1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/smp_lock.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 23 #include <linux/sunrpc/clnt.h> 24 25 #ifdef RPC_DEBUG 26 #define RPCDBG_FACILITY RPCDBG_SCHED 27 #define RPC_TASK_MAGIC_ID 0xf00baa 28 #endif 29 30 /* 31 * RPC slabs and memory pools 32 */ 33 #define RPC_BUFFER_MAXSIZE (2048) 34 #define RPC_BUFFER_POOLSIZE (8) 35 #define RPC_TASK_POOLSIZE (8) 36 static struct kmem_cache *rpc_task_slabp __read_mostly; 37 static struct kmem_cache *rpc_buffer_slabp __read_mostly; 38 static mempool_t *rpc_task_mempool __read_mostly; 39 static mempool_t *rpc_buffer_mempool __read_mostly; 40 41 static void __rpc_default_timer(struct rpc_task *task); 42 static void rpc_async_schedule(struct work_struct *); 43 static void rpc_release_task(struct rpc_task *task); 44 45 /* 46 * RPC tasks sit here while waiting for conditions to improve. 47 */ 48 static RPC_WAITQ(delay_queue, "delayq"); 49 50 /* 51 * rpciod-related stuff 52 */ 53 struct workqueue_struct *rpciod_workqueue; 54 55 /* 56 * Disable the timer for a given RPC task. Should be called with 57 * queue->lock and bh_disabled in order to avoid races within 58 * rpc_run_timer(). 59 */ 60 static inline void 61 __rpc_disable_timer(struct rpc_task *task) 62 { 63 dprintk("RPC: %5u disabling timer\n", task->tk_pid); 64 task->tk_timeout_fn = NULL; 65 task->tk_timeout = 0; 66 } 67 68 /* 69 * Run a timeout function. 70 * We use the callback in order to allow __rpc_wake_up_task() 71 * and friends to disable the timer synchronously on SMP systems 72 * without calling del_timer_sync(). The latter could cause a 73 * deadlock if called while we're holding spinlocks... 74 */ 75 static void rpc_run_timer(struct rpc_task *task) 76 { 77 void (*callback)(struct rpc_task *); 78 79 callback = task->tk_timeout_fn; 80 task->tk_timeout_fn = NULL; 81 if (callback && RPC_IS_QUEUED(task)) { 82 dprintk("RPC: %5u running timer\n", task->tk_pid); 83 callback(task); 84 } 85 smp_mb__before_clear_bit(); 86 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); 87 smp_mb__after_clear_bit(); 88 } 89 90 /* 91 * Set up a timer for the current task. 92 */ 93 static inline void 94 __rpc_add_timer(struct rpc_task *task, rpc_action timer) 95 { 96 if (!task->tk_timeout) 97 return; 98 99 dprintk("RPC: %5u setting alarm for %lu ms\n", 100 task->tk_pid, task->tk_timeout * 1000 / HZ); 101 102 if (timer) 103 task->tk_timeout_fn = timer; 104 else 105 task->tk_timeout_fn = __rpc_default_timer; 106 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); 107 mod_timer(&task->tk_timer, jiffies + task->tk_timeout); 108 } 109 110 /* 111 * Delete any timer for the current task. Because we use del_timer_sync(), 112 * this function should never be called while holding queue->lock. 113 */ 114 static void 115 rpc_delete_timer(struct rpc_task *task) 116 { 117 if (RPC_IS_QUEUED(task)) 118 return; 119 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) { 120 del_singleshot_timer_sync(&task->tk_timer); 121 dprintk("RPC: %5u deleting timer\n", task->tk_pid); 122 } 123 } 124 125 /* 126 * Add new request to a priority queue. 