xref: /openbmc/linux/net/sunrpc/xprtrdma/transport.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * transport.c
42  *
43  * This file contains the top-level implementation of an RPC RDMA
44  * transport.
45  *
46  * Naming convention: functions beginning with xprt_ are part of the
47  * transport switch. All others are RPC RDMA internal.
48  */
49 
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/seq_file.h>
53 
54 #include "xprt_rdma.h"
55 
56 #ifdef RPC_DEBUG
57 # define RPCDBG_FACILITY	RPCDBG_TRANS
58 #endif
59 
60 MODULE_LICENSE("Dual BSD/GPL");
61 
62 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
63 MODULE_AUTHOR("Network Appliance, Inc.");
64 
65 /*
66  * tunables
67  */
68 
69 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
70 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
71 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
72 static unsigned int xprt_rdma_inline_write_padding;
73 #if !RPCRDMA_PERSISTENT_REGISTRATION
74 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_REGISTER; /* FMR? */
75 #else
76 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_ALLPHYSICAL;
77 #endif
78 
79 #ifdef RPC_DEBUG
80 
81 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
82 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
83 static unsigned int zero;
84 static unsigned int max_padding = PAGE_SIZE;
85 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
86 static unsigned int max_memreg = RPCRDMA_LAST - 1;
87 
88 static struct ctl_table_header *sunrpc_table_header;
89 
90 static ctl_table xr_tunables_table[] = {
91 	{
92 		.ctl_name	= CTL_SLOTTABLE_RDMA,
93 		.procname	= "rdma_slot_table_entries",
94 		.data		= &xprt_rdma_slot_table_entries,
95 		.maxlen		= sizeof(unsigned int),
96 		.mode		= 0644,
97 		.proc_handler	= &proc_dointvec_minmax,
98 		.strategy	= &sysctl_intvec,
99 		.extra1		= &min_slot_table_size,
100 		.extra2		= &max_slot_table_size
101 	},
102 	{
103 		.ctl_name	= CTL_RDMA_MAXINLINEREAD,
104 		.procname	= "rdma_max_inline_read",
105 		.data		= &xprt_rdma_max_inline_read,
106 		.maxlen		= sizeof(unsigned int),
107 		.mode		= 0644,
108 		.proc_handler	= &proc_dointvec,
109 		.strategy	= &sysctl_intvec,
110 	},
111 	{
112 		.ctl_name	= CTL_RDMA_MAXINLINEWRITE,
113 		.procname	= "rdma_max_inline_write",
114 		.data		= &xprt_rdma_max_inline_write,
115 		.maxlen		= sizeof(unsigned int),
116 		.mode		= 0644,
117 		.proc_handler	= &proc_dointvec,
118 		.strategy	= &sysctl_intvec,
119 	},
120 	{
121 		.ctl_name	= CTL_RDMA_WRITEPADDING,
122 		.procname	= "rdma_inline_write_padding",
123 		.data		= &xprt_rdma_inline_write_padding,
124 		.maxlen		= sizeof(unsigned int),
125 		.mode		= 0644,
126 		.proc_handler	= &proc_dointvec_minmax,
127 		.strategy	= &sysctl_intvec,
128 		.extra1		= &zero,
129 		.extra2		= &max_padding,
130 	},
131 	{
132 		.ctl_name	= CTL_RDMA_MEMREG,
133 		.procname	= "rdma_memreg_strategy",
134 		.data		= &xprt_rdma_memreg_strategy,
135 		.maxlen		= sizeof(unsigned int),
136 		.mode		= 0644,
137 		.proc_handler	= &proc_dointvec_minmax,
138 		.strategy	= &sysctl_intvec,
139 		.extra1		= &min_memreg,
140 		.extra2		= &max_memreg,
