1 /* 2 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 3 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 4 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #ifndef _TLS_INT_H 36 #define _TLS_INT_H 37 38 #include <asm/byteorder.h> 39 #include <linux/types.h> 40 #include <linux/skmsg.h> 41 #include <net/tls.h> 42 43 #define TLS_PAGE_ORDER (min_t(unsigned int, PAGE_ALLOC_COSTLY_ORDER, \ 44 TLS_MAX_PAYLOAD_SIZE >> PAGE_SHIFT)) 45 46 #define __TLS_INC_STATS(net, field) \ 47 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 48 #define TLS_INC_STATS(net, field) \ 49 SNMP_INC_STATS((net)->mib.tls_statistics, field) 50 #define TLS_DEC_STATS(net, field) \ 51 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 52 53 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 54 * allocated or mapped for each TLS record. After encryption, the records are 55 * stores in a linked list. 56 */ 57 struct tls_rec { 58 struct list_head list; 59 int tx_ready; 60 int tx_flags; 61 62 struct sk_msg msg_plaintext; 63 struct sk_msg msg_encrypted; 64 65 /* AAD | msg_plaintext.sg.data | sg_tag */ 66 struct scatterlist sg_aead_in[2]; 67 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 68 struct scatterlist sg_aead_out[2]; 69 70 char content_type; 71 struct scatterlist sg_content_type; 72 73 struct sock *sk; 74 75 char aad_space[TLS_AAD_SPACE_SIZE]; 76 u8 iv_data[MAX_IV_SIZE]; 77 struct aead_request aead_req; 78 u8 aead_req_ctx[]; 79 }; 80 81 int __net_init tls_proc_init(struct net *net); 82 void __net_exit tls_proc_fini(struct net *net); 83 84 struct tls_context *tls_ctx_create(struct sock *sk); 85 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 86 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 87 88 int wait_on_pending_writer(struct sock *sk, long *timeo); 89 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 90 int __user *optlen); 91 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 92 unsigned int optlen); 93 void tls_err_abort(struct sock *sk, int err); 94 95 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 96 void tls_update_rx_zc_capable(struct tls_context *tls_ctx); 97 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 98 void tls_sw_strparser_done(struct tls_context *tls_ctx); 99 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 100 void tls_sw_splice_eof(struct socket *sock); 101 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 102 void tls_sw_release_resources_tx(struct sock *sk); 103 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 104 void tls_sw_free_resources_rx(struct sock *sk); 105 void tls_sw_release_resources_rx(struct sock *sk); 106 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 107 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 108 int flags, int *addr_len); 109 bool tls_sw_sock_is_readable(struct sock *sk); 110 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 111 struct pipe_inode_info *pipe, 112 size_t len, unsigned int flags); 113 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 114 sk_read_actor_t read_actor); 115 116 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 117 void tls_device_splice_eof(struct socket *sock); 118 int tls_tx_records(struct sock *sk, int flags); 119 120 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 121 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 122 123 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 124 unsigned char *record_type); 125 int decrypt_skb(struct sock *sk, struct scatterlist *sgout); 126 127 int tls_sw_fallback_init(struct sock *sk, 128 struct tls_offload_context_tx *offload_ctx, 129 struct tls_crypto_info *crypto_info); 130 131 int tls_strp_dev_init(void); 132 void tls_strp_dev_exit(void); 133 134 void tls_strp_done(struct tls_strparser *strp); 135 void tls_strp_stop(struct tls_strparser *strp); 136 int tls_strp_init(struct tls_strparser *strp, struct sock *sk); 137 void tls_strp_data_ready(struct tls_strparser *strp); 138 139 void tls_strp_check_rcv(struct tls_strparser *strp); 140 void tls_strp_msg_done(struct tls_strparser *strp); 141 142 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb); 143 void tls_rx_msg_ready(struct tls_strparser *strp); 144 145 void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh); 146 int tls_strp_msg_cow(struct tls_sw_context_rx *ctx); 147 struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx); 148 int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst); 149 150 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 151 { 152 struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb; 153 154 return &scb->tls; 155 } 156 157 static inline struct sk_buff *tls_strp_msg(struct tls_sw_context_rx *ctx) 158 { 159 