_regdomain *intersected_rd = NULL; 2491 const struct ieee80211_regdomain *tmp; 2492 struct wiphy *request_wiphy; 2493 2494 if (is_world_regdom(rd->alpha2)) 2495 return -EINVAL; 2496 2497 if (!regdom_changes(rd->alpha2)) 2498 return -EALREADY; 2499 2500 if (!is_valid_rd(rd)) { 2501 pr_err("Invalid regulatory domain detected:\n"); 2502 print_regdomain_info(rd); 2503 return -EINVAL; 2504 } 2505 2506 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx); 2507 if (!request_wiphy) { 2508 queue_delayed_work(system_power_efficient_wq, 2509 ®_timeout, 0); 2510 return -ENODEV; 2511 } 2512 2513 if (!driver_request->intersect) { 2514 if (request_wiphy->regd) 2515 return -EALREADY; 2516 2517 regd = reg_copy_regd(rd); 2518 if (IS_ERR(regd)) 2519 return PTR_ERR(regd); 2520 2521 rcu_assign_pointer(request_wiphy->regd, regd); 2522 reset_regdomains(false, rd); 2523 return 0; 2524 } 2525 2526 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom()); 2527 if (!intersected_rd) 2528 return -EINVAL; 2529 2530 /* 2531 * We can trash what CRDA provided now. 2532 * However if a driver requested this specific regulatory 2533 * domain we keep it for its private use 2534 */ 2535 tmp = get_wiphy_regdom(request_wiphy); 2536 rcu_assign_pointer(request_wiphy->regd, rd); 2537 rcu_free_regdom(tmp); 2538 2539 rd = NULL; 2540 2541 reset_regdomains(false, intersected_rd); 2542 2543 return 0; 2544 } 2545 2546 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd, 2547 struct regulatory_request *country_ie_request) 2548 { 2549 struct wiphy *request_wiphy; 2550 2551 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && 2552 !is_unknown_alpha2(rd->alpha2)) 2553 return -EINVAL; 2554 2555 /* 2556 * Lets only bother proceeding on the same alpha2 if the current 2557 * rd is non static (it means CRDA was present and was used last) 2558 * and the pending request came in from a country IE 2559 */ 2560 2561 if (!is_valid_rd(rd)) { 2562 pr_err("Invalid regulatory domain detected:\n"); 2563 print_regdomain_info(rd); 2564 return -EINVAL; 2565 } 2566 2567 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx); 2568 if (!request_wiphy) { 2569 queue_delayed_work(system_power_efficient_wq, 2570 ®_timeout, 0); 2571 return -ENODEV; 2572 } 2573 2574 if (country_ie_request->intersect) 2575 return -EINVAL; 2576 2577 reset_regdomains(false, rd); 2578 return 0; 2579 } 2580 2581 /* 2582 * Use this call to set the current regulatory domain. Conflicts with 2583 * multiple drivers can be ironed out later. Caller must've already 2584 * kmalloc'd the rd structure. 2585 */ 2586 int set_regdom(const struct ieee80211_regdomain *rd) 2587 { 2588 struct regulatory_request *lr; 2589 bool user_reset = false; 2590 int r; 2591 2592 if (!reg_is_valid_request(rd->alpha2)) { 2593 kfree(rd); 2594 return -EINVAL; 2595 } 2596 2597 lr = get_last_request(); 2598 2599 /* Note that this doesn't update the wiphys, this is done below */ 2600 switch (lr->initiator) { 2601 case NL80211_REGDOM_SET_BY_CORE: 2602 r = reg_set_rd_core(rd); 2603 break; 2604 case NL80211_REGDOM_SET_BY_USER: 2605 r = reg_set_rd_user(rd, lr); 2606 user_reset = true; 2607 break; 2608 case NL80211_REGDOM_SET_BY_DRIVER: 2609 r = reg_set_rd_driver(rd, lr); 2610 break; 2611 case NL80211_REGDOM_SET_BY_COUNTRY_IE: 2612 r = reg_set_rd_country_ie(rd, lr); 2613 break; 2614 default: 2615 WARN(1, "invalid initiator %d\n", lr->initiator); 2616 return -EINVAL; 2617 } 2618 2619 if (r) { 2620 switch (r) { 2621 case -EALREADY: 2622 reg_set_request_processed(); 2623 break; 2624 default: 2625 /* Back to world regulatory in case of errors */ 2626 restore_regulatory_settings(user_reset); 2627 } 2628 2629 kfree(rd); 2630 return r; 2631 } 2632 2633 /* This would make this whole thing pointless */ 2634 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom())) 2635 return -EINVAL; 2636 2637 /* update all wiphys now with the new established regulatory domain */ 2638 update_all_wiphy_regulatory(lr->initiator); 2639 2640 print_regdomain(get_cfg80211_regdom()); 