xref: /openbmc/linux/net/sunrpc/xdr.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * linux/net/sunrpc/xdr.c
3  *
4  * Generic XDR support.
5  *
6  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/pagemap.h>
14 #include <linux/errno.h>
15 #include <linux/in.h>
16 #include <linux/net.h>
17 #include <net/sock.h>
18 #include <linux/sunrpc/xdr.h>
19 #include <linux/sunrpc/msg_prot.h>
20 
21 /*
22  * XDR functions for basic NFS types
23  */
24 u32 *
25 xdr_encode_netobj(u32 *p, const struct xdr_netobj *obj)
26 {
27 	unsigned int	quadlen = XDR_QUADLEN(obj->len);
28 
29 	p[quadlen] = 0;		/* zero trailing bytes */
30 	*p++ = htonl(obj->len);
31 	memcpy(p, obj->data, obj->len);
32 	return p + XDR_QUADLEN(obj->len);
33 }
34 
35 u32 *
36 xdr_decode_netobj(u32 *p, struct xdr_netobj *obj)
37 {
38 	unsigned int	len;
39 
40 	if ((len = ntohl(*p++)) > XDR_MAX_NETOBJ)
41 		return NULL;
42 	obj->len  = len;
43 	obj->data = (u8 *) p;
44 	return p + XDR_QUADLEN(len);
45 }
46 
47 /**
48  * xdr_encode_opaque_fixed - Encode fixed length opaque data
49  * @p - pointer to current position in XDR buffer.
50  * @ptr - pointer to data to encode (or NULL)
51  * @nbytes - size of data.
52  *
53  * Copy the array of data of length nbytes at ptr to the XDR buffer
54  * at position p, then align to the next 32-bit boundary by padding
55  * with zero bytes (see RFC1832).
56  * Note: if ptr is NULL, only the padding is performed.
57  *
58  * Returns the updated current XDR buffer position
59  *
60  */
61 u32 *xdr_encode_opaque_fixed(u32 *p, const void *ptr, unsigned int nbytes)
62 {
63 	if (likely(nbytes != 0)) {
64 		unsigned int quadlen = XDR_QUADLEN(nbytes);
65 		unsigned int padding = (quadlen << 2) - nbytes;
66 
67 		if (ptr != NULL)
68 			memcpy(p, ptr, nbytes);
69 		if (padding != 0)
70 			memset((char *)p + nbytes, 0, padding);
71 		p += quadlen;
72 	}
73 	return p;
74 }
75 EXPORT_SYMBOL(xdr_encode_opaque_fixed);
76 
77 /**
78  * xdr_encode_opaque - Encode variable length opaque data
79  * @p - pointer to current position in XDR buffer.
80  * @ptr - pointer to data to encode (or NULL)
81  * @nbytes - size of data.
82  *
83  * Returns the updated current XDR buffer position
84  */
85 u32 *xdr_encode_opaque(u32 *p, const void *ptr, unsigned int nbytes)
86 {
87 	*p++ = htonl(nbytes);
88 	return xdr_encode_opaque_fixed(p, ptr, nbytes);
89 }
90 EXPORT_SYMBOL(xdr_encode_opaque);
91 
92 u32 *
93 xdr_encode_string(u32 *p, const char *string)
94 {
95 	return xdr_encode_array(p, string, strlen(string));
96 }
97 
98 u32 *
99 xdr_decode_string(u32 *p, char **sp, int *lenp, int maxlen)
100 {
101 	unsigned int	len;
102 	char		*string;
103 
104 	if ((len = ntohl(*p++)) > maxlen)
105 		return NULL;
106 	if (lenp)
107 		*lenp = len;
108 	if ((len % 4) != 0) {
109 		string = (char *) p;
110 	} else {
111 		string = (char *) (p - 1);
112 		memmove(string, p, len);
113 	}
114 	string[len] = '\0';
115 	*sp = string;
116 	return p + XDR_QUADLEN(len);
117 }
118 
119 u32 *
120 xdr_decode_string_inplace(u32 *p, char **sp, int *lenp, int maxlen)
