1 /* 2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the BSD-type 8 * license below: 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 17 * Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials provided 20 * with the distribution. 21 * 22 * Neither the name of the Network Appliance, Inc. nor the names of 23 * its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written 25 * permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * transport.c 42 * 43 * This file contains the top-level implementation of an RPC RDMA 44 * transport. 45 * 46 * Naming convention: functions beginning with xprt_ are part of the 47 * transport switch. All others are RPC RDMA internal. 48 */ 49 50 #include <linux/module.h> 51 #include <linux/init.h> 52 #include <linux/seq_file.h> 53 54 #include "xprt_rdma.h" 55 56 #ifdef RPC_DEBUG 57 # define RPCDBG_FACILITY RPCDBG_TRANS 58 #endif 59 60 MODULE_LICENSE("Dual BSD/GPL"); 61 62 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS"); 63 MODULE_AUTHOR("Network Appliance, Inc."); 64 65 /* 66 * tunables 67 */ 68 69 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; 70 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; 71 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; 72 static unsigned int xprt_rdma_inline_write_padding; 73 #if !RPCRDMA_PERSISTENT_REGISTRATION 74 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_REGISTER; /* FMR? */ 75 #else 76 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_ALLPHYSICAL; 77 #endif 78 79 #ifdef RPC_DEBUG 80 81 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; 82 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; 83 static unsigned int zero; 84 static unsigned int max_padding = PAGE_SIZE; 85 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; 86 static unsigned int max_memreg = RPCRDMA_LAST - 1; 87 88 static struct ctl_table_header *sunrpc_table_header; 89 90 static ctl_table xr_tunables_table[] = { 91 { 92 .ctl_name = CTL_SLOTTABLE_RDMA, 93 .procname = "rdma_slot_table_entries", 94 .data = &xprt_rdma_slot_table_entries, 95 .maxlen = sizeof(unsigned int), 96 .mode = 0644, 97 .proc_handler = &proc_dointvec_minmax, 98 .strategy = &sysctl_intvec, 99 .extra1 = &min_slot_table_size, 100 .extra2 = &max_slot_table_size 101 }, 102 { 103 .ctl_name = CTL_RDMA_MAXINLINEREAD, 104 .procname = "rdma_max_inline_read", 105 .data = &xprt_rdma_max_inline_read, 106 .maxlen = sizeof(unsigned int), 107 .mode = 0644, 108 .proc_handler = &proc_dointvec, 109 .strategy = &sysctl_intvec, 110 }, 111 { 112 .ctl_name = CTL_RDMA_MAXINLINEWRITE, 113 .procname = "rdma_max_inline_write", 114 .data = &xprt_rdma_max_inline_write, 115 .maxlen = sizeof(unsigned int), 116 .mode = 0644, 117 .proc_handler = &proc_dointvec, 118 .strategy = &sysctl_intvec, 119 }, 120 { 121 .ctl_name = CTL_RDMA_WRITEPADDING, 122 .procname = "rdma_inline_write_padding", 123 .data = &xprt_rdma_inline_write_padding, 124 .maxlen = sizeof(unsigned int), 125 .mode = 0644, 126 .proc_handler = &proc_dointvec_minmax, 127 .strategy = &sysctl_intvec, 128 .extra1 = &zero, 129 .extra2 = &max_padding, 130 }, 131 { 132 .ctl_name = CTL_RDMA_MEMREG, 133 .procname = "rdma_memreg_strategy", 134 .data = &xprt_rdma_memreg_strategy, 135 .maxlen = sizeof(unsigned int), 136 .mode = 0644, 137 .proc_handler = &proc_dointvec_minmax, 138 .strategy = &sysctl_intvec, 139 .extra1 = &min_memreg, 140 .extra2 = &max_memreg, 141 }, 142 { 143 .ctl_name = 0, 144 }, 145 }; 146 147 static ctl_table sunrpc_table[] = { 148 { 149 .ctl_name = CTL_SUNRPC, 150 .procname = "sunrpc", 151 .mode = 0555, 152 .child = xr_tunables_table 153 }, 154 { 155 .ctl_name = 0, 156 }, 157 }; 158 159 #endif 160 161 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ 162 163 static void 164 xprt_rdma_format_addresses(struct rpc_xprt *xprt) 165 { 166 struct sockaddr_in *addr = (struct sockaddr_in *) 167 &rpcx_to_rdmad(xprt).addr; 168 char *buf; 169 170 buf = kzalloc(20, GFP_KERNEL); 171 if (buf) 172 snprintf(buf, 20, NIPQUAD_FMT, NIPQUAD(addr->sin_addr.s_addr)); 173 xprt->address_strings[RPC_DISPLAY_ADDR] = buf; 174 175 buf = kzalloc(8, GFP_KERNEL); 176 if (buf) 177 snprintf(buf, 8, "%u", ntohs(addr->sin_port)); 178 xprt->address_strings[RPC_DISPLAY_PORT] = buf; 179 180 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; 181 182 buf = kzalloc(48, GFP_KERNEL); 183 if (buf) 184 snprintf(buf, 48, "addr="NIPQUAD_FMT" port=%u proto=%s", 185 NIPQUAD(addr->sin_addr.s_addr), 186 ntohs(addr->sin_port), "rdma"); 187 xprt->address_strings[RPC_DISPLAY_ALL] = buf; 188 189 buf = kzalloc(10, GFP_KERNEL); 190 if (buf) 191 snprintf(buf, 10, "%02x%02x%02x%02x", 192 NIPQUAD(addr->sin_addr.s_addr)); 193 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = buf; 194 195 buf = kzalloc(8, GFP_KERNEL); 196 if (buf) 197 snprintf(buf, 8, "%4hx", ntohs(addr->sin_port)); 198 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = buf; 199 200 buf = kzalloc(30, GFP_KERNEL); 201 if (buf) 202 snprintf(buf, 30, NIPQUAD_FMT".%u.%u", 203 NIPQUAD(addr->sin_addr.s_addr), 204 ntohs(addr->sin_port) >> 8, 205 ntohs(addr->sin_port) & 0xff); 206 xprt->address_strings[RPC_DISPLAY_UNIVERSAL_ADDR] = buf; 207 208 /* netid */ 209 xprt->address_strings[RPC_DISPLAY_NETID] = "rdma"; 210 } 211 212 static void 213 xprt_rdma_free_addresses(struct rpc_xprt *xprt) 214 { 215 kfree(xprt->address_strings[RPC_DISPLAY_ADDR]); 216 kfree(xprt->address_strings[RPC_DISPLAY_PORT]); 217 kfree(xprt->address_strings[RPC_DISPLAY_ALL]); 218 kfree(xprt->address_strings[RPC_DISPLAY_HEX_ADDR]); 219 kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]); 220 kfree(xprt->address_strings[RPC_DISPLAY_UNIVERSAL_ADDR]); 221 } 222 223 static void 224 xprt_rdma_connect_worker(struct work_struct *work) 225 { 226 struct rpcrdma_xprt *r_xprt = 227 container_of(work, struct rpcrdma_xprt, rdma_connect.work); 228 struct rpc_xprt *xprt = &r_xprt->xprt; 229 int rc = 0; 230 231 if (!xprt->shutdown) { 232 xprt_clear_connected(xprt); 233 234 dprintk("RPC: %s: %sconnect\n", __func__, 235 r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); 236 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); 237 if (rc) 238 goto out; 239 } 240 goto out_clear; 241 242 out: 243 xprt_wake_pending_tasks(xprt, rc); 244 245 out_clear: 246 dprintk("RPC: %s: exit\n", __func__); 247 xprt_clear_connecting(xprt); 248 } 249 250 /* 251 * xprt_rdma_destroy 252 * 253 * Destroy the xprt. 254 * Free all memory associated with the object, including its own. 255 * NOTE: none of the *destroy methods free memory for their top-level 256 * objects, even though they may have allocated it (they do free 257 * private memory). It's up to the caller to handle it. In this 258 * case (RDMA transport), all structure memory is inlined with the 259 * struct rpcrdma_xprt. 260 */ 261 static void 262 xprt_rdma_destroy(struct rpc_xprt *xprt) 263 { 264 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 265 int rc; 266 267 dprintk("RPC: %s: called\n", __func__); 268 269 cancel_delayed_work(&r_xprt->rdma_connect); 270 flush_scheduled_work(); 271 272 xprt_clear_connected(xprt); 273 274 rpcrdma_buffer_destroy(&r_xprt->rx_buf); 275 rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); 276 if (rc) 277 dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n", 278 __func__, rc); 279 rpcrdma_ia_close(&r_xprt->rx_ia); 280 281 xprt_rdma_free_addresses(xprt); 282 283 kfree(xprt->slot); 284 xprt->slot = NULL; 285 kfree(xprt); 286 287 dprintk("RPC: %s: returning\n", __func__); 288 289 module_put(THIS_MODULE); 290 } 291 292 /** 293 * xprt_setup_rdma - Set up transport to use RDMA 294 * 295 * @args: rpc transport arguments 296 */ 297 static struct rpc_xprt * 298 xprt_setup_rdma(struct xprt_create *args) 