141 	},
142 	{
143 		.ctl_name = 0,
144 	},
145 };
146 
147 static ctl_table sunrpc_table[] = {
148 	{
149 		.ctl_name	= CTL_SUNRPC,
150 		.procname	= "sunrpc",
151 		.mode		= 0555,
152 		.child		= xr_tunables_table
153 	},
154 	{
155 		.ctl_name = 0,
156 	},
157 };
158 
159 #endif
160 
161 static struct rpc_xprt_ops xprt_rdma_procs;	/* forward reference */
162 
163 static void
164 xprt_rdma_format_addresses(struct rpc_xprt *xprt)
165 {
166 	struct sockaddr_in *addr = (struct sockaddr_in *)
167 					&rpcx_to_rdmad(xprt).addr;
168 	char *buf;
169 
170 	buf = kzalloc(20, GFP_KERNEL);
171 	if (buf)
172 		snprintf(buf, 20, NIPQUAD_FMT, NIPQUAD(addr->sin_addr.s_addr));
173 	xprt->address_strings[RPC_DISPLAY_ADDR] = buf;
174 
175 	buf = kzalloc(8, GFP_KERNEL);
176 	if (buf)
177 		snprintf(buf, 8, "%u", ntohs(addr->sin_port));
178 	xprt->address_strings[RPC_DISPLAY_PORT] = buf;
179 
180 	xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
181 
182 	buf = kzalloc(48, GFP_KERNEL);
183 	if (buf)
184 		snprintf(buf, 48, "addr="NIPQUAD_FMT" port=%u proto=%s",
185 			NIPQUAD(addr->sin_addr.s_addr),
186 			ntohs(addr->sin_port), "rdma");
187 	xprt->address_strings[RPC_DISPLAY_ALL] = buf;
188 
189 	buf = kzalloc(10, GFP_KERNEL);
190 	if (buf)
191 		snprintf(buf, 10, "%02x%02x%02x%02x",
192 			NIPQUAD(addr->sin_addr.s_addr));
193 	xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = buf;
194 
195 	buf = kzalloc(8, GFP_KERNEL);
196 	if (buf)
197 		snprintf(buf, 8, "%4hx", ntohs(addr->sin_port));
198 	xprt->address_strings[RPC_DISPLAY_HEX_PORT] = buf;
199 
200 	buf = kzalloc(30, GFP_KERNEL);
201 	if (buf)
202 		snprintf(buf, 30, NIPQUAD_FMT".%u.%u",
203 			NIPQUAD(addr->sin_addr.s_addr),
204 			ntohs(addr->sin_port) >> 8,
205 			ntohs(addr->sin_port) & 0xff);
206 	xprt->address_strings[RPC_DISPLAY_UNIVERSAL_ADDR] = buf;
207 
208 	/* netid */
209 	xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
210 }
211 
212 static void
213 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
214 {
215 	kfree(xprt->address_strings[RPC_DISPLAY_ADDR]);
216 	kfree(xprt->address_strings[RPC_DISPLAY_PORT]);
217 	kfree(xprt->address_strings[RPC_DISPLAY_ALL]);
218 	kfree(xprt->address_strings[RPC_DISPLAY_HEX_ADDR]);
219 	kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]);
220 	kfree(xprt->address_strings[RPC_DISPLAY_UNIVERSAL_ADDR]);
221 }
222 
223 static void
224 xprt_rdma_connect_worker(struct work_struct *work)
225 {
226 	struct rpcrdma_xprt *r_xprt =
227 		container_of(work, struct rpcrdma_xprt, rdma_connect.work);
228 	struct rpc_xprt *xprt = &r_xprt->xprt;
229 	int rc = 0;
230 
231 	if (!xprt->shutdown) {
232 		xprt_clear_connected(xprt);
233 
234 		dprintk("RPC:       %s: %sconnect\n", __func__,
235 				r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
236 		rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
237 		if (rc)
238 			goto out;
239 	}
240 	goto out_clear;
241 
242 out:
243 	xprt_wake_pending_tasks(xprt, rc);
244 
245 out_clear:
246 	dprintk("RPC:       %s: exit\n", __func__);
247 	xprt_clear_connecting(xprt);
248 }
249 
250 /*
251  * xprt_rdma_destroy
252  *
253  * Destroy the xprt.