121 {
122 	unsigned int	len;
123 
124 	if ((len = ntohl(*p++)) > maxlen)
125 		return NULL;
126 	*lenp = len;
127 	*sp = (char *) p;
128 	return p + XDR_QUADLEN(len);
129 }
130 
131 void
132 xdr_encode_pages(struct xdr_buf *xdr, struct page **pages, unsigned int base,
133 		 unsigned int len)
134 {
135 	struct kvec *tail = xdr->tail;
136 	u32 *p;
137 
138 	xdr->pages = pages;
139 	xdr->page_base = base;
140 	xdr->page_len = len;
141 
142 	p = (u32 *)xdr->head[0].iov_base + XDR_QUADLEN(xdr->head[0].iov_len);
143 	tail->iov_base = p;
144 	tail->iov_len = 0;
145 
146 	if (len & 3) {
147 		unsigned int pad = 4 - (len & 3);
148 
149 		*p = 0;
150 		tail->iov_base = (char *)p + (len & 3);
151 		tail->iov_len  = pad;
152 		len += pad;
153 	}
154 	xdr->buflen += len;
155 	xdr->len += len;
156 }
157 
158 void
159 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
160 		 struct page **pages, unsigned int base, unsigned int len)
161 {
162 	struct kvec *head = xdr->head;
163 	struct kvec *tail = xdr->tail;
164 	char *buf = (char *)head->iov_base;
165 	unsigned int buflen = head->iov_len;
166 
167 	head->iov_len  = offset;
168 
169 	xdr->pages = pages;
170 	xdr->page_base = base;
171 	xdr->page_len = len;
172 
173 	tail->iov_base = buf + offset;
174 	tail->iov_len = buflen - offset;
175 
176 	xdr->buflen += len;
177 }
178 
179 void
180 xdr_partial_copy_from_skb(struct xdr_buf *xdr, unsigned int base,
181 			  skb_reader_t *desc,
182 			  skb_read_actor_t copy_actor)
183 {
184 	struct page	**ppage = xdr->pages;
185 	unsigned int	len, pglen = xdr->page_len;
186 	int		ret;
187 
188 	len = xdr->head[0].iov_len;
189 	if (base < len) {
190 		len -= base;
191 		ret = copy_actor(desc, (char *)xdr->head[0].iov_base + base, len);
192 		if (ret != len || !desc->count)
193 			return;
194 		base = 0;
195 	} else
196 		base -= len;
197 
198 	if (pglen == 0)
199 		goto copy_tail;
200 	if (base >= pglen) {
201 		base -= pglen;
202 		goto copy_tail;
203 	}
204 	if (base || xdr->page_base) {
205 		pglen -= base;
206 		base  += xdr->page_base;
207 		ppage += base >> PAGE_CACHE_SHIFT;
208 		base &= ~PAGE_CACHE_MASK;
209 	}
210 	do {
211 		char *kaddr;
212 
213 		len = PAGE_CACHE_SIZE;
214 		kaddr = kmap_atomic(*ppage, KM_SKB_SUNRPC_DATA);
215 		if (base) {
216 			len -= base;
217 			if (pglen < len)
218 				len = pglen;
219 			ret = copy_actor(desc, kaddr + base, len);
220 			base = 0;
221 		} else {
222 			if (pglen < len)
223 				len = pglen;
224 			ret = copy_actor(desc, kaddr, len);
225 		}
226 		flush_dcache_page(*ppage);
227 		kunmap_atomic(kaddr, KM_SKB_SUNRPC_DATA);
228 		if (ret != len || !desc->count)
229 			return;
230 		ppage++;
231 	} while ((pglen -= len) != 0);
232 copy_tail:
233 	len = xdr->tail[0].iov_len;
234 	if (base < len)
235 		copy_actor(desc, (char *)xdr->tail[0].iov_base + base, len - base);
236 }
237 
238 
239 int
240 xdr_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen,
241 		struct xdr_buf *xdr, unsigned int base, int msgflags)
242 {