DEBUG_NET_WARN_ON_ONCE(!ctx->strp.msg_ready || !ctx->strp.anchor->len); 160 return ctx->strp.anchor; 161 } 162 163 static inline bool tls_strp_msg_ready(struct tls_sw_context_rx *ctx) 164 { 165 return ctx->strp.msg_ready; 166 } 167 168 static inline bool tls_strp_msg_mixed_decrypted(struct tls_sw_context_rx *ctx) 169 { 170 return ctx->strp.mixed_decrypted; 171 } 172 173 #ifdef CONFIG_TLS_DEVICE 174 int tls_device_init(void); 175 void tls_device_cleanup(void); 176 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 177 void tls_device_free_resources_tx(struct sock *sk); 178 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 179 void tls_device_offload_cleanup_rx(struct sock *sk); 180 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 181 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx); 182 #else 183 static inline int tls_device_init(void) { return 0; } 184 static inline void tls_device_cleanup(void) {} 185 186 static inline int 187 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 188 { 189 return -EOPNOTSUPP; 190 } 191 192 static inline void tls_device_free_resources_tx(struct sock *sk) {} 193 194 static inline int 195 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 196 { 197 return -EOPNOTSUPP; 198 } 199 200 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 201 static inline void 202 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 203 204 static inline int 205 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 206 { 207 return 0; 208 } 209 #endif 210 211 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 212 struct scatterlist *sg, u16 first_offset, 213 int flags); 214 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 215 int flags); 216 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 217 218 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 219 { 220 return !!ctx->partially_sent_record; 221 } 222 223 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 224 { 225 return tls_ctx->pending_open_record_frags; 226 } 227 228 static inline bool tls_bigint_increment(unsigned char *seq, int len) 229 { 230 int i; 231 232 for (i = len - 1; i >= 0; i--) { 233 ++seq[i]; 234 if (seq[i] != 0) 235 break; 236 } 237 238 return (i == -1); 239 } 240 241 static inline void tls_bigint_subtract(unsigned char *seq, int n) 242 { 243 u64 rcd_sn; 244 __be64 *p; 245 246 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 247 248 p = (__be64 *)seq; 249 rcd_sn = be64_to_cpu(*p); 250 *p = cpu_to_be64(rcd_sn - n); 251 } 252 253 static inline void 254 tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot, 255 struct cipher_context *ctx) 256 { 257 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 258 tls_err_abort(sk, -EBADMSG); 259 260 if (prot->version != TLS_1_3_VERSION && 261 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 262 tls_bigint_increment(ctx->iv + prot->salt_size, 263 prot->iv_size); 264 } 265 266 static inline void 267 tls_xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) 268 { 269 int i; 270 271 if (prot->version == TLS_1_3_VERSION || 272 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 273 for (i = 0; i < 8; i++) 274 iv[i + 4] ^= seq[i]; 275 } 276 } 277 278 static inline void 279 tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, 280 unsigned char record_type) 281 { 282 struct tls_prot_info *prot = &ctx->prot_info; 283 size_t pkt_len, iv_size = prot->iv_size; 284 285 pkt_len = plaintext_len + prot->tag_size; 286 if (prot->version != TLS_1_3_VERSION && 287 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { 288 pkt_len += iv_size; 289 290 memcpy(buf + TLS_NONCE_OFFSET, 291 ctx->tx.iv + prot->salt_size, iv_size); 292 } 293 294 /* we cover nonce explicit here as well, so buf should be of 295 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 296 */ 297 buf[0] = prot->version == TLS_1_3_VERSION ? 298 TLS_RECORD_TYPE_DATA : record_type; 299 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 300 buf[1] = TLS_1_2_VERSION_MINOR; 301 buf[2] = TLS_1_2_VERSION_MAJOR; 302 /* we can use IV for nonce explicit according to spec */ 303 buf[3] = pkt_len >> 8; 304 buf[4] = pkt_len & 0xFF; 305 } 306 307 static inline 308 void tls_make_aad(char *buf, size_t size, char *record_sequence, 309 unsigned char record_type, struct tls_prot_info *prot) 310 { 311 if (prot->version != TLS_1_3_VERSION) { 312 memcpy(buf, record_sequence, prot->rec_seq_size); 313 buf += 8; 314 } else { 315 size += prot->tag_size; 316 } 317 318 buf[0] = prot->version == TLS_1_3_VERSION ? 319 TLS_RECORD_TYPE_DATA : record_type; 320 buf[1] = TLS_1_2_VERSION_MAJOR; 321 buf[2] = TLS_1_2_VERSION_MINOR; 322 buf[3] = size >> 8; 323 buf[4] = size & 0xFF; 324 } 325 326 #endif 327