xref: /openbmc/linux/net/sunrpc/svc_xprt.c (revision 3aa139aa9fdc138a84243dc49dc18d9b40e1c6e4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/sunrpc/stats.h>
16 #include <linux/sunrpc/svc_xprt.h>
17 #include <linux/sunrpc/svcsock.h>
18 #include <linux/sunrpc/xprt.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <trace/events/sunrpc.h>
22 
23 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
24 
25 static unsigned int svc_rpc_per_connection_limit __read_mostly;
26 module_param(svc_rpc_per_connection_limit, uint, 0644);
27 
28 
29 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
30 static int svc_deferred_recv(struct svc_rqst *rqstp);
31 static struct cache_deferred_req *svc_defer(struct cache_req *req);
32 static void svc_age_temp_xprts(struct timer_list *t);
33 static void svc_delete_xprt(struct svc_xprt *xprt);
34 
35 /* apparently the "standard" is that clients close
36  * idle connections after 5 minutes, servers after
37  * 6 minutes
38  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
39  */
40 static int svc_conn_age_period = 6*60;
41 
42 /* List of registered transport classes */
43 static DEFINE_SPINLOCK(svc_xprt_class_lock);
44 static LIST_HEAD(svc_xprt_class_list);
45 
46 /* SMP locking strategy:
47  *
48  *	svc_pool->sp_lock protects most of the fields of that pool.
49  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50  *	when both need to be taken (rare), svc_serv->sv_lock is first.
51  *	The "service mutex" protects svc_serv->sv_nrthread.
52  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
53  *             and the ->sk_info_authunix cache.
54  *
55  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56  *	enqueued multiply. During normal transport processing this bit
57  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58  *	Providers should not manipulate this bit directly.
59  *
60  *	Some flags can be set to certain values at any time
61  *	providing that certain rules are followed:
62  *
63  *	XPT_CONN, XPT_DATA:
64  *		- Can be set or cleared at any time.
65  *		- After a set, svc_xprt_enqueue must be called to enqueue
66  *		  the transport for processing.
67  *		- After a clear, the transport must be read/accepted.
68  *		  If this succeeds, it must be set again.
69  *	XPT_CLOSE:
70  *		- Can set at any time. It is never cleared.
71  *      XPT_DEAD:
72  *		- Can only be set while XPT_BUSY is held which ensures
73  *		  that no other thread will be using the transport or will
74  *		  try to set XPT_DEAD.
75  */
76 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
77 {
78 	struct svc_xprt_class *cl;
79 	int res = -EEXIST;
80 
81 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
82 
83 	INIT_LIST_HEAD(&xcl->xcl_list);
84 	spin_lock(&svc_xprt_class_lock);
85 	/* Make sure there isn't already a class with the same name */
86 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
87 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
88 			goto out;
89 	}
90 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
91 	res = 0;
92 out:
93 	spin_unlock(&svc_xprt_class_lock);
94 	return res;
95 }
96 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
97 
98 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
99 {
100 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
101 	spin_lock(&svc_xprt_class_lock);
102 	list_del_init(&xcl->xcl_list);
103 	spin_unlock(&svc_xprt_class_lock);
104 }
105 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
106 
107 /**
108  * svc_print_xprts - Format the transport list for printing
109  * @buf: target buffer for formatted address
110  * @maxlen: length of target buffer
111  *
112  * Fills in @buf with a string containing a list of transport names, each name
113  * terminated with '\n'. If the buffer is too small, some entries may be
114  * missing, but it is guaranteed that all lines in the output buffer are
115  * complete.
116  *
117  * Returns positive length of the filled-in string.
118  */
119 int svc_print_xprts(char *buf, int maxlen)
120 {
121 	struct svc_xprt_class *xcl;
122 	char tmpstr[80];
123 	int len = 0;
124 	buf[0] = '\0';
125 
126 	spin_lock(&svc_xprt_class_lock);
127 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
128 		int slen;
129 
130 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
131 				xcl->xcl_name, xcl->xcl_max_payload);
132 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
133 			break;
134 		len += slen;
135 		strcat(buf, tmpstr);
136 	}
137 	spin_unlock(&svc_xprt_class_lock);
138 
139 	return len;
140 }
141 
142 /**
143  * svc_xprt_deferred_close - Close a transport
144  * @xprt: transport instance
145  *
146  * Used in contexts that need to defer the work of shutting down
147  * the transport to an nfsd thread.
148  */
149 void svc_xprt_deferred_close(struct svc_xprt *xprt)
150 {
151 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
152 		svc_xprt_enqueue(xprt);
153 }
154 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
155 
156 static void svc_xprt_free(struct kref *kref)
157 {
158 	struct svc_xprt *xprt =
159 		container_of(kref, struct svc_xprt, xpt_ref);
160 	struct module *owner = xprt->xpt_class->xcl_owner;
161 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
162 		svcauth_unix_info_release(xprt);
163 	put_cred(xprt->xpt_cred);
164 	put_net(xprt->xpt_net);
165 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
166 	if (xprt->xpt_bc_xprt)
167 		xprt_put(xprt->xpt_bc_xprt);
168 	if (xprt->xpt_bc_xps)
169 		xprt_switch_put(xprt->xpt_bc_xps);
170 	trace_svc_xprt_free(xprt);
171 	xprt->xpt_ops->xpo_free(xprt);
172 	module_put(owner);
173 }
174 
175 void svc_xprt_put(struct svc_xprt *xprt)
176 {
177 	kref_put(&xprt->xpt_ref, svc_xprt_free);
178 }
179 EXPORT_SYMBOL_GPL(svc_xprt_put);
180 
181 /*
182  * Called by transport drivers to initialize the transport independent
183  * portion of the transport instance.
