1 /* 2 * linux/net/sunrpc/svcsock.c 3 * 4 * These are the RPC server socket internals. 5 * 6 * The server scheduling algorithm does not always distribute the load 7 * evenly when servicing a single client. May need to modify the 8 * svc_sock_enqueue procedure... 9 * 10 * TCP support is largely untested and may be a little slow. The problem 11 * is that we currently do two separate recvfrom's, one for the 4-byte 12 * record length, and the second for the actual record. This could possibly 13 * be improved by always reading a minimum size of around 100 bytes and 14 * tucking any superfluous bytes away in a temporary store. Still, that 15 * leaves write requests out in the rain. An alternative may be to peek at 16 * the first skb in the queue, and if it matches the next TCP sequence 17 * number, to extract the record marker. Yuck. 18 * 19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 20 */ 21 22 #include <linux/sched.h> 23 #include <linux/errno.h> 24 #include <linux/fcntl.h> 25 #include <linux/net.h> 26 #include <linux/in.h> 27 #include <linux/inet.h> 28 #include <linux/udp.h> 29 #include <linux/tcp.h> 30 #include <linux/unistd.h> 31 #include <linux/slab.h> 32 #include <linux/netdevice.h> 33 #include <linux/skbuff.h> 34 #include <net/sock.h> 35 #include <net/checksum.h> 36 #include <net/ip.h> 37 #include <net/tcp.h> 38 #include <asm/uaccess.h> 39 #include <asm/ioctls.h> 40 41 #include <linux/sunrpc/types.h> 42 #include <linux/sunrpc/xdr.h> 43 #include <linux/sunrpc/svcsock.h> 44 #include <linux/sunrpc/stats.h> 45 46 /* SMP locking strategy: 47 * 48 * svc_serv->sv_lock protects most stuff for that service. 49 * 50 * Some flags can be set to certain values at any time 51 * providing that certain rules are followed: 52 * 53 * SK_BUSY can be set to 0 at any time. 54 * svc_sock_enqueue must be called afterwards 55 * SK_CONN, SK_DATA, can be set or cleared at any time. 56 * after a set, svc_sock_enqueue must be called. 57 * after a clear, the socket must be read/accepted 58 * if this succeeds, it must be set again. 59 * SK_CLOSE can set at any time. It is never cleared. 60 * 61 */ 62 63 #define RPCDBG_FACILITY RPCDBG_SVCSOCK 64 65 66 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 67 int *errp, int pmap_reg); 68 static void svc_udp_data_ready(struct sock *, int); 69 static int svc_udp_recvfrom(struct svc_rqst *); 70 static int svc_udp_sendto(struct svc_rqst *); 71 72 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk); 73 static int svc_deferred_recv(struct svc_rqst *rqstp); 74 static struct cache_deferred_req *svc_defer(struct cache_req *req); 75 76 /* 77 * Queue up an idle server thread. Must have serv->sv_lock held. 78 * Note: this is really a stack rather than a queue, so that we only 79 * use as many different threads as we need, and the rest don't polute 80 * the cache. 81 */ 82 static inline void 83 svc_serv_enqueue(struct svc_serv *serv, struct svc_rqst *rqstp) 84 { 85 list_add(&rqstp->rq_list, &serv->sv_threads); 86 } 87 88 /* 89 * Dequeue an nfsd thread. Must have serv->sv_lock held. 90 */ 91 static inline void 92 svc_serv_dequeue(struct svc_serv *serv, struct svc_rqst *rqstp) 93 { 94 list_del(&rqstp->rq_list); 95 } 96 97 /* 98 * Release an skbuff after use 99 */ 100 static inline void 101 svc_release_skb(struct svc_rqst *rqstp) 102 { 103 struct sk_buff *skb = rqstp->rq_skbuff; 104 struct svc_deferred_req *dr = rqstp->rq_deferred; 105 106 if (skb) { 107 rqstp->rq_skbuff = NULL; 108 109 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb); 110 skb_free_datagram(rqstp->rq_sock->sk_sk, skb); 111 } 112 if (dr) { 113 rqstp->rq_deferred = NULL; 114 kfree(dr); 115 } 116 } 117 118 /* 119 * Any space to write? 120 */ 121 static inline unsigned long 122 svc_sock_wspace(struct svc_sock *svsk) 123 { 124 int wspace; 125 126 if (svsk->sk_sock->type == SOCK_STREAM) 127 wspace = sk_stream_wspace(svsk->sk_sk); 128 else 129 wspace = sock_wspace(svsk->sk_sk); 130 131 return wspace; 132 } 133 134 /* 135 * Queue up a socket with data pending. If there are idle nfsd 136 * processes, wake 'em up. 137 * 138 */ 139 static void 140 svc_sock_enqueue(struct svc_sock *svsk) 141 { 142 struct svc_serv *serv = svsk->sk_server; 143 struct svc_rqst *rqstp; 144 145 if (!(svsk->sk_flags & 146 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) )) 147 return; 148 if (test_bit(SK_DEAD, &svsk->sk_flags)) 149 return; 150 151 spin_lock_bh(&serv->sv_lock); 152 153 if (!list_empty(&serv->sv_threads) && 154 !list_empty(&serv->sv_sockets)) 155 printk(KERN_ERR 156 "svc_sock_enqueue: threads and sockets both waiting??\n"); 157 158 if (test_bit(SK_DEAD, &svsk->sk_flags)) { 159 /* Don't enqueue dead sockets */ 160 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk); 161 goto out_unlock; 162 } 163 164 if (test_bit(SK_BUSY, &svsk->sk_flags)) { 165 /* Don't enqueue socket while daemon is receiving */ 166 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk); 167 goto out_unlock; 168 } 169 170 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 171 if (((svsk->sk_reserved + serv->sv_bufsz)*2 172 > svc_sock_wspace(svsk)) 173 && !test_bit(SK_CLOSE, &svsk->sk_flags) 174 && !test_bit(SK_CONN, &svsk->sk_flags)) { 175 /* Don't enqueue while not enough space for reply */ 176 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n", 177 svsk->sk_sk, svsk->sk_reserved+serv->sv_bufsz, 178 svc_sock_wspace(svsk)); 179 goto out_unlock; 180 } 181 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 182 183 /* Mark socket as busy. It will remain in this state until the 184 * server has processed all pending data and put the socket back 185 * on the idle list. 186 */ 187 set_bit(SK_BUSY, &svsk->sk_flags); 188 189 if (!list_empty(&serv->sv_threads)) { 190 rqstp = list_entry(serv->sv_threads.next, 191 struct svc_rqst, 192 rq_list); 193 dprintk("svc: socket %p served by daemon %p\n", 194 svsk->sk_sk, rqstp); 195 svc_serv_dequeue(serv, rqstp); 196 if (rqstp->rq_sock) 197 printk(KERN_ERR 198 "svc_sock_enqueue: server %p, rq_sock=%p!