127 */ 128 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 129 { 130 struct list_head *q; 131 struct rpc_task *t; 132 133 INIT_LIST_HEAD(&task->u.tk_wait.links); 134 q = &queue->tasks[task->tk_priority]; 135 if (unlikely(task->tk_priority > queue->maxpriority)) 136 q = &queue->tasks[queue->maxpriority]; 137 list_for_each_entry(t, q, u.tk_wait.list) { 138 if (t->tk_cookie == task->tk_cookie) { 139 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 140 return; 141 } 142 } 143 list_add_tail(&task->u.tk_wait.list, q); 144 } 145 146 /* 147 * Add new request to wait queue. 148 * 149 * Swapper tasks always get inserted at the head of the queue. 150 * This should avoid many nasty memory deadlocks and hopefully 151 * improve overall performance. 152 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 153 */ 154 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 155 { 156 BUG_ON (RPC_IS_QUEUED(task)); 157 158 if (RPC_IS_PRIORITY(queue)) 159 __rpc_add_wait_queue_priority(queue, task); 160 else if (RPC_IS_SWAPPER(task)) 161 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 162 else 163 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 164 task->u.tk_wait.rpc_waitq = queue; 165 queue->qlen++; 166 rpc_set_queued(task); 167 168 dprintk("RPC: %5u added to queue %p \"%s\"\n", 169 task->tk_pid, queue, rpc_qname(queue)); 170 } 171 172 /* 173 * Remove request from a priority queue. 174 */ 175 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 176 { 177 struct rpc_task *t; 178 179 if (!list_empty(&task->u.tk_wait.links)) { 180 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 181 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 182 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 183 } 184 list_del(&task->u.tk_wait.list); 185 } 186 187 /* 188 * Remove request from queue. 189 * Note: must be called with spin lock held. 190 */ 191 static void __rpc_remove_wait_queue(struct rpc_task *task) 192 { 193 struct rpc_wait_queue *queue; 194 queue = task->u.tk_wait.rpc_waitq; 195 196 if (RPC_IS_PRIORITY(queue)) 197 __rpc_remove_wait_queue_priority(task); 198 else 199 list_del(&task->u.tk_wait.list); 200 queue->qlen--; 201 dprintk("RPC: %5u removed from queue %p \"%s\"\n", 202 task->tk_pid, queue, rpc_qname(queue)); 203 } 204 205 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 206 { 207 queue->priority = priority; 208 queue->count = 1 << (priority * 2); 209 } 210 211 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie) 212 { 213 queue->cookie = cookie; 214 queue->nr = RPC_BATCH_COUNT; 215 } 216 217 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 218 { 219 rpc_set_waitqueue_priority(queue, queue->maxpriority); 220 rpc_set_waitqueue_cookie(queue, 0); 221 } 222 223 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio) 224 { 225 int i; 226 227 spin_lock_init(&queue->lock); 228 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 229 INIT_LIST_HEAD(&queue->tasks[i]); 230 queue->maxpriority = maxprio; 231 rpc_reset_waitqueue_priority(queue); 232 #ifdef RPC_DEBUG 233 queue->name = qname; 234 #endif 235 } 236 237 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 238 { 239 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH); 240 } 241 242 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 243 { 244 __rpc_init_priority_wait_queue(queue, qname, 0); 245 } 246 EXPORT_SYMBOL(rpc_init_wait_queue); 247 248 static int rpc_wait_bit_interruptible(void *word) 249 { 250 if (signal_pending(current)) 251 return -ERESTARTSYS; 252 schedule(); 253 return 0; 254 } 255 256 #ifdef RPC_DEBUG 257 static void rpc_task_set_debuginfo(struct rpc_task *task) 258 { 259 static atomic_t