184  */
185 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
186 		   struct svc_xprt *xprt, struct svc_serv *serv)
187 {
188 	memset(xprt, 0, sizeof(*xprt));
189 	xprt->xpt_class = xcl;
190 	xprt->xpt_ops = xcl->xcl_ops;
191 	kref_init(&xprt->xpt_ref);
192 	xprt->xpt_server = serv;
193 	INIT_LIST_HEAD(&xprt->xpt_list);
194 	INIT_LIST_HEAD(&xprt->xpt_ready);
195 	INIT_LIST_HEAD(&xprt->xpt_deferred);
196 	INIT_LIST_HEAD(&xprt->xpt_users);
197 	mutex_init(&xprt->xpt_mutex);
198 	spin_lock_init(&xprt->xpt_lock);
199 	set_bit(XPT_BUSY, &xprt->xpt_flags);
200 	xprt->xpt_net = get_net(net);
201 	strcpy(xprt->xpt_remotebuf, "uninitialized");
202 }
203 EXPORT_SYMBOL_GPL(svc_xprt_init);
204 
205 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
206 					 struct svc_serv *serv,
207 					 struct net *net,
208 					 const int family,
209 					 const unsigned short port,
210 					 int flags)
211 {
212 	struct sockaddr_in sin = {
213 		.sin_family		= AF_INET,
214 		.sin_addr.s_addr	= htonl(INADDR_ANY),
215 		.sin_port		= htons(port),
216 	};
217 #if IS_ENABLED(CONFIG_IPV6)
218 	struct sockaddr_in6 sin6 = {
219 		.sin6_family		= AF_INET6,
220 		.sin6_addr		= IN6ADDR_ANY_INIT,
221 		.sin6_port		= htons(port),
222 	};
223 #endif
224 	struct svc_xprt *xprt;
225 	struct sockaddr *sap;
226 	size_t len;
227 
228 	switch (family) {
229 	case PF_INET:
230 		sap = (struct sockaddr *)&sin;
231 		len = sizeof(sin);
232 		break;
233 #if IS_ENABLED(CONFIG_IPV6)
234 	case PF_INET6:
235 		sap = (struct sockaddr *)&sin6;
236 		len = sizeof(sin6);
237 		break;
238 #endif
239 	default:
240 		return ERR_PTR(-EAFNOSUPPORT);
241 	}
242 
243 	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
244 	if (IS_ERR(xprt))
245 		trace_svc_xprt_create_err(serv->sv_program->pg_name,
246 					  xcl->xcl_name, sap, xprt);
247 	return xprt;
248 }
249 
250 /**
251  * svc_xprt_received - start next receiver thread
252  * @xprt: controlling transport
253  *
254  * The caller must hold the XPT_BUSY bit and must
255  * not thereafter touch transport data.
256  *
257  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
258  * insufficient) data.
259  */
260 void svc_xprt_received(struct svc_xprt *xprt)
261 {
262 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
263 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
264 		return;
265 	}
266 
267 	trace_svc_xprt_received(xprt);
268 
269 	/* As soon as we clear busy, the xprt could be closed and
270 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
271 	 */
272 	svc_xprt_get(xprt);
273 	smp_mb__before_atomic();
274 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
275 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
276 	svc_xprt_put(xprt);
277 }
278 EXPORT_SYMBOL_GPL(svc_xprt_received);
279 
280 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
281 {
282 	clear_bit(XPT_TEMP, &new->xpt_flags);
283 	spin_lock_bh(&serv->sv_lock);
284 	list_add(&new->xpt_list, &serv->sv_permsocks);
285 	spin_unlock_bh(&serv->sv_lock);
286 	svc_xprt_received(new);
287 }
288 
289 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
290 			    struct net *net, const int family,
291 			    const unsigned short port, int flags,
292 			    const struct cred *cred)
293 {
294 	struct svc_xprt_class *xcl;
295 
296 	spin_lock(&svc_xprt_class_lock);
297 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
298 		struct svc_xprt *newxprt;
299 		unsigned short newport;
300 
301 		if (strcmp(xprt_name, xcl->xcl_name))
302 			continue;
303 
304 		if (!try_module_get(xcl->xcl_owner))
305 			goto err;
306 
307 		spin_unlock(&svc_xprt_class_lock);
308 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
309 		if (IS_ERR(newxprt)) {
310 			module_put(xcl->xcl_owner);
311 			return PTR_ERR(newxprt);
312 		}
313 		newxprt->xpt_cred = get_cred(cred);
314 		svc_add_new_perm_xprt(serv, newxprt);
315 		newport = svc_xprt_local_port(newxprt);
316 		return newport;
317 	}
318  err:
319 	spin_unlock(&svc_xprt_class_lock);
320 	/* This errno is exposed to user space.  Provide a reasonable
321 	 * perror msg for a bad transport. */
322 	return -EPROTONOSUPPORT;
323 }
324 
325 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
326 		    struct net *net, const int family,
327 		    const unsigned short port, int flags,
328 		    const struct cred *cred)
329 {
330 	int err;
331 
332 	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
333 	if (err == -EPROTONOSUPPORT) {
334 		request_module("svc%s", xprt_name);
335 		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
336 	}
337 	return err;
338 }
339 EXPORT_SYMBOL_GPL(svc_create_xprt);
340 
341 /*
342  * Copy the local and remote xprt addresses to the rqstp structure
343  */
344 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
347 	rqstp->rq_addrlen = xprt->xpt_remotelen;
348 
349 	/*
350 	 * Destination address in request is needed for binding the
351 	 * source address in RPC replies/callbacks later.