\n", 199 rqstp, rqstp->rq_sock); 200 rqstp->rq_sock = svsk; 201 svsk->sk_inuse++; 202 rqstp->rq_reserved = serv->sv_bufsz; 203 svsk->sk_reserved += rqstp->rq_reserved; 204 wake_up(&rqstp->rq_wait); 205 } else { 206 dprintk("svc: socket %p put into queue\n", svsk->sk_sk); 207 list_add_tail(&svsk->sk_ready, &serv->sv_sockets); 208 } 209 210 out_unlock: 211 spin_unlock_bh(&serv->sv_lock); 212 } 213 214 /* 215 * Dequeue the first socket. Must be called with the serv->sv_lock held. 216 */ 217 static inline struct svc_sock * 218 svc_sock_dequeue(struct svc_serv *serv) 219 { 220 struct svc_sock *svsk; 221 222 if (list_empty(&serv->sv_sockets)) 223 return NULL; 224 225 svsk = list_entry(serv->sv_sockets.next, 226 struct svc_sock, sk_ready); 227 list_del_init(&svsk->sk_ready); 228 229 dprintk("svc: socket %p dequeued, inuse=%d\n", 230 svsk->sk_sk, svsk->sk_inuse); 231 232 return svsk; 233 } 234 235 /* 236 * Having read something from a socket, check whether it 237 * needs to be re-enqueued. 238 * Note: SK_DATA only gets cleared when a read-attempt finds 239 * no (or insufficient) data. 240 */ 241 static inline void 242 svc_sock_received(struct svc_sock *svsk) 243 { 244 clear_bit(SK_BUSY, &svsk->sk_flags); 245 svc_sock_enqueue(svsk); 246 } 247 248 249 /** 250 * svc_reserve - change the space reserved for the reply to a request. 251 * @rqstp: The request in question 252 * @space: new max space to reserve 253 * 254 * Each request reserves some space on the output queue of the socket 255 * to make sure the reply fits. This function reduces that reserved 256 * space to be the amount of space used already, plus @space. 257 * 258 */ 259 void svc_reserve(struct svc_rqst *rqstp, int space) 260 { 261 space += rqstp->rq_res.head[0].iov_len; 262 263 if (space < rqstp->rq_reserved) { 264 struct svc_sock *svsk = rqstp->rq_sock; 265 spin_lock_bh(&svsk->sk_server->sv_lock); 266 svsk->sk_reserved -= (rqstp->rq_reserved - space); 267 rqstp->rq_reserved = space; 268 spin_unlock_bh(&svsk->sk_server->sv_lock); 269 270 svc_sock_enqueue(svsk); 271 } 272 } 273 274 /* 275 * Release a socket after use. 276 */ 277 static inline void 278 svc_sock_put(struct svc_sock *svsk) 279 { 280 struct svc_serv *serv = svsk->sk_server; 281 282 spin_lock_bh(&serv->sv_lock); 283 if (!--(svsk->sk_inuse) && test_bit(SK_DEAD, &svsk->sk_flags)) { 284 spin_unlock_bh(&serv->sv_lock); 285 dprintk("svc: releasing dead socket\n"); 286 sock_release(svsk->sk_sock); 287 kfree(svsk); 288 } 289 else 290 spin_unlock_bh(&serv->sv_lock); 291 } 292 293 static void 294 svc_sock_release(struct svc_rqst *rqstp) 295 { 296 struct svc_sock *svsk = rqstp->rq_sock; 297 298 svc_release_skb(rqstp); 299 300 svc_free_allpages(rqstp); 301 rqstp->rq_res.page_len = 0; 302 rqstp->rq_res.page_base = 0; 303 304 305 /* Reset response buffer and release 306 * the reservation. 307 * But first, check that enough space was reserved 308 * for the reply, otherwise we have a bug! 309 */ 310 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 311 printk(KERN_ERR "RPC request reserved %d but used %d\n", 312 rqstp->rq_reserved, 313 rqstp->rq_res.len); 314 315 rqstp->rq_res.head[0].iov_len = 0; 316 svc_reserve(rqstp, 0); 317 rqstp->rq_sock = NULL; 318 319 svc_sock_put(svsk); 320 } 321 322 /* 323 * External function to wake up a server waiting for data 324 */ 325 void 326 svc_wake_up(struct svc_serv *serv) 327 { 328 struct svc_rqst *rqstp; 329 330 spin_lock_bh(&serv->sv_lock); 331 if (!list_empty(&serv->sv_threads)) { 332 rqstp = list_entry(serv->sv_threads.next, 333 struct svc_rqst, 334 rq_list); 335 dprintk("svc: daemon %p woken up.\n", rqstp); 336 /* 337 svc_serv_dequeue(serv, rqstp); 338 rqstp->rq_sock = NULL; 339 */ 340 wake_up(&rqstp->rq_wait); 341 } 342 spin_unlock_bh(&serv->sv_lock); 343 } 344 345 /* 346 * Generic sendto routine 347 */ 348 static int 349 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr) 350 { 351 struct svc_sock *svsk = rqstp->rq_sock; 352 struct socket *sock = svsk->sk_sock; 353 int slen; 354 char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))]; 355 struct cmsghdr *cmh = (struct cmsghdr *)buffer; 356 struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh); 357 int len = 0; 358 int result; 359 int size; 360 struct page **ppage = xdr->pages; 361 size_t base = xdr->page_base; 362 unsigned int pglen = xdr->page_len; 363 unsigned int flags = MSG_MORE; 364 365 slen = xdr->len; 366 367 if (rqstp->rq_prot == IPPROTO_UDP) { 368 /* set the source and destination */ 369 struct msghdr msg; 370 msg.msg_name = &rqstp->rq_addr; 371 msg.msg_namelen = sizeof(rqstp->rq_addr); 372 msg.msg_iov = NULL; 373 msg.msg_iovlen = 0; 374 msg.msg_flags = MSG_MORE; 375 376 msg.msg_control = cmh; 377 msg.msg_controllen = sizeof(buffer); 378 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 379 cmh->cmsg_level = SOL_IP; 380 cmh->cmsg_type = IP_PKTINFO; 381 pki->ipi_ifindex = 0; 382 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr; 383 384 if (sock_sendmsg(sock, &msg, 0) < 0) 385 goto out; 386 } 387 388 /* send head */ 389 if (slen == xdr->head[0].iov_len) 390 flags = 0; 391 len = sock->ops->sendpage(sock, rqstp->rq_respages[0], 0, xdr->head[0].iov_len, flags); 392 if (len != xdr->head[0].iov_len) 393 goto out; 394 slen -= xdr->head[0].iov_len; 395 if (slen == 0) 396 goto out; 397 398 /* send