243 	struct page **ppage = xdr->pages;
244 	unsigned int len, pglen = xdr->page_len;
245 	int err, ret = 0;
246 	ssize_t (*sendpage)(struct socket *, struct page *, int, size_t, int);
247 
248 	len = xdr->head[0].iov_len;
249 	if (base < len || (addr != NULL && base == 0)) {
250 		struct kvec iov = {
251 			.iov_base = xdr->head[0].iov_base + base,
252 			.iov_len  = len - base,
253 		};
254 		struct msghdr msg = {
255 			.msg_name    = addr,
256 			.msg_namelen = addrlen,
257 			.msg_flags   = msgflags,
258 		};
259 		if (xdr->len > len)
260 			msg.msg_flags |= MSG_MORE;
261 
262 		if (iov.iov_len != 0)
263 			err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
264 		else
265 			err = kernel_sendmsg(sock, &msg, NULL, 0, 0);
266 		if (ret == 0)
267 			ret = err;
268 		else if (err > 0)
269 			ret += err;
270 		if (err != iov.iov_len)
271 			goto out;
272 		base = 0;
273 	} else
274 		base -= len;
275 
276 	if (pglen == 0)
277 		goto copy_tail;
278 	if (base >= pglen) {
279 		base -= pglen;
280 		goto copy_tail;
281 	}
282 	if (base || xdr->page_base) {
283 		pglen -= base;
284 		base  += xdr->page_base;
285 		ppage += base >> PAGE_CACHE_SHIFT;
286 		base &= ~PAGE_CACHE_MASK;
287 	}
288 
289 	sendpage = sock->ops->sendpage ? : sock_no_sendpage;
290 	do {
291 		int flags = msgflags;
292 
293 		len = PAGE_CACHE_SIZE;
294 		if (base)
295 			len -= base;
296 		if (pglen < len)
297 			len = pglen;
298 
299 		if (pglen != len || xdr->tail[0].iov_len != 0)
300 			flags |= MSG_MORE;
301 
302 		/* Hmm... We might be dealing with highmem pages */
303 		if (PageHighMem(*ppage))
304 			sendpage = sock_no_sendpage;
305 		err = sendpage(sock, *ppage, base, len, flags);
306 		if (ret == 0)
307 			ret = err;
308 		else if (err > 0)
309 			ret += err;
310 		if (err != len)
311 			goto out;
312 		base = 0;
313 		ppage++;
314 	} while ((pglen -= len) != 0);
315 copy_tail:
316 	len = xdr->tail[0].iov_len;
317 	if (base < len) {
318 		struct kvec iov = {
319 			.iov_base = xdr->tail[0].iov_base + base,
320 			.iov_len  = len - base,
321 		};
322 		struct msghdr msg = {
323 			.msg_flags   = msgflags,
324 		};
325 		err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
326 		if (ret == 0)
327 			ret = err;
328 		else if (err > 0)
329 			ret += err;
330 	}
331 out:
332 	return ret;
333 }
334 
335 
336 /*
337  * Helper routines for doing 'memmove' like operations on a struct xdr_buf
338  *
339  * _shift_data_right_pages
340  * @pages: vector of pages containing both the source and dest memory area.
341  * @pgto_base: page vector address of destination
342  * @pgfrom_base: page vector address of source
343  * @len: number of bytes to copy
344  *
345  * Note: the addresses pgto_base and pgfrom_base are both calculated in
346  *       the same way:
347  *            if a memory area starts at byte 'base' in page 'pages[i]',
348  *            then its address is given as (i << PAGE_CACHE_SHIFT) + base
349  * Also note: pgfrom_base must be < pgto_base, but the memory areas
350  * 	they point to may overlap.
