1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE 46 47 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 48 unsigned int recursion_level) 49 { 50 int start = skb_headlen(skb); 51 int i, chunk = start - offset; 52 struct sk_buff *frag_iter; 53 int elt = 0; 54 55 if (unlikely(recursion_level >= 24)) 56 return -EMSGSIZE; 57 58 if (chunk > 0) { 59 if (chunk > len) 60 chunk = len; 61 elt++; 62 len -= chunk; 63 if (len == 0) 64 return elt; 65 offset += chunk; 66 } 67 68 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 69 int end; 70 71 WARN_ON(start > offset + len); 72 73 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 74 chunk = end - offset; 75 if (chunk > 0) { 76 if (chunk > len) 77 chunk = len; 78 elt++; 79 len -= chunk; 80 if (len == 0) 81 return elt; 82 offset += chunk; 83 } 84 start = end; 85 } 86 87 if (unlikely(skb_has_frag_list(skb))) { 88 skb_walk_frags(skb, frag_iter) { 89 int end, ret; 90 91 WARN_ON(start > offset + len); 92 93 end = start + frag_iter->len; 94 chunk = end - offset; 95 if (chunk > 0) { 96 if (chunk > len) 97 chunk = len; 98 ret = __skb_nsg(frag_iter, offset - start, chunk, 99 recursion_level + 1); 100 if (unlikely(ret < 0)) 101 return ret; 102 elt += ret; 103 len -= chunk; 104 if (len == 0) 105 return elt; 106 offset += chunk; 107 } 108 start = end; 109 } 110 } 111 BUG_ON(len); 112 return elt; 113 } 114 115 /* Return the number of scatterlist elements required to completely map the 116 * skb, or -EMSGSIZE if the recursion depth is exceeded. 117 */ 118 static int skb_nsg(struct sk_buff *skb, int offset, int len) 119 { 120 return __skb_nsg(skb, offset, len, 0); 121 } 122 123 static void tls_decrypt_done(struct crypto_async_request *req, int err) 124 { 125 struct aead_request *aead_req = (struct aead_request *)req; 126 struct scatterlist *sgout = aead_req->dst; 127 struct tls_sw_context_rx *ctx; 128 struct tls_context *tls_ctx; 129 struct scatterlist *sg; 130 struct sk_buff *skb; 131 unsigned int pages; 132 int pending; 133 134 skb = (struct sk_buff *)req->data; 135 tls_ctx = tls_get_ctx(skb->sk); 136 ctx = tls_sw_ctx_rx(tls_ctx); 137 pending = atomic_dec_return(&ctx->decrypt_pending); 138 139 /* Propagate if there was an err */ 140 if (err) { 141 ctx->async_wait.err = err; 142 tls_err_abort(skb->sk, err); 143 } 144 145 /* After using skb->sk to propagate sk through crypto async callback 146 * we need to NULL it again. 147 */ 148 skb->sk = NULL; 149 150 /* Release the skb, pages and memory allocated for crypto req */ 151 kfree_skb(skb); 152 153 /* Skip the first S/G entry as it points to AAD */ 154 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 155 if (!sg) 156 break; 157 put_page(sg_page(sg)); 158 } 159 160 kfree(aead_req); 161 162 if (!pending && READ_ONCE(ctx->async_notify)) 163 complete(&ctx->async_wait.completion); 164 } 165 166 static int tls_do_decryption(struct sock *sk, 167 struct sk_buff *skb, 168 struct scatterlist *sgin, 169 struct scatterlist *sgout, 170 char *iv_recv, 171 size_t data_len, 172 struct aead_request *aead_req, 173 bool async) 174 { 175 struct tls_context *tls_ctx = tls_get_ctx(sk); 176 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 177 int ret; 178 179 aead_request_set_tfm(aead_req, ctx->aead_recv); 180 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 181 aead_request_set_crypt(aead_req, sgin, sgout, 182 data_len + tls_ctx->rx.tag_size, 183 (u8 *)iv_recv); 184 185 if (async) { 186 /* Using skb->sk to push sk through to crypto async callback 187 * handler. This allows propagating errors up to the socket 188 * if needed. It _must_ be cleared in the async handler 189 * before kfree_skb is called. We _know_ skb->sk is NULL 190 * because it is a clone from strparser. 191 */ 192 skb->sk = sk; 193 aead_request_set_callback(aead_req, 194 CRYPTO_TFM_REQ_MAY_BACKLOG, 195 tls_decrypt_done, skb); 196 atomic_inc(&ctx->decrypt_pending); 197 } else { 198 aead_request_set_callback(aead_req, 199 CRYPTO_TFM_REQ_MAY_BACKLOG, 200 crypto_req_done, &ctx->async_wait); 201 } 202 203 ret = crypto_aead_decrypt(aead_req); 204 if (ret == -EINPROGRESS) { 205 if (async) 206 return ret; 207 208 ret = crypto_wait_req(ret, &ctx->async_wait); 209 } 210 211 if (async) 212 atomic_dec(&ctx->decrypt_pending); 213 214 return ret; 215 } 216 217 static void tls_trim_both_msgs(struct sock *sk, int target_size) 218 { 219 struct tls_context *tls_ctx = tls_get_ctx(sk); 220 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 221 struct tls_rec *rec = ctx->open_rec; 222 223 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 224 if (target_size > 0) 225 target_size += tls_ctx->tx.overhead_size; 226 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 227 } 228 229 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 230 { 231 struct tls_context *tls_ctx = tls_get_ctx(sk); 232 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 233 struct tls_rec *rec = ctx->open_rec; 234 struct sk_msg *msg_en = &rec->msg_encrypted; 235 236 return sk_msg_alloc(sk, msg_en, len, 0); 237 } 238 239 static int tls_clone_plaintext_msg(struct sock *sk, int required) 240 { 241 struct tls_context *tls_ctx = tls_get_ctx(sk); 242 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 243 struct tls_rec *rec = ctx->open_rec; 244 struct sk_msg *msg_pl = &rec->msg_plaintext; 245 struct sk_msg *msg_en = &rec->msg_encrypted; 246 int skip, len; 247 248 /* We add page references worth len bytes from encrypted sg 249 * at the end of plaintext sg. It is guaranteed that msg_en 250 * has enough required room (ensured by caller). 251 */ 252 len = required - msg_pl->sg.size; 253 254 /* Skip initial bytes in msg_en's data to be able to use 255 * same offset of both plain and encrypted data. 256 */ 257 skip = tls_ctx->tx.prepend_size + msg_pl->sg.size; 258 259 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 260 } 261 262 static struct tls_rec *tls_get_rec(struct sock *sk) 263 { 264 struct tls_context *tls_ctx = tls_get_ctx(sk); 265 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 266 struct sk_msg *msg_pl, *msg_en; 267 struct tls_rec *rec; 268 int mem_size; 269 270 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 271 272 rec = kzalloc(mem_size, sk->sk_allocation); 273 if (!rec) 274 return NULL; 275 276 msg_pl = &rec->msg_plaintext; 277 msg_en = &rec->msg_encrypted; 278 279 sk_msg_init(msg_pl); 280 sk_msg_init(msg_en); 281 282 sg_init_table(rec->sg_aead_in, 2); 283 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, 284 sizeof(rec->aad_space)); 285 sg_unmark_end(&rec->sg_aead_in[1]); 286 287 sg_init_table(rec->sg_aead_out, 2); 288 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, 289 sizeof(rec->aad_space)); 