page data */ 399 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen; 400 while (pglen > 0) { 401 if (slen == size) 402 flags = 0; 403 result = sock->ops->sendpage(sock, *ppage, base, size, flags); 404 if (result > 0) 405 len += result; 406 if (result != size) 407 goto out; 408 slen -= size; 409 pglen -= size; 410 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen; 411 base = 0; 412 ppage++; 413 } 414 /* send tail */ 415 if (xdr->tail[0].iov_len) { 416 result = sock->ops->sendpage(sock, rqstp->rq_respages[rqstp->rq_restailpage], 417 ((unsigned long)xdr->tail[0].iov_base)& (PAGE_SIZE-1), 418 xdr->tail[0].iov_len, 0); 419 420 if (result > 0) 421 len += result; 422 } 423 out: 424 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n", 425 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len, 426 rqstp->rq_addr.sin_addr.s_addr); 427 428 return len; 429 } 430 431 /* 432 * Check input queue length 433 */ 434 static int 435 svc_recv_available(struct svc_sock *svsk) 436 { 437 mm_segment_t oldfs; 438 struct socket *sock = svsk->sk_sock; 439 int avail, err; 440 441 oldfs = get_fs(); set_fs(KERNEL_DS); 442 err = sock->ops->ioctl(sock, TIOCINQ, (unsigned long) &avail); 443 set_fs(oldfs); 444 445 return (err >= 0)? avail : err; 446 } 447 448 /* 449 * Generic recvfrom routine. 450 */ 451 static int 452 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen) 453 { 454 struct msghdr msg; 455 struct socket *sock; 456 int len, alen; 457 458 rqstp->rq_addrlen = sizeof(rqstp->rq_addr); 459 sock = rqstp->rq_sock->sk_sock; 460 461 msg.msg_name = &rqstp->rq_addr; 462 msg.msg_namelen = sizeof(rqstp->rq_addr); 463 msg.msg_control = NULL; 464 msg.msg_controllen = 0; 465 466 msg.msg_flags = MSG_DONTWAIT; 467 468 len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT); 469 470 /* sock_recvmsg doesn't fill in the name/namelen, so we must.. 471 * possibly we should cache this in the svc_sock structure 472 * at accept time. FIXME 473 */ 474 alen = sizeof(rqstp->rq_addr); 475 sock->ops->getname(sock, (struct sockaddr *)&rqstp->rq_addr, &alen, 1); 476 477 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n", 478 rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len); 479 480 return len; 481 } 482 483 /* 484 * Set socket snd and rcv buffer lengths 485 */ 486 static inline void 487 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv) 488 { 489 #if 0 490 mm_segment_t oldfs; 491 oldfs = get_fs(); set_fs(KERNEL_DS); 492 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF, 493 (char*)&snd, sizeof(snd)); 494 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF, 495 (char*)&rcv, sizeof(rcv)); 496 #else 497 /* sock_setsockopt limits use to sysctl_?mem_max, 498 * which isn't acceptable. Until that is made conditional 499 * on not having CAP_SYS_RESOURCE or similar, we go direct... 500 * DaveM said I could! 501 */ 502 lock_sock(sock->sk); 503 sock->sk->sk_sndbuf = snd * 2; 504 sock->sk->sk_rcvbuf = rcv * 2; 505 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK; 506 release_sock(sock->sk); 507 #endif 508 } 509 /* 510 * INET callback when data has been received on the socket. 511 */ 512 static void 513 svc_udp_data_ready(struct sock *sk, int count) 514 { 515 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 516 517 if (!svsk) 518 goto out; 519 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n", 520 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags)); 521 set_bit(SK_DATA, &svsk->sk_flags); 522 svc_sock_enqueue(svsk); 523 out: 524 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 525 wake_up_interruptible(sk->sk_sleep); 526 } 527 528 /* 529 * INET callback when space is newly available on the socket. 530 */ 531 static void 532 svc_write_space(struct sock *sk) 533 { 534 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 535 536 if (svsk) { 537 dprintk("svc: socket %p(inet %p), write_space busy=%d\n", 538 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags)); 539 svc_sock_enqueue(svsk); 540 } 541 542 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) { 543 printk(KERN_WARNING "RPC svc_write_space: some sleeping on %p\n", 544 svsk); 545 wake_up_interruptible(sk->sk_sleep); 546 } 547 } 548 549 /* 550 * Receive a datagram from a UDP socket. 551 */ 552 extern int 553 csum_partial_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb); 554 555 static int 556 svc_udp_recvfrom(struct svc_rqst *rqstp) 557 { 558 struct svc_sock *svsk = rqstp->rq_sock; 559 struct svc_serv *serv = svsk->sk_server; 560 struct sk_buff *skb; 561 int err, len; 562 563 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags)) 564 /* udp sockets need large rcvbuf as all pending 565 * requests are still in that buffer. sndbuf must 566 * also be large enough that there is enough space 567 * for one reply per thread. 568 */ 569 svc_sock_setbufsize(svsk->sk_sock, 570 (serv->sv_nrthreads+3) * serv->sv_bufsz, 571 (serv->sv_nrthreads+3) * serv->sv_bufsz); 572 573 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) { 574 svc_sock_received(svsk); 575 return svc_deferred_recv(rqstp); 576 } 577 578 clear_bit(SK_DATA, &svsk->sk_flags); 579 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) { 580 if (err == -EAGAIN) { 581 svc_sock_received(svsk); 582 return err; 583 } 584 /* possibly an icmp error */ 585 dprintk("svc: recvfrom returned error %d\n", -err); 586 } 587 if (skb->stamp.tv_sec == 0) { 588 skb->stamp.tv_sec = xtime.tv_sec; 589 skb->stamp.tv_usec = xtime.tv_nsec * 1000; 590 /* Don't enable netstamp, sunrpc doesn't 591 need that much accuracy */ 592 } 593 svsk->sk_sk->sk_stamp = skb->stamp; 594 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */ 595 596 /* 597 * Maybe more packets - kick another thread ASAP. 598 */ 599 svc_sock_received(svsk); 600 601 len = skb->len - sizeof(struct udphdr); 602 rqstp->rq_arg.len = len; 603 604 rqstp->rq_prot = IPPROTO_UDP; 605 606 /* Get sender address */ 607 rqstp->rq_addr.sin_family = AF_INET; 608 rqstp->rq_addr.sin_port = skb->h.uh->source; 609 rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr; 610 rqstp->rq_daddr = skb->nh.iph->daddr; 611 612 if (skb_is_nonlinear(skb)) { 613 /* we have to copy */ 614 local_bh_disable(); 615 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) { 616 local_bh_enable(); 617 /* checksum error */ 618 skb_free_datagram(svsk->sk_sk, skb); 619 return 0; 620 } 621 local_bh_enable(); 622 skb_free_datagram(svsk->sk_sk, skb); 623 } else { 624 /* we can use it in-place */ 625 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr); 626 rqstp->rq_arg.head[0].iov_len = len; 627 if (skb->ip_summed != CHECKSUM_UNNECESSARY) { 628 if ((unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum))) { 629 skb_free_datagram(svsk->sk_sk, skb); 630 return 0; 631 } 632 skb->ip_summed = CHECKSUM_UNNECESSARY; 633 } 634 rqstp->rq_skbuff = skb; 635 } 636 637 rqstp->rq_arg.page_base = 0; 638 if (len <= rqstp->rq_arg.head[0].iov_len) { 639 rqstp->rq_arg.head[0].iov_len = len; 640 rqstp->rq_arg.page_len = 0; 641 } else { 642 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 643 rqstp->rq_argused += (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE; 644 } 645 646 if (serv->sv_stats) 647 serv->sv_stats->netudpcnt++; 648 649 return len; 650 } 651 652 static int 653 svc_udp_sendto(struct svc_rqst *rqstp) 654 { 655 int error; 656 657 error = svc_sendto(rqstp, &rqstp->rq_res); 658 if (error == -ECONNREFUSED) 659 /* ICMP error on earlier request. */ 660 error = svc_sendto(rqstp, &rqstp->rq_res); 661 662 return error; 663 } 664 665 static void 666 svc_udp_init(struct svc_sock *svsk) 667 { 668 svsk->sk_sk->sk_data_ready = svc_udp_data_ready; 669 svsk->sk_sk->sk_write_space = svc_write_space; 670 svsk->sk_recvfrom = svc_udp_recvfrom; 671 svsk->sk_sendto = svc_udp_sendto; 672 673 /* initialise setting must have enough space to 674 * receive and respond to one request. 675 * svc_udp_recvfrom will re-adjust if necessary 676 */ 677 svc_sock_setbufsize(svsk->sk_sock, 678 3 * svsk->sk_server->sv_bufsz, 679 3 * svsk->sk_server->sv_bufsz); 680 681 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */ 682 set_bit(SK_CHNGBUF, &svsk->sk_flags); 683 } 684 685 /* 686 * A data_ready event on a listening socket means there's a connection 687 * pending. Do not use state_change as a substitute for it. 688 */ 689 static void 690 svc_tcp_listen_data_ready(struct sock *sk, int count_unused) 691 { 692 struct svc_sock *svsk; 693 694 dprintk("svc: socket %p TCP (listen) state change %d\n", 695 sk, sk->sk_state); 696 697 if (sk->sk_state != TCP_LISTEN) { 698 /* 699 * This callback may called twice when a new connection 700 * is established as a child socket inherits everything 701 * from a parent LISTEN socket. 702 * 1) data_ready method of the parent socket will be called 703 * when one of child sockets become ESTABLISHED. 704 * 2) data_ready method of the child socket may be called 705 * when it receives data before the socket is accepted. 706 * In case of 2, we should ignore it silently. 707 */ 708 goto out; 709 } 710 if (!(svsk = (struct svc_sock *) sk->sk_user_data)) { 711 printk("svc: socket %p: no user data\n", sk); 712 goto out; 713 } 714 set_bit(SK_CONN, &svsk->sk_flags); 715 svc_sock_enqueue(svsk); 716 out: 717 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 718 wake_up_interruptible_all(sk->sk_sleep); 719 } 720 721 /* 722 * A state change on a connected socket means it's dying or dead. 723 */ 724 static void 725 svc_tcp_state_change(struct sock *sk) 726 { 727 struct svc_sock *svsk; 728 729 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n", 730 sk, sk->sk_state, sk->sk_user_data); 731 732 if (!(svsk = (struct svc_sock *) sk->sk_user_data)) { 733 printk("svc: socket %p: no user data\n", sk); 734 goto out; 735 } 736 set_bit(SK_CLOSE, &svsk->sk_flags); 737 svc_sock_enqueue(svsk); 738 out: 739 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 740 wake_up_interruptible_all(sk->sk_sleep); 741 } 742 743 static void 744 svc_tcp_data_ready(struct sock *sk, int count) 745 { 746 struct svc_sock * svsk; 747 748 dprintk("svc: socket %p TCP data ready (svsk %p)\n", 749 sk, sk->sk_user_data); 750 if (!(svsk = (struct svc_sock *)(sk->sk_user_data))) 751 goto out; 752 set_bit(SK_DATA, &svsk->sk_flags); 753 svc_sock_enqueue(svsk); 754 out: 755 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 756 wake_up_interruptible(sk->sk_sleep); 757 } 758 759 /* 760 * Accept a TCP connection 761 */ 762 static void 763 svc_tcp_accept(struct svc_sock *svsk) 764 { 765 struct sockaddr_in sin; 766 struct svc_serv *serv = svsk->sk_server; 767 struct socket *sock = svsk->sk_sock; 768 struct socket *newsock; 769 struct proto_ops *ops; 770 struct svc_sock *newsvsk; 771 int err, slen; 772 773 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock); 774 if (!sock) 775 return; 776 777 err = sock_create_lite(PF_INET, SOCK_STREAM, IPPROTO_TCP, &newsock); 778 if (err) { 779 if (err == -ENOMEM) 780 printk(KERN_WARNING "%s: no more sockets!\n", 781 serv->sv_name); 782 return; 783 } 784 785 dprintk("svc: tcp_accept %p allocated\n", newsock); 786 newsock->ops = ops = sock->ops; 787 788 clear_bit(SK_CONN, &svsk->sk_flags); 789 if ((err = ops->accept(sock, newsock, O_NONBLOCK)) < 0) { 790 if (err != -EAGAIN && net_ratelimit()) 791 printk(KERN_WARNING "%s: accept failed (err %d)!