351  */
352 static void
353 _shift_data_right_pages(struct page **pages, size_t pgto_base,
354 		size_t pgfrom_base, size_t len)
355 {
356 	struct page **pgfrom, **pgto;
357 	char *vfrom, *vto;
358 	size_t copy;
359 
360 	BUG_ON(pgto_base <= pgfrom_base);
361 
362 	pgto_base += len;
363 	pgfrom_base += len;
364 
365 	pgto = pages + (pgto_base >> PAGE_CACHE_SHIFT);
366 	pgfrom = pages + (pgfrom_base >> PAGE_CACHE_SHIFT);
367 
368 	pgto_base &= ~PAGE_CACHE_MASK;
369 	pgfrom_base &= ~PAGE_CACHE_MASK;
370 
371 	do {
372 		/* Are any pointers crossing a page boundary? */
373 		if (pgto_base == 0) {
374 			flush_dcache_page(*pgto);
375 			pgto_base = PAGE_CACHE_SIZE;
376 			pgto--;
377 		}
378 		if (pgfrom_base == 0) {
379 			pgfrom_base = PAGE_CACHE_SIZE;
380 			pgfrom--;
381 		}
382 
383 		copy = len;
384 		if (copy > pgto_base)
385 			copy = pgto_base;
386 		if (copy > pgfrom_base)
387 			copy = pgfrom_base;
388 		pgto_base -= copy;
389 		pgfrom_base -= copy;
390 
391 		vto = kmap_atomic(*pgto, KM_USER0);
392 		vfrom = kmap_atomic(*pgfrom, KM_USER1);
393 		memmove(vto + pgto_base, vfrom + pgfrom_base, copy);
394 		kunmap_atomic(vfrom, KM_USER1);
395 		kunmap_atomic(vto, KM_USER0);
396 
397 	} while ((len -= copy) != 0);
398 	flush_dcache_page(*pgto);
399 }
400 
401 /*
402  * _copy_to_pages
403  * @pages: array of pages
404  * @pgbase: page vector address of destination
405  * @p: pointer to source data
406  * @len: length
407  *
408  * Copies data from an arbitrary memory location into an array of pages
409  * The copy is assumed to be non-overlapping.
410  */
411 static void
412 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
413 {
414 	struct page **pgto;
415 	char *vto;
416 	size_t copy;
417 
418 	pgto = pages + (pgbase >> PAGE_CACHE_SHIFT);
419 	pgbase &= ~PAGE_CACHE_MASK;
420 
421 	do {
422 		copy = PAGE_CACHE_SIZE - pgbase;
423 		if (copy > len)
424 			copy = len;
425 
426 		vto = kmap_atomic(*pgto, KM_USER0);
427 		memcpy(vto + pgbase, p, copy);
428 		kunmap_atomic(vto, KM_USER0);
429 
430 		pgbase += copy;
431 		if (pgbase == PAGE_CACHE_SIZE) {
432 			flush_dcache_page(*pgto);
433 			pgbase = 0;
434 			pgto++;
435 		}
436 		p += copy;
437 
438 	} while ((len -= copy) != 0);
439 	flush_dcache_page(*pgto);
440 }
441 
442 /*
443  * _copy_from_pages
444  * @p: pointer to destination
445  * @pages: array of pages
446  * @pgbase: offset of source data
447  * @len: length
448  *
449  * Copies data into an arbitrary memory location from an array of pages
450  * The copy is assumed to be non-overlapping.
451  */
452 static void
453 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
454 {
455 	struct page **pgfrom;
456 	char *vfrom;
457 	size_t copy;
458 
459 	pgfrom = pages + (pgbase >> PAGE_CACHE_SHIFT);
460 	pgbase &= ~PAGE_CACHE_MASK;
461 
462 	do {
463 		copy = PAGE_CACHE_SIZE - pgbase;
464 		if (copy > len)
465 			copy = len;
466 
467 		vfrom = kmap_atomic(*pgfrom, KM_USER0);
468 		memcpy(p, vfrom + pgbase, copy);
469 		kunmap_atomic(vfrom, KM_USER0);
470 
471 		pgbase += copy;
472 		if (pgbase == PAGE_CACHE_SIZE) {
473 			pgbase = 0;
474 			pgfrom++;
475 		}
476 		p += copy;
477 
478 	} while ((len -= copy) != 0);
479 }
480 
481 /*
482  * xdr_shrink_bufhead
483  * @buf: xdr_buf
484  * @len: bytes to remove from buf->head[0]
485  *
486  * Shrinks XDR buffer's header kvec buf->head[0] by
487  * 'len' bytes. The extra data is not lost, but is instead
488  * moved into the inlined pages and/or the tail.
