1 /* 2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the BSD-type 8 * license below: 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 17 * Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials provided 20 * with the distribution. 21 * 22 * Neither the name of the Network Appliance, Inc. nor the names of 23 * its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written 25 * permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * rpc_rdma.c 42 * 43 * This file contains the guts of the RPC RDMA protocol, and 44 * does marshaling/unmarshaling, etc. It is also where interfacing 45 * to the Linux RPC framework lives. 46 */ 47 48 #include "xprt_rdma.h" 49 50 #include <linux/highmem.h> 51 52 #ifdef RPC_DEBUG 53 # define RPCDBG_FACILITY RPCDBG_TRANS 54 #endif 55 56 enum rpcrdma_chunktype { 57 rpcrdma_noch = 0, 58 rpcrdma_readch, 59 rpcrdma_areadch, 60 rpcrdma_writech, 61 rpcrdma_replych 62 }; 63 64 #ifdef RPC_DEBUG 65 static const char transfertypes[][12] = { 66 "pure inline", /* no chunks */ 67 " read chunk", /* some argument via rdma read */ 68 "*read chunk", /* entire request via rdma read */ 69 "write chunk", /* some result via rdma write */ 70 "reply chunk" /* entire reply via rdma write */ 71 }; 72 #endif 73 74 /* 75 * Chunk assembly from upper layer xdr_buf. 76 * 77 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk 78 * elements. Segments are then coalesced when registered, if possible 79 * within the selected memreg mode. 80 * 81 * Note, this routine is never called if the connection's memory 82 * registration strategy is 0 (bounce buffers). 83 */ 84 85 static int 86 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, int pos, 87 enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs) 88 { 89 int len, n = 0, p; 90 91 if (pos == 0 && xdrbuf->head[0].iov_len) { 92 seg[n].mr_page = NULL; 93 seg[n].mr_offset = xdrbuf->head[0].iov_base; 94 seg[n].mr_len = xdrbuf->head[0].iov_len; 95 pos += xdrbuf->head[0].iov_len; 96 ++n; 97 } 98 99 if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) { 100 if (n == nsegs) 101 return 0; 102 seg[n].mr_page = xdrbuf->pages[0]; 103 seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base; 104 seg[n].mr_len = min_t(u32, 105 PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len); 106 len = xdrbuf->page_len - seg[n].mr_len; 107 pos += len; 108 ++n; 109 p = 1; 110 while (len > 0) { 111 if (n == nsegs) 112 return 0; 113 seg[n].mr_page = xdrbuf->pages[p]; 114 seg[n].mr_offset = NULL; 115 seg[n].mr_len = min_t(u32, PAGE_SIZE, len); 116 len -= seg[n].mr_len; 117 ++n; 118 ++p; 119 } 120 } 121 122 if (pos < xdrbuf->len && xdrbuf->tail[0].iov_len) { 123 if (n == nsegs) 124 return 0; 125 seg[n].mr_page = NULL; 126 seg[n].mr_offset = xdrbuf->tail[0].iov_base; 127 seg[n].mr_len = xdrbuf->tail[0].iov_len; 128 pos += xdrbuf->tail[0].iov_len; 129 ++n; 130 } 131 132 if (pos < xdrbuf->len) 133 dprintk("RPC: %s: marshaled only %d of %d\n", 134 __func__, pos, xdrbuf->len); 135 136 return n; 137 } 138 139 /* 140 * Create read/write chunk lists, and reply chunks, for RDMA 141 * 142 * Assume check against THRESHOLD has been done, and chunks are required. 143 * Assume only encoding one list entry for read|write chunks. The NFSv3 144 * protocol is simple enough to allow this as it only has a single "bulk 145 * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The 146 * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.) 