\n", 792 serv->sv_name, -err); 793 goto failed; /* aborted connection or whatever */ 794 } 795 set_bit(SK_CONN, &svsk->sk_flags); 796 svc_sock_enqueue(svsk); 797 798 slen = sizeof(sin); 799 err = ops->getname(newsock, (struct sockaddr *) &sin, &slen, 1); 800 if (err < 0) { 801 if (net_ratelimit()) 802 printk(KERN_WARNING "%s: peername failed (err %d)!\n", 803 serv->sv_name, -err); 804 goto failed; /* aborted connection or whatever */ 805 } 806 807 /* Ideally, we would want to reject connections from unauthorized 808 * hosts here, but when we get encription, the IP of the host won't 809 * tell us anything. For now just warn about unpriv connections. 810 */ 811 if (ntohs(sin.sin_port) >= 1024) { 812 dprintk(KERN_WARNING 813 "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n", 814 serv->sv_name, 815 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port)); 816 } 817 818 dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name, 819 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port)); 820 821 /* make sure that a write doesn't block forever when 822 * low on memory 823 */ 824 newsock->sk->sk_sndtimeo = HZ*30; 825 826 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0))) 827 goto failed; 828 829 830 /* make sure that we don't have too many active connections. 831 * If we have, something must be dropped. 832 * 833 * There's no point in trying to do random drop here for 834 * DoS prevention. The NFS clients does 1 reconnect in 15 835 * seconds. An attacker can easily beat that. 836 * 837 * The only somewhat efficient mechanism would be if drop 838 * old connections from the same IP first. But right now 839 * we don't even record the client IP in svc_sock. 840 */ 841 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) { 842 struct svc_sock *svsk = NULL; 843 spin_lock_bh(&serv->sv_lock); 844 if (!list_empty(&serv->sv_tempsocks)) { 845 if (net_ratelimit()) { 846 /* Try to help the admin */ 847 printk(KERN_NOTICE "%s: too many open TCP " 848 "sockets, consider increasing the " 849 "number of nfsd threads\n", 850 serv->sv_name); 851 printk(KERN_NOTICE "%s: last TCP connect from " 852 "%u.%u.%u.%u:%d\n", 853 serv->sv_name, 854 NIPQUAD(sin.sin_addr.s_addr), 855 ntohs(sin.sin_port)); 856 } 857 /* 858 * Always select the oldest socket. It's not fair, 859 * but so is life 860 */ 861 svsk = list_entry(serv->sv_tempsocks.prev, 862 struct svc_sock, 863 sk_list); 864 set_bit(SK_CLOSE, &svsk->sk_flags); 865 svsk->sk_inuse ++; 866 } 867 spin_unlock_bh(&serv->sv_lock); 868 869 if (svsk) { 870 svc_sock_enqueue(svsk); 871 svc_sock_put(svsk); 872 } 873 874 } 875 876 if (serv->sv_stats) 877 serv->sv_stats->nettcpconn++; 878 879 return; 880 881 failed: 882 sock_release(newsock); 883 return; 884 } 885 886 /* 887 * Receive data from a TCP socket. 888 */ 889 static int 890 svc_tcp_recvfrom(struct svc_rqst *rqstp) 891 { 892 struct svc_sock *svsk = rqstp->rq_sock; 893 struct svc_serv *serv = svsk->sk_server; 894 int len; 895 struct kvec vec[RPCSVC_MAXPAGES]; 896 int pnum, vlen; 897 898 dprintk("svc: tcp_recv %p data %d conn %d close %d\n", 899 svsk, test_bit(SK_DATA, &svsk->sk_flags), 900 test_bit(SK_CONN, &svsk->sk_flags), 901 test_bit(SK_CLOSE, &svsk->sk_flags)); 902 903 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) { 904 svc_sock_received(svsk); 905 return svc_deferred_recv(rqstp); 906 } 907 908 if (test_bit(SK_CLOSE, &svsk->sk_flags)) { 909 svc_delete_socket(svsk); 910 return 0; 911 } 912 913 if (test_bit(SK_CONN, &svsk->sk_flags)) { 914 svc_tcp_accept(svsk); 915 svc_sock_received(svsk); 916 return 0; 917 } 918 919 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags)) 920 /* sndbuf needs to have room for one request 921 * per thread, otherwise we can stall even when the 922 * network isn't a bottleneck. 923 * rcvbuf just needs to be able to hold a few requests. 924 * Normally they will be removed from the queue 925 * as soon a a complete request arrives. 926 */ 927 svc_sock_setbufsize(svsk->sk_sock, 928 (serv->sv_nrthreads+3) * serv->sv_bufsz, 929 3 * serv->sv_bufsz); 930 931 clear_bit(SK_DATA, &svsk->sk_flags); 932 933 /* Receive data. If we haven't got the record length yet, get 934 * the next four bytes. Otherwise try to gobble up as much as 935 * possible up to the complete record length. 936 */ 937 if (svsk->sk_tcplen < 4) { 938 unsigned long want = 4 - svsk->sk_tcplen; 939 struct kvec iov; 940 941 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen; 942 iov.iov_len = want; 943 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0) 944 goto error; 945 svsk->sk_tcplen += len; 946 947 if (len < want) { 948 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n", 949 len, want); 950 svc_sock_received(svsk); 951 return -EAGAIN; /* record header not complete */ 952 } 953 954 svsk->sk_reclen = ntohl(svsk->sk_reclen); 955 if (!(svsk->sk_reclen & 0x80000000)) { 956 /* FIXME: technically, a record can be fragmented, 957 * and non-terminal fragments will not have the top 958 * bit set in the fragment length header. 