290 sg_unmark_end(&rec->sg_aead_out[1]); 291 292 return rec; 293 } 294 295 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 296 { 297 sk_msg_free(sk, &rec->msg_encrypted); 298 sk_msg_free(sk, &rec->msg_plaintext); 299 kfree(rec); 300 } 301 302 static void tls_free_open_rec(struct sock *sk) 303 { 304 struct tls_context *tls_ctx = tls_get_ctx(sk); 305 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 306 struct tls_rec *rec = ctx->open_rec; 307 308 if (rec) { 309 tls_free_rec(sk, rec); 310 ctx->open_rec = NULL; 311 } 312 } 313 314 int tls_tx_records(struct sock *sk, int flags) 315 { 316 struct tls_context *tls_ctx = tls_get_ctx(sk); 317 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 318 struct tls_rec *rec, *tmp; 319 struct sk_msg *msg_en; 320 int tx_flags, rc = 0; 321 322 if (tls_is_partially_sent_record(tls_ctx)) { 323 rec = list_first_entry(&ctx->tx_list, 324 struct tls_rec, list); 325 326 if (flags == -1) 327 tx_flags = rec->tx_flags; 328 else 329 tx_flags = flags; 330 331 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 332 if (rc) 333 goto tx_err; 334 335 /* Full record has been transmitted. 336 * Remove the head of tx_list 337 */ 338 list_del(&rec->list); 339 sk_msg_free(sk, &rec->msg_plaintext); 340 kfree(rec); 341 } 342 343 /* Tx all ready records */ 344 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 345 if (READ_ONCE(rec->tx_ready)) { 346 if (flags == -1) 347 tx_flags = rec->tx_flags; 348 else 349 tx_flags = flags; 350 351 msg_en = &rec->msg_encrypted; 352 rc = tls_push_sg(sk, tls_ctx, 353 &msg_en->sg.data[msg_en->sg.curr], 354 0, tx_flags); 355 if (rc) 356 goto tx_err; 357 358 list_del(&rec->list); 359 sk_msg_free(sk, &rec->msg_plaintext); 360 kfree(rec); 361 } else { 362 break; 363 } 364 } 365 366 tx_err: 367 if (rc < 0 && rc != -EAGAIN) 368 tls_err_abort(sk, EBADMSG); 369 370 return rc; 371 } 372 373 static void tls_encrypt_done(struct crypto_async_request *req, int err) 374 { 375 struct aead_request *aead_req = (struct aead_request *)req; 376 struct sock *sk = req->data; 377 struct tls_context *tls_ctx = tls_get_ctx(sk); 378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 379 struct scatterlist *sge; 380 struct sk_msg *msg_en; 381 struct tls_rec *rec; 382 bool ready = false; 383 int pending; 384 385 rec = container_of(aead_req, struct tls_rec, aead_req); 386 msg_en = &rec->msg_encrypted; 387 388 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 389 sge->offset -= tls_ctx->tx.prepend_size; 390 sge->length += tls_ctx->tx.prepend_size; 391 392 /* Check if error is previously set on socket */ 393 if (err || sk->sk_err) { 394 rec = NULL; 395 396 /* If err is already set on socket, return the same code */ 397 if (sk->sk_err) { 398 ctx->async_wait.err = sk->sk_err; 399 } else { 400 ctx->async_wait.err = err; 401 tls_err_abort(sk, err); 402 } 403 } 404 405 if (rec) { 406 struct tls_rec *first_rec; 407 408 /* Mark the record as ready for transmission */ 409 smp_store_mb(rec->tx_ready, true); 410 411 /* If received record is at head of tx_list, schedule tx */ 412 first_rec = list_first_entry(&ctx->tx_list, 413 struct tls_rec, list); 414 if (rec == first_rec) 415 ready = true; 416 } 417 418 pending = atomic_dec_return(&ctx->encrypt_pending); 419 420 if (!pending && READ_ONCE(ctx->async_notify)) 421 complete(&ctx->async_wait.completion); 422 423 if (!ready) 424 return; 425 426 /* Schedule the transmission */ 427 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 428 schedule_delayed_work(&ctx->tx_work.work, 1); 429 } 430 431 static int tls_do_encryption(struct sock *sk, 432 struct tls_context *tls_ctx, 433 struct tls_sw_context_tx *ctx, 434 struct aead_request *aead_req, 435 size_t data_len, u32 start) 436 { 437 struct tls_rec *rec = ctx->open_rec; 438 struct sk_msg *msg_en = &rec->msg_encrypted; 439 struct scatterlist *sge = sk_msg_elem(msg_en, start); 440 int rc; 441 442 sge->offset += tls_ctx->tx.prepend_size; 443 sge->length -= tls_ctx->tx.prepend_size; 444 445 msg_en->sg.curr = start; 446 447 aead_request_set_tfm(aead_req, ctx->aead_send); 448 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 449 aead_request_set_crypt(aead_req, rec->sg_aead_in, 450 rec->sg_aead_out, 451 data_len, tls_ctx->tx.iv); 452 453 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 454 tls_encrypt_done, sk); 455 456 /* Add the record in tx_list */ 457 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 458 atomic_inc(&ctx->encrypt_pending); 459 460 rc = crypto_aead_encrypt(aead_req); 461 if (!rc || rc != -EINPROGRESS) { 462 atomic_dec(&ctx->encrypt_pending); 463 sge->offset -= tls_ctx->tx.prepend_size; 464 sge->length += tls_ctx->tx.prepend_size; 465 } 466 467 if (!rc) { 468 WRITE_ONCE(rec->tx_ready, true); 469 } else if (rc != -EINPROGRESS) { 470 list_del(&rec->list); 471 return rc; 472 } 473 474 /* Unhook the record from context if encryption is not failure */ 475 ctx->open_rec = NULL; 476 tls_advance_record_sn(sk, &tls_ctx->tx); 477 return rc; 478 } 479 480 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 481 struct tls_rec **to, struct sk_msg *msg_opl, 482 struct sk_msg *msg_oen, u32 split_point, 483 u32 tx_overhead_size, u32 *orig_end) 484 { 485 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 486 struct scatterlist *sge, *osge, *nsge; 487 u32 orig_size = msg_opl->sg.size; 488 struct scatterlist tmp = { }; 489 struct sk_msg *msg_npl; 490 struct tls_rec *new; 491 int ret; 492 493 new = tls_get_rec(sk); 494 if (!new) 495 return -ENOMEM; 496 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 497 tx_overhead_size, 0); 498 if (ret < 0) { 499 tls_free_rec(sk, new); 500 return ret; 501 } 502 503 *orig_end = msg_opl->sg.end; 504 i = msg_opl->sg.start; 505 sge = sk_msg_elem(msg_opl, i); 506 while (apply && sge->length) { 507 if (sge->length > apply) { 508 u32 len = sge->length - apply; 509 510 get_page(sg_page(sge)); 511 sg_set_page(&tmp, sg_page(sge), len, 512 sge->offset + apply); 513 sge->length = apply; 514 bytes += apply; 515 apply = 0; 516 } else { 517 apply -= sge->length; 518 bytes += sge->length; 519 } 520 521 sk_msg_iter_var_next(i); 522 if (i == msg_opl->sg.end) 523 break; 524 sge = sk_msg_elem(msg_opl, i); 525 } 526 527 msg_opl->sg.end = i; 528 msg_opl->sg.curr = i; 529 msg_opl->sg.copybreak = 0; 530 msg_opl->apply_bytes = 0; 531 msg_opl->sg.size = bytes; 532 533 msg_npl = &new->msg_plaintext; 534 msg_npl->apply_bytes = apply; 535 msg_npl->sg.size = orig_size - bytes; 536 537 j = msg_npl->sg.start; 538 nsge = sk_msg_elem(msg_npl, j); 539 if (tmp.length) { 540 memcpy(nsge, &tmp, sizeof(*nsge)); 541 sk_msg_iter_var_next(j); 542 nsge = sk_msg_elem(msg_npl, j); 543 } 544 545 osge = sk_msg_elem(msg_opl, i); 