254  * Free all memory associated with the object, including its own.
255  * NOTE: none of the *destroy methods free memory for their top-level
256  * objects, even though they may have allocated it (they do free
257  * private memory). It's up to the caller to handle it. In this
258  * case (RDMA transport), all structure memory is inlined with the
259  * struct rpcrdma_xprt.
260  */
261 static void
262 xprt_rdma_destroy(struct rpc_xprt *xprt)
263 {
264 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
265 	int rc;
266 
267 	dprintk("RPC:       %s: called\n", __func__);
268 
269 	cancel_delayed_work(&r_xprt->rdma_connect);
270 	flush_scheduled_work();
271 
272 	xprt_clear_connected(xprt);
273 
274 	rpcrdma_buffer_destroy(&r_xprt->rx_buf);
275 	rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
276 	if (rc)
277 		dprintk("RPC:       %s: rpcrdma_ep_destroy returned %i\n",
278 			__func__, rc);
279 	rpcrdma_ia_close(&r_xprt->rx_ia);
280 
281 	xprt_rdma_free_addresses(xprt);
282 
283 	kfree(xprt->slot);
284 	xprt->slot = NULL;
285 	kfree(xprt);
286 
287 	dprintk("RPC:       %s: returning\n", __func__);
288 
289 	module_put(THIS_MODULE);
290 }
291 
292 /**
293  * xprt_setup_rdma - Set up transport to use RDMA
294  *
295  * @args: rpc transport arguments
296  */
297 static struct rpc_xprt *
298 xprt_setup_rdma(struct xprt_create *args)
299 {
300 	struct rpcrdma_create_data_internal cdata;
301 	struct rpc_xprt *xprt;
302 	struct rpcrdma_xprt *new_xprt;
303 	struct rpcrdma_ep *new_ep;
304 	struct sockaddr_in *sin;
305 	int rc;
306 
307 	if (args->addrlen > sizeof(xprt->addr)) {
308 		dprintk("RPC:       %s: address too large\n", __func__);
309 		return ERR_PTR(-EBADF);
310 	}
311 
312 	xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL);
313 	if (xprt == NULL) {
314 		dprintk("RPC:       %s: couldn't allocate rpcrdma_xprt\n",
315 			__func__);
316 		return ERR_PTR(-ENOMEM);
317 	}
318 
319 	xprt->max_reqs = xprt_rdma_slot_table_entries;
320 	xprt->slot = kcalloc(xprt->max_reqs,
321 				sizeof(struct rpc_rqst), GFP_KERNEL);
322 	if (xprt->slot == NULL) {
323 		kfree(xprt);
324 		dprintk("RPC:       %s: couldn't allocate %d slots\n",
325 			__func__, xprt->max_reqs);
326 		return ERR_PTR(-ENOMEM);
327 	}
328 
329 	/* 60 second timeout, no retries */
330 	xprt_set_timeout(&xprt->timeout, 0, 60UL * HZ);
331 	xprt->bind_timeout = (60U * HZ);
332 	xprt->connect_timeout = (60U * HZ);
333 	xprt->reestablish_timeout = (5U * HZ);
334 	xprt->idle_timeout = (5U * 60 * HZ);
335 
336 	xprt->resvport = 0;		/* privileged port not needed */
337 	xprt->tsh_size = 0;		/* RPC-RDMA handles framing */
338 	xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
339 	xprt->ops = &xprt_rdma_procs;
340 
341 	/*
342 	 * Set up RDMA-specific connect data.