959 * But apparently no known nfs clients send fragmented 960 * records. */ 961 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n", 962 (unsigned long) svsk->sk_reclen); 963 goto err_delete; 964 } 965 svsk->sk_reclen &= 0x7fffffff; 966 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen); 967 if (svsk->sk_reclen > serv->sv_bufsz) { 968 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n", 969 (unsigned long) svsk->sk_reclen); 970 goto err_delete; 971 } 972 } 973 974 /* Check whether enough data is available */ 975 len = svc_recv_available(svsk); 976 if (len < 0) 977 goto error; 978 979 if (len < svsk->sk_reclen) { 980 dprintk("svc: incomplete TCP record (%d of %d)\n", 981 len, svsk->sk_reclen); 982 svc_sock_received(svsk); 983 return -EAGAIN; /* record not complete */ 984 } 985 len = svsk->sk_reclen; 986 set_bit(SK_DATA, &svsk->sk_flags); 987 988 vec[0] = rqstp->rq_arg.head[0]; 989 vlen = PAGE_SIZE; 990 pnum = 1; 991 while (vlen < len) { 992 vec[pnum].iov_base = page_address(rqstp->rq_argpages[rqstp->rq_argused++]); 993 vec[pnum].iov_len = PAGE_SIZE; 994 pnum++; 995 vlen += PAGE_SIZE; 996 } 997 998 /* Now receive data */ 999 len = svc_recvfrom(rqstp, vec, pnum, len); 1000 if (len < 0) 1001 goto error; 1002 1003 dprintk("svc: TCP complete record (%d bytes)\n", len); 1004 rqstp->rq_arg.len = len; 1005 rqstp->rq_arg.page_base = 0; 1006 if (len <= rqstp->rq_arg.head[0].iov_len) { 1007 rqstp->rq_arg.head[0].iov_len = len; 1008 rqstp->rq_arg.page_len = 0; 1009 } else { 1010 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 1011 } 1012 1013 rqstp->rq_skbuff = NULL; 1014 rqstp->rq_prot = IPPROTO_TCP; 1015 1016 /* Reset TCP read info */ 1017 svsk->sk_reclen = 0; 1018 svsk->sk_tcplen = 0; 1019 1020 svc_sock_received(svsk); 1021 if (serv->sv_stats) 1022 serv->sv_stats->nettcpcnt++; 1023 1024 return len; 1025 1026 err_delete: 1027 svc_delete_socket(svsk); 1028 return -EAGAIN; 1029 1030 error: 1031 if (len == -EAGAIN) { 1032 dprintk("RPC: TCP recvfrom got EAGAIN\n"); 1033 svc_sock_received(svsk); 1034 } else { 1035 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n", 1036 svsk->sk_server->sv_name, -len); 1037 svc_sock_received(svsk); 1038 } 1039 1040 return len; 1041 } 1042 1043 /* 1044 * Send out data on TCP socket. 1045 */ 1046 static int 1047 svc_tcp_sendto(struct svc_rqst *rqstp) 1048 { 1049 struct xdr_buf *xbufp = &rqstp->rq_res; 1050 int sent; 1051 u32 reclen; 1052 1053 /* Set up the first element of the reply kvec. 1054 * Any other kvecs that may be in use have been taken 1055 * care of by the server implementation itself. 1056 */ 1057 reclen = htonl(0x80000000|((xbufp->len ) - 4)); 1058 memcpy(xbufp->head[0].iov_base, &reclen, 4); 1059 1060 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags)) 1061 return -ENOTCONN; 1062 1063 sent = svc_sendto(rqstp, &rqstp->rq_res); 1064 if (sent != xbufp->len) { 1065 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n", 1066 rqstp->rq_sock->sk_server->sv_name, 1067 (sent<0)?"got error":"sent only", 1068 sent, xbufp->len); 1069 svc_delete_socket(rqstp->rq_sock); 1070 sent = -EAGAIN; 1071 } 1072 return sent; 1073 } 1074 1075 static void 1076 svc_tcp_init(struct svc_sock *svsk) 1077 { 1078 struct sock *sk = svsk->sk_sk; 1079 struct tcp_sock *tp = tcp_sk(sk); 1080 1081 svsk->sk_recvfrom = svc_tcp_recvfrom; 1082 svsk->sk_sendto = svc_tcp_sendto; 1083 1084 if (sk->sk_state == TCP_LISTEN) { 1085 dprintk("setting up TCP socket for listening\n"); 1086 sk->sk_data_ready = svc_tcp_listen_data_ready; 1087 set_bit(SK_CONN, &svsk->sk_flags); 1088 } else { 1089 dprintk("setting up TCP socket for reading\n"); 1090 sk->sk_state_change = svc_tcp_state_change; 1091 sk->sk_data_ready = svc_tcp_data_ready; 1092 sk->sk_write_space = svc_write_space; 1093 1094 svsk->sk_reclen = 0; 1095 svsk->sk_tcplen = 0; 1096 1097 tp->nonagle = 1; /* disable Nagle's algorithm */ 1098 1099 /* initialise setting must have enough space to 1100 * receive and respond to one request. 1101 * svc_tcp_recvfrom will re-adjust if necessary 1102 */ 1103 svc_sock_setbufsize(svsk->sk_sock, 1104 3 * svsk->sk_server->sv_bufsz, 1105 3 * svsk->sk_server->sv_bufsz); 1106 1107 set_bit(SK_CHNGBUF, &svsk->sk_flags); 1108 set_bit(SK_DATA, &svsk->sk_flags); 1109 if (sk->sk_state != TCP_ESTABLISHED) 1110 set_bit(SK_CLOSE, &svsk->sk_flags); 1111 } 1112 } 1113 1114 void 1115 svc_sock_update_bufs(struct svc_serv *serv) 1116 { 1117 /* 1118 * The number of server threads has changed. Update 1119 * rcvbuf and sndbuf accordingly on all sockets 1120 */ 1121 struct list_head *le; 1122 1123 spin_lock_bh(&serv->sv_lock); 1124 list_for_each(le, &serv->sv_permsocks) { 1125 struct svc_sock *svsk = 1126 list_entry(le, struct svc_sock, sk_list); 1127 set_bit(SK_CHNGBUF, &svsk->sk_flags); 1128 } 1129 list_for_each(le, &serv->sv_tempsocks) { 1130 struct svc_sock *svsk = 1131 list_entry(le, struct svc_sock, sk_list); 1132 set_bit(SK_CHNGBUF, &svsk->sk_flags); 1133 } 1134 spin_unlock_bh(&serv->sv_lock); 1135 } 1136 1137 /* 1138 * Receive the next request on any socket. 1139 */ 1140 int 1141 svc_recv(struct svc_serv *serv, struct svc_rqst *rqstp, long timeout) 1142 { 1143 struct svc_sock *svsk =NULL; 1144 int len; 1145 int pages; 1146 struct xdr_buf *arg; 1147 DECLARE_WAITQUEUE(wait, current); 1148 1149 dprintk("svc: server %p waiting for data (to = %ld)\n", 1150 rqstp, timeout); 1151 1152 if (rqstp->rq_sock) 1153 printk(KERN_ERR 1154 "svc_recv: service %p, socket not NULL!\n", 1155 rqstp); 1156 if (waitqueue_active(&rqstp->rq_wait)) 1157 printk(KERN_ERR 1158 "svc_recv: service %p, wait queue active!