489  */
490 static void
491 xdr_shrink_bufhead(struct xdr_buf *buf, size_t len)
492 {
493 	struct kvec *head, *tail;
494 	size_t copy, offs;
495 	unsigned int pglen = buf->page_len;
496 
497 	tail = buf->tail;
498 	head = buf->head;
499 	BUG_ON (len > head->iov_len);
500 
501 	/* Shift the tail first */
502 	if (tail->iov_len != 0) {
503 		if (tail->iov_len > len) {
504 			copy = tail->iov_len - len;
505 			memmove((char *)tail->iov_base + len,
506 					tail->iov_base, copy);
507 		}
508 		/* Copy from the inlined pages into the tail */
509 		copy = len;
510 		if (copy > pglen)
511 			copy = pglen;
512 		offs = len - copy;
513 		if (offs >= tail->iov_len)
514 			copy = 0;
515 		else if (copy > tail->iov_len - offs)
516 			copy = tail->iov_len - offs;
517 		if (copy != 0)
518 			_copy_from_pages((char *)tail->iov_base + offs,
519 					buf->pages,
520 					buf->page_base + pglen + offs - len,
521 					copy);
522 		/* Do we also need to copy data from the head into the tail ? */
523 		if (len > pglen) {
524 			offs = copy = len - pglen;
525 			if (copy > tail->iov_len)
526 				copy = tail->iov_len;
527 			memcpy(tail->iov_base,
528 					(char *)head->iov_base +
529 					head->iov_len - offs,
530 					copy);
531 		}
532 	}
533 	/* Now handle pages */
534 	if (pglen != 0) {
535 		if (pglen > len)
536 			_shift_data_right_pages(buf->pages,
537 					buf->page_base + len,
538 					buf->page_base,
539 					pglen - len);
540 		copy = len;
541 		if (len > pglen)
542 			copy = pglen;
543 		_copy_to_pages(buf->pages, buf->page_base,
544 				(char *)head->iov_base + head->iov_len - len,
545 				copy);
546 	}
547 	head->iov_len -= len;
548 	buf->buflen -= len;
549 	/* Have we truncated the message? */
550 	if (buf->len > buf->buflen)
551 		buf->len = buf->buflen;
552 }
553 
554 /*
555  * xdr_shrink_pagelen
556  * @buf: xdr_buf
557  * @len: bytes to remove from buf->pages
558  *
559  * Shrinks XDR buffer's page array buf->pages by
560  * 'len' bytes. The extra data is not lost, but is instead
561  * moved into the tail.
562  */
563 static void
564 xdr_shrink_pagelen(struct xdr_buf *buf, size_t len)
565 {
566 	struct kvec *tail;
567 	size_t copy;
568 	char *p;
569 	unsigned int pglen = buf->page_len;
570 
571 	tail = buf->tail;
572 	BUG_ON (len > pglen);
573 
574 	/* Shift the tail first */
575 	if (tail->iov_len != 0) {
576 		p = (char *)tail->iov_base + len;
577 		if (tail->iov_len > len) {
578 			copy = tail->iov_len - len;
579 			memmove(p, tail->iov_base, copy);
580 		} else
581 			buf->buflen -= len;
582 		/* Copy from the inlined pages into the tail */
583 		copy = len;
584 		if (copy > tail->iov_len)
585 			copy = tail->iov_len;
586 		_copy_from_pages((char *)tail->iov_base,
587 				buf->pages, buf->page_base + pglen - len,
588 				copy);
589 	}
590 	buf->page_len -= len;
591 	buf->buflen -= len;
592 	/* Have we truncated the message? */
593 	if (buf->len > buf->buflen)
594 		buf->len = buf->buflen;
595 }
596 
597 void
598 xdr_shift_buf(struct xdr_buf *buf, size_t len)
599 {
600 	xdr_shrink_bufhead(buf, len);
601 }
602 
603 /**
604  * xdr_init_encode - Initialize a struct xdr_stream for sending data.