rpc_pid; 260 261 task->tk_magic = RPC_TASK_MAGIC_ID; 262 task->tk_pid = atomic_inc_return(&rpc_pid); 263 } 264 #else 265 static inline void rpc_task_set_debuginfo(struct rpc_task *task) 266 { 267 } 268 #endif 269 270 static void rpc_set_active(struct rpc_task *task) 271 { 272 struct rpc_clnt *clnt; 273 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0) 274 return; 275 rpc_task_set_debuginfo(task); 276 /* Add to global list of all tasks */ 277 clnt = task->tk_client; 278 if (clnt != NULL) { 279 spin_lock(&clnt->cl_lock); 280 list_add_tail(&task->tk_task, &clnt->cl_tasks); 281 spin_unlock(&clnt->cl_lock); 282 } 283 } 284 285 /* 286 * Mark an RPC call as having completed by clearing the 'active' bit 287 */ 288 static void rpc_mark_complete_task(struct rpc_task *task) 289 { 290 smp_mb__before_clear_bit(); 291 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); 292 smp_mb__after_clear_bit(); 293 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 294 } 295 296 /* 297 * Allow callers to wait for completion of an RPC call 298 */ 299 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 300 { 301 if (action == NULL) 302 action = rpc_wait_bit_interruptible; 303 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 304 action, TASK_INTERRUPTIBLE); 305 } 306 EXPORT_SYMBOL(__rpc_wait_for_completion_task); 307 308 /* 309 * Make an RPC task runnable. 310 * 311 * Note: If the task is ASYNC, this must be called with 312 * the spinlock held to protect the wait queue operation. 313 */ 314 static void rpc_make_runnable(struct rpc_task *task) 315 { 316 BUG_ON(task->tk_timeout_fn); 317 rpc_clear_queued(task); 318 if (rpc_test_and_set_running(task)) 319 return; 320 /* We might have raced */ 321 if (RPC_IS_QUEUED(task)) { 322 rpc_clear_running(task); 323 return; 324 } 325 if (RPC_IS_ASYNC(task)) { 326 int status; 327 328 INIT_WORK(&task->u.tk_work, rpc_async_schedule); 329 status = queue_work(task->tk_workqueue, &task->u.tk_work); 330 if (status < 0) { 331 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 332 task->tk_status = status; 333 return; 334 } 335 } else 336 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 337 } 338 339 /* 340 * Prepare for sleeping on a wait queue. 341 * By always appending tasks to the list we ensure FIFO behavior. 342 * NB: An RPC task will only receive interrupt-driven events as long 343 * as it's on a wait queue. 344 */ 345 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 346 rpc_action action, rpc_action timer) 347 { 348 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", 349 task->tk_pid, rpc_qname(q), jiffies); 350 351 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { 352 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); 353 return; 354 } 355 356 __rpc_add_wait_queue(q, task); 357 358 BUG_ON(task->tk_callback != NULL); 359 task->tk_callback = action; 360 __rpc_add_timer(task, timer); 361 } 362 363 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 364 rpc_action action, rpc_action timer) 365 { 366 /* Mark the task as being activated if so needed */ 367 rpc_set_active(task); 368 369 /* 370 * Protect the queue operations. 