xref: /openbmc/linux/net/wireless/radiotap.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Radiotap parser
3  *
4  * Copyright 2007		Andy Green <andy@warmcat.com>
5  */
6 
7 #include <net/cfg80211.h>
8 #include <net/ieee80211_radiotap.h>
9 #include <asm/unaligned.h>
10 
11 /* function prototypes and related defs are in include/net/cfg80211.h */
12 
13 /**
14  * ieee80211_radiotap_iterator_init - radiotap parser iterator initialization
15  * @iterator: radiotap_iterator to initialize
16  * @radiotap_header: radiotap header to parse
17  * @max_length: total length we can parse into (eg, whole packet length)
18  *
19  * Returns: 0 or a negative error code if there is a problem.
20  *
21  * This function initializes an opaque iterator struct which can then
22  * be passed to ieee80211_radiotap_iterator_next() to visit every radiotap
23  * argument which is present in the header.  It knows about extended
24  * present headers and handles them.
25  *
26  * How to use:
27  * call __ieee80211_radiotap_iterator_init() to init a semi-opaque iterator
28  * struct ieee80211_radiotap_iterator (no need to init the struct beforehand)
29  * checking for a good 0 return code.  Then loop calling
30  * __ieee80211_radiotap_iterator_next()... it returns either 0,
31  * -ENOENT if there are no more args to parse, or -EINVAL if there is a problem.
32  * The iterator's @this_arg member points to the start of the argument
33  * associated with the current argument index that is present, which can be
34  * found in the iterator's @this_arg_index member.  This arg index corresponds
35  * to the IEEE80211_RADIOTAP_... defines.
36  *
37  * Radiotap header length:
38  * You can find the CPU-endian total radiotap header length in
39  * iterator->max_length after executing ieee80211_radiotap_iterator_init()
40  * successfully.
41  *
42  * Alignment Gotcha:
43  * You must take care when dereferencing iterator.this_arg
44  * for multibyte types... the pointer is not aligned.  Use
45  * get_unaligned((type *)iterator.this_arg) to dereference
46  * iterator.this_arg for type "type" safely on all arches.
47  *
48  * Example code:
49  * See Documentation/networking/radiotap-headers.txt
50  */
51 
52 int ieee80211_radiotap_iterator_init(
53     struct ieee80211_radiotap_iterator *iterator,
54     struct ieee80211_radiotap_header *radiotap_header,
55     int max_length)
56 {
57 	/* Linux only supports version 0 radiotap format */
58 	if (radiotap_header->it_version)
59 		return -EINVAL;
60 
61 	/* sanity check for allowed length and radiotap length field */
62 	if (max_length < le16_to_cpu(get_unaligned(&radiotap_header->it_len)))
63 		return -EINVAL;
64 
65 	iterator->rtheader = radiotap_header;
66 	iterator->max_length = le16_to_cpu(get_unaligned(
67 						&radiotap_header->it_len));
68 	iterator->arg_index = 0;
69 	iterator->bitmap_shifter = le32_to_cpu(get_unaligned(
70 						&radiotap_header->it_present));
71 	iterator->arg = (u8 *)radiotap_header + sizeof(*radiotap_header);
72 	iterator->this_arg = NULL;
73 
74 	/* find payload start allowing for extended bitmap(s) */
75 
76 	if (unlikely(iterator->bitmap_shifter & (1<<IEEE80211_RADIOTAP_EXT))) {
77 		while (le32_to_cpu(get_unaligned((__le32 *)iterator->arg)) &
78 				   (1<<IEEE80211_RADIOTAP_EXT)) {
79 			iterator->arg += sizeof(u32);
80 
81 			/*
82 			 * check for insanity where the present bitmaps
83 			 * keep claiming to extend up to or even beyond the
84 			 * stated radiotap header length
85 			 */
86 
87 			if (((ulong)iterator->arg -
88 			     (ulong)iterator->rtheader) > iterator->max_length)
89 				return -EINVAL;
90 		}
91 
92 		iterator->arg += sizeof(u32);
93 
94 		/*
95 		 * no need to check again for blowing past stated radiotap
96 		 * header length, because ieee80211_radiotap_iterator_next
97 		 * checks it before it is dereferenced
98 		 */
99 	}
100 
101 	/* we are all initialized happily */
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL(ieee80211_radiotap_iterator_init);
106 
107 
108 /**
109  * ieee80211_radiotap_iterator_next - return next radiotap parser iterator arg
110  * @iterator: radiotap_iterator to move to next arg (if any)
111  *
112  * Returns: 0 if there is an argument to handle,
113  * -ENOENT if there are no more args or -EINVAL
114  * if there is something else wrong.
115  *
116  * This function provides the next radiotap arg index (IEEE80211_RADIOTAP_*)
117  * in @this_arg_index and sets @this_arg to point to the
118  * payload for the field.  It takes care of alignment handling and extended
119  * present fields.  @this_arg can be changed by the caller (eg,
120  * incremented to move inside a compound argument like
121  * IEEE80211_RADIOTAP_CHANNEL).  The args pointed to are in
122  * little-endian format whatever the endianess of your CPU.
123  *
124  * Alignment Gotcha:
125  * You must take care when dereferencing iterator.this_arg
126  * for multibyte types... the pointer is not aligned.  Use
127  * get_unaligned((type *)iterator.this_arg) to dereference
128  * iterator.this_arg for type "type" safely on all arches.