\n", 1159 rqstp); 1160 1161 /* Initialize the buffers */ 1162 /* first reclaim pages that were moved to response list */ 1163 svc_pushback_allpages(rqstp); 1164 1165 /* now allocate needed pages. If we get a failure, sleep briefly */ 1166 pages = 2 + (serv->sv_bufsz + PAGE_SIZE -1) / PAGE_SIZE; 1167 while (rqstp->rq_arghi < pages) { 1168 struct page *p = alloc_page(GFP_KERNEL); 1169 if (!p) { 1170 set_current_state(TASK_UNINTERRUPTIBLE); 1171 schedule_timeout(HZ/2); 1172 continue; 1173 } 1174 rqstp->rq_argpages[rqstp->rq_arghi++] = p; 1175 } 1176 1177 /* Make arg->head point to first page and arg->pages point to rest */ 1178 arg = &rqstp->rq_arg; 1179 arg->head[0].iov_base = page_address(rqstp->rq_argpages[0]); 1180 arg->head[0].iov_len = PAGE_SIZE; 1181 rqstp->rq_argused = 1; 1182 arg->pages = rqstp->rq_argpages + 1; 1183 arg->page_base = 0; 1184 /* save at least one page for response */ 1185 arg->page_len = (pages-2)*PAGE_SIZE; 1186 arg->len = (pages-1)*PAGE_SIZE; 1187 arg->tail[0].iov_len = 0; 1188 1189 try_to_freeze(PF_FREEZE); 1190 if (signalled()) 1191 return -EINTR; 1192 1193 spin_lock_bh(&serv->sv_lock); 1194 if (!list_empty(&serv->sv_tempsocks)) { 1195 svsk = list_entry(serv->sv_tempsocks.next, 1196 struct svc_sock, sk_list); 1197 /* apparently the "standard" is that clients close 1198 * idle connections after 5 minutes, servers after 1199 * 6 minutes 1200 * http://www.connectathon.org/talks96/nfstcp.pdf 1201 */ 1202 if (get_seconds() - svsk->sk_lastrecv < 6*60 1203 || test_bit(SK_BUSY, &svsk->sk_flags)) 1204 svsk = NULL; 1205 } 1206 if (svsk) { 1207 set_bit(SK_BUSY, &svsk->sk_flags); 1208 set_bit(SK_CLOSE, &svsk->sk_flags); 1209 rqstp->rq_sock = svsk; 1210 svsk->sk_inuse++; 1211 } else if ((svsk = svc_sock_dequeue(serv)) != NULL) { 1212 rqstp->rq_sock = svsk; 1213 svsk->sk_inuse++; 1214 rqstp->rq_reserved = serv->sv_bufsz; 1215 svsk->sk_reserved += rqstp->rq_reserved; 1216 } else { 1217 /* No data pending. Go to sleep */ 1218 svc_serv_enqueue(serv, rqstp); 1219 1220 /* 1221 * We have to be able to interrupt this wait 1222 * to bring down the daemons ... 1223 */ 1224 set_current_state(TASK_INTERRUPTIBLE); 1225 add_wait_queue(&rqstp->rq_wait, &wait); 1226 spin_unlock_bh(&serv->sv_lock); 1227 1228 schedule_timeout(timeout); 1229 1230 try_to_freeze(PF_FREEZE); 1231 1232 spin_lock_bh(&serv->sv_lock); 1233 remove_wait_queue(&rqstp->rq_wait, &wait); 1234 1235 if (!(svsk = rqstp->rq_sock)) { 1236 svc_serv_dequeue(serv, rqstp); 1237 spin_unlock_bh(&serv->sv_lock); 1238 dprintk("svc: server %p, no data yet\n", rqstp); 1239 return signalled()? -EINTR : -EAGAIN; 1240 } 1241 } 1242 spin_unlock_bh(&serv->sv_lock); 1243 1244 dprintk("svc: server %p, socket %p, inuse=%d\n", 1245 rqstp, svsk, svsk->sk_inuse); 1246 len = svsk->sk_recvfrom(rqstp); 1247 dprintk("svc: got len=%d\n", len); 1248 1249 /* No data, incomplete (TCP) read, or accept() */ 1250 if (len == 0 || len == -EAGAIN) { 1251 rqstp->rq_res.len = 0; 1252 svc_sock_release(rqstp); 1253 return -EAGAIN; 1254 } 1255 svsk->sk_lastrecv = get_seconds(); 1256 if (test_bit(SK_TEMP, &svsk->sk_flags)) { 1257 /* push active sockets to end of list */ 1258 spin_lock_bh(&serv->sv_lock); 1259 if (!list_empty(&svsk->sk_list)) 1260 list_move_tail(&svsk->sk_list, &serv->sv_tempsocks); 1261 spin_unlock_bh(&serv->sv_lock); 1262 } 1263 1264 rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024; 1265 rqstp->rq_chandle.defer = svc_defer; 1266 1267 if (serv->sv_stats) 1268 serv->sv_stats->netcnt++; 1269 return len; 1270 } 1271 1272 /* 1273 * Drop request 1274 */ 1275 void 1276 svc_drop(struct svc_rqst *rqstp) 1277 { 1278 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock); 1279 svc_sock_release(rqstp); 1280 } 1281 1282 /* 1283 * Return reply to client. 1284 */ 1285 int 1286 svc_send(struct svc_rqst *rqstp) 1287 { 1288 struct svc_sock *svsk; 1289 int len; 1290 struct xdr_buf *xb; 1291 1292 if ((svsk = rqstp->rq_sock) == NULL) { 1293 printk(KERN_WARNING "NULL socket pointer in %s:%d\n", 1294 __FILE__, __LINE__); 1295 return -EFAULT; 1296 } 1297 1298 /* release the receive skb before sending the reply */ 1299 svc_release_skb(rqstp); 1300 1301 /* calculate over-all length */ 1302 xb = & rqstp->rq_res; 1303 xb->len = xb->head[0].iov_len + 1304 xb->page_len + 1305 xb->tail[0].iov_len; 1306 1307 /* Grab svsk->sk_sem to serialize outgoing data. */ 1308 down(&svsk->sk_sem); 1309 if (test_bit(SK_DEAD, &svsk->sk_flags)) 1310 len = -ENOTCONN; 1311 else 1312 len = svsk->sk_sendto(rqstp); 1313 up(&svsk->sk_sem); 1314 svc_sock_release(rqstp); 1315 1316 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 1317 return 0; 1318 return len; 1319 } 1320 1321 /* 1322 * Initialize socket for RPC use and create svc_sock struct 1323 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF. 1324 */ 1325 static struct svc_sock * 1326 svc_setup_socket(struct svc_serv *serv, struct socket *sock, 1327 int *errp, int pmap_register) 1328 { 1329 struct svc_sock *svsk; 1330 struct sock *inet; 1331 1332 dprintk("svc: svc_setup_socket %p\n", sock); 1333 if (!(svsk = kmalloc(sizeof(*svsk), GFP_KERNEL))) { 1334 *errp = -ENOMEM; 1335 return NULL; 1336 } 1337 memset(svsk, 0, sizeof(*svsk)); 1338 1339 inet = sock->sk; 1340 1341 /* Register socket with portmapper */ 1342 if (*errp >= 0 && pmap_register) 1343 *errp = svc_register(serv, inet->sk_protocol, 1344 ntohs(inet_sk(inet)->sport)); 1345 1346 if (*errp < 0) { 1347 kfree(svsk); 1348 return NULL; 1349 } 1350 1351 set_bit(SK_BUSY, &svsk->sk_flags); 1352 inet->sk_user_data = svsk; 1353 svsk->sk_sock = sock; 1354 svsk->sk_sk = inet; 1355 svsk->sk_ostate = inet->sk_state_change; 1356 svsk->sk_odata = inet->sk_data_ready; 1357 svsk->sk_owspace = inet->sk_write_space; 1358 svsk->sk_server = serv; 1359 svsk->sk_lastrecv = get_seconds(); 1360 INIT_LIST_HEAD(&svsk->sk_deferred); 1361 INIT_LIST_HEAD(&svsk->sk_ready); 1362 sema_init(&svsk->sk_sem, 1); 1363 1364 /* Initialize the socket */ 1365 if (sock->type == SOCK_DGRAM) 1366 svc_udp_init(svsk); 1367 else 1368 svc_tcp_init(svsk); 1369 1370 spin_lock_bh(&serv->sv_lock); 1371 if (!pmap_register) { 1372 set_bit(SK_TEMP, &svsk->sk_flags); 1373 list_add(&svsk->sk_list, &serv->sv_tempsocks); 1374 serv->sv_tmpcnt++; 1375 } else { 1376 clear_bit(SK_TEMP, &svsk->sk_flags); 1377 list_add(&svsk->sk_list, &serv->sv_permsocks); 1378 } 1379 spin_unlock_bh(&serv->sv_lock); 1380 1381 dprintk("svc: svc_setup_socket created %p (inet %p)\n", 1382 svsk, svsk->sk_sk); 1383 1384 clear_bit(SK_BUSY, &svsk->sk_flags); 1385 svc_sock_enqueue(svsk); 1386 return svsk; 1387 } 1388 1389 /* 1390 * Create socket for RPC service. 