147 * 148 * When used for a single reply chunk (which is a special write 149 * chunk used for the entire reply, rather than just the data), it 150 * is used primarily for READDIR and READLINK which would otherwise 151 * be severely size-limited by a small rdma inline read max. The server 152 * response will come back as an RDMA Write, followed by a message 153 * of type RDMA_NOMSG carrying the xid and length. As a result, reply 154 * chunks do not provide data alignment, however they do not require 155 * "fixup" (moving the response to the upper layer buffer) either. 156 * 157 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 158 * 159 * Read chunklist (a linked list): 160 * N elements, position P (same P for all chunks of same arg!): 161 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 162 * 163 * Write chunklist (a list of (one) counted array): 164 * N elements: 165 * 1 - N - HLOO - HLOO - ... - HLOO - 0 166 * 167 * Reply chunk (a counted array): 168 * N elements: 169 * 1 - N - HLOO - HLOO - ... - HLOO 170 */ 171 172 static unsigned int 173 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target, 174 struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type) 175 { 176 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 177 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt); 178 int nsegs, nchunks = 0; 179 int pos; 180 struct rpcrdma_mr_seg *seg = req->rl_segments; 181 struct rpcrdma_read_chunk *cur_rchunk = NULL; 182 struct rpcrdma_write_array *warray = NULL; 183 struct rpcrdma_write_chunk *cur_wchunk = NULL; 184 u32 *iptr = headerp->rm_body.rm_chunks; 185 186 if (type == rpcrdma_readch || type == rpcrdma_areadch) { 187 /* a read chunk - server will RDMA Read our memory */ 188 cur_rchunk = (struct rpcrdma_read_chunk *) iptr; 189 } else { 190 /* a write or reply chunk - server will RDMA Write our memory */ 191 *iptr++ = xdr_zero; /* encode a NULL read chunk list */ 192 if (type == rpcrdma_replych) 193 *iptr++ = xdr_zero; /* a NULL write chunk list */ 194 warray = (struct rpcrdma_write_array *) iptr; 195 cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1); 196 } 197 198 if (type == rpcrdma_replych || type == rpcrdma_areadch) 199 pos = 0; 200 else 201 pos = target->head[0].iov_len; 202 203 nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS); 204 if (nsegs == 0) 205 return 0; 206 207 do { 208 /* bind/register the memory, then build chunk from result. */ 209 int n = rpcrdma_register_external(seg, nsegs, 210 cur_wchunk != NULL, r_xprt); 211 if (n <= 0) 212 goto out; 213 if (cur_rchunk) { /* read */ 214 cur_rchunk->rc_discrim = xdr_one; 215 /* all read chunks have the same "position" */ 216 cur_rchunk->rc_position = htonl(pos); 217 cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey); 218 cur_rchunk->rc_target.rs_length = htonl(seg->mr_len); 219 xdr_encode_hyper( 220 (u32 *)&cur_rchunk->rc_target.rs_offset, 221 seg->mr_base); 222 dprintk("RPC: %s: read chunk " 223 "elem %d@0x%llx:0x%x pos %d (%s)\n", __func__, 224 seg->mr_len, seg->mr_base, seg->mr_rkey, pos, 225 n < nsegs ? "more" : "last"); 226 cur_rchunk++; 227 r_xprt->rx_stats.read_chunk_count++; 228 } else { /* write/reply */ 229 cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey); 230 cur_wchunk->wc_target.rs_length = htonl(seg->mr_len); 231 xdr_encode_hyper( 232 (u32 *)&cur_wchunk->wc_target.rs_offset, 233 seg->mr_base); 234 dprintk("RPC: %s: %s chunk " 235 "elem %d@0x%llx:0x%x (%s)\n", __func__, 236 (type == rpcrdma_replych) ? "reply" : "write", 237 seg->mr_len, seg->mr_base, seg->mr_rkey, 238 n < nsegs ? "more" : "last"); 239 cur_wchunk++; 240 if (type == rpcrdma_replych) 241 r_xprt->rx_stats.reply_chunk_count++; 242 else 243 r_xprt->rx_stats.write_chunk_count++; 244 r_xprt->rx_stats.total_rdma_request += seg->mr_len; 245 } 246 nchunks++; 247 seg += n; 248 nsegs -= n; 249 } while (nsegs); 250 251 /* success. all failures return above */ 252 req->rl_nchunks = nchunks; 253 254 BUG_ON(nchunks == 0); 255 256 /* 257 * finish off header. If write, marshal discrim and nchunks. 