546 while (osge->length) { 547 memcpy(nsge, osge, sizeof(*nsge)); 548 sg_unmark_end(nsge); 549 sk_msg_iter_var_next(i); 550 sk_msg_iter_var_next(j); 551 if (i == *orig_end) 552 break; 553 osge = sk_msg_elem(msg_opl, i); 554 nsge = sk_msg_elem(msg_npl, j); 555 } 556 557 msg_npl->sg.end = j; 558 msg_npl->sg.curr = j; 559 msg_npl->sg.copybreak = 0; 560 561 *to = new; 562 return 0; 563 } 564 565 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 566 struct tls_rec *from, u32 orig_end) 567 { 568 struct sk_msg *msg_npl = &from->msg_plaintext; 569 struct sk_msg *msg_opl = &to->msg_plaintext; 570 struct scatterlist *osge, *nsge; 571 u32 i, j; 572 573 i = msg_opl->sg.end; 574 sk_msg_iter_var_prev(i); 575 j = msg_npl->sg.start; 576 577 osge = sk_msg_elem(msg_opl, i); 578 nsge = sk_msg_elem(msg_npl, j); 579 580 if (sg_page(osge) == sg_page(nsge) && 581 osge->offset + osge->length == nsge->offset) { 582 osge->length += nsge->length; 583 put_page(sg_page(nsge)); 584 } 585 586 msg_opl->sg.end = orig_end; 587 msg_opl->sg.curr = orig_end; 588 msg_opl->sg.copybreak = 0; 589 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 590 msg_opl->sg.size += msg_npl->sg.size; 591 592 sk_msg_free(sk, &to->msg_encrypted); 593 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 594 595 kfree(from); 596 } 597 598 static int tls_push_record(struct sock *sk, int flags, 599 unsigned char record_type) 600 { 601 struct tls_context *tls_ctx = tls_get_ctx(sk); 602 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 603 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 604 u32 i, split_point, uninitialized_var(orig_end); 605 struct sk_msg *msg_pl, *msg_en; 606 struct aead_request *req; 607 bool split; 608 int rc; 609 610 if (!rec) 611 return 0; 612 613 msg_pl = &rec->msg_plaintext; 614 msg_en = &rec->msg_encrypted; 615 616 split_point = msg_pl->apply_bytes; 617 split = split_point && split_point < msg_pl->sg.size; 618 if (split) { 619 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 620 split_point, tls_ctx->tx.overhead_size, 621 &orig_end); 622 if (rc < 0) 623 return rc; 624 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 625 tls_ctx->tx.overhead_size); 626 } 627 628 rec->tx_flags = flags; 629 req = &rec->aead_req; 630 631 i = msg_pl->sg.end; 632 sk_msg_iter_var_prev(i); 633 sg_mark_end(sk_msg_elem(msg_pl, i)); 634 635 i = msg_pl->sg.start; 636 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ? 637 &msg_en->sg.data[i] : &msg_pl->sg.data[i]); 638 639 i = msg_en->sg.end; 640 sk_msg_iter_var_prev(i); 641 sg_mark_end(sk_msg_elem(msg_en, i)); 642 643 i = msg_en->sg.start; 644 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 645 646 tls_make_aad(rec->aad_space, msg_pl->sg.size, 647 tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size, 648 record_type); 649 650 tls_fill_prepend(tls_ctx, 651 page_address(sg_page(&msg_en->sg.data[i])) + 652 msg_en->sg.data[i].offset, msg_pl->sg.size, 653 record_type); 654 655 tls_ctx->pending_open_record_frags = false; 656 657 rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i); 658 if (rc < 0) { 659 if (rc != -EINPROGRESS) { 660 tls_err_abort(sk, EBADMSG); 661 if (split) { 662 tls_ctx->pending_open_record_frags = true; 663 tls_merge_open_record(sk, rec, tmp, orig_end); 664 } 665 } 666 return rc; 667 } else if (split) { 668 msg_pl = &tmp->msg_plaintext; 669 msg_en = &tmp->msg_encrypted; 670 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 671 tls_ctx->tx.overhead_size); 672 tls_ctx->pending_open_record_frags = true; 673 ctx->open_rec = tmp; 674 } 675 676 return tls_tx_records(sk, flags); 677 } 678 679 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 680 bool full_record, u8 record_type, 681 size_t *copied, int flags) 682 { 683 struct tls_context *tls_ctx = tls_get_ctx(sk); 684 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 685 struct sk_msg msg_redir = { }; 686 struct sk_psock *psock; 687 struct sock *sk_redir; 688 struct tls_rec *rec; 689 bool enospc, policy; 690 int err = 0, send; 691 u32 delta = 0; 692 693 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 694 psock = sk_psock_get(sk); 695 if (!psock || !policy) 696 return tls_push_record(sk, flags, record_type); 697 more_data: 698 enospc = sk_msg_full(msg); 699 if (psock->eval == __SK_NONE) { 700 delta = msg->sg.size; 701 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 702 if (delta < msg->sg.size) 703 delta -= msg->sg.size; 704 else 705 delta = 0; 706 } 707 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 708 !enospc && !full_record) { 709 err = -ENOSPC; 710 goto out_err; 711 } 712 msg->cork_bytes = 0; 713 send = msg->sg.size; 714 if (msg->apply_bytes && msg->apply_bytes < send) 715 send = msg->apply_bytes; 716 717 switch (psock->eval) { 718 case __SK_PASS: 719 err = tls_push_record(sk, flags, record_type); 720 if (err < 0) { 721 *copied -= sk_msg_free(sk, msg); 722 tls_free_open_rec(sk); 723 goto out_err; 724 } 725 break; 726 case __SK_REDIRECT: 727 sk_redir = psock->sk_redir; 728 memcpy(&msg_redir, msg, sizeof(*msg)); 729 if (msg->apply_bytes < send) 730 msg->apply_bytes = 0; 731 else 732 msg->apply_bytes -= send; 733 sk_msg_return_zero(sk, msg, send); 734 msg->sg.size -= send; 735 release_sock(sk); 736 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 737 lock_sock(sk); 738 if (err < 0) { 739 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 740 msg->sg.size = 0; 741 } 742 if (msg->sg.size == 0) 743 tls_free_open_rec(sk); 744 break; 745 case __SK_DROP: 746 default: 747 sk_msg_free_partial(sk, msg, send); 748 if (msg->apply_bytes < send) 749 msg->apply_bytes = 0; 750 else 751 msg->apply_bytes -= send; 752 if (msg->sg.size == 0) 753 tls_free_open_rec(sk); 754 *copied -= (send + delta); 755 err = -EACCES; 756 } 757 758 if (likely(!err)) { 759 bool reset_eval = !ctx->open_rec; 760 761 rec = ctx->open_rec; 762 if (rec) { 763 msg = &rec->msg_plaintext; 764 if (!msg->apply_bytes) 765 reset_eval = true; 766 } 767 if (reset_eval) { 768 psock->eval = __SK_NONE; 769 if (psock->sk_redir) { 770 sock_put(psock->sk_redir); 771 psock->sk_redir = NULL; 772 } 773 } 774 if (rec) 775 goto more_data; 776 } 777 out_err: 778 sk_psock_put(sk, psock); 779 return err; 780 } 781 782 static int tls_sw_push_pending_record(struct sock *sk, int flags) 783 { 784 struct tls_context *tls_ctx = tls_get_ctx(sk); 785 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 786 struct tls_rec *rec = ctx->open_rec; 787 struct sk_msg *msg_pl; 788 size_t copied; 789 790 if (!rec) 791 return 0; 792 793 msg_pl = &rec->msg_plaintext; 794 copied = msg_pl->sg.size; 795 if (!copied) 796 return 0; 797 798 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 799 &copied, flags); 800 } 801 802 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 803 { 804 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 805 struct tls_context *tls_ctx = tls_get_ctx(sk); 806 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 807 struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send); 808 bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC; 809 unsigned char record_type = TLS_RECORD_TYPE_DATA; 810 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 811 bool eor = !