299 { 300 struct rpcrdma_create_data_internal cdata; 301 struct rpc_xprt *xprt; 302 struct rpcrdma_xprt *new_xprt; 303 struct rpcrdma_ep *new_ep; 304 struct sockaddr_in *sin; 305 int rc; 306 307 if (args->addrlen > sizeof(xprt->addr)) { 308 dprintk("RPC: %s: address too large\n", __func__); 309 return ERR_PTR(-EBADF); 310 } 311 312 xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL); 313 if (xprt == NULL) { 314 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", 315 __func__); 316 return ERR_PTR(-ENOMEM); 317 } 318 319 xprt->max_reqs = xprt_rdma_slot_table_entries; 320 xprt->slot = kcalloc(xprt->max_reqs, 321 sizeof(struct rpc_rqst), GFP_KERNEL); 322 if (xprt->slot == NULL) { 323 kfree(xprt); 324 dprintk("RPC: %s: couldn't allocate %d slots\n", 325 __func__, xprt->max_reqs); 326 return ERR_PTR(-ENOMEM); 327 } 328 329 /* 60 second timeout, no retries */ 330 xprt_set_timeout(&xprt->timeout, 0, 60UL * HZ); 331 xprt->bind_timeout = (60U * HZ); 332 xprt->connect_timeout = (60U * HZ); 333 xprt->reestablish_timeout = (5U * HZ); 334 xprt->idle_timeout = (5U * 60 * HZ); 335 336 xprt->resvport = 0; /* privileged port not needed */ 337 xprt->tsh_size = 0; /* RPC-RDMA handles framing */ 338 xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE; 339 xprt->ops = &xprt_rdma_procs; 340 341 /* 342 * Set up RDMA-specific connect data. 343 */ 344 345 /* Put server RDMA address in local cdata */ 346 memcpy(&cdata.addr, args->dstaddr, args->addrlen); 347 348 /* Ensure xprt->addr holds valid server TCP (not RDMA) 349 * address, for any side protocols which peek at it */ 350 xprt->prot = IPPROTO_TCP; 351 xprt->addrlen = args->addrlen; 352 memcpy(&xprt->addr, &cdata.addr, xprt->addrlen); 353 354 sin = (struct sockaddr_in *)&cdata.addr; 355 if (ntohs(sin->sin_port) != 0) 356 xprt_set_bound(xprt); 357 358 dprintk("RPC: %s: %u.%u.%u.%u:%u\n", __func__, 359 NIPQUAD(sin->sin_addr.s_addr), ntohs(sin->sin_port)); 360 361 /* Set max requests */ 362 cdata.max_requests = xprt->max_reqs; 363 364 /* Set some length limits */ 365 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ 366 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ 367 368 cdata.inline_wsize = xprt_rdma_max_inline_write; 369 if (cdata.inline_wsize > cdata.wsize) 370 cdata.inline_wsize = cdata.wsize; 371 372 cdata.inline_rsize = xprt_rdma_max_inline_read; 373 if (cdata.inline_rsize > cdata.rsize) 374 cdata.inline_rsize = cdata.rsize; 375 376 cdata.padding = xprt_rdma_inline_write_padding; 377 378 /* 379 * Create new transport instance, which includes initialized 380 * o ia 381 * o endpoint 382 * o buffers 383 */ 384 385 new_xprt = rpcx_to_rdmax(xprt); 386 387 rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr, 388 xprt_rdma_memreg_strategy); 389 if (rc) 390 goto out1; 391 392 /* 393 * initialize and create ep 394 */ 395 new_xprt->rx_data = cdata; 396 new_ep = &new_xprt->rx_ep; 397 new_ep->rep_remote_addr = cdata.addr; 398 399 rc = rpcrdma_ep_create(&new_xprt->rx_ep, 400 &new_xprt->rx_ia, &new_xprt->rx_data); 401 if (rc) 402 goto out2; 403 404 /* 405 * Allocate pre-registered send and receive buffers for headers and 406 * any inline data. Also specify any padding which will be provided 407 * from a preregistered zero buffer. 408 */ 409 rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia, 410 &new_xprt->rx_data); 411 if (rc) 412 goto out3; 413 414 /* 415 * Register a callback for connection events. This is necessary because 416 * connection loss notification is async. We also catch connection loss 417 * when reaping receives. 