258 */ 259 if (cur_rchunk) { 260 iptr = (u32 *) cur_rchunk; 261 *iptr++ = xdr_zero; /* finish the read chunk list */ 262 *iptr++ = xdr_zero; /* encode a NULL write chunk list */ 263 *iptr++ = xdr_zero; /* encode a NULL reply chunk */ 264 } else { 265 warray->wc_discrim = xdr_one; 266 warray->wc_nchunks = htonl(nchunks); 267 iptr = (u32 *) cur_wchunk; 268 if (type == rpcrdma_writech) { 269 *iptr++ = xdr_zero; /* finish the write chunk list */ 270 *iptr++ = xdr_zero; /* encode a NULL reply chunk */ 271 } 272 } 273 274 /* 275 * Return header size. 276 */ 277 return (unsigned char *)iptr - (unsigned char *)headerp; 278 279 out: 280 for (pos = 0; nchunks--;) 281 pos += rpcrdma_deregister_external( 282 &req->rl_segments[pos], r_xprt, NULL); 283 return 0; 284 } 285 286 /* 287 * Copy write data inline. 288 * This function is used for "small" requests. Data which is passed 289 * to RPC via iovecs (or page list) is copied directly into the 290 * pre-registered memory buffer for this request. For small amounts 291 * of data, this is efficient. The cutoff value is tunable. 292 */ 293 static int 294 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad) 295 { 296 int i, npages, curlen; 297 int copy_len; 298 unsigned char *srcp, *destp; 299 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt); 300 301 destp = rqst->rq_svec[0].iov_base; 302 curlen = rqst->rq_svec[0].iov_len; 303 destp += curlen; 304 /* 305 * Do optional padding where it makes sense. Alignment of write 306 * payload can help the server, if our setting is accurate. 307 */ 308 pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/); 309 if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH) 310 pad = 0; /* don't pad this request */ 311 312 dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n", 313 __func__, pad, destp, rqst->rq_slen, curlen); 314 315 copy_len = rqst->rq_snd_buf.page_len; 316 r_xprt->rx_stats.pullup_copy_count += copy_len; 317 npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT; 318 for (i = 0; copy_len && i < npages; i++) { 319 if (i == 0) 320 curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base; 321 else 322 curlen = PAGE_SIZE; 323 if (curlen > copy_len) 324 curlen = copy_len; 325 dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n", 326 __func__, i, destp, copy_len, curlen); 327 srcp = kmap_atomic(rqst->rq_snd_buf.pages[i], 328 KM_SKB_SUNRPC_DATA); 329 if (i == 0) 330 memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen); 331 else 332 memcpy(destp, srcp, curlen); 333 kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA); 334 rqst->rq_svec[0].iov_len += curlen; 335 destp += curlen; 336 copy_len -= curlen; 337 } 338 if (rqst->rq_snd_buf.tail[0].iov_len) { 339 curlen = rqst->rq_snd_buf.tail[0].iov_len; 340 if (destp != rqst->rq_snd_buf.tail[0].iov_base) { 341 memcpy(destp, 342 rqst->rq_snd_buf.tail[0].iov_base, curlen); 343 r_xprt->rx_stats.pullup_copy_count += curlen; 344 } 345 dprintk("RPC: %s: tail destp 0x%p len %d curlen %d\n", 346 __func__, destp, copy_len, curlen); 347 rqst->rq_svec[0].iov_len += curlen; 348 } 349 /* header now contains entire send message */ 350 return pad; 351 } 352 353 /* 354 * Marshal a request: the primary job of this routine is to choose 355 * the transfer modes. See comments below. 