605  * @xdr: pointer to xdr_stream struct
606  * @buf: pointer to XDR buffer in which to encode data
607  * @p: current pointer inside XDR buffer
608  *
609  * Note: at the moment the RPC client only passes the length of our
610  *	 scratch buffer in the xdr_buf's header kvec. Previously this
611  *	 meant we needed to call xdr_adjust_iovec() after encoding the
612  *	 data. With the new scheme, the xdr_stream manages the details
613  *	 of the buffer length, and takes care of adjusting the kvec
614  *	 length for us.
615  */
616 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
617 {
618 	struct kvec *iov = buf->head;
619 
620 	xdr->buf = buf;
621 	xdr->iov = iov;
622 	xdr->end = (uint32_t *)((char *)iov->iov_base + iov->iov_len);
623 	buf->len = iov->iov_len = (char *)p - (char *)iov->iov_base;
624 	xdr->p = p;
625 }
626 EXPORT_SYMBOL(xdr_init_encode);
627 
628 /**
629  * xdr_reserve_space - Reserve buffer space for sending
630  * @xdr: pointer to xdr_stream
631  * @nbytes: number of bytes to reserve
632  *
633  * Checks that we have enough buffer space to encode 'nbytes' more
634  * bytes of data. If so, update the total xdr_buf length, and
635  * adjust the length of the current kvec.
636  */
637 uint32_t * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
638 {
639 	uint32_t *p = xdr->p;
640 	uint32_t *q;
641 
642 	/* align nbytes on the next 32-bit boundary */
643 	nbytes += 3;
644 	nbytes &= ~3;
645 	q = p + (nbytes >> 2);
646 	if (unlikely(q > xdr->end || q < p))
647 		return NULL;
648 	xdr->p = q;
649 	xdr->iov->iov_len += nbytes;
650 	xdr->buf->len += nbytes;
651 	return p;
652 }
653 EXPORT_SYMBOL(xdr_reserve_space);
654 
655 /**
656  * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
657  * @xdr: pointer to xdr_stream
658  * @pages: list of pages
659  * @base: offset of first byte
660  * @len: length of data in bytes
661  *
662  */
663 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
664 		 unsigned int len)
665 {
666 	struct xdr_buf *buf = xdr->buf;
667 	struct kvec *iov = buf->tail;
668 	buf->pages = pages;
669 	buf->page_base = base;
670 	buf->page_len = len;
671 
672 	iov->iov_base = (char *)xdr->p;
673 	iov->iov_len  = 0;
674 	xdr->iov = iov;
675 
676 	if (len & 3) {
677 		unsigned int pad = 4 - (len & 3);
678 
679 		BUG_ON(xdr->p >= xdr->end);
680 		iov->iov_base = (char *)xdr->p + (len & 3);
681 		iov->iov_len  += pad;
682 		len += pad;
683 		*xdr->p++ = 0;
684 	}
685 	buf->buflen += len;
686 	buf->len += len;
687 }
688 EXPORT_SYMBOL(xdr_write_pages);
689 
690 /**
691  * xdr_init_decode - Initialize an xdr_stream for decoding data.