371 */ 372 spin_lock_bh(&q->lock); 373 __rpc_sleep_on(q, task, action, timer); 374 spin_unlock_bh(&q->lock); 375 } 376 377 /** 378 * __rpc_do_wake_up_task - wake up a single rpc_task 379 * @task: task to be woken up 380 * 381 * Caller must hold queue->lock, and have cleared the task queued flag. 382 */ 383 static void __rpc_do_wake_up_task(struct rpc_task *task) 384 { 385 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", 386 task->tk_pid, jiffies); 387 388 #ifdef RPC_DEBUG 389 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 390 #endif 391 /* Has the task been executed yet? If not, we cannot wake it up! */ 392 if (!RPC_IS_ACTIVATED(task)) { 393 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 394 return; 395 } 396 397 __rpc_disable_timer(task); 398 __rpc_remove_wait_queue(task); 399 400 rpc_make_runnable(task); 401 402 dprintk("RPC: __rpc_wake_up_task done\n"); 403 } 404 405 /* 406 * Wake up the specified task 407 */ 408 static void __rpc_wake_up_task(struct rpc_task *task) 409 { 410 if (rpc_start_wakeup(task)) { 411 if (RPC_IS_QUEUED(task)) 412 __rpc_do_wake_up_task(task); 413 rpc_finish_wakeup(task); 414 } 415 } 416 417 /* 418 * Default timeout handler if none specified by user 419 */ 420 static void 421 __rpc_default_timer(struct rpc_task *task) 422 { 423 dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid); 424 task->tk_status = -ETIMEDOUT; 425 rpc_wake_up_task(task); 426 } 427 428 /* 429 * Wake up the specified task 430 */ 431 void rpc_wake_up_task(struct rpc_task *task) 432 { 433 rcu_read_lock_bh(); 434 if (rpc_start_wakeup(task)) { 435 if (RPC_IS_QUEUED(task)) { 436 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq; 437 438 /* Note: we're already in a bh-safe context */ 439 spin_lock(&queue->lock); 440 __rpc_do_wake_up_task(task); 441 spin_unlock(&queue->lock); 442 } 443 rpc_finish_wakeup(task); 444 } 445 rcu_read_unlock_bh(); 446 } 447 448 /* 449 * Wake up the next task on a priority queue. 450 */ 451 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 452 { 453 struct list_head *q; 454 struct rpc_task *task; 455 456 /* 457 * Service a batch of tasks from a single cookie. 458 */ 459 q = &queue->tasks[queue->priority]; 460 if (!list_empty(q)) { 461 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 462 if (queue->cookie == task->tk_cookie) { 463 if (--queue->nr) 464 goto out; 465 list_move_tail(&task->u.tk_wait.list, q); 466 } 467 /* 468 * Check if we need to switch queues. 469 */ 470 if (--queue->count) 471 goto new_cookie; 472 } 473 474 /* 475 * Service the next queue. 476 */ 477 do { 478 if (q == &queue->tasks[0]) 479 q = &queue->tasks[queue->maxpriority]; 480 else 481 q = q - 1; 482 if (!list_empty(q)) { 483 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 484 goto new_queue; 485 } 486 } while (q != &queue->tasks[queue->priority]); 487 488 rpc_reset_waitqueue_priority(queue); 489 return NULL; 490 491 new_queue: 492 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 493 new_cookie: 494 rpc_set_waitqueue_cookie(queue, task->tk_cookie); 495 out: 496 __rpc_wake_up_task(task); 497 return task; 498 } 499 500 /* 501 * Wake up the next task on the wait queue. 