356 * 357 * Uses multiple RDMA IOVs for a request: 358 * [0] -- RPC RDMA header, which uses memory from the *start* of the 359 * preregistered buffer that already holds the RPC data in 360 * its middle. 361 * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol. 362 * [2] -- optional padding. 363 * [3] -- if padded, header only in [1] and data here. 364 */ 365 366 int 367 rpcrdma_marshal_req(struct rpc_rqst *rqst) 368 { 369 struct rpc_xprt *xprt = rqst->rq_task->tk_xprt; 370 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 371 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 372 char *base; 373 size_t hdrlen, rpclen, padlen; 374 enum rpcrdma_chunktype rtype, wtype; 375 struct rpcrdma_msg *headerp; 376 377 /* 378 * rpclen gets amount of data in first buffer, which is the 379 * pre-registered buffer. 380 */ 381 base = rqst->rq_svec[0].iov_base; 382 rpclen = rqst->rq_svec[0].iov_len; 383 384 /* build RDMA header in private area at front */ 385 headerp = (struct rpcrdma_msg *) req->rl_base; 386 /* don't htonl XID, it's already done in request */ 387 headerp->rm_xid = rqst->rq_xid; 388 headerp->rm_vers = xdr_one; 389 headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests); 390 headerp->rm_type = __constant_htonl(RDMA_MSG); 391 392 /* 393 * Chunks needed for results? 394 * 395 * o If the expected result is under the inline threshold, all ops 396 * return as inline (but see later). 397 * o Large non-read ops return as a single reply chunk. 398 * o Large read ops return data as write chunk(s), header as inline. 399 * 400 * Note: the NFS code sending down multiple result segments implies 401 * the op is one of read, readdir[plus], readlink or NFSv4 getacl. 402 */ 403 404 /* 405 * This code can handle read chunks, write chunks OR reply 406 * chunks -- only one type. If the request is too big to fit 407 * inline, then we will choose read chunks. If the request is 408 * a READ, then use write chunks to separate the file data 409 * into pages; otherwise use reply chunks. 410 */ 411 if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst)) 412 wtype = rpcrdma_noch; 413 else if (rqst->rq_rcv_buf.page_len == 0) 414 wtype = rpcrdma_replych; 415 else if (rqst->rq_rcv_buf.flags & XDRBUF_READ) 416 wtype = rpcrdma_writech; 417 else 418 wtype = rpcrdma_replych; 419 420 /* 421 * Chunks needed for arguments? 422 * 423 * o If the total request is under the inline threshold, all ops 424 * are sent as inline. 425 * o Large non-write ops are sent with the entire message as a 426 * single read chunk (protocol 0-position special case). 427 * o Large write ops transmit data as read chunk(s), header as 428 * inline. 429 * 430 * Note: the NFS code sending down multiple argument segments 431 * implies the op is a write. 