352 	 */
353 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
354 	rqstp->rq_daddrlen = xprt->xpt_locallen;
355 }
356 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
357 
358 /**
359  * svc_print_addr - Format rq_addr field for printing
360  * @rqstp: svc_rqst struct containing address to print
361  * @buf: target buffer for formatted address
362  * @len: length of target buffer
363  *
364  */
365 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
366 {
367 	return __svc_print_addr(svc_addr(rqstp), buf, len);
368 }
369 EXPORT_SYMBOL_GPL(svc_print_addr);
370 
371 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
372 {
373 	unsigned int limit = svc_rpc_per_connection_limit;
374 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
375 
376 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
377 }
378 
379 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
380 {
381 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
382 		if (!svc_xprt_slots_in_range(xprt))
383 			return false;
384 		atomic_inc(&xprt->xpt_nr_rqsts);
385 		set_bit(RQ_DATA, &rqstp->rq_flags);
386 	}
387 	return true;
388 }
389 
390 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
391 {
392 	struct svc_xprt	*xprt = rqstp->rq_xprt;
393 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
394 		atomic_dec(&xprt->xpt_nr_rqsts);
395 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
396 		svc_xprt_enqueue(xprt);
397 	}
398 }
399 
400 static bool svc_xprt_ready(struct svc_xprt *xprt)
401 {
402 	unsigned long xpt_flags;
403 
404 	/*
405 	 * If another cpu has recently updated xpt_flags,
406 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
407 	 * know about it; otherwise it's possible that both that cpu and
408 	 * this one could call svc_xprt_enqueue() without either
409 	 * svc_xprt_enqueue() recognizing that the conditions below
410 	 * are satisfied, and we could stall indefinitely:
411 	 */
412 	smp_rmb();
413 	xpt_flags = READ_ONCE(xprt->xpt_flags);
414 
415 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
416 		return true;
417 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
418 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
419 		    svc_xprt_slots_in_range(xprt))
420 			return true;
421 		trace_svc_xprt_no_write_space(xprt);
422 		return false;
423 	}
424 	return false;
425 }
426 
427 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
428 {
429 	struct svc_pool *pool;
430 	struct svc_rqst	*rqstp = NULL;
431 	int cpu;
432 
433 	if (!svc_xprt_ready(xprt))
434 		return;
435 
436 	/* Mark transport as busy. It will remain in this state until
437 	 * the provider calls svc_xprt_received. We update XPT_BUSY
438 	 * atomically because it also guards against trying to enqueue
439 	 * the transport twice.
440 	 */
441 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
442 		return;
443 
444 	cpu = get_cpu();
445 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
446 
447 	atomic_long_inc(&pool->sp_stats.packets);
448 
449 	spin_lock_bh(&pool->sp_lock);
450 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
451 	pool->sp_stats.sockets_queued++;
452 	spin_unlock_bh(&pool->sp_lock);
453 
454 	/* find a thread for this xprt */
455 	rcu_read_lock();
456 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
457 		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
458 			continue;
459 		atomic_long_inc(&pool->sp_stats.threads_woken);
460 		rqstp->rq_qtime = ktime_get();
461 		wake_up_process(rqstp->rq_task);
462 		goto out_unlock;
463 	}
464 	set_bit(SP_CONGESTED, &pool->sp_flags);
465 	rqstp = NULL;
466 out_unlock:
467 	rcu_read_unlock();
468 	put_cpu();
469 	trace_svc_xprt_do_enqueue(xprt, rqstp);
470 }
471 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
472 
473 /*
474  * Queue up a transport with data pending. If there are idle nfsd
475  * processes, wake 'em up.
476  *
477  */
478 void svc_xprt_enqueue(struct svc_xprt *xprt)
479 {
480 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
481 		return;
482 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
483 }
484 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
485 
486 /*
487  * Dequeue the first transport, if there is one.
488  */
489 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
490 {
491 	struct svc_xprt	*xprt = NULL;
492 
493 	if (list_empty(&pool->sp_sockets))
494 		goto out;
495 
496 	spin_lock_bh(&pool->sp_lock);
497 	if (likely(!list_empty(&pool->sp_sockets))) {
498 		xprt = list_first_entry(&pool->sp_sockets,
499 					struct svc_xprt, xpt_ready);
500 		list_del_init(&xprt->xpt_ready);
501 		svc_xprt_get(xprt);
502 	}
503 	spin_unlock_bh(&pool->sp_lock);
504 out:
505 	return xprt;
506 }
507 
508 /**
509  * svc_reserve - change the space reserved for the reply to a request.
510  * @rqstp:  The request in question
511  * @space: new max space to reserve
512  *
513  * Each request reserves some space on the output queue of the transport
514  * to make sure the reply fits.  This function reduces that reserved
515  * space to be the amount of space used already, plus @space.
516  *
517  */
518 void svc_reserve(struct svc_rqst *rqstp, int space)
519 {
520 	struct svc_xprt *xprt = rqstp->rq_xprt;
521 
522 	space += rqstp->rq_res.head[0].iov_len;
523 
524 	if (xprt && space < rqstp->rq_reserved) {
525 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
526 		rqstp->rq_reserved = space;
527 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
528 		svc_xprt_enqueue(xprt);
529 	}
530 }
531 EXPORT_SYMBOL_GPL(svc_reserve);
532 
533 static void svc_xprt_release(struct svc_rqst *rqstp)
534 {
535 	struct svc_xprt	*xprt = rqstp->rq_xprt;
536 
537 	xprt->xpt_ops->xpo_release_rqst(rqstp);
538 
539 	kfree(rqstp->rq_deferred);
540 	rqstp->rq_deferred = NULL;
541 
542 	svc_free_res_pages(rqstp);
543 	rqstp->rq_res.page_len = 0;
544 	rqstp->rq_res.page_base = 0;
545 
546 	/* Reset response buffer and release
547 	 * the reservation.