502 */ 503 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 504 { 505 struct rpc_task *task = NULL; 506 507 dprintk("RPC: wake_up_next(%p \"%s\")\n", 508 queue, rpc_qname(queue)); 509 rcu_read_lock_bh(); 510 spin_lock(&queue->lock); 511 if (RPC_IS_PRIORITY(queue)) 512 task = __rpc_wake_up_next_priority(queue); 513 else { 514 task_for_first(task, &queue->tasks[0]) 515 __rpc_wake_up_task(task); 516 } 517 spin_unlock(&queue->lock); 518 rcu_read_unlock_bh(); 519 520 return task; 521 } 522 523 /** 524 * rpc_wake_up - wake up all rpc_tasks 525 * @queue: rpc_wait_queue on which the tasks are sleeping 526 * 527 * Grabs queue->lock 528 */ 529 void rpc_wake_up(struct rpc_wait_queue *queue) 530 { 531 struct rpc_task *task, *next; 532 struct list_head *head; 533 534 rcu_read_lock_bh(); 535 spin_lock(&queue->lock); 536 head = &queue->tasks[queue->maxpriority]; 537 for (;;) { 538 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 539 __rpc_wake_up_task(task); 540 if (head == &queue->tasks[0]) 541 break; 542 head--; 543 } 544 spin_unlock(&queue->lock); 545 rcu_read_unlock_bh(); 546 } 547 548 /** 549 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 550 * @queue: rpc_wait_queue on which the tasks are sleeping 551 * @status: status value to set 552 * 553 * Grabs queue->lock 554 */ 555 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 556 { 557 struct rpc_task *task, *next; 558 struct list_head *head; 559 560 rcu_read_lock_bh(); 561 spin_lock(&queue->lock); 562 head = &queue->tasks[queue->maxpriority]; 563 for (;;) { 564 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 565 task->tk_status = status; 566 __rpc_wake_up_task(task); 567 } 568 if (head == &queue->tasks[0]) 569 break; 570 head--; 571 } 572 spin_unlock(&queue->lock); 573 rcu_read_unlock_bh(); 574 } 575 576 static void __rpc_atrun(struct rpc_task *task) 577 { 578 rpc_wake_up_task(task); 579 } 580 581 /* 582 * Run a task at a later time 583 */ 584 void rpc_delay(struct rpc_task *task, unsigned long delay) 585 { 586 task->tk_timeout = delay; 587 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun); 588 } 589 590 /* 591 * Helper to call task->tk_ops->rpc_call_prepare 592 */ 593 static void rpc_prepare_task(struct rpc_task *task) 594 { 595 lock_kernel(); 596 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 597 unlock_kernel(); 598 } 599 600 /* 601 * Helper that calls task->tk_ops->rpc_call_done if it exists 602 */ 603 void rpc_exit_task(struct rpc_task *task) 604 { 605 task->tk_action = NULL; 606 if (task->tk_ops->rpc_call_done != NULL) { 607 lock_kernel(); 608 task->tk_ops->rpc_call_done(task, task->tk_calldata); 609 unlock_kernel(); 610 if (task->tk_action != NULL) { 611 WARN_ON(RPC_ASSASSINATED(task)); 612 /* Always release the RPC slot and buffer memory */ 613 xprt_release(task); 614 } 615 } 616 } 617 EXPORT_SYMBOL(rpc_exit_task); 618 619 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) 620 { 621 if (ops->rpc_release != NULL) { 622 lock_kernel(); 623 ops->rpc_release(calldata); 624 unlock_kernel(); 625 } 626 } 627 628 /* 629 * This is the RPC `scheduler' (or rather, the finite state machine). 630 */ 631 static void __rpc_execute(struct rpc_task *task) 632 { 633 int status = 0; 634 635 dprintk("RPC: %5u __rpc_execute flags=0x%x\n", 636 task->tk_pid, task->tk_flags); 637 638 BUG_ON(RPC_IS_QUEUED(task)); 639 640 for (;;) { 641 /* 642 * Garbage collection of pending timers... 643 */ 644 rpc_delete_timer(task); 645 646 /* 647 * Execute any pending callback. 