432 * TBD check NFSv4 setacl 433 */ 434 if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst)) 435 rtype = rpcrdma_noch; 436 else if (rqst->rq_snd_buf.page_len == 0) 437 rtype = rpcrdma_areadch; 438 else 439 rtype = rpcrdma_readch; 440 441 /* The following simplification is not true forever */ 442 if (rtype != rpcrdma_noch && wtype == rpcrdma_replych) 443 wtype = rpcrdma_noch; 444 BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch); 445 446 if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS && 447 (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) { 448 /* forced to "pure inline"? */ 449 dprintk("RPC: %s: too much data (%d/%d) for inline\n", 450 __func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len); 451 return -1; 452 } 453 454 hdrlen = 28; /*sizeof *headerp;*/ 455 padlen = 0; 456 457 /* 458 * Pull up any extra send data into the preregistered buffer. 459 * When padding is in use and applies to the transfer, insert 460 * it and change the message type. 461 */ 462 if (rtype == rpcrdma_noch) { 463 464 padlen = rpcrdma_inline_pullup(rqst, 465 RPCRDMA_INLINE_PAD_VALUE(rqst)); 466 467 if (padlen) { 468 headerp->rm_type = __constant_htonl(RDMA_MSGP); 469 headerp->rm_body.rm_padded.rm_align = 470 htonl(RPCRDMA_INLINE_PAD_VALUE(rqst)); 471 headerp->rm_body.rm_padded.rm_thresh = 472 __constant_htonl(RPCRDMA_INLINE_PAD_THRESH); 473 headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero; 474 headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero; 475 headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero; 476 hdrlen += 2 * sizeof(u32); /* extra words in padhdr */ 477 BUG_ON(wtype != rpcrdma_noch); 478 479 } else { 480 headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero; 481 headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero; 482 headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero; 483 /* new length after pullup */ 484 rpclen = rqst->rq_svec[0].iov_len; 485 /* 486 * Currently we try to not actually use read inline. 487 * Reply chunks have the desirable property that 488 * they land, packed, directly in the target buffers 489 * without headers, so they require no fixup. The 490 * additional RDMA Write op sends the same amount 491 * of data, streams on-the-wire and adds no overhead 492 * on receive. Therefore, we request a reply chunk 493 * for non-writes wherever feasible and efficient. 494 */ 495 if (wtype == rpcrdma_noch && 496 r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER) 497 wtype = rpcrdma_replych; 498 } 499 } 500 501 /* 502 * Marshal chunks. This routine will return the header length 503 * consumed by marshaling. 504 */ 505 if (rtype != rpcrdma_noch) { 506 hdrlen = rpcrdma_create_chunks(rqst, 507 &rqst->rq_snd_buf, headerp, rtype); 508 wtype = rtype; /* simplify dprintk */ 509 510 } else if (wtype != rpcrdma_noch) { 511 hdrlen = rpcrdma_create_chunks(rqst, 512 &rqst->rq_rcv_buf, headerp, wtype); 513 } 514 515 if (hdrlen == 0) 516 return -1; 517 518 dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd\n" 519 " headerp 0x%p base 0x%p lkey 0x%x\n", 520 __func__, transfertypes[wtype], hdrlen, rpclen, padlen, 521 headerp, base, req->rl_iov.lkey); 522 523 /* 524 * initialize send_iov's - normally only two: rdma chunk header and 525 * single preregistered RPC header buffer, but if padding is present, 526 * then use a preregistered (and zeroed) pad buffer between the RPC 527 * header and any write data. In all non-rdma cases, any following 528 * data has been copied into the RPC header buffer. 