129  */
130 
131 int ieee80211_radiotap_iterator_next(
132     struct ieee80211_radiotap_iterator *iterator)
133 {
134 
135 	/*
136 	 * small length lookup table for all radiotap types we heard of
137 	 * starting from b0 in the bitmap, so we can walk the payload
138 	 * area of the radiotap header
139 	 *
140 	 * There is a requirement to pad args, so that args
141 	 * of a given length must begin at a boundary of that length
142 	 * -- but note that compound args are allowed (eg, 2 x u16
143 	 * for IEEE80211_RADIOTAP_CHANNEL) so total arg length is not
144 	 * a reliable indicator of alignment requirement.
145 	 *
146 	 * upper nybble: content alignment for arg
147 	 * lower nybble: content length for arg
148 	 */
149 
150 	static const u8 rt_sizes[] = {
151 		[IEEE80211_RADIOTAP_TSFT] = 0x88,
152 		[IEEE80211_RADIOTAP_FLAGS] = 0x11,
153 		[IEEE80211_RADIOTAP_RATE] = 0x11,
154 		[IEEE80211_RADIOTAP_CHANNEL] = 0x24,
155 		[IEEE80211_RADIOTAP_FHSS] = 0x22,
156 		[IEEE80211_RADIOTAP_DBM_ANTSIGNAL] = 0x11,
157 		[IEEE80211_RADIOTAP_DBM_ANTNOISE] = 0x11,
158 		[IEEE80211_RADIOTAP_LOCK_QUALITY] = 0x22,
159 		[IEEE80211_RADIOTAP_TX_ATTENUATION] = 0x22,
160 		[IEEE80211_RADIOTAP_DB_TX_ATTENUATION] = 0x22,
161 		[IEEE80211_RADIOTAP_DBM_TX_POWER] = 0x11,
162 		[IEEE80211_RADIOTAP_ANTENNA] = 0x11,
163 		[IEEE80211_RADIOTAP_DB_ANTSIGNAL] = 0x11,
164 		[IEEE80211_RADIOTAP_DB_ANTNOISE] = 0x11,
165 		[IEEE80211_RADIOTAP_RX_FLAGS] = 0x22,
166 		[IEEE80211_RADIOTAP_TX_FLAGS] = 0x22,
167 		[IEEE80211_RADIOTAP_RTS_RETRIES] = 0x11,
168 		[IEEE80211_RADIOTAP_DATA_RETRIES] = 0x11,
169 		/*
170 		 * add more here as they are defined in
171 		 * include/net/ieee80211_radiotap.h
172 		 */
173 	};
174 
175 	/*
176 	 * for every radiotap entry we can at
177 	 * least skip (by knowing the length)...
178 	 */
179 
180 	while (iterator->arg_index < sizeof(rt_sizes)) {
181 		int hit = 0;
182 		int pad;
183 
184 		if (!(iterator->bitmap_shifter & 1))
185 			goto next_entry; /* arg not present */
186 
187 		/*
188 		 * arg is present, account for alignment padding
189 		 *  8-bit args can be at any alignment
190 		 * 16-bit args must start on 16-bit boundary
191 		 * 32-bit args must start on 32-bit boundary
192 		 * 64-bit args must start on 64-bit boundary
193 		 *
194 		 * note that total arg size can differ from alignment of
195 		 * elements inside arg, so we use upper nybble of length
196 		 * table to base alignment on
197 		 *
198 		 * also note: these alignments are ** relative to the
199 		 * start of the radiotap header **.  There is no guarantee
200 		 * that the radiotap header itself is aligned on any
201 		 * kind of boundary.
202 		 *
203 		 * the above is why get_unaligned() is used to dereference
204 		 * multibyte elements from the radiotap area
205 		 */
206 
207 		pad = (((ulong)iterator->arg) -
208 			((ulong)iterator->rtheader)) &
209 			((rt_sizes[iterator->arg_index] >> 4) - 1);
210 
211 		if (pad)
212 			iterator->arg +=
213 				(rt_sizes[iterator->arg_index] >> 4) - pad;
214 
215 		/*
216 		 * this is what we will return to user, but we need to
217 		 * move on first so next call has something fresh to test
218 		 */
219 		iterator->this_arg_index = iterator->arg_index;
220 		iterator->this_arg = iterator->arg;
221 		hit = 1;
222 
223 		/* internally move on the size of this arg */
224 		iterator->arg += rt_sizes[iterator->arg_index] & 0x0f;
225 
226 		/*
227 		 * check for insanity where we are given a bitmap that
228 		 * claims to have more arg content than the length of the
229 		 * radiotap section.  We will normally end up equalling this
230 		 * max_length on the last arg, never exceeding it.
231 		 */
232 
233 		if (((ulong)iterator->arg - (ulong)iterator->rtheader) >
234 		    iterator->max_length)
235 			return -EINVAL;
236 
237 	next_entry:
238 		iterator->arg_index++;
239 		if (unlikely((iterator->arg_index & 31) == 0)) {
240 			/* completed current u32 bitmap */
241 			if (iterator->bitmap_shifter & 1) {
242 				/* b31 was set, there is more */
243 				/* move to next u32 bitmap */
244 				iterator->bitmap_shifter = le32_to_cpu(
245 					get_unaligned(iterator->next_bitmap));
246 				iterator->next_bitmap++;
247 			} else
248 				/* no more bitmaps: end */
249 				iterator->arg_index = sizeof(rt_sizes);
250 		} else /* just try the next bit */
251 			iterator->bitmap_shifter >>= 1;
252 
253 		/* if we found a valid arg earlier, return it now */
254 		if (hit)
255 			return 0;
256 	}
257 
258 	/* we don't know how to handle any more args, we're done */
259 	return -ENOENT;
260 }
261 EXPORT_SYMBOL(ieee80211_radiotap_iterator_next);
262