1 /* 2 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 3 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 4 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #ifndef _TLS_INT_H 36 #define _TLS_INT_H 37 38 #include <asm/byteorder.h> 39 #include <linux/types.h> 40 #include <linux/skmsg.h> 41 #include <net/tls.h> 42 #include <net/tls_prot.h> 43 44 #define TLS_PAGE_ORDER (min_t(unsigned int, PAGE_ALLOC_COSTLY_ORDER, \ 45 TLS_MAX_PAYLOAD_SIZE >> PAGE_SHIFT)) 46 47 #define __TLS_INC_STATS(net, field) \ 48 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 49 #define TLS_INC_STATS(net, field) \ 50 SNMP_INC_STATS((net)->mib.tls_statistics, field) 51 #define TLS_DEC_STATS(net, field) \ 52 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 53 54 struct tls_cipher_size_desc { 55 unsigned int iv; 56 unsigned int key; 57 unsigned int salt; 58 unsigned int tag; 59 unsigned int rec_seq; 60 }; 61 62 extern const struct tls_cipher_size_desc tls_cipher_size_desc[]; 63 64 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 65 * allocated or mapped for each TLS record. After encryption, the records are 66 * stores in a linked list. 67 */ 68 struct tls_rec { 69 struct list_head list; 70 int tx_ready; 71 int tx_flags; 72 73 struct sk_msg msg_plaintext; 74 struct sk_msg msg_encrypted; 75 76 /* AAD | msg_plaintext.sg.data | sg_tag */ 77 struct scatterlist sg_aead_in[2]; 78 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 79 struct scatterlist sg_aead_out[2]; 80 81 char content_type; 82 struct scatterlist sg_content_type; 83 84 struct sock *sk; 85 86 char aad_space[TLS_AAD_SPACE_SIZE]; 87 u8 iv_data[MAX_IV_SIZE]; 88 struct aead_request aead_req; 89 u8 aead_req_ctx[]; 90 }; 91 92 int __net_init tls_proc_init(struct net *net); 93 void __net_exit tls_proc_fini(struct net *net); 94 95 struct tls_context *tls_ctx_create(struct sock *sk); 96 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 97 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 98 99 int wait_on_pending_writer(struct sock *sk, long *timeo); 100 void tls_err_abort(struct sock *sk, int err); 101 102 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 103 void tls_update_rx_zc_capable(struct tls_context *tls_ctx); 104 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 105 void tls_sw_strparser_done(struct tls_context *tls_ctx); 106 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 107 void tls_sw_splice_eof(struct socket *sock); 108 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 109 void tls_sw_release_resources_tx(struct sock *sk); 110 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 111 void tls_sw_free_resources_rx(struct sock *sk); 112 void tls_sw_release_resources_rx(struct sock *sk); 113 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 114 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 115 int flags, int *addr_len); 116 bool tls_sw_sock_is_readable(struct sock *sk); 117 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 118 struct pipe_inode_info *pipe, 119 size_t len, unsigned int flags); 120 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 121 sk_read_actor_t read_actor); 122 123 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 124 void tls_device_splice_eof(struct socket *sock); 125 int tls_tx_records(struct sock *sk, int flags); 126 127 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 128 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 129 130 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 131 unsigned char *record_type); 132 int decrypt_skb(struct sock *sk, struct scatterlist *sgout); 133 134 int tls_sw_fallback_init(struct sock *sk, 135 struct tls_offload_context_tx *offload_ctx, 136 struct tls_crypto_info *crypto_info); 137 138 int tls_strp_dev_init(void); 139 void tls_strp_dev_exit(void); 140 141 void tls_strp_done(struct tls_strparser *strp); 142 void tls_strp_stop(struct tls_strparser *strp); 143 int tls_strp_init(struct tls_strparser *strp, struct sock *sk); 144 void tls_strp_data_ready(struct tls_strparser *strp); 145 146 void tls_strp_check_rcv(struct tls_strparser *strp); 147 void tls_strp_msg_done(struct tls_strparser *strp); 148 149 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb); 150 void tls_rx_msg_ready(struct tls_strparser *strp); 151 152 void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh); 153 int tls_strp_msg_cow(struct tls_sw_context_rx *ctx); 154 struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx); 155 int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst); 156 157 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 158 { 159 struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb; 160 161 return &scb->tls; 162 } 163 164 static inline struct sk_buff *tls_strp_msg(struct tls_sw_context_rx *ctx) 165 { 166 DEBUG_NET_WARN_ON_ONCE(!ctx->strp.msg_ready || !ctx->strp.anchor->len); 167 return ctx->strp.anchor; 168 } 169 170 static inline bool tls_strp_msg_ready(struct tls_sw_context_rx *ctx) 171 { 172 return ctx->strp.msg_ready; 173 } 174 175 static inline bool tls_strp_msg_mixed_decrypted(struct tls_sw_context_rx *ctx) 176 { 177 return ctx->strp.mixed_decrypted; 178 } 179 180 #ifdef CONFIG_TLS_DEVICE 181 int tls_device_init(void); 182 void tls_device_cleanup(void); 183 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 184 void tls_device_free_resources_tx(struct sock *sk); 185 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 186 void tls_device_offload_cleanup_rx(struct sock *sk); 187 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 188 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx); 189 #else 190 static inline int tls_device_init(void) { return 0; } 191 static inline void tls_device_cleanup(void) {} 192 193 static inline int 194 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 195 { 196 return -EOPNOTSUPP; 197 } 198 199 static inline void tls_device_free_resources_tx(struct sock *sk) {} 200 201 static inline int 202 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 203 { 204 return -EOPNOTSUPP; 205 } 206 207 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 208 static inline void 209 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 210 211 static inline int 212 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 213 { 214 return 0; 215 } 216 #endif 217 218 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 219 struct scatterlist *sg, u16 first_offset, 220 int flags); 221 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 222 int flags); 223 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 224 225 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 226 { 227 return !!ctx->partially_sent_record; 228 } 229 230 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 231 { 232 return tls_ctx->pending_open_record_frags; 233 } 234 235 static inline bool tls_bigint_increment(unsigned char *seq, int len) 236 { 237 int i; 238 239 for (i = len - 1; i >= 0; i--) { 240 ++seq[i]; 241 if (seq[i] != 0) 242 break; 243 } 244 245 return (i == -1); 246 } 247 248 static inline void tls_bigint_subtract(unsigned char *seq, int n) 249 { 250 u64 rcd_sn; 251 __be64 *p; 252 253 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 254 255 p = (__be64 *)seq; 256 rcd_sn = be64_to_cpu(*p); 257 *p = cpu_to_be64(rcd_sn - n); 258 } 259 260 static inline void 261 tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot, 262 struct cipher_context *ctx) 263 { 264 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 265 tls_err_abort(sk, -EBADMSG); 266 267 if (prot->version != TLS_1_3_VERSION && 268 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 269 tls_bigint_increment(ctx->iv + prot->salt_size, 270 prot->iv_size); 271 } 272 273 static inline void 274 tls_xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) 275 { 276 int i; 277 278 if (prot->version == TLS_1_3_VERSION || 279 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 280 for (i = 0; i < 8; i++) 281 iv[i + 4] ^= seq[i]; 282 } 283 } 284 285 static inline void 286 tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, 287 unsigned char record_type) 288 { 289 struct tls_prot_info *prot = &ctx->prot_info; 290 size_t pkt_len, iv_size = prot->iv_size; 291 292 pkt_len = plaintext_len + prot->tag_size; 293 if (prot->version != TLS_1_3_VERSION && 294 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { 295 pkt_len += iv_size; 296 297 memcpy(buf + TLS_NONCE_OFFSET, 298 ctx->tx.iv + prot->salt_size, iv_size); 299 } 300 301 /* we cover nonce explicit here as well, so buf should be of 302 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 303 */ 304 buf[0] = prot->version == TLS_1_3_VERSION ? 305 TLS_RECORD_TYPE_DATA : record_type; 306 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 307 buf[1] = TLS_1_2_VERSION_MINOR; 308 buf[2] = TLS_1_2_VERSION_MAJOR; 309 /* we can use IV for nonce explicit according to spec */ 310 buf[3] = pkt_len >> 8; 311 buf[4] = pkt_len & 0xFF; 312 } 313 314 static inline 315 void tls_make_aad(char *buf, size_t size, char *record_sequence, 316 unsigned char record_type, struct tls_prot_info *prot) 317 { 318 if (prot->version != TLS_1_3_VERSION) { 319 memcpy(buf, record_sequence, prot->rec_seq_size); 320 buf += 8; 321 } else { 322 size += prot->tag_size; 323 } 324 325 buf[0] = prot->version == TLS_1_3_VERSION ? 326 TLS_RECORD_TYPE_DATA : record_type; 327 buf[1] = TLS_1_2_VERSION_MAJOR; 328 buf[2] = TLS_1_2_VERSION_MINOR; 329 buf[3] = size >> 8; 330 buf[4] = size & 0xFF; 331 } 332 333 #endif 334