529 */ 530 req->rl_send_iov[0].addr = req->rl_iov.addr; 531 req->rl_send_iov[0].length = hdrlen; 532 req->rl_send_iov[0].lkey = req->rl_iov.lkey; 533 534 req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base); 535 req->rl_send_iov[1].length = rpclen; 536 req->rl_send_iov[1].lkey = req->rl_iov.lkey; 537 538 req->rl_niovs = 2; 539 540 if (padlen) { 541 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 542 543 req->rl_send_iov[2].addr = ep->rep_pad.addr; 544 req->rl_send_iov[2].length = padlen; 545 req->rl_send_iov[2].lkey = ep->rep_pad.lkey; 546 547 req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen; 548 req->rl_send_iov[3].length = rqst->rq_slen - rpclen; 549 req->rl_send_iov[3].lkey = req->rl_iov.lkey; 550 551 req->rl_niovs = 4; 552 } 553 554 return 0; 555 } 556 557 /* 558 * Chase down a received write or reply chunklist to get length 559 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-) 560 */ 561 static int 562 rpcrdma_count_chunks(struct rpcrdma_rep *rep, int max, int wrchunk, u32 **iptrp) 563 { 564 unsigned int i, total_len; 565 struct rpcrdma_write_chunk *cur_wchunk; 566 567 i = ntohl(**iptrp); /* get array count */ 568 if (i > max) 569 return -1; 570 cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1); 571 total_len = 0; 572 while (i--) { 573 struct rpcrdma_segment *seg = &cur_wchunk->wc_target; 574 ifdebug(FACILITY) { 575 u64 off; 576 xdr_decode_hyper((u32 *)&seg->rs_offset, &off); 577 dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n", 578 __func__, 579 ntohl(seg->rs_length), 580 off, 581 ntohl(seg->rs_handle)); 582 } 583 total_len += ntohl(seg->rs_length); 584 ++cur_wchunk; 585 } 586 /* check and adjust for properly terminated write chunk */ 587 if (wrchunk) { 588 u32 *w = (u32 *) cur_wchunk; 589 if (*w++ != xdr_zero) 590 return -1; 591 cur_wchunk = (struct rpcrdma_write_chunk *) w; 592 } 593 if ((char *) cur_wchunk > rep->rr_base + rep->rr_len) 594 return -1; 595 596 *iptrp = (u32 *) cur_wchunk; 597 return total_len; 598 } 599 600 /* 601 * Scatter inline received data back into provided iov's. 602 */ 603 static void 604 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len) 605 { 606 int i, npages, curlen, olen; 607 char *destp; 608 609 curlen = rqst->rq_rcv_buf.head[0].iov_len; 610 if (curlen > copy_len) { /* write chunk header fixup */ 611 curlen = copy_len; 612 rqst->rq_rcv_buf.head[0].iov_len = curlen; 613 } 614 615 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n", 616 __func__, srcp, copy_len, curlen); 617 618 /* Shift pointer for first receive segment only */ 619 rqst->rq_rcv_buf.head[0].iov_base = srcp; 620 srcp += curlen; 621 copy_len -= curlen; 622 623 olen = copy_len; 624 i = 0; 625 rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen; 626 if (copy_len && rqst->rq_rcv_buf.page_len) { 627 npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base + 628 rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT; 629 for (; i < npages; i++) { 630 if (i == 0) 631 curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base; 632 else 633 curlen = PAGE_SIZE; 634 if (curlen > copy_len) 635 curlen = copy_len; 636 dprintk("RPC: %s: page %d" 637 " srcp 0x%p len %d curlen %d\n", 638 __func__, i, srcp, copy_len, curlen); 639 destp = kmap_atomic(rqst->rq_rcv_buf.pages[i], 640 KM_SKB_SUNRPC_DATA); 641 if (i == 0) 642 memcpy(destp + rqst->rq_rcv_buf.page_base, 643 srcp, curlen); 644 else 645 memcpy(destp, srcp, curlen); 646 flush_dcache_page(rqst->rq_rcv_buf.pages[i]); 647 kunmap_atomic(destp, KM_SKB_SUNRPC_DATA); 648 srcp += curlen; 649 copy_len -= curlen; 650 if (copy_len == 0) 651 break; 652 } 653 rqst->rq_rcv_buf.page_len = olen - copy_len; 654 } else 655 rqst->rq_rcv_buf.page_len = 0; 656 657 if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) { 658 curlen = copy_len; 659 if (curlen > rqst->rq_rcv_buf.tail[0].iov_len) 660 curlen = rqst->rq_rcv_buf.tail[0].iov_len; 661 if (rqst->rq_rcv_buf.tail[0].iov_base != srcp) 662 memcpy(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen); 663 dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n", 664 __func__, srcp, copy_len, curlen); 665 rqst->rq_rcv_buf.tail[0].iov_len = curlen; 666 copy_len -= curlen; ++i; 667 } else 668 rqst->rq_rcv_buf.tail[0].iov_len = 0; 669 670 if (copy_len) 671 dprintk("RPC: %s: %d bytes in" 672 " %d extra segments (%d lost)\n", 673 __func__, olen, i, copy_len); 674 675 /* TBD avoid a warning from call_decode() */ 676 rqst->rq_private_buf = rqst->rq_rcv_buf; 677 } 678 679 /* 680 * This function is called when an async event is posted to 681 * the connection which changes the connection state. All it 682 * does at this point is mark the connection up/down, the rpc 683 * timers do the rest. 684 */ 685 void 686 rpcrdma_conn_func(struct rpcrdma_ep *ep) 687 { 688 struct rpc_xprt *xprt = ep->rep_xprt; 689 690 spin_lock_bh(&xprt->transport_lock); 691 if (ep->rep_connected > 0) { 692 if (!xprt_test_and_set_connected(xprt)) 693 xprt_wake_pending_tasks(xprt, 0); 694 } else { 695 if (xprt_test_and_clear_connected(xprt)) 696 xprt_wake_pending_tasks(xprt, ep->rep_connected); 697 } 698 spin_unlock_bh(&xprt->transport_lock); 699 } 700 701 /* 702 * This function is called when memory window unbind which we are waiting 703 * for completes. Just use rr_func (zeroed by upcall) to signal completion. 704 */ 705 static void 706 rpcrdma_unbind_func(struct rpcrdma_rep *rep) 707 { 708 wake_up(&rep->rr_unbind); 709 } 710 711 /* 712 * Called as a tasklet to do req/reply match and complete a request 713 * Errors must result in the RPC task either being awakened, or 714 * allowed to timeout, to discover the errors at that time. 715 */ 716 void 717 rpcrdma_reply_handler(struct rpcrdma_rep *rep) 718 { 719 struct rpcrdma_msg *headerp; 720 struct rpcrdma_req *req; 721 struct rpc_rqst *rqst; 722 struct rpc_xprt *xprt = rep->rr_xprt; 723 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 724 u32 *iptr; 725 int i, rdmalen, status; 726 727 /* Check status. If bad, signal disconnect and return rep to pool */ 728 if (rep->rr_len == ~0U) { 729 rpcrdma_recv_buffer_put(rep); 730 if (r_xprt->rx_ep.rep_connected == 1) { 731 r_xprt->rx_ep.rep_connected = -EIO; 732 rpcrdma_conn_func(&r_xprt->rx_ep); 733 } 734 return; 735 } 736 if (rep->rr_len < 28) { 737 dprintk("RPC: %s: short/invalid reply\n", __func__); 738 goto repost; 739 } 740 headerp = (struct rpcrdma_msg *) rep->rr_base; 741 if (headerp->rm_vers != xdr_one) { 742 dprintk("RPC: %s: invalid version %d\n", 743 __func__, ntohl(headerp->rm_vers)); 744 goto repost; 745 } 746 747 /* Get XID and try for a match. */ 748 spin_lock(&xprt->transport_lock); 749 rqst = xprt_lookup_rqst(xprt, headerp->rm_xid); 750 if (rqst == NULL) { 751 spin_unlock(&xprt->transport_lock); 752 dprintk("RPC: %s: reply 0x%p failed " 753 "to match any request xid 0x%08x len %d\n", 754 __func__, rep, headerp->rm_xid, rep->rr_len); 755 repost: 756 r_xprt->rx_stats.bad_reply_count++; 757 rep->rr_func = rpcrdma_reply_handler; 758 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep)) 759 rpcrdma_recv_buffer_put(rep); 760 761 return; 762 } 763 764 /* get request object */ 765 req = rpcr_to_rdmar(rqst); 766 767 dprintk("RPC: %s: reply 0x%p completes request 0x%p\n" 768 " RPC request 0x%p xid 0x%08x\n", 769 __func__, rep, req, rqst, headerp->rm_xid); 770 