343 	 */
344 
345 	/* Put server RDMA address in local cdata */
346 	memcpy(&cdata.addr, args->dstaddr, args->addrlen);
347 
348 	/* Ensure xprt->addr holds valid server TCP (not RDMA)
349 	 * address, for any side protocols which peek at it */
350 	xprt->prot = IPPROTO_TCP;
351 	xprt->addrlen = args->addrlen;
352 	memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
353 
354 	sin = (struct sockaddr_in *)&cdata.addr;
355 	if (ntohs(sin->sin_port) != 0)
356 		xprt_set_bound(xprt);
357 
358 	dprintk("RPC:       %s: %u.%u.%u.%u:%u\n", __func__,
359 			NIPQUAD(sin->sin_addr.s_addr), ntohs(sin->sin_port));
360 
361 	/* Set max requests */
362 	cdata.max_requests = xprt->max_reqs;
363 
364 	/* Set some length limits */
365 	cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
366 	cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
367 
368 	cdata.inline_wsize = xprt_rdma_max_inline_write;
369 	if (cdata.inline_wsize > cdata.wsize)
370 		cdata.inline_wsize = cdata.wsize;
371 
372 	cdata.inline_rsize = xprt_rdma_max_inline_read;
373 	if (cdata.inline_rsize > cdata.rsize)
374 		cdata.inline_rsize = cdata.rsize;
375 
376 	cdata.padding = xprt_rdma_inline_write_padding;
377 
378 	/*
379 	 * Create new transport instance, which includes initialized
380 	 *  o ia
381 	 *  o endpoint
382 	 *  o buffers
383 	 */
384 
385 	new_xprt = rpcx_to_rdmax(xprt);
386 
387 	rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
388 				xprt_rdma_memreg_strategy);
389 	if (rc)
390 		goto out1;
391 
392 	/*
393 	 * initialize and create ep
394 	 */
395 	new_xprt->rx_data = cdata;
396 	new_ep = &new_xprt->rx_ep;
397 	new_ep->rep_remote_addr = cdata.addr;
398 
399 	rc = rpcrdma_ep_create(&new_xprt->rx_ep,
400 				&new_xprt->rx_ia, &new_xprt->rx_data);
401 	if (rc)
402 		goto out2;
403 
404 	/*
405 	 * Allocate pre-registered send and receive buffers for headers and
406 	 * any inline data. Also specify any padding which will be provided
407 	 * from a preregistered zero buffer.
408 	 */
409 	rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
410 				&new_xprt->rx_data);
411 	if (rc)
412 		goto out3;
413 
414 	/*
415 	 * Register a callback for connection events. This is necessary because
416 	 * connection loss notification is async. We also catch connection loss
417 	 * when reaping receives.
418 	 */
419 	INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
420 	new_ep->rep_func = rpcrdma_conn_func;
421 	new_ep->rep_xprt = xprt;
422 
423 	xprt_rdma_format_addresses(xprt);
424 
425 	if (!try_module_get(THIS_MODULE))
426 		goto out4;
427 
428 	return xprt;
429 
430 out4:
431 	xprt_rdma_free_addresses(xprt);
432 	rc = -EINVAL;
433 out3:
434 	(void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
435 out2:
436 	rpcrdma_ia_close(&new_xprt->rx_ia);
437 out1:
438 	kfree(xprt->slot);
439 	kfree(xprt);
440 	return ERR_PTR(rc);
441 }
442 
443 /*
444  * Close a connection, during shutdown or timeout/reconnect
445  */
446 static void
447 xprt_rdma_close(struct rpc_xprt *xprt)
448 {
449 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
450 
451 	dprintk("RPC:       %s: closing\n", __func__);
452 	xprt_disconnect(xprt);
453 	(void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
454 }
455 
456 static void
457 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
458 {
459 	struct sockaddr_in *sap;
460 
461 	sap = (struct sockaddr_in *)&xprt->addr;
462 	sap->sin_port = htons(port);
463 	sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
464 	sap->sin_port = htons(port);
465 	dprintk("RPC:       %s: %u\n", __func__, port);
466 }
467 
468 static void
469 xprt_rdma_connect(struct rpc_task *task)
470 {
471 	struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
472 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
473 
474 	if (!xprt_test_and_set_connecting(xprt)) {
475 		if (r_xprt->rx_ep.rep_connected != 0) {
476 			/* Reconnect */
477 			schedule_delayed_work(&r_xprt->rdma_connect,
478 				xprt->reestablish_timeout);
479 		} else {
480 			schedule_delayed_work(&r_xprt->rdma_connect, 0);
481 			if (!RPC_IS_ASYNC(task))
482 				flush_scheduled_work();
483 		}
484 	}
485 }
486 
487 static int
488 xprt_rdma_reserve_xprt(struct rpc_task *task)
489 {
490 	struct rpc_xprt *xprt = task->tk_xprt;
491 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
492 	int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
493 
494 	/* == RPC_CWNDSCALE @ init, but *after* setup */
495 	if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
496 		r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
497 		dprintk("RPC:       %s: cwndscale %lu\n", __func__,
498 			r_xprt->rx_buf.rb_cwndscale);
499 		BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
500 	}
501 	xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
502 	return xprt_reserve_xprt_cong(task);
503 }
504 
505 /*
506  * The RDMA allocate/free functions need the task structure as a place
507  * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
508  * sequence. For this reason, the recv buffers are attached to send
509  * buffers for portions of the RPC. Note that the RPC layer allocates
510  * both send and receive buffers in the same call. We may register
511  * the receive buffer portion when using reply chunks.