418 */ 419 INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker); 420 new_ep->rep_func = rpcrdma_conn_func; 421 new_ep->rep_xprt = xprt; 422 423 xprt_rdma_format_addresses(xprt); 424 425 if (!try_module_get(THIS_MODULE)) 426 goto out4; 427 428 return xprt; 429 430 out4: 431 xprt_rdma_free_addresses(xprt); 432 rc = -EINVAL; 433 out3: 434 (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); 435 out2: 436 rpcrdma_ia_close(&new_xprt->rx_ia); 437 out1: 438 kfree(xprt->slot); 439 kfree(xprt); 440 return ERR_PTR(rc); 441 } 442 443 /* 444 * Close a connection, during shutdown or timeout/reconnect 445 */ 446 static void 447 xprt_rdma_close(struct rpc_xprt *xprt) 448 { 449 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 450 451 dprintk("RPC: %s: closing\n", __func__); 452 xprt_disconnect(xprt); 453 (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); 454 } 455 456 static void 457 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) 458 { 459 struct sockaddr_in *sap; 460 461 sap = (struct sockaddr_in *)&xprt->addr; 462 sap->sin_port = htons(port); 463 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; 464 sap->sin_port = htons(port); 465 dprintk("RPC: %s: %u\n", __func__, port); 466 } 467 468 static void 469 xprt_rdma_connect(struct rpc_task *task) 470 { 471 struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt; 472 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 473 474 if (!xprt_test_and_set_connecting(xprt)) { 475 if (r_xprt->rx_ep.rep_connected != 0) { 476 /* Reconnect */ 477 schedule_delayed_work(&r_xprt->rdma_connect, 478 xprt->reestablish_timeout); 479 } else { 480 schedule_delayed_work(&r_xprt->rdma_connect, 0); 481 if (!RPC_IS_ASYNC(task)) 482 flush_scheduled_work(); 483 } 484 } 485 } 486 487 static int 488 xprt_rdma_reserve_xprt(struct rpc_task *task) 489 { 490 struct rpc_xprt *xprt = task->tk_xprt; 491 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 492 int credits = atomic_read(&r_xprt->rx_buf.rb_credits); 493 494 /* == RPC_CWNDSCALE @ init, but *after* setup */ 495 if (r_xprt->rx_buf.rb_cwndscale == 0UL) { 496 r_xprt->rx_buf.rb_cwndscale = xprt->cwnd; 497 dprintk("RPC: %s: cwndscale %lu\n", __func__, 498 r_xprt->rx_buf.rb_cwndscale); 499 BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0); 500 } 501 xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale; 502 return xprt_reserve_xprt_cong(task); 503 } 504 505 /* 506 * The RDMA allocate/free functions need the task structure as a place 507 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv 508 * sequence. For this reason, the recv buffers are attached to send 509 * buffers for portions of the RPC. Note that the RPC layer allocates 510 * both send and receive buffers in the same call. We may register 511 * the receive buffer portion when using reply chunks. 512 */ 513 static void * 514 xprt_rdma_allocate(struct rpc_task *task, size_t size) 515 { 516 struct rpc_xprt *xprt = task->tk_xprt; 517 struct rpcrdma_req *req, *nreq; 518 519 req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf); 520 BUG_ON(NULL == req); 521 522 if (size > req->rl_size) { 523 dprintk("RPC: %s: size %zd too large for buffer[%zd]: " 524 "prog %d vers %d proc %d\n", 525 __func__, size, req->rl_size, 526 task->tk_client->cl_prog, task->tk_client->cl_vers, 527 task->tk_msg.rpc_proc->p_proc); 528 /* 529 * Outgoing length shortage. Our inline write max must have 530 * been configured to perform direct i/o. 531 * 532 * This is therefore a large metadata operation, and the 533 * allocate call was made on the maximum possible message, 534 * e.g. containing long filename(s) or symlink data. In 535 * fact, while these metadata operations *might* carry 536 * large outgoing payloads, they rarely *do*. However, we 537 * have to commit to the request here, so reallocate and 538 * register it now. The data path will never require this 539 * reallocation. 540 * 541 * If the allocation or registration fails, the RPC framework 542 * will (doggedly) retry. 