(msg->msg_flags & MSG_MORE); 812 size_t try_to_copy, copied = 0; 813 struct sk_msg *msg_pl, *msg_en; 814 struct tls_rec *rec; 815 int required_size; 816 int num_async = 0; 817 bool full_record; 818 int record_room; 819 int num_zc = 0; 820 int orig_size; 821 int ret = 0; 822 823 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 824 return -ENOTSUPP; 825 826 lock_sock(sk); 827 828 /* Wait till there is any pending write on socket */ 829 if (unlikely(sk->sk_write_pending)) { 830 ret = wait_on_pending_writer(sk, &timeo); 831 if (unlikely(ret)) 832 goto send_end; 833 } 834 835 if (unlikely(msg->msg_controllen)) { 836 ret = tls_proccess_cmsg(sk, msg, &record_type); 837 if (ret) { 838 if (ret == -EINPROGRESS) 839 num_async++; 840 else if (ret != -EAGAIN) 841 goto send_end; 842 } 843 } 844 845 while (msg_data_left(msg)) { 846 if (sk->sk_err) { 847 ret = -sk->sk_err; 848 goto send_end; 849 } 850 851 if (ctx->open_rec) 852 rec = ctx->open_rec; 853 else 854 rec = ctx->open_rec = tls_get_rec(sk); 855 if (!rec) { 856 ret = -ENOMEM; 857 goto send_end; 858 } 859 860 msg_pl = &rec->msg_plaintext; 861 msg_en = &rec->msg_encrypted; 862 863 orig_size = msg_pl->sg.size; 864 full_record = false; 865 try_to_copy = msg_data_left(msg); 866 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 867 if (try_to_copy >= record_room) { 868 try_to_copy = record_room; 869 full_record = true; 870 } 871 872 required_size = msg_pl->sg.size + try_to_copy + 873 tls_ctx->tx.overhead_size; 874 875 if (!sk_stream_memory_free(sk)) 876 goto wait_for_sndbuf; 877 878 alloc_encrypted: 879 ret = tls_alloc_encrypted_msg(sk, required_size); 880 if (ret) { 881 if (ret != -ENOSPC) 882 goto wait_for_memory; 883 884 /* Adjust try_to_copy according to the amount that was 885 * actually allocated. The difference is due 886 * to max sg elements limit 887 */ 888 try_to_copy -= required_size - msg_en->sg.size; 889 full_record = true; 890 } 891 892 if (!is_kvec && (full_record || eor) && !async_capable) { 893 u32 first = msg_pl->sg.end; 894 895 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 896 msg_pl, try_to_copy); 897 if (ret) 898 goto fallback_to_reg_send; 899 900 rec->inplace_crypto = 0; 901 902 num_zc++; 903 copied += try_to_copy; 904 905 sk_msg_sg_copy_set(msg_pl, first); 906 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 907 record_type, &copied, 908 msg->msg_flags); 909 if (ret) { 910 if (ret == -EINPROGRESS) 911 num_async++; 912 else if (ret == -ENOMEM) 913 goto wait_for_memory; 914 else if (ret == -ENOSPC) 915 goto rollback_iter; 916 else if (ret != -EAGAIN) 917 goto send_end; 918 } 919 continue; 920 rollback_iter: 921 copied -= try_to_copy; 922 sk_msg_sg_copy_clear(msg_pl, first); 923 iov_iter_revert(&msg->msg_iter, 924 msg_pl->sg.size - orig_size); 925 fallback_to_reg_send: 926 sk_msg_trim(sk, msg_pl, orig_size); 927 } 928 929 required_size = msg_pl->sg.size + try_to_copy; 930 931 ret = tls_clone_plaintext_msg(sk, required_size); 932 if (ret) { 933 if (ret != -ENOSPC) 934 goto send_end; 935 936 /* Adjust try_to_copy according to the amount that was 937 * actually allocated. The difference is due 938 * to max sg elements limit 939 */ 940 try_to_copy -= required_size - msg_pl->sg.size; 941 full_record = true; 942 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 943 tls_ctx->tx.overhead_size); 944 } 945 946 if (try_to_copy) { 947 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 948 msg_pl, try_to_copy); 949 if (ret < 0) 950 goto trim_sgl; 951 } 952 953 /* Open records defined only if successfully copied, otherwise 954 * we would trim the sg but not reset the open record frags. 955 */ 956 tls_ctx->pending_open_record_frags = true; 957 copied += try_to_copy; 958 if (full_record || eor) { 959 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 960 record_type, &copied, 961 msg->msg_flags); 962 if (ret) { 963 if (ret == -EINPROGRESS) 964 num_async++; 965 else if (ret == -ENOMEM) 966 goto wait_for_memory; 967 else if (ret != -EAGAIN) { 968 if (ret == -ENOSPC) 969 ret = 0; 970 goto send_end; 971 } 972 } 973 } 974 975 continue; 976 977 wait_for_sndbuf: 978 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 979 wait_for_memory: 980 ret = sk_stream_wait_memory(sk, &timeo); 981 if (ret) { 982 trim_sgl: 983 tls_trim_both_msgs(sk, orig_size); 984 goto send_end; 985 } 986 987 if (msg_en->sg.size < required_size) 988 goto alloc_encrypted; 989 } 990 991 if (!num_async) { 992 goto send_end; 993 } else if (num_zc) { 994 /* Wait for pending encryptions to get completed */ 995 smp_store_mb(ctx->async_notify, true); 996 997 if (atomic_read(&ctx->encrypt_pending)) 998 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 999 else 1000 reinit_completion(&ctx->async_wait.completion); 1001 1002 WRITE_ONCE(ctx->async_notify, false); 1003 1004 if (ctx->async_wait.err) { 1005 ret = ctx->async_wait.err; 1006 copied = 0; 1007 } 1008 } 1009 1010 /* Transmit if any encryptions have completed */ 1011 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1012 cancel_delayed_work(&ctx->tx_work.work); 1013 tls_tx_records(sk, msg->msg_flags); 1014 } 1015 1016 send_end: 1017 ret = sk_stream_error(sk, msg->msg_flags, ret); 1018 1019 release_sock(sk); 1020 return copied ? copied : ret; 1021 } 1022 1023 int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1024 int offset, size_t size, int flags) 1025 { 1026 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1027 struct tls_context *tls_ctx = tls_get_ctx(sk); 1028 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1029 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1030 struct sk_msg *msg_pl; 1031 struct tls_rec *rec; 1032 int num_async = 0; 1033 size_t copied = 0; 1034 bool full_record; 1035 int record_room; 1036 int ret = 0; 1037 bool eor; 1038 1039 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1040 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1041 1042 /* Wait till there is any pending write on socket */ 1043 if (unlikely(sk->sk_write_pending)) { 1044 ret = wait_on_pending_writer(sk, &timeo); 1045 if (unlikely(ret)) 1046 goto sendpage_end; 1047 } 1048 1049 /* Call the sk_stream functions to