2641 2642 nl80211_send_reg_change_event(lr); 2643 2644 reg_set_request_processed(); 2645 2646 return 0; 2647 } 2648 2649 void wiphy_regulatory_register(struct wiphy *wiphy) 2650 { 2651 struct regulatory_request *lr; 2652 2653 if (!reg_dev_ignore_cell_hint(wiphy)) 2654 reg_num_devs_support_basehint++; 2655 2656 lr = get_last_request(); 2657 wiphy_update_regulatory(wiphy, lr->initiator); 2658 } 2659 2660 void wiphy_regulatory_deregister(struct wiphy *wiphy) 2661 { 2662 struct wiphy *request_wiphy = NULL; 2663 struct regulatory_request *lr; 2664 2665 lr = get_last_request(); 2666 2667 if (!reg_dev_ignore_cell_hint(wiphy)) 2668 reg_num_devs_support_basehint--; 2669 2670 rcu_free_regdom(get_wiphy_regdom(wiphy)); 2671 RCU_INIT_POINTER(wiphy->regd, NULL); 2672 2673 if (lr) 2674 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx); 2675 2676 if (!request_wiphy || request_wiphy != wiphy) 2677 return; 2678 2679 lr->wiphy_idx = WIPHY_IDX_INVALID; 2680 lr->country_ie_env = ENVIRON_ANY; 2681 } 2682 2683 static void reg_timeout_work(struct work_struct *work) 2684 { 2685 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n"); 2686 rtnl_lock(); 2687 restore_regulatory_settings(true); 2688 rtnl_unlock(); 2689 } 2690 2691 /* 2692 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for 2693 * UNII band definitions 2694 */ 2695 int cfg80211_get_unii(int freq) 2696 { 2697 /* UNII-1 */ 2698 if (freq >= 5150 && freq <= 5250) 2699 return 0; 2700 2701 /* UNII-2A */ 2702 if (freq > 5250 && freq <= 5350) 2703 return 1; 2704 2705 /* UNII-2B */ 2706 if (freq > 5350 && freq <= 5470) 2707 return 2; 2708 2709 /* UNII-2C */ 2710 if (freq > 5470 && freq <= 5725) 2711 return 3; 2712 2713 /* UNII-3 */ 2714 if (freq > 5725 && freq <= 5825) 2715 return 4; 2716 2717 return -EINVAL; 2718 } 2719 2720 bool regulatory_indoor_allowed(void) 2721 { 2722 return reg_is_indoor; 2723 } 2724 2725 int __init regulatory_init(void) 2726 { 2727 int err = 0; 2728 2729 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); 2730 if (IS_ERR(reg_pdev)) 2731 return PTR_ERR(reg_pdev); 2732 2733 spin_lock_init(®_requests_lock); 2734 spin_lock_init(®_pending_beacons_lock); 2735 2736 reg_regdb_size_check(); 2737 2738 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom); 2739 2740 user_alpha2[0] = '9'; 2741 user_alpha2[1] = '7'; 2742 2743 /* We always try to get an update for the static regdomain */ 2744 err = regulatory_hint_core(cfg80211_world_regdom->alpha2); 2745 if (err) { 2746 if (err == -ENOMEM) 2747 return err; 2748 /* 2749 * N.B. kobject_uevent_env() can fail mainly for when we're out 2750 * memory which is handled and propagated appropriately above 2751 * but it can also fail during a netlink_broadcast() or during 2752 * early boot for call_usermodehelper(). For now treat these 2753 * errors as non-fatal. 2754 */ 2755 pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); 2756 } 2757 2758 /* 2759 * Finally, if the user set the module parameter treat it 2760 * as a user hint. 2761 */ 2762 if (!is_world_regdom(ieee80211_regdom)) 2763 regulatory_hint_user(ieee80211_regdom, 2764 NL80211_USER_REG_HINT_USER); 2765 2766 return 0; 2767 } 2768 2769 void regulatory_exit(void) 2770 { 2771 struct regulatory_request *reg_request, *tmp; 2772 struct reg_beacon *reg_beacon, *btmp; 2773 2774 cancel_work_sync(®_work); 2775 cancel_delayed_work_sync(®_timeout); 2776 2777 /* Lock to suppress warnings */ 2778 rtnl_lock(); 2779 reset_regdomains(true, NULL); 2780 rtnl_unlock(); 2781 2782 dev_set_uevent_suppress(®_pdev->dev, true); 2783 2784 platform_device_unregister(reg_pdev); 2785 2786 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) { 2787 list_del(®_beacon->list); 2788 kfree(reg_beacon); 2789 } 2790 2791 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) { 2792 list_del(®_beacon->list); 2793 kfree(reg_beacon); 2794 } 2795 2796 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) { 2797 list_del(®_request->list); 2798 kfree(reg_request); 2799 } 2800 } 2801