548 	 * But first, check that enough space was reserved
549 	 * for the reply, otherwise we have a bug!
550 	 */
551 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
552 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
553 		       rqstp->rq_reserved,
554 		       rqstp->rq_res.len);
555 
556 	rqstp->rq_res.head[0].iov_len = 0;
557 	svc_reserve(rqstp, 0);
558 	svc_xprt_release_slot(rqstp);
559 	rqstp->rq_xprt = NULL;
560 	svc_xprt_put(xprt);
561 }
562 
563 /*
564  * Some svc_serv's will have occasional work to do, even when a xprt is not
565  * waiting to be serviced. This function is there to "kick" a task in one of
566  * those services so that it can wake up and do that work. Note that we only
567  * bother with pool 0 as we don't need to wake up more than one thread for
568  * this purpose.
569  */
570 void svc_wake_up(struct svc_serv *serv)
571 {
572 	struct svc_rqst	*rqstp;
573 	struct svc_pool *pool;
574 
575 	pool = &serv->sv_pools[0];
576 
577 	rcu_read_lock();
578 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
579 		/* skip any that aren't queued */
580 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
581 			continue;
582 		rcu_read_unlock();
583 		wake_up_process(rqstp->rq_task);
584 		trace_svc_wake_up(rqstp->rq_task->pid);
585 		return;
586 	}
587 	rcu_read_unlock();
588 
589 	/* No free entries available */
590 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
591 	smp_wmb();
592 	trace_svc_wake_up(0);
593 }
594 EXPORT_SYMBOL_GPL(svc_wake_up);
595 
596 int svc_port_is_privileged(struct sockaddr *sin)
597 {
598 	switch (sin->sa_family) {
599 	case AF_INET:
600 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
601 			< PROT_SOCK;
602 	case AF_INET6:
603 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
604 			< PROT_SOCK;
605 	default:
606 		return 0;
607 	}
608 }
609 
610 /*
611  * Make sure that we don't have too many active connections. If we have,
612  * something must be dropped. It's not clear what will happen if we allow
613  * "too many" connections, but when dealing with network-facing software,
614  * we have to code defensively. Here we do that by imposing hard limits.
615  *
616  * There's no point in trying to do random drop here for DoS
617  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
618  * attacker can easily beat that.
619  *
620  * The only somewhat efficient mechanism would be if drop old
621  * connections from the same IP first. But right now we don't even
622  * record the client IP in svc_sock.
623  *
624  * single-threaded services that expect a lot of clients will probably
625  * need to set sv_maxconn to override the default value which is based
626  * on the number of threads
627  */
628 static void svc_check_conn_limits(struct svc_serv *serv)
629 {
630 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
631 				(serv->sv_nrthreads+3) * 20;
632 
633 	if (serv->sv_tmpcnt > limit) {
634 		struct svc_xprt *xprt = NULL;
635 		spin_lock_bh(&serv->sv_lock);
636 		if (!list_empty(&serv->sv_tempsocks)) {
637 			/* Try to help the admin */
638 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
639 					       serv->sv_name, serv->sv_maxconn ?
640 					       "max number of connections" :
641 					       "number of threads");
642 			/*
643 			 * Always select the oldest connection. It's not fair,
644 			 * but so is life
645 			 */
646 			xprt = list_entry(serv->sv_tempsocks.prev,
647 					  struct svc_xprt,
648 					  xpt_list);
649 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
650 			svc_xprt_get(xprt);
651 		}
652 		spin_unlock_bh(&serv->sv_lock);
653 
654 		if (xprt) {
655 			svc_xprt_enqueue(xprt);
656 			svc_xprt_put(xprt);
657 		}
658 	}
659 }
660 
661 static int svc_alloc_arg(struct svc_rqst *rqstp)
662 {
663 	struct svc_serv *serv = rqstp->rq_server;
664 	struct xdr_buf *arg;
665 	int pages;
666 	int i;
667 
668 	/* now allocate needed pages.  If we get a failure, sleep briefly */
669 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
670 	if (pages > RPCSVC_MAXPAGES) {
671 		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
672 			     pages, RPCSVC_MAXPAGES);
673 		/* use as many pages as possible */
674 		pages = RPCSVC_MAXPAGES;
675 	}
676 	for (i = 0; i < pages ; i++)
677 		while (rqstp->rq_pages[i] == NULL) {
678 			struct page *p = alloc_page(GFP_KERNEL);
679 			if (!p) {
680 				set_current_state(TASK_INTERRUPTIBLE);
681 				if (signalled() || kthread_should_stop()) {
682 					set_current_state(TASK_RUNNING);
683 					return -EINTR;
684 				}
685 				schedule_timeout(msecs_to_jiffies(500));
686 			}
687 			rqstp->rq_pages[i] = p;
688 		}
689 	rqstp->rq_page_end = &rqstp->rq_pages[i];
690 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
691 
692 	/* Make arg->head point to first page and arg->pages point to rest */
693 	arg = &rqstp->rq_arg;
694 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
695 	arg->head[0].iov_len = PAGE_SIZE;
696 	arg->pages = rqstp->rq_pages + 1;
697 	arg->page_base = 0;
698 	/* save at least one page for response */
699 	arg->page_len = (pages-2)*PAGE_SIZE;
700 	arg->len = (pages-1)*PAGE_SIZE;
701 	arg->tail[0].iov_len = 0;
702 	return 0;
703 }
704 
705 static bool
706 rqst_should_sleep(struct svc_rqst *rqstp)
707 {
708 	struct svc_pool		*pool = rqstp->rq_pool;
709 
710 	/* did someone call svc_wake_up? */
711 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
712 		return false;
713 
714 	/* was a socket queued? */
715 	if (!list_empty(&pool->sp_sockets))
716 		return false;
717 
718 	/* are we shutting down? */
719 	if (signalled() || kthread_should_stop())
720 		return false;
721 
722 	/* are we freezing? */
723 	if (freezing(current))
724 		return false;
725 
726 	return true;
727 }
728 
729 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
730 {
731 	struct svc_pool		*pool = rqstp->rq_pool;
732 	long			time_left = 0;
733 
734 	/* rq_xprt should be clear on entry */
735 	WARN_ON_ONCE(rqstp->rq_xprt);
736 
737 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
738 	if (rqstp->rq_xprt)
739 		goto out_found;
740 
741 	/*
742 	 * We have to be able to interrupt this wait
743 	 * to bring down the daemons ...