692  * @xdr: pointer to xdr_stream struct
693  * @buf: pointer to XDR buffer from which to decode data
694  * @p: current pointer inside XDR buffer
695  */
696 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
697 {
698 	struct kvec *iov = buf->head;
699 	unsigned int len = iov->iov_len;
700 
701 	if (len > buf->len)
702 		len = buf->len;
703 	xdr->buf = buf;
704 	xdr->iov = iov;
705 	xdr->p = p;
706 	xdr->end = (uint32_t *)((char *)iov->iov_base + len);
707 }
708 EXPORT_SYMBOL(xdr_init_decode);
709 
710 /**
711  * xdr_inline_decode - Retrieve non-page XDR data to decode
712  * @xdr: pointer to xdr_stream struct
713  * @nbytes: number of bytes of data to decode
714  *
715  * Check if the input buffer is long enough to enable us to decode
716  * 'nbytes' more bytes of data starting at the current position.
717  * If so return the current pointer, then update the current
718  * pointer position.
719  */
720 uint32_t * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
721 {
722 	uint32_t *p = xdr->p;
723 	uint32_t *q = p + XDR_QUADLEN(nbytes);
724 
725 	if (unlikely(q > xdr->end || q < p))
726 		return NULL;
727 	xdr->p = q;
728 	return p;
729 }
730 EXPORT_SYMBOL(xdr_inline_decode);
731 
732 /**
733  * xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position
734  * @xdr: pointer to xdr_stream struct
735  * @len: number of bytes of page data
736  *
737  * Moves data beyond the current pointer position from the XDR head[] buffer
738  * into the page list. Any data that lies beyond current position + "len"
739  * bytes is moved into the XDR tail[]. The current pointer is then
740  * repositioned at the beginning of the XDR tail.
741  */
742 void xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
743 {
744 	struct xdr_buf *buf = xdr->buf;
745 	struct kvec *iov;
746 	ssize_t shift;
747 	unsigned int end;
748 	int padding;
749 
750 	/* Realign pages to current pointer position */
751 	iov  = buf->head;
752 	shift = iov->iov_len + (char *)iov->iov_base - (char *)xdr->p;
753 	if (shift > 0)
754 		xdr_shrink_bufhead(buf, shift);
755 
756 	/* Truncate page data and move it into the tail */
757 	if (buf->page_len > len)
758 		xdr_shrink_pagelen(buf, buf->page_len - len);
759 	padding = (XDR_QUADLEN(len) << 2) - len;
760 	xdr->iov = iov = buf->tail;
761 	/* Compute remaining message length.  */
762 	end = iov->iov_len;
763 	shift = buf->buflen - buf->len;
764 	if (shift < end)
765 		end -= shift;
766 	else if (shift > 0)
767 		end = 0;
768 	/*
769 	 * Position current pointer at beginning of tail, and
770 	 * set remaining message length.
771 	 */
772 	xdr->p = (uint32_t *)((char *)iov->iov_base + padding);
773 	xdr->end = (uint32_t *)((char *)iov->iov_base + end);
774 }
775 EXPORT_SYMBOL(xdr_read_pages);
776 
777 static struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
778 
779 void
780 xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf)
781 {
782 	buf->head[0] = *iov;
783 	buf->tail[0] = empty_iov;
784 	buf->page_len = 0;
785 	buf->buflen = buf->len = iov->iov_len;
786 }
787 
788 /* Sets subiov to the intersection of iov with the buffer of length len
789  * starting base bytes after iov.  Indicates empty intersection by setting
790  * length of subiov to zero.  Decrements len by length of subiov, sets base
791  * to zero (or decrements it by length of iov if subiov is empty). */
792 static void
793 iov_subsegment(struct kvec *iov, struct kvec *subiov, int *base, int *len)
794 {
795 	if (*base > iov->iov_len) {
796 		subiov->iov_base = NULL;
797 		subiov->iov_len = 0;
798 		*base -= iov->iov_len;
799 	} else {
800 		subiov->iov_base = iov->iov_base + *base;