648 */ 649 if (RPC_DO_CALLBACK(task)) { 650 /* Define a callback save pointer */ 651 void (*save_callback)(struct rpc_task *); 652 653 /* 654 * If a callback exists, save it, reset it, 655 * call it. 656 * The save is needed to stop from resetting 657 * another callback set within the callback handler 658 * - Dave 659 */ 660 save_callback=task->tk_callback; 661 task->tk_callback=NULL; 662 save_callback(task); 663 } 664 665 /* 666 * Perform the next FSM step. 667 * tk_action may be NULL when the task has been killed 668 * by someone else. 669 */ 670 if (!RPC_IS_QUEUED(task)) { 671 if (task->tk_action == NULL) 672 break; 673 task->tk_action(task); 674 } 675 676 /* 677 * Lockless check for whether task is sleeping or not. 678 */ 679 if (!RPC_IS_QUEUED(task)) 680 continue; 681 rpc_clear_running(task); 682 if (RPC_IS_ASYNC(task)) { 683 /* Careful! we may have raced... */ 684 if (RPC_IS_QUEUED(task)) 685 return; 686 if (rpc_test_and_set_running(task)) 687 return; 688 continue; 689 } 690 691 /* sync task: sleep here */ 692 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); 693 /* Note: Caller should be using rpc_clnt_sigmask() */ 694 status = out_of_line_wait_on_bit(&task->tk_runstate, 695 RPC_TASK_QUEUED, rpc_wait_bit_interruptible, 696 TASK_INTERRUPTIBLE); 697 if (status == -ERESTARTSYS) { 698 /* 699 * When a sync task receives a signal, it exits with 700 * -ERESTARTSYS. In order to catch any callbacks that 701 * clean up after sleeping on some queue, we don't 702 * break the loop here, but go around once more. 703 */ 704 dprintk("RPC: %5u got signal\n", task->tk_pid); 705 task->tk_flags |= RPC_TASK_KILLED; 706 rpc_exit(task, -ERESTARTSYS); 707 rpc_wake_up_task(task); 708 } 709 rpc_set_running(task); 710 dprintk("RPC: %5u sync task resuming\n", task->tk_pid); 711 } 712 713 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, 714 task->tk_status); 715 /* Release all resources associated with the task */ 716 rpc_release_task(task); 717 } 718 719 /* 720 * User-visible entry point to the scheduler. 721 * 722 * This may be called recursively if e.g. an async NFS task updates 723 * the attributes and finds that dirty pages must be flushed. 724 * NOTE: Upon exit of this function the task is guaranteed to be 725 * released. In particular note that tk_release() will have 726 * been called, so your task memory may have been freed. 727 */ 728 void rpc_execute(struct rpc_task *task) 729 { 730 rpc_set_active(task); 731 rpc_set_running(task); 732 __rpc_execute(task); 733 } 734 735 static void rpc_async_schedule(struct work_struct *work) 736 { 737 __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); 738 } 739 740 struct rpc_buffer { 741 size_t len; 742 char data[]; 743 }; 744 745 /** 746 * rpc_malloc - allocate an RPC buffer 747 * @task: RPC task that will use this buffer 748 * @size: requested byte size 749 * 750 * To prevent rpciod from hanging, this allocator never sleeps, 751 * returning NULL if the request cannot be serviced immediately. 752 * The caller can arrange to sleep in a way that is safe for rpciod. 753 * 754 * Most requests are 'small' (under 2KiB) and can be serviced from a 755 * mempool, ensuring that NFS reads and writes can always proceed, 756 * and that there is good locality of reference for these buffers. 757 * 758 * In order to avoid memory starvation triggering more writebacks of 759 * NFS requests, we avoid using GFP_KERNEL. 