manage the sndbuf mem. */ 1050 while (size > 0) { 1051 size_t copy, required_size; 1052 1053 if (sk->sk_err) { 1054 ret = -sk->sk_err; 1055 goto sendpage_end; 1056 } 1057 1058 if (ctx->open_rec) 1059 rec = ctx->open_rec; 1060 else 1061 rec = ctx->open_rec = tls_get_rec(sk); 1062 if (!rec) { 1063 ret = -ENOMEM; 1064 goto sendpage_end; 1065 } 1066 1067 msg_pl = &rec->msg_plaintext; 1068 1069 full_record = false; 1070 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1071 copied = 0; 1072 copy = size; 1073 if (copy >= record_room) { 1074 copy = record_room; 1075 full_record = true; 1076 } 1077 1078 required_size = msg_pl->sg.size + copy + 1079 tls_ctx->tx.overhead_size; 1080 1081 if (!sk_stream_memory_free(sk)) 1082 goto wait_for_sndbuf; 1083 alloc_payload: 1084 ret = tls_alloc_encrypted_msg(sk, required_size); 1085 if (ret) { 1086 if (ret != -ENOSPC) 1087 goto wait_for_memory; 1088 1089 /* Adjust copy according to the amount that was 1090 * actually allocated. The difference is due 1091 * to max sg elements limit 1092 */ 1093 copy -= required_size - msg_pl->sg.size; 1094 full_record = true; 1095 } 1096 1097 sk_msg_page_add(msg_pl, page, copy, offset); 1098 sk_mem_charge(sk, copy); 1099 1100 offset += copy; 1101 size -= copy; 1102 copied += copy; 1103 1104 tls_ctx->pending_open_record_frags = true; 1105 if (full_record || eor || sk_msg_full(msg_pl)) { 1106 rec->inplace_crypto = 0; 1107 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1108 record_type, &copied, flags); 1109 if (ret) { 1110 if (ret == -EINPROGRESS) 1111 num_async++; 1112 else if (ret == -ENOMEM) 1113 goto wait_for_memory; 1114 else if (ret != -EAGAIN) { 1115 if (ret == -ENOSPC) 1116 ret = 0; 1117 goto sendpage_end; 1118 } 1119 } 1120 } 1121 continue; 1122 wait_for_sndbuf: 1123 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1124 wait_for_memory: 1125 ret = sk_stream_wait_memory(sk, &timeo); 1126 if (ret) { 1127 tls_trim_both_msgs(sk, msg_pl->sg.size); 1128 goto sendpage_end; 1129 } 1130 1131 goto alloc_payload; 1132 } 1133 1134 if (num_async) { 1135 /* Transmit if any encryptions have completed */ 1136 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1137 cancel_delayed_work(&ctx->tx_work.work); 1138 tls_tx_records(sk, flags); 1139 } 1140 } 1141 sendpage_end: 1142 ret = sk_stream_error(sk, flags, ret); 1143 return copied ? copied : ret; 1144 } 1145 1146 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1147 int offset, size_t size, int flags) 1148 { 1149 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1150 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1151 return -ENOTSUPP; 1152 1153 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1154 } 1155 1156 int tls_sw_sendpage(struct sock *sk, struct page *page, 1157 int offset, size_t size, int flags) 1158 { 1159 int ret; 1160 1161 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1162 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1163 return -ENOTSUPP; 1164 1165 lock_sock(sk); 1166 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1167 release_sock(sk); 1168 return ret; 1169 } 1170 1171 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1172 int flags, long timeo, int *err) 1173 { 1174 struct tls_context *tls_ctx = tls_get_ctx(sk); 1175 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1176 struct sk_buff *skb; 1177 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1178 1179 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1180 if (sk->sk_err) { 1181 *err = sock_error(sk); 1182 return NULL; 1183 } 1184 1185 if (sk->sk_shutdown & RCV_SHUTDOWN) 1186 return NULL; 1187 1188 if (sock_flag(sk, SOCK_DONE)) 1189 return NULL; 1190 1191 if ((flags & MSG_DONTWAIT) || !timeo) { 1192 *err = -EAGAIN; 1193 return NULL; 1194 } 1195 1196 add_wait_queue(sk_sleep(sk), &wait); 1197 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1198 sk_wait_event(sk, &timeo, 1199 ctx->recv_pkt != skb || 1200 !sk_psock_queue_empty(psock), 1201 &wait); 1202 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1203 remove_wait_queue(sk_sleep(sk), &wait); 1204 1205 /* Handle signals */ 1206 if (signal_pending(current)) { 1207 *err = sock_intr_errno(timeo); 1208 return NULL; 1209 } 1210 } 1211 1212 return skb; 1213 } 1214 1215 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1216 int length, int *pages_used, 1217 unsigned int *size_used, 1218 struct scatterlist *to, 1219 int to_max_pages) 1220 { 1221 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1222 struct page *pages[MAX_SKB_FRAGS]; 1223 unsigned int size = *size_used; 1224 ssize_t copied, use; 1225 size_t offset; 1226 1227 while (length > 0) { 1228 i = 0; 1229 maxpages = to_max_pages - num_elem; 1230 if (maxpages == 0) { 1231 rc = -EFAULT; 1232 goto out; 1233 } 1234 copied = iov_iter_get_pages(from, pages, 1235 length, 1236 maxpages, &offset); 1237 if (copied <= 0) { 1238 rc = -EFAULT; 1239 goto out; 1240 } 1241 1242 iov_iter_advance(from, copied); 1243 1244 length -= copied; 1245 size += copied; 1246 while (copied) { 1247 use = min_t(int, copied, PAGE_SIZE - offset); 1248 1249 sg_set_page(&to[num_elem], 1250 pages[i], use, offset); 1251 sg_unmark_end(&to[num_elem]); 1252 /* We do not uncharge memory from this API */ 1253 1254 offset = 0; 1255 copied -= use; 1256 1257 i++; 1258 num_elem++; 1259 } 1260 } 1261 /* Mark the end in the last sg entry if newly added */ 1262 if (num_elem > *pages_used) 1263 sg_mark_end(&to[num_elem - 1]); 1264 out: 1265 if (rc) 1266 iov_iter_revert(from, size - *size_used); 1267 *size_used = size; 1268 *pages_used = num_elem; 1269 1270 return rc; 1271 } 1272 1273 /* This function decrypts the input skb into either out_iov or in out_sg 1274 * or in skb buffers itself. The input parameter 'zc' indicates if 1275 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1276 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1277 * NULL, then the decryption happens inside skb buffers itself, i.e. 1278 * zero-copy gets disabled and 'zc' is updated. 