744 	 */
745 	set_current_state(TASK_INTERRUPTIBLE);
746 	smp_mb__before_atomic();
747 	clear_bit(SP_CONGESTED, &pool->sp_flags);
748 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
749 	smp_mb__after_atomic();
750 
751 	if (likely(rqst_should_sleep(rqstp)))
752 		time_left = schedule_timeout(timeout);
753 	else
754 		__set_current_state(TASK_RUNNING);
755 
756 	try_to_freeze();
757 
758 	set_bit(RQ_BUSY, &rqstp->rq_flags);
759 	smp_mb__after_atomic();
760 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
761 	if (rqstp->rq_xprt)
762 		goto out_found;
763 
764 	if (!time_left)
765 		atomic_long_inc(&pool->sp_stats.threads_timedout);
766 
767 	if (signalled() || kthread_should_stop())
768 		return ERR_PTR(-EINTR);
769 	return ERR_PTR(-EAGAIN);
770 out_found:
771 	/* Normally we will wait up to 5 seconds for any required
772 	 * cache information to be provided.
773 	 */
774 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
775 		rqstp->rq_chandle.thread_wait = 5*HZ;
776 	else
777 		rqstp->rq_chandle.thread_wait = 1*HZ;
778 	trace_svc_xprt_dequeue(rqstp);
779 	return rqstp->rq_xprt;
780 }
781 
782 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
783 {
784 	spin_lock_bh(&serv->sv_lock);
785 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
786 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
787 	serv->sv_tmpcnt++;
788 	if (serv->sv_temptimer.function == NULL) {
789 		/* setup timer to age temp transports */
790 		serv->sv_temptimer.function = svc_age_temp_xprts;
791 		mod_timer(&serv->sv_temptimer,
792 			  jiffies + svc_conn_age_period * HZ);
793 	}
794 	spin_unlock_bh(&serv->sv_lock);
795 	svc_xprt_received(newxpt);
796 }
797 
798 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
799 {
800 	struct svc_serv *serv = rqstp->rq_server;
801 	int len = 0;
802 
803 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
804 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
805 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
806 		svc_delete_xprt(xprt);
807 		/* Leave XPT_BUSY set on the dead xprt: */
808 		goto out;
809 	}
810 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
811 		struct svc_xprt *newxpt;
812 		/*
813 		 * We know this module_get will succeed because the
814 		 * listener holds a reference too
815 		 */
816 		__module_get(xprt->xpt_class->xcl_owner);
817 		svc_check_conn_limits(xprt->xpt_server);
818 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
819 		if (newxpt) {
820 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
821 			svc_add_new_temp_xprt(serv, newxpt);
822 			trace_svc_xprt_accept(newxpt, serv->sv_name);
823 		} else {
824 			module_put(xprt->xpt_class->xcl_owner);
825 		}
826 		svc_xprt_received(xprt);
827 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
828 		/* XPT_DATA|XPT_DEFERRED case: */
829 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
830 			rqstp, rqstp->rq_pool->sp_id, xprt,
831 			kref_read(&xprt->xpt_ref));
832 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
833 		if (rqstp->rq_deferred)
834 			len = svc_deferred_recv(rqstp);
835 		else
836 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
837 		rqstp->rq_stime = ktime_get();
838 		rqstp->rq_reserved = serv->sv_max_mesg;
839 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
840 	}
841 out:
842 	trace_svc_handle_xprt(xprt, len);
843 	return len;
844 }
845 
846 /*
847  * Receive the next request on any transport.  This code is carefully
848  * organised not to touch any cachelines in the shared svc_serv
849  * structure, only cachelines in the local svc_pool.
850  */
851 int svc_recv(struct svc_rqst *rqstp, long timeout)
852 {
853 	struct svc_xprt		*xprt = NULL;
854 	struct svc_serv		*serv = rqstp->rq_server;
855 	int			len, err;
856 
857 	err = svc_alloc_arg(rqstp);
858 	if (err)
859 		goto out;
860 
861 	try_to_freeze();
862 	cond_resched();
863 	err = -EINTR;
864 	if (signalled() || kthread_should_stop())
865 		goto out;
866 
867 	xprt = svc_get_next_xprt(rqstp, timeout);
868 	if (IS_ERR(xprt)) {
869 		err = PTR_ERR(xprt);
870 		goto out;
871 	}
872 
873 	len = svc_handle_xprt(rqstp, xprt);
874 
875 	/* No data, incomplete (TCP) read, or accept() */
876 	err = -EAGAIN;
877 	if (len <= 0)
878 		goto out_release;
879 	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
880 
881 	clear_bit(XPT_OLD, &xprt->xpt_flags);
882 
883 	xprt->xpt_ops->xpo_secure_port(rqstp);
884 	rqstp->rq_chandle.defer = svc_defer;
885 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
886 
887 	if (serv->sv_stats)
888 		serv->sv_stats->netcnt++;
889 	return len;
890 out_release:
891 	rqstp->rq_res.len = 0;
892 	svc_xprt_release(rqstp);
893 out:
894 	return err;
895 }
896 EXPORT_SYMBOL_GPL(svc_recv);
897 
898 /*
899  * Drop request
900  */
901 void svc_drop(struct svc_rqst *rqstp)
902 {
903 	trace_svc_drop(rqstp);
904 	svc_xprt_release(rqstp);
905 }
906 EXPORT_SYMBOL_GPL(svc_drop);
907 
908 /*
909  * Return reply to client.