771 BUG_ON(!req || req->rl_reply); 772 773 /* from here on, the reply is no longer an orphan */ 774 req->rl_reply = rep; 775 776 /* check for expected message types */ 777 /* The order of some of these tests is important. */ 778 switch (headerp->rm_type) { 779 case __constant_htonl(RDMA_MSG): 780 /* never expect read chunks */ 781 /* never expect reply chunks (two ways to check) */ 782 /* never expect write chunks without having offered RDMA */ 783 if (headerp->rm_body.rm_chunks[0] != xdr_zero || 784 (headerp->rm_body.rm_chunks[1] == xdr_zero && 785 headerp->rm_body.rm_chunks[2] != xdr_zero) || 786 (headerp->rm_body.rm_chunks[1] != xdr_zero && 787 req->rl_nchunks == 0)) 788 goto badheader; 789 if (headerp->rm_body.rm_chunks[1] != xdr_zero) { 790 /* count any expected write chunks in read reply */ 791 /* start at write chunk array count */ 792 iptr = &headerp->rm_body.rm_chunks[2]; 793 rdmalen = rpcrdma_count_chunks(rep, 794 req->rl_nchunks, 1, &iptr); 795 /* check for validity, and no reply chunk after */ 796 if (rdmalen < 0 || *iptr++ != xdr_zero) 797 goto badheader; 798 rep->rr_len -= 799 ((unsigned char *)iptr - (unsigned char *)headerp); 800 status = rep->rr_len + rdmalen; 801 r_xprt->rx_stats.total_rdma_reply += rdmalen; 802 } else { 803 /* else ordinary inline */ 804 iptr = (u32 *)((unsigned char *)headerp + 28); 805 rep->rr_len -= 28; /*sizeof *headerp;*/ 806 status = rep->rr_len; 807 } 808 /* Fix up the rpc results for upper layer */ 809 rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len); 810 break; 811 812 case __constant_htonl(RDMA_NOMSG): 813 /* never expect read or write chunks, always reply chunks */ 814 if (headerp->rm_body.rm_chunks[0] != xdr_zero || 815 headerp->rm_body.rm_chunks[1] != xdr_zero || 816 headerp->rm_body.rm_chunks[2] != xdr_one || 817 req->rl_nchunks == 0) 818 goto badheader; 819 iptr = (u32 *)((unsigned char *)headerp + 28); 820 rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr); 821 if (rdmalen < 0) 822 goto badheader; 823 r_xprt->rx_stats.total_rdma_reply += rdmalen; 824 /* Reply chunk buffer already is the reply vector - no fixup. */ 825 status = rdmalen; 826 break; 827 828 badheader: 829 default: 830 dprintk("%s: invalid rpcrdma reply header (type %d):" 831 " chunks[012] == %d %d %d" 832 " expected chunks <= %d\n", 833 __func__, ntohl(headerp->rm_type), 834 headerp->rm_body.rm_chunks[0], 835 headerp->rm_body.rm_chunks[1], 836 headerp->rm_body.rm_chunks[2], 837 req->rl_nchunks); 838 status = -EIO; 839 r_xprt->rx_stats.bad_reply_count++; 840 break; 841 } 842 843 /* If using mw bind, start the deregister process now. */ 844 /* (Note: if mr_free(), cannot perform it here, in tasklet context) */ 845 if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) { 846 case RPCRDMA_MEMWINDOWS: 847 for (i = 0; req->rl_nchunks-- > 1;) 848 i += rpcrdma_deregister_external( 849 &req->rl_segments[i], r_xprt, NULL); 850 /* Optionally wait (not here) for unbinds to complete */ 851 rep->rr_func = rpcrdma_unbind_func; 852 (void) rpcrdma_deregister_external(&req->rl_segments[i], 853 r_xprt, rep); 854 break; 855 case RPCRDMA_MEMWINDOWS_ASYNC: 856 for (i = 0; req->rl_nchunks--;) 857 i += rpcrdma_deregister_external(&req->rl_segments[i], 858 r_xprt, NULL); 859 break; 860 default: 861 break; 862 } 863 864 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n", 865 __func__, xprt, rqst, status); 866 xprt_complete_rqst(rqst->rq_task, status); 867 spin_unlock(&xprt->transport_lock); 868 } 869