1279 */ 1280 1281 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1282 struct iov_iter *out_iov, 1283 struct scatterlist *out_sg, 1284 int *chunk, bool *zc) 1285 { 1286 struct tls_context *tls_ctx = tls_get_ctx(sk); 1287 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1288 struct strp_msg *rxm = strp_msg(skb); 1289 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1290 struct aead_request *aead_req; 1291 struct sk_buff *unused; 1292 u8 *aad, *iv, *mem = NULL; 1293 struct scatterlist *sgin = NULL; 1294 struct scatterlist *sgout = NULL; 1295 const int data_len = rxm->full_len - tls_ctx->rx.overhead_size; 1296 1297 if (*zc && (out_iov || out_sg)) { 1298 if (out_iov) 1299 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1300 else 1301 n_sgout = sg_nents(out_sg); 1302 n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size, 1303 rxm->full_len - tls_ctx->rx.prepend_size); 1304 } else { 1305 n_sgout = 0; 1306 *zc = false; 1307 n_sgin = skb_cow_data(skb, 0, &unused); 1308 } 1309 1310 if (n_sgin < 1) 1311 return -EBADMSG; 1312 1313 /* Increment to accommodate AAD */ 1314 n_sgin = n_sgin + 1; 1315 1316 nsg = n_sgin + n_sgout; 1317 1318 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1319 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1320 mem_size = mem_size + TLS_AAD_SPACE_SIZE; 1321 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1322 1323 /* Allocate a single block of memory which contains 1324 * aead_req || sgin[] || sgout[] || aad || iv. 1325 * This order achieves correct alignment for aead_req, sgin, sgout. 1326 */ 1327 mem = kmalloc(mem_size, sk->sk_allocation); 1328 if (!mem) 1329 return -ENOMEM; 1330 1331 /* Segment the allocated memory */ 1332 aead_req = (struct aead_request *)mem; 1333 sgin = (struct scatterlist *)(mem + aead_size); 1334 sgout = sgin + n_sgin; 1335 aad = (u8 *)(sgout + n_sgout); 1336 iv = aad + TLS_AAD_SPACE_SIZE; 1337 1338 /* Prepare IV */ 1339 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1340 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1341 tls_ctx->rx.iv_size); 1342 if (err < 0) { 1343 kfree(mem); 1344 return err; 1345 } 1346 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 1347 1348 /* Prepare AAD */ 1349 tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size, 1350 tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size, 1351 ctx->control); 1352 1353 /* Prepare sgin */ 1354 sg_init_table(sgin, n_sgin); 1355 sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE); 1356 err = skb_to_sgvec(skb, &sgin[1], 1357 rxm->offset + tls_ctx->rx.prepend_size, 1358 rxm->full_len - tls_ctx->rx.prepend_size); 1359 if (err < 0) { 1360 kfree(mem); 1361 return err; 1362 } 1363 1364 if (n_sgout) { 1365 if (out_iov) { 1366 sg_init_table(sgout, n_sgout); 1367 sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE); 1368 1369 *chunk = 0; 1370 err = tls_setup_from_iter(sk, out_iov, data_len, 1371 &pages, chunk, &sgout[1], 1372 (n_sgout - 1)); 1373 if (err < 0) 1374 goto fallback_to_reg_recv; 1375 } else if (out_sg) { 1376 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1377 } else { 1378 goto fallback_to_reg_recv; 1379 } 1380 } else { 1381 fallback_to_reg_recv: 1382 sgout = sgin; 1383 pages = 0; 1384 *chunk = 0; 1385 *zc = false; 1386 } 1387 1388 /* Prepare and submit AEAD request */ 1389 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1390 data_len, aead_req, *zc); 1391 if (err == -EINPROGRESS) 1392 return err; 1393 1394 /* Release the pages in case iov was mapped to pages */ 1395 for (; pages > 0; pages--) 1396 put_page(sg_page(&sgout[pages])); 1397 1398 kfree(mem); 1399 return err; 1400 } 1401 1402 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1403 struct iov_iter *dest, int *chunk, bool *zc) 1404 { 1405 struct tls_context *tls_ctx = tls_get_ctx(sk); 1406 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1407 struct strp_msg *rxm = strp_msg(skb); 1408 int err = 0; 1409 1410 #ifdef CONFIG_TLS_DEVICE 1411 err = tls_device_decrypted(sk, skb); 1412 if (err < 0) 1413 return err; 1414 #endif 1415 if (!ctx->decrypted) { 1416 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc); 1417 if (err < 0) { 1418 if (err == -EINPROGRESS) 1419 tls_advance_record_sn(sk, &tls_ctx->rx); 1420 1421 return err; 1422 } 1423 } else { 1424 *zc = false; 1425 } 1426 1427 rxm->offset += tls_ctx->rx.prepend_size; 1428 rxm->full_len -= tls_ctx->rx.overhead_size; 1429 tls_advance_record_sn(sk, &tls_ctx->rx); 1430 ctx->decrypted = true; 1431 ctx->saved_data_ready(sk); 1432 1433 return err; 1434 } 1435 1436 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1437 struct scatterlist *sgout) 1438 { 1439 bool zc = true; 1440 int chunk; 1441 1442 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc); 1443 } 1444 1445 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1446 unsigned int len) 1447 { 1448 struct tls_context *tls_ctx = tls_get_ctx(sk); 1449 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1450 1451 if (skb) { 1452 struct strp_msg *rxm = strp_msg(skb); 1453 1454 if (len < rxm->full_len) { 1455 rxm->offset += len; 1456 rxm->full_len -= len; 1457 return false; 1458 } 1459 kfree_skb(skb); 1460 } 1461 1462 /* Finished with message */ 1463 ctx->recv_pkt = NULL; 1464 __strp_unpause(&ctx->strp); 1465 1466 return true; 1467 } 1468 1469 int tls_sw_recvmsg(struct sock *sk, 1470 struct msghdr *msg, 1471 size_t len, 1472 int nonblock, 1473 int flags, 1474 int *addr_len) 1475 { 1476 struct tls_context *tls_ctx = tls_get_ctx(sk); 1477 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1478 struct sk_psock *psock; 1479 unsigned char control; 1480 struct strp_msg *rxm; 1481 struct sk_buff *skb; 1482 ssize_t copied = 0; 1483 bool cmsg = false; 1484 int target, err = 0; 1485 long timeo; 1486 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1487 int num_async = 0; 1488 1489 flags |= nonblock; 1490 1491 if (unlikely(flags & MSG_ERRQUEUE)) 1492 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1493 1494 psock = sk_psock_get(sk); 1495 lock_sock(sk); 1496 1497 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1498 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1499 do { 1500 bool zc = false; 1501 bool async = false; 1502 int chunk = 0; 1503 1504 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1505 if (!skb) { 1506 if (psock) { 1507 int ret = __tcp_bpf_recvmsg(sk, psock, 1508 msg, len, flags); 1509 1510 if (ret > 0) { 1511 copied += ret; 1512 len -= ret; 1513 continue; 1514 } 1515 } 1516 goto recv_end; 1517 } 1518 1519 rxm = strp_msg(skb); 1520 1521 if (!cmsg) { 1522 int cerr; 1523 1524 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1525 sizeof(ctx->control), &ctx->control); 1526 cmsg = true; 1527 control = ctx->control; 1528 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1529 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1530 err = -EIO; 1531 goto recv_end; 1532 } 1533 } 1534 } else if (control != ctx->control) { 1535 goto recv_end; 1536 } 1537 1538 if (!ctx->decrypted) { 1539 int to_copy = rxm->full_len - tls_ctx->rx.overhead_size; 1540 1541 if (!is_kvec && to_copy <= len && 1542 likely(!