543 */ 544 if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy == 545 RPCRDMA_BOUNCEBUFFERS) { 546 /* forced to "pure inline" */ 547 dprintk("RPC: %s: too much data (%zd) for inline " 548 "(r/w max %d/%d)\n", __func__, size, 549 rpcx_to_rdmad(xprt).inline_rsize, 550 rpcx_to_rdmad(xprt).inline_wsize); 551 size = req->rl_size; 552 rpc_exit(task, -EIO); /* fail the operation */ 553 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; 554 goto out; 555 } 556 if (task->tk_flags & RPC_TASK_SWAPPER) 557 nreq = kmalloc(sizeof *req + size, GFP_ATOMIC); 558 else 559 nreq = kmalloc(sizeof *req + size, GFP_NOFS); 560 if (nreq == NULL) 561 goto outfail; 562 563 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia, 564 nreq->rl_base, size + sizeof(struct rpcrdma_req) 565 - offsetof(struct rpcrdma_req, rl_base), 566 &nreq->rl_handle, &nreq->rl_iov)) { 567 kfree(nreq); 568 goto outfail; 569 } 570 rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size; 571 nreq->rl_size = size; 572 nreq->rl_niovs = 0; 573 nreq->rl_nchunks = 0; 574 nreq->rl_buffer = (struct rpcrdma_buffer *)req; 575 nreq->rl_reply = req->rl_reply; 576 memcpy(nreq->rl_segments, 577 req->rl_segments, sizeof nreq->rl_segments); 578 /* flag the swap with an unused field */ 579 nreq->rl_iov.length = 0; 580 req->rl_reply = NULL; 581 req = nreq; 582 } 583 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); 584 out: 585 return req->rl_xdr_buf; 586 587 outfail: 588 rpcrdma_buffer_put(req); 589 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; 590 return NULL; 591 } 592 593 /* 594 * This function returns all RDMA resources to the pool. 595 */ 596 static void 597 xprt_rdma_free(void *buffer) 598 { 599 struct rpcrdma_req *req; 600 struct rpcrdma_xprt *r_xprt; 601 struct rpcrdma_rep *rep; 602 int i; 603 604 if (buffer == NULL) 605 return; 606 607 req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]); 608 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); 609 rep = req->rl_reply; 610 611 dprintk("RPC: %s: called on 0x%p%s\n", 612 __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : ""); 613 614 /* 615 * Finish the deregistration. When using mw bind, this was 616 * begun in rpcrdma_reply_handler(). In all other modes, we 617 * do it here, in thread context. The process is considered 618 * complete when the rr_func vector becomes NULL - this 619 * was put in place during rpcrdma_reply_handler() - the wait 620 * call below will not block if the dereg is "done". If 621 * interrupted, our framework will clean up. 622 */ 623 for (i = 0; req->rl_nchunks;) { 624 --req->rl_nchunks; 625 i += rpcrdma_deregister_external( 626 &req->rl_segments[i], r_xprt, NULL); 627 } 628 629 if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) { 630 rep->rr_func = NULL; /* abandon the callback */ 631 req->rl_reply = NULL; 632 } 633 634 if (req->rl_iov.length == 0) { /* see allocate above */ 635 struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer; 636 oreq->rl_reply = req->rl_reply; 637 (void) rpcrdma_deregister_internal(&r_xprt->rx_ia, 638 req->rl_handle, 639 &req->rl_iov); 640 kfree(req); 641 req = oreq; 642 } 643 644 /* Put back request+reply buffers */ 645 rpcrdma_buffer_put(req); 646 } 647 648 /* 649 * send_request invokes the meat of RPC RDMA. It must do the following: 650 * 1. Marshal the RPC request into an RPC RDMA request, which means 651 * putting a header in front of data, and creating IOVs for RDMA 652 * from those in the request. 653 * 2. In marshaling, detect opportunities for RDMA, and use them. 654 * 3. Post a recv message to set up asynch completion, then send 655 * the request (rpcrdma_ep_post). 656 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). 