512  */
513 static void *
514 xprt_rdma_allocate(struct rpc_task *task, size_t size)
515 {
516 	struct rpc_xprt *xprt = task->tk_xprt;
517 	struct rpcrdma_req *req, *nreq;
518 
519 	req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
520 	BUG_ON(NULL == req);
521 
522 	if (size > req->rl_size) {
523 		dprintk("RPC:       %s: size %zd too large for buffer[%zd]: "
524 			"prog %d vers %d proc %d\n",
525 			__func__, size, req->rl_size,
526 			task->tk_client->cl_prog, task->tk_client->cl_vers,
527 			task->tk_msg.rpc_proc->p_proc);
528 		/*
529 		 * Outgoing length shortage. Our inline write max must have
530 		 * been configured to perform direct i/o.
531 		 *
532 		 * This is therefore a large metadata operation, and the
533 		 * allocate call was made on the maximum possible message,
534 		 * e.g. containing long filename(s) or symlink data. In
535 		 * fact, while these metadata operations *might* carry
536 		 * large outgoing payloads, they rarely *do*. However, we
537 		 * have to commit to the request here, so reallocate and
538 		 * register it now. The data path will never require this
539 		 * reallocation.
540 		 *
541 		 * If the allocation or registration fails, the RPC framework
542 		 * will (doggedly) retry.
543 		 */
544 		if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
545 				RPCRDMA_BOUNCEBUFFERS) {
546 			/* forced to "pure inline" */
547 			dprintk("RPC:       %s: too much data (%zd) for inline "
548 					"(r/w max %d/%d)\n", __func__, size,
549 					rpcx_to_rdmad(xprt).inline_rsize,
550 					rpcx_to_rdmad(xprt).inline_wsize);
551 			size = req->rl_size;
552 			rpc_exit(task, -EIO);		/* fail the operation */
553 			rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
554 			goto out;
555 		}
556 		if (task->tk_flags & RPC_TASK_SWAPPER)
557 			nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
558 		else
559 			nreq = kmalloc(sizeof *req + size, GFP_NOFS);
560 		if (nreq == NULL)
561 			goto outfail;
562 
563 		if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
564 				nreq->rl_base, size + sizeof(struct rpcrdma_req)
565 				- offsetof(struct rpcrdma_req, rl_base),
566 				&nreq->rl_handle, &nreq->rl_iov)) {
567 			kfree(nreq);
568 			goto outfail;
569 		}
570 		rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
571 		nreq->rl_size = size;
572 		nreq->rl_niovs = 0;
573 		nreq->rl_nchunks = 0;
574 		nreq->rl_buffer = (struct rpcrdma_buffer *)req;
575 		nreq->rl_reply = req->rl_reply;
576 		memcpy(nreq->rl_segments,
577 			req->rl_segments, sizeof nreq->rl_segments);
578 		/* flag the swap with an unused field */
579 		nreq->rl_iov.length = 0;
580 		req->rl_reply = NULL;
581 		req = nreq;
582 	}
583 	dprintk("RPC:       %s: size %zd, request 0x%p\n", __func__, size, req);
584 out:
585 	return req->rl_xdr_buf;
586 
587 outfail:
588 	rpcrdma_buffer_put(req);
589 	rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
590 	return NULL;
591 }
592 
593 /*
594  * This function returns all RDMA resources to the pool.