(flags & MSG_PEEK))) 1543 zc = true; 1544 1545 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1546 &chunk, &zc); 1547 if (err < 0 && err != -EINPROGRESS) { 1548 tls_err_abort(sk, EBADMSG); 1549 goto recv_end; 1550 } 1551 1552 if (err == -EINPROGRESS) { 1553 async = true; 1554 num_async++; 1555 goto pick_next_record; 1556 } 1557 1558 ctx->decrypted = true; 1559 } 1560 1561 if (!zc) { 1562 chunk = min_t(unsigned int, rxm->full_len, len); 1563 1564 err = skb_copy_datagram_msg(skb, rxm->offset, msg, 1565 chunk); 1566 if (err < 0) 1567 goto recv_end; 1568 } 1569 1570 pick_next_record: 1571 copied += chunk; 1572 len -= chunk; 1573 if (likely(!(flags & MSG_PEEK))) { 1574 u8 control = ctx->control; 1575 1576 /* For async, drop current skb reference */ 1577 if (async) 1578 skb = NULL; 1579 1580 if (tls_sw_advance_skb(sk, skb, chunk)) { 1581 /* Return full control message to 1582 * userspace before trying to parse 1583 * another message type 1584 */ 1585 msg->msg_flags |= MSG_EOR; 1586 if (control != TLS_RECORD_TYPE_DATA) 1587 goto recv_end; 1588 } else { 1589 break; 1590 } 1591 } else { 1592 /* MSG_PEEK right now cannot look beyond current skb 1593 * from strparser, meaning we cannot advance skb here 1594 * and thus unpause strparser since we'd loose original 1595 * one. 1596 */ 1597 break; 1598 } 1599 1600 /* If we have a new message from strparser, continue now. */ 1601 if (copied >= target && !ctx->recv_pkt) 1602 break; 1603 } while (len); 1604 1605 recv_end: 1606 if (num_async) { 1607 /* Wait for all previously submitted records to be decrypted */ 1608 smp_store_mb(ctx->async_notify, true); 1609 if (atomic_read(&ctx->decrypt_pending)) { 1610 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1611 if (err) { 1612 /* one of async decrypt failed */ 1613 tls_err_abort(sk, err); 1614 copied = 0; 1615 } 1616 } else { 1617 reinit_completion(&ctx->async_wait.completion); 1618 } 1619 WRITE_ONCE(ctx->async_notify, false); 1620 } 1621 1622 release_sock(sk); 1623 if (psock) 1624 sk_psock_put(sk, psock); 1625 return copied ? : err; 1626 } 1627 1628 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1629 struct pipe_inode_info *pipe, 1630 size_t len, unsigned int flags) 1631 { 1632 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1633 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1634 struct strp_msg *rxm = NULL; 1635 struct sock *sk = sock->sk; 1636 struct sk_buff *skb; 1637 ssize_t copied = 0; 1638 int err = 0; 1639 long timeo; 1640 int chunk; 1641 bool zc = false; 1642 1643 lock_sock(sk); 1644 1645 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1646 1647 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1648 if (!skb) 1649 goto splice_read_end; 1650 1651 /* splice does not support reading control messages */ 1652 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1653 err = -ENOTSUPP; 1654 goto splice_read_end; 1655 } 1656 1657 if (!ctx->decrypted) { 1658 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc); 1659 1660 if (err < 0) { 1661 tls_err_abort(sk, EBADMSG); 1662 goto splice_read_end; 1663 } 1664 ctx->decrypted = true; 1665 } 1666 rxm = strp_msg(skb); 1667 1668 chunk = min_t(unsigned int, rxm->full_len, len); 1669 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1670 if (copied < 0) 1671 goto splice_read_end; 1672 1673 if (likely(!(flags & MSG_PEEK))) 1674 tls_sw_advance_skb(sk, skb, copied); 1675 1676 splice_read_end: 1677 release_sock(sk); 1678 return copied ? : err; 1679 } 1680 1681 bool tls_sw_stream_read(const struct sock *sk) 1682 { 1683 struct tls_context *tls_ctx = tls_get_ctx(sk); 1684 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1685 bool ingress_empty = true; 1686 struct sk_psock *psock; 1687 1688 rcu_read_lock(); 1689 psock = sk_psock(sk); 1690 if (psock) 1691 ingress_empty = list_empty(&psock->ingress_msg); 1692 rcu_read_unlock(); 1693 1694 return !ingress_empty || ctx->recv_pkt; 1695 } 1696 1697 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1698 { 1699 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1700 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1701 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1702 struct strp_msg *rxm = strp_msg(skb); 1703 size_t cipher_overhead; 1704 size_t data_len = 0; 1705 int ret; 1706 1707 /* Verify that we have a full TLS header, or wait for more data */ 1708 if (rxm->offset + tls_ctx->rx.prepend_size > skb->len) 1709 return 0; 1710 1711 /* Sanity-check size of on-stack buffer. */ 1712 if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) { 1713 ret = -EINVAL; 1714 goto read_failure; 1715 } 1716 1717 /* Linearize header to local buffer */ 1718 ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size); 1719 1720 if (ret < 0) 1721 goto read_failure; 1722 1723 ctx->control = header[0]; 1724 1725 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 1726 1727 cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size; 1728 1729 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) { 1730 ret = -EMSGSIZE; 1731 goto read_failure; 1732 } 1733 if (data_len < cipher_overhead) { 1734 ret = -EBADMSG; 1735 goto read_failure; 1736 } 1737 1738 if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) || 1739 header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) { 1740 ret = -EINVAL; 1741 goto read_failure; 1742 } 1743 1744 #ifdef CONFIG_TLS_DEVICE 1745 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset, 1746 *(u64*)tls_ctx->rx.rec_seq); 1747 #endif 1748 return data_len + TLS_HEADER_SIZE; 1749 1750 read_failure: 1751 tls_err_abort(strp->sk, ret); 1752 1753 return ret; 1754 } 1755 1756 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 1757 { 1758 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1759 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1760 1761 ctx->decrypted = false; 1762 1763 ctx->recv_pkt = skb; 1764 strp_pause(strp); 1765 1766 ctx->saved_data_ready(strp->sk); 1767 } 1768 1769 static void tls_data_ready(struct sock *sk) 1770 { 1771 struct tls_context *tls_ctx = tls_get_ctx(sk); 1772 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1773 struct sk_psock *psock; 1774 1775 strp_data_ready(&ctx->strp); 1776 1777 psock = sk_psock_get(sk); 1778 if (psock && !list_empty(&psock->ingress_msg)) { 1779 ctx->saved_data_ready(sk); 1780 sk_psock_put(sk, psock); 1781 } 1782 } 1783 1784 void tls_sw_free_resources_tx(struct sock *sk) 1785 { 1786 struct tls_context *tls_ctx = tls_get_ctx(sk); 1787 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1788 struct tls_rec *rec, *tmp; 1789 1790 /* Wait for any pending async encryptions to complete */ 1791 smp_store_mb(ctx->async_notify, true); 1792 if (atomic_read(&ctx->encrypt_pending)) 1793 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1794 1795 cancel_delayed_work_sync(&ctx->tx_work.work); 1796 1797 /* Tx whatever records we can transmit and abandon the rest */ 1798 tls_tx_records(sk, -1); 1799 1800 /* Free up un-sent records in tx_list. First, free 1801 * the partially sent record if any at head of tx_list. 1802 */ 1803 if (tls_ctx->partially_sent_record) { 1804 struct scatterlist *sg = tls_ctx->partially_sent_record; 1805 1806 while (1) { 1807 put_page(sg_page(sg)); 1808 sk_mem_uncharge(sk, sg->length); 1809 1810 if (sg_is_last(sg)) 1811 break; 1812 sg++; 1813 } 1814 1815 tls_ctx->partially_sent_record = NULL; 1816 1817 rec = list_first_entry(&ctx->tx_list, 1818 struct tls_rec, list); 1819 list_del(&rec->list); 1820 sk_msg_free(sk, &rec->msg_plaintext); 1821 kfree(rec); 1822 } 1823 1824 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 1825 list_del(&rec->list); 1826 sk_msg_free(sk, &rec->msg_encrypted); 1827 sk_msg_free(sk, &rec->msg_plaintext); 1828 kfree(rec); 1829 } 1830 1831 crypto_free_aead(ctx->aead_send); 1832 tls_free_open_rec(sk); 1833 1834 kfree(ctx); 1835 } 1836 1837 void tls_sw_release_resources_rx(struct sock *sk) 1838 { 1839 struct tls_context *tls_ctx = tls_get_ctx(sk); 1840 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1841 1842 if (ctx->aead_recv) { 1843 kfree_skb(ctx->recv_pkt); 1844 ctx->recv_pkt = NULL; 1845 crypto_free_aead(ctx->aead_recv); 1846 strp_stop(&ctx->strp); 1847 write_lock_bh(&sk->sk_callback_lock); 1848 sk->sk_data_ready = ctx->saved_data_ready; 1849 write_unlock_bh(&sk->sk_callback_lock); 1850 release_sock(sk); 1851 strp_done(&ctx->strp); 1852 lock_sock(sk); 1853 } 1854 } 1855 1856 void tls_sw_free_resources_rx(struct sock *sk) 1857 { 1858 struct tls_context *tls_ctx = tls_get_ctx(sk); 1859 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1860 1861 tls_sw_release_resources_rx(sk); 1862 1863 kfree(ctx); 1864 } 1865 1866 /* The work handler to transmitt the encrypted records in tx_list */ 1867 static void tx_work_handler(struct work_struct *work) 1868 { 1869 struct delayed_work *delayed_work = to_delayed_work(work); 1870 struct tx_work *tx_work = container_of(delayed_work, 1871 struct tx_work, work); 1872 struct sock *sk = tx_work->sk; 1873 struct tls_context *tls_ctx = tls_get_ctx(sk); 1874 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1875 1876 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 1877 return; 1878 1879 lock_sock(sk); 1880 tls_tx_records(sk, -1); 1881 release_sock(sk); 1882 } 1883 1884 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 1885 { 1886 struct tls_crypto_info *crypto_info; 1887 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 1888 struct tls_sw_context_tx *sw_ctx_tx = NULL; 1889 struct tls_sw_context_rx *sw_ctx_rx = NULL; 1890 struct cipher_context *cctx; 1891 struct crypto_aead **aead; 1892 struct strp_callbacks cb; 1893 u16 nonce_size, tag_size, iv_size, rec_seq_size; 1894 char *iv, *rec_seq; 1895 int rc = 0; 1896 1897 if (!ctx) { 1898 rc = -EINVAL; 1899 goto out; 1900 } 1901 1902 if (tx) { 1903 if (!ctx->priv_ctx_tx) { 1904 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 1905 if (!sw_ctx_tx) { 1906 rc = -ENOMEM; 1907 goto out; 1908 } 1909 ctx->priv_ctx_tx = sw_ctx_tx; 1910 } else { 1911 sw_ctx_tx = 1912 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 1913 } 1914 } else { 1915 if (!ctx->priv_ctx_rx) { 1916 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 1917 if (!sw_ctx_rx) { 1918 rc = -ENOMEM; 1919 goto out; 1920 } 1921 ctx->priv_ctx_rx = sw_ctx_rx; 1922 } else { 1923 sw_ctx_rx = 1924 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 1925 } 1926 } 1927 1928 if (tx) { 1929 crypto_init_wait(&sw_ctx_tx->async_wait); 1930 crypto_info = &ctx->crypto_send.info; 1931 cctx = &ctx->tx; 1932 aead = &sw_ctx_tx->aead_send; 1933 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 1934 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 1935 sw_ctx_tx->tx_work.sk = sk; 1936 } else { 1937 crypto_init_wait(&sw_ctx_rx->async_wait); 1938 crypto_info = &ctx->crypto_recv.info; 1939 cctx = &ctx->rx; 1940 aead = &sw_ctx_rx->aead_recv; 1941 } 1942 1943 switch (crypto_info->cipher_type) { 1944 case TLS_CIPHER_AES_GCM_128: { 1945 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1946 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1947 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1948 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1949 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1950 rec_seq = 1951 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1952 gcm_128_info = 1953 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 1954 break; 1955 } 1956 default: 1957 rc = -EINVAL; 1958 goto free_priv; 1959 } 1960 1961 /* Sanity-check the IV size for stack allocations. */ 1962 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) { 1963 rc = -EINVAL; 1964 goto free_priv; 1965 } 1966 1967 cctx->prepend_size = TLS_HEADER_SIZE + nonce_size; 1968 cctx->tag_size = tag_size; 1969 cctx->overhead_size = cctx->prepend_size + cctx->tag_size; 1970 cctx->iv_size = iv_size; 1971 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1972 GFP_KERNEL); 1973 if (!cctx->iv) { 1974 rc = -ENOMEM; 1975 goto free_priv; 1976 } 1977 memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 1978 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1979 cctx->rec_seq_size = rec_seq_size; 1980 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1981 if (!cctx->rec_seq) { 1982 rc = -ENOMEM; 1983 goto free_iv; 1984 } 1985 1986 if (!*aead) { 1987 *aead = crypto_alloc_aead("gcm(aes)", 0, 0); 1988 if (IS_ERR(*aead)) { 1989 rc = PTR_ERR(*aead); 1990 *aead = NULL; 1991 goto free_rec_seq; 1992 } 1993 } 1994 1995 ctx->push_pending_record = tls_sw_push_pending_record; 1996 1997 rc = crypto_aead_setkey(*aead, gcm_128_info->key, 1998 TLS_CIPHER_AES_GCM_128_KEY_SIZE); 1999 if (rc) 2000 goto free_aead; 2001 2002 rc = crypto_aead_setauthsize(*aead, cctx->tag_size); 2003 if (rc) 2004 goto free_aead; 2005 2006 if (sw_ctx_rx) { 2007 /* Set up strparser */ 2008 memset(&cb, 0, sizeof(cb)); 2009 cb.rcv_msg = tls_queue; 2010 cb.parse_msg = tls_read_size; 2011 2012 strp_init(&sw_ctx_rx->strp, sk, &cb); 2013 2014 write_lock_bh(&sk->sk_callback_lock); 2015 sw_ctx_rx->saved_data_ready = sk->sk_data_ready; 2016 sk->sk_data_ready = tls_data_ready; 2017 write_unlock_bh(&sk->sk_callback_lock); 2018 2019 strp_check_rcv(&sw_ctx_rx->strp); 2020 } 2021 2022 goto out; 2023 2024 free_aead: 2025 crypto_free_aead(*aead); 2026 *aead = NULL; 2027 free_rec_seq: 2028 kfree(cctx->rec_seq); 2029 cctx->rec_seq = NULL; 2030 free_iv: 2031 kfree(cctx->iv); 2032 cctx->iv = NULL; 2033 free_priv: 2034 if (tx) { 2035 kfree(ctx->priv_ctx_tx); 2036 ctx->priv_ctx_tx = NULL; 2037 } else { 2038 kfree(ctx->priv_ctx_rx); 2039 ctx->priv_ctx_rx = NULL; 2040 } 2041 out: 2042 return rc; 2043 } 2044