910  */
911 int svc_send(struct svc_rqst *rqstp)
912 {
913 	struct svc_xprt	*xprt;
914 	int		len = -EFAULT;
915 	struct xdr_buf	*xb;
916 
917 	xprt = rqstp->rq_xprt;
918 	if (!xprt)
919 		goto out;
920 
921 	/* calculate over-all length */
922 	xb = &rqstp->rq_res;
923 	xb->len = xb->head[0].iov_len +
924 		xb->page_len +
925 		xb->tail[0].iov_len;
926 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
927 	trace_svc_stats_latency(rqstp);
928 
929 	len = xprt->xpt_ops->xpo_sendto(rqstp);
930 
931 	trace_svc_send(rqstp, len);
932 	svc_xprt_release(rqstp);
933 
934 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
935 		len = 0;
936 out:
937 	return len;
938 }
939 
940 /*
941  * Timer function to close old temporary transports, using
942  * a mark-and-sweep algorithm.
943  */
944 static void svc_age_temp_xprts(struct timer_list *t)
945 {
946 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
947 	struct svc_xprt *xprt;
948 	struct list_head *le, *next;
949 
950 	dprintk("svc_age_temp_xprts\n");
951 
952 	if (!spin_trylock_bh(&serv->sv_lock)) {
953 		/* busy, try again 1 sec later */
954 		dprintk("svc_age_temp_xprts: busy\n");
955 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
956 		return;
957 	}
958 
959 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
960 		xprt = list_entry(le, struct svc_xprt, xpt_list);
961 
962 		/* First time through, just mark it OLD. Second time
963 		 * through, close it. */
964 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
965 			continue;
966 		if (kref_read(&xprt->xpt_ref) > 1 ||
967 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
968 			continue;
969 		list_del_init(le);
970 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
971 		dprintk("queuing xprt %p for closing\n", xprt);
972 
973 		/* a thread will dequeue and close it soon */
974 		svc_xprt_enqueue(xprt);
975 	}
976 	spin_unlock_bh(&serv->sv_lock);
977 
978 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
979 }
980 
981 /* Close temporary transports whose xpt_local matches server_addr immediately
982  * instead of waiting for them to be picked up by the timer.
983  *
984  * This is meant to be called from a notifier_block that runs when an ip
985  * address is deleted.
986  */
987 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
988 {
989 	struct svc_xprt *xprt;
990 	struct list_head *le, *next;
991 	LIST_HEAD(to_be_closed);
992 
993 	spin_lock_bh(&serv->sv_lock);
994 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
995 		xprt = list_entry(le, struct svc_xprt, xpt_list);
996 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
997 				&xprt->xpt_local)) {
998 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
999 			list_move(le, &to_be_closed);
1000 		}
1001 	}
1002 	spin_unlock_bh(&serv->sv_lock);
1003 
1004 	while (!list_empty(&to_be_closed)) {
1005 		le = to_be_closed.next;
1006 		list_del_init(le);
1007 		xprt = list_entry(le, struct svc_xprt, xpt_list);
1008 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1009 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1010 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1011 				xprt);
1012 		svc_xprt_enqueue(xprt);
1013 	}
1014 }
1015 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1016 
1017 static void call_xpt_users(struct svc_xprt *xprt)
1018 {
1019 	struct svc_xpt_user *u;
1020 
1021 	spin_lock(&xprt->xpt_lock);
1022 	while (!list_empty(&xprt->xpt_users)) {
1023 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1024 		list_del_init(&u->list);
1025 		u->callback(u);
1026 	}
1027 	spin_unlock(&xprt->xpt_lock);
1028 }
1029 
1030 /*
1031  * Remove a dead transport
1032  */
1033 static void svc_delete_xprt(struct svc_xprt *xprt)
1034 {
1035 	struct svc_serv	*serv = xprt->xpt_server;
1036 	struct svc_deferred_req *dr;
1037 
1038 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1039 		return;
1040 
1041 	trace_svc_xprt_detach(xprt);
1042 	xprt->xpt_ops->xpo_detach(xprt);
1043 	if (xprt->xpt_bc_xprt)
1044 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1045 
1046 	spin_lock_bh(&serv->sv_lock);
1047 	list_del_init(&xprt->xpt_list);
1048 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1049 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1050 		serv->sv_tmpcnt--;
1051 	spin_unlock_bh(&serv->sv_lock);
1052 
1053 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1054 		kfree(dr);
1055 
1056 	call_xpt_users(xprt);
1057 	svc_xprt_put(xprt);
1058 }
1059 
1060 void svc_close_xprt(struct svc_xprt *xprt)
1061 {
1062 	trace_svc_xprt_close(xprt);
1063 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1064 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1065 		/* someone else will have to effect the close */
1066 		return;
1067 	/*
1068 	 * We expect svc_close_xprt() to work even when no threads are
1069 	 * running (e.g., while configuring the server before starting
1070 	 * any threads), so if the transport isn't busy, we delete
1071 	 * it ourself:
1072 	 */
1073 	svc_delete_xprt(xprt);
1074 }
1075 EXPORT_SYMBOL_GPL(svc_close_xprt);
1076 
1077 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1078 {
1079 	struct svc_xprt *xprt;
1080 	int ret = 0;
1081 
1082 	spin_lock_bh(&serv->sv_lock);
1083 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1084 		if (xprt->xpt_net != net)
1085 			continue;
1086 		ret++;
1087 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1088 		svc_xprt_enqueue(xprt);
1089 	}
1090 	spin_unlock_bh(&serv->sv_lock);
1091 	return ret;
1092 }
1093 
1094 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1095 {
1096 	struct svc_pool *pool;
1097 	struct svc_xprt *xprt;
1098 	struct svc_xprt *tmp;
1099 	int i;
1100 
1101 	for (i = 0; i < serv->sv_nrpools; i++) {
1102 		pool = &serv->sv_pools[i];
1103 
1104 		spin_lock_bh(&pool->sp_lock);
1105 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1106 			if (xprt->xpt_net != net)
1107 				continue;
1108 			list_del_init(&xprt->xpt_ready);
1109 			spin_unlock_bh(&pool->sp_lock);
1110 			return xprt;
1111 		}
1112 		spin_unlock_bh(&pool->sp_lock);
1113 	}
1114 	return NULL;
1115 }
1116 
1117 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1118 {
1119 	struct svc_xprt *xprt;
1120 
1121 	while ((xprt = svc_dequeue_net(serv, net))) {
1122 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1123 		svc_delete_xprt(xprt);
1124 	}
1125 }
1126 
1127 /*
1128  * Server threads may still be running (especially in the case where the
1129  * service is still running in other network namespaces).