595  */
596 static void
597 xprt_rdma_free(void *buffer)
598 {
599 	struct rpcrdma_req *req;
600 	struct rpcrdma_xprt *r_xprt;
601 	struct rpcrdma_rep *rep;
602 	int i;
603 
604 	if (buffer == NULL)
605 		return;
606 
607 	req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
608 	r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
609 	rep = req->rl_reply;
610 
611 	dprintk("RPC:       %s: called on 0x%p%s\n",
612 		__func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
613 
614 	/*
615 	 * Finish the deregistration. When using mw bind, this was
616 	 * begun in rpcrdma_reply_handler(). In all other modes, we
617 	 * do it here, in thread context. The process is considered
618 	 * complete when the rr_func vector becomes NULL - this
619 	 * was put in place during rpcrdma_reply_handler() - the wait
620 	 * call below will not block if the dereg is "done". If
621 	 * interrupted, our framework will clean up.
622 	 */
623 	for (i = 0; req->rl_nchunks;) {
624 		--req->rl_nchunks;
625 		i += rpcrdma_deregister_external(
626 			&req->rl_segments[i], r_xprt, NULL);
627 	}
628 
629 	if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
630 		rep->rr_func = NULL;	/* abandon the callback */
631 		req->rl_reply = NULL;
632 	}
633 
634 	if (req->rl_iov.length == 0) {	/* see allocate above */
635 		struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
636 		oreq->rl_reply = req->rl_reply;
637 		(void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
638 						   req->rl_handle,
639 						   &req->rl_iov);
640 		kfree(req);
641 		req = oreq;
642 	}
643 
644 	/* Put back request+reply buffers */
645 	rpcrdma_buffer_put(req);
646 }
647 
648 /*
649  * send_request invokes the meat of RPC RDMA. It must do the following:
650  *  1.  Marshal the RPC request into an RPC RDMA request, which means
651  *	putting a header in front of data, and creating IOVs for RDMA
652  *	from those in the request.
653  *  2.  In marshaling, detect opportunities for RDMA, and use them.
654  *  3.  Post a recv message to set up asynch completion, then send
655  *	the request (rpcrdma_ep_post).
656  *  4.  No partial sends are possible in the RPC-RDMA protocol (as in UDP).
657  */
658 
659 static int
660 xprt_rdma_send_request(struct rpc_task *task)
661 {
662 	struct rpc_rqst *rqst = task->tk_rqstp;
663 	struct rpc_xprt *xprt = task->tk_xprt;
664 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
665 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
666 
667 	/* marshal the send itself */
668 	if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
669 		r_xprt->rx_stats.failed_marshal_count++;
670 		dprintk("RPC:       %s: rpcrdma_marshal_req failed\n",
671 			__func__);
672 		return -EIO;
673 	}
674 
675 	if (req->rl_reply == NULL) 		/* e.g. reconnection */
676 		rpcrdma_recv_buffer_get(req);
677 
678 	if (req->rl_reply) {
679 		req->rl_reply->rr_func = rpcrdma_reply_handler;
680 		/* this need only be done once, but... */
681 		req->rl_reply->rr_xprt = xprt;
682 	}
683 
684 	if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) {
685 		xprt_disconnect(xprt);
686 		return -ENOTCONN;	/* implies disconnect */
687 	}
688 
689 	rqst->rq_bytes_sent = 0;
690 	return 0;
691 }
692 
693 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
694 {