760 */ 761 void *rpc_malloc(struct rpc_task *task, size_t size) 762 { 763 struct rpc_buffer *buf; 764 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT; 765 766 size += sizeof(struct rpc_buffer); 767 if (size <= RPC_BUFFER_MAXSIZE) 768 buf = mempool_alloc(rpc_buffer_mempool, gfp); 769 else 770 buf = kmalloc(size, gfp); 771 772 if (!buf) 773 return NULL; 774 775 buf->len = size; 776 dprintk("RPC: %5u allocated buffer of size %zu at %p\n", 777 task->tk_pid, size, buf); 778 return &buf->data; 779 } 780 EXPORT_SYMBOL_GPL(rpc_malloc); 781 782 /** 783 * rpc_free - free buffer allocated via rpc_malloc 784 * @buffer: buffer to free 785 * 786 */ 787 void rpc_free(void *buffer) 788 { 789 size_t size; 790 struct rpc_buffer *buf; 791 792 if (!buffer) 793 return; 794 795 buf = container_of(buffer, struct rpc_buffer, data); 796 size = buf->len; 797 798 dprintk("RPC: freeing buffer of size %zu at %p\n", 799 size, buf); 800 801 if (size <= RPC_BUFFER_MAXSIZE) 802 mempool_free(buf, rpc_buffer_mempool); 803 else 804 kfree(buf); 805 } 806 EXPORT_SYMBOL_GPL(rpc_free); 807 808 /* 809 * Creation and deletion of RPC task structures 810 */ 811 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) 812 { 813 memset(task, 0, sizeof(*task)); 814 init_timer(&task->tk_timer); 815 task->tk_timer.data = (unsigned long) task; 816 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer; 817 atomic_set(&task->tk_count, 1); 818 task->tk_client = clnt; 819 task->tk_flags = flags; 820 task->tk_ops = tk_ops; 821 if (tk_ops->rpc_call_prepare != NULL) 822 task->tk_action = rpc_prepare_task; 823 task->tk_calldata = calldata; 824 INIT_LIST_HEAD(&task->tk_task); 825 826 /* Initialize retry counters */ 827 task->tk_garb_retry = 2; 828 task->tk_cred_retry = 2; 829 830 task->tk_priority = RPC_PRIORITY_NORMAL; 831 task->tk_cookie = (unsigned long)current; 832 833 /* Initialize workqueue for async tasks */ 834 task->tk_workqueue = rpciod_workqueue; 835 836 if (clnt) { 837 kref_get(&clnt->cl_kref); 838 if (clnt->cl_softrtry) 839 task->tk_flags |= RPC_TASK_SOFT; 840 if (!clnt->cl_intr) 841 task->tk_flags |= RPC_TASK_NOINTR; 842 } 843 844 BUG_ON(task->tk_ops == NULL); 845 846 /* starting timestamp */ 847 task->tk_start = jiffies; 848 849 dprintk("RPC: new task initialized, procpid %u\n", 850 task_pid_nr(current)); 851 } 852 853 static struct rpc_task * 854 rpc_alloc_task(void) 855 { 856 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 857 } 858 859 static void rpc_free_task(struct rcu_head *rcu) 860 { 861 struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu); 862 dprintk("RPC: %5u freeing task\n", task->tk_pid); 863 mempool_free(task, rpc_task_mempool); 864 } 865 866 /* 867 * Create a new task for the specified client. 868 */ 869 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) 870 { 871 struct rpc_task *task; 872 873 task = rpc_alloc_task(); 874 if (!task) 875 goto out; 876 877 rpc_init_task(task, clnt, flags, tk_ops, calldata); 878 879 dprintk("RPC: allocated task %p\n", task); 880 task->tk_flags |= RPC_TASK_DYNAMIC; 881 out: 882 return task; 883 } 884 885 886 void rpc_put_task(struct rpc_task *task) 887 { 888 const struct rpc_call_ops *tk_ops = task->tk_ops; 889 void *calldata = task->tk_calldata; 890 891 if (!atomic_dec_and_test(&task->tk_count)) 892 return; 893 /* Release resources */ 894 if (task->tk_rqstp) 895 xprt_release(task); 896 if (task->tk_msg.rpc_cred) 897 rpcauth_unbindcred(task); 898 if (task->tk_client) { 899 rpc_release_client(task->tk_client); 900 task->tk_client = NULL; 901 } 902 if (task->tk_flags & RPC_TASK_DYNAMIC) 903 call_rcu_bh(&task->u.tk_rcu, rpc_free_task); 904 rpc_release_calldata(tk_ops, calldata); 905 } 906 EXPORT_SYMBOL(rpc_put_task); 907 908 static