1130  *
1131  * So we shut down sockets the same way we would on a running server, by
1132  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1133  * the close.  In the case there are no such other threads,
1134  * threads running, svc_clean_up_xprts() does a simple version of a
1135  * server's main event loop, and in the case where there are other
1136  * threads, we may need to wait a little while and then check again to
1137  * see if they're done.
1138  */
1139 void svc_close_net(struct svc_serv *serv, struct net *net)
1140 {
1141 	int delay = 0;
1142 
1143 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1144 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1145 
1146 		svc_clean_up_xprts(serv, net);
1147 		msleep(delay++);
1148 	}
1149 }
1150 
1151 /*
1152  * Handle defer and revisit of requests
1153  */
1154 
1155 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1156 {
1157 	struct svc_deferred_req *dr =
1158 		container_of(dreq, struct svc_deferred_req, handle);
1159 	struct svc_xprt *xprt = dr->xprt;
1160 
1161 	spin_lock(&xprt->xpt_lock);
1162 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1163 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1164 		spin_unlock(&xprt->xpt_lock);
1165 		trace_svc_defer_drop(dr);
1166 		svc_xprt_put(xprt);
1167 		kfree(dr);
1168 		return;
1169 	}
1170 	dr->xprt = NULL;
1171 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1172 	spin_unlock(&xprt->xpt_lock);
1173 	trace_svc_defer_queue(dr);
1174 	svc_xprt_enqueue(xprt);
1175 	svc_xprt_put(xprt);
1176 }
1177 
1178 /*
1179  * Save the request off for later processing. The request buffer looks
1180  * like this:
1181  *
1182  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1183  *
1184  * This code can only handle requests that consist of an xprt-header
1185  * and rpc-header.
1186  */
1187 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1188 {
1189 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1190 	struct svc_deferred_req *dr;
1191 
1192 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1193 		return NULL; /* if more than a page, give up FIXME */
1194 	if (rqstp->rq_deferred) {
1195 		dr = rqstp->rq_deferred;
1196 		rqstp->rq_deferred = NULL;
1197 	} else {
1198 		size_t skip;
1199 		size_t size;
1200 		/* FIXME maybe discard if size too large */
1201 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1202 		dr = kmalloc(size, GFP_KERNEL);
1203 		if (dr == NULL)
1204 			return NULL;
1205 
1206 		dr->handle.owner = rqstp->rq_server;
1207 		dr->prot = rqstp->rq_prot;
1208 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1209 		dr->addrlen = rqstp->rq_addrlen;
1210 		dr->daddr = rqstp->rq_daddr;
1211 		dr->argslen = rqstp->rq_arg.len >> 2;
1212 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1213 
1214 		/* back up head to the start of the buffer and copy */
1215 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1216 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1217 		       dr->argslen << 2);
1218 	}
1219 	trace_svc_defer(rqstp);
1220 	svc_xprt_get(rqstp->rq_xprt);
1221 	dr->xprt = rqstp->rq_xprt;
1222 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1223 
1224 	dr->handle.revisit = svc_revisit;
1225 	return &dr->handle;
1226 }
1227 
1228 /*
1229  * recv data from a deferred request into an active one
1230  */
1231 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1232 {
1233 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1234 
1235 	trace_svc_defer_recv(dr);
1236 
1237 	/* setup iov_base past transport header */
1238 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1239 	/* The iov_len does not include the transport header bytes */
1240 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1241 	rqstp->rq_arg.page_len = 0;
1242 	/* The rq_arg.len includes the transport header bytes */
1243 	rqstp->rq_arg.len     = dr->argslen<<2;
1244 	rqstp->rq_prot        = dr->prot;
1245 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1246 	rqstp->rq_addrlen     = dr->addrlen;
1247 	/* Save off transport header len in case we get deferred again */
1248 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1249 	rqstp->rq_daddr       = dr->daddr;
1250 	rqstp->rq_respages    = rqstp->rq_pages;
1251 	svc_xprt_received(rqstp->rq_xprt);
1252 	return (dr->argslen<<2) - dr->xprt_hlen;
1253 }
1254 
1255 
1256 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1257 {
1258 	struct svc_deferred_req *dr = NULL;
1259 
1260 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1261 		return NULL;
1262 	spin_lock(&xprt->xpt_lock);
1263 	if (!list_empty(&xprt->xpt_deferred)) {
1264 		dr = list_entry(xprt->xpt_deferred.next,
1265 				struct svc_deferred_req,
1266 				handle.recent);
1267 		list_del_init(&dr->handle.recent);
1268 	} else
1269 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1270 	spin_unlock(&xprt->xpt_lock);
1271 	return dr;
1272 }
1273 
1274 /**
1275  * svc_find_xprt - find an RPC transport instance
1276  * @serv: pointer to svc_serv to search
1277  * @xcl_name: C string containing transport's class name
1278  * @net: owner net pointer
1279  * @af: Address family of transport's local address
1280  * @port: transport's IP port number
1281  *
1282  * Return the transport instance pointer for the endpoint accepting
1283  * connections/peer traffic from the specified transport class,
1284  * address family and port.