801 		subiov->iov_len = min(*len, (int)iov->iov_len - *base);
802 		*base = 0;
803 	}
804 	*len -= subiov->iov_len;
805 }
806 
807 /* Sets subbuf to the portion of buf of length len beginning base bytes
808  * from the start of buf. Returns -1 if base of length are out of bounds. */
809 int
810 xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf,
811 			int base, int len)
812 {
813 	int i;
814 
815 	subbuf->buflen = subbuf->len = len;
816 	iov_subsegment(buf->head, subbuf->head, &base, &len);
817 
818 	if (base < buf->page_len) {
819 		i = (base + buf->page_base) >> PAGE_CACHE_SHIFT;
820 		subbuf->pages = &buf->pages[i];
821 		subbuf->page_base = (base + buf->page_base) & ~PAGE_CACHE_MASK;
822 		subbuf->page_len = min((int)buf->page_len - base, len);
823 		len -= subbuf->page_len;
824 		base = 0;
825 	} else {
826 		base -= buf->page_len;
827 		subbuf->page_len = 0;
828 	}
829 
830 	iov_subsegment(buf->tail, subbuf->tail, &base, &len);
831 	if (base || len)
832 		return -1;
833 	return 0;
834 }
835 
836 /* obj is assumed to point to allocated memory of size at least len: */
837 int
838 read_bytes_from_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
839 {
840 	struct xdr_buf subbuf;
841 	int this_len;
842 	int status;
843 
844 	status = xdr_buf_subsegment(buf, &subbuf, base, len);
845 	if (status)
846 		goto out;
847 	this_len = min(len, (int)subbuf.head[0].iov_len);
848 	memcpy(obj, subbuf.head[0].iov_base, this_len);
849 	len -= this_len;
850 	obj += this_len;
851 	this_len = min(len, (int)subbuf.page_len);
852 	if (this_len)
853 		_copy_from_pages(obj, subbuf.pages, subbuf.page_base, this_len);
854 	len -= this_len;
855 	obj += this_len;
856 	this_len = min(len, (int)subbuf.tail[0].iov_len);
857 	memcpy(obj, subbuf.tail[0].iov_base, this_len);
858 out:
859 	return status;
860 }
861 
862 static int
863 read_u32_from_xdr_buf(struct xdr_buf *buf, int base, u32 *obj)
864 {
865 	u32	raw;
866 	int	status;
867 
868 	status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
869 	if (status)
870 		return status;
871 	*obj = ntohl(raw);
872 	return 0;
873 }
874 
875 /* If the netobj starting offset bytes from the start of xdr_buf is contained
876  * entirely in the head or the tail, set object to point to it; otherwise
877  * try to find space for it at the end of the tail, copy it there, and
878  * set obj to point to it. */
879 int
880 xdr_buf_read_netobj(struct xdr_buf *buf, struct xdr_netobj *obj, int offset)
881 {
882 	u32	tail_offset = buf->head[0].iov_len + buf->page_len;
883 	u32	obj_end_offset;
884 
885 	if (read_u32_from_xdr_buf(buf, offset, &obj->len))
886 		goto out;
887 	obj_end_offset = offset + 4 + obj->len;
888 
889 	if (obj_end_offset <= buf->head[0].iov_len) {
890 		/* The obj is contained entirely in the head: */
891 		obj->data = buf->head[0].iov_base + offset + 4;
892 	} else if (offset + 4 >= tail_offset) {
893 		if (obj_end_offset - tail_offset
894 				> buf->tail[0].iov_len)
895 			goto out;
896 		/* The obj is contained entirely in the tail: */
897 		obj->data = buf->tail[0].iov_base
898 			+ offset - tail_offset + 4;
899 	} else {
900 		/* use end of tail as storage for obj:
901 		 * (We don't copy to the beginning because then we'd have
902 		 * to worry about doing a potentially overlapping copy.
903 		 * This assumes the object is at most half the length of the
904 		 * tail.) */
905 		if (obj->len > buf->tail[0].iov_len)
906 			goto out;
907 		obj->data = buf->tail[0].iov_base + buf->tail[0].iov_len -
908 				obj->len;
909 		if (read_bytes_from_xdr_buf(buf, offset + 4,
910 					obj->data, obj->len))
911 			goto out;
912 
913 	}
914 	return 0;
915 out:
916 	return -1;
917 }
918