657 */ 658 659 static int 660 xprt_rdma_send_request(struct rpc_task *task) 661 { 662 struct rpc_rqst *rqst = task->tk_rqstp; 663 struct rpc_xprt *xprt = task->tk_xprt; 664 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 665 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 666 667 /* marshal the send itself */ 668 if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) { 669 r_xprt->rx_stats.failed_marshal_count++; 670 dprintk("RPC: %s: rpcrdma_marshal_req failed\n", 671 __func__); 672 return -EIO; 673 } 674 675 if (req->rl_reply == NULL) /* e.g. reconnection */ 676 rpcrdma_recv_buffer_get(req); 677 678 if (req->rl_reply) { 679 req->rl_reply->rr_func = rpcrdma_reply_handler; 680 /* this need only be done once, but... */ 681 req->rl_reply->rr_xprt = xprt; 682 } 683 684 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) { 685 xprt_disconnect(xprt); 686 return -ENOTCONN; /* implies disconnect */ 687 } 688 689 rqst->rq_bytes_sent = 0; 690 return 0; 691 } 692 693 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 694 { 695 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 696 long idle_time = 0; 697 698 if (xprt_connected(xprt)) 699 idle_time = (long)(jiffies - xprt->last_used) / HZ; 700 701 seq_printf(seq, 702 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu " 703 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n", 704 705 0, /* need a local port? */ 706 xprt->stat.bind_count, 707 xprt->stat.connect_count, 708 xprt->stat.connect_time, 709 idle_time, 710 xprt->stat.sends, 711 xprt->stat.recvs, 712 xprt->stat.bad_xids, 713 xprt->stat.req_u, 714 xprt->stat.bklog_u, 715 716 r_xprt->rx_stats.read_chunk_count, 717 r_xprt->rx_stats.write_chunk_count, 718 r_xprt->rx_stats.reply_chunk_count, 719 r_xprt->rx_stats.total_rdma_request, 720 r_xprt->rx_stats.total_rdma_reply, 721 r_xprt->rx_stats.pullup_copy_count, 722 r_xprt->rx_stats.fixup_copy_count, 723 r_xprt->rx_stats.hardway_register_count, 724 r_xprt->rx_stats.failed_marshal_count, 725 r_xprt->rx_stats.bad_reply_count); 726 } 727 728 /* 729 * Plumbing for rpc transport switch and kernel module 730 */ 731 732 static struct rpc_xprt_ops xprt_rdma_procs = { 733 .reserve_xprt = xprt_rdma_reserve_xprt, 734 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ 735 .release_request = xprt_release_rqst_cong, /* ditto */ 736 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ 737 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ 738 .set_port = xprt_rdma_set_port, 739 .connect = xprt_rdma_connect, 740 .buf_alloc = xprt_rdma_allocate, 741 .buf_free = xprt_rdma_free, 742 .send_request = xprt_rdma_send_request, 743 .close = xprt_rdma_close, 744 .destroy = xprt_rdma_destroy, 745 .print_stats = xprt_rdma_print_stats 746 }; 747 748 static struct xprt_class xprt_rdma = { 749 .list = LIST_HEAD_INIT(xprt_rdma.list), 750 .name = "rdma", 751 .owner = THIS_MODULE, 752 .ident = XPRT_TRANSPORT_RDMA, 753 .setup = xprt_setup_rdma, 754 }; 755 756 static void __exit xprt_rdma_cleanup(void) 757 { 758 int rc; 759 760 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); 761 #ifdef RPC_DEBUG 762 if (sunrpc_table_header) { 763 unregister_sysctl_table(sunrpc_table_header); 764 sunrpc_table_header = NULL; 765 } 766 #endif 767 rc = xprt_unregister_transport(&xprt_rdma); 768 if (rc) 769 dprintk("RPC: %s: xprt_unregister returned %i\n", 770 __func__, rc); 771 } 772 773 static int __init xprt_rdma_init(void) 774 { 775 int rc; 776 777 rc = xprt_register_transport(&xprt_rdma); 778 779 if (rc) 780 return rc; 781 782 dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n"); 783 784 dprintk(KERN_INFO "Defaults:\n"); 785 dprintk(KERN_INFO "\tSlots %d\n" 786 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", 787 xprt_rdma_slot_table_entries, 788 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); 789 dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n", 790 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); 791 792 #ifdef RPC_DEBUG 793 if (!sunrpc_table_header) 794 sunrpc_table_header = register_sysctl_table(sunrpc_table); 795 #endif 796 return 0; 797 } 798 799 module_init(xprt_rdma_init); 800 module_exit(xprt_rdma_cleanup); 801