1285  *
1286  * Specifying 0 for the address family or port is effectively a
1287  * wild-card, and will result in matching the first transport in the
1288  * service's list that has a matching class name.
1289  */
1290 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1291 			       struct net *net, const sa_family_t af,
1292 			       const unsigned short port)
1293 {
1294 	struct svc_xprt *xprt;
1295 	struct svc_xprt *found = NULL;
1296 
1297 	/* Sanity check the args */
1298 	if (serv == NULL || xcl_name == NULL)
1299 		return found;
1300 
1301 	spin_lock_bh(&serv->sv_lock);
1302 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1303 		if (xprt->xpt_net != net)
1304 			continue;
1305 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1306 			continue;
1307 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1308 			continue;
1309 		if (port != 0 && port != svc_xprt_local_port(xprt))
1310 			continue;
1311 		found = xprt;
1312 		svc_xprt_get(xprt);
1313 		break;
1314 	}
1315 	spin_unlock_bh(&serv->sv_lock);
1316 	return found;
1317 }
1318 EXPORT_SYMBOL_GPL(svc_find_xprt);
1319 
1320 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1321 			     char *pos, int remaining)
1322 {
1323 	int len;
1324 
1325 	len = snprintf(pos, remaining, "%s %u\n",
1326 			xprt->xpt_class->xcl_name,
1327 			svc_xprt_local_port(xprt));
1328 	if (len >= remaining)
1329 		return -ENAMETOOLONG;
1330 	return len;
1331 }
1332 
1333 /**
1334  * svc_xprt_names - format a buffer with a list of transport names
1335  * @serv: pointer to an RPC service
1336  * @buf: pointer to a buffer to be filled in
1337  * @buflen: length of buffer to be filled in
1338  *
1339  * Fills in @buf with a string containing a list of transport names,
1340  * each name terminated with '\n'.
1341  *
1342  * Returns positive length of the filled-in string on success; otherwise
1343  * a negative errno value is returned if an error occurs.
1344  */
1345 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1346 {
1347 	struct svc_xprt *xprt;
1348 	int len, totlen;
1349 	char *pos;
1350 
1351 	/* Sanity check args */
1352 	if (!serv)
1353 		return 0;
1354 
1355 	spin_lock_bh(&serv->sv_lock);
1356 
1357 	pos = buf;
1358 	totlen = 0;
1359 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1360 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1361 		if (len < 0) {
1362 			*buf = '\0';
1363 			totlen = len;
1364 		}
1365 		if (len <= 0)
1366 			break;
1367 
1368 		pos += len;
1369 		totlen += len;
1370 	}
1371 
1372 	spin_unlock_bh(&serv->sv_lock);
1373 	return totlen;
1374 }
1375 EXPORT_SYMBOL_GPL(svc_xprt_names);
1376 
1377 
1378 /*----------------------------------------------------------------------------*/
1379 
1380 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1381 {
1382 	unsigned int pidx = (unsigned int)*pos;
1383 	struct svc_serv *serv = m->private;
1384 
1385 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1386 
1387 	if (!pidx)
1388 		return SEQ_START_TOKEN;
1389 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1390 }
1391 
1392 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1393 {
1394 	struct svc_pool *pool = p;
1395 	struct svc_serv *serv = m->private;
1396 
1397 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1398 
1399 	if (p == SEQ_START_TOKEN) {
1400 		pool = &serv->sv_pools[0];
1401 	} else {
1402 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1403 		if (pidx < serv->sv_nrpools-1)
1404 			pool = &serv->sv_pools[pidx+1];
1405 		else
1406 			pool = NULL;
1407 	}
1408 	++*pos;
1409 	return pool;
1410 }
1411 
1412 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1413 {
1414 }
1415 
1416 static int svc_pool_stats_show(struct seq_file *m, void *p)
1417 {
1418 	struct svc_pool *pool = p;
1419 
1420 	if (p == SEQ_START_TOKEN) {
1421 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1422 		return 0;
1423 	}
1424 
1425 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1426 		pool->sp_id,
1427 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1428 		pool->sp_stats.sockets_queued,
1429 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1430 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1431 
1432 	return 0;
1433 }
1434 
1435 static const struct seq_operations svc_pool_stats_seq_ops = {
1436 	.start	= svc_pool_stats_start,
1437 	.next	= svc_pool_stats_next,
1438 	.stop	= svc_pool_stats_stop,
1439 	.show	= svc_pool_stats_show,
1440 };
1441 
1442 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1443 {
1444 	int err;
1445 
1446 	err = seq_open(file, &svc_pool_stats_seq_ops);
1447 	if (!err)
1448 		((struct seq_file *) file->private_data)->private = serv;
1449 	return err;
1450 }
1451 EXPORT_SYMBOL(svc_pool_stats_open);
1452 
1453 /*----------------------------------------------------------------------------*/
1454