695 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
696 	long idle_time = 0;
697 
698 	if (xprt_connected(xprt))
699 		idle_time = (long)(jiffies - xprt->last_used) / HZ;
700 
701 	seq_printf(seq,
702 	  "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
703 	  "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
704 
705 	   0,	/* need a local port? */
706 	   xprt->stat.bind_count,
707 	   xprt->stat.connect_count,
708 	   xprt->stat.connect_time,
709 	   idle_time,
710 	   xprt->stat.sends,
711 	   xprt->stat.recvs,
712 	   xprt->stat.bad_xids,
713 	   xprt->stat.req_u,
714 	   xprt->stat.bklog_u,
715 
716 	   r_xprt->rx_stats.read_chunk_count,
717 	   r_xprt->rx_stats.write_chunk_count,
718 	   r_xprt->rx_stats.reply_chunk_count,
719 	   r_xprt->rx_stats.total_rdma_request,
720 	   r_xprt->rx_stats.total_rdma_reply,
721 	   r_xprt->rx_stats.pullup_copy_count,
722 	   r_xprt->rx_stats.fixup_copy_count,
723 	   r_xprt->rx_stats.hardway_register_count,
724 	   r_xprt->rx_stats.failed_marshal_count,
725 	   r_xprt->rx_stats.bad_reply_count);
726 }
727 
728 /*
729  * Plumbing for rpc transport switch and kernel module
730  */
731 
732 static struct rpc_xprt_ops xprt_rdma_procs = {
733 	.reserve_xprt		= xprt_rdma_reserve_xprt,
734 	.release_xprt		= xprt_release_xprt_cong, /* sunrpc/xprt.c */
735 	.release_request	= xprt_release_rqst_cong,       /* ditto */
736 	.set_retrans_timeout	= xprt_set_retrans_timeout_def, /* ditto */
737 	.rpcbind		= rpcb_getport_async,	/* sunrpc/rpcb_clnt.c */
738 	.set_port		= xprt_rdma_set_port,
739 	.connect		= xprt_rdma_connect,
740 	.buf_alloc		= xprt_rdma_allocate,
741 	.buf_free		= xprt_rdma_free,
742 	.send_request		= xprt_rdma_send_request,
743 	.close			= xprt_rdma_close,
744 	.destroy		= xprt_rdma_destroy,
745 	.print_stats		= xprt_rdma_print_stats
746 };
747 
748 static struct xprt_class xprt_rdma = {
749 	.list			= LIST_HEAD_INIT(xprt_rdma.list),
750 	.name			= "rdma",
751 	.owner			= THIS_MODULE,
752 	.ident			= XPRT_TRANSPORT_RDMA,
753 	.setup			= xprt_setup_rdma,
754 };
755 
756 static void __exit xprt_rdma_cleanup(void)
757 {
758 	int rc;
759 
760 	dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
761 #ifdef RPC_DEBUG
762 	if (sunrpc_table_header) {
763 		unregister_sysctl_table(sunrpc_table_header);
764 		sunrpc_table_header = NULL;
765 	}
766 #endif
767 	rc = xprt_unregister_transport(&xprt_rdma);
768 	if (rc)
769 		dprintk("RPC:       %s: xprt_unregister returned %i\n",
770 			__func__, rc);
771 }
772 
773 static int __init xprt_rdma_init(void)
774 {
775 	int rc;
776 
777 	rc = xprt_register_transport(&xprt_rdma);
778 
779 	if (rc)
780 		return rc;
781 
782 	dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
783 
784 	dprintk(KERN_INFO "Defaults:\n");
785 	dprintk(KERN_INFO "\tSlots %d\n"
786 		"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
787 		xprt_rdma_slot_table_entries,
788 		xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
789 	dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
790 		xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
791 
792 #ifdef RPC_DEBUG
793 	if (!sunrpc_table_header)
794 		sunrpc_table_header = register_sysctl_table(sunrpc_table);
795 #endif
796 	return 0;
797 }
798 
799 module_init(xprt_rdma_init);
800 module_exit(xprt_rdma_cleanup);
801