1391 */ 1392 static int 1393 svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin) 1394 { 1395 struct svc_sock *svsk; 1396 struct socket *sock; 1397 int error; 1398 int type; 1399 1400 dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n", 1401 serv->sv_program->pg_name, protocol, 1402 NIPQUAD(sin->sin_addr.s_addr), 1403 ntohs(sin->sin_port)); 1404 1405 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1406 printk(KERN_WARNING "svc: only UDP and TCP " 1407 "sockets supported\n"); 1408 return -EINVAL; 1409 } 1410 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1411 1412 if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0) 1413 return error; 1414 1415 if (sin != NULL) { 1416 if (type == SOCK_STREAM) 1417 sock->sk->sk_reuse = 1; /* allow address reuse */ 1418 error = sock->ops->bind(sock, (struct sockaddr *) sin, 1419 sizeof(*sin)); 1420 if (error < 0) 1421 goto bummer; 1422 } 1423 1424 if (protocol == IPPROTO_TCP) { 1425 if ((error = sock->ops->listen(sock, 64)) < 0) 1426 goto bummer; 1427 } 1428 1429 if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL) 1430 return 0; 1431 1432 bummer: 1433 dprintk("svc: svc_create_socket error = %d\n", -error); 1434 sock_release(sock); 1435 return error; 1436 } 1437 1438 /* 1439 * Remove a dead socket 1440 */ 1441 void 1442 svc_delete_socket(struct svc_sock *svsk) 1443 { 1444 struct svc_serv *serv; 1445 struct sock *sk; 1446 1447 dprintk("svc: svc_delete_socket(%p)\n", svsk); 1448 1449 serv = svsk->sk_server; 1450 sk = svsk->sk_sk; 1451 1452 sk->sk_state_change = svsk->sk_ostate; 1453 sk->sk_data_ready = svsk->sk_odata; 1454 sk->sk_write_space = svsk->sk_owspace; 1455 1456 spin_lock_bh(&serv->sv_lock); 1457 1458 list_del_init(&svsk->sk_list); 1459 list_del_init(&svsk->sk_ready); 1460 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) 1461 if (test_bit(SK_TEMP, &svsk->sk_flags)) 1462 serv->sv_tmpcnt--; 1463 1464 if (!svsk->sk_inuse) { 1465 spin_unlock_bh(&serv->sv_lock); 1466 sock_release(svsk->sk_sock); 1467 kfree(svsk); 1468 } else { 1469 spin_unlock_bh(&serv->sv_lock); 1470 dprintk(KERN_NOTICE "svc: server socket destroy delayed\n"); 1471 /* svsk->sk_server = NULL; */ 1472 } 1473 } 1474 1475 /* 1476 * Make a socket for nfsd and lockd 1477 */ 1478 int 1479 svc_makesock(struct svc_serv *serv, int protocol, unsigned short port) 1480 { 1481 struct sockaddr_in sin; 1482 1483 dprintk("svc: creating socket proto = %d\n", protocol); 1484 sin.sin_family = AF_INET; 1485 sin.sin_addr.s_addr = INADDR_ANY; 1486 sin.sin_port = htons(port); 1487 return svc_create_socket(serv, protocol, &sin); 1488 } 1489 1490 /* 1491 * Handle defer and revisit of requests 1492 */ 1493 1494 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1495 { 1496 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle); 1497 struct svc_serv *serv = dreq->owner; 1498 struct svc_sock *svsk; 1499 1500 if (too_many) { 1501 svc_sock_put(dr->svsk); 1502 kfree(dr); 1503 return; 1504 } 1505 dprintk("revisit queued\n"); 1506 svsk = dr->svsk; 1507 dr->svsk = NULL; 1508 spin_lock_bh(&serv->sv_lock); 1509 list_add(&dr->handle.recent, &svsk->sk_deferred); 1510 spin_unlock_bh(&serv->sv_lock); 1511 set_bit(SK_DEFERRED, &svsk->sk_flags); 1512 svc_sock_enqueue(svsk); 1513 svc_sock_put(svsk); 1514 } 1515 1516 static struct cache_deferred_req * 1517 svc_defer(struct cache_req *req) 1518 { 1519 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1520 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len); 1521 struct svc_deferred_req *dr; 1522 1523 if (rqstp->rq_arg.page_len) 1524 return NULL; /* if more than a page, give up FIXME */ 1525 if (rqstp->rq_deferred) { 1526 dr = rqstp->rq_deferred; 1527 rqstp->rq_deferred = NULL; 1528 } else { 1529 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1530 /* FIXME maybe discard if size too large */ 1531 dr = kmalloc(size, GFP_KERNEL); 1532 if (dr == NULL) 1533 return NULL; 1534 1535 dr->handle.owner = rqstp->rq_server; 1536 dr->prot = rqstp->rq_prot; 1537 dr->addr = rqstp->rq_addr; 1538 dr->argslen = rqstp->rq_arg.len >> 2; 1539 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2); 1540 } 1541 spin_lock_bh(&rqstp->rq_server->sv_lock); 1542 rqstp->rq_sock->sk_inuse++; 1543 dr->svsk = rqstp->rq_sock; 1544 spin_unlock_bh(&rqstp->rq_server->sv_lock); 1545 1546 dr->handle.revisit = svc_revisit; 1547 return &dr->handle; 1548 } 1549 1550 /* 1551 * recv data from a deferred request into an active one 1552 */ 1553 static int svc_deferred_recv(struct svc_rqst *rqstp) 1554 { 1555 struct svc_deferred_req *dr = rqstp->rq_deferred; 1556 1557 rqstp->rq_arg.head[0].iov_base = dr->args; 1558 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2; 1559 rqstp->rq_arg.page_len = 0; 1560 rqstp->rq_arg.len = dr->argslen<<2; 1561 rqstp->rq_prot = dr->prot; 1562 rqstp->rq_addr = dr->addr; 1563 return dr->argslen<<2; 1564 } 1565 1566 1567 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk) 1568 { 1569 struct svc_deferred_req *dr = NULL; 1570 struct svc_serv *serv = svsk->sk_server; 1571 1572 if (!test_bit(SK_DEFERRED, &svsk->sk_flags)) 1573 return NULL; 1574 spin_lock_bh(&serv->sv_lock); 1575 clear_bit(SK_DEFERRED, &svsk->sk_flags); 1576 if (!list_empty(&svsk->sk_deferred)) { 1577 dr = list_entry(svsk->sk_deferred.next, 1578 struct svc_deferred_req, 1579 handle.recent); 1580 list_del_init(&dr->handle.recent); 1581 set_bit(SK_DEFERRED, &svsk->sk_flags); 1582 } 1583 spin_unlock_bh(&serv->sv_lock); 1584 return dr; 1585 } 1586