void rpc_release_task(struct rpc_task *task) 909 { 910 #ifdef RPC_DEBUG 911 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 912 #endif 913 dprintk("RPC: %5u release task\n", task->tk_pid); 914 915 if (!list_empty(&task->tk_task)) { 916 struct rpc_clnt *clnt = task->tk_client; 917 /* Remove from client task list */ 918 spin_lock(&clnt->cl_lock); 919 list_del(&task->tk_task); 920 spin_unlock(&clnt->cl_lock); 921 } 922 BUG_ON (RPC_IS_QUEUED(task)); 923 924 /* Synchronously delete any running timer */ 925 rpc_delete_timer(task); 926 927 #ifdef RPC_DEBUG 928 task->tk_magic = 0; 929 #endif 930 /* Wake up anyone who is waiting for task completion */ 931 rpc_mark_complete_task(task); 932 933 rpc_put_task(task); 934 } 935 936 /* 937 * Kill all tasks for the given client. 938 * XXX: kill their descendants as well? 939 */ 940 void rpc_killall_tasks(struct rpc_clnt *clnt) 941 { 942 struct rpc_task *rovr; 943 944 945 if (list_empty(&clnt->cl_tasks)) 946 return; 947 dprintk("RPC: killing all tasks for client %p\n", clnt); 948 /* 949 * Spin lock all_tasks to prevent changes... 950 */ 951 spin_lock(&clnt->cl_lock); 952 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) { 953 if (! RPC_IS_ACTIVATED(rovr)) 954 continue; 955 if (!(rovr->tk_flags & RPC_TASK_KILLED)) { 956 rovr->tk_flags |= RPC_TASK_KILLED; 957 rpc_exit(rovr, -EIO); 958 rpc_wake_up_task(rovr); 959 } 960 } 961 spin_unlock(&clnt->cl_lock); 962 } 963 964 int rpciod_up(void) 965 { 966 return try_module_get(THIS_MODULE) ? 0 : -EINVAL; 967 } 968 969 void rpciod_down(void) 970 { 971 module_put(THIS_MODULE); 972 } 973 974 /* 975 * Start up the rpciod workqueue. 976 */ 977 static int rpciod_start(void) 978 { 979 struct workqueue_struct *wq; 980 981 /* 982 * Create the rpciod thread and wait for it to start. 983 */ 984 dprintk("RPC: creating workqueue rpciod\n"); 985 wq = create_workqueue("rpciod"); 986 rpciod_workqueue = wq; 987 return rpciod_workqueue != NULL; 988 } 989 990 static void rpciod_stop(void) 991 { 992 struct workqueue_struct *wq = NULL; 993 994 if (rpciod_workqueue == NULL) 995 return; 996 dprintk("RPC: destroying workqueue rpciod\n"); 997 998 wq = rpciod_workqueue; 999 rpciod_workqueue = NULL; 1000 destroy_workqueue(wq); 1001 } 1002 1003 void 1004 rpc_destroy_mempool(void) 1005 { 1006 rpciod_stop(); 1007 if (rpc_buffer_mempool) 1008 mempool_destroy(rpc_buffer_mempool); 1009 if (rpc_task_mempool) 1010 mempool_destroy(rpc_task_mempool); 1011 if (rpc_task_slabp) 1012 kmem_cache_destroy(rpc_task_slabp); 1013 if (rpc_buffer_slabp) 1014 kmem_cache_destroy(rpc_buffer_slabp); 1015 } 1016 1017 int 1018 rpc_init_mempool(void) 1019 { 1020 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1021 sizeof(struct rpc_task), 1022 0, SLAB_HWCACHE_ALIGN, 1023 NULL); 1024 if (!rpc_task_slabp) 1025 goto err_nomem; 1026 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1027 RPC_BUFFER_MAXSIZE, 1028 0, SLAB_HWCACHE_ALIGN, 1029 NULL); 1030 if (!rpc_buffer_slabp) 1031 goto err_nomem; 1032 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1033 rpc_task_slabp); 1034 if (!rpc_task_mempool) 1035 goto err_nomem; 1036 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1037 rpc_buffer_slabp); 1038 if (!rpc_buffer_mempool) 1039 goto err_nomem; 1040 if (!rpciod_start()) 1041 goto err_nomem; 1042 return 0; 1043 err_nomem: 1